WO2015080408A1 - Device for measuring added resistance in waves - Google Patents

Device for measuring added resistance in waves Download PDF

Info

Publication number
WO2015080408A1
WO2015080408A1 PCT/KR2014/010900 KR2014010900W WO2015080408A1 WO 2015080408 A1 WO2015080408 A1 WO 2015080408A1 KR 2014010900 W KR2014010900 W KR 2014010900W WO 2015080408 A1 WO2015080408 A1 WO 2015080408A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
spring
connecting rod
moving part
moving
Prior art date
Application number
PCT/KR2014/010900
Other languages
French (fr)
Korean (ko)
Inventor
황승현
임근태
안해성
이영연
김철희
김명수
유윤규
이창용
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2015080408A1 publication Critical patent/WO2015080408A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/20Designing vessels; Predicting their performance using towing tanks or model basins for designing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a blue weighted resistance measurement device, and more specifically, to reduce the component of the primary wave power in the overall resistance in the blue wave so that the wave resistance can be measured by a dynamometer with an appropriate capacity. It is about a device that can improve the accuracy of the measurement of additional resistance.
  • IMA International Maritime Organization
  • EEDI Energy Efficiency Design Index
  • the force is the same as the dotted line in Fig. 1. This value is referred to as the “blue heavy resistance (E).”
  • the blue heavy resistance (E) is the wave encounter period. Having It contains the first wave force (D), which is a component of the simple harmonic form.
  • the time-averaged value (C) of the total wave resistance increases compared to the hydrostatic resistance (A), and this increased value is called the additional resistance (B) in the wave.
  • E A + B + D
  • C A + B.
  • the time-average value (C) of the total wave resistance in the wave is measured, and the measured hydrostatic resistance (A) is taken out to obtain the wave weighting resistance (B). You have to pay.
  • the wave weighting resistance (B) is a very difficult physical quantity to measure accurately because the order is usually one lower than that of the hydrostatic resistance (A).
  • the physical quantity to be subjected to the final measurement in the model test during the wave is the time average value (C) of the wave intensifier resistance, but it is inevitable to obtain the time average value (C) of the wave intensifier resistance.
  • the medium resistance (E) must be measured.
  • the blue heavy resistance (E) contains the primary wave force (D) and its magnitude is very large compared to the time average value (C) of the wave heavy resistance, which exceeds the measurement range of the dynamometer used for measurement.
  • the capacity of the dynamometer to overload or use may be excessively selected.
  • Dynamometer Linearity Specifications, such as dung are usually defined as the total capacity of the dynamometer, so using an overcapacity dynamometer can reduce measurement accuracy.
  • the present invention has been proposed to solve the above problems, and by reducing the component of the primary wave force in the total wave resistance, it is possible to measure the wave increase resistance by the dynamometer of the appropriate capacity as a result of the measurement of wave increase resistance
  • An object of the present invention is to provide a device capable of improving the degree of accuracy.
  • the moving unit is located in the tug and connected to the model ship and connecting rod to move back and forth according to the front and back shaking of the model ship;
  • a restraining part installed on the moving part to partially restrain the movement of the moving part;
  • It provides a wave weight resistance measurement device, including a dynamometer installed on the connecting rod for measuring the wave total resistance acting on the model ship.
  • the moving unit is characterized in that it comprises a moving wheel.
  • the restraint portion is characterized in that the spring is installed between the towing tank and the front end of the moving unit and the spring is installed between the rear end of the towing tank and the moving unit.
  • the first spring and the second spring is the size of the spring constant It features the same thing.
  • the first spring and the second spring is characterized in that to adjust the degree of partially restraining the movement of the moving part according to the size of the spring constant.
  • the model ship is provided with a driven rocking axis for freely allowing the driven rock of the model ship, characterized in that the connecting rod is connected to the model ship and the driven rocking axis.
  • the moving part is characterized in that it comprises a vertical swing allowable portion for freely allowing the vertical swing of the connecting rod according to the vertical swing of the model ship.
  • the connecting rods allow the upper and lower agitation section bar having a through-sphere shape formed in the moving portion, is characterized in that coupled to the moving part in the form that is inserted into the through-hole.
  • the present invention is connected to the connecting rod by pulling the connecting rod forward by its own weight to compensate for the amount of forward and backward equilibrium point of the moving part is pushed backward Equilibrium correction weight; further includes.
  • the restraining portion is characterized by reducing the amount of primary wave force measured by the dynamometer by partially restraining the movement of the moving portion.
  • the total wave resistance can be measured by a dynamometer with an appropriate capacity, and consequently, the degree of measurement of additional resistance in a wave can be improved.
  • FIG. 1 is a schematic illustration of a blue weighted resistance (regular wave situation).
  • FIG. 2 is a conceptual diagram of a wave addition resistance measurement apparatus according to the present invention.
  • Vibration system consisting of a model line, a moving part, a spring according to the present invention.
  • FIG. 2 is a conceptual diagram of a wave weighted resistance measurement apparatus according to the present invention.
  • the present invention reduces the components of the primary wave force (D) in the blue medium resistance (E) so that the wave medium resistance (E) can be measured by the dynamometer 30 with an appropriate capacity.
  • the moving unit 10 is located on the towing tank 70. Since the moving part 10 is connected to the model ship 60 and the connecting rod 40 under the towing tank 70, the moving part 10 moves back and forth on the towing tank 70 according to the back and forth shaking of the model ship 60 during the model test. . At this time, the moving part 10 is provided with the moving wheel 11, and the back and forth movement of the model ship 60 is added to the movement (back and forth movement) of the moving part 10. To be reflected without.
  • the dynamometer 30 is installed on the connecting rod 40 to measure the wave heavy electric resistance (E) acting on the model ship 60.
  • the moving part 10 is provided with a restraining part which partially restrains the movement of the moving part 10.
  • the reason for partially restraining the movement of the moving part 10 is to reduce the amount of primary wave force (D) measured in the dynamometer (30).
  • 'partially restrained' means that the moving part 10 is not completely restrained from being moved at all, but the restraint is made to the moving part 10 to allow a certain degree of movement.
  • the dynamometer 30 reduces the amount of primary wave force D at all.
  • the complete wave resistance (E) is measured. That is, the dynamometer 30 will measure all the wave intermediate resistances E which act on the model line 60 as they are. However, it is not possible to achieve the object of the present invention.
  • the model line 60 is free to move according to the blue, and as a result, the dynamometer 30 does not measure any value related to the total wave resistance E. . This is also contrary to the essential object of the present invention, which is to measure the wave middle resistance (E).
  • the preferred form of this restraint is the rear end of the first spring 21 and the towing tank 70 and the moving part 10, which are installed between the front end of the towing tank 70 and the moving part 10, as shown in FIG.
  • the second spring 22 which is installed in between is interlocked.
  • the first spring 21 and the second spring 22 generate a restoring force in pairs as the moving part 10 moves forward or backward.
  • the term 'restoring force is generated in pairs' means that if the compressive force is generated in the first spring 21 as the moving part 10 moves forward or backward, a tension force is generated in the second spring 22 (or vice versa). Of course, it occurs as well) means that this phenomenon is repeated repeatedly.
  • the compressive and tensile forces are opposite in direction but their magnitude is the same.
  • the first spring 21 and the second spring 22 is the same as the size of the spring constant, and according to the size of the spring constant to adjust the degree of partially restraining the movement of the moving part (10).
  • the mid-wave pitch and the heavy shaking of the model ship 60 should be allowed freely.
  • the driven rocking axis 61 is freely installed on the model ship 60 to allow the driven rock of the model ship 60, and the connecting rod 40 is model ship 60 as shown in FIG. ) And driven yaw axis (61).
  • the model ship 60 is free to follow the rotation while rotating about the driven rocking axis 61 of the blue in the state connected to the connecting rod (40).
  • the present invention is provided with a vertical movement allowable part in the moving part 10 to allow the vertical movement of the connecting rod 40 freely according to the vertical movement of the model ship 60
  • the vertical movement allowable part is for example a moving part ( 10) may be formed in the form of a through hole (not shown), in which case the connecting rod 40 is coupled to the moving part 10 in a form inserted into the through hole.
  • the diameter of the through hole is larger than the diameter of the cross section of the connecting rod 40.
  • the present invention further comprises a counterweight 50.
  • the counterweight 50 is connected to the connecting rod 40 by means of a string 51 and a pulley 52, and pulls the connecting rod 40 forward by its own weight so that the equilibrium oscillation equilibrium point of the moving part 10 is rearward. To compensate for the amount pushed to. In FIG. 2, when the model ship 60 moves forward in the bow regular wave situation, the model ship 60 is pushed by the blue, and thus the forward and backward equilibrium point of the moving unit 10 is pushed backward.
  • the model line 60 indicates that the equilibrium point of the force is equal to the time average value C of the wave neutral resistance of the spring constant of the first spring 21 and the second spring 22.
  • the primary wave force (D) is not measured by the dynamometer (30) because it is pushed in the opposite direction of the towing direction by the sum of the amount of eyes and shaken by the encounter period as if it is not restrained in the front-rear direction.
  • the primary wave force (D) acting on the model ship 60 are all transmitted to the dynamometer (30).
  • the natural period of the vibration system may be similar to the encounter period.
  • the primary wave force (D) acting on the model ship 60 is amplified and transmitted to the dynamometer 30.
  • the sum of the spring constants of the first spring 21 and the second spring 22 is k
  • the mass of the model line 60 is m
  • the amount of back and forth shaking (movement distance of the moving part 10) is It is represented by X. More detailed description of the above is as follows.
  • the model line 60 moves forward in the bow regular wave state as shown in FIG. 2, considering the external force acting on the model line 60, the forward and backward movement equations of the model line 60 may be counted as shown in Equation 1 below. have.
  • X ⁇ X F MEAS ⁇ F CALM ⁇ ⁇ F WAVE
  • F MEAS represents the force transmitted from the dynamometer 30
  • F CALM represents the resistance in the constant
  • FWAVE represents the wave force.
  • m is the mass of the model line 60
  • X represents the amount of back-and-back shaking (moving distance of the moving part 10). At this time, the mass of the moving part 10, the dynamometer 30, the connecting rod 40, and the like was very small compared to the mass of the model line 60, and thus was ignored.
  • the wave force (F WAVE ) can be modeled as the wave radiation force (F RAD ) and the forcing force (F WE ) by the hull motion, and the increase in wave augmentation resistance (F AW ) acting irrespective of time.
  • the hydrostatic resistance (A) of FIG. 1 is the hydrostatic resistance (F CALM ) of Equation 1 ⁇
  • the wave addition resistance (B) is the increase in cyanosis resistance (F AW )
  • the primary wave force (D) is the radiation radiation force (FRAD) It is the sum of and the forcing force (F WE ).
  • Equation 2 the physical quantity for the purpose of measuring in the present invention is the sum of the last two terms, but the other terms are inevitably measured. However, the sum of the previous three terms in [Equation 2] can be changed according to the response of the postwar fluctuations. If the elasticity of the dynamometer 30 is ignored, the force F MEAS transmitted from the dynamometer 30 can be replaced with-kx in [Equation 2], so that [Equation 2] can be expressed as [Equation 3] below.
  • m " x + c ' x + kx ⁇ Fosinco e t + F C ALM + F aw [Equation 3] where k is the sum of the spring constants of the first spring (21) and the second spring (22).
  • Force can be measured indirectly through the sum of the amount of phase fluctuation (X) and the spring constant (k) of the first and second springs (21) and (22). An error may occur because the position of the equilibrium point at the assumption is changed within the range of the static friction force acting on the moving part 10 within a range larger than the restoring force of the spring.
  • Equation 3 m 'means the sum of the mass (m) of the model line 60 and the added mass (m x ) in the front and rear swing directions. Considering the forward and backward equilibrium equilibrium, F CALM and F AW can be ignored in Equation 3 Then, the steady-state solution of [Equation 3] is easily obtained as in [Equation 4] and [Equation 5] below.
  • x (t) X '[(k-m'a> 2 e ) sm (a-m e cosm] [Equation 4]
  • Equation 4 the damping coefficient (c) is related to the increase in resistance due to back and forth fluctuations, the magnitude of which is m '(the mass of the model line 60 (m) is very small compared to the sum of m x ) / and in model tests, the angle of encounter with waves ( ⁇ ⁇ ) is usually greater than one. Therefore, the relationship of cto e «m'fl) e 2 is established. Then let only k ⁇ m'ffi e 2 be satisfied. When the sum of the spring constants (k) is determined, Equation 4 can be written as Equation 6 below.
  • Equation 6 Equation 6
  • the forward-backward direction addition mass (m x ) can be very small compared to the mass (m) of the model ship 60 (m'm), so that k / mcD e 2 is less than about 1/10. It is appropriate to determine the sum of the spring constant (k). This means that the angular frequency ⁇ of the vibration system consisting of the model line 60 and the springs 21 and 22 is about one third of the coercive frequency COe.
  • the steady state solution which is the case of forced vibration, was considered. In the actual model test process, components of free vibration may remain.
  • the free vibration is repeated in the natural period (2 ⁇ ⁇ ⁇ /)
  • the natural period can be excessive.
  • the excessive natural period is a low frequency vibration in the time history of the resistance measurement value. It is possible to bias the time-averaged value (C) of the total wave resistance in C.
  • the spring constant is such that the data measurement time is an integer multiple of the natural period. a must be determined, that is, the sum (k) of the spring constant in the present invention shall be determined by the lower limit so that the natural frequency and the data acquisition time is the same, or the data acquisition time and the integer times of the oil cycle.
  • irregular waves can be expressed as a linear combination of regular waves, and thus the present invention can be used even among irregular waves.
  • 4 is a graph showing the effects of the present invention, when the present invention is used compared to the value E1 of the wave-dielectric resistance measured by the dynamometer 30 when the present invention is not used. As shown by the present invention, the value (E2) of the wave intensifier is considerably reduced. According to the present invention, the wave intermediate resistance (FIG. 1, E) can be measured by the dynamometer 30 having an appropriate capacity. 1, B) when improving the degree of measurement It can be seen that.
  • the total wave resistance in evaluating the performance of a ship in a wave through a model test, can be measured with a dynamometer having an appropriate capacity, and as a result, the degree of measurement of the wave additional resistance can be improved. It is a technology that can be widely used in shipbuilding and marine industry to realize its practical and economic value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

