WO2015080425A1 - Polyamide resin and polyamide molded body using same - Google Patents

Polyamide resin and polyamide molded body using same Download PDF

Info

Publication number
WO2015080425A1
WO2015080425A1 PCT/KR2014/011141 KR2014011141W WO2015080425A1 WO 2015080425 A1 WO2015080425 A1 WO 2015080425A1 KR 2014011141 W KR2014011141 W KR 2014011141W WO 2015080425 A1 WO2015080425 A1 WO 2015080425A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
acid
polyamide
reaction
molding
Prior art date
Application number
PCT/KR2014/011141
Other languages
French (fr)
Korean (ko)
Inventor
칸다토모미치
시모다토모아키
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013244007A external-priority patent/JP6196892B2/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US15/037,501 priority Critical patent/US9796814B2/en
Priority to EP14866394.1A priority patent/EP3075757B1/en
Priority to CN201480064818.8A priority patent/CN105814115B/en
Publication of WO2015080425A1 publication Critical patent/WO2015080425A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a polyamide resin and a polyamide molded article using the same.
  • this invention relates to the polyamide resin which can exhibit high heat-resistant color stability in a polyamide molded object.
  • Polyamide resins are widely used as textiles for garments, industrial materials, engineering plastics, and the like, due to their excellent properties and ease of melt molding.
  • the polyamide resin used in the fields of electrical / electronic parts, automobile parts, reflective materials, and the like has been required to have more excellent physical properties and functions.
  • Polyamide resin is generally manufactured by polycondensation reaction of dicarboxylic acid and diamine.
  • Patent Document 1 contains polyamides containing mainly 1,4-cyclohexanedicarboxylic acid units as dicarboxylic acid units and mainly containing aliphatic diamine units having 4 to 18 carbon atoms as diamine units.
  • a reflector for an LED using a polyamide composition Specifically, Patent Literature 1 polycondenses 1,4-cyclohexanedicarboxylic acid and 1,11-undecanediamine in the presence of sodium hypophosphite monohydrate to obtain a lower order condensate (prepolymer).
  • the polyamide resin produced is described.
  • the injection molded article described in Patent Document 1 hardly has a high level of heat-resistant color stability to a desired degree, and further improvement is required.
  • Patent Document 1 WO2011 / 027562 A Pamphlet
  • An object of this invention is to provide the polyamide resin which can exhibit high heat-resistant color stability in a polyamide molded object.
  • the polyamide resin of the present invention is obtained by polycondensing a monomer containing 1,4-cyclohexanedicarboxylic acid and 1,10-decanediamine and 1,12-dodecanediamine. And the molar ratio of 1,10-decanediamine to 1,12-dodecanediamine is about 10:90 to about 65:35.
  • Embodiments of the present invention in a polyamide molded body, can provide a polyamide resin capable of exhibiting high heat-resistant color stability.
  • Polyamide resin according to an embodiment of the present invention 1,4-cyclohexanedicarboxylic acid; and a monomer comprising 1,10-decanediamine and 1,12-dodecanediamine; By polycondensation. And the molar ratio of 1,10-decanediamine to 1,12-dodecanediamine is about 10:90 to about 65:35.
  • the polyamide resin has a lower melting point than the conventional polyamide resin disclosed in Patent Document 1, and has a higher heat-resistant color stability when used as a molded body.
  • the mechanism by which such excellent heat-resistant color stability is exhibited is not clear, but the present inventors speculate as follows.
  • this invention is not limited to the following mechanism.
  • Patent Literature 1 when the polyamide molded body is used as the LED reflecting plate, the LED reflecting plate is exposed to a high temperature exceeding 100 ° C by light irradiation of the LED. In such high temperature use, the problem that the brightness fall by the reflectance fall by the discoloration of resin itself cannot be suppressed has been pointed out previously.
  • the present inventors assume that the discoloration of the resin at the time of high temperature use under such an atmosphere is due to deterioration in the molded body, and it is thought that the cause of the deterioration may be due to heat deterioration during molding. It was.
  • the polyamide resin of this embodiment In molding methods such as injection molding, in order to lower the viscosity of the polyamide resin at the time of molding, it is necessary to heat-melt the polyamide resin at a temperature about 10 ° C. above the melting point. Since the polyamide resin of this embodiment has a melting point lower than that of the conventional polyamide resin, the polyamide resin of the present embodiment can be molded at a lower temperature. Therefore, heat deterioration at the time of shaping
  • the polyamide resin of this form is demonstrated.
  • the dicarboxylic acid used as a raw material of a polyamide resin contains 1, 4- cyclohexanedicarboxylic acid as essential. Moreover, in one Example, you may further contain other dicarboxylic acid other than 1, 4- cyclohexanedicarboxylic acid as a monomer of a raw material.
  • the ratio of 1, 4- cyclohexanedicarboxylic acid is about 50 mol% or more, about 75 mol% or more, about 90 mol with respect to the total amount of the dicarboxylic acid contained in a monomer. Or at least about 95 mol% or at least about 100 mol%. Within this range, the polyamide resin can exhibit high heat color stability.
  • the other dicarboxylic acid is not particularly limited, but, for example, terephthalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, pimelic acid, 2,2-dimethyl Glutaric acid, 3,3-diethylsuccinic acid, suberic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedi Carboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, diphenic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenyl Sulfone-4,4'-dicarboxylic acid, 4,4'-biphenyldicarboxylic
  • dicarboxylic acids may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may use together a small amount of polyhydric carboxylic acid components, such as trimellitic acid, trimesic acid, a pyromellitic acid, as needed.
  • the diamine used as a raw material of a polyamide resin contains 1,10-decanediamine and 1,12-dodecanediamine, and the mol ratio of 1,10-decanediamine and 1,12-dodecanediamine (1 , 10-decanediamine: 1,12-dodecanediamine) is from about 10:90 to about 65:35 or from about 15:85 to about 60:40.
  • the mol ratio may be more specifically about 30:70 to about 50:50 or about 35:65 to about 45:55.
  • the ratio of the total amount of 1,10-decanediamine and 1,12-dodecanediamine is about 90 mol% or more with respect to the total amount of diamine contained in the monomer, About 95 mol% or more, about 98 mol% or more, about 100 mol%. Within this range, the effect of lowering the melting point can be improved.
  • the other diamine is not particularly limited, but may be an aliphatic alkylene diamine having 4 to 25 carbon atoms.
  • diamines other than aliphatic alkylene diamine of 4-25 carbon atoms ethylenediamine and propanediamine; Cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, bis (4-aminocyclohexyl) methane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, norbornanedimethanamine
  • Alicyclic diamines such as tricyclodecane dimethanamine;
  • aromatic diamines such as paraphenylenediamine, metaphenylenediamine, xylylenediamine, 4,4'-diaminodiphenylsulfone, and 4,4'-diaminodiphenyl ether.
  • xylylenediamine includes three isomers, ortho xylylenediamine, metaxylylenediamine (MXDA), and paraxylylenediamine (PXDA).
  • MXDA metaxylylenediamine
  • PXDA paraxylylenediamine
  • Other diamines other than these 1,10-decanediamine and 1,12-dodecanediamine may be used individually by 1 type, and may be used in combination of 2 or more type.
  • 1,4-cyclohexanedicarboxylic acid is used as the dicarboxylic acid, and 1,10-decanediamine and 1,12-dodecanediamine are used as the diamine in a predetermined ratio.
  • a polyamide resin having a low melting point can be obtained.
  • the melting point of the polyamide resin of the present form may be about 285 °C to 305 °C, about 285 °C to about 300 °C or about 285 °C to about 295 °C.
  • the polyamide resin of one embodiment is prepared by polycondensation of a monomer comprising a dicarboxylic acid and a diamine described above.
  • a monomer comprising a dicarboxylic acid and a diamine described above.
  • limiting in particular in polycondensation method What is necessary is just to select suitably from arbitrary methods conventionally known. For example, after heating the aqueous solution of dicarboxylic acid and diamine at high temperature and high pressure, and carrying out a dehydration reaction, or polycondensing dicarboxylic acid and diamine under pressurized heating conditions, and obtaining a lower condensate, the lower condensation is carried out.
  • the method of making water high molecular weight by arbitrary methods, such as solution polymerization, melt polymerization, and solid state polymerization, etc. are mentioned. Among them, the polycondensation of dicarboxylic acid and diamine may yield a lower order condensate, and then the lower order condensation may
  • the method for producing a polyamide resin according to an embodiment of the present invention the above-mentioned 1,4-cyclohexanedicarboxylic acid; and a monomer comprising 1,10-decanediamine and 1,12-dodecanediamine Polycondensation, and (1) obtaining a lower order condensate, and the process (2) of carrying out the solid state polymerization of a lower order condensate.
  • the manufacturing method of the polyamide resin of this form is demonstrated for every process.
  • the low-order condensate is synthesized by injecting an aqueous solution of the monomer or salt and the like into a pressurized polymerization tank which is usually used, for example, and performing a polycondensation reaction in an aqueous solvent under stirring conditions.
  • An aqueous solvent is a solvent which has water as a main component.
  • the solvent used in addition to water is not particularly limited as long as it does not affect polycondensation reactivity or solubility. Specific examples include alcohols such as methanol, ethanol, propanol, butanol and ethylene glycol. .
  • the amount of water in the reaction system at the start of the polycondensation reaction is not particularly limited as long as the amount of water in the reaction system at the end of the reaction is from about 20% by mass to about 35% by mass, for example, from about 20% by mass to about 60% by mass. To%.
  • the amount of water is not particularly limited as long as the amount of water in the reaction system at the end of the reaction is from about 20% by mass to about 35% by mass, for example, from about 20% by mass to about 60% by mass. To%.
  • a phosphorus catalyst can be used in terms of increasing the polycondensation rate and preventing deterioration during the polycondensation reaction.
  • a phosphorus catalyst hypophosphite, phosphate, hypophosphorous acid, phosphoric acid, phosphate ester, polymethaic acid, polyphosphate, phosphine oxide, phosphonium halogen compound and the like can be used.
  • hypophosphite, phosphate, hypophosphorous acid, phosphoric acid may be used.
  • hypophosphite for example, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, vanadium hypophosphite, manganese hypophosphite, zinc hypophosphite, lead hypophosphite, nickel hypophosphite, hypophosphite Cobalt, ammonium hypophosphite and the like can be used. More specifically, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite may be used.
  • phosphate for example, sodium phosphate, potassium phosphate, potassium dihydrogen phosphate, calcium phosphate, vanadium phosphate, magnesium phosphate, manganese phosphate, lead phosphate, nickel phosphate, cobalt phosphate, ammonium phosphate, diammonium phosphate or the like can be used.
  • phosphate ester ethyl octadecyl phosphate etc.
  • polymetaphosphates include sodium trimethaphosphate, sodium pentametaphosphate, sodium hexametaphosphate, and polymetaphosphate.
  • polyphosphoric acid sodium tetrapolyphosphate etc.
  • the phosphine oxides include hexamethylphosphoamide and the like. Moreover, the form of these compound hydrates may be sufficient.
  • the addition amount of a phosphorus catalyst may be about 0.0001 mass part to about 5 mass parts, or about 0.001 mass part to about 1 mass part with respect to 100 mass parts of total amounts of a monomer. Within this range, the effect of increasing the polycondensation rate and preventing degradation during the polycondensation reaction can be exerted.
  • the addition time may be any time until the completion of the solid phase polymerization, but may be from the time of raw material injection to the completion of the polycondensation of the lower condensate. Moreover, you may add multiple times. Furthermore, you may add in combination of 2 or more types of other phosphorus catalysts.
  • this process can perform the said polycondensation reaction in presence of an end sealing agent.
  • the terminal sealing agent is not particularly limited as long as it is a monofunctional compound having reactivity with the terminal amino group or the terminal carboxyl group in the lower condensate, and specifically, acid anhydrides such as monocarboxylic acid, monoamine, and phthalic anhydride, and monoisocyanate. Nate, monoacid halide, monoester, monoalcohol, etc. are mentioned. Among them, monocarboxylic acid or monoamine may be used as the end sealant in view of reactivity and stability of the sealing end, and in addition to the above characteristics, monocarboxylic acid may be used in view of ease of handling.
  • the monocarboxylic acid used as the terminal sealant is not particularly limited as long as it is a monocarboxylic acid having reactivity with an amino group.
  • aliphatic mono such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyl acid, etc.
  • Carboxylic acid Alicyclic monocarboxylic acids such as cyclohexane carboxylic acid; Aromatic monocarboxylic acids, such as benzoic acid, toluic acid, (alpha)-naphthalene carboxylic acid, (beta)-naphthalene carboxylic acid, methylnaphthalene carboxylic acid, and phenylacetic acid, or arbitrary mixtures thereof are mentioned. Among them, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, etc. Acids and benzoic acids can be used.
  • the monoamine used as the terminal sealant is not particularly limited as long as it is a monoamine having reactivity with a carboxyl group.
  • aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine
  • Alicyclic monoamines such as cyclohexylamine and dicyclohexylamine
  • Aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine, or arbitrary mixtures thereof are mentioned.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline can be used from a viewpoint of reactivity, a boiling point, stability of a sealing terminal, cost, etc.
  • the amount of the end sealant used in preparing the lower condensate may vary depending on the reactivity of the end sealant used, the boiling point, the reaction apparatus, the reaction conditions, and the like, but is generally about 0.1 mol to the number of moles of dicarboxylic acid or diamine. It can be used within the range of% to about 15 mol%.
  • the synthesis of the lower order condensate in this step is usually performed by raising the temperature and increasing the pressure under stirring conditions.
  • the polymerization temperature is controlled after the injection of the raw material.
  • the polymerization pressure is controlled in accordance with the progress of the polymerization.
  • the reaction temperature in this process may be about 200 ° C to about 260 ° C or about 210 ° C to about 250 ° C.
  • reaction temperature By making reaction temperature about 200 degreeC or more, reaction rate can be made quick and the molecular weight of a lower order condensate can fully be raised.
  • reaction temperature By setting the reaction temperature to about 260 ° C. or less, it is possible to prevent the color of the polyamide from deteriorating due to excessive thermal history.
  • the reaction pressure in this process may be about 0.5 MPa to about 5 MPa or about 1 MPa to about 4.5 MPa.
  • the polycondensation reaction proceeds while distilling off a large amount of water, but by controlling the reaction pressure to be about 0.5 MPa or more, it is easy to control the temperature in the reaction system and the amount of water in the reaction system.
  • the lower condensate can be prevented from becoming a low moisture content or cooled by the latent heat of evaporation of water, it can be prevented from becoming difficult to discharge.
  • it is set to about 5 MPa or less since it is not necessary to use the reaction apparatus with high pressure resistance, it is not necessary to increase cost.
  • the moisture content in a reaction system does not become high too much, the polymerization degree of a lower order condensate can be raised.
  • the reaction time in the present process may be about 0.5 hours to about 4 hours or about 1 hour to about 3 hours.
  • Reaction time here means the time required from reaching the said reaction temperature to starting discharge operation.
  • the reaction time is about 0.5 hours or more, a sufficient reaction rate is reached, and unreacted substances do not remain, so that a lower order condensate with a uniform property can be obtained.
  • by setting it as about 4 hours or less it is possible to prevent the application of excessive heat history, and furthermore, even if the reaction time is extended from this, no further effect of high polymerization can be obtained.
  • the amount of water in the reaction system at the end of the reaction of the lower order condensate in this step may be about 15% by mass to about 35% by mass or about 20% by mass to about 35% by mass.
  • the reaction completion time here is a low-order condensate that has reached a predetermined degree of polymerization, and indicates the time point at which the discharge operation is started, and the condensed water generated during the reaction is also the sum of the moisture content.
  • the amount of water can be adjusted to be the amount of injected water added to the amount of condensed water generated, or a predetermined amount of water can be adjusted by distilling off the reaction pressure in an apparatus equipped with a condenser and a pressure regulating valve.
  • the amount of water in the reaction system at the end of the reaction By setting the amount of water in the reaction system at the end of the reaction to about 15% by mass or more, the lower condensate can be prevented from being precipitated or solidified in the reaction system and can be easily discharged. On the other hand, by making it about 35 mass% or less, the low order condensate of sufficient polymerization degree can be obtained. In addition, since the amount of water to be evaporated and separated at the time of discharge cannot increase the discharge rate, or the need for drying treatment before the solid phase polymerization is unlikely to occur, deterioration in manufacturing efficiency can be prevented.
  • the polycondensation reaction for obtaining a low order condensate may be performed batchwise, or may be performed continuously.
  • the polycondensation reaction for producing a low-order condensate can be performed with stirring, from the point of prevention of adhesion of a lower-order condensate to a reaction container, the uniform progress of a polycondensation reaction, etc.
  • the low-order condensate obtained by this process has a logarithmic viscosity (IV) measured at a temperature of 25 ° C. at a concentration of 0.5 g / dl in concentrated sulfuric acid, from about 0.07 dl / g to about 0.40 dl / g or about 0.10 dl / g About 0.25 ⁇ s / g.
  • IV logarithmic viscosity measured at a temperature of 25 ° C. at a concentration of 0.5 g / dl in concentrated sulfuric acid, from about 0.07 dl / g to about 0.40 dl / g or about 0.10 dl / g About 0.25 ⁇ s / g.
  • the specific measuring method of the logarithmic viscosity (IV) is demonstrated in the Example mentioned later. If the logarithmic viscosity (IV) is about 0.07 dl / g or more, since the low melting point is small, it is possible to prevent
  • Salt control is a process which produces
  • the concentration of the raw material injection concentration can be concentrated to a concentration of about + 2% by mass to about + 90% by mass or to a concentration of about + 5% by mass to about + 80% by mass.
  • the concentration process may be about 90 ° C. to about 220 ° C., about 100 ° C.
  • the pressure in the concentration process is, for example, about 0.1 MPa to about 2.0 MPa.
  • the pressure of concentration is controlled below the pressure of polymerization.
  • forced discharge may be performed by nitrogen gas flow or the like.
  • the concentration step is effective for shortening the polymerization time.
  • the inert gas atmosphere may have an oxygen concentration of about 1% by volume or less from the viewpoint of preventing oxidative degradation of the lower condensate.
  • the discharge rate of the lower order condensate from the reaction vessel can be appropriately adjusted according to the size of the reaction vessel, the amount of contents in the reaction vessel, the temperature, the size of the ejection opening, the length of the ejection nozzle portion, and the like. In general, however, it can be taken out so that the discharge rate per outlet cross-sectional area is in the range of about 2000 kg / s / m 2 to about 20000 kg / s / m 2.
  • the volume density of the lower-order condensate obtained will be in the range of about 0.35 g / cm ⁇ 3> to about 0.8 g / cm ⁇ 3>, for example, collapse
  • the lower condensate discharged evaporates most of the accompanying moisture by the latent heat of the lower condensate, cooling and drying are simultaneously performed. It is preferable to increase the efficiency of drying and cooling by discharging one of an inert gas such as nitrogen or a reduced pressure than atmospheric pressure.
  • an inert gas such as nitrogen or a reduced pressure than atmospheric pressure.
  • a cyclone-type solid-gas separation device as the discharge container, not only can the out-of-system scattering of powder be prevented during discharge, but also the discharge treatment can be performed under a high gas flux, so that drying and cooling efficiency can be improved. It is preferable to become.
  • the low-order condensate obtained in the step (1) is subjected to solid phase polymerization to obtain a polyamide resin.
  • the polymerization method and conditions for solid-phase polymerization of the lower condensate are not particularly limited, and any method and conditions capable of performing high polymerization while maintaining a solid state without causing fusion, aggregation, or deterioration of the lower condensate are You can do it.
  • solid phase polymerization can be carried out in an inert gas atmosphere such as helium gas, argon gas, nitrogen gas, carbon dioxide gas or under reduced pressure.
  • the temperature of the solid phase polymerization is not particularly limited, but the maximum reaction temperature is, for example, about 170 ° C to about 260 ° C, about 200 ° C to about 250 ° C, or about 220 ° C to about 240 ° C.
  • the maximum reaction temperature need not be at the end of the solid phase polymerization, and may be reached at any point in time until the end of the solid phase polymerization.
  • any well-known apparatus can be used.
  • a solid-state polymerization apparatus For example, a uniaxial disk type, a kneading machine, a biaxial paddle type, a vertical tower type apparatus, a vertical tower type apparatus, a rotary drum type, or a double vulcan type solid state polymerization apparatus, a drying apparatus, etc. Can be mentioned.
  • the reaction time of the solid phase polymerization is not particularly limited, but may usually be about 1 hour to about 20 hours.
  • the lower order condensate may be mechanically stirred or may be stirred with a gas stream.
  • the polyamide resin mentioned above is provided to uses, such as an electrical / electronic component, an automotive component, a reflective material, etc. through a shaping
  • the polyamide molded body of this embodiment and its manufacturing method are demonstrated.
  • molding process of one Example is not restrict
  • a molding method injection molding, blow molding, extrusion molding, compression molding, etc. are mentioned, for example.
  • the injection molding method may be used, that is, the polyamide resin molded body may be an injection molded body. In the injection molding method, it is possible to use a metal mold in accordance with the shape of the resin molded article, thereby producing a resin molded article having a complicated shape.
  • the molding temperature in molding the polyamide resin is not particularly limited, but may be about 320 ° C. or less, about 305 ° C. or less, about 300 ° C. or less, or about 295 ° C. or less. If the molding temperature is about 320 ° C. or lower, thermal degradation of the polyamide resin can be suppressed, and deterioration of color can be prevented even when the molded body is used under high temperature conditions thereafter.
  • molding temperature here means the temperature of polyamide resin, and the upper limit shall refer to the highest temperature among the temperatures of the polyamide resin of the whole molding process.
  • the lower limit of the molding temperature is not particularly limited as long as it is a moldable temperature that is higher than the melting point of the polyamide resin. However, the lower limit temperature of the molding temperature is usually about + 5 ° C and may be about + 8 ° C or more.
  • a non-oxidizing atmosphere shall mean the atmosphere whose content of a non-oxidizing gas is about 95 volume% or more. For example, it points out under an oxygen free atmosphere whose content of non-oxidizing gas is about 100 volume%.
  • the non-oxidizing atmosphere include an inert gas atmosphere or a reducing gas atmosphere.
  • the inert gas is not particularly limited, but helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), nitrogen (N 2 ), or the like can be used.
  • the inert gas may be used alone or in the form of two or more mixed gases.
  • a reducing gas in an inert gas.
  • the reducing gas is not particularly limited, but may be a hydrogen (H 2 ) gas or a carbon monoxide (CO) gas.
  • an inert gas can be used from the viewpoint of safety.
  • the polyamide molded body may contain optional additive components in addition to the polyamide resin described above.
  • additive component for example, filler materials such as titanium oxide, titanium dioxide, titanium trioxide, zinc oxide, zirconium oxide, zinc sulfide, various fiber materials such as glass fiber, carbon fiber, inorganic powder filler, organic powder filler Antioxidants, heat stabilizers (hindered phenols, hydroquinones, phosphites and their substituents, copper compounds, etc.), weathering agents (resolcinols, salicylates, benzotriazoles, benzophenones, Hindered amines, etc.), release agents and lubricants (montanic acid and its metal salts, esters thereof, half esters, stearyl alcohols, stearamides, various bisamides, bisurea and polyethylene waxes, etc.), pigments (cadmium sulfide, phthalo Cyanine, carbon black, etc.), dyes (nigrosin, etc.), crystal nucleating agents (
  • Hydroxides such as aluminum, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonates, brominated epoxy resins or combinations thereof with brominated flame retardants and antimony trioxide, and other polymers (olefins, modified polyolefins, Olefin copolymers such as ethylene methyl acrylate, ethylene ethyl acrylate copolymer, ethylene propylene copolymer, ethylene-1-butene copolymer, olefin copolymers such as propylene-1-butene copolymer, polystyrene, fluorine resin , Silicone resin, LCP (Liquid Crystal Polymer) and the like.
  • olefins olefins, modified polyolefins, Olefin copolymers such as ethylene methyl acrylate, ethylene ethyl acrylate copolymer, ethylene propy
  • content of the said addition component in a polyamide molded object depends on the use and function which a molded object is used, it is usually about 0 mass part-about 150 mass parts with respect to 100 mass parts of polyamide resin, and about 0 mass part- About 100 parts by mass.
  • the polyamide molded body can be used for electric and electronic parts, automobile parts, reflective materials and the like.
  • the polyamide molded article of the present invention can be used for the use of a reflecting plate.
  • it can use as a reflecting plate for light emitting devices, such as various electrical and electronic components, indoor lighting, ceiling lighting, outdoor lighting, automobile lighting, display equipment, and headlights.
  • LEDs are often under a high temperature environment around 100 ° C due to high brightness and high output, sufficient luminance can be maintained by using the polyamide molded body of the present embodiment having improved heat color as the LED reflector.
  • a sample solution was prepared by dissolving the sample in a concentration of 0.5 g / dl in 96% concentrated sulfuric acid.
  • 96% concentrated sulfuric acid (blank) and the sample solution were measured at the temperature of 25 degreeC using the Uberode viscous tube, and the fall second was measured and it calculated by the following formula (1).
  • DSC differential scanning calorimetry
  • the measurement was carried out using a compact colorimeter NW-11 manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • Illumination and reception conditions 45 ° circular illumination, 0 ° reception
  • Measuring method diffraction grating, back spectroscopy
  • Measuring area 10 mm ⁇
  • Light source Puls Xenon lamp
  • the molded object was heat-processed in 170 degreeC and 8 hours in air atmosphere in the heating oven, the color before and behind a process was measured, and the color fading resistance (heat color stability) was evaluated.
  • the said polyamide resin was shape
  • Injection pressure 120 MPa to 140 MPa
  • Cooling time 45 seconds.
  • Example 2 The polyamide resins and polyamides of Examples 2 to 7 and Comparative Examples 1 to 5 in the same manner as in Example 1, except that the monomers in Example 1 were changed to the compounds and compounding ratios of Table 1 below.
  • a molded article was prepared.
  • TPA terephthalic acid
  • 1,4-cyclohexanedicarboxylic acid is included as the dicarboxylic acid, and 1,10-decanediamine and 1,12-dodecanediamine are used as the diamine from about 10:90 to about 65:35.
  • the polyamide resins of Examples 1 to 7 obtained by condensation polymerization of a monomer containing (mol ratio) had a low melting point, and showed that a molded article formed by molding the polyamide resin had high heat-resistant color stability.
  • Examples 1, 2, and 5 to 7 containing 1,10-decanediamine and 1,12-dodecanediamine in a ratio of about 30:70 to about 50:50 (mol ratio) have a melting point of about 305 ° C or less.
  • Examples 7-7 had a low melting point below about 300 ° C.
  • the YI of the polyamide molded body 1 at 170 ° C for 8 hours is about 5.7 or less in Examples 1, 2, and 5 to 7 and about 4.3 or less in Examples 5 to 7, and thus, thermal color stability. It showed that it improves more than this.
  • molded in the nitrogen atmosphere which is a non-oxidizing gas is more than the polyamide molded object 2 which shape
  • the polyamide resin which can exhibit high heat-resistant color stability in a polyamide molded object can be provided.

