WO2015080275A1 - Image processing device, image processing method, and recording medium - Google Patents
Image processing device, image processing method, and recording medium Download PDFInfo
- Publication number
- WO2015080275A1 WO2015080275A1 PCT/JP2014/081649 JP2014081649W WO2015080275A1 WO 2015080275 A1 WO2015080275 A1 WO 2015080275A1 JP 2014081649 W JP2014081649 W JP 2014081649W WO 2015080275 A1 WO2015080275 A1 WO 2015080275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- illumination light
- light
- component
- wavelength
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/256—Arrangements using two alternating lights and one detector
Definitions
- the present invention relates to an image processing apparatus and an image processing method for separating a reflection component and a fluorescence component from an image obtained by photographing an object to be measured, and a recording medium on which a program to which the image processing method is applied is recorded.
- Fluorescence is a phenomenon in which an object emits light having a wavelength different from that of incident light when light that excites the fluorescence is incident on the object.
- the reflected light reflects light incident on the object at the same wavelength, whereas in the case of fluorescence, the reflected light has a wavelength longer than the wavelength of light (absorption) that is incident upon and absorbed by the object.
- FIG. 11 shows a characteristic example of reflected light in the visible light region for three objects (lettuce, tomato, butter).
- the reflectance shown on the vertical axis in FIG. 11 is a relative value measured individually for each object, and does not indicate the magnitude relationship of the reflected light from the three objects.
- the reflectance of lettuce a increases in the green region. Therefore, lettuce looks green to the observer.
- the reflectance of tomato b increases in the red region. Therefore, the tomato appears red to the observer.
- the reflected light of each color (wavelength) reflects the light irradiated to each object as it is. In other words, lettuce looks green when irradiated with light in the green wavelength band, and tomato looks red when irradiated with light in the red wavelength band.
- the wavelength band of visible light is divided into a plurality of narrow bands, and the object to be measured is irradiated with light in each band. Then, the wavelength of light emitted from the object to be measured is measured with a measuring instrument such as an optical spectrum analyzer.
- a measuring instrument such as an optical spectrum analyzer.
- the light measured by the measuring instrument is only a component having the same wavelength as the irradiated light, it is determined that only the reflected light is present. Further, when the light measured by the measuring instrument is in a longer wavelength range than the irradiated light, the light in the longer wavelength range is determined to be fluorescent.
- the reflected light and fluorescence of the object to be measured can be detected separately. It is known that, for example, the locality and type of plants such as agricultural crops can be known by accurately detecting the reflected light and fluorescence of the measurement object.
- the wavelength distribution of the fluorescent component of mango varies depending on the production area. More specifically, it is known that Japanese mangoes from Okinawa, Japanese Miyazaki from Mango, and Taiwan from mango can be accurately distinguished from the wavelength distribution of fluorescent components. It is also known that the amount of buckwheat contained in buckwheat can be determined from the wavelength distribution of the fluorescent component.
- Japanese Unexamined Patent Application Publication No. 2013-114233 describes a technique for photographing in a plurality of different wavelength bands and calculating a fluorescence feature amount from these images in order to specify the fluorescence wavelength band emitted by the specimen.
- the fact that the reflected light component and the fluorescent component can be accurately measured is known to have various merits in the selection of crops and the state of living things. Since it was difficult to measure easily, there was a problem that utilization of the reflected light component and the fluorescent component was not advanced.
- An object of the present invention is to provide an image processing apparatus, an image processing method, and a recording medium that can accurately detect reflected light and fluorescence of an object to be measured.
- the image processing apparatus of the present invention includes a light source and an image processing unit.
- the light source has a first illumination light having a wavelength characteristic that repeats a light emission state and a non-light emission state at a predetermined wavelength interval, and a wavelength characteristic in which the wavelength positions of the first illumination light, the light emission state, and the non-light emission state are reversed.
- the second illumination light is selectively generated.
- the image processing unit captures a first image obtained by photographing the object to be measured irradiated with the first illumination light and a second image obtained by photographing the object to be measured irradiated by the second illumination light.
- an image of the reflection component of the object to be measured Get By performing a process of dividing the difference between the pixels of the first image and the pixels of the second image by the luminance difference between the first illumination light and the second illumination light, an image of the reflection component of the object to be measured Get. Furthermore, from the reflection component image obtained by dividing the difference between the first image pixel and the reflection component image pixel by the luminance difference between the first illumination light and the second illumination light, An image of the fluorescent component is obtained.
- the first illumination light having a wavelength characteristic that repeats the light emission state and the non-light emission state at predetermined wavelength intervals, the first illumination light, the light emission state, and the non-light emission
- the second illumination light having a wavelength characteristic in which the wavelength position of the state is reversed is selectively generated.
- the photographing process the measurement object irradiated with the illumination light obtained in the illumination light generation process is photographed.
- the image processing step a first image obtained by photographing the measurement target object irradiated with the first illumination light in the photographing step, and a second image obtained by photographing the measurement target object irradiated with the second illumination light.
- the object to be measured is obtained by performing a process of taking the difference between the first illumination light and the second illumination light and dividing the difference between the first image pixel and the second image pixel by the luminance difference between the first illumination light and the second illumination light.
- An image of the reflection component of is obtained.
- the object to be measured is obtained from the reflection component image obtained by dividing the difference between the pixel of the first image and the pixel of the reflection component by the luminance difference between the first illumination light and the second illumination light.
- An image of the fluorescent component is obtained.
- the recording medium of the present invention is a recording medium that records a program that causes a computer to execute each step of the above-described image processing method as a procedure.
- the present invention it is possible to easily obtain an image of the reflection component of the object to be measured from two images that are taken with two types of illumination light. Furthermore, it is possible to easily obtain an image of the fluorescent component from the reflected component image of the object to be measured. For example, it is possible to easily determine the state of a living organism (plant, animal) (type determination, active state determination, etc.) from the reflected light component image and the fluorescent component image.
- FIG. 1 is a configuration diagram showing a system according to an embodiment of the present invention. It is a wave form diagram which shows the example of a characteristic of the illumination light by one embodiment of this invention. It is a block diagram which shows the structure of the image process part by one embodiment of this invention. It is a flowchart which shows the flow of the process by one embodiment of this invention. It is a figure which shows the outline
- FIG. 1 is a diagram showing the entire system of the image processing apparatus of this example.
- This system measures reflected light from a subject 90 that is a measurement target and fluorescence emitted from the subject 90.
- the system also measures the absorbance from the fluorescence (the rate at which incident light is absorbed without reflection).
- the subject 90 is photographed by the camera 40 in a state where illumination light is irradiated from the programmable light source 30.
- the programmable light source 30 is a light source that can freely design the wavelength and spectral distribution of light to be output based on an instruction from the light source setting unit 20.
- the light source setting by the light source setting unit 20 and the photographing by the camera 40 are performed under the control of the control unit 10.
- the programmable light source 30 is also referred to as a multi-wavelength variable light source, and is a light source that can freely adjust the distribution state of light in each wavelength band within a visible light range of 400 nm to 720 nm, for example. By using this programmable light source 30, it is possible to reproduce irradiation light of any color or wavelength.
- a product manufactured by Nikon Corporation under the product name ELS-VIS is applicable.
- first illumination light L1 and second illumination light L2 are diagrams illustrating characteristic examples of the first illumination light L1 and the second illumination light L2.
- the vertical axis represents the light intensity
- the horizontal axis represents the wavelength.
- the first illumination light L1 and the second illumination light L2 are light in a band from 420 nm to 780 nm that substantially corresponds to a visible light band. Either the example of FIG. 2A or the example of FIG.
- the light source band is set to 420 nm to 780 nm as an example, and it is desirable that the band of the light source emitting each of the illumination lights L1 and L2 is wide. The wider the light source band, the more reflective and fluorescent bands that can be handled. Also become wider.
- the first illumination light L1 and the second illumination light L2 have high-frequency characteristics that repeat light emission and non-light emission at regular wavelength intervals within the band.
- the first illumination light L1 and the second illumination light L2 have opposite characteristics. That is, in the band where the first illumination light L1 is in a light emission state, the second illumination light L2 is in a non-light emission state. In the band where the first illumination light L1 is in a non-light emitting state, the second illumination light L2 is in a light emitting state.
- FIG. 2B shows an example in which each of the first illumination light L1 and the second illumination light L2 emits light with a certain luminance value even in a low luminance state. That is, the 1st illumination light L1 and the 2nd illumination light L2 repeat the light emission state with a strong light emission intensity and the light emission state with a low light emission intensity for every fixed wavelength interval. Then, the first illumination light L1 and the second illumination light L2 are configured such that the light emission state band having a high light emission intensity and the light emission state band having a low light emission intensity are opposite to each other. Also in the case of the example of FIG. 2B, by adding the two illumination lights L1 and L2, light having a substantially flat intensity can be obtained within the entire visible light band.
- the light source setting unit 20 can individually set a period for outputting the first illumination light L1 and a period for outputting the second illumination light L2.
- the range from 420 nm to 780 nm is divided into 23 bands, and the characteristics of repeating light emission and non-light emission are illustrated.
- the number of divisions of this band is an example, Alternatively, a smaller number of divisions or a larger number of divisions may be used. In the case of this example, for example, when the width of one emission band is about 40 nm or less, sufficient accuracy for obtaining an image of each light component described later is ensured.
- the first illumination light L1 and the second illumination light L2 show an example in which the intensity increases and decreases in a sine wave shape, but such a change in the sine wave shape is an example.
- Other change states may be used.