The purpose of the present invention is to provide a device which can, with respect to performance evaluation of a ship in waves by means of a model test, reduce the component of primary wave power in the total resistance in waves and measure the total resistance in waves by means of a dynamometer that has appropriate capacity, and thus can consequently have improved measurement accuracy of additional resistance in waves. In order to attain the purpose, the present invention provides a device for measuring added resistance in waves, the device comprising: a moving unit which is disposed on a towing carriage, is connected to a model ship by means of a connecting rod, and moves forward and backward according to the forward and backward oscillation of the model ship; a restraining unit which is provided on the moving unit and partially restrains the movement of the moving unit; and a dynamometer which is provided on the connecting rod and measures the total resistance in waves applied to the model ship.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
파랑중부가저항계측장치  Wave weighted resistance measuring device
【기술분야】 Technical Field
본발명은파랑중부가저항 계측 장치에관한것으로,보다구체적으로는,파랑중 전체저항에서 1차파력의 성분을 감소시켜 적절한 용량의 동력계로 파랑증전체저항 을 계측할 수 있도록 함으로써 결과적으로 파랑증부가저항 계측의 정도를 향상시킬 수 있는장치에관한것이다.  The present invention relates to a blue weighted resistance measurement device, and more specifically, to reduce the component of the primary wave power in the overall resistance in the blue wave so that the wave resistance can be measured by a dynamometer with an appropriate capacity. It is about a device that can improve the accuracy of the measurement of additional resistance.
【배경기술】 Background Art
최근 국제해사기구 (International Maritime Organization, IM아에서는 선박이 배출하는 온실가스를 규제하기 위해 2013년도부터 새롭게 건조되는 선박에 대해 에 너지효을설계지수 (Energy Efficiency Design Index, EEDI)를 도입하였다. 이와 같이 선박의 에너지 효율을 증가시키기 위한 관심이 증대됨에 따라 정수 증이 아닌 파랑 중에서도선박의 에너지 효율을정량화하고평가하는기술이 요구되고 있다. 선박이 선수 규칙파 상황에서 전진할 때 선체에 순간적으로 작용하는 힘은 도 1에서의 점선과 같으며 이 값을 '파랑중전체저항 (E)'이라고 부르기로 한다. 정수 증과는 달리, 파랑중전체저항 (E)은 파와의 만남주기 (wave encounter period)를 갖는 단순조화 (simple harmonic) 형태의 성분인 1차파력 (D)을 포함한다. 한편 파랑중전체 저항의시간평균값 (C)은 정수증저항 (A)에 비해 증가하며, 이처럼 증가한 값을 파랑중 부가저항 (B)이라고부른다. 이를도식적으로표현하면, E=A+B+D, C=A+B가된다. 한편, 파랑 중 선박의 성능을 모형시험을 통해 평가하기 위해서는 파랑 중에 서 파랑중전체저항의시간평균값 (C)을계측하고 미리 계측한 정수중저항 (A)을 빼내어 파랑중부가저항 (B)을 얻어내야 한다. 파랑중부가저항 (B)은 보통 정수중저항 (A)에 비 해 차수 (order)가 하나낮기 때문에 정확하게 계측하기가 상당히 까다로운 물리량이 다. 파랑중부가저항 (B)을 얻기 위해 파랑 중 모형시험에서 최종 계측의 대상이 되는 물리량은 파랑증전체저항의시간평균값 (C)이지만 파랑증전체저항의시간평균값 (C)을구하기 위해서는불가피하게 파랑중전체저항 (E)을계측해야만 한다. 하지만 파 랑중전체저항 (E)에는 1차파력 (D)이 포함되어 있고 그 크기가 파랑중전체저항의시간 평균값 (C)에 비해 매우 커서, 계측에 사용되는 동력계의 계측범위가 초과되어 장치 에 무리를 주거나또는 사용하는 동력계의 용량이 과도하게 선정될 수 있다. 동력계 의 선형성 (linearity) 둥과 같은 제원은 보통 동력계의 전체 용량으로 정의되므로 과 도한용량의 동력계 사용은계측의 정확도를 떨어뜨릴 수 있다. Recently, the International Maritime Organization (IMA) introduced the Energy Efficiency Design Index (EEDI) for newly constructed vessels in 2013 to regulate greenhouse gases emitted by vessels. As interest in increasing the energy efficiency of ships has increased, there is a need for a technique for quantifying and evaluating the energy efficiency of ships, even in the waves, not water purification. The force is the same as the dotted line in Fig. 1. This value is referred to as the “blue heavy resistance (E).” Unlike the hydrostatic increase, the blue heavy resistance (E) is the wave encounter period. Having It contains the first wave force (D), which is a component of the simple harmonic form. On the other hand, the time-averaged value (C) of the total wave resistance increases compared to the hydrostatic resistance (A), and this increased value is called the additional resistance (B) in the wave. Schematically, this is E = A + B + D, C = A + B. On the other hand, in order to evaluate the performance of the ship in the wave through the model test, the time-average value (C) of the total wave resistance in the wave is measured, and the measured hydrostatic resistance (A) is taken out to obtain the wave weighting resistance (B). You have to pay. The wave weighting resistance (B) is a very difficult physical quantity to measure accurately because the order is usually one lower than that of the hydrostatic resistance (A). In order to obtain the wave weighting resistance (B), the physical quantity to be subjected to the final measurement in the model test during the wave is the time average value (C) of the wave intensifier resistance, but it is inevitable to obtain the time average value (C) of the wave intensifier resistance. The medium resistance (E) must be measured. However, the blue heavy resistance (E) contains the primary wave force (D) and its magnitude is very large compared to the time average value (C) of the wave heavy resistance, which exceeds the measurement range of the dynamometer used for measurement. The capacity of the dynamometer to overload or use may be excessively selected. Dynamometer Linearity Specifications, such as dung, are usually defined as the total capacity of the dynamometer, so using an overcapacity dynamometer can reduce measurement accuracy.
【발명의 상세한설명】 【기술적과제】 Detailed Description of the Invention Technical task
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 파랑중전체 저항에서 1차파력의 성분을 감소시켜 적절한 용량의 동력계로 파랑증전체저항을 계 측할 수 있도록 함으로써 결과적으로 파랑증부가저항 계측의 정도를 향상시킬 수 있는 장치를 제공하는 것을 목적으로 한다.  The present invention has been proposed to solve the above problems, and by reducing the component of the primary wave force in the total wave resistance, it is possible to measure the wave increase resistance by the dynamometer of the appropriate capacity as a result of the measurement of wave increase resistance An object of the present invention is to provide a device capable of improving the degree of accuracy.
【기술적 해결방법】 Technical Solution