Abstract

A polyamide resin, according to the present invention, is formed through polycondensation of a monomer comprising 1,4-cyclohexanedicarboxylic acid, 1,10-decandiamine, and 1,12-dodecandiamine, wherein the molar ratio of 1,10-decandiamine and 1,12-dodecandiamine is approximately 10:90 to approximately 65:35. As a result, the polyamide resin capable of enabling high durability and color stability in the polyamide molded body can be provided.

Description

폴리아마이드 수지 및 이것을 이용한 폴리아마이드 성형체Polyamide Resin and Polyamide Molded Product Using the Same
본 발명은, 폴리아마이드 수지 및 이것을 이용한 폴리아마이드 성형체에 관한 것이다. 보다 상세하게 본 발명은, 폴리아마이드 성형체에 있어서, 높은 내열색상 안정성을 발휘시킬 수 있는 폴리아마이드 수지에 관한 것이다.The present invention relates to a polyamide resin and a polyamide molded article using the same. In more detail, this invention relates to the polyamide resin which can exhibit high heat-resistant color stability in a polyamide molded object.
폴리아마이드 수지는, 그 우수한 특성과 용융 성형의 용이성으로부터, 의류용, 산업자재용 섬유, 엔지니어링 플라스틱 등으로서 널리 이용되고 있다. 최근에 있어서, 전기·전자부품, 자동차부품, 반사 재료 등의 분야에서 이용되는 폴리아마이드 수지에 대하여, 물성 및 기능이 한층 우수한 것이 요구되고 있다. 특히, 반사 재료 등의 부품의 용도에 사용가능하고, 고온 조건 하에서 변색되기 어려우며, 내열색상 안정성이 우수한 폴리아마이드 수지 및 그 성형체의 개발이 기대되고 있다.Polyamide resins are widely used as textiles for garments, industrial materials, engineering plastics, and the like, due to their excellent properties and ease of melt molding. In recent years, the polyamide resin used in the fields of electrical / electronic parts, automobile parts, reflective materials, and the like has been required to have more excellent physical properties and functions. In particular, the development of polyamide resins and molded articles that can be used for the use of components such as reflective materials, which are difficult to discolor under high temperature conditions, and which have excellent heat-color stability.
폴리아마이드 수지는, 일반적으로, 다이카복실산과 다이아민을 중축합반응시킴으로써 제조된다. 예를 들어, 특허문헌 1에는, 다이카복실산 단위로서 주로 1,4-사이클로헥산다이카복실산 단위를 포함하고, 다이아민 단위로서 주로 탄소원자수 4 내지 18의 지방족 다이아민 단위를 포함하는 폴리아마이드를 함유하는 폴리아마이드 조성물을 이용한 LED용 반사판이 개시되어 있다. 구체적으로, 특허문헌 1은 1,4-사이클로헥산다이카복실산과 1,11-운데칸다이아민을, 차아인산나트륨 1수화물 존재 하에 중축합시켜 저차 축합물(프레폴리머)을 얻은 후, 이것을 고상 중합시킴으로써 제조한 폴리아마이드 수지를 기재하고 있다. 그러나, 상기 특허문헌 1에 기재된 사출 성형체는, 원하는 정도로 높은 수준의 내열색상 안정성을 갖기어려워, 더 한층의 개량이 요구되고 있다.Polyamide resin is generally manufactured by polycondensation reaction of dicarboxylic acid and diamine. For example, Patent Document 1 contains polyamides containing mainly 1,4-cyclohexanedicarboxylic acid units as dicarboxylic acid units and mainly containing aliphatic diamine units having 4 to 18 carbon atoms as diamine units. Disclosed is a reflector for an LED using a polyamide composition. Specifically, Patent Literature 1 polycondenses 1,4-cyclohexanedicarboxylic acid and 1,11-undecanediamine in the presence of sodium hypophosphite monohydrate to obtain a lower order condensate (prepolymer). The polyamide resin produced is described. However, the injection molded article described in Patent Document 1 hardly has a high level of heat-resistant color stability to a desired degree, and further improvement is required.
(선행기술문헌)(Prior art document)
(특허문헌 1) WO2011/027562 A 팜플렛(Patent Document 1) WO2011 / 027562 A Pamphlet
본 발명은, 폴리아마이드 성형체에 있어서, 높은 내열색상 안정성을 발휘시킬 수 있는, 폴리아마이드 수지를 제공하는 것을 목적으로 한다.An object of this invention is to provide the polyamide resin which can exhibit high heat-resistant color stability in a polyamide molded object.
본 발명자들은, 상기 과제를 해결하기 위하여, 예의 연구를 행하였다. 그 과정에서, 다이카복실산으로서 1,4-사이클로헥산다이카복실산을 사용한 경우, 다이아민으로서, 1,10-데칸다이아민 및 1,12-도데칸다이아민을 소정의 비율로 이용함으로써, 1,11-운데칸다이아민만을 이용하는 것보다도, 얻어진 폴리아마이드 수지의 융점이 저하되는 것이 밝혀졌다. 그리고, 해당 폴리아마이드 수지를 이용한 폴리아마이드 성형체는, 종래의 성형체보다도, 내열색상 안정성이 유의하게 향상되는 것을 발견하여, 본 발명을 완성시키기에 이르렀다.MEANS TO SOLVE THE PROBLEM The present inventors earnestly researched in order to solve the said subject. In the process, in the case of using 1,4-cyclohexanedicarboxylic acid as the dicarboxylic acid, 1,11- by using 1,10-decanediamine and 1,12-dodecanediamine in a predetermined ratio as the diamine. It turned out that melting | fusing point of the obtained polyamide resin falls rather than using only undecanediamine. And the polyamide molded object using this polyamide resin found that heat-resistant color stability improved significantly compared with the conventional molded object, and came to complete this invention.
즉, 본 발명의 폴리아마이드 수지는, 1,4-사이클로헥산다이카복실산과, 1,10-데칸다이아민 및 1,12-도데칸다이아민을 포함하는 단량체를 중축합시켜 이루어진다. 그리고, 1,10-데칸다이아민과 1,12-도데칸다이아민의 ㏖비가 약 10:90 내지 약 65:35인 점에 특징을 지닌다.That is, the polyamide resin of the present invention is obtained by polycondensing a monomer containing 1,4-cyclohexanedicarboxylic acid and 1,10-decanediamine and 1,12-dodecanediamine. And the molar ratio of 1,10-decanediamine to 1,12-dodecanediamine is about 10:90 to about 65:35.
본 발명의 실시예들은, 폴리아마이드 성형체에 있어서, 높은 내열색상 안정성을 발휘시킬 수 있는 폴리아마이드 수지를 제공할 수 있다.Embodiments of the present invention, in a polyamide molded body, can provide a polyamide resin capable of exhibiting high heat-resistant color stability.
이하, 본 발명의 실시형태에 대해서 설명하지만, 본 발명은 특허청구범위에 의해 정해져야 할 것이며, 이하의 형태만으로 한정되지 않는다. 본 명세서에 있어서, 범위를 나타내는 「X 내지 Y」는 「X 이상 Y 이하」를 의미한다.EMBODIMENT OF THE INVENTION Hereinafter, although embodiment of this invention is described, this invention should be defined by a claim, and is not limited only to the following forms. In this specification, "X to Y" which shows a range means "X or more and Y or less."
<폴리아마이드 수지><Polyamide resin>
본 발명의 일 실시예에 따른 폴리아마이드 수지는, 1,4-사이클로헥산다이카복실산;과, 1,10-데칸다이아민 및 1,12-도데칸다이아민을 포함하는 단량체; 를 중축합시켜 이루어진다. 그리고, 1,10-데칸다이아민과 1,12-도데칸다이아민의 ㏖비가 약 10:90 내지 약 65:35인 점에 특징을 지닌다.Polyamide resin according to an embodiment of the present invention, 1,4-cyclohexanedicarboxylic acid; and a monomer comprising 1,10-decanediamine and 1,12-dodecanediamine; By polycondensation. And the molar ratio of 1,10-decanediamine to 1,12-dodecanediamine is about 10:90 to about 65:35.
폴리아마이드 수지는, 상기 특허문헌 1에 개시된 종래의 폴리아마이드 수지보다도 융점이 낮고, 성형체로 이용했을 경우에, 보다 높은 내열색상 안정성을 지닌다. 이러한 우수한 내열색상 안정성이 발휘되는 기전은 확실하지 않지만, 본 발명자들은 다음과 같이 추측하고 있다. 또, 본 발명은, 하기 기전으로 제한되는 것은 아니다.The polyamide resin has a lower melting point than the conventional polyamide resin disclosed in Patent Document 1, and has a higher heat-resistant color stability when used as a molded body. The mechanism by which such excellent heat-resistant color stability is exhibited is not clear, but the present inventors speculate as follows. In addition, this invention is not limited to the following mechanism.
특허문헌 1에 기재되어 있는 바와 같이, 폴리아마이드 성형체를 LED 반사판으로서 사용할 경우, LED의 광조사에 의해 LED 반사판은 100℃를 초과하는 고온에 노출된다. 이러한 고온 사용 시에 있어서, 수지 자체의 변색에 의한 반사율 저하에 의한 휘도 저하를 억제할 수 없다고 하는 문제가 이전부터 지적되고 있었다. 본 발명자들은, 이러한 대기 하에서의 고온 사용 시에 있어서의 수지의 변색이 성형 체 내의 열화물에 의한 것이라고 가정하여, 열화물의 발생의 원인이 성형 시의 열열화(heat deterioration)에 의한 것이 아닐까하고 생각하였다.As described in Patent Literature 1, when the polyamide molded body is used as the LED reflecting plate, the LED reflecting plate is exposed to a high temperature exceeding 100 ° C by light irradiation of the LED. In such high temperature use, the problem that the brightness fall by the reflectance fall by the discoloration of resin itself cannot be suppressed has been pointed out previously. The present inventors assume that the discoloration of the resin at the time of high temperature use under such an atmosphere is due to deterioration in the molded body, and it is thought that the cause of the deterioration may be due to heat deterioration during molding. It was.
사출 성형 등의 성형 방법에 있어서는, 성형 시에 폴리아마이드 수지의 점도를 저하시키기 위해서, 융점보다도 10℃ 정도 높은 온도에서 폴리아마이드 수지를 가열 용융시킬 필요가 있다. 본 형태의 폴리아마이드 수지는, 종래의 폴리아마이드 수지보다도 융점이 낮기 때문에, 그 만큼 낮은 온도에서 성형하는 것이 가능해진다. 그 때문에, 성형 시의 열열화(heat deterioration)를 보다 억제할 수 있고, 결과적으로, 높은 내열색상 안정성이 발휘되는 것으로 추측된다. 이하, 본 형태의 폴리아마이드 수지에 대해서 설명한다.In molding methods such as injection molding, in order to lower the viscosity of the polyamide resin at the time of molding, it is necessary to heat-melt the polyamide resin at a temperature about 10 ° C. above the melting point. Since the polyamide resin of this embodiment has a melting point lower than that of the conventional polyamide resin, the polyamide resin of the present embodiment can be molded at a lower temperature. Therefore, heat deterioration at the time of shaping | molding can be suppressed more, and as a result, it is estimated that high heat-resistant color stability is exhibited. Hereinafter, the polyamide resin of this form is demonstrated.
다이카복실산Dicarboxylic acid
본 형태에 있어서, 폴리아마이드 수지의 원료로 사용되는 다이카복실산은, 1,4-사이클로헥산다이카복실산을 필수로 포함한다. 또, 일 실시예에서는, 원료의 단량체로서 1,4-사이클로헥산다이카복실산 이외의 다른 다이카복실산을 더 함유해도 된다. 단, 본 발명의 효과를 충분히 발휘시키는 관점에서, 1,4-사이클로헥산다이카복실산의 비율은, 단량체에 포함되는 다이카복실산의 총량에 대하여, 약 50㏖% 이상, 약 75㏖% 이상, 약 90㏖% 이상, 약 95㏖% 이상 또는 약 100㏖%일 수 있다. 상기 범위 내에서, 폴라아마이드 수지가 높은 내열색상 안정성을 발휘할 수 있다.In this aspect, the dicarboxylic acid used as a raw material of a polyamide resin contains 1, 4- cyclohexanedicarboxylic acid as essential. Moreover, in one Example, you may further contain other dicarboxylic acid other than 1, 4- cyclohexanedicarboxylic acid as a monomer of a raw material. However, from a viewpoint of fully exhibiting the effect of this invention, the ratio of 1, 4- cyclohexanedicarboxylic acid is about 50 mol% or more, about 75 mol% or more, about 90 mol with respect to the total amount of the dicarboxylic acid contained in a monomer. Or at least about 95 mol% or at least about 100 mol%. Within this range, the polyamide resin can exhibit high heat color stability.
다른 다이카복실산은, 특별히 제한은 없지만, 예를 들어, 테레프탈산, 말론산, 다이메틸말론산, 숙신산, 글루타르산, 아디프산, 2-메틸아디프산, 피멜산, 2,2-다이메틸글루타르산, 3,3-다이에틸숙신산, 수베르산, 1,3-사이클로펜탄다이카복실산, 아이소프탈산, 2,6-나프탈렌다이카복실산, 2,7-나프탈렌다이카복실산, 1,4-나프탈렌다이카복실산, 1,4-페닐렌다이옥시다이아세트산, 1,3-페닐렌다이옥시다이아세트산, 다이펜산, 4,4'-옥시다이벤조산, 다이페닐메탄-4,4'-다이카복실산, 다이페닐설폰-4,4'-다이카복실산, 4,4'-바이페닐다이카복실산 등을 들 수 있다. 이들 다른 다이카복실산은, 1종만을 단독으로 사용해도 되고, 2종 이상을 조합시켜서 사용해도 무방하다. 또한, 필요에 따라서, 트라이멜리트산, 트라이메신산, 피로멜리트산 등의 다가 카복실산 성분을 소량 병용해도 된다.The other dicarboxylic acid is not particularly limited, but, for example, terephthalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, pimelic acid, 2,2-dimethyl Glutaric acid, 3,3-diethylsuccinic acid, suberic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedi Carboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, diphenic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenyl Sulfone-4,4'-dicarboxylic acid, 4,4'-biphenyldicarboxylic acid, etc. are mentioned. These other dicarboxylic acids may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may use together a small amount of polyhydric carboxylic acid components, such as trimellitic acid, trimesic acid, a pyromellitic acid, as needed.
다이아민Diamine
폴리아마이드 수지의 원료로 되는 다이아민은, 1,10-데칸다이아민 및 1,12-도데칸다이아민을 포함하고, 1,10-데칸다이아민과 1,12-도데칸다이아민의 ㏖비(1,10-데칸다이아민:1,12-도데칸다이아민)가 약 10:90 내지 약 65:35 또는 약 15:85 내지 약 60:40인 것을 특징으로 한다. 해당 ㏖비는, 보다 구체적으로, 약 30:70 내지 약 50:50 또는 약 35:65 내지 약 45:55일 수 있다. 1,10-데칸다이아민 및 1,12-도데칸다이아민을 상기 비율로 이용함으로써, 종래의 1,11-운데칸다이아민만을 이용한 경우와 비교해서, 폴리아마이드 수지의 융점을 유의하게 저하시킬 수 있다. 그 결과, 폴리아마이드 성형체에 있어서, 높은 내열색상 안정성을 발휘시키는 것이 가능해지는 것이다. 이와 같이 폴리아마이드 수지의 융점이 저하되는 이유는 확실하지 않지만, 본 발명자들은, 1,10-데칸다이아민 및 1,12-도데칸다이아민의 특정 다이아민을 이용한 공중합체로 함으로써, 1,11-운데칸다이아민만을 이용한 경우보다도, 분자사슬끼리의 응집력이 저하되어, 결정 구조를 취하기 어려워지는 것에 의한 결과, 융점이 저하된 것으로 생각하고 있다.The diamine used as a raw material of a polyamide resin contains 1,10-decanediamine and 1,12-dodecanediamine, and the mol ratio of 1,10-decanediamine and 1,12-dodecanediamine (1 , 10-decanediamine: 1,12-dodecanediamine) is from about 10:90 to about 65:35 or from about 15:85 to about 60:40. The mol ratio may be more specifically about 30:70 to about 50:50 or about 35:65 to about 45:55. By using 1,10-decanediamine and 1,12-dodecanediamine in the above ratios, the melting point of the polyamide resin can be significantly lowered as compared with the case of using only conventional 1,11-undecanediamine. . As a result, it becomes possible to exhibit high heat-resistant color stability in a polyamide molded object. The reason why the melting point of the polyamide resin decreases in this way is not clear, but the present inventors set the copolymer using the specific diamine of 1,10-decanediamine and 1,12-dodecanediamine to make 1,11- It is thought that melting | fusing point was reduced as a result of the cohesion force of molecular chains falling and it being difficult to take a crystal structure rather than using only undecanediamine.
또, 본 형태에서는, 원료의 단량체로서 1,10-데칸다이아민 및 1,12-도데칸다이아민 이외의 다른 다이아민을 포함해도 된다. 단, 본 발명의 효과를 충분히 발휘시키는 관점에서, 1,10-데칸다이아민 및 1,12-도데칸다이아민의 합계량의 비율은, 단량체에 포함되는 다이아민의 총량에 대하여, 약 90㏖% 이상, 약 95㏖% 이상, 약 98㏖% 이상, 약 100㏖%일 수 있다. 상기 범위 내에서, 융점이 저하되는 효과가 향상될 수 있다.Moreover, in this aspect, you may contain other diamines other than 1,10-decanediamine and 1,12- dodecanediamine as a monomer of a raw material. However, from the viewpoint of fully exhibiting the effects of the present invention, the ratio of the total amount of 1,10-decanediamine and 1,12-dodecanediamine is about 90 mol% or more with respect to the total amount of diamine contained in the monomer, About 95 mol% or more, about 98 mol% or more, about 100 mol%. Within this range, the effect of lowering the melting point can be improved.
