WO2015080750A1 - Hologram for alignment - Google Patents

Hologram for alignment Download PDF

Info

Publication number
WO2015080750A1
WO2015080750A1 PCT/US2013/072480 US2013072480W WO2015080750A1 WO 2015080750 A1 WO2015080750 A1 WO 2015080750A1 US 2013072480 W US2013072480 W US 2013072480W WO 2015080750 A1 WO2015080750 A1 WO 2015080750A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
holographic
view
encoded
hologram device
Prior art date
Application number
PCT/US2013/072480
Other languages
French (fr)
Inventor
William Allen
David Fattal
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to US15/037,456 priority Critical patent/US9835448B2/en
Priority to PCT/US2013/072480 priority patent/WO2015080750A1/en
Priority to CN201380080953.7A priority patent/CN105723285B/en
Priority to EP13898132.9A priority patent/EP3074823B1/en
Publication of WO2015080750A1 publication Critical patent/WO2015080750A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H1/265Angle multiplexing; Multichannel holograms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • G06K7/10663Basic scanning using moving elements using hologram
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • G06K7/10732Light sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2273Pseudo-dynamic holobject, e.g. due to angle multiplexing and viewer motion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/50Nature of the object
    • G03H2210/53Coded object not directly interpretable, e.g. encrypted object, barcode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/52Details of telephonic subscriber devices including functional features of a camera