- the rectangular wave first illumination light shown in FIG. 2C and the rectangular wave second illumination light shown in FIG. 2D may be used. That is, the first illumination light shown in FIG. 2C has a rectangular wave-like steep characteristic at a constant wavelength interval, and has a characteristic in which light emission and non-light emission continue.
- 2D emits light and does not emit light with a steep characteristic of a rectangular wave at a constant wavelength interval after the wavelength positions of the first illumination light, the light emission section, and the non-light emission section are interchanged.
- the characteristic is that light emission continues. 2C and 2D, the light emission and non-light emission do not continue, but the light emission at the first intensity and the second light emission are the same as in FIG. 2B. It is good also as the characteristic that light emission with an intensity
- the camera 40 captures the subject 90 in a state where the programmable light source 30 outputs the first illumination light L ⁇ b> 1.
- the camera 40 captures the subject 90 in a state where the programmable light source 30 outputs the second illumination light L2.
- a spectroscopic camera that divides the range of visible light into a predetermined number of bands (for example, 30 bands) and obtains data of each pixel for each of the divided bands is used.
- Image data acquired by the camera 40 is sent to the image processing unit 50, and the image processing unit 50 performs a process of separating the reflected light component and the fluorescent component.
- the image processing unit 50 captures image data obtained by photographing the subject 90 illuminated with the first illumination light L1, and image data obtained by photographing the subject 90 illuminated with the second illumination light L2. To obtain image data of reflected light and image data of fluorescence. Further, the image processing unit 50 estimates the wavelength distribution of the light absorption component from the fluorescence image data. Further, the image processing unit 50 uses each image data and the wavelength distribution of the light absorption component to form image data when the subject 90 is illuminated with a light source of an arbitrary color by calculation, and for the formed arbitrary color Obtain image data from a light source. When the image processing unit 50 obtains fluorescence image data, the data regarding the setting state of the first illumination light L1 is acquired from the light source setting unit 20. Specific processing for obtaining the image data of the reflected light, the image data of the fluorescence, and the wavelength distribution of the light absorption component will be described later.
- the image data obtained by the image processing unit 50 is supplied to the image display unit 60, and each image is individually displayed on the image display unit 60.
- the fluorescence image data obtained by the image processing unit 50 is supplied to the characteristic analysis unit 70.
- the characteristic analysis unit 70 analyzes the distribution state of the fluorescent characteristic of the subject 90 from the fluorescent image data.
- the characteristic analysis unit 70 may analyze the distribution state of the reflected light component and the distribution state of the light absorption component.
- the process of obtaining the reflected light image data and the fluorescence image data in the image processing unit 50 and the process of determining the wavelength distribution of the light absorption component are executed under the control of the control unit 10.
- FIG. 3 shows a configuration example of the image processing unit 50 of this example.
- the image processing unit 50 includes a first image memory 51 and a second image memory 52 that store image data supplied from the camera 40.
- the first image memory 51 stores one frame of image data obtained by photographing the subject 90 illuminated with the first illumination light L1.
- the second image memory 52 stores one frame of image data obtained by photographing the subject 90 illuminated with the second illumination light L2.
- the timing at which the first and second image memories 51 and 52 capture image data is synchronized with the timing at which the programmable light source 30 emits the first and second illumination lights L1 and L2 under the control of the control unit 10 (FIG. 1). Is set.
- image data illuminated with the first illumination light L1 stored in the first image memory 51 is referred to as first image data, and illumination is performed with the second illumination light L2 stored in the second image memory 52.
- the processed image data is referred to as second image data.
- the image processing unit 50 includes a reflected light image generation unit 53 and a fluorescence image generation unit 54.
- the reflected image generator 53 is supplied with the first image data stored in the first image memory 51 and the second image data stored in the second image memory 52.
- the reflected light image generation unit 53 calculates a difference at the same pixel position between the pixel of the first image data and the pixel of the second image data.
- the image data is pixel data for each wavelength band (for example, 30 bands) captured using a spectroscopic camera, and when calculating the difference between the first image data and the second image data. The difference is calculated between the pixel data at the same pixel position for each wavelength band.
- the first illumination is used as shown in FIG. It is important that the frequency of the spectral distribution of the light L1 and the second illumination light L2 is higher than a predetermined value.
- the illumination light L1 and the illumination light L2 at each wavelength. It is not necessary to consider which light is emitted, and it is not necessary to consider the difference in luminance between the illumination light L1 and the illumination light L2.
- the pixel value of an image obtained by photographing under the first illumination light L1 is P1
- the pixel value of an image obtained by photographing under the second illumination light L2 is P2.
- the reflected light R ( ⁇ ) is obtained by the following equation.
- R ( ⁇ ) (P1 ( ⁇ ) ⁇ P2 ( ⁇ )) / (L1 ( ⁇ ) ⁇ L2 ( ⁇ ))
- ⁇ represents each wavelength.
- L1 ( ⁇ ) is the luminance of the first illumination light L1 at the wavelength ⁇
- L2 ( ⁇ ) is the luminance of the second illumination light L2 at the wavelength ⁇ .
- the expression of the reflected light R ( ⁇ 1 ) at the specific wavelength position ⁇ 1 can be expressed as follows.
- R ( ⁇ 1 ) P1 ( ⁇ 1 ) ⁇ P2 ( ⁇ 1 )
- the condition of R ( ⁇ 1 ) is when the intensity of the illumination light L1 is stronger than that of the illumination light L2 at the wavelength ⁇ 1.
- the expressions P1 and P2 are reversed.
- the reflected light image data obtained by the reflected light image generation unit 53 is supplied to the light source distribution multiplication unit 55.
- the light source distribution multiplication unit 55 acquires the distribution characteristic of the first illumination light L1 set by the light source setting unit 20. Then, the light source distribution multiplication unit 55 multiplies the reflected light image data by the distribution characteristic of the first illumination light L1. By multiplying the reflected light image data by the distribution characteristic of the first illumination light L1, the reflected light image data becomes only the reflected light component by the first illumination light L1, and the reflected light by the second illumination light L2. Ingredients are removed.
- the fluorescent image generation unit 54 is supplied with the reflected light image data of the first illumination light L1 obtained by the light source distribution multiplication unit 55 and the first image data stored in the first image memory 51.
- a difference between the reflected light image data of the first illumination light L1 and the first image data is calculated, and image data based on the calculated difference is an image of the fluorescence component (fluorescence image data). )become.
- the difference is calculated by the fluorescent image generation unit 54, the difference is calculated between the pixel data at the same pixel position for each wavelength band as in the case of calculating the difference by the reflected light image generation unit 53. Do.
- the fluorescence spectral distribution observed under the first illumination light L1 and the second illumination light L2 is expressed by the following equation.
- e ( ⁇ ) is a spectral distribution of fluorescence emission (showing how much light of wavelength ⁇ is returned, that is, an emission distribution that determines the color of fluorescence emission)
- K is the first fluorescent substance. Is a coefficient representing how much light of the illumination light L1 or the second illumination light L2 is absorbed, and is obtained from the light-absorbing component of the fluorescent material and the spectral distribution of the light source. The intensity of the fluorescence emission e ( ⁇ ) is determined by this coefficient K.
- the spectral distribution of the light absorption component of the substance has a low frequency distribution limited to a certain frequency band, that is, a distribution that smoothly changes in the spectral region
- the first illumination light L1 and the second illumination By setting the spectral distribution of the light L2 to be higher than the distribution of the light absorption component, the light absorption amount K under the light source of the first illumination light L1 becomes the same, and the fluorescence observed under the first illumination light L1.
- the component and the fluorescent component observed under the second illumination light L2 have substantially the same spectral distribution. This point will be described later with reference to FIG.
- Ke ( ⁇ ) (P1 ( ⁇ )) ⁇ [(P1 ( ⁇ ) ⁇ P2 ( ⁇ )) / (L1 ( ⁇ ) ⁇ L2 ( ⁇ ))] ⁇ L1 ( ⁇ )
- a function e ( ⁇ ) representing the spectral distribution of fluorescence emission can be obtained.
- the illumination light has the rectangular wave characteristics shown in FIGS. 2C and 2D
- the expression of the spectral distribution of fluorescence observed under the first illumination light L1 and the second illumination light L2 is as follows: be able to.
- Ke ( ⁇ 1 ) 2 ⁇ P2 ( ⁇ 1 )
- Fluorescence image data obtained by the fluorescence image generation unit 54 is supplied to the light absorption component conversion unit 58.
- the light absorption component converter 58 searches the data stored in the database 59 for data having distribution characteristics that substantially match the distribution characteristics of the fluorescent component indicated by the fluorescence image data.
- the database 59 stores a plurality of types (for example, about 1000 types) of data indicating the relationship between the distribution characteristics of the fluorescent component and the distribution characteristics of the light absorption component.
- the database 59 also stores the frequency characteristics of the light absorption component.
- the light-absorbing component is a component of light absorbed by a substance that generates fluorescence (fluorescent substance), and is expressed as an absorption distribution indicating how much light is absorbed at each wavelength of light.
- the light absorption component conversion unit 58 sets the most similar distribution characteristic as the matched distribution characteristic.
- a combination of a plurality of fluorescent components is considered, a distribution closest to the combination is estimated, and a light absorption component is also obtained as a combination of the light absorption distributions of these fluorescent materials.
- the light-absorbing component conversion unit 58 retrieves the matched distribution characteristics, reads out the light-absorbing component distribution characteristics associated with the retrieved distribution characteristics from the database 59, and the distribution characteristics are indicated by the fluorescence image data.
- the light absorption component distribution characteristic corresponds to the distribution characteristic of the fluorescent component.
- the image data of the light absorption component is supplied to the image forming unit 56. The principle of obtaining reflected light image data, fluorescence image data, and light absorption component image data from each difference image will be described later.