다른 다이아민으로서는, 특별히 제한은 없지만, 탄소원자수 4 내지 25의 지방족 알킬렌 다이아민일 수 있다. 구체적으로는, 1,4-뷰탄다이아민, 1,6-헥산다이아민(헥사메틸렌다이아민), 1,7-헵탄다이아민, 1,8-옥탄다이아민, 1,9-노난다이아민, 1,11-운데칸다이아민, 2-메틸-1,5-펜탄다이아민, 3-메틸-1,5-펜탄다이아민, 2,2,4-트라이메틸-1,6-헥산다이아민, 2,4,4-트라이메틸-1,6-헥산다이아민, 2-메틸-1,8-옥탄다이아민 등을 예로 들 수 있다.The other diamine is not particularly limited, but may be an aliphatic alkylene diamine having 4 to 25 carbon atoms. Specifically, 1,4-butanediamine, 1,6-hexanediamine (hexamethylenediamine), 1,7-heptane diamine, 1,8-octanediamine, 1,9-nonanediamine, 1,11-Undecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2 , 4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, etc. are mentioned.
또한, 탄소원자수 4 내지 25의 지방족 알킬렌 다이아민 이외의 다이아민의 구체예로서는, 에틸렌다이아민, 프로판다이아민; 사이클로헥산다이아민, 메틸사이클로헥산다이아민, 아이소포론다이아민, 비스(4-아미노사이클로헥실)메탄, 1,3-비스아미노메틸사이클로헥산, 1,4-비스아미노메틸사이클로헥산, 노보난다이메탄아민, 트라이사이클로데칸다이메탄아민 등의 지환식 다이아민; 파라페닐렌다이아민, 메타페닐렌다이아민, 자일릴렌다이아민, 4,4'-다이아미노다이페닐설폰, 4,4'-다이아미노다이페닐에터 등의 방향족 다이아민 등을 들 수 있다. 또, 자일릴렌다이아민이라는 용어에는, 3종의 이성체인 오쏘자일릴렌다이아민, 메타자일릴렌다이아민(MXDA) 및 파라자일릴렌다이아민(PXDA)이 포함된다. 이들 1,10-데칸다이아민 및 1,12-도데칸다이아민 이외의 다른 다이아민은, 1종만을 단독으로 사용해도 되고, 2종 이상을 조합시켜서 사용해도 무방하다.Moreover, as a specific example of diamines other than aliphatic alkylene diamine of 4-25 carbon atoms, ethylenediamine and propanediamine; Cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, bis (4-aminocyclohexyl) methane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, norbornanedimethanamine Alicyclic diamines such as tricyclodecane dimethanamine; And aromatic diamines such as paraphenylenediamine, metaphenylenediamine, xylylenediamine, 4,4'-diaminodiphenylsulfone, and 4,4'-diaminodiphenyl ether. Moreover, the term xylylenediamine includes three isomers, ortho xylylenediamine, metaxylylenediamine (MXDA), and paraxylylenediamine (PXDA). Other diamines other than these 1,10-decanediamine and 1,12-dodecanediamine may be used individually by 1 type, and may be used in combination of 2 or more type.
일 실시예에서는, 전술한 바와 같이, 다이카복실산으로서 1,4-사이클로헥산다이카복실산을 사용하고, 다이아민으로서, 1,10-데칸다이아민 및 1,12-도데칸다이아민을 소정의 비율로 사용함으로써, 융점이 낮은 폴리아마이드 수지를 얻을 수 있다. 구체적으로, 본 형태의 폴리아마이드 수지의 융점은 약 285℃ 내지 305℃, 약 285℃ 내지 약 300℃ 또는 약 285℃ 내지 약 295℃일 수 있다. 이러한 저융점의 폴리아마이드 수지를 이용함으로써, 성형 후의 내열색상 안정성을 유의하게 향상시킬 수 있다.In one embodiment, as described above, 1,4-cyclohexanedicarboxylic acid is used as the dicarboxylic acid, and 1,10-decanediamine and 1,12-dodecanediamine are used as the diamine in a predetermined ratio. By doing so, a polyamide resin having a low melting point can be obtained. Specifically, the melting point of the polyamide resin of the present form may be about 285 ℃ to 305 ℃, about 285 ℃ to about 300 ℃ or about 285 ℃ to about 295 ℃. By using such low melting polyamide resin, the heat-resistant color stability after shaping | molding can be improved significantly.
<폴리아마이드 수지의 제조 방법><Method for producing polyamide resin>
일 실시예의 폴리아마이드 수지는, 전술한 다이카복실산과 다이아민을 포함하는 단량체를 중축합반응시킴으로써 제조된다. 중축합 방법은, 특별히 제한은 없고, 종래 공지된 임의의 방법으로부터 적절하게 선택하면 된다. 예를 들어, 다이카복실산과 다이아민의 수용액을 고온고압에서 가열하고, 탈수 반응을 진행시키는 가열 중합법이나, 다이카복실산과 다이아민을 가압 가열 조건 하에서 중축합시켜 저차 축합물을 얻은 후, 그 저차 축합물을, 용액 중합, 용융 중합, 고상 중합 등의 임의의 방법으로 고분자량화시키는 방법 등을 들 수 있다. 그 중에서도, 다이카복실산과 다이아민을 중축합시켜 저차 축합물을 얻은 후, 그 저차 축합물을 고상 중합에 의해 고분자량화시키는 방법일 수 있다.The polyamide resin of one embodiment is prepared by polycondensation of a monomer comprising a dicarboxylic acid and a diamine described above. There is no restriction | limiting in particular in polycondensation method, What is necessary is just to select suitably from arbitrary methods conventionally known. For example, after heating the aqueous solution of dicarboxylic acid and diamine at high temperature and high pressure, and carrying out a dehydration reaction, or polycondensing dicarboxylic acid and diamine under pressurized heating conditions, and obtaining a lower condensate, the lower condensation is carried out. The method of making water high molecular weight by arbitrary methods, such as solution polymerization, melt polymerization, and solid state polymerization, etc. are mentioned. Among them, the polycondensation of dicarboxylic acid and diamine may yield a lower order condensate, and then the lower order condensation may be high molecular weight by solid phase polymerization.
즉, 본 발명의 일 실시예에 따른 폴리아마이드 수지의 제조 방법은, 전술한 1,4-사이클로헥산다이카복실산;과, 1,10-데칸다이아민 및 1,12-도데칸다이아민을 포함하는 단량체;를 중축합하고, 저차 축합물을 얻는 공정(1)과, 저차 축합물을 고상 중합시키는 공정(2)를 포함한다. 이하, 본 형태의 폴리아마이드 수지의 제조 방법에 대해서, 공정마다 설명한다.That is, the method for producing a polyamide resin according to an embodiment of the present invention, the above-mentioned 1,4-cyclohexanedicarboxylic acid; and a monomer comprising 1,10-decanediamine and 1,12-dodecanediamine Polycondensation, and (1) obtaining a lower order condensate, and the process (2) of carrying out the solid state polymerization of a lower order condensate. Hereinafter, the manufacturing method of the polyamide resin of this form is demonstrated for every process.
공정(1)Process (1)
저차 축합물은, 상기 단량체 또는 염의 수용액 등을, 예를 들어, 통상 이용되는 가압 중합조에 주입하고, 수성 용매 중에서, 교반 조건 하에서 중축합반응을 행함으로써 합성된다.The low-order condensate is synthesized by injecting an aqueous solution of the monomer or salt and the like into a pressurized polymerization tank which is usually used, for example, and performing a polycondensation reaction in an aqueous solvent under stirring conditions.
수성 용매란 물을 주성분으로 하는 용매이다. 물 이외에 이용되는 용매로서는, 중축합반응성이나 용해도에 영향을 주지 않는 것이면, 특별히 제한되는 것은 아니지만, 구체적으로, 메탄올, 에탄올, 프로판올, 뷰탄올, 에틸렌 글라이콜 등의 알코올류를 예로 들 수 있다.An aqueous solvent is a solvent which has water as a main component. The solvent used in addition to water is not particularly limited as long as it does not affect polycondensation reactivity or solubility. Specific examples include alcohols such as methanol, ethanol, propanol, butanol and ethylene glycol. .
중축합반응을 개시할 때의 반응계 내의 수분량은, 반응 종료 시의 반응계 내의 수분량이 약 20질량% 내지 약 35질량%가 되도록 하면 특별히 제한은 없지만, 예를 들면, 약 20질량% 내지 약 60질량%가 되도록 한다. 수분량을 약 20질량% 이상으로 함으로써, 중축합반응을 개시할 때에 균일한 용액 형태로 할 수 있다. 또, 약 60질량% 이하로 함으로써, 중축합공정에서의 수분을 증류 제거하는 시간이나 에너지를 저감시킬 수 있고, 또한, 반응 시간도 단축되므로 열열화의 영향을 작게 할 수 있다.The amount of water in the reaction system at the start of the polycondensation reaction is not particularly limited as long as the amount of water in the reaction system at the end of the reaction is from about 20% by mass to about 35% by mass, for example, from about 20% by mass to about 60% by mass. To%. By setting the amount of water to about 20% by mass or more, it is possible to form a uniform solution when starting the polycondensation reaction. Moreover, by making it about 60 mass% or less, the time and energy which distills water off in a polycondensation process can be reduced, and reaction time is also shortened, and the influence of thermal deterioration can be made small.
본 공정에서는, 중축합속도의 증가 및 중축합반응 시의 열화 방지 등의 점에서, 인계 촉매를 이용할 수 있다. 인계 촉매로서는, 예를 들어, 차아인산염, 인산염, 차아인산, 인산, 인산 에스터, 폴리메타인산류, 폴리인산류, 포스핀 옥사이드류, 포스포늄 할로겐 화합물 등이 이용될 수 있다. 구체예에서는, 차아인산염, 인산염, 차아인산, 인산이 이용될 수 있다. 차아인산염으로서는, 예를 들어, 차아인산나트륨, 차아인산칼륨, 차아인산칼슘, 차아인산마그네슘, 차아인산알루미늄, 차아인산바나듐, 차아인산망간, 차아인산아연, 차아인산납, 차아인산니켈, 차아인산코발트, 차아인산암모늄 등이 이용될 수 있다. 더욱 구체적으로 차아인산나트륨, 차아인산칼륨, 차아인산칼슘, 차아인산마그네슘이 이용될 수 있다. 인산염으로서는, 예를 들어, 인산나트륨, 인산칼륨, 인산이수소칼륨, 인산칼슘, 인산바나듐, 인산마그네슘, 인산망간, 인산납, 인산니켈, 인산코발트, 인산암모늄, 인산수소이암모늄 등이 이용될 수 있다. 인산 에스터로서는, 예시로 인산에틸옥타데실 등을 들 수 있다. 폴리메타인산류로서는, 예시로, 트라이메타인산나트륨, 펜타메타인산나트륨, 헥사메타인산나트륨, 폴리메타인산 등을 들 수 있다. 폴리인산류로서는, 예시로, 테트라폴리인산나트륨 등을 들 수 있다. 포스핀 옥사이드류로서는, 예시로, 헥사메틸포스포아마이드 등을 들 수 있다. 또, 이들 화합물 수화물의 형태이어도 된다.In this step, a phosphorus catalyst can be used in terms of increasing the polycondensation rate and preventing deterioration during the polycondensation reaction. As the phosphorus catalyst, hypophosphite, phosphate, hypophosphorous acid, phosphoric acid, phosphate ester, polymethaic acid, polyphosphate, phosphine oxide, phosphonium halogen compound and the like can be used. In embodiments, hypophosphite, phosphate, hypophosphorous acid, phosphoric acid may be used. As hypophosphite, for example, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, vanadium hypophosphite, manganese hypophosphite, zinc hypophosphite, lead hypophosphite, nickel hypophosphite, hypophosphite Cobalt, ammonium hypophosphite and the like can be used. More specifically, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite may be used. As the phosphate, for example, sodium phosphate, potassium phosphate, potassium dihydrogen phosphate, calcium phosphate, vanadium phosphate, magnesium phosphate, manganese phosphate, lead phosphate, nickel phosphate, cobalt phosphate, ammonium phosphate, diammonium phosphate or the like can be used. have. As phosphate ester, ethyl octadecyl phosphate etc. are mentioned as an example. Examples of the polymetaphosphates include sodium trimethaphosphate, sodium pentametaphosphate, sodium hexametaphosphate, and polymetaphosphate. As polyphosphoric acid, sodium tetrapolyphosphate etc. are mentioned as an example. Examples of the phosphine oxides include hexamethylphosphoamide and the like. Moreover, the form of these compound hydrates may be sufficient.
인계 촉매의 첨가량은, 단량체의 총량 100질량부에 대하여 약 0.0001질량부 내지 약 5질량부 또는 약 0.001질량부 내지 약 1질량부일 수 있다. 상기 범위 내에서, 중축합속도의 증가 및 중축합반응 시의 열화 방지의 효과가 발휘될 수 있다. 또, 첨가 시기는 고상 중합 완료까지이면 언제든지 되지만, 원료 주입 시부터 저차 축합물의 중축합 완료까지의 사이일 수 있다. 또한, 다수회의 첨가를 해도 된다. 나아가서는, 2종 이상의 다른 인계 촉매를 조합시켜서 첨가해도 된다.The addition amount of a phosphorus catalyst may be about 0.0001 mass part to about 5 mass parts, or about 0.001 mass part to about 1 mass part with respect to 100 mass parts of total amounts of a monomer. Within this range, the effect of increasing the polycondensation rate and preventing degradation during the polycondensation reaction can be exerted. In addition, the addition time may be any time until the completion of the solid phase polymerization, but may be from the time of raw material injection to the completion of the polycondensation of the lower condensate. Moreover, you may add multiple times. Furthermore, you may add in combination of 2 or more types of other phosphorus catalysts.
또, 본 공정은, 상기 중축합반응을 말단밀봉제의 존재 하에 행할 수 있다. 말단밀봉제를 사용하면, 저차 축합물의 분자량 조절이 보다 용이해지고, 게다가 저차 축합물의 용융 안정성이 향상된다. 말단밀봉제로서는, 저차 축합물에 있어서의 말단 아미노기 또는 말단 카복실기와 반응성을 지니는 단일 작용성의 화합물이면 특별히 제한은 없고, 구체적으로, 모노카복실산, 모노아민, 무수프탈산 등의 산무수물, 모노아이소사이아네이트, 모노산할로겐화물, 모노에스터류, 모노알코올류 등을 예로 들 수 있다. 그 중에서도, 반응성 및 밀봉 말단의 안정성 등의 점에서, 모노카복실산 또는 모노아민이 말단밀봉제로서 이용될 수 있고, 상기 특성에 부가해서, 취급이 용이한 점에서 모노카복실산이 이용될 수 있다.Moreover, this process can perform the said polycondensation reaction in presence of an end sealing agent. When the terminal sealant is used, the molecular weight adjustment of the lower order condensate becomes easier, and the melt stability of the lower order condensate is improved. The terminal sealing agent is not particularly limited as long as it is a monofunctional compound having reactivity with the terminal amino group or the terminal carboxyl group in the lower condensate, and specifically, acid anhydrides such as monocarboxylic acid, monoamine, and phthalic anhydride, and monoisocyanate. Nate, monoacid halide, monoester, monoalcohol, etc. are mentioned. Among them, monocarboxylic acid or monoamine may be used as the end sealant in view of reactivity and stability of the sealing end, and in addition to the above characteristics, monocarboxylic acid may be used in view of ease of handling.
말단밀봉제로서 사용되는 모노카복실산으로서는, 아미노기와의 반응성을 지니는 모노카복실산이면 특별히 제한은 없다. 예를 들어, 아세트산, 프로피온산, 뷰티르산, 발레르산, 카프로산, 카프릴산, 라우르산, 트라이데실산, 미리스트산, 팔미트산, 스테아르산, 피발산, 아이소뷰틸산 등의 지방족 모노카복실산; 사이클로헥산 카복실산 등의 지환식 모노카복실산; 벤조산, 톨루인산, α-나프탈렌카복실산, β-나프탈렌카복실산, 메틸나프탈렌카복실산, 페닐아세트산 등의 방향족 모노카복실산, 또는 이들의 임의의 혼합물을 들 수 있다. 그 중에서도, 반응성, 밀봉 말단의 안정성, 비용 등의 점에서, 아세트산, 프로피온산, 뷰티르산, 발레르산, 카프로산, 카프릴산, 라우르산, 트라이데실산, 미리스트산, 팔미트산, 스테아르산, 벤조산을 사용할 수 있다. 말단밀봉제로서 사용되는 모노아민으로서는, 카복실기와의 반응성을 지니는 모노아민이면 특별히 제한은 없다. 예를 들어, 메틸아민, 에틸아민, 프로필아민, 뷰틸아민, 헥실아민, 옥틸아민, 데실아민, 스테아릴아민, 다이메틸아민, 다이에틸아민, 다이프로필아민, 다이뷰틸아민 등의 지방족 모노아민; 사이클로헥실아민, 다이사이클로헥실아민 등의 지환식 모노아민; 아닐린, 톨루이딘, 다이페닐아민, 나프틸아민 등의 방향족 모노아민 또는 이들의 임의의 혼합물을 들 수 있다. 그 중에서도, 반응성, 비점, 밀봉 말단의 안정성 및 비용 등의 점에서, 뷰틸아민, 헥실아민, 옥틸아민, 데실아민, 스테아릴아민, 사이클로헥실아민, 아닐린을 사용할 수 있다.The monocarboxylic acid used as the terminal sealant is not particularly limited as long as it is a monocarboxylic acid having reactivity with an amino group. For example, aliphatic mono, such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyl acid, etc. Carboxylic acid; Alicyclic monocarboxylic acids such as cyclohexane carboxylic acid; Aromatic monocarboxylic acids, such as benzoic acid, toluic acid, (alpha)-naphthalene carboxylic acid, (beta)-naphthalene carboxylic acid, methylnaphthalene carboxylic acid, and phenylacetic acid, or arbitrary mixtures thereof are mentioned. Among them, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, etc. Acids and benzoic acids can be used. The monoamine used as the terminal sealant is not particularly limited as long as it is a monoamine having reactivity with a carboxyl group. For example, aliphatic monoamines, such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; Alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; Aromatic monoamines, such as aniline, toluidine, diphenylamine, and naphthylamine, or arbitrary mixtures thereof are mentioned. Especially, butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline can be used from a viewpoint of reactivity, a boiling point, stability of a sealing terminal, cost, etc.