Definitions

  • Alignment of objects may be required in many situations. For example, in taking photos for passports, an individual's head must be positioned properly relative to the camera. Further, in many robotic manufacturing or processing applications, for example, an object may be needed to be aligned with respect to another object or to a machine with a specific orientation, such as may be required in the case of a robot moving within an automated warehouse.
  • Figure 1 illustrates a camera device with an example hologram device
  • Figure 2 illustrates a camera device with another example hologram device
  • Figure 3 illustrates an example of a user with a camera having an example hologram device
  • Figure 4 illustrates an example of a user using a camera system with an example hologram device
  • Figure 5 illustrates a system with an object having an example hologram device for alignment with a camera
  • Figure 6 provides a schematic illustration of an example position identification system
  • Figure 7 illustrates an example hologram device viewed from various positions
  • Figure 8 illustrates various views of an example three-dimensional object for encoding on a holographic device
  • Figures 9A-9D illustrate example holographic images for encoding on hologram devices.
  • a hologram device is used to facilitate alignment.
  • the hologram device may include an encoded holographic image which may have different views when viewed from various positions. Each view of the encoded image may be indicative of a position relative to alignment with a target position. The target position may be associated with a target holographic view on the encoded holographic image of the hologram device.
  • a hologram device may include conventional holograms.
  • the hologram device may include a multi-view, three-dimensional display.
  • the multi-view, three-dimensional display may be formed may reproduce light rays reflecting off an object from various angles to get a different image from different perspectives, such as the different eyes of a human viewer or an imaging device positioned at different positions relative to the hologram device.
  • the multi-view, three-dimensional display may use non- patterned grooves to send light off in different directions.
  • FIG. 1 illustrates a camera device with an example hologram device.
  • the illustrated camera device 100 may be mobile phone or a digital camera.
  • the camera device 100 includes a camera 110, such as a front-facing camera on smartphone.
  • the camera devicelOO also includes a display 120 which provides the image seen through the camera 110.
  • the camera device 100 is provided with a hologram device 130 in the vicinity of the camera 110.
  • the hologram device 130 provides the user with an alignment mechanism to allow the user to look closer to the camera 110.
  • Various examples of the hologram device 130 are described below with reference to Figures 6-9.
  • Figure 2 illustrates a camera device with another example hologram device.
  • the camera device 200 of Figure 2 is similar to the camera device 100 of Figure 1 and includes a camera 210, a display 220 and a hologram device 230.
  • the hologram device 230 is formed with an annular configuration and is positioned around the camera device 210.
  • the user may be allowed to look into the camera or close to the camera, rather than at the display screen.
  • the hologram device may provide the user with an indication of proper alignment with the camera. Examples of the hologram device are described in greater detail below. Thus, the user is able to take a more desirable self-portrait.
  • Figure 3 illustrates an example of a system 300 including a user with a camera 310 having an example hologram device 320.
  • the hologram device 320 is a flat device which may be, but does not need to be, positioned parallel to the lens
  • Figure 3 illustrates the hologram device 320 schematically for purposes of clarity.
  • the hologram device 320 allows the user to properly align the camera to photograph himself without the use of a display.
  • the user may move the camera to achieve proper alignment using the hologram device 320.
  • the camera is pointed at the eyes of the user with the user looking into the lens of the camera.
  • the user's head may be properly framed and rotationally aligned as well.
  • a hologram device 420 may be used to properly position the user relative to a camera 410.
  • the user may move and use the hologram device to properly position himself.
  • the user may be required to position himself in a particular manner relative to the camera or image capture device.
  • a system 500 using a hologram for alignment is illustrated.
  • a camera 510 may use a hologram device 520 on an object 530 to properly align the object.
  • the camera 510 may be associated with a robotic processor which requires the object 530 to be in a particular position and/or orientation for processing.
  • the hologram 520 may indicate the current position of the object 530.
  • the cameral 510 may be mounted on a vehicle, and the hologram device 520 may be used to facilitate automated parking of the vehicle in, for example, a self-driving mode.
  • the vehicle may be a robot-driven vehicle.
  • FIG. 6 provides a schematic illustration of an example position identification system.
  • a hologram device 610 is used for alignment of a visual device, such as a camera 620.
  • the visual device may be a human eye or any other imaging device.
  • the line of sight between the camera 620 and a target point is shown as reference numeral 630, and reference numeral 632 represents the projection of the line of sight onto the hologram device 610.
  • the position of the camera 620 relative to the target can be represented as two angular measurements.