- the reflected light image data obtained by the reflected light image generation unit 53 and the fluorescence image data obtained by the fluorescence image generation unit 54 are supplied to the image forming unit 56. Further, the first image data stored in the first image memory 51 and the second image data stored in the second image memory 52 are also supplied to the image forming unit 56.
- the image forming unit 56 outputs reflected light image data, fluorescent image data, and first and second image data according to the output mode at that time.
- the image data output from the image forming unit 56 is supplied to the image display unit 60, and the image selected by the image forming unit 56 is displayed.
- the image forming unit 56 uses the reflected light image data, the fluorescence image data, and the light absorption component image data based on an instruction from the light source condition setting unit 57 to reproduce an image reproduced by the instructed light source. Form by calculation. For example, when the subject 90 is irradiated with a blue light source, the image forming unit 56 forms image data photographed by the camera 40 by calculation, and outputs the formed image data. Further, the reflected light image data, the fluorescence image data, and the light-absorbing component image data obtained by the image forming unit 56 are supplied to the characteristic analysis unit 70 to perform distribution characteristic analysis processing.
- FIG. 4 is a flowchart showing a flow of processing for detecting the reflected light component and the fluorescence component performed in the image processing apparatus of this example.
- the light source setting unit 20 causes the programmable light source 30 to emit light with the first illumination light L1 (step S11).
- Image data captured by the camera 40 in a state in which the subject 90 is illuminated by the first illumination light L1 is stored in the first image memory 51 in the image processing unit 50 (step S12).
- the light source setting unit 20 causes the programmable light source 30 to emit light with the second illumination light L2 (step S13).
- the image data captured by the camera 40 in a state where the subject 90 is illuminated by the second illumination light L2 is stored in the second image memory 52 in the image processing unit 50 (step S14).
- the reflected light image generation unit 53 in the image processing unit 50 includes pixels in each wavelength band of the first image data stored in the first image memory 51 and the second image data stored in the second image memory 52. Difference image data with pixels in each wavelength band is acquired (step S15). This difference image data becomes reflected light image data. Further, the fluorescence image generation unit 54 in the image processing unit 50 stores the pixels in the respective wavelength bands of the reflected light image data by the first illumination light L 1 obtained by the light source distribution multiplication unit 55 and the first image memory 51. Difference image data with the pixels of each wavelength band of the first image data thus obtained is acquired (step S16). This difference image data becomes fluorescence image data.
- the light-absorbing component converter 58 searches the database 59 for data having a distribution characteristic that matches or is most similar to the distribution characteristic of the fluorescent component indicated by the fluorescence image data (step S17). Then, the light absorption component converter 58 reads out the light absorption component distribution characteristic associated with the fluorescent light component distribution characteristic retrieved from the database 59, and uses the read light absorption component distribution characteristic as the light absorption component distribution of the subject 90. The characteristic is determined (step S18).
- FIG. 5A is an example of the reflected light component R1 and the fluorescent component F1 included in the first image data obtained by photographing the subject 90 illuminated with the first illumination light L1.
- FIG. 5B is an example of the reflected light component R2 and the fluorescent component F2 included in the second image data obtained by photographing the subject 90 illuminated with the second illumination light L2.
- the reflected light component R1 included in the first image data and the reflected light component R2 included in the second image data are image data obtained by photographing the same subject 90. Therefore, the distribution characteristics are almost the same when viewed in the entire visible light region.
- the first illumination light L1 and the second illumination light L2 have high-frequency characteristics that repeat light emission and non-light emission at regular wavelength intervals, and the wavelength positions of the light emission and non-light emission are different. The opposite is true.
- the reflected light component R1 generated by reflecting the illumination light L1 and the reflected light component R2 generated by reflecting the illumination light L2 have high frequency characteristics in which the positions of the peaks and valleys are reversed. Have.
- the light excited by the light incident on the substance is output.
- FIGS. 5A and 5B It is a distribution characteristic with a certain bandwidth. This is due to the fact that the spectral distribution of the light-absorbing component of this substance has a low-frequency distribution having a certain band, that is, a distribution that changes smoothly in the spectral region. Therefore, by setting the spectral distribution of the light source at a higher frequency than the absorption distribution, the fluorescent component F1 included in the first image data and the fluorescent component F2 included in the second image data have substantially the same distribution characteristics. It is.
- the reflected light component R1 and the reflected light component R2 have high frequency characteristics in which the positions of peaks and valleys are reversed, and the fluorescent component F1 and the fluorescent component F2 are substantially the same. Therefore, the reflected light image generation unit 53 obtains a difference between the first image data shown in FIG. 5A and the second image data shown in FIG. 5B, and the first illumination light L1 and the second illumination light. By dividing by the light source luminance of L2, the two fluorescent components F1 and F2 having substantially the same distribution characteristics disappear, and only the reflected light component R0 obtained by adding the two reflected light components R1 and R2 remains.
- the reflected light image generation unit 53 obtains difference image data between the first image data and the second image data, and divides by the light source luminance of the first illumination light L1 and the second illumination light L2. Reflected light image data obtained by extracting the reflected light component of the subject 90 (reflected light component R0 in FIG. 5C) is obtained. In addition, when obtaining the difference image data between the first image data and the second image data, as described above, a process of dividing the reflection component image by the luminance difference between the illumination light L1 and the illumination light L2 is performed. It is preferable.
- the reflected light component R1 of the first illumination light L1 shown in FIG. 5D is obtained by multiplying the reflected light image data of the reflected light component R0 shown in FIG. 5C by the distribution characteristic of the first illumination light L1. .
- the difference between the reflected light component R1 of the first illumination light L1 shown in FIG. 5D and the first image data shown in FIG. 5A it is included in the first image data as shown in FIG. 5E. Only the fluorescent component F1 is extracted. Therefore, the fluorescence image data obtained by extracting the fluorescence component F1 of the subject 90 is obtained by taking the difference between the reflected light image data and a part of the first image data in the fluorescence image generation unit 54.
- the light absorption component conversion unit 58 can obtain the light absorption component A1 of the subject 90 by searching the storage data that matches (similar) from the storage data of the database 59, as shown in FIG. 5F.
- Example of image 6 and 7 show an example in which the reflected light image P3 and the fluorescence image P4 are acquired from the first image P1 and the second image P2 by the image processing apparatus of this example.
- the subject prepared here has characters “ICCV” and surrounding patterns arranged as shown in FIG.
- the character “ICCV” and a part of the pattern around the character are coated with a fluorescent material to have a fluorescence characteristic.
- the other patterns are made of materials (substances) that do not have fluorescent properties.
- Each of the images shown in FIGS. 6 and 7 shows a color image in black and white.
- FIG. 6 shows the first image P1, the second image P2, and the reflected light image P3 obtained from the difference between the images P1 and P2.
- the first image P1 and the second image P2 appear to be substantially the same, and the two images P1 and P2 are almost indistinguishable when displayed.
- the image P3 of the reflected light component R0 component R1 + R2 from which the fluorescent component has been removed according to the principle shown in FIGS. 5A to 5C. Is obtained. Since the fluorescent component is removed from the image P3, the color tone is slightly changed in the portion having the fluorescent characteristics such as the characters “ICCV” as compared with the first image P1 and the second image P2.
- FIG. 7 shows the first image P1, the image P3 of the reflected light component R0, and the fluorescence image P4 obtained from the difference between these images.
- the difference between the first image P1 and the reflected light component R1 extracted from the image P3 of the reflected light component R0 (the reflected light component by the first illumination light L1) is taken to obtain an image P4 from which the fluorescent component F1 has been extracted. Is obtained.
- the image P4 only the characters “ICCV” and the butterfly-shaped pattern, which are locations where the fluorescent material is applied, are displayed. In this image P4, it is understood that only the fluorescent component is extracted without displaying the pattern having no fluorescent component (the portion where the fluorescent material is not applied).
- an image of the reflected light component and an image of the fluorescent component of the measurement object are obtained.
- an image of the fluorescent component it is possible to analyze the distribution characteristic of the fluorescent component, and it is possible to measure the state of the object to be measured from the distribution of the fluorescent component.
- the distribution characteristic of the light-absorbing component that produces the fluorescent component can also be obtained using the distribution characteristic of the fluorescent component.
- the processing for obtaining these images and distribution characteristics can be performed simply by changing the light emission state of the programmable light source 30 and processing the image taken twice by the camera 40, and the reflected light component and the fluorescence component can be measured very easily. It becomes like this.
- the image processing apparatus of this example can measure very easily.
- FIG. 8 is an example in the case of having a high frequency characteristic in which the emission band and the non-emission band of two illumination lights are switched at a relatively short wavelength interval
- FIG. This is an example in the case where the characteristics are switched at a relatively wide wavelength interval.
- a in each figure shows the intensity of each of the two illumination lights L1, L2 or L1 'and L2' for each wavelength position
- B and C in each figure use the respective illumination lights.
- the reflected light component R0 or R0 ′ and the fluorescent component F1 or F1 ′ obtained in this manner are shown.
- the reflected light component Rx shown in FIGS. 8B and 9B and the fluorescent component Fx shown by a broken line in FIGS. 8C and 9C are obtained by using a high-accuracy measuring apparatus different from the image processing apparatus of this example. Is a characteristic measured.
- one cycle of each of the illumination lights L ⁇ b> 1 and L ⁇ b> 2 (a period composed of one light emission period and one non-light emission period) is set to about 40 nm and a relatively short wavelength.
- the reflected light component R0 obtained from the difference between the two images by irradiating the subject with illumination lights L1 and L2 having high-frequency characteristics shown in FIG. 8A is as shown in FIG. 8B.