상기한 목적을 달성하기 위하여 본 발명은, 예인전차에 위치하며 모형선과 연결봉으로 연결되어 상기 모형선의 전후동요에 따라 전후로 이동하는 이동부; 상기 이동부에 설치되어 상기 이동부의 이동을 부분적으로 구속하는 구속부 및; 상기 연 결봉에 설치되어 상기 모형선에 작용하는 파랑증전체저항을 계측하는 동력계;를 포 함하는, 파랑중부가저항 계측 장치를 제공한다. 본 발명에 있어서, 상기 이동부는 이동바퀴를 구비하는 것을 특징으로 한다. 본 발명에 있어서, 상기 구속부는 상기 예인전차와 상기 이동부의 전단 사이 에 설치되는 게 1스프링과 상기 예인전차와 상기 이동부의 후단 사이에 설치되는 제 스프링이 연동하는 형태를 갖는 것을 특징으로 한다. 본 발명에 있어서, 상기 제 1스프링과 상기 제 2스프링은 스프링상수의 크기가 동일한것을특징으로한다. 본 발명에 있어서, 상기 제 1스프링과 상기 제 2스프링은 스프링상수의 크기에 따라 상기 이동부의 이동을 부분적으로 구속하는 정도를 조절하는 것을 특징으로 한다. 본 발명에 있어서, 상기 모형선은 상기 모형선의 종동요를 자유롭게 허용하 는 종동요회전축을 구비하는바, 상기 연결봉은 상기 모형선과 상기 종동요회전축으 로 연결되는것을특징으로 한다. 본 발명에 있어서, 상기 이동부는 상기 모형선의 상하동요에 따른 상기 연결 봉의 상하동요를 자유롭게 허용하는 상하동요허용부를 구비하는 것을 특징으로 한 다. 본 발명에 있어서, 상기 상하동요허용부는 상기 이동,부에 형성되는 관통구의 형태를 갖는바, 상기 연결봉은 상기 관통구에 삽입되는 형태로 상기 이동부와 결합 하는것을특징으로한다. 본 발명은, 상기 연결봉에 연결되어 자중에 의해 상기 연결봉을 전방으로 잡 아당김으로써 상기 이동부의 전후동요 평형점이 후방으로 밀리는 양을 보상해 주는 평형보정추;를 더 포함한다. 본 발명에 있어서, 상기 구속부는 상기 이동부의 이동을 부분적으로 구속함 으로써 상기 동력계에서 계측되는 1차파력의 양을감소시키는것을특징으로한다. 【유리한효과】 In order to achieve the above object, the present invention, the moving unit is located in the tug and connected to the model ship and connecting rod to move back and forth according to the front and back shaking of the model ship; A restraining part installed on the moving part to partially restrain the movement of the moving part; It provides a wave weight resistance measurement device, including a dynamometer installed on the connecting rod for measuring the wave total resistance acting on the model ship. In the present invention, the moving unit is characterized in that it comprises a moving wheel. In the present invention, the restraint portion is characterized in that the spring is installed between the towing tank and the front end of the moving unit and the spring is installed between the rear end of the towing tank and the moving unit. In the present invention, the first spring and the second spring is the size of the spring constant It features the same thing. In the present invention, the first spring and the second spring is characterized in that to adjust the degree of partially restraining the movement of the moving part according to the size of the spring constant. In the present invention, the model ship is provided with a driven rocking axis for freely allowing the driven rock of the model ship, characterized in that the connecting rod is connected to the model ship and the driven rocking axis. In the present invention, the moving part is characterized in that it comprises a vertical swing allowable portion for freely allowing the vertical swing of the connecting rod according to the vertical swing of the model ship. In the present invention, the connecting rods allow the upper and lower agitation section bar having a through-sphere shape formed in the moving portion, is characterized in that coupled to the moving part in the form that is inserted into the through-hole. The present invention is connected to the connecting rod by pulling the connecting rod forward by its own weight to compensate for the amount of forward and backward equilibrium point of the moving part is pushed backward Equilibrium correction weight; further includes. In the present invention, the restraining portion is characterized by reducing the amount of primary wave force measured by the dynamometer by partially restraining the movement of the moving portion. Advantageous Effects
본 발명에 따르면, 파랑 중 선박의 성능을 모형시험을 통해 평가함에 있어서 적절한 용량의 동력계로 파랑중전체저항을 계측할 수 있으므로 결과적으로 파랑중 부가저항계측의 정도를향상시킬 수 있다.  According to the present invention, in evaluating the performance of a ship in a wave through a model test, the total wave resistance can be measured by a dynamometer with an appropriate capacity, and consequently, the degree of measurement of additional resistance in a wave can be improved.
【도면의 간단한설명】 【Brief Description of Drawings】
도 1은파랑중부가저항에 대한도식적인 설명 (규칙파상황).  1 is a schematic illustration of a blue weighted resistance (regular wave situation).
도 2는본 발명에 따른 파랑증부가저항계측장치의 개념도.  2 is a conceptual diagram of a wave addition resistance measurement apparatus according to the present invention.
도 :은본발명에 따른모형선, 이동부, 스프링으로구성된 진동계.  Figure: Vibration system consisting of a model line, a moving part, a spring according to the present invention.
도 4는본 발명의 효과를 보여주는그래프.  4 is a graph showing the effect of the present invention.
<부호의 설명 >  <Description of the sign>
10: 이동부 Π : 이동바퀴  10 : moving part Π : moving wheel
21 : 제 1스프링 22: 계 2스프링  21: First spring 22: Total 2 spring
30: 동력계 40: 연결봉  30: dynamometer 40: connecting rod
50: 평형보정추 51 : 끈 52: 도르래 60: 모형선 50 : Balance correction weight 51 : String 52: pulley 60: model ship
61: 종동요희전축 70 예인전차  61 : Jongdong Yo-hee Axis 70 Towing Tank
【발명의 실시를위한최선의 형태】 [Best Mode for Implementation of the Invention]
이하, 첨부된 도면들을 참조하여 본 발명에 대하여 상세히 설명한다. 본 발명 을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고판단되는경우에는그상세한설명은생략한다. 도 2는본발명에 따른 파랑중부가저항계측장치의 개념도이다. 본 발명은파랑중전체저항 (E)에서 1차파력 (D)의 성분을감소시켜 적절한용량 의 동력계 (30)로 파랑중전체저항 (E)을계측할 수 있도록함으로써 결과적으로 파랑중 부가저항 (B) 계측의 정도를 향상시킬 수 있는 장치를 제공하는 것을 목적으로 하는 바, 이러한 목적을 달성하기 위한 본 발명은, 이동부 (10), 구속부, 동력계 (30)를 포함 하여 이루어진다 (도 2). 이동부 (10)는 예인전차 (70) 상에 위치한다. 이동부 (10)는 예인전차 (70) 아래의 모형선 (60)과 연결봉 (40)으로 연결되어 있으므로 모형시험 중 모형선 (60)의 전후동요 에 따라 예인전차 (70) 상에서 전후로 이동하게 된다. 이 때 이동부 (10)는 이동바퀴 (11)를 구비함으로써 모형선 (60)의 전후동요가 이동부 (10)의 이동 (전후동요)에 가감 없이 반영될 수 있도록한다. 동력계 (30)는 연결봉 (40)에 설치되어 모형선 (60)에 작용하는 파랑중전체저항 (E)을 계측한다. 한편, 이동부 (10)에는 이동부 (10)의 이동을 부분적으로 구속하는 구속부를 설 치한다. 이처럼 이동부 (10)의 이동을 부분적으로 구속하는 이유는 동력계 (30)에서 계 측되는 1차파력 (D)의 양을 감소시키기 위함이다. 여기서, '부분적으로 구속한다' 함 은 이동부 (10)가 전혀 이동을 하지 못하도록 완전히 구속하는 것이 아니라 어느 정 도까지의 이동은가능할수 있도록여지를두고이동부 (10)를구속함을 의미한다. 만약 이동부 (10)를 완전히 구속한다면 이동부 (10)와 연결된 모형선 (60)이 파랑 중 전혀 전후동요를 하지 않게 되며 그 결과 동력계 (30)는 1차파력 (D)의 양이 전혀 감소되지 않은완전한값의 파랑증전체저항 (E)을계측하게 된다. 즉, 동력계 (30)는모 형선 (60)에 작용하는 파랑중전체저항 (E)을 그대로 전부 계측하게 되는 것이다. 하지 만 이래서는 본 발명의 목적을 달성할 수가 없다. 만약 이와는 반대로 이동부 (10)를 전혀 구속하지 않는다면 모형선 (60)이 파랑에 따라 자유롭게 움직이는 결과가 되며 그 결과 동력계 (30)는 파랑중전체저항 (E)과 관련한 어떠한 값도 계측하지 않게 된다. 이 또한 파랑중전체저항 (E)을 계측해야 하는 본 발명의 본질적 목적에 반하는 것이 다. 이러한 구속부의 바람직한 형태는 도 2에서 보는 것과 같이 예인전차 (70)와 이동부 (10)의 전단 사이에 설치되는 제 1스프링 (21)과 예인전차 (70)와 이동부 (10)의 후 단 사이에 설치되는제 2스프링 (22)이 연동하는 것이다. 이 경우 제 1스프링 (21)과 제 2 스프링 (22)은 이동부 (10)가 전방 또는 후방으로 이동 (전후동요)함에 따라 복원력이 쌍으로 발생한다. 여기서, '복원력이 쌍으로 발생한다' 함은 이동부 (10)가 전방 또는 후방으로 이동함에 따라 제 1스프링 (21)에서 압축력이 발생하였다면 제 2스프링 (22)에 서는 인장력이 발생 (그 반대의 경우도 물론 발생함)하며 이러한 현상이 교차적으로 반복됨을 의미한다. 물론 이 경우 압축력과 인장력은 방향은 서로 반대이지만 그 크 기는 서로 같다. 한편, 제 1스프링 (21)과 제 2스프링 (22)은 스프링상수의 크기가 서로 동일하며, 스프링상수의 크기에 따라 이동부 (10)의 이동을부분적으로 구속하는정도 를적절히 조절한다. 한편, 이동부 (10)의 전후동요가 부분적으로 구속되는 것과는 별개로, 모형선 (60)의 파랑중종동요 (pitch)와상하동요 (heave)는자유롭게 허용되어야한다. 이를위하여 본 발명은 모형선 (60)의 종동요를자유롭게 허용하는종동요회전 축 (61)을 모형선 (60)에 설치하였는바, 연결봉 (40)은 도 2에서 보는 것과 같이 모형선 (60)과 종동요희전축 (61)으로 연결된다. 따라서 모형선 (60)은 연결봉 (40)에 연결된 상 태에서 파랑 중 종동요회전축 (61)을 중심으로 회전하면서 자유롭게 종동요를 하게 된다. 또한본 발명은 모형선 (60)의 상하동요에 따른 연결봉 (40)의 상하동요를 자유 롭게 허용하는상하동요허용부를 이동부 (10)에 구비하였는바,상하동요허용부는 예를 들면 이동부 (10)에 관통구 (미도시)의 형태로 형성될 수 있으며, 이 때 연결봉 (40)은 상기 관통구에 삽입되는 형태로 이동부 (10)와결합한다. 물론 이 경우 관통구의 직경 은 연결봉 (40)의 단면부 직경보다 크다. 따라서 연결봉 (40)은 관통구를 통하여 상하 동요를 할수 있으며 이에 따라모형선 (60)은 연결봉 (40)에 연결된 상태에서 파랑증 자유롭게 상하동요를하게 된다. 한편, 본 발명은 평형보정추 (50)를 더 포함한다. 평형보정추 (50)는 끈 (51)과도 르래 (52) 등으로 연결봉 (40)에 연결되어 자중에 의해 연결봉 (40)을 전방으로 잡아당 김으로써 이동부 (10)의 전후동요 평형점이 후방으로 밀리는 양을 보상해 주는 역할 을 한다. 도 2에서, 모형선 (60)이 선수 규칙파 상황에서 전진하다 보면 모형선 (60)이 파랑에 밀려 이에 따라 이동부 (10)의 전후동요 평형점이 후방으로 밀리는 현상이 나 타나는데, 이 경우 미리 예상되는 파랑중전체저항의시간평균값 (C)과 유사한 크기의 무게를 갖는 평형보정추 (50)를 설치하면 이동부 (10)의 전후동요 평형점을 원하는 위 치로유지시킬 수 있다. 이하에서는, 본 발명에 따라 동력계 (30)에 전달 (동력계 (30)에서 계측)되는 1차 파력 (D)이 감소하는 원리에 대하여 상세하게 설명한다. 