저차 축합물을 제조할 때의 말단밀봉제의 사용량은, 이용되는 말단밀봉제의 반응성, 비점, 반응 장치, 반응 조건 등에 따라서 다를 수 있지만, 통상, 다이카복실산 또는 다이아민의 ㏖수에 대하여 약 0.1㏖% 내지 약 15㏖%의 범위 내에서 사용할 수 있다.The amount of the end sealant used in preparing the lower condensate may vary depending on the reactivity of the end sealant used, the boiling point, the reaction apparatus, the reaction conditions, and the like, but is generally about 0.1 mol to the number of moles of dicarboxylic acid or diamine. It can be used within the range of% to about 15 mol%.
본 공정에 있어서의 저차 축합물의 합성은, 통상은 교반 조건 하에서, 승온 및 승압함으로써 행해진다. 중합 온도는, 원료의 주입 후, 제어된다. 또한, 중합 압력은 중합의 진행에 맞춰서 제어된다.The synthesis of the lower order condensate in this step is usually performed by raising the temperature and increasing the pressure under stirring conditions. The polymerization temperature is controlled after the injection of the raw material. In addition, the polymerization pressure is controlled in accordance with the progress of the polymerization.
본 공정에 있어서의 반응 온도는, 약 200℃ 내지 약 260℃ 또는 약 210℃ 내지 약 250℃일 수 있다. 반응 온도를 약 200℃ 이상으로 함으로써, 반응 속도를 빠르게 하고, 저차 축합물의 분자량을 충분히 높일 수 있다. 한편, 반응 온도를 약 260℃ 이하로 함으로써, 과도한 열이력에 의해 폴리아마이드의 색상이 악화되는 것을 방지할 수 있다.The reaction temperature in this process may be about 200 ° C to about 260 ° C or about 210 ° C to about 250 ° C. By making reaction temperature about 200 degreeC or more, reaction rate can be made quick and the molecular weight of a lower order condensate can fully be raised. On the other hand, by setting the reaction temperature to about 260 ° C. or less, it is possible to prevent the color of the polyamide from deteriorating due to excessive thermal history.
본 공정에 있어서의 반응 압력은, 약 0.5㎫ 내지 약 5㎫ 또는 약 1㎫ 내지 약 4.5㎫일 수 있다. 중축합반응은 다량인 물을 증류 제거하면서 반응을 진행시키게 되지만, 반응 압력을 약 0.5㎫ 이상으로 함으로써, 반응계 내의 온도나 반응계 내의 수분량을 제어하기 쉬워진다. 또, 저차 축합물이 저수분함량으로 되는 것을 방지하거나, 물의 증발 잠열에 의해 냉각되어서 고형화되는 것을 방지할 수 있으므로, 배출이 곤란해지는 것을 방지할 수 있다. 한편, 약 5㎫ 이하로 함으로써, 내압성이 높은 반응 장치를 이용할 필요가 없기 때문에, 비용을 증대시키지 않아도 된다. 또한, 반응계 내의 수분량이 지나치게 높아지지 않으므로, 저차 축합물의 중합도를 높일 수 있다.The reaction pressure in this process may be about 0.5 MPa to about 5 MPa or about 1 MPa to about 4.5 MPa. The polycondensation reaction proceeds while distilling off a large amount of water, but by controlling the reaction pressure to be about 0.5 MPa or more, it is easy to control the temperature in the reaction system and the amount of water in the reaction system. In addition, since the lower condensate can be prevented from becoming a low moisture content or cooled by the latent heat of evaporation of water, it can be prevented from becoming difficult to discharge. On the other hand, when it is set to about 5 MPa or less, since it is not necessary to use the reaction apparatus with high pressure resistance, it is not necessary to increase cost. Moreover, since the moisture content in a reaction system does not become high too much, the polymerization degree of a lower order condensate can be raised.
본 공정에 있어서의 반응 시간은, 약 0.5시간 내지 약 4시간 또는 약 1시간 내지 약 3시간일 수 있다. 여기서 말하는 반응 시간이란, 상기 반응 온도에 도달하고 나서 배출 조작 시작까지의 소요시간을 의미한다. 반응 시간이 약 0.5시간 이상이면, 충분한 반응률에 도달하여, 미반응물이 잔존하지 않아, 균일한 성상의 저차 축합물을 얻을 수 있다. 한편, 약 4시간 이하로 함으로써, 과도한 열이력을 부여하는 것을 방지할 수 있고, 또한, 이것보다도 반응 시간을 연장해도 더 한층의 고중합화의 효과는 얻어지지 않는다.The reaction time in the present process may be about 0.5 hours to about 4 hours or about 1 hour to about 3 hours. Reaction time here means the time required from reaching the said reaction temperature to starting discharge operation. When the reaction time is about 0.5 hours or more, a sufficient reaction rate is reached, and unreacted substances do not remain, so that a lower order condensate with a uniform property can be obtained. On the other hand, by setting it as about 4 hours or less, it is possible to prevent the application of excessive heat history, and furthermore, even if the reaction time is extended from this, no further effect of high polymerization can be obtained.
본 공정에 있어서의 저차 축합물의 반응 종료 시의 반응계 내의 수분량은, 약 15질량% 내지 약 35질량% 또는 약 20질량% 내지 약 35질량%일 수 있다. 여기서 말하는 반응 종료 시란, 소정의 중합도에 도달한 저차 축합물이 되어 배출 조작을 개시하는 시점을 나타내고, 반응 중에 발생하는 축합수도 합한 수분량이 된다. 상기 수분량은, 발생 축합수량을 가미한 주입 수분량으로 하는 것이나, 컨덴서, 압력조정밸브를 구비한 장치에서 반응 압력 조정 시 소정량의 물을 증류 제거해서 조정할 수 있다. 반응 종료 시의 반응계 내의 수분량을 약 15질량% 이상으로 함으로써, 저차 축합물이 반응계 내에서 석출되거나, 고형화되거나 하는 것을 방지하여, 배출되기 쉽게 할 수 있다. 한편, 약 35질량% 이하로 함으로써, 충분한 중합도의 저차 축합물을 얻을 수 있다. 또한, 배출 시에 증발 분리시키는 수분량이 많기 때문에 배출 속도를 높일 수 없거나, 고상 중합 전의 건조 처리가 필요하게 되거나 하는 등의 문제가 일어나기 어렵기 때문에, 제조 효율의 저하를 방지할 수 있다.The amount of water in the reaction system at the end of the reaction of the lower order condensate in this step may be about 15% by mass to about 35% by mass or about 20% by mass to about 35% by mass. The reaction completion time here is a low-order condensate that has reached a predetermined degree of polymerization, and indicates the time point at which the discharge operation is started, and the condensed water generated during the reaction is also the sum of the moisture content. The amount of water can be adjusted to be the amount of injected water added to the amount of condensed water generated, or a predetermined amount of water can be adjusted by distilling off the reaction pressure in an apparatus equipped with a condenser and a pressure regulating valve. By setting the amount of water in the reaction system at the end of the reaction to about 15% by mass or more, the lower condensate can be prevented from being precipitated or solidified in the reaction system and can be easily discharged. On the other hand, by making it about 35 mass% or less, the low order condensate of sufficient polymerization degree can be obtained. In addition, since the amount of water to be evaporated and separated at the time of discharge cannot increase the discharge rate, or the need for drying treatment before the solid phase polymerization is unlikely to occur, deterioration in manufacturing efficiency can be prevented.
본 공정에서는, 저차 축합물을 얻기 위한 중축합반응을, 배취식으로 행해도 되고 연속식으로 행해도 된다. 또, 반응 용기에의 저차 축합물의 부착 방지나 중축합반응의 균일한 진행 등의 점에서, 저차 축합물을 생성시키기 위한 중축합반응을, 교반 하에 수행할 수 있다.In this process, the polycondensation reaction for obtaining a low order condensate may be performed batchwise, or may be performed continuously. Moreover, the polycondensation reaction for producing a low-order condensate can be performed with stirring, from the point of prevention of adhesion of a lower-order condensate to a reaction container, the uniform progress of a polycondensation reaction, etc.
본 공정에 의해 얻어진 저차 축합물은, 농황산 중 0.5g/㎗의 농도에서 온도 25℃도에서 측정한 대수점도(IV)가 약 0.07㎗/g 내지 약 0.40㎗/g 또는 약 0.10㎗/g 내지 약 0.25㎗/g일 수 있다. 또, 해당 대수점도(IV)의 구체적인 측정 방법에 대해서는, 후술하는 실시예에서 설명한다. 해당 대수점도(IV)가 약 0.07㎗/g 이상이면, 저융점물이 적기 때문에 고상 중합 시에 수지 분체가 융착되거나, 장치 내에 부착되거나 하는 것을 방지할 수 있다. 한편, 해당 대수점도(IV)가 약 0.40㎗/g 이하이면, 저차 축합물의 제조 시에 반응계 내에서 석출, 고형화되므로 배출이 곤란해진다고 하는 문제를 방지할 수 있다.The low-order condensate obtained by this process has a logarithmic viscosity (IV) measured at a temperature of 25 ° C. at a concentration of 0.5 g / dl in concentrated sulfuric acid, from about 0.07 dl / g to about 0.40 dl / g or about 0.10 dl / g About 0.25 μs / g. In addition, the specific measuring method of the logarithmic viscosity (IV) is demonstrated in the Example mentioned later. If the logarithmic viscosity (IV) is about 0.07 dl / g or more, since the low melting point is small, it is possible to prevent the resin powder from fusion or adhesion in the apparatus during solid phase polymerization. On the other hand, if the logarithmic viscosity (IV) is about 0.40 dl / g or less, the problem that the discharge becomes difficult because precipitation and solidification in the reaction system at the time of preparation of the lower order condensate can be prevented.
또한, 저차 축합물의 중합 전에, 필요에 따라서 염조절 공정(鹽調工程) 및/또는 농축 공정을 부가할 수도 있다. 염조절이란, 다이카복실산 성분과 다이아민 성분으로부터 염을 생성하는 공정이며, 염의 중화점의 pH± 약 0.5의 범위로 또는 염의 중화점의 pH± 약 0.3의 범위로 조절할 수 있다. 농축에서는, 원료주입 농도의 값에 대하여, 약 +2질량% 내지 약 +90질량%의 농도까지 농축시키거나, 약 +5 질량% 내지 약 +80질량%의 농도까지 농축시킬 수 있다. 농축 공정은, 약 90℃ 내지 약 220℃, 약 100℃ 내지 약 210℃, 약 130℃ 내지 약 200℃일 수 있다. 농축 공정의 압력은 예를 들면, 약 0.1㎫ 내지 약 2.0㎫이다. 통상, 농축의 압력은 중합의 압력 이하로 제어된다. 또한, 농축 촉진을 위하여, 예를 들어, 질소 기류 등에 의해 강제 배출의 조작을 행할 수도 있다. 농축 공정은 중합 시간의 단축에 유효하다.In addition, before the polymerization of the lower condensate, a salt control step and / or a concentration step may be added if necessary. Salt control is a process which produces | generates a salt from a dicarboxylic acid component and a diamine component, and can adjust it in the range of about 0.5 of the neutralization point of a salt, or the range of about 0.3 of the neutralization point of a salt. In the concentration, the concentration of the raw material injection concentration can be concentrated to a concentration of about + 2% by mass to about + 90% by mass or to a concentration of about + 5% by mass to about + 80% by mass. The concentration process may be about 90 ° C. to about 220 ° C., about 100 ° C. to about 210 ° C., about 130 ° C. to about 200 ° C. The pressure in the concentration process is, for example, about 0.1 MPa to about 2.0 MPa. Usually, the pressure of concentration is controlled below the pressure of polymerization. In addition, in order to promote the concentration, for example, forced discharge may be performed by nitrogen gas flow or the like. The concentration step is effective for shortening the polymerization time.
또, 중축합반응 후에, 필요에 따라서 저차 축합물을 배출 및 냉각시키는 공정을 구비해도 된다. 저차 축합물의 반응 용기로부터의 취출은, 저차 축합물을 반응 용기로부터 불활성 가스 분위기 하(예를 들어, 질소분위기 하), 대기압 이하의 압력으로 취출하는 것에 의해 행한다. 이러한 배출 방법에 따르면, 소정 압력에서 조절한 취출용의 압력용기를 사용할 필요가 없고, 게다가 반응 용기 내에 수증기를 별도로 공급하면서 저차 축합물을 반응 용기로부터 취출한다고 하는 수고도 필요로 하지 않으며, 열열화가 적고, 대수점도가 충분히 높으며, 게다가 부피비중이 높은, 비발포의 분립체 형태(분말 형태 또는 과립 형태)인 저차 축합물을, 간단히 또한 효율적으로 얻을 수 있다.Moreover, after polycondensation reaction, you may provide the process of discharge | release and cooling a lower order condensate as needed. Extraction of the lower condensate from the reaction vessel is performed by extracting the lower condensate from the reaction vessel under an inert gas atmosphere (for example, under a nitrogen atmosphere) at a pressure below atmospheric pressure. According to this discharging method, it is not necessary to use a pressure vessel for taking out at a predetermined pressure, and furthermore, no effort is required to take out the lower condensate from the reaction vessel while supplying steam separately into the reaction vessel, and thermal deterioration is caused. It is possible to obtain a low order condensate in a small, non-foamed granule form (powder form or granule form) that is small, has a logarithmic viscosity sufficiently high, and has a high volume specific gravity.
상기 불활성 가스 분위기는, 저차 축합물의 산화 열화를 방지한다는 관점에서, 산소 농도가 약 1체적% 이하일 수 있다.The inert gas atmosphere may have an oxygen concentration of about 1% by volume or less from the viewpoint of preventing oxidative degradation of the lower condensate.
반응 용기로부터의 저차 축합물의 배출 속도는, 반응 용기의 규모, 반응 용기 내의 내용물의 양, 온도, 취출구의 크기, 취출 노즐부의 길이 등에 따라서 적당히 조절할 수 있다. 그러나, 일반적으로는, 배출구 단면적당의 배출 속도가 약 2000 kg/s/㎡ 내지 약 20000 kg/s/㎡의 범위 내로 되도록 해서 취출할 수 있다. 이 범위이면, 얻어지는 저차 축합물의 부피밀도가, 예를 들면, 약 0.35 g/㎤ 내지 약 0.8 g/㎤의 범위가 되어, 후술하는 고상 중합의 공정에서, 붕괴, 응집, 반응기 벽에 대한 융착 등이 일어나기 어려워, 취급성이 우수하고, 게다가 중합 장치 등에 많이 충전하는 것이 가능하여 고상 중합 공정에서 이용되는 장치에서 용적 효율을 향상시킬 수 있다.The discharge rate of the lower order condensate from the reaction vessel can be appropriately adjusted according to the size of the reaction vessel, the amount of contents in the reaction vessel, the temperature, the size of the ejection opening, the length of the ejection nozzle portion, and the like. In general, however, it can be taken out so that the discharge rate per outlet cross-sectional area is in the range of about 2000 kg / s / m 2 to about 20000 kg / s / m 2. If it is this range, the volume density of the lower-order condensate obtained will be in the range of about 0.35 g / cm <3> to about 0.8 g / cm <3>, for example, collapse | disintegration | flocculation, aggregation, fusion to the reactor wall, etc. in the process of solid-state polymerization mentioned later. This is unlikely to occur, excellent in handleability, and can be filled in a polymerization apparatus or the like, and the volumetric efficiency can be improved in the apparatus used in the solid phase polymerization step.
그리고, 반응 용기로부터 취출된 저차 축합물은, 취출 시의 물의 증발 잠열에 의해 그 온도가 순식간에 예를 들면, 약 100℃ 이하로 저하되므로, 열열화 및 산소에 의한 열화는 거의 일어나지 않는다.In addition, since the temperature of the low-order condensate taken out from the reaction vessel immediately drops to, for example, about 100 ° C. or lower due to latent heat of evaporation of water at the time of taking out, thermal deterioration and deterioration by oxygen hardly occur.
또, 배출되는 저차 축합물은, 저차 축합물이 지니는 잠열에 의해, 동반하는 수분의 대부분을 증발시키기 때문에, 냉각과 건조 처리가 동시에 행해진 것으로 된다. 질소 등의 불활성 가스의 유통 하나, 대기압보다 감압 하에 배출 처리를 행하는 것은, 건조 및 냉각의 효율을 높이기 위해서 바람직하다. 또한, 배출 용기로서 사이클론형의 고체-기체 분리장치를 설치함으로써, 배출 시의 분말의 계외 비산을 억제할 수 있을 뿐 아니라, 높은 가스 선속 하에 배출 처리를 행할 수 있으므로 건조, 냉각 효율을 높이는 것이 가능해져서 바람직하다.In addition, since the lower condensate discharged evaporates most of the accompanying moisture by the latent heat of the lower condensate, cooling and drying are simultaneously performed. It is preferable to increase the efficiency of drying and cooling by discharging one of an inert gas such as nitrogen or a reduced pressure than atmospheric pressure. In addition, by installing a cyclone-type solid-gas separation device as the discharge container, not only can the out-of-system scattering of powder be prevented during discharge, but also the discharge treatment can be performed under a high gas flux, so that drying and cooling efficiency can be improved. It is preferable to become.