  • the first angle 650 is the azimuth, measured as the angle between a reference direction in the plane of the hologram device, such as the reference line 612, and the projection of the line of sight onto the hologram device 632.
  • the second angle 660 is the elevation from the plane of the hologram device 610 and the line of sight 630.
  • the position may be represented in a variety of other manners which are considered within the scope of the present disclosure.
  • Figure 7 illustrates an example hologram device viewed from various positions.
  • the example hologram device 700 may include an encoded image of a matrix of dots.
  • the example hologram device 700 may also include features 702 for facilitating orientation, or detection the orientation, of the hologram device.
  • different views of the encoded image which may be indicative of the viewer's position relative to a target.
  • the target may be the normal line-of-sight from the flat hologram device 700 extending through the center of the hologram device 700.
  • Figure 7 shows a progression of views of the hologram device 700 illustrating how angular information can be transmitted optically to a viewer or an imaging device such as a camera.
  • a target dot in the matrix of dots may appear differently from the other dots.
  • the target dot may appear brighter, darker or a different color, for example. The change in appearance may facilitate identification of the target position.
  • the hologram device 700 may appear as illustrated in Figure 7(b).
  • Figure 7(c) illustrates the hologram device 700 as it may appear when viewed with the line of sight 20 degrees from normal in one dimension and 20 degrees from normal in the second direction.
  • Figure 7(d) illustrates the hologram device 700 as it may appear when viewed from an angle of five degrees from the normal in one dimension. In this regard, two adjacent dots may appear as different from the other dots in the matrix.
  • the hologram device may be encoded with an image of a three- dimensional object.
  • Such an object may allow visual alignment through viewing of an orientation of the three-dimensional object.
  • the orientation of the object may allow
  • the three-dimensional object may include an asymmetric feature which may facilitate rotational alignment.
  • a three-dimensional object having an asymmetric feature is illustrated in Figure 8, which includes various views of the example three-dimensional object.
  • An image of the three-dimensional object, equivalent to a set of two-dimensional images, may be encoded as a hologram on a hologram device.
  • the example object of Figure 8 is a vase 800 having a body 810, a handle 820 and an opening 830.
  • the target alignment of the vase may be with the user looking into the opening 830 toward the bottom of the inside of the vase 800.
  • the vase 800 may be viewed from an off-center perspective, as illustrated in Figures 8(a) and 8(b).
  • the opening 830 of the vase 800 may change in appearance.
  • the opening is made darker.
  • the opening may be brighter, a different color or otherwise change visually.
  • the three-dimensional object may include an asymmetric feature to allow proper rotational alignment.
  • the handle 820 of the vase 800 provides the asymmetric feature. Proper rotational alignment is achieved when the handle 820 appears in a particular position, such as on the top side of the vase, as illustrated in Figure 8(c).
  • Figures 9A-9D illustrate example holographic images for encoding on hologram devices.
  • the encoded image may be sphere formed of facets, similar to a mirror ball.
  • Each facet may include an indication of a position of the facet, for example, relative to a target facet.
  • a view of the encoded image may correspond to one or more facets of the spherical encoded image.
  • the position of each facet may be indicated in different manners.
  • Figures 9A-9D illustrate some such examples.
  • each view of the encoded image may include a view of a three-dimensional object, such as the object described above with reference to Figure 8.
  • each facet of the spherical object may include an image of the three-dimensional object from a different perspective.
  • Each different perspective may be indicative of the position of the corresponding view or facet relative to a target view or perspective.
  • each view of the encoded image may include numerical values indicative of the angular position of the view relative to a target view.
  • the values may be indicative of an azimuth value and an elevation angle, such as the angles described above with reference to Figure 6.
  • a user or a camera viewing each view may learn the position change required to align with a target view or facet.
  • each view of the encoded image may include a code indicative of the position of each view relative to a target view.
  • the code may be a numerical value.
  • the numerical values may be associated with a relative position through a table look-up, for example.
  • each view or facet may include another machine-readable code, such as a bar code, a quick-read (QR) code or a 2-dimensional bar code.
  • an imaging device may be coupled to a processor. The imaging device may capture the machine-readable code, and the processor may determine the change in position required for alignment with a target view or facet. The processor may cause a change in the position based on the relative position indicated by the machine-readable code.
  • each view of the encoded image may include a graphical image indicating a target view or a direction to the target view.
  • a target view or facet may be indicated by a target symbol
  • non-target views or facets may be indicated by an arrow indicating the direction to the target.
  • a feature of the arrow may indicate the magnitude of change required for alignment with the target.
  • a length, thickness or brightness of the arrow may indicate a distance to the target view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Holo Graphy (AREA)