본 발명에서, 동력계 (30)에 전달되는 1차파력 (D)이 감소하는 원리는 제 1스프 링 (21)과 제 2스프링 (22)의 스프링상수가 매우 작을 때를 생각하면 쉽게 알 수 있다. 스프링상수가 0에 가까운 작은 값을 가질 때, 모형선 (60)은 힘의 평형점이 파랑중전 체저항의시간평균값 (C)을 제 1스프링 (21)과 제 2스프링 (22)의 스프링상수의 합으로 나 눈 양만큼 예인방향의 반대로 밀리고 전후방향으로는 구속되지 않은 것처럼 만남주 기로흔들리므로 1차파력 (D)은동력계 (30)에서 계측되지 않는다. 반면 스프링상수가 매우 커지는 경우를 고려하면, 이동부 (10)가 완전히 구속 되어 모형선 (60)에 작용하는 1차파력 (D)이 동력계 (30)에 모두 전달된다. 만약 모형선 (60), 이동부 (10), 제 1스프링 (21) 및 제 2스프링 (22)을 도 3과 같은 진동계 (vibration system)로 고려하면 , 이 진동계의 고유주기가 만남주기와 비슷할때 모형선 (60)에 작 용하는 1차파력 (D)이 증폭되어 동력계 (30)에 전달된다. 도 3에서 제 1스프링 (21)과 제 2스프링 (22)의 스프욍상수의 합은 k, 모형선 (60)의 질량은 m, 전후동요의 양 (이동부 (10)의 이동거리)은 X로 나타내었다. 상기 내용을 더욱 자세히 설명하면 다음과 같다. 도 2와 같이 모형선 (60)이 선수 규칙파 상황에서 전진하는 경우 모형선 (60)에 작용하는 외력을 고려하면 모형 선 (60)의 전후동요운동방정식은 아래 [식 1]과같이 세을수 있다. Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention. In describing the present invention, if it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted. 2 is a conceptual diagram of a wave weighted resistance measurement apparatus according to the present invention. The present invention reduces the components of the primary wave force (D) in the blue medium resistance (E) so that the wave medium resistance (E) can be measured by the dynamometer 30 with an appropriate capacity. B) It is an object of the present invention to provide an apparatus capable of improving the degree of measurement, and the present invention for achieving this object includes a moving part 10, a restraining part, and a dynamometer 30 (Fig. 2). ). The moving unit 10 is located on the towing tank 70. Since the moving part 10 is connected to the model ship 60 and the connecting rod 40 under the towing tank 70, the moving part 10 moves back and forth on the towing tank 70 according to the back and forth shaking of the model ship 60 during the model test. . At this time, the moving part 10 is provided with the moving wheel 11, and the back and forth movement of the model ship 60 is added to the movement (back and forth movement) of the moving part 10. To be reflected without. The dynamometer 30 is installed on the connecting rod 40 to measure the wave heavy electric resistance (E) acting on the model ship 60. On the other hand, the moving part 10 is provided with a restraining part which partially restrains the movement of the moving part 10. The reason for partially restraining the movement of the moving part 10 is to reduce the amount of primary wave force (D) measured in the dynamometer (30). Here, 'partially restrained' means that the moving part 10 is not completely restrained from being moved at all, but the restraint is made to the moving part 10 to allow a certain degree of movement. If the moving part 10 is completely restrained, the model line 60 connected to the moving part 10 does not oscillate at all in the blue, and as a result, the dynamometer 30 reduces the amount of primary wave force D at all. The complete wave resistance (E) is measured. That is, the dynamometer 30 will measure all the wave intermediate resistances E which act on the model line 60 as they are. However, it is not possible to achieve the object of the present invention. On the contrary, if the moving part 10 is not restrained at all, the model line 60 is free to move according to the blue, and as a result, the dynamometer 30 does not measure any value related to the total wave resistance E. . This is also contrary to the essential object of the present invention, which is to measure the wave middle resistance (E). The preferred form of this restraint is the rear end of the first spring 21 and the towing tank 70 and the moving part 10, which are installed between the front end of the towing tank 70 and the moving part 10, as shown in FIG. The second spring 22 which is installed in between is interlocked. In this case, the first spring 21 and the second spring 22 generate a restoring force in pairs as the moving part 10 moves forward or backward. Here, the term 'restoring force is generated in pairs' means that if the compressive force is generated in the first spring 21 as the moving part 10 moves forward or backward, a tension force is generated in the second spring 22 (or vice versa). Of course, it occurs as well) means that this phenomenon is repeated repeatedly. Of course, in this case, the compressive and tensile forces are opposite in direction but their magnitude is the same. On the other hand, the first spring 21 and the second spring 22 is the same as the size of the spring constant, and according to the size of the spring constant to adjust the degree of partially restraining the movement of the moving part (10). On the other hand, apart from the back and forth shaking of the moving part 10 being partially constrained, the mid-wave pitch and the heavy shaking of the model ship 60 should be allowed freely. To this end, in the present invention, the driven rocking axis 61 is freely installed on the model ship 60 to allow the driven rock of the model ship 60, and the connecting rod 40 is model ship 60 as shown in FIG. ) And driven yaw axis (61). Therefore, the model ship 60 is free to follow the rotation while rotating about the driven rocking axis 61 of the blue in the state connected to the connecting rod (40). In addition, the present invention is provided with a vertical movement allowable part in the moving part 10 to allow the vertical movement of the connecting rod 40 freely according to the vertical movement of the model ship 60, the vertical movement allowable part is for example a moving part ( 10) may be formed in the form of a through hole (not shown), in which case the connecting rod 40 is coupled to the moving part 10 in a form inserted into the through hole. In this case, of course, the diameter of the through hole is larger than the diameter of the cross section of the connecting rod 40. Therefore, the connecting rod 40 can shake up and down through the through hole, and thus the model line 60 freely swings up and down in the state connected to the connecting rod 40. On the other hand, the present invention further comprises a counterweight 50. The counterweight 50 is connected to the connecting rod 40 by means of a string 51 and a pulley 52, and pulls the connecting rod 40 forward by its own weight so that the equilibrium oscillation equilibrium point of the moving part 10 is rearward. To compensate for the amount pushed to. In FIG. 2, when the model ship 60 moves forward in the bow regular wave situation, the model ship 60 is pushed by the blue, and thus the forward and backward equilibrium point of the moving unit 10 is pushed backward. By installing a balance correction weight 50 having a weight similar to the time average value (C) of the anticipated total wave resistance in advance, it is possible to keep the balance point of the front and back swing of the moving part 10 at a desired position. Hereinafter, the principle in which the primary wave force D, which is transmitted to the dynamometer 30 (measured by the dynamometer 30), is reduced in accordance with the present invention will be described in detail. In the present invention, the principle of decreasing the primary wave force (D) transmitted to the dynamometer 30 can be easily understood considering the case where the spring constants of the first spring 21 and the second spring 22 are very small. . When the spring constant has a small value close to zero, the model line 60 indicates that the equilibrium point of the force is equal to the time average value C of the wave neutral resistance of the spring constant of the first spring 21 and the second spring 22. The primary wave force (D) is not measured by the dynamometer (30) because it is pushed in the opposite direction of the towing direction by the sum of the amount of eyes and shaken by the encounter period as if it is not restrained in the front-rear direction. On the other hand, considering the case where the spring constant is very large, the moving part 10 is completely constrained, the primary wave force (D) acting on the model ship 60 are all transmitted to the dynamometer (30). If the model ship 60, the moving part 10, the first spring 21 and the second spring 22 are considered as a vibration system as shown in Fig. 3, the natural period of the vibration system may be similar to the encounter period. When the primary wave force (D) acting on the model ship 60 is amplified and transmitted to the dynamometer 30. In FIG. 3, the sum of the spring constants of the first spring 21 and the second spring 22 is k, the mass of the model line 60 is m, and the amount of back and forth shaking (movement distance of the moving part 10) is It is represented by X. More detailed description of the above is as follows. When the model line 60 moves forward in the bow regular wave state as shown in FIG. 2, considering the external force acting on the model line 60, the forward and backward movement equations of the model line 60 may be counted as shown in Equation 1 below. have.
ΥΠ X = F MEAS^ F CALM~^ F WAVE 여기서, FMEAS는 동력계 (30)로부터 전달되는 힘, FCALM은 정수 중 저항, FWAVE 는 파력을 나타낸다. 그리고 m은 모형선 (60)의 질량, X는 전후동요의 양 (이동부 (10) 의 이동거리)을 나타낸다. 이 때 이동부 (10), 동력계 (30), 연결봉 (40) 등의 질량은 모 형선 (60)의 질량에 비해 매우 작으므로 무시하였다. 이 때, 파력 (FWAVE)은 선체 운동 에 의한 파방사력 (FRAD)과 파강제력 (FWE) 그리고 시간에 무관하게 작용하는 파랑 증 저항증가량 (FAW)으로 모델링 할수 있다. 도 1의 정수중저항 (A)은 [식 1ᅵ의 정수중 저항 (FCALM), 파랑증부가저항 (B)은 파랑증 저항 증가량 (FAW), 1차파력 (D)은 파방사력 (FRAD)과 파강제력 (FWE)의 합을 뜻한다. 또한 선체 운동에 의한 파방사력 (FRAD)은 선 체 운동이 정상상태가 되었다는 가정 하에 전후동요방향 부가질량 (mx)과 감쇠계수 (c)를 이용하여 표현할 수 있으며, 파강제력 (FWE)은 Fosinc 으로 표현할 수 있다. 여 기서 F0 는 파강제력 (FWE)의 진폭이고, ωε 는 만남각주파수이다. 그러면 동력계 (30)에 서 계측되는 힘을 아래 [식 2]와같이 표현할수 있다. XΠ X = F MEAS ^ F CALM ~ ^ F WAVE Here, F MEAS represents the force transmitted from the dynamometer 30, F CALM represents the resistance in the constant, FWAVE represents the wave force. And m is the mass of the model line 60, X represents the amount of back-and-back shaking (moving distance of the moving part 10). At this time, the mass of the moving part 10, the dynamometer 30, the connecting rod 40, and the like was very small compared to the mass of the model line 60, and thus was ignored. At this time, the wave force (F WAVE ) can be modeled as the wave radiation force (F RAD ) and the forcing force (F WE ) by the hull motion, and the increase in wave augmentation resistance (F AW ) acting irrespective of time. The hydrostatic resistance (A) of FIG. 1 is the hydrostatic resistance (F CALM ) of Equation 1 ᅵ, the wave addition resistance (B) is the increase in cyanosis resistance (F AW ), and the primary wave force (D) is the radiation radiation force (FRAD) It is the sum of and the forcing force (F WE ). Also be expressed using pabang force (F RAD) is the line body movement is the normal state before and after the shaking direction added mass (m x) with the assumption that the attenuation coefficient (c) by the ship motion, wave RF (F WE) Can be expressed as Fosinc. Where F 0 is the amplitude of wave forcing (F WE ) and ω ε is the encounter angle frequency. Then, the force measured by the dynamometer 30 can be expressed as [Equation 2] below.
F MEAS= (m+ m x) "x+ c 'χ - 0 sinm et - F CALM- F A W [식 2] F MEAS = (m + m x ) " x + c ' χ- 0 sinm e t-F CALM -F AW [Equation 2]
[식 2]에서 볼 때 본 발명에서 계측을 목적으로 하는 물리량은 마지막 두 항 의 합이지만, 나머지 항들도 불가피하게 계측될 수밖에 없다. 하지만 [식 2]의 앞의 세 항의 합은 전후동요의 웅답에 따라 변할 수 있다. 동력계 (30)의 탄성을 무시하면 [식 2]에서 동력계 (30)로부터 전달되는 힘 (FMEAS)을 - kx 로 대체할수 있으므로, [식 2】는 아래 [식 3]과같이 표현할수 있다. m "x+ c 'x+ kx =■Fosinco et + F CALM+ F aw [식 3] 이 때 k는 제 1스프링 (21)과 제 2스프링 (22)의 스프링상수의 합을 뜻한다. 사실 상 전후동요의 양 (X)과 제 1스프링 (21)과 제 2스프링 (22)의 스프링상수의 합 (k)올 통해 간접적으로 힘을계측할수 있지만, 이와같은 방법에 따르면 예인전차 (70)가정지해 있을 때의 평형점의 위치가 이동부 (10)에 작용하는 정지마찰력이 스프링의 복원력보 다큰 범위 내에서 변하기 때문에 오차가발생할수 있다. In Equation 2, the physical quantity for the purpose of measuring in the present invention is the sum of the last two terms, but the other terms are inevitably measured. However, the sum of the previous three terms in [Equation 2] can be changed according to the response of the postwar fluctuations. If the elasticity of the dynamometer 30 is ignored, the force F MEAS transmitted from the dynamometer 30 can be replaced with-kx in [Equation 2], so that [Equation 2] can be expressed as [Equation 3] below. m " x + c ' x + kx = ■ Fosinco e t + F C ALM + F aw [Equation 3] where k is the sum of the spring constants of the first spring (21) and the second spring (22). Force can be measured indirectly through the sum of the amount of phase fluctuation (X) and the spring constant (k) of the first and second springs (21) and (22). An error may occur because the position of the equilibrium point at the assumption is changed within the range of the static friction force acting on the moving part 10 within a range larger than the restoring force of the spring.
[식 3]에서 m'는 모형선 (60)의 질량 (m)과 전후동요방향 부가질량 (mx)의 합을 뜻한다. 전후동요평형점이 이동하는것을고려하면 FCALM (정수중 저항)과 FAW (파랑 증 저항 증가량)는 [식 3ᅵ에서 무시할 수 있다. 그러면 [식 3]의 정상상태 해는 아래 [식 4] 및 [식 5]와같이 쉽게 구해진다. x(t) = X'[ (k- m'a>2 e)sm(a - m ecosm ] [식 4] In Equation 3, m 'means the sum of the mass (m) of the model line 60 and the added mass (m x ) in the front and rear swing directions. Considering the forward and backward equilibrium equilibrium, F CALM and F AW can be ignored in Equation 3 Then, the steady-state solution of [Equation 3] is easily obtained as in [Equation 4] and [Equation 5] below. x (t) = X '[(k-m'a> 2 e ) sm (a-m e cosm] [Equation 4]