- the reflected light component R0 shown in FIG. 8B and the reflected light component Rx obtained by the high-accuracy measuring device indicated by the broken line substantially coincide with each other.
- a high-accuracy measuring device indicated by a broken line also indicates the fluorescence component F1 obtained based on the difference between the image obtained by irradiating the illumination light L1 and the image of the reflected light component R0. It almost coincides with the fluorescent component Fx obtained in (1). Therefore, by using the image processing apparatus of this example, there is an effect that the reflected light component and the fluorescence component can be measured with high accuracy.
- FIG. 9 shows an example in which two illumination lights L1 ′ and L2 ′ having a longer period of one cycle are prepared and measured by the image processing apparatus of this example.
- one cycle of the illumination lights L1 ′ and L2 ′ is set to about 160 nm.
- the reflected light component R0 ′ obtained from the difference between the two images by irradiating the subject with the illumination lights L1 ′ and L2 ′ shown in FIG. 9A is as shown in FIG. 9B.
- There is a certain amount of error as can be seen by comparing the reflected light component R0 ′ shown in FIG. 9B with the reflected light component Rx obtained by the high-accuracy measuring device indicated by the broken line.
- the fluorescence component F1 ′ obtained based on the difference between the image obtained by irradiating the illumination light L1 ′ and the image of the reflected light component R0 ′ is also highly accurate indicated by a broken line. It can be seen that there is a certain amount of error compared to the fluorescent component Fx obtained with a simple measuring apparatus.
- the reflected light image or the fluorescence image having excellent characteristics with fewer errors is obtained when one period of each of the illumination lights L1 and L2 is a shorter wavelength interval. Is obtained.
- measurement may be performed using images taken with illumination light L1 ′ and L2 ′ having a wide wavelength interval as shown in FIG. 9A.
- FIG. 10 shows a system configuration of an example of another embodiment of the present invention.
- the light source 81 is irradiated with white illumination light having a somewhat flat intensity characteristic within the wavelength band of visible light.
- the 1st filter 83 and the 2nd filter 84 are selectively arrange
- FIG. The arrangement state of the first filter 83 or the second filter 84 is determined by a command from the filter setting unit 82 based on the control of the control unit 10. That is, according to a command from the filter setting unit 82, the state is set to either the state in which the first filter 83 is disposed or the state in which the second filter 84 is disposed in the illumination light output unit 81a of the light source 81.
- the first filter 83 and the second filter 84 have different transmission characteristics. Specifically, as the first filter 83, when the illumination light output from the light source 81 is transmitted, the characteristics of the first illumination light L1 shown in FIG. Further, as the second filter 84, when the illumination light output from the light source 81 is transmitted, the characteristics of the second illumination light L2 shown in FIG. 2 are obtained. That is, the first filter 83 and the second filter 84 have a high frequency characteristic in which a band where light is transmitted and a band where light is not transmitted are alternately reversed. Here, the high frequency characteristics indicate that the band through which light passes and the band through which light does not pass are alternately set at relatively short wavelength intervals.
- the first filter 83 and the second filter 84 having such characteristics are formed by depositing a film of a predetermined material on a transparent substrate such as glass. Other configurations are the same as those of the image processing apparatus shown in FIG.
- the camera 40 captures the first image data while the filter setting unit 82 has the first filter 83 disposed. obtain. Then, in a state where the filter setting unit 82 arranges the second filter 84, the camera 40 performs shooting to obtain second image data.
- the image processing described in the flowchart of FIG. 4 is performed. Also in the configuration of FIG. 10, image processing is performed based on the principle described with reference to FIG. 5, and an image of reflected light components and an image of fluorescent components can be obtained.
- sunlight may be used as the light source 81 instead of using the light from the light emitter as the light source 81.
- the characteristics of the two illumination lights L1 and L2 shown in FIG. 2 are examples, and are not limited to the characteristics shown in FIG.
- the emission wavelength band and the non-emission wavelength band intersect with each other in a sinusoidal shape
- the emission wavelength band and the non-emission wavelength band have steep characteristics.
- it may have different characteristics from those of these examples.
- the example of FIG. 2 is an example, and the number of divisions may be different from the example of FIG.
- a larger number of divisions between the emission wavelength band and the non-emission wavelength band is preferable for obtaining a reflected light image and a fluorescent image, but even with a small number of divisions, it is possible to obtain a reflected light image and a fluorescent image with reasonable accuracy. it can.
- obtaining the illumination light by using the programmable light source 30 shown in FIG. 1 or the light source 82 and the filters 83 and 84 shown in FIG. 10 is a preferable example, and light sources having other configurations are used. May be.
- a plurality of light emitting diodes having different emission wavelength bands may be prepared, and illumination light having characteristics equivalent to those of the two illumination lights L1 and L2 may be obtained by selecting the light emission state of the plurality of light emitting diodes. .
- data most similar to the distribution characteristic of the detected fluorescent component is searched from the database 74, and the light absorption component data stored in the database 74 corresponding to the searched data is The distribution characteristic of the light absorption component was determined as it was.
- the light absorption component conversion unit 73 determines the similarity between the distribution characteristic of the detected fluorescent component and the distribution characteristic of the fluorescent component retrieved from the database 74, and the distribution of the light absorption component according to the similarity. The characteristics may be corrected.
- the light absorption component conversion unit 73 determines the distribution characteristic of the light absorption component indicated by the light absorption component data stored in the database 74 as the distribution characteristic of the detected fluorescent component. .
- the light absorption component conversion unit 73 performs some correction on the light absorption component distribution characteristic data stored in the database 74 to obtain the detected fluorescent component distribution characteristic. Determine. In this way, the light absorption component conversion unit 73 may convert the distribution characteristic of the light absorption component more accurately.
- the image processing unit and the image analysis unit may be configured with dedicated circuits.
- An image processing apparatus may be realized by creating a program (software) composed of steps to be executed and mounting the program on a computer apparatus.
- the program in this case may be recorded on a recording medium such as an optical disk or a semiconductor memory.
- DESCRIPTION OF SYMBOLS 10 ... Control part, 20 ... Light source setting part, 30 ... Programmable light source, 40 ... Camera, 50 ... Image processing part, 51 ... 1st image memory, 52 ... 2nd image memory, 53 ... Reflected light image generation part, 54 ... Fluorescent image generation unit, 55 ... light source distribution multiplication unit, 56 ... image forming unit, 57 ... light source condition setting unit, 58 ... absorption component conversion unit, 59 ... database, 60 ... image display unit, 70 ... characteristic analysis unit, 81 ... Light source, 81a ... illumination light output unit, 82 ... filter setting unit, 83 ... first filter, 84 ... second filter, 90 ... subject (object to be measured), L1 ... first illumination light, L2 ... second Illumination light
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
A first illumination light (L1), in which a first emission intensity and a second emission intensity which is lower than the first emission intensity are repeated at predetermined wavelength intervals, and a second illumination light (L2) in which the wavelength positions of the emission intensities are the inverse of those of the first illumination light (L1), are generated. A process of dividing the differential between the first image and the second image by the brightness difference between the first illumination light and the second illumination light is performed to obtain an image of a reflected light component. A process of dividing the differential between the first image and the second image by the brightness difference between the first illumination light (L1) and the second illumination light (L2) is performed to obtain an image of a reflected light component. Then, an image of a fluorescence component is obtained on the basis of the differential between the image of the reflection component and the first image.
Description
本発明は、被測定物を撮影した画像から、反射成分と蛍光成分を分離する画像処理装置及び画像処理方法、並びにその画像処理方法を適用したプログラムを記録した記録媒体に関する。
The present invention relates to an image processing apparatus and an image processing method for separating a reflection component and a fluorescence component from an image obtained by photographing an object to be measured, and a recording medium on which a program to which the image processing method is applied is recorded.
物体に光を照射したとき、その物体を見ている観察者には、その物体の表面で入射光がそのまま反射して生じる反射光が見えるだけでなく、物体の性質によっては、物体(物資)そのものが発光して蛍光が見える場合がある。蛍光は、その蛍光を励起する光を物体へ入射したときに、入射した光とは異なる波長の光を物体が発光する現象である。反射光は、物体に入射した光を同じ波長で反射するのに対して、蛍光の場合には、物体に入射して吸収される光(吸光)の波長よりも長い波長になる。
When an object is irradiated with light, an observer viewing the object not only sees the reflected light that is reflected from the surface of the object as it is, but also depends on the nature of the object. In some cases, the light itself emits fluorescence. Fluorescence is a phenomenon in which an object emits light having a wavelength different from that of incident light when light that excites the fluorescence is incident on the object. The reflected light reflects light incident on the object at the same wavelength, whereas in the case of fluorescence, the reflected light has a wavelength longer than the wavelength of light (absorption) that is incident upon and absorbed by the object.
図11は、3つの物体(レタス,トマト,バター)についての、可視光の領域での反射光の特性例を示す。この図11の縦軸に示す反射率は、それぞれの物体ごとに個別に測定した相対値であり、3つの物体での反射光の大小関係を示すものではない。
例えば、レタスaは、緑色の領域で反射率が上昇する。したがって、観察者にはレタスが緑色に見える。また、トマトbは、赤色の領域で反射率が上昇する。したがって、観察者にはトマトが赤色に見える。
それぞれの色(波長)の反射光は、それぞれの物体に照射される光をそのまま反射する。つまり、緑色の波長帯の光をレタスに照射することでレタスが緑色に見え、赤色の波長帯の光をトマトに照射することでトマトが赤色に見える。
一方、上述した蛍光の場合には、それぞれの物体に入射する光とは異なった波長の光である長波長側の光を出射する。蛍光成分は、様々な物体から発することが知られているが、物体によって波長や分布特性は変化する。 FIG. 11 shows a characteristic example of reflected light in the visible light region for three objects (lettuce, tomato, butter). The reflectance shown on the vertical axis in FIG. 11 is a relative value measured individually for each object, and does not indicate the magnitude relationship of the reflected light from the three objects.