Abstract

An example hologram device may include a target holographic view of an encoded holographic image representing an alignment target; and a plurality of non-target holographic views of the encoded holographic image, each non-target holographic view indicating a position relative to the target holographic view.

Description

HOLOGRAM FOR ALIGNMENT
BACKGROUND
[0001] Alignment of objects may be required in many situations. For example, in taking photos for passports, an individual's head must be positioned properly relative to the camera. Further, in many robotic manufacturing or processing applications, for example, an object may be needed to be aligned with respect to another object or to a machine with a specific orientation, such as may be required in the case of a robot moving within an automated warehouse.
BRIEF DESCRIPTION OF THE DRAWINGS
[0002] For a more complete understanding of various examples, reference is now made to the following description taken in connection with the accompanying drawings in which:
[0003] Figure 1 illustrates a camera device with an example hologram device;
[0004] Figure 2 illustrates a camera device with another example hologram device;
[0005] Figure 3 illustrates an example of a user with a camera having an example hologram device;
[0006] Figure 4 illustrates an example of a user using a camera system with an example hologram device;
[0007] Figure 5 illustrates a system with an object having an example hologram device for alignment with a camera;
[0008] Figure 6 provides a schematic illustration of an example position identification system;
[0009] Figure 7 illustrates an example hologram device viewed from various positions;
[0010] Figure 8 illustrates various views of an example three-dimensional object for encoding on a holographic device; and
[0011] Figures 9A-9D illustrate example holographic images for encoding on hologram devices.
DETAILED DESCRIPTION
[0012] In various examples described herein, a hologram device is used to facilitate alignment. The hologram device may include an encoded holographic image which may have different views when viewed from various positions. Each view of the encoded image may be indicative of a position relative to alignment with a target position. The target position may be associated with a target holographic view on the encoded holographic image of the hologram device.
[0013] In various examples, a hologram device may include conventional holograms. In other examples, the hologram device may include a multi-view, three-dimensional display. The multi-view, three-dimensional display may be formed may reproduce light rays reflecting off an object from various angles to get a different image from different perspectives, such as the different eyes of a human viewer or an imaging device positioned at different positions relative to the hologram device. In one example, the multi-view, three-dimensional display may use non- patterned grooves to send light off in different directions.
[0014] Figure 1 illustrates a camera device with an example hologram device. The illustrated camera device 100 may be mobile phone or a digital camera. The camera device 100 includes a camera 110, such as a front-facing camera on smartphone. The camera devicelOO also includes a display 120 which provides the image seen through the camera 110.
[0015] Often, an individual taking one's own picture looks at the screen to ensure proper alignment. This results in an image of the user with eyes drooping downward since the user is not looking into the camera. In the illustrated example, the camera device 100 is provided with a hologram device 130 in the vicinity of the camera 110. The hologram device 130 provides the user with an alignment mechanism to allow the user to look closer to the camera 110. Various examples of the hologram device 130 are described below with reference to Figures 6-9.
[0016] Figure 2 illustrates a camera device with another example hologram device. The camera device 200 of Figure 2 is similar to the camera device 100 of Figure 1 and includes a camera 210, a display 220 and a hologram device 230. The hologram device 230 is formed with an annular configuration and is positioned around the camera device 210.
[0017] In the examples of Figures 1 and 2, the user may be allowed to look into the camera or close to the camera, rather than at the display screen. The hologram device may provide the user with an indication of proper alignment with the camera. Examples of the hologram device are described in greater detail below. Thus, the user is able to take a more desirable self-portrait.
[0018] Figure 3 illustrates an example of a system 300 including a user with a camera 310 having an example hologram device 320. It is noted that, while the hologram device 320 is a flat device which may be, but does not need to be, positioned parallel to the lens, Figure 3 illustrates the hologram device 320 schematically for purposes of clarity. As described above with reference to Figures 1 and 2, the hologram device 320 allows the user to properly align the camera to photograph himself without the use of a display. For example, the user may move the camera to achieve proper alignment using the hologram device 320. Thus, with proper alignment, the camera is pointed at the eyes of the user with the user looking into the lens of the camera. The user's head may be properly framed and rotationally aligned as well.