^' = F0/[ - 'co2 e)2 + (CiD e) 2] [식 5] ^ ' = F 0 / [-' co 2 e ) 2 + ( Ci D e ) 2 ] [Equation 5]
[식 4] 및 [식 5]에서 감쇠계수 (c)는 전후동요에 의한 저항증가와관련이 있으 며 그 크기는 m' (모형선 (60)의 질량 (m)과 전후동요방향 부가질량 (mx)의 합)에 비해 매우 작다/또한 모형시험에 있어서 파와의 만남각주파수 (ωε)는 통상 1보다 크다. 따 라서 ctoe « m'fl)e 2의 관계가성립한다. 그러면 k << m'ffie 2의 관계만 만족하도록스 프링상수의 합 (k)을결정하면 [식 4]는 아래의 [식 6]과같이 쓸수 있다. x( t) = - F (m'oi 2 e) sinrn J [식 6] In Eq. 4 and Eq. 5, the damping coefficient (c) is related to the increase in resistance due to back and forth fluctuations, the magnitude of which is m '(the mass of the model line 60 (m) is very small compared to the sum of m x ) / and in model tests, the angle of encounter with waves (ω ε ) is usually greater than one. Therefore, the relationship of cto e «m'fl) e 2 is established. Then let only k <<m'ffi e 2 be satisfied. When the sum of the spring constants (k) is determined, Equation 4 can be written as Equation 6 below. x (t) =-F (m'oi 2 e ) sinrn J [Equation 6]
[식 6]을 [식 2]에 대입하면 [식 2ᅵ의 첫 번째 항이 F0sin(Uet 가 되어 [식 2]의 세 번째 항인 파강제력 (FWE : -F0sino)et)과상쇄된다. 또한감쇠계수 (c)는 매우 작으므 로 [식 2]의 두 번째 항을무시하면 [식 2]는 아래 [식 기과같이 된다.
Figure imgf000015_0001
따라서 [식 기로부터 k « χη'ω6 2관계를 만족하도록스프링상수의 합 (k)을결 정하면 동력계 (30)에는 1차파력 (D)이 제거되고 파랑증전체저항의시간평균값 (C)만 계 측되는것을 알수 있다. 이 경우, 전후동요방향부가질량 (mx)은 모형선 (60)의 질량 (m)에 비해 매우 작 아사무시할 수 있으므로 (m' m), k/mcDe 2 가 약 1/10보다 작도록 스프링상수의 합 (k)을 결정하는 것이 적합하다. 이것은 모형선 (60)과 스프링 (21, 22)으로 구성된 진동 계의 고유각진동수 ^)가만남각주파수 (COe)에 비해 약 1/3 정도인 것을 의미한다. 한편, 상기 유도과정에서는 강제진동의 경우인 정상상태 해만 고려하였는데, 실제 모형시험 과정에서는 자유진동의 성분이 남아 있을 수 있다. 자유진동은 고유 주기 ( 2π\^/ 로 반복되므로 스프링상수의 합 (k)이 너무 작을 경우 고유주기가 과대 해 질 수 있다. 과대해진 고유주기는 저항계측값의 시간이력에서 저주파수의 진동으 로 나타날 수 있으며, 파랑중전체저항의시간평균값 (C)을 편향 (bias)시킬 수 있다. 이 와 같은 고유주기의 계측결과에 대한 영향을 최소화하기 위해서는 데이터 계측시간 이 고유주기의 정수배가 되도록 스프링상수를 결정해야 한다. 즉, 본 발명에서 스프 링상수의 합 (k)은고유주기와 데이터 계측시간이 같게 되거나 데이터 계측시간이 고 유주기의 정수배가되도록하한선을정한다. 전후동요방향부가질량 (mx)과감쇠계수 (c)는 그것이 포함된 항의 크기가상대 적으로 작아 그 영향은 무시할 만 하므로 상기 유도과정에서는 전후동요방향 부가 질량 (mx)과 감쇠계수 (c)가 주파수에 따라 변하지 않고 일정한 값을 가진다고 가정하 였다. 또한 규칙파 조건을 기준으로 상기 내용이 정리되었으나, 불규칙파는 규칙파 의 선형조합으로표현 가능하므로본 발명은불규칙파중에서도사용될 수 있다. 도 4는 본 발명의 효과를 보여주는 그래프이다. 도 4는 본 발명을 이용하지 않은경우동력계 (30)에서 계측되는 파랑중전체저항의 값 (E1)에 비해 본 발명을 이용 한 경우 동력계 (30)에서 계측되는 파랑증전체저항의 값 (E2)이 상당히 감소되었음을 보여주는바, 본 발명에 의하면 적절한 용량의 동력계 (30)로 파랑중전체저항 (도 1, E) 을 계측할 수 있으므로 결과적으로 파랑중부가저항 (도 1, B) 계측의 정도를 향상시 킬 수 있음을 알수 있다.
Substituting [Equation 6] into [Equation 2], the first term of [Equation 2 ᅵ becomes F 0 sin (U e t), so that the third force of the third term of [Equation 2] (F WE : -F 0 sino) e t Is offset. Also, the damping factor (c) is very small, so if you ignore the second term in [Equation 2], [Equation 2] becomes
Figure imgf000015_0001
Therefore, if the sum of the spring constants (k) is satisfied to satisfy the k «χη'ω 6 2 relationship from the table, the first wave force (D) is removed from the dynamometer (30) and only the time average value (C) It can be seen that it is measured. In this case, the forward-backward direction addition mass (m x ) can be very small compared to the mass (m) of the model ship 60 (m'm), so that k / mcD e 2 is less than about 1/10. It is appropriate to determine the sum of the spring constant (k). This means that the angular frequency ^ of the vibration system consisting of the model line 60 and the springs 21 and 22 is about one third of the coercive frequency COe. On the other hand, in the derivation process, only the steady state solution, which is the case of forced vibration, was considered. In the actual model test process, components of free vibration may remain. Since the free vibration is repeated in the natural period (2π \ ^ /), if the sum of the spring constants (k) is too small, the natural period can be excessive. The excessive natural period is a low frequency vibration in the time history of the resistance measurement value. It is possible to bias the time-averaged value (C) of the total wave resistance in C. In order to minimize the influence on the measurement result of the natural period, the spring constant is such that the data measurement time is an integer multiple of the natural period. a must be determined, that is, the sum (k) of the spring constant in the present invention shall be determined by the lower limit so that the natural frequency and the data acquisition time is the same, or the data acquisition time and the integer times of the oil cycle. before and after the agitation added mass (mx direction ) drastically hinge coefficient (c), the derivation in the longitudinal direction agitation added mass (x m) and a damping coefficient, so that only small effects are negligible relative to the size of the term that it includes enemy (c) In addition, although the above contents are summarized based on regular wave conditions, irregular waves can be expressed as a linear combination of regular waves, and thus the present invention can be used even among irregular waves. 4 is a graph showing the effects of the present invention, when the present invention is used compared to the value E1 of the wave-dielectric resistance measured by the dynamometer 30 when the present invention is not used. As shown by the present invention, the value (E2) of the wave intensifier is considerably reduced. According to the present invention, the wave intermediate resistance (FIG. 1, E) can be measured by the dynamometer 30 having an appropriate capacity. 1, B) when improving the degree of measurement It can be seen that.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으 로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질 적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것 이다. 따라서 본 발명에 개시된 실시 예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고 , 이러한 실시 예 및 첨부된 도면 에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범 위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains various modifications, changes and substitutions without departing from the essential characteristics of the present invention. This would be possible. Accordingly, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
【산업상이용가능성】 【Industrial Availability】
본 발명에 따르면 파랑 중 선박의 성능을 모형시험을 통해 평가함에 있어서 적절한 용량의 동력계로 파랑증전체저항을 계측할 수 있으므로 결과적으로 파랑증 부가저항 계측의 정도를 향상시킬 수 있는바,본발명은조선해양산업분야에서널리 이용하여그실용적이고경제적인가치를실현할수있는기술이다.  According to the present invention, in evaluating the performance of a ship in a wave through a model test, the total wave resistance can be measured with a dynamometer having an appropriate capacity, and as a result, the degree of measurement of the wave additional resistance can be improved. It is a technology that can be widely used in shipbuilding and marine industry to realize its practical and economic value.