For example, the reflectance of lettuce a increases in the green region. Therefore, lettuce looks green to the observer. In addition, the reflectance of tomato b increases in the red region. Therefore, the tomato appears red to the observer.
The reflected light of each color (wavelength) reflects the light irradiated to each object as it is. In other words, lettuce looks green when irradiated with light in the green wavelength band, and tomato looks red when irradiated with light in the red wavelength band.
On the other hand, in the case of the fluorescence described above, light on the long wavelength side, which is light having a wavelength different from that of light incident on each object, is emitted. The fluorescent component is known to be emitted from various objects, but the wavelength and distribution characteristics vary depending on the object.
例えば、レタスaは、緑色の領域で反射率が上昇する。したがって、観察者にはレタスが緑色に見える。また、トマトbは、赤色の領域で反射率が上昇する。したがって、観察者にはトマトが赤色に見える。
それぞれの色(波長)の反射光は、それぞれの物体に照射される光をそのまま反射する。つまり、緑色の波長帯の光をレタスに照射することでレタスが緑色に見え、赤色の波長帯の光をトマトに照射することでトマトが赤色に見える。
一方、上述した蛍光の場合には、それぞれの物体に入射する光とは異なった波長の光である長波長側の光を出射する。蛍光成分は、様々な物体から発することが知られているが、物体によって波長や分布特性は変化する。 FIG. 11 shows a characteristic example of reflected light in the visible light region for three objects (lettuce, tomato, butter). The reflectance shown on the vertical axis in FIG. 11 is a relative value measured individually for each object, and does not indicate the magnitude relationship of the reflected light from the three objects.
For example, the reflectance of lettuce a increases in the green region. Therefore, lettuce looks green to the observer. In addition, the reflectance of tomato b increases in the red region. Therefore, the tomato appears red to the observer.
The reflected light of each color (wavelength) reflects the light irradiated to each object as it is. In other words, lettuce looks green when irradiated with light in the green wavelength band, and tomato looks red when irradiated with light in the red wavelength band.
On the other hand, in the case of the fluorescence described above, light on the long wavelength side, which is light having a wavelength different from that of light incident on each object, is emitted. The fluorescent component is known to be emitted from various objects, but the wavelength and distribution characteristics vary depending on the object.
従来、反射光と蛍光を区別して正確に検出するためには、非常に複雑で精度の高い解析装置が必要であった。例えば、可視光の波長帯域を複数の狭い帯域に分割して、それぞれの帯域ごとの光を被測定対象物に照射する。そして、その被測定対象物が発する光の波長を光スペクトルアナライザなどの測定器で測定する。測定器で測定された光が、照射した光と同じ波長の成分だけのときには、反射光だけと判断される。また、測定器で測定された光が、照射した光よりも長い波長域であるとき、その長い波長域の光は蛍光と判断される。
このように、狭い帯域に分割された可視光による光の発光と測定を、可視光の全ての波長範囲で行うことで、被測定対象物の反射光と蛍光とを分離して検出することができる。
被測定対象物の反射光と蛍光を正確に検出できることで、例えば農作物などの植物の産地や種類などが判ることが知られている。例えばマンゴの蛍光成分の波長分布は、産地によって異なることが知られている。具体的には、日本の沖縄産のマンゴと、日本の宮崎産のマンゴと、台湾産のマンゴが、蛍光成分の波長分布から正確に判別できることが知られている。また、そばに含まれるそば粉の量が、蛍光成分の波長分布から判ることが知られている。 Conventionally, in order to distinguish and accurately detect reflected light and fluorescence, a very complicated and highly accurate analyzer is required. For example, the wavelength band of visible light is divided into a plurality of narrow bands, and the object to be measured is irradiated with light in each band. Then, the wavelength of light emitted from the object to be measured is measured with a measuring instrument such as an optical spectrum analyzer. When the light measured by the measuring instrument is only a component having the same wavelength as the irradiated light, it is determined that only the reflected light is present. Further, when the light measured by the measuring instrument is in a longer wavelength range than the irradiated light, the light in the longer wavelength range is determined to be fluorescent.
In this way, by performing light emission and measurement with visible light divided into narrow bands in the entire wavelength range of visible light, the reflected light and fluorescence of the object to be measured can be detected separately. it can.
It is known that, for example, the locality and type of plants such as agricultural crops can be known by accurately detecting the reflected light and fluorescence of the measurement object. For example, it is known that the wavelength distribution of the fluorescent component of mango varies depending on the production area. More specifically, it is known that Japanese mangoes from Okinawa, Japanese Miyazaki from Mango, and Taiwan from mango can be accurately distinguished from the wavelength distribution of fluorescent components. It is also known that the amount of buckwheat contained in buckwheat can be determined from the wavelength distribution of the fluorescent component.
このように、狭い帯域に分割された可視光による光の発光と測定を、可視光の全ての波長範囲で行うことで、被測定対象物の反射光と蛍光とを分離して検出することができる。
被測定対象物の反射光と蛍光を正確に検出できることで、例えば農作物などの植物の産地や種類などが判ることが知られている。例えばマンゴの蛍光成分の波長分布は、産地によって異なることが知られている。具体的には、日本の沖縄産のマンゴと、日本の宮崎産のマンゴと、台湾産のマンゴが、蛍光成分の波長分布から正確に判別できることが知られている。また、そばに含まれるそば粉の量が、蛍光成分の波長分布から判ることが知られている。 Conventionally, in order to distinguish and accurately detect reflected light and fluorescence, a very complicated and highly accurate analyzer is required. For example, the wavelength band of visible light is divided into a plurality of narrow bands, and the object to be measured is irradiated with light in each band. Then, the wavelength of light emitted from the object to be measured is measured with a measuring instrument such as an optical spectrum analyzer. When the light measured by the measuring instrument is only a component having the same wavelength as the irradiated light, it is determined that only the reflected light is present. Further, when the light measured by the measuring instrument is in a longer wavelength range than the irradiated light, the light in the longer wavelength range is determined to be fluorescent.
In this way, by performing light emission and measurement with visible light divided into narrow bands in the entire wavelength range of visible light, the reflected light and fluorescence of the object to be measured can be detected separately. it can.
It is known that, for example, the locality and type of plants such as agricultural crops can be known by accurately detecting the reflected light and fluorescence of the measurement object. For example, it is known that the wavelength distribution of the fluorescent component of mango varies depending on the production area. More specifically, it is known that Japanese mangoes from Okinawa, Japanese Miyazaki from Mango, and Taiwan from mango can be accurately distinguished from the wavelength distribution of fluorescent components. It is also known that the amount of buckwheat contained in buckwheat can be determined from the wavelength distribution of the fluorescent component.
特開2013-114233号公報には、標本が発する蛍光波長帯域を特定するために、異なる複数の波長帯域で撮影し、それらの画像から蛍光の特徴量を算出する技術についての記載がある。
Japanese Unexamined Patent Application Publication No. 2013-114233 describes a technique for photographing in a plurality of different wavelength bands and calculating a fluorescence feature amount from these images in order to specify the fluorescence wavelength band emitted by the specimen.
特開2013-114233号公報に記載されているように、波長帯域が狭い複数の帯域ごとに撮影を行って、蛍光を検出するためには、非常に多くの撮影回数が必要であり、撮影作業に手間がかかるという問題があった。特に、対象物体の1点の蛍光成分を計測するのではなく、対象物体全体や対象シーン全体を計測する場合には、さらに計測に時間がかかり、非常に困難な作業になるという問題があった。また、光スペクトルアナライザなどの測定器は非常に高価で、その取り扱いが複雑な機器であり、これを利用した解析システムも非常に高価になるという問題があった。
上述したように反射光成分や蛍光成分が正確に測定できることは、作物の選別や生物の状態の測定などで様々なメリットがあることが従来から知られているが、反射光成分や蛍光成分を簡単に測定することが困難であったため、反射光成分や蛍光成分の利用が進んでいないという問題があった。 As described in Japanese Patent Application Laid-Open No. 2013-114233, in order to detect fluorescence by detecting a plurality of bands having a narrow wavelength band and detect fluorescence, a very large number of times of imaging is required. There was a problem that it took time and effort. In particular, when measuring the entire target object or the entire target scene instead of measuring the single fluorescent component of the target object, there is a problem that it takes much more time for the measurement and is a very difficult task. . In addition, measuring instruments such as an optical spectrum analyzer are very expensive and are complicated to handle, and there is a problem that an analysis system using the measuring instrument becomes very expensive.
As described above, the fact that the reflected light component and the fluorescent component can be accurately measured is known to have various merits in the selection of crops and the state of living things. Since it was difficult to measure easily, there was a problem that utilization of the reflected light component and the fluorescent component was not advanced.
上述したように反射光成分や蛍光成分が正確に測定できることは、作物の選別や生物の状態の測定などで様々なメリットがあることが従来から知られているが、反射光成分や蛍光成分を簡単に測定することが困難であったため、反射光成分や蛍光成分の利用が進んでいないという問題があった。 As described in Japanese Patent Application Laid-Open No. 2013-114233, in order to detect fluorescence by detecting a plurality of bands having a narrow wavelength band and detect fluorescence, a very large number of times of imaging is required. There was a problem that it took time and effort. In particular, when measuring the entire target object or the entire target scene instead of measuring the single fluorescent component of the target object, there is a problem that it takes much more time for the measurement and is a very difficult task. . In addition, measuring instruments such as an optical spectrum analyzer are very expensive and are complicated to handle, and there is a problem that an analysis system using the measuring instrument becomes very expensive.