[0019] In other examples, as illustrated in Figure 4, a hologram device 420 may be used to properly position the user relative to a camera 410. Thus, the user may move and use the hologram device to properly position himself. For example, in the case of passport photos or other specialty photos or medical imaging, the user may be required to position himself in a particular manner relative to the camera or image capture device.
[0020] Referring now to Figure 5, a system 500 using a hologram for alignment is illustrated. In the system 500 of Figure 5, a camera 510 may use a hologram device 520 on an object 530 to properly align the object. For example, the camera 510 may be associated with a robotic processor which requires the object 530 to be in a particular position and/or orientation for processing. The hologram 520 may indicate the current position of the object 530. A
mechanism (not shown) may be provided to change the alignment or orientation of the object 530 based on the viewing of the hologram device 520 by the camera 510. In one example, the cameral 510 may be mounted on a vehicle, and the hologram device 520 may be used to facilitate automated parking of the vehicle in, for example, a self-driving mode. For example, the vehicle may be a robot-driven vehicle.
[0021] Figure 6 provides a schematic illustration of an example position identification system. In the example system 600, a hologram device 610 is used for alignment of a visual device, such as a camera 620. In other examples, the visual device may be a human eye or any other imaging device. In the illustration of Figure 6, the line of sight between the camera 620 and a target point (e.g., the center point of the hologram device) is shown as reference numeral 630, and reference numeral 632 represents the projection of the line of sight onto the hologram device 610. The position of the camera 620 relative to the target can be represented as two angular measurements. The first angle 650 is the azimuth, measured as the angle between a reference direction in the plane of the hologram device, such as the reference line 612, and the projection of the line of sight onto the hologram device 632. The second angle 660 is the elevation from the plane of the hologram device 610 and the line of sight 630. Of course, the position may be represented in a variety of other manners which are considered within the scope of the present disclosure.
[0022] Figure 7 illustrates an example hologram device viewed from various positions. The example hologram device 700 may include an encoded image of a matrix of dots. The example hologram device 700 may also include features 702 for facilitating orientation, or detection the orientation, of the hologram device. When viewed from different positions, different views of the encoded image which may be indicative of the viewer's position relative to a target. In this regard, the target may be the normal line-of-sight from the flat hologram device 700 extending through the center of the hologram device 700. Figure 7 shows a progression of views of the hologram device 700 illustrating how angular information can be transmitted optically to a viewer or an imaging device such as a camera. When the hologram device is viewed from a target position, such as from directly above the hologram device 700 (as shown in Figure 7(a)), a target dot in the matrix of dots may appear differently from the other dots. In some examples, the target dot may appear brighter, darker or a different color, for example. The change in appearance may facilitate identification of the target position.
[0023] If the observer is positioned such that the line of sight is, for example, ten degrees from the normal in one dimension, the hologram device 700 may appear as illustrated in Figure 7(b). Figure 7(c) illustrates the hologram device 700 as it may appear when viewed with the line of sight 20 degrees from normal in one dimension and 20 degrees from normal in the second direction. Finally, Figure 7(d) illustrates the hologram device 700 as it may appear when viewed from an angle of five degrees from the normal in one dimension. In this regard, two adjacent dots may appear as different from the other dots in the matrix.
[0024] In some examples, the hologram device may be encoded with an image of a three- dimensional object. Such an object may allow visual alignment through viewing of an orientation of the three-dimensional object. The orientation of the object may allow
determination of the change in position needed for proper alignment. In certain examples, the three-dimensional object may include an asymmetric feature which may facilitate rotational alignment. One example of a three-dimensional object having an asymmetric feature is illustrated in Figure 8, which includes various views of the example three-dimensional object. An image of the three-dimensional object, equivalent to a set of two-dimensional images, may be encoded as a hologram on a hologram device.