Claims

【청구의 범위】 【Scope of Claim】
【청구항 1] [Claim 1]
예인전차에 위치하며 모형선과 연결봉으로 연결되어 상기 모형선의 전후동요 에 따라전후로 이동하는 이동부; A moving part located on the towing tank and connected to the model ship by a connecting rod and moving back and forth according to the back and forth motion of the model ship;
상기 이동부에 설치되어 상기 이동부의 이동을 부분적으로 구속하는 구속부 및; a restraining unit installed on the moving unit to partially restrain the movement of the moving unit;
상기 연결봉에 설치되어 상기 모형선에 작용하는 파랑중 전체저항을 계측하 는동력계; A dynamometer installed on the connecting rod to measure total resistance among waves acting on the model ship;
를포함하는, 파랑증부가저항계측장치. A wave increase resistance measuring device comprising:
【청구항 2】 【Claim 2】
청구항 1에 있어서, In claim 1,
상기 이동부는 이동바퀴를 구비하는 것을 특징으로 하는, 파랑 중 부가저항 계측장치. An additional resistance measuring device in waves, characterized in that the moving part has a moving wheel.
【청구항 3】 【Claim 3】
청구항 1에 있어서, In claim 1,
상기 구속부는 상기 예인전차와 상기 이동부의 전단 사이에 설치되는 제 1스 프링과 상기 예인전차와 상기 이동부의 후단 사이에 설치되는 제 2스프링이 연동하 는형태를갖는것을특징으로하는, 파랑중부가저항계측장치. The restraint part is characterized in that the first spring installed between the towing tank and the front end of the moving section and the second spring installed between the towing tank and the rear end of the moving section are interlocked. Resistance measuring device.
【청구항 4] [Claim 4]
청구항 3에 있어서, In claim 3,
상기 제 1스프링과 상기 제 2스프링은 스프링상수의 크기가 동일한 것을 특징 으로하는, 파랑중부가저항계측장치. The first spring and the second spring are characterized in that the size of the spring constant is the same, mid-wave added resistance measuring device.
【청구항 5] [Claim 5]
청구항 3에 있어서, In claim 3,
상기 겨 11스프링과 상기 제 2스프링은 스프링상수의 크기에 따라 상기 이동부 의 이동을 부분적으로 구속하는 정도를조절하는 것을특징으로 하는, 파랑 중부가 저항계측장치. The wave 11 spring and the second spring are characterized in that the degree to which they partially restrain the movement of the moving part is adjusted according to the size of the spring constant.
【청구항 6] [Claim 6]
청구항 1에 있어서, In claim 1,
상기 모형선은 상기 모형선의 종동요를 자유롭게 허용하는 종동요회전축을 구비하는바, 상기 연결봉은상기 모형선과상기 종동요회전축으로 연결되는 것을특 징으로하는, 파랑중부가저항계측장치. The model ship is provided with a driven yaw rotation axis that freely allows the model ship to sway, and the connecting rod is connected to the model ship and the driven yaw axis. A mid-wave additional resistance measuring device.
【청구항 7] [Claim 7]
청구항 1에 있어서, In claim 1,
상기 이동부는상기 모형선의 상하동요에 따른 상기 연결봉의 상하동요를자 유롭게 허용하는상하동요허용부를 구비하는것을 특징으로 하는, 파랑중부가저항 계측장치. The moving part cuts the up and down movement of the connecting rod according to the up and down movement of the model ship. A mid-wave additional resistance measuring device, characterized in that it is provided with a vertical fluctuation tolerance section that allows for free movement.
【청구항 8】 【Claim 8】
청구항 7에 있어서, In claim 7,
상기 상하동요허용부는 상기 이동부에 형성되는 관통구의 형태를 갖는바, 상 기 연결봉은 상기 관통구에 삽입되는 형태로 상기 이동부와 결합하는 것을 특징으 로하는, 파랑중부가저항계측장치. The up and down motion allowance part has the shape of a through hole formed in the moving part, and the connecting rod is inserted into the through hole and coupled to the moving part.
【청구항 9】 【Claim 9】
청구항 1에 있어서, In claim 1,
상기 연결봉에 연결되어 자중에 의해 상기 연결봉을 전방으로 잡아당김으로 써 상기 이동부의 전후동요 평형점이 후방으로 밀리는 양을 보상해 주는 평형보정 추; A balance correction weight connected to the connecting rod and pulling the connecting rod forward by its own weight to compensate for the amount of the forward and backward motion balance point of the moving part being pushed backwards;
를 더 포함하는, 파랑중부가저항계측장치. Further comprising a mid-wave additional resistance measuring device.
【청구항 10】 【Claim 10】
청구항 1에 있어서, In claim 1,
상기 구속부는 상기 이동부의 이동을 부분적으로 구속함으로써 상기 동력계 에서 계측되는 1차 파력의 양을 감소시키는 것을 특징으로 하는, 파랑 중 부가저항 The restraint part is characterized in that it reduces the amount of primary wave force measured in the dynamometer by partially restraining the movement of the moving part, additional resistance during waves.
61 61
ooeoio/nozni/iDd soi^oso/sioz OAV ooeoio/nozni/iDd soi^oso/sioz OAV
PCT/KR2014/010900 2013-11-28 2014-11-13 Device for measuring added resistance in waves WO2015080408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130146466A KR20150062238A (en) 2013-11-28 2013-11-28 apparatus for measuring added resistance in waves
KR10-2013-0146466 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015080408A1 true WO2015080408A1 (en) 2015-06-04