As described above, the fact that the reflected light component and the fluorescent component can be accurately measured is known to have various merits in the selection of crops and the state of living things. Since it was difficult to measure easily, there was a problem that utilization of the reflected light component and the fluorescent component was not advanced.
本発明は、被測定物の反射光や蛍光を正確に検出できる画像処理装置、画像処理方法及び記録媒体を提供することを目的とする。
An object of the present invention is to provide an image processing apparatus, an image processing method, and a recording medium that can accurately detect reflected light and fluorescence of an object to be measured.
本発明の画像処理装置は、光源と、画像処理部とを備える。
光源は、所定の波長間隔で発光状態と非発光状態とを繰り返す波長特性を持つ第1の照明光と、その第1の照明光と発光状態と非発光状態の波長位置が逆転した波長特性を持つ第2の照明光とを選択的に発生させる。
画像処理部は、第1の照明光が照射された被測定対象物を撮影した第1の画像と、第2の照明光が照射された被測定対象物を撮影した第2の画像とを取込み、第1の画像の画素と第2の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割る処理を行うことで、被測定対象物の反射成分の画像を得る。さらに、第1の画像の画素と反射成分の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割って得た反射成分の画像から、被測定対象物の蛍光成分の画像を得る。 The image processing apparatus of the present invention includes a light source and an image processing unit.
The light source has a first illumination light having a wavelength characteristic that repeats a light emission state and a non-light emission state at a predetermined wavelength interval, and a wavelength characteristic in which the wavelength positions of the first illumination light, the light emission state, and the non-light emission state are reversed. The second illumination light is selectively generated.
The image processing unit captures a first image obtained by photographing the object to be measured irradiated with the first illumination light and a second image obtained by photographing the object to be measured irradiated by the second illumination light. By performing a process of dividing the difference between the pixels of the first image and the pixels of the second image by the luminance difference between the first illumination light and the second illumination light, an image of the reflection component of the object to be measured Get. Furthermore, from the reflection component image obtained by dividing the difference between the first image pixel and the reflection component image pixel by the luminance difference between the first illumination light and the second illumination light, An image of the fluorescent component is obtained.
光源は、所定の波長間隔で発光状態と非発光状態とを繰り返す波長特性を持つ第1の照明光と、その第1の照明光と発光状態と非発光状態の波長位置が逆転した波長特性を持つ第2の照明光とを選択的に発生させる。
画像処理部は、第1の照明光が照射された被測定対象物を撮影した第1の画像と、第2の照明光が照射された被測定対象物を撮影した第2の画像とを取込み、第1の画像の画素と第2の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割る処理を行うことで、被測定対象物の反射成分の画像を得る。さらに、第1の画像の画素と反射成分の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割って得た反射成分の画像から、被測定対象物の蛍光成分の画像を得る。 The image processing apparatus of the present invention includes a light source and an image processing unit.
The light source has a first illumination light having a wavelength characteristic that repeats a light emission state and a non-light emission state at a predetermined wavelength interval, and a wavelength characteristic in which the wavelength positions of the first illumination light, the light emission state, and the non-light emission state are reversed. The second illumination light is selectively generated.
The image processing unit captures a first image obtained by photographing the object to be measured irradiated with the first illumination light and a second image obtained by photographing the object to be measured irradiated by the second illumination light. By performing a process of dividing the difference between the pixels of the first image and the pixels of the second image by the luminance difference between the first illumination light and the second illumination light, an image of the reflection component of the object to be measured Get. Furthermore, from the reflection component image obtained by dividing the difference between the first image pixel and the reflection component image pixel by the luminance difference between the first illumination light and the second illumination light, An image of the fluorescent component is obtained.
本発明の画像処理方法は、照明光生成工程として、所定の波長間隔で発光状態と非発光状態とを繰り返す波長特性を持つ第1の照明光と、第1の照明光と発光状態と非発光状態の波長位置が逆転した波長特性を持つ第2の照明光とを選択的に発生させる。
そして、撮影工程として、照明光生成工程で得られた照明光が照射された被測定対象物を撮影する。
さらに、画像処理工程として、撮影工程で第1の照明光が照射された被測定対象物を撮影した第1の画像と、第2の照明光が照射された被測定対象物を撮影した第2の画像とを取込み、第1の画像の画素と第2の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割る処理を行うことで、被測定対象物の反射成分の画像を得る。さらにまた、第1の画像の画素と反射成分の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割って得た反射成分の画像から、被測定対象物の蛍光成分の画像を得る。 In the image processing method of the present invention, as the illumination light generation step, the first illumination light having a wavelength characteristic that repeats the light emission state and the non-light emission state at predetermined wavelength intervals, the first illumination light, the light emission state, and the non-light emission The second illumination light having a wavelength characteristic in which the wavelength position of the state is reversed is selectively generated.
Then, as the photographing process, the measurement object irradiated with the illumination light obtained in the illumination light generation process is photographed.
Furthermore, as the image processing step, a first image obtained by photographing the measurement target object irradiated with the first illumination light in the photographing step, and a second image obtained by photographing the measurement target object irradiated with the second illumination light. The object to be measured is obtained by performing a process of taking the difference between the first illumination light and the second illumination light and dividing the difference between the first image pixel and the second image pixel by the luminance difference between the first illumination light and the second illumination light. An image of the reflection component of is obtained. Furthermore, the object to be measured is obtained from the reflection component image obtained by dividing the difference between the pixel of the first image and the pixel of the reflection component by the luminance difference between the first illumination light and the second illumination light. An image of the fluorescent component is obtained.
そして、撮影工程として、照明光生成工程で得られた照明光が照射された被測定対象物を撮影する。
さらに、画像処理工程として、撮影工程で第1の照明光が照射された被測定対象物を撮影した第1の画像と、第2の照明光が照射された被測定対象物を撮影した第2の画像とを取込み、第1の画像の画素と第2の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割る処理を行うことで、被測定対象物の反射成分の画像を得る。さらにまた、第1の画像の画素と反射成分の画像の画素との差分を、第1の照明光と第2の照明光の輝度差で割って得た反射成分の画像から、被測定対象物の蛍光成分の画像を得る。 In the image processing method of the present invention, as the illumination light generation step, the first illumination light having a wavelength characteristic that repeats the light emission state and the non-light emission state at predetermined wavelength intervals, the first illumination light, the light emission state, and the non-light emission The second illumination light having a wavelength characteristic in which the wavelength position of the state is reversed is selectively generated.
Then, as the photographing process, the measurement object irradiated with the illumination light obtained in the illumination light generation process is photographed.
Furthermore, as the image processing step, a first image obtained by photographing the measurement target object irradiated with the first illumination light in the photographing step, and a second image obtained by photographing the measurement target object irradiated with the second illumination light. The object to be measured is obtained by performing a process of taking the difference between the first illumination light and the second illumination light and dividing the difference between the first image pixel and the second image pixel by the luminance difference between the first illumination light and the second illumination light. An image of the reflection component of is obtained. Furthermore, the object to be measured is obtained from the reflection component image obtained by dividing the difference between the pixel of the first image and the pixel of the reflection component by the luminance difference between the first illumination light and the second illumination light. An image of the fluorescent component is obtained.
本発明の記録媒体は、上述した画像処理方法の各工程を手順としてコンピュータに実行させるプログラムを記録した記録媒体である。
The recording medium of the present invention is a recording medium that records a program that causes a computer to execute each step of the above-described image processing method as a procedure.
本発明によると、2種類の照明光を用意して撮影した2つの画像から、簡単に被測定対象物の反射成分の画像を得ることができる。さらに、その被測定対象物の反射成分の画像から、蛍光成分の画像を得ることも簡単にできるようになる。例えば、反射光成分の画像や蛍光成分の画像から、生物(植物,動物)の状態の判別(種類の判別,活性状態の判別など)が簡単にできるようになる。
According to the present invention, it is possible to easily obtain an image of the reflection component of the object to be measured from two images that are taken with two types of illumination light. Furthermore, it is possible to easily obtain an image of the fluorescent component from the reflected component image of the object to be measured. For example, it is possible to easily determine the state of a living organism (plant, animal) (type determination, active state determination, etc.) from the reflected light component image and the fluorescent component image.
以下、本発明の一実施の形態例(以下、「本例」と称する。)を、図1~図10を参照して説明する。
Hereinafter, an embodiment of the present invention (hereinafter referred to as “this example”) will be described with reference to FIGS.
[1.システム構成例]
図1は、本例の画像処理装置のシステム全体を示す図である。このシステムは、被測定対象物である被写体90からの反射光と、被写体90が発する蛍光を測定するものである。また、このシステムは、蛍光から吸光率(入射した光が反射しないで吸収される割合)についても測定する。
被写体90は、プログラマブル光源30から照明光が照射された状態で、カメラ40が撮影を行う。プログラマブル光源30は、光源設定部20からの指示に基づいて、出力する光の波長や分光分布を自由にデザインできる光源である。光源設定部20での光源設定とカメラ40での撮影は、制御部10の制御下で行われる。 [1. System configuration example]
FIG. 1 is a diagram showing the entire system of the image processing apparatus of this example. This system measures reflected light from a subject 90 that is a measurement target and fluorescence emitted from the subject 90. The system also measures the absorbance from the fluorescence (the rate at which incident light is absorbed without reflection).