또한, 필요에 따라서, 상기에서 얻어지는 저차 축합물의 부피비중을 한층 높이거나, 입경을 일치시키기 위한 위한 압분 처리나, 조립(造粒) 처리를 더욱 행해도 된다.Moreover, you may further perform the rolling process and granulation process for making the volume specific gravity of the lower order condensate obtained above, or to match a particle diameter as needed.
<고상 중합><Solid state polymerization>
공정(2)Process (2)
본 공정에서는, 상기 공정(1)에서 얻은 저차 축합물을 고상 중합시켜, 폴리아마이드 수지를 얻는다.In this step, the low-order condensate obtained in the step (1) is subjected to solid phase polymerization to obtain a polyamide resin.
본 공정에서는, 고상 중합은, 저차 축합물의 반응 용기로부터의 취출한 그대로 계속해서 행해도, 반응 용기로부터 취출한 저차 축합물을 건조시킨 후에 행해도, 반응 용기로부터 취출한 저차 축합물을 일단 저장한 후에 행해도, 또는 반응 용기로부터 취출한 저차 축합물에 상기 압분 처리나 조립 처리를 실시한 후에 행해도 된다. 고상 중합에 의해 고중합도화시키면, 열열화가 보다 적은 폴리아마이드 수지를 얻을 수 있다.In this process, even if it carries out as it was taken out from the reaction container of a lower condensate, after carrying out drying of the lower condensate taken out from the reaction container, the solid state polymerization taken out from the reaction container was once stored. You may carry out afterward or you may perform after the said powder compacting process or granulation process to the low order condensate taken out from the reaction container. When high polymerization degree is carried out by solid state polymerization, polyamide resin with less thermal degradation can be obtained.
저차 축합물을 고상 중합할 때의 중합 방법 및 조건은 특별히 제한되지 않고, 저차 축합물의 융착, 응집, 열화 등을 일으키는 일 없이 고체 상태를 유지하면서 고중합도화를 행할 수 있는 방법 및 조건이면 어느 것이어도 된다.The polymerization method and conditions for solid-phase polymerization of the lower condensate are not particularly limited, and any method and conditions capable of performing high polymerization while maintaining a solid state without causing fusion, aggregation, or deterioration of the lower condensate are You can do it.
그러나, 저차 축합물 및 생성하는 폴리아마이드의 산화 열화를 방지하기 위하여, 헬륨 가스, 아르곤 가스, 질소 가스, 탄산 가스 등의 불활성 가스 분위기 중 또는 감압 하에 고상 중합을 수행할 수 있다.However, in order to prevent oxidative deterioration of the lower condensate and the resulting polyamide, solid phase polymerization can be carried out in an inert gas atmosphere such as helium gas, argon gas, nitrogen gas, carbon dioxide gas or under reduced pressure.
고상 중합의 온도는 특별히 제한되지 않지만, 최고반응온도가 예를 들면, 약 170℃ 내지 약 260℃, 약 200℃ 내지 약 250℃ 또는 약 220℃ 내지 약 240℃이다. 또, 해당 최고반응온도는 고상 중합 종료 시에 있을 필요는 없고, 고상 중합 종료까지의 어느 때의 시점에서 도달해도 된다.The temperature of the solid phase polymerization is not particularly limited, but the maximum reaction temperature is, for example, about 170 ° C to about 260 ° C, about 200 ° C to about 250 ° C, or about 220 ° C to about 240 ° C. The maximum reaction temperature need not be at the end of the solid phase polymerization, and may be reached at any point in time until the end of the solid phase polymerization.
본 공정에서 이용되는 고상 중합의 장치에 대해서는 특별히 제한은 없고, 공지의 어느 장치도 사용할 수 있다. 고상 중합 장치의 구체예로서는, 예를 들어, 1축 디스크식, 혼련기, 2축 패들식, 세로형의 탑식 장치, 세로형의 탑식 기기, 회전 드럼식, 또는 더불콘형의 고상 중합 장치, 건조 기기 등을 들 수 있다.There is no restriction | limiting in particular about the apparatus of solid state polymerization used at this process, Any well-known apparatus can be used. As a specific example of a solid-state polymerization apparatus, For example, a uniaxial disk type, a kneading machine, a biaxial paddle type, a vertical tower type apparatus, a vertical tower type apparatus, a rotary drum type, or a double vulcan type solid state polymerization apparatus, a drying apparatus, etc. Can be mentioned.
고상 중합의 반응 시간은, 특별히 제한되지 않지만, 통상, 약 1시간 내지 약 20시간일 수 있다. 고상 중합 반응 중에, 저차 축합물을 기계적으로 교반하거나, 또는 기체류에 의해 교반해도 된다.The reaction time of the solid phase polymerization is not particularly limited, but may usually be about 1 hour to about 20 hours. During the solid state polymerization reaction, the lower order condensate may be mechanically stirred or may be stirred with a gas stream.
전술한 바와 같은 제조 방법에 따르면, 겔화 등의 제조 상의 문제를 거의 일으키는 일 없이, 내열색상 안정성이 우수한 폴리아마이드 수지를 얻을 수 있다.According to the manufacturing method as described above, a polyamide resin excellent in heat-color stability can be obtained with almost no production problem such as gelation.
<폴리아마이드 성형체 및 그 제조 방법><Polyamide molded article and manufacturing method thereof>
전술한 폴리아마이드 수지는, 성형 공정을 거쳐서, 전기·전자 부품, 자동차 부품, 반사 재료 등의 용도에 제공된다. 즉, 본 발명의 다른 일 형태에 의하면, 상기 폴리아마이드 수지를 성형해서 이루어진 폴리아마이드 성형체; 상기 폴리아마이드 수지를 성형하는 공정(3)을 포함하는, 폴리아마이드 성형체의 제조 방법이 제공된다. 이하, 본 형태의 폴리아마이드 성형체 및 그 제조 방법에 대해서 설명한다.The polyamide resin mentioned above is provided to uses, such as an electrical / electronic component, an automotive component, a reflective material, etc. through a shaping | molding process. That is, according to another aspect of the present invention, there is provided a polyamide molded body formed by molding the polyamide resin; There is provided a method for producing a polyamide molded article, comprising the step (3) of molding the polyamide resin. Hereinafter, the polyamide molded body of this embodiment and its manufacturing method are demonstrated.
일 실시예의 성형 공정에 있어서의 성형 방법은, 특별히 제한되지 않지만, 전술한 본 발명에 따른 폴리아마이드 수지는, 융점이 낮기 때문에, 약 320℃를 초과하는 온도에서의 가열이 불필요하여, 열열화에 의한 내열색상의 악화를 저감시킬 수 있으므로, 융점 이상의 가열(용융)이 필요로 되는 성형 방법이 적합하다. 성형 방법으로서는, 예를 들어, 사출 성형, 취입 성형, 압출 성형, 압축 성형 등을 들 수 있다. 그 중에서도, 사출 성형법을 이용하는 것, 즉, 폴리아마이드 수지 성형체가 사출 성형체일 수 있다. 사출 성형법에서는 수지 성형품의 형상에 따른 금형을 사용하는 것이 가능하여, 복잡한 형상의 수지 성형픔을 제조할 수 있다.Although the shaping | molding method in the shaping | molding process of one Example is not restrict | limited, Since the polyamide resin which concerns on this invention mentioned above has low melting | fusing point, heating at the temperature exceeding about 320 degreeC is unnecessary, Since the deterioration of the heat-resistant color by this can be reduced, the shaping | molding method which requires heating (melting) more than melting | fusing point is suitable. As a molding method, injection molding, blow molding, extrusion molding, compression molding, etc. are mentioned, for example. Among them, the injection molding method may be used, that is, the polyamide resin molded body may be an injection molded body. In the injection molding method, it is possible to use a metal mold in accordance with the shape of the resin molded article, thereby producing a resin molded article having a complicated shape.
폴리아마이드 수지를 성형할 때의 성형 온도는, 특별히 제한은 없지만, 약 320℃ 이하, 약 305℃ 이하, 약 300℃ 이하 또는 약 295℃ 이하일 수 있다. 성형 온도가 약 320℃ 이하이면, 폴리아마이드 수지의 열열화를 억제할 수 있고, 그 후에 성형체를 고온조건 하에서 사용한 경우더라도 색상의 악화를 방지하는 것이 가능해진다. 또, 여기서 말하는 성형 온도란, 폴리아마이드 수지의 온도를 의미하고, 그 상한치는, 성형 공정 전체의 폴리아마이드 수지의 온도 중, 최고온도를 가리키는 것으로 한다. 한편, 성형 온도의 하한치도, 폴리아마이드 수지의 융점 이상으로서 성형가능한 온도이면 특별히 제한되지 않지만, 통상 폴리아마이드 수지의 융점 약 +5℃ 정도의 온도이며, 약 +8℃ 이상일 수 있다.The molding temperature in molding the polyamide resin is not particularly limited, but may be about 320 ° C. or less, about 305 ° C. or less, about 300 ° C. or less, or about 295 ° C. or less. If the molding temperature is about 320 ° C. or lower, thermal degradation of the polyamide resin can be suppressed, and deterioration of color can be prevented even when the molded body is used under high temperature conditions thereafter. In addition, the shaping | molding temperature here means the temperature of polyamide resin, and the upper limit shall refer to the highest temperature among the temperatures of the polyamide resin of the whole molding process. On the other hand, the lower limit of the molding temperature is not particularly limited as long as it is a moldable temperature that is higher than the melting point of the polyamide resin. However, the lower limit temperature of the molding temperature is usually about + 5 ° C and may be about + 8 ° C or more.
또한, 상기 성형 공정은, 비산화성 분위기 하에서 수행할 수 있다. 본 명세서에 있어서, 비산화성 분위기 하란, 비산화성 가스의 함유량이 약 95체적% 이상인 분위기를 의미하는 것으로 한다. 예를 들면, 비산화성 가스의 함유량이 약 100체적%인 무산소 분위기 하를 가리킨다. 비산화성 분위기 하로서는, 불활성 가스 분위기 또는 환원성 가스 분위기를 들 수 있다. 여기에서, 불활성 가스는, 특별히 제한되지 않지만, 헬륨(He), 네온(Ne), 아르곤(Ar), 크립톤(Kr), 제논(Xe) 및 질소(N2) 등을 사용할 수 있다. 상기 불활성 가스는, 단독으로 사용되어도 혹은 2종 이상의 혼합 가스의 형태로 사용되어도 된다. 또한, 불활성 가스 중에 환원성 가스를 혼합시켜도 된다. 환원성 가스는, 특별히 제한되지 않지만, 수소(H2) 가스, 일산화탄소(CO) 가스일 수 있다. 그 중에서도, 안전성의 관점에서는, 불활성 가스를 이용할 수 있다.In addition, the molding process may be performed in a non-oxidizing atmosphere. In this specification, a non-oxidizing atmosphere shall mean the atmosphere whose content of a non-oxidizing gas is about 95 volume% or more. For example, it points out under an oxygen free atmosphere whose content of non-oxidizing gas is about 100 volume%. Examples of the non-oxidizing atmosphere include an inert gas atmosphere or a reducing gas atmosphere. Here, the inert gas is not particularly limited, but helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), nitrogen (N 2 ), or the like can be used. The inert gas may be used alone or in the form of two or more mixed gases. Moreover, you may mix a reducing gas in an inert gas. The reducing gas is not particularly limited, but may be a hydrogen (H 2 ) gas or a carbon monoxide (CO) gas. In particular, an inert gas can be used from the viewpoint of safety.
폴리아마이드 성형체는, 전술한 폴리아마이드 수지 이외에도 임의의 첨가 성분을 포함해도 된다. 첨가 성분으로서는, 예를 들어, 산화티타늄, 이산화티타늄, 삼산화티타늄, 산화아연, 산화지르코늄, 황화아연 등의 충전 재료, 유리섬유, 탄소섬유 등의 각종 섬유 재료, 무기 분말 형태 필러, 유기 분말 형태 필러, 산화 방지제나 내열안정제(힌더드 페놀계, 하이드로퀴논계, 포스파이트계 및 이들의 치환체, 구리화합물 등), 내후제(레졸시놀계, 살리실레이트계, 벤조트라이아졸계, 벤조페논계, 힌더드 아민계 등), 이형제 및 윤활제(몬탄산 및 그의 금속염, 그의 에스터, 그의 하프에스터, 스테아릴알코올, 스테아라미드, 각종 비스아마이드, 비스요소 및 폴리에틸렌 왁스 등), 안료(황화카드뮴, 프탈로사이아닌, 카본블랙 등), 염료(니그로신 등), 결정핵제(탤크, 실리카, 카올린, 클레이 등), 가소제(p-옥시벤조산옥틸, N-뷰틸벤젠설폰아마이드 등), 대전 방지제(알킬설페이트형 음이온계 대전 방지제, 폴리옥시에틸렌 솔비탄 모노스테아레이트와 같은 비이온계 대전 방지제, 베타인계 양성 대전 방지제 등), 난연제(예를 들어, 적린, 멜라민사이아누레이트, 수산화마그네슘, 수산화알루미늄 등의 수산화물, 폴리인산암모늄, 브롬화폴리스타이렌, 브롬화폴리페닐렌에터, 브롬화폴리카보네이트, 브롬화에폭시 수지 혹은 이들의 브롬계 난연제와 삼산화안티몬의 조합 등), 다른 폴리머(올레핀류, 변성 폴리올레핀류, 에틸렌·메틸아크릴레이트, 에틸렌·에틸아크릴레이트 공중합체, 에틸렌·프로필렌 공중합체, 에틸렌-1-뷰텐 공중합체등의 올레핀 공중합체, 프로필렌-1-뷰텐 공중합체 등의 올레핀 공중합체, 폴리스타이렌, 불소 수지, 실리콘 수지, LCP(Liquid Crystal Polymer; 액정 폴리머)) 등을 들 수 있다.The polyamide molded body may contain optional additive components in addition to the polyamide resin described above. As the additive component, for example, filler materials such as titanium oxide, titanium dioxide, titanium trioxide, zinc oxide, zirconium oxide, zinc sulfide, various fiber materials such as glass fiber, carbon fiber, inorganic powder filler, organic powder filler Antioxidants, heat stabilizers (hindered phenols, hydroquinones, phosphites and their substituents, copper compounds, etc.), weathering agents (resolcinols, salicylates, benzotriazoles, benzophenones, Hindered amines, etc.), release agents and lubricants (montanic acid and its metal salts, esters thereof, half esters, stearyl alcohols, stearamides, various bisamides, bisurea and polyethylene waxes, etc.), pigments (cadmium sulfide, phthalo Cyanine, carbon black, etc.), dyes (nigrosin, etc.), crystal nucleating agents (talc, silica, kaolin, clay, etc.), plasticizers (octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.), antistatic (Alkyl sulfate type anionic antistatic agent, nonionic antistatic agent such as polyoxyethylene sorbitan monostearate, betaine positive antistatic agent, etc.), flame retardant (e.g. red phosphorus, melamine cyanurate, magnesium hydroxide, hydroxide) Hydroxides such as aluminum, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonates, brominated epoxy resins or combinations thereof with brominated flame retardants and antimony trioxide, and other polymers (olefins, modified polyolefins, Olefin copolymers such as ethylene methyl acrylate, ethylene ethyl acrylate copolymer, ethylene propylene copolymer, ethylene-1-butene copolymer, olefin copolymers such as propylene-1-butene copolymer, polystyrene, fluorine resin , Silicone resin, LCP (Liquid Crystal Polymer) and the like.
폴리아마이드 성형체에 있어서의 상기 첨가 성분의 함유량은, 성형체가 이용되는 용도나 기능에 좌우되지만, 통상, 폴리아마이드 수지 100질량부에 대하여 약 0질량부 내지 약 150질량부이며, 약 0질량부 내지 약 100질량부일 수 있다.Although content of the said addition component in a polyamide molded object depends on the use and function which a molded object is used, it is usually about 0 mass part-about 150 mass parts with respect to 100 mass parts of polyamide resin, and about 0 mass part- About 100 parts by mass.
폴리아마이드 성형체는, 전기·전자 부품, 자동차 부품, 반사 재료 등에 사용가능하다. 특히, 본 발명의 폴리아마이드 성형체는, 장시간의 고온조건 하에서 사용되어도 변색이 억제되므로, 반사판의 용도에 이용할 수 있다. 구체적인 예로서는, 각종 전기전자 부품, 실내 조명, 천장 조명, 실외 조명, 자동차 조명, 표시 기기, 헤드라이트 등의 발광 장치용 반사판으로서 이용할 수 있다. 그 중에서도, LED는 고휘도, 고출력화에 의해 100℃ 부근의 고온환경 하가 되는 일이 많으므로, 내열색상이 향상된 본 형태의 폴리아마이드 성형체를 LED 반사판으로서 이용하면, 충분한 휘도가 유지될 수 있다.The polyamide molded body can be used for electric and electronic parts, automobile parts, reflective materials and the like. In particular, since the discoloration is suppressed even when used under a long time of high temperature conditions, the polyamide molded article of the present invention can be used for the use of a reflecting plate. As a specific example, it can use as a reflecting plate for light emitting devices, such as various electrical and electronic components, indoor lighting, ceiling lighting, outdoor lighting, automobile lighting, display equipment, and headlights. Among them, since LEDs are often under a high temperature environment around 100 ° C due to high brightness and high output, sufficient luminance can be maintained by using the polyamide molded body of the present embodiment having improved heat color as the LED reflector.