[0025] The example object of Figure 8 is a vase 800 having a body 810, a handle 820 and an opening 830. In the illustrated example, the target alignment of the vase may be with the user looking into the opening 830 toward the bottom of the inside of the vase 800. When the hologram object is viewed from positions other than the target alignment, the vase 800 may be viewed from an off-center perspective, as illustrated in Figures 8(a) and 8(b). As illustrated in Figure 8(c), when properly aligned, the opening 830 of the vase 800 may change in appearance. For example, in Figure 8(c), the opening is made darker. In other examples, the opening may be brighter, a different color or otherwise change visually.
[0026] As noted above, the three-dimensional object may include an asymmetric feature to allow proper rotational alignment. In the example of Figure 8, the handle 820 of the vase 800 provides the asymmetric feature. Proper rotational alignment is achieved when the handle 820 appears in a particular position, such as on the top side of the vase, as illustrated in Figure 8(c).
[0027] Figures 9A-9D illustrate example holographic images for encoding on hologram devices. In various examples, the encoded image may be sphere formed of facets, similar to a mirror ball. Each facet may include an indication of a position of the facet, for example, relative to a target facet. Thus, a view of the encoded image may correspond to one or more facets of the spherical encoded image. In different examples, the position of each facet may be indicated in different manners. Figures 9A-9D illustrate some such examples.
[0028] Referring first to Figure 9A, each view of the encoded image may include a view of a three-dimensional object, such as the object described above with reference to Figure 8. In this regard, each facet of the spherical object may include an image of the three-dimensional object from a different perspective. Each different perspective may be indicative of the position of the corresponding view or facet relative to a target view or perspective.
[0029] Referring now to Figure 9B, each view of the encoded image may include numerical values indicative of the angular position of the view relative to a target view. For example, the values may be indicative of an azimuth value and an elevation angle, such as the angles described above with reference to Figure 6. Thus, a user or a camera viewing each view may learn the position change required to align with a target view or facet. [0030] Referring now to Figure 9C, each view of the encoded image may include a code indicative of the position of each view relative to a target view. As illustrated in Figure 9C, the code may be a numerical value. The numerical values may be associated with a relative position through a table look-up, for example. In other examples, in place of the numerical values, each view or facet may include another machine-readable code, such as a bar code, a quick-read (QR) code or a 2-dimensional bar code. In various examples, an imaging device may be coupled to a processor. The imaging device may capture the machine-readable code, and the processor may determine the change in position required for alignment with a target view or facet. The processor may cause a change in the position based on the relative position indicated by the machine-readable code.
[0031] Referring now to Figure 9D, each view of the encoded image may include a graphical image indicating a target view or a direction to the target view. As illustrated in Figure 9D, a target view or facet may be indicated by a target symbol, and non-target views or facets may be indicated by an arrow indicating the direction to the target. In some examples, a feature of the arrow may indicate the magnitude of change required for alignment with the target. For example, a length, thickness or brightness of the arrow may indicate a distance to the target view.
[0032] Software implementations of various examples can be accomplished with standard programming techniques with rule-based logic and other logic to accomplish various database searching steps or processes, correlation steps or processes, comparison steps or processes and decision steps or processes.
[0033] The foregoing description of various examples has been presented for purposes of illustration and description. The foregoing description is not intended to be exhaustive or limiting to the examples disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of various examples. The examples discussed herein were chosen and described in order to explain the principles and the nature of various examples of the present disclosure and its practical application to enable one skilled in the art to utilize the present disclosure in various examples and with various modifications as are suited to the particular use contemplated. The features of the examples described herein may be combined in all possible combinations of methods, apparatus, modules, systems, and computer program products.