The subject 90 is photographed by thecamera 40 in a state where illumination light is irradiated from the programmable light source 30. The programmable light source 30 is a light source that can freely design the wavelength and spectral distribution of light to be output based on an instruction from the light source setting unit 20. The light source setting by the light source setting unit 20 and the photographing by the camera 40 are performed under the control of the control unit 10.
図1は、本例の画像処理装置のシステム全体を示す図である。このシステムは、被測定対象物である被写体90からの反射光と、被写体90が発する蛍光を測定するものである。また、このシステムは、蛍光から吸光率(入射した光が反射しないで吸収される割合)についても測定する。
被写体90は、プログラマブル光源30から照明光が照射された状態で、カメラ40が撮影を行う。プログラマブル光源30は、光源設定部20からの指示に基づいて、出力する光の波長や分光分布を自由にデザインできる光源である。光源設定部20での光源設定とカメラ40での撮影は、制御部10の制御下で行われる。 [1. System configuration example]
FIG. 1 is a diagram showing the entire system of the image processing apparatus of this example. This system measures reflected light from a subject 90 that is a measurement target and fluorescence emitted from the subject 90. The system also measures the absorbance from the fluorescence (the rate at which incident light is absorbed without reflection).
The subject 90 is photographed by the
プログラマブル光源30は、多波長可変光源とも称され、例えば400nm~720nmの可視光の範囲内で、各波長帯の光の分布状態を自由に調整可能な光源である。このプログラマブル光源30を使用することで、任意の色や波長の照射光を再現できる。プログラマブル光源30は、例えば、株式会社ニコンから製品名ELS-VISとして製品化されたものが適用可能である。
The programmable light source 30 is also referred to as a multi-wavelength variable light source, and is a light source that can freely adjust the distribution state of light in each wavelength band within a visible light range of 400 nm to 720 nm, for example. By using this programmable light source 30, it is possible to reproduce irradiation light of any color or wavelength. As the programmable light source 30, for example, a product manufactured by Nikon Corporation under the product name ELS-VIS is applicable.
光源設定部20からの指示に基づいて、プログラマブル光源30が出力する照明光としては、第1の発光強度の帯域と第2の発光強度の帯域の波長位置が相互に逆になる2種類の照明光(第1の照明光L1及び第2の照明光L2)が用意される。
図2A及び図2Bは、第1の照明光L1と第2の照明光L2の特性例を示す図である。図2A及び図2Bにおいて、縦軸は光の強度であり、横軸は波長である。第1の照明光L1と第2の照明光L2は、ほぼ可視光の帯域に相当する420nmから780nmまでの帯域の光である。第1の照明光L1と第2の照明光L2は、図2Aの例と、図2Bの例のいずれを適用してもよい。なお、光源の帯域を420nmから780nmとするのは一例であり、各照明光L1,L2を発する光源の帯域は広いものが望ましく、光源の帯域が広い程、扱うことができる反射と蛍光の帯域も広くなる。 As illumination light output from the programmablelight source 30 based on an instruction from the light source setting unit 20, there are two types of illumination in which the wavelength positions of the first emission intensity band and the second emission intensity band are opposite to each other. Light (first illumination light L1 and second illumination light L2) is prepared.
2A and 2B are diagrams illustrating characteristic examples of the first illumination light L1 and the second illumination light L2. 2A and 2B, the vertical axis represents the light intensity, and the horizontal axis represents the wavelength. The first illumination light L1 and the second illumination light L2 are light in a band from 420 nm to 780 nm that substantially corresponds to a visible light band. Either the example of FIG. 2A or the example of FIG. 2B may be applied to the first illumination light L1 and the second illumination light L2. Note that the light source band is set to 420 nm to 780 nm as an example, and it is desirable that the band of the light source emitting each of the illumination lights L1 and L2 is wide. The wider the light source band, the more reflective and fluorescent bands that can be handled. Also become wider.
図2A及び図2Bは、第1の照明光L1と第2の照明光L2の特性例を示す図である。図2A及び図2Bにおいて、縦軸は光の強度であり、横軸は波長である。第1の照明光L1と第2の照明光L2は、ほぼ可視光の帯域に相当する420nmから780nmまでの帯域の光である。第1の照明光L1と第2の照明光L2は、図2Aの例と、図2Bの例のいずれを適用してもよい。なお、光源の帯域を420nmから780nmとするのは一例であり、各照明光L1,L2を発する光源の帯域は広いものが望ましく、光源の帯域が広い程、扱うことができる反射と蛍光の帯域も広くなる。 As illumination light output from the programmable
2A and 2B are diagrams illustrating characteristic examples of the first illumination light L1 and the second illumination light L2. 2A and 2B, the vertical axis represents the light intensity, and the horizontal axis represents the wavelength. The first illumination light L1 and the second illumination light L2 are light in a band from 420 nm to 780 nm that substantially corresponds to a visible light band. Either the example of FIG. 2A or the example of FIG. 2B may be applied to the first illumination light L1 and the second illumination light L2. Note that the light source band is set to 420 nm to 780 nm as an example, and it is desirable that the band of the light source emitting each of the illumination lights L1 and L2 is wide. The wider the light source band, the more reflective and fluorescent bands that can be handled. Also become wider.
図2Aの例の場合、第1の照明光L1と第2の照明光L2は、その帯域内で、一定の波長間隔ごとに発光と非発光を繰り返す高周波特性を持つ。但し、第1の照明光L1と第2の照明光L2は、相互に逆の特性となるようにしてある。すなわち、第1の照明光L1が発光状態になる帯域では、第2の照明光L2は非発光状態になる。また、第1の照明光L1が非発光状態になる帯域では、第2の照明光L2は発光状態になる。2つの照明光L1,L2を加算することで、可視光の全帯域内でほぼフラットな強度の光が得られる。
In the case of the example of FIG. 2A, the first illumination light L1 and the second illumination light L2 have high-frequency characteristics that repeat light emission and non-light emission at regular wavelength intervals within the band. However, the first illumination light L1 and the second illumination light L2 have opposite characteristics. That is, in the band where the first illumination light L1 is in a light emission state, the second illumination light L2 is in a non-light emission state. In the band where the first illumination light L1 is in a non-light emitting state, the second illumination light L2 is in a light emitting state. By adding the two illumination lights L1 and L2, light having a substantially flat intensity within the entire visible light band can be obtained.
図2Bは、第1の照明光L1と第2の照明光L2のそれぞれが、輝度の低い状態でも、ある程度の輝度値で発光する例を示す。すなわち、第1の照明光L1と第2の照明光L2は、一定の波長間隔ごとに発光強度が強い発光状態と発光強度が弱い発光状態とを繰り返す。そして、第1の照明光L1と第2の照明光L2とで、発光強度が強い発光状態の帯域と発光強度が弱い発光状態の帯域とが、相互に逆になるようにする。
図2Bの例の場合にも、2つの照明光L1,L2を加算することで、可視光の全帯域内でほぼフラットな強度の光が得られる。 FIG. 2B shows an example in which each of the first illumination light L1 and the second illumination light L2 emits light with a certain luminance value even in a low luminance state. That is, the 1st illumination light L1 and the 2nd illumination light L2 repeat the light emission state with a strong light emission intensity and the light emission state with a low light emission intensity for every fixed wavelength interval. Then, the first illumination light L1 and the second illumination light L2 are configured such that the light emission state band having a high light emission intensity and the light emission state band having a low light emission intensity are opposite to each other.
Also in the case of the example of FIG. 2B, by adding the two illumination lights L1 and L2, light having a substantially flat intensity can be obtained within the entire visible light band.
図2Bの例の場合にも、2つの照明光L1,L2を加算することで、可視光の全帯域内でほぼフラットな強度の光が得られる。 FIG. 2B shows an example in which each of the first illumination light L1 and the second illumination light L2 emits light with a certain luminance value even in a low luminance state. That is, the 1st illumination light L1 and the 2nd illumination light L2 repeat the light emission state with a strong light emission intensity and the light emission state with a low light emission intensity for every fixed wavelength interval. Then, the first illumination light L1 and the second illumination light L2 are configured such that the light emission state band having a high light emission intensity and the light emission state band having a low light emission intensity are opposite to each other.
Also in the case of the example of FIG. 2B, by adding the two illumination lights L1 and L2, light having a substantially flat intensity can be obtained within the entire visible light band.
光源設定部20は、第1の照明光L1を出力する期間と、第2の照明光L2を出力する期間を個別に設定することができる。
なお、図2A及び図2Bの例では、420nmから780nmまでの範囲を23の帯域に分割して、発光と非発光を繰り返す特性を図示したが、この帯域の分割数は一例であり、これよりも少ない分割数やより多い分割数でもよい。本例の場合、例えば1つの発光帯域の幅が40nm程度以下のとき、後述する各光成分の画像を得るための十分な精度が確保される。つまり、2つの照明光L1,L2に対して、被測定対象物でほぼ同量の光が吸収されることを保証するような高い周波数特性を設定することが、誤差の少ない精度の良い分布特性を得る上で重要である。この発光と非発光を繰り返す高い周波数特性は、標本化定理により決まる。 The lightsource setting unit 20 can individually set a period for outputting the first illumination light L1 and a period for outputting the second illumination light L2.
In the example of FIGS. 2A and 2B, the range from 420 nm to 780 nm is divided into 23 bands, and the characteristics of repeating light emission and non-light emission are illustrated. However, the number of divisions of this band is an example, Alternatively, a smaller number of divisions or a larger number of divisions may be used. In the case of this example, for example, when the width of one emission band is about 40 nm or less, sufficient accuracy for obtaining an image of each light component described later is ensured. In other words, it is possible to set a high frequency characteristic for the two illumination lights L1 and L2 so as to guarantee that the object to be measured absorbs substantially the same amount of light, and to achieve an accurate distribution characteristic with few errors. It is important in getting. The high frequency characteristic that repeats light emission and non-light emission is determined by the sampling theorem.
なお、図2A及び図2Bの例では、420nmから780nmまでの範囲を23の帯域に分割して、発光と非発光を繰り返す特性を図示したが、この帯域の分割数は一例であり、これよりも少ない分割数やより多い分割数でもよい。本例の場合、例えば1つの発光帯域の幅が40nm程度以下のとき、後述する各光成分の画像を得るための十分な精度が確保される。つまり、2つの照明光L1,L2に対して、被測定対象物でほぼ同量の光が吸収されることを保証するような高い周波数特性を設定することが、誤差の少ない精度の良い分布特性を得る上で重要である。この発光と非発光を繰り返す高い周波数特性は、標本化定理により決まる。 The light
In the example of FIGS. 2A and 2B, the range from 420 nm to 780 nm is divided into 23 bands, and the characteristics of repeating light emission and non-light emission are illustrated. However, the number of divisions of this band is an example, Alternatively, a smaller number of divisions or a larger number of divisions may be used. In the case of this example, for example, when the width of one emission band is about 40 nm or less, sufficient accuracy for obtaining an image of each light component described later is ensured. In other words, it is possible to set a high frequency characteristic for the two illumination lights L1 and L2 so as to guarantee that the object to be measured absorbs substantially the same amount of light, and to achieve an accurate distribution characteristic with few errors. It is important in getting. The high frequency characteristic that repeats light emission and non-light emission is determined by the sampling theorem.
また、図2A及び図2Bの例では、第1の照明光L1と第2の照明光L2は、正弦波状に強度が上下する例を示したが、このような正弦波状の変化は一例であり、その他の変化状態であってもよい。
例えば、図2Cに示す矩形波の第1の照明光と、図2Dに示す矩形波の第2の照明光を使用してもよい。すなわち、図2Cに示す第1の照明光は、一定の波長間隔で矩形波状の急峻な特性で、発光と非発光とが連続する特性とする。そして、図2Dに示す第2の照明光は、第1の照明光と発光区間と非発光区間との波長位置が入れ替えた上で、一定の波長間隔で矩形波状の急峻な特性で発光と非発光とが連続する特性とする。この図2C,図2Dの矩形波状の急峻な特性とする場合にも、発光と非発光とが連続するのではなく、図2Bの場合と同様に、第1の強度での発光と第2の強度での発光が連続する特性としてもよい。 In the example of FIGS. 2A and 2B, the first illumination light L1 and the second illumination light L2 show an example in which the intensity increases and decreases in a sine wave shape, but such a change in the sine wave shape is an example. Other change states may be used.
For example, the rectangular wave first illumination light shown in FIG. 2C and the rectangular wave second illumination light shown in FIG. 2D may be used. That is, the first illumination light shown in FIG. 2C has a rectangular wave-like steep characteristic at a constant wavelength interval, and has a characteristic in which light emission and non-light emission continue. The second illumination light shown in FIG. 2D emits light and does not emit light with a steep characteristic of a rectangular wave at a constant wavelength interval after the wavelength positions of the first illumination light, the light emission section, and the non-light emission section are interchanged. The characteristic is that light emission continues. 2C and 2D, the light emission and non-light emission do not continue, but the light emission at the first intensity and the second light emission are the same as in FIG. 2B. It is good also as the characteristic that light emission with an intensity | strength continues.
例えば、図2Cに示す矩形波の第1の照明光と、図2Dに示す矩形波の第2の照明光を使用してもよい。すなわち、図2Cに示す第1の照明光は、一定の波長間隔で矩形波状の急峻な特性で、発光と非発光とが連続する特性とする。そして、図2Dに示す第2の照明光は、第1の照明光と発光区間と非発光区間との波長位置が入れ替えた上で、一定の波長間隔で矩形波状の急峻な特性で発光と非発光とが連続する特性とする。この図2C,図2Dの矩形波状の急峻な特性とする場合にも、発光と非発光とが連続するのではなく、図2Bの場合と同様に、第1の強度での発光と第2の強度での発光が連続する特性としてもよい。 In the example of FIGS. 2A and 2B, the first illumination light L1 and the second illumination light L2 show an example in which the intensity increases and decreases in a sine wave shape, but such a change in the sine wave shape is an example. Other change states may be used.
For example, the rectangular wave first illumination light shown in FIG. 2C and the rectangular wave second illumination light shown in FIG. 2D may be used. That is, the first illumination light shown in FIG. 2C has a rectangular wave-like steep characteristic at a constant wavelength interval, and has a characteristic in which light emission and non-light emission continue. The second illumination light shown in FIG. 2D emits light and does not emit light with a steep characteristic of a rectangular wave at a constant wavelength interval after the wavelength positions of the first illumination light, the light emission section, and the non-light emission section are interchanged. The characteristic is that light emission continues. 2C and 2D, the light emission and non-light emission do not continue, but the light emission at the first intensity and the second light emission are the same as in FIG. 2B. It is good also as the characteristic that light emission with an intensity | strength continues.
図1の説明に戻ると、プログラマブル光源30が第1の照明光L1を出力した状態で、カメラ40が被写体90の撮影を行う。また、プログラマブル光源30が第2の照明光L2を出力した状態で、カメラ40が被写体90の撮影を行う。
カメラ40としては、可視光の範囲内を所定数の帯域(例えば30帯域)に分割して、その分割した帯域ごとに各画素のデータを得る分光カメラが使用される。
カメラ40が撮影して得た画像データは、画像処理部50に送られ、画像処理部50によって反射光成分と蛍光成分を分離する処理が行われる。 Returning to the description of FIG. 1, thecamera 40 captures the subject 90 in a state where the programmable light source 30 outputs the first illumination light L <b> 1. In addition, the camera 40 captures the subject 90 in a state where the programmable light source 30 outputs the second illumination light L2.
As thecamera 40, a spectroscopic camera that divides the range of visible light into a predetermined number of bands (for example, 30 bands) and obtains data of each pixel for each of the divided bands is used.
Image data acquired by thecamera 40 is sent to the image processing unit 50, and the image processing unit 50 performs a process of separating the reflected light component and the fluorescent component.
カメラ40としては、可視光の範囲内を所定数の帯域(例えば30帯域)に分割して、その分割した帯域ごとに各画素のデータを得る分光カメラが使用される。
カメラ40が撮影して得た画像データは、画像処理部50に送られ、画像処理部50によって反射光成分と蛍光成分を分離する処理が行われる。 Returning to the description of FIG. 1, the
As the
Image data acquired by the
すなわち、画像処理部50は、第1の照明光L1で照明された被写体90を撮影して得た画像データと、第2の照明光L2で照明された被写体90を撮影して得た画像データとを演算処理して、反射光の画像データと蛍光の画像データとを得る。さらに、画像処理部50は、蛍光の画像データから吸光成分の波長分布を推定する。また、画像処理部50は、各画像データと吸光成分の波長分布とを使用して、任意の色の光源で被写体90を照明したときの画像データを演算で形成し、その形成した任意色の光源による画像データを得る。
画像処理部50が蛍光の画像データを得る際には、光源設定部20から、第1の照明光L1の設定状態に関するデータを取得する。反射光の画像データと蛍光の画像データと吸光成分の波長分布とを得るための具体的な処理については後述する。 In other words, theimage processing unit 50 captures image data obtained by photographing the subject 90 illuminated with the first illumination light L1, and image data obtained by photographing the subject 90 illuminated with the second illumination light L2. To obtain image data of reflected light and image data of fluorescence. Further, the image processing unit 50 estimates the wavelength distribution of the light absorption component from the fluorescence image data. Further, the image processing unit 50 uses each image data and the wavelength distribution of the light absorption component to form image data when the subject 90 is illuminated with a light source of an arbitrary color by calculation, and for the formed arbitrary color Obtain image data from a light source.
When theimage processing unit 50 obtains fluorescence image data, the data regarding the setting state of the first illumination light L1 is acquired from the light source setting unit 20. Specific processing for obtaining the image data of the reflected light, the image data of the fluorescence, and the wavelength distribution of the light absorption component will be described later.
画像処理部50が蛍光の画像データを得る際には、光源設定部20から、第1の照明光L1の設定状態に関するデータを取得する。反射光の画像データと蛍光の画像データと吸光成分の波長分布とを得るための具体的な処理については後述する。 In other words, the
When the
画像処理部50で得られた画像データは、画像表示部60に供給され、画像表示部60で各画像が個別に表示される。
また、画像処理部50で得られた蛍光の画像データは、特性解析部70に供給される。特性解析部70は、蛍光の画像データから、被写体90の蛍光特性の分布状態を解析する。また、特性解析部70は、反射光成分の分布状態や、吸光成分の分布状態を解析してもよい。
画像処理部50における反射光の画像データと蛍光の画像データとを得る処理と、吸光成分の波長分布を判断する処理は、制御部10の制御下で実行される。 The image data obtained by theimage processing unit 50 is supplied to the image display unit 60, and each image is individually displayed on the image display unit 60.
The fluorescence image data obtained by theimage processing unit 50 is supplied to the characteristic analysis unit 70. The characteristic analysis unit 70 analyzes the distribution state of the fluorescent characteristic of the subject 90 from the fluorescent image data. In addition, the characteristic analysis unit 70 may analyze the distribution state of the reflected light component and the distribution state of the light absorption component.
The process of obtaining the reflected light image data and the fluorescence image data in theimage processing unit 50 and the process of determining the wavelength distribution of the light absorption component