실시예Example
본 발명을, 이하의 실시예 및 비교예를 이용해서 더욱 상세히 설명한다. 단, 본 발명의 기술적 범위가 이하의 실시예만으로 제한되는 것은 아니다. 또, 대수점도(IV), 융점 및 색상의 평가, 그리고 내변색성 시험은 하기의 방법에 의해 행하였다.This invention is demonstrated in more detail using the following example and a comparative example. However, the technical scope of the present invention is not limited only to the following examples. In addition, evaluation of algebraic viscosity (IV), melting point and color, and discoloration resistance test were performed by the following method.
(1) 대수점도(IV)(1) Algebraic viscosity (IV)
96% 농황산 중에 시료를 0.5g/㎗의 농도에서 용해시켜서 시료 용액을 조제하였다. 96% 농황산(블랭크) 및 시료 용액을 25℃의 온도에서, 우베로데 점도관을 이용해서 낙하 초수를 측정하고, 하기 식 1에 의해 산출하였다.A sample solution was prepared by dissolving the sample in a concentration of 0.5 g / dl in 96% concentrated sulfuric acid. 96% concentrated sulfuric acid (blank) and the sample solution were measured at the temperature of 25 degreeC using the Uberode viscous tube, and the fall second was measured and it calculated by the following formula (1).
[식 1][Equation 1]
ηinh= ln(ηrel)/cη inh = ln (η rel ) / c
상기 식 1에서, ηrel=t1/t0,In Equation 1, η rel = t1 / t0,
t1: 시료의 낙하 초수, t1: number of seconds to drop the sample,
t0: 블랭크의 낙하 초수, t0: number of seconds of the blank to fall,
c: 용액의 농도(g/㎗). c: concentration of solution (g / dl).
(2) 융점(2) melting point
세이코 인스트루멘츠 주식회사 제품인 DSC(differential scanning calorimetry)를 이용하여, 비결정화 상태의 샘플을 10㎖/분의 유속으로 질소 유통 하, 승온 속도 10℃/분에서 30℃로부터 350℃까지 승온시킨 후 5분간 유지시키고, 강온 속도 10℃/분에서 100℃까지 측정을 행하여, 유리 전이 온도를 측정하고, 또한 승온 시의 융해에 의한 흡열 피크 온도를 융점으로서 계측하였다.Using differential scanning calorimetry (DSC) manufactured by Seiko Instruments Co., Ltd., the sample in an amorphous state was flowed under nitrogen at a flow rate of 10 ml / min, and the temperature was raised from 30 to 350 ° C. at a heating rate of 10 ° C./min. It hold | maintained for a minute, it measured to 100 degreeC at the temperature-fall rate of 10 degree-C / min, measured the glass transition temperature, and measured the endothermic peak temperature by melting at the time of temperature rising as melting | fusing point.
(3) 색상(3) color
닛뽄덴쇼쿠코교 주식회사(日本電色工業株式會社) 제품의 소형 색채 백도계 NW-11을 이용해서 측정하였다.The measurement was carried out using a compact colorimeter NW-11 manufactured by Nippon Denshoku Kogyo Co., Ltd.
조명·수광 조건: 45°환상 조명, 0°수광Illumination and reception conditions: 45 ° circular illumination, 0 ° reception
측정 방법: 회절 격자, 후분광 방식Measuring method: diffraction grating, back spectroscopy
측정 면적: 10㎜φ, 광원: Puls Xenon lampMeasuring area: 10 mmφ, Light source: Puls Xenon lamp
측정 광원, 관찰 조건: D65/2°Measuring light source, observation conditions: D65 / 2 °
측정 항목: 황색도(YI).Measured item: Yellowness (YI).
(4) 내변색성 시험(내열색상 안정성)(4) Discoloration resistance test (heat color stability)
성형체를, 가열 오븐에서 공기 분위기 하 170℃, 8시간 가열 처리를 행하고, 처리 전후의 색상을 측정하여, 내변색성(내열색상 안정성)을 평가하였다.The molded object was heat-processed in 170 degreeC and 8 hours in air atmosphere in the heating oven, the color before and behind a process was measured, and the color fading resistance (heat color stability) was evaluated.
실시예 1Example 1
<폴리아마이드 수지의 제조><Production of Polyamide Resin>
원료로서, 1,4-사이클로헥산다이카복실산 186.22g(1.082㏖), 1,10-데칸다이아민 94.60g(0.549㏖=50㏖%), 1,12-도데칸다이아미노 110.00g(0.549㏖=50㏖%), 벤조산 3.96g(0.032㏖), 차아인산나트륨 1수화물(SHM) 0.376g(3.55m㏖, 주입 원료에 대하여 0.1질량부) 및 물 126g(주입 원료에 대하여 20질량%)을, 분축기, 압력조정밸브 및 바닥부 배출밸브를 구비한 내용적 1ℓ의 오토클레이브 반응조에 주입하고, 질소 치환을 행하였다. 교반하면서 2시간에 걸쳐서 200℃까지 승온시켰다. 이 때의 반응조의 내압은 2㎫이었다. 다음에, 내부온도를 215℃로 유지하고, 반응조의 내압을 2㎫로 유지하도록 물을 증류 제거하면서 2시간 반응을 계속하였다. 그 후, 30분에 걸쳐서 내압을 1.2㎫까지 내리고, 생성된 저차 축합물을 바닥부 배출밸브로부터, 질소 유통 하, 상온(25℃)에서, 대기압 조건의 수용기에 배출하여, 백색, 분말 형태의 저차 축합물을 얻었다.As raw materials, 186.22 g (1.082 mol) of 1,4-cyclohexanedicarboxylic acid, 94.60 g of 1,10-decanediamine (0.549 mol = 50 mol%), and 110.00 g of 1,12-dodecanediamino (0.549 mol = 50) Mol%), benzoic acid 3.96 g (0.032 mol), sodium hypophosphite monohydrate (SHM) 0.376 g (3.55 mmol, 0.1 mass part with respect to the injection raw material), and 126 g (20 mass% with respect to the injection raw material), It injected | thrown-in to the internal volume 1L autoclave reaction tank provided with an accumulator, a pressure regulating valve, and a bottom discharge valve, and performed nitrogen substitution. It heated up to 200 degreeC over 2 hours, stirring. The internal pressure of the reaction vessel at this time was 2 MPa. Next, the reaction was continued for 2 hours while the internal temperature was maintained at 215 ° C, and water was distilled off to maintain the internal pressure of the reaction tank at 2 MPa. Thereafter, the internal pressure was lowered to 1.2 MPa over 30 minutes, and the resulting lower condensate was discharged from the bottom discharge valve to a receiver under atmospheric pressure at atmospheric temperature (25 ° C.) under nitrogen flow to obtain a white, powdery form. Lower order condensates were obtained.
얻어진 저차 축합물 300g을 1000㎖ 둥근 바닥 플라스크에 주입하고, 오일욕 부착 회전식 증발기에 설치하여, 질소 치환한 후에, 1ℓ/분의 질소 유통 하에, 플라스크를 회전시키면서 오일욕에 침지시키고, 내부온도를 230℃까지 1시간에 걸쳐서 승온시킨 후, 동일 온도에서 5시간 고상 중합 반응을 계속하였다. 소정 반응 시간 경과 후에 실온(25℃)까지 냉각시켜, 고중합도화된 폴리아마이드 수지를 얻었다.300 g of the obtained lower condensate was injected into a 1000 ml round bottom flask, installed in a rotary evaporator with an oil bath, and after nitrogen replacement, the flask was immersed in an oil bath while rotating the flask under nitrogen flow at 1 L / min, and the internal temperature was decreased. After heating up to 230 degreeC over 1 hour, solid-state polymerization reaction was continued at the same temperature for 5 hours. After the predetermined reaction time had elapsed, the mixture was cooled to room temperature (25 ° C) to obtain a highly polymerized polyamide resin.
<폴리아마이드 성형체의 제조><Production of Polyamide Molded Body>
상기 폴리아마이드 수지를 하기 조건에서 성형을 행하여, 폴리아마이드 성형체를 얻었다.The said polyamide resin was shape | molded on condition of the following, and the polyamide molded object was obtained.
스미토모쥬키카이코교주식회사(住友重機械工業株式會社) 제품의 사출 성형기인 SE SE18DUZ를 이용해서, 하기에 나타낸 조건에서 탄자쿠(短冊) 형태의 시험편(크기80㎜×10㎜×4.0㎜)을 제작하였다.Using a SE SE18DUZ, an injection molding machine manufactured by Sumitomo Jukikai Co., Ltd., a test specimen (size 80 mm x 10 mm x 4.0 mm) in the shape of a tanzaku was used under the conditions shown below. Produced.
실린더 내 분위기: 질소(N2) 또는 대기(공기)In-cylinder atmosphere: nitrogen (N 2 ) or atmosphere (air)
실린더 내의 폴리아마이드 수지 온도: 하기 표 1에 기재된 온도Polyamide resin temperature in the cylinder: the temperature shown in Table 1 below
금형 온도: 150℃Mold temperature: 150 ℃
사출 압력: 120㎫ 내지 140㎫Injection pressure: 120 MPa to 140 MPa
사출 속도: 30㎜/초Injection speed: 30 mm / sec
스크류 회전수: 150rpmScrew speed: 150rpm
냉각 시간: 45초.Cooling time: 45 seconds.
실시예 2 내지 7, 비교예 1 내지 5Examples 2 to 7, Comparative Examples 1 to 5
상기 실시예 1에 있어서의 단량체를 하기 표 1에 기재된 화합물 및 배합비로 변경한 것을 제외하고, 실시예 1과 마찬가지 방법으로, 실시예 2 내지 7 및 비교예 1 내지 5의 폴리아마이드 수지 및 폴리아마이드 성형체를 제조하였다.The polyamide resins and polyamides of Examples 2 to 7 and Comparative Examples 1 to 5 in the same manner as in Example 1, except that the monomers in Example 1 were changed to the compounds and compounding ratios of Table 1 below. A molded article was prepared.
결과를 표 1 및 2에 나타낸다.The results are shown in Tables 1 and 2.
표 1
- - 실시예
- - 1 2 3 4 5 6 7
단량체:다이카복실산 (mol%) 1,4-CHDA 100 100 100 100 100 100 100
TPA - - - - - - -
단량체:다이아민(mol%) 1,10-DDA 50 30 65 10 45 35 40
1,11-UDDA - - - - - - -
1,12-DDDA 50 70 35 90 55 65 60
폴리아마이드 수지의 물성 Ⅳ(g/dL) 0.92 0.87 0.93 0.91 0.90 0.91 0.92
융점(℃) 297 296 305 305 293 293 287
폴리아마이드 성형체(1)N2 분위기 하에서의 성형 성형온도 (℃) 330 330 330 330 315 315 310
내변색 시험:YI(초기) -46.3 -46.9 -46.1 -46.5 -46.2 -46.4 -46.9
내변색 시험:YI(170℃, 8h 후) 5.7 5.5 7.4 7.3 4.3 4.0 3.1
폴리아마이드 성형체(2)공기 분위기하에서의 성형 성형온도 (℃) - - - - - 315 310
내변색 시험:YI (초기) - - - - - -46.4 -46.9
내변색 시험:YI(170℃, 8h 후) - - - - - 9.2 8.1
Table 1
- - Example
- - One 2 3 4 5 6 7
Monomer: Dicarboxylic acid (mol%) 1,4-CHDA 100 100 100 100 100 100 100
TPA - - - - - - -
Monomer: diamine (mol%) 1,10-DDA 50 30 65 10 45 35 40
1,11-UDDA - - - - - - -
1,12-DDDA 50 70 35 90 55 65 60
Physical Properties of Polyamide Resin Ⅳ (g / dL) 0.92 0.87 0.93 0.91 0.90 0.91 0.92
Melting point (℃) 297 296 305 305 293 293 287
Polyamide molded article (1) Molding under N 2 atmosphere Molding temperature (℃) 330 330 330 330 315 315 310
Discoloration test: YI (initial) -46.3 -46.9 -46.1 -46.5 -46.2 -46.4 -46.9
Discoloration resistance test: YI (170 degrees Celsius, 8h later) 5.7 5.5 7.4 7.3 4.3 4.0 3.1
Polyamide molded article (2) Molding in air atmosphere Molding temperature (℃) - - - - - 315 310
Discoloration test: YI (initial) - - - - - -46.4 -46.9
Discoloration resistance test: YI (170 degrees Celsius, 8h later) - - - - - 9.2 8.1
표 2
- - 비교예
- - 1 2 3 4 5
단량체:다이카복실산 (mol%) 1,4-CHDA 100 100 - - 100
TPA - - 100 100 -
단량체:다이아민 (mol%) 1,10-DDA 70 100 - 100 -
1,11-UDDA - - - - 100
1,12-DDDA 30 - 100 - -
폴리아마이드 수지의 물성 Ⅳ(g/dL) 0.97 0.98 0.92 0.92 0.95
융점(℃) 317 336 297 320 306
폴리아마이드 성형체(1)N2 분위기 하에서의 성형 성형온도 (℃) 340 340 310 340 320
내변색 시험:YI(초기) -46.8 성형불가능 -19.2 3.2 -19.2
내변색 시험:YI(170℃, 8h후) 12.8 - 19.1 44.6 10.3
폴리아마이드 성형체(2)공기 분위기하에서의 성형 성형온도 (℃) - - 310 - -
내변색 시험:YI (초기) - - -17.8 - -
내변색 시험:YI(170℃, 8h후) - - 25.3 - -
TABLE 2
- - Comparative example
- - One 2 3 4 5
Monomer: Dicarboxylic acid (mol%) 1,4-CHDA 100 100 - - 100
TPA - - 100 100 -
Monomer: Diamine (mol%) 1,10-DDA 70 100 - 100 -
1,11-UDDA - - - - 100
1,12-DDDA 30 - 100 - -
Physical Properties of Polyamide Resin Ⅳ (g / dL) 0.97 0.98 0.92 0.92 0.95
Melting point (℃) 317 336 297 320 306
Polyamide molded article (1) Molding under N 2 atmosphere Molding temperature (℃) 340 340 310 340 320
Discoloration test: YI (initial) -46.8 Molding impossible -19.2 3.2 -19.2
Discoloration resistance test: YI (170 degrees Celsius, 8h later) 12.8 - 19.1 44.6 10.3
Polyamide molded article (2) Molding in air atmosphere Molding temperature (℃) - - 310 - -
Discoloration test: YI (initial) - - -17.8 - -
Discoloration resistance test: YI (170 degrees Celsius, 8h later) - - 25.3 - -
1,4-CHDA: 1,4-사이클로헥산다이카복실산1,4-CHDA: 1,4-cyclohexanedicarboxylic acid
TPA: 테레프탈산TPA: terephthalic acid
1,10-DDA: 1,10-데칸다이아민1,10-DDA: 1,10-decanediamine
1,11-UDDA: 1,11-운데칸다이아민1,11-UDDA: 1,11-undecandiamine
1,12-DDDA: 1,12-도데칸다이아민1,12-DDDA: 1,12-dodecanediamine
표 1에 나타낸 바와 같이, 다이카복실산으로서 1,4-사이클로헥산다이카복실산을 포함하고, 다이아민으로서 1,10-데칸다이아민과 1,12-도데칸다이아민을 약 10:90 내지 약 65:35(㏖비)으로 포함하는 단량체를 축중합시켜 이루어진 실시예 1 내지 7의 폴리아마이드 수지는, 융점이 낮고, 해당 폴리아마이드 수지를 성형해서 이루어진 성형체는, 높은 내열색상 안정성을 지니는 것을 나타내었다.As shown in Table 1, 1,4-cyclohexanedicarboxylic acid is included as the dicarboxylic acid, and 1,10-decanediamine and 1,12-dodecanediamine are used as the diamine from about 10:90 to about 65:35. The polyamide resins of Examples 1 to 7 obtained by condensation polymerization of a monomer containing (mol ratio) had a low melting point, and showed that a molded article formed by molding the polyamide resin had high heat-resistant color stability.
특히, 1,10-데칸다이아민과 1,12-도데칸다이아민을 약 30:70 내지 약 50:50(㏖비)으로 포함하는 실시예 1, 2, 5 내지 7은 융점이 약 305℃ 이하로 낮고, 특히 약 35:65 내지 약 45:55(㏖비)로 포함하는 실시예 5 내지 7은 융점이 약 300℃ 이하로 낮았다. 이것과 상관하여, 폴리아마이드 성형체(1)의 170℃, 8시간 후의 YI는, 실시예 1, 2, 5 내지 7에서는 약 5.7 이하, 실시예 5 내지 7에서는 약 4.3 이하로 되어, 내열색상 안정성이 보다 향상되는 것을 나타내었다.In particular, Examples 1, 2, and 5 to 7 containing 1,10-decanediamine and 1,12-dodecanediamine in a ratio of about 30:70 to about 50:50 (mol ratio) have a melting point of about 305 ° C or less. Low melting point, especially in the range of about 35:65 to about 45:55 (mol ratio), Examples 7-7 had a low melting point below about 300 ° C. Corresponding to this, the YI of the polyamide molded body 1 at 170 ° C for 8 hours is about 5.7 or less in Examples 1, 2, and 5 to 7 and about 4.3 or less in Examples 5 to 7, and thus, thermal color stability. It showed that it improves more than this.
또한, 폴리아마이드 성형체의 170℃, 8시간 후의 YI의 대비로부터, 비산화성 가스인 질소 분위기 하에서 성형을 행한 폴리아마이드 성형체(1) 쪽이, 대기 분위기에서 성형을 행한 폴리아마이드 성형체(2)보다도, 내열색상 안정성이 우수한 것을 나타내었다.Moreover, from the contrast of YI after 170 degreeC and 8 hours of a polyamide molded object, the polyamide molded object 1 shape | molded in the nitrogen atmosphere which is a non-oxidizing gas is more than the polyamide molded object 2 which shape | molded in air atmosphere, It was shown that the heat-resistant color stability is excellent.
한편, 표 2에 나타낸 바와 같이 단량체의 조성이 본 발명의 범위 외인 비교예 1 내지 5에서 얻어진 폴리아마이드 수지 및 성형체는, 소망의 성능(성형성, 내열색상 안정성)을 지니고 있지 않은 것을 알 수 있었다.On the other hand, as shown in Table 2, it was found that the polyamide resin and the molded article obtained in Comparative Examples 1 to 5 in which the composition of the monomer was outside the range of the present invention did not have desired performance (formability, heat-resistant color stability). .
이상의 결과로부터, 본 발명에 따르면, 폴리아마이드 성형체에 있어서, 높은 내열색상 안정성을 발휘시킬 수 있는, 폴리아마이드 수지를 제공할 수 있는 것을 알 수 있었다.From the above result, it turned out that according to this invention, the polyamide resin which can exhibit high heat-resistant color stability in a polyamide molded object can be provided.

Claims (8)

1,4-사이클로헥산다이카복실산; 및1,4-cyclohexanedicarboxylic acid; And
1,10-데칸다이아민 및 1,12-도데칸다이아민을 포함하는 단량체; 를 중축합시켜 이루어진 폴리아마이드 수지로서,Monomers comprising 1,10-decanediamine and 1,12-dodecanediamine; As a polyamide resin formed by polycondensation,
상기 1,10-데칸다이아민과 상기 1,12-도데칸다이아민의 ㏖비가 약 10:90 내지 약 65:35인 것인, 폴리아마이드 수지.And wherein the molar ratio of said 1,10-decanediamine to said 1,12-dodecanediamine is from about 10:90 to about 65:35.
제1항에 있어서, 상기 1,10-데칸다이아민과 상기 1,12-도데칸다이아민의 ㏖비가 약 30:70 내지 약 50:50인 것인 폴리아마이드 수지.The polyamide resin of claim 1 wherein the molar ratio of 1,10-decanediamine to 1,12-dodecanediamine is from about 30:70 to about 50:50.
제1항에 있어서, 상기 1,10-데칸다이아민과 상기 1,12-도데칸다이아민의 ㏖비가 약 35:65 내지 약 45:55인 것인, 폴리아마이드 수지.The polyamide resin of claim 1, wherein the molar ratio of the 1,10-decanediamine and the 1,12-dodecanediamine is about 35:65 to about 45:55.
제1항 내지 제3항 중 어느 한 항에 기재된 폴리아마이드 수지를, 약 320℃ 이하에서 성형하여 이루어진 것인, 폴리아마이드 성형체.The polyamide molded article formed by shape | molding the polyamide resin in any one of Claims 1-3 at about 320 degrees C or less.
제1항 내지 제3항 중 어느 한 항에 기재된 폴리아마이드 수지를, 비산화성 분위기 하, 약 320℃ 이하에서 성형하여 이루어진, 폴리아마이드 성형체.The polyamide molded article formed by shape | molding the polyamide resin in any one of Claims 1-3 at about 320 degrees C or less in non-oxidizing atmosphere.
제1항 내지 제3항 중 어느 한 항에 기재된 폴리아마이드 수지의 제조 방법으로서,As a manufacturing method of the polyamide resin as described in any one of Claims 1-3,
상기 단량체를 중축합시켜, 저차 축합물을 얻는 공정(1); 및Polycondensing the monomer to obtain a lower order condensate; And
상기 저차 축합물을 고상 중합시키는 공정(2)를 포함하는, 폴리아마이드 수지의 제조 방법.The manufacturing method of polyamide resin containing the process (2) of carrying out the solid state polymerization of the said lower order condensate.
제1항 내지 제3항 중 어느 한 항에 기재된 폴리아마이드 수지 또는 제6항에 기재된 제조 방법에 의해 얻어진 폴리아마이드 수지를, 약 320℃ 이하에서 성형하는 공정(3)을 포함하는, 폴리아마이드 성형체의 제조 방법.The polyamide molded object containing the process (3) which shape | molds the polyamide resin in any one of Claims 1-3, or the polyamide resin obtained by the manufacturing method of Claim 6 at about 320 degrees C or less. Method of preparation.
제7항에 있어서, 상기 공정(3)은 비산화성 분위기 하에 수행되는 것인, 폴리아마이드 성형체의 제조 방법.The method for producing a polyamide molded article according to claim 7, wherein the step (3) is performed under a non-oxidizing atmosphere.
PCT/KR2014/011141 2013-11-26 2014-11-19 Polyamide resin and polyamide molded body using same WO2015080425A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/037,501 US9796814B2 (en) 2013-11-26 2014-11-19 Polyamide resin and polyamide molded body using same
EP14866394.1A EP3075757B1 (en) 2013-11-26 2014-11-19 Polyamide resin and polyamide molded body using same
CN201480064818.8A CN105814115B (en) 2013-11-26 2014-11-19 Polyamide and use its polyamide molding body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-244007 2013-11-26
JP2013244007A JP6196892B2 (en) 2013-11-26 2013-11-26 Polyamide resin and polyamide molded body using the same
KR10-2014-0154772 2014-11-07
KR1020140154772A KR101827595B1 (en) 2013-11-26 2014-11-07 Polyamide resin and polyamide molded body using the same

Publications (1)

Publication Number Publication Date
WO2015080425A1 true WO2015080425A1 (en) 2015-06-04

Family

ID=53199327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011141 WO2015080425A1 (en) 2013-11-26 2014-11-19 Polyamide resin and polyamide molded body using same

Country Status (1)

Country Link
WO (1) WO2015080425A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796814B2 (en) 2013-11-26 2017-10-24 Lotte Advanced Materials Co., Ltd. Polyamide resin and polyamide molded body using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773558A (en) * 1995-02-01 1998-06-30 Ems-Inventa Ag Transparent, colorless, amorphous polyamides and molded articles
KR20040000326A (en) * 2002-06-21 2004-01-03 가부시키가이샤 구라레 Polyamide composition
KR20090021132A (en) * 2007-08-24 2009-02-27 이엠에스-패턴트 에이지 High-temperature polyamide molding compounds reinforced with flat glass fibers
KR20090123885A (en) * 2007-02-16 2009-12-02 아르끄마 프랑스 Copolyamide, composition containing such copolyamide and use thereof
WO2011027562A1 (en) 2009-09-07 2011-03-10 株式会社クラレ Reflector for led and light-emitting device equipped with same
KR20120040069A (en) * 2010-10-18 2012-04-26 제일모직주식회사 Polyamide resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773558A (en) * 1995-02-01 1998-06-30 Ems-Inventa Ag Transparent, colorless, amorphous polyamides and molded articles
KR20040000326A (en) * 2002-06-21 2004-01-03 가부시키가이샤 구라레 Polyamide composition
KR20090123885A (en) * 2007-02-16 2009-12-02 아르끄마 프랑스 Copolyamide, composition containing such copolyamide and use thereof
KR20090021132A (en) * 2007-08-24 2009-02-27 이엠에스-패턴트 에이지 High-temperature polyamide molding compounds reinforced with flat glass fibers
WO2011027562A1 (en) 2009-09-07 2011-03-10 株式会社クラレ Reflector for led and light-emitting device equipped with same
KR20120040069A (en) * 2010-10-18 2012-04-26 제일모직주식회사 Polyamide resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796814B2 (en) 2013-11-26 2017-10-24 Lotte Advanced Materials Co., Ltd. Polyamide resin and polyamide molded body using same

Similar Documents

Publication Publication Date Title
US8440756B2 (en) Flame-retardant polyamide resin composition
SG176237A1 (en) Polyamide resin
JP6130400B2 (en) Method for preparing halogen-free flame retardant polyamide composition
KR101827595B1 (en) Polyamide resin and polyamide molded body using the same
KR101903321B1 (en) Polyamide resin and method of producing the same
US20160304696A1 (en) Polyamide composition, molded article, reflective plate for led, and method for suppressing reduction in reflectance due to heat
JP6223154B2 (en) Polyamide resin and method for producing the same
WO2015080425A1 (en) Polyamide resin and polyamide molded body using same
KR101876604B1 (en) Polyamide resin, method for preparing the same, and article comprising the same
KR101674245B1 (en) Method of preparing polyamide
KR20160020493A (en) Method for the continuous production of an aliphatic or semi-aromatic polyamide oligomer
WO2020122170A1 (en) Semi-aromatic polyamide resin and method for manufacturing same
WO2014065594A1 (en) Polyamide production method
WO2019189145A1 (en) Semi-aromatic polyamide resin and method for manufacturing same
JP2015101675A (en) Polyamide molded body and method for manufacturing the same
JP2019011478A (en) Halogen-free flame-retardant polyamide composition and method of preparing the same, and application thereof
JP6385042B2 (en) Polyamide resin and method for producing the same
WO2015080426A1 (en) Polyamide molded body and method for manufacturing same
JP6279262B2 (en) Polyamide resin
JP6408637B2 (en) Method for preparing halogen-free flame retardant polyamide composition
JP6153717B2 (en) Polyamide resin and method for producing the same
WO2014084504A1 (en) Polyamide resin, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037501

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014866394

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866394

Country of ref document: EP