Claims

WHAT IS CLAIMED IS:
1. A hologram device, comprising:
a target holographic view of an encoded holographic image representing an alignment target; and
a plurality of non-target holographic views of the encoded holographic image, each non- target holographic view indicating a position relative to the target holographic view.
2. The device of claim 1, wherein the encoded holographic image includes a three-dimensional object.
3. The device of claim 2, wherein the three-dimensional object includes an asymmetric feature to facilitate rotational alignment.
4. The device of claim 1, wherein each non-target holographic view of the encoded holographic image includes a code associated with the position relative to the target holographic view.
5. The device of claim 4, wherein the code is a machine-readable code.
6. The device of claim 4, wherein the code is associated with the position relative to the target holographic view through a table look-up.
7. The device of claim 1, wherein each non-target holographic view of the encoded holographic image includes a first angle indicative of an elevation angle and a second angle indicative of an azimuth value.
8. The device of claim 1, wherein each non-target holographic view of the encoded holographic image includes a graphical representation indicative of the position relative to the target holographic view.
9. A method, comprising:
detecting a non-target holographic view of an encoded holographic image on a hologram device, the non-target holographic view indicating a position relative to a target holographic view of the encoded holographic image;
causing a change in the position relative to the target holographic view based on the non- target holographic view indicating the position relative to the target holographic view.
10. The method of claim 9, wherein the encoded holographic image includes an image of a three- dimensional object.
11. The method of claim 10, wherein the three-dimensional object includes an asymmetric feature indicating a rotational orientation of the hologram device, and wherein the method further comprises:
causing a rotation to change the rotational orientation of the hologram device based on the indication of the orientation by the asymmetric feature of the three-dimensional object.
12. The method of claim 9, wherein the non-target holographic view of the encoded holographic image includes a machine -readable code associated with the position relative to the target holographic view.
13. A system, comprising:
a hologram device associated with an object, the hologram device including a plurality of non-target holographic views of an encoded holographic image, each non-target holographic view including a machine-readable code indicating a position relative to a target holographic view;
an imaging device to read the machine-readable code of at least one of the non-target holographic views; and
a processor for determining an alignment position of the object relative to the imaging device based on the machine readable code encoded on the at least one of the non-target holographic views.
14. The system of claim 13, wherein the hologram device further includes a target holographic view of the encoded holographic image, the target holographic view representing an alignment target.
15. The system of claim 13, wherein the machine readable code is a bar code, a quick-read (QR) code, or a two-dimensional bar code.
PCT/US2013/072480 2013-11-29 2013-11-29 Hologram for alignment WO2015080750A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/037,456 US9835448B2 (en) 2013-11-29 2013-11-29 Hologram for alignment
PCT/US2013/072480 WO2015080750A1 (en) 2013-11-29 2013-11-29 Hologram for alignment
CN201380080953.7A CN105723285B (en) 2013-11-29 2013-11-29 Holographic equipment, the method and system that alignment is realized using holographic
EP13898132.9A EP3074823B1 (en) 2013-11-29 2013-11-29 Hologram for alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/072480 WO2015080750A1 (en) 2013-11-29 2013-11-29 Hologram for alignment

Publications (1)

Publication Number Publication Date
WO2015080750A1 true WO2015080750A1 (en) 2015-06-04

Family

ID=53199524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/072480 WO2015080750A1 (en) 2013-11-29 2013-11-29 Hologram for alignment

Country Status (4)

Country Link
US (1) US9835448B2 (en)
EP (1) EP3074823B1 (en)
CN (1) CN105723285B (en)
WO (1) WO2015080750A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842882B (en) * 2017-04-02 2022-03-18 浙江工业大学 Self-visible holographic display device
US12006143B2 (en) 2017-11-14 2024-06-11 Hai Robotics Co., Ltd. Handling robot
CN110537189B (en) 2017-11-14 2021-12-17 深圳市海柔创新科技有限公司 Transfer robot and goods taking method based on transfer robot
US11465840B2 (en) 2017-11-14 2022-10-11 Hai Robotics Co., Ltd. Handling robot
US11036048B2 (en) * 2018-10-03 2021-06-15 Project Whitecard Digital Inc. Virtual reality system and method for displaying on a real-world display a viewable portion of a source file projected on an inverse spherical virtual screen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002351A1 (en) 2000-07-03 2002-01-10 Optaglio Limited Optical device
JP2003339657A (en) * 2002-05-24 2003-12-02 Kanazawa Inst Of Technology Two-dimensional display method and device for three- dimensional spectrum
US20050190680A1 (en) * 2001-10-06 2005-09-01 Samsung Electronics Co., Ltd. Method of aligning optical system using a hologram and apparatus therefor
JP2008197574A (en) * 2007-02-15 2008-08-28 Funai Electric Co Ltd Hologram device and hologram recording apparatus
US20090257104A1 (en) 2005-12-13 2009-10-15 Adrian James Cable Hologram Viewing Arrangement and Alignment Device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576458A (en) 1983-04-05 1986-03-18 Fuji Photo Film Co., Ltd. Camera finder employing holographic view field frames
US6559948B1 (en) 1999-06-30 2003-05-06 Raytheon Company Method for locating a structure using holograms
US7511805B2 (en) 2005-11-28 2009-03-31 Leica Geosystems Ag Holographic test plate for positioning and aligning pipes
US20100045701A1 (en) 2008-08-22 2010-02-25 Cybernet Systems Corporation Automatic mapping of augmented reality fiducials
US8970690B2 (en) 2009-02-13 2015-03-03 Metaio Gmbh Methods and systems for determining the pose of a camera with respect to at least one object of a real environment
US8240853B2 (en) 2009-05-01 2012-08-14 Bioptigen, Inc. Systems for imaging structures of a subject and related methods
US20120104097A1 (en) * 2009-07-09 2012-05-03 Bilcare Technologies Singapore Pte. Ltd. Reading device able to identify a tag or an object adapted to be identified, related methods and systems
KR101812302B1 (en) * 2010-04-01 2017-12-27 시리얼 테크놀로지즈 에스.에이. Method and device for encoding three-dimensional scenes which include transparent objects in a holographic system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002351A1 (en) 2000-07-03 2002-01-10 Optaglio Limited Optical device
US20050190680A1 (en) * 2001-10-06 2005-09-01 Samsung Electronics Co., Ltd. Method of aligning optical system using a hologram and apparatus therefor
JP2003339657A (en) * 2002-05-24 2003-12-02 Kanazawa Inst Of Technology Two-dimensional display method and device for three- dimensional spectrum
US20090257104A1 (en) 2005-12-13 2009-10-15 Adrian James Cable Hologram Viewing Arrangement and Alignment Device
JP2008197574A (en) * 2007-02-15 2008-08-28 Funai Electric Co Ltd Hologram device and hologram recording apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMASZ KOZACKI ET AL.: "Holographic Capture and Display Systems in Circula Configurations", JOURNAL OF DISPLAY TECHNOLOGY, vol. 8, no. 4, April 2012 (2012-04-01), pages 225 - 232, XP011440940 *