Family

ID=53199312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010900 WO2015080408A1 (en) 2013-11-28 2014-11-13 Device for measuring added resistance in waves

Country Status (2)

Country Link
KR (1) KR20150062238A (en)
WO (1) WO2015080408A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438399A (en) * 2015-08-21 2016-03-30 河海大学 Physical model of mooring ship and test method of physical model
CN106323592A (en) * 2016-11-07 2017-01-11 中国特种飞行器研究所 Pool testing method for storm rolling model of helicopter
CN106338377A (en) * 2015-08-28 2017-01-18 中国特种飞行器研究所 Novel water surface aircraft water load testing device
CN106404344A (en) * 2016-11-07 2017-02-15 中国特种飞行器研究所 Helicopter wind wave rolling model pool test device
CN106428419A (en) * 2016-09-13 2017-02-22 江苏科技大学 Ship model rolling attenuation remote test system and test method
CN106441798A (en) * 2016-09-13 2017-02-22 江苏科技大学 Ship or ship model hydrostatic rotation remote testing system and testing method
CN106596043A (en) * 2016-12-02 2017-04-26 中国特种飞行器研究所 Method for using map to predict water surface aircraft hull hydrodynamic performance
CN106644430A (en) * 2016-11-28 2017-05-10 杭州海的动力机械股份有限公司 Simulation water wave device used for ship power mechanism performance testing
CN107063630A (en) * 2017-04-12 2017-08-18 武汉理工大学 A kind of ship model wave load test frock
RU180204U1 (en) * 2017-03-28 2018-06-06 Виталий Алексеевич Пелешенко Installation for conducting hydrodynamic tests in the experimental pool
CN108181086A (en) * 2015-12-08 2018-06-19 中国人民解放军海军工程大学 A kind of change depth of water towing basin resistance reduction by air cavity test method
CN109596309A (en) * 2018-12-04 2019-04-09 中国特种飞行器研究所 A kind of Novel surface towing trial apparatus platform based on two degrees of freedom
CN111366332A (en) * 2020-04-28 2020-07-03 中山大学 Three-degree-of-freedom decomposition mooring structure measurement experimental device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879722B1 (en) * 2015-12-18 2018-07-18 창원대학교 산학협력단 Apparatus for vertical planar motion mechanism with a single strut and model test apparatus in towing tank using thereof
CN112883488B (en) * 2021-02-05 2022-09-20 华南理工大学 Slamming load forecasting method based on ship wave relative motion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100731A (en) * 1981-12-10 1983-06-15 Mitsubishi Heavy Ind Ltd Measuring device for towing resistance
JP2002145183A (en) * 2000-11-16 2002-05-22 National Maritime Research Institute Instrumentation system for wave drift force three components and non-constraint oscillation displacement six components for floating body in ocean waves
KR100343022B1 (en) * 1998-05-30 2002-09-18 삼성중공업 주식회사 4 degree of freedom movement and resistance measuring device
JP2002365159A (en) * 2001-06-11 2002-12-18 Mitsubishi Heavy Ind Ltd Instrument for measuring towing and resistance for model ship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100731A (en) * 1981-12-10 1983-06-15 Mitsubishi Heavy Ind Ltd Measuring device for towing resistance
KR100343022B1 (en) * 1998-05-30 2002-09-18 삼성중공업 주식회사 4 degree of freedom movement and resistance measuring device
JP2002145183A (en) * 2000-11-16 2002-05-22 National Maritime Research Institute Instrumentation system for wave drift force three components and non-constraint oscillation displacement six components for floating body in ocean waves
JP2002365159A (en) * 2001-06-11 2002-12-18 Mitsubishi Heavy Ind Ltd Instrument for measuring towing and resistance for model ship

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438399A (en) * 2015-08-21 2016-03-30 河海大学 Physical model of mooring ship and test method of physical model
CN106338377A (en) * 2015-08-28 2017-01-18 中国特种飞行器研究所 Novel water surface aircraft water load testing device
CN108181086A (en) * 2015-12-08 2018-06-19 中国人民解放军海军工程大学 A kind of change depth of water towing basin resistance reduction by air cavity test method
CN106428419A (en) * 2016-09-13 2017-02-22 江苏科技大学 Ship model rolling attenuation remote test system and test method
CN106441798A (en) * 2016-09-13 2017-02-22 江苏科技大学 Ship or ship model hydrostatic rotation remote testing system and testing method
CN106323592A (en) * 2016-11-07 2017-01-11 中国特种飞行器研究所 Pool testing method for storm rolling model of helicopter
CN106404344A (en) * 2016-11-07 2017-02-15 中国特种飞行器研究所 Helicopter wind wave rolling model pool test device
CN106644430A (en) * 2016-11-28 2017-05-10 杭州海的动力机械股份有限公司 Simulation water wave device used for ship power mechanism performance testing
CN106596043A (en) * 2016-12-02 2017-04-26 中国特种飞行器研究所 Method for using map to predict water surface aircraft hull hydrodynamic performance
CN106596043B (en) * 2016-12-02 2018-08-31 中国特种飞行器研究所 A method of forecasting water surface flying device hull hydrodynamic(al) performance with collection of illustrative plates
RU180204U1 (en) * 2017-03-28 2018-06-06 Виталий Алексеевич Пелешенко Installation for conducting hydrodynamic tests in the experimental pool
CN107063630A (en) * 2017-04-12 2017-08-18 武汉理工大学 A kind of ship model wave load test frock
CN109596309A (en) * 2018-12-04 2019-04-09 中国特种飞行器研究所 A kind of Novel surface towing trial apparatus platform based on two degrees of freedom
CN111366332A (en) * 2020-04-28 2020-07-03 中山大学 Three-degree-of-freedom decomposition mooring structure measurement experimental device

Also Published As

Publication number Publication date
KR20150062238A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
WO2015080408A1 (en) Device for measuring added resistance in waves
Assi et al. Low drag solutions for suppressing vortex-induced vibration of circular cylinders
El Moctar et al. Nonlinear computational methods for hydroelastic effects of ships in extreme seas
KR20150062239A (en) method for measuring added resistance in waves
Sueyoshi et al. Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method
Tabri et al. Analytical modelling of ship collision based on full-scale experiments
Chin et al. Nonlinear dynamics of a boom crane
Ma et al. On the non-linear forces acting on a floating spar platform in ocean waves
Strand et al. Linear wave response of a 2D closed flexible fish cage
Shen et al. Experimental investigation of a closed vertical cylinder-shaped fish cage in waves
Li et al. Nonlinear vertical accelerations of a floating torus in regular waves
Fredriksson et al. The heave response of a central spar fish cage
Ley et al. Assessment of loads and structural integrity of ships in extreme seas
Berstad et al. Model testing of fish farms for validation of analysis programs
Jordán et al. Numerical stability analysis and control of umbilical–ROV systems in one-degree-of-freedom taut–slack condition
Guan et al. Dynamic calculation for sonobuoy suspension heave reduction system with experimental correction
Vickers Improve the understanding of uncertainties in numerical analysis of moored floating wave energy converters
Orszaghova et al. Simplified dynamics of a moored submerged buoy
Xu et al. A PMM experimental research on ship maneuverability in waves
Kim et al. Experimental investigation on wave-induced bending moments of a 6,750-TEU containership in oblique waves
Mahacek Dynamic analysis of a SWATH vessel
Krata Linear characteristics of the sloshing phenomenon for the purpose of on-board ship's stability assessment
Lin Hydroelasticity Analysis in Frequency Domain and Time Domain
Carette Fast time domain evaluation of Anti-Roll Tank and ship coupling using non-linear retardation functions
Thorsen et al. Vortex-induced vibrations of a vertical riser with time-varying tension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14866656

Country of ref document: EP

Kind code of ref document: A1