Also Published As

Publication number Publication date
EP3074823A1 (en) 2016-10-05
CN105723285A (en) 2016-06-29
EP3074823A4 (en) 2017-06-21
US9835448B2 (en) 2017-12-05
US20160305775A1 (en) 2016-10-20
EP3074823B1 (en) 2020-11-04
CN105723285B (en) 2018-10-12

Similar Documents

Publication Publication Date Title
US9835448B2 (en) Hologram for alignment
CN107169405B (en) Method and device for living body identification based on binocular camera
RU2689136C2 (en) Automated determination of system behavior or user experience by recording, sharing and processing information associated with wide-angle image
US9432655B2 (en) Three-dimensional scanner based on contours from shadow images
CN106339006B (en) A kind of method for tracking target and device of aircraft
JP7480882B2 (en) Information processing device, recognition assistance method, and computer program
US20210232858A1 (en) Methods and systems for training an object detection algorithm using synthetic images
US20110134220A1 (en) 3d visualization system
US10634918B2 (en) Internal edge verification
WO2015190204A1 (en) Pupil detection system, gaze detection system, pupil detection method, and pupil detection program
US20180184077A1 (en) Image processing apparatus, method, and storage medium
JP7012163B2 (en) Head-mounted display device and its method
JPWO2015045834A1 (en) Marker image processing system
EP3252714A1 (en) Camera selection in positional tracking
CN110458025A (en) A kind of personal identification and localization method based on binocular camera
JP2021531601A (en) Neural network training, line-of-sight detection methods and devices, and electronic devices
CN109791294B (en) Method and device for operating a display system with data glasses
CN113424522A (en) Three-dimensional tracking using hemispherical or spherical visible depth images
CN108664118B (en) Eyeball tracking method and device, contact lenses and virtual reality system
CN109394170B (en) A kind of iris information measuring system of no-reflection
JP2016057634A (en) Head-mounted display, calibration method, calibration program, and recording medium
JP6210447B2 (en) Line-of-sight measuring device, method of displaying a gaze point, method of displaying a gaze region, and method of displaying a Gaussian distribution of a gaze point
WO2018110264A1 (en) Imaging device and imaging method
CN104850383A (en) Information processing method and electronic equipment
JP2017215597A (en) Information display method and information display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898132

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013898132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15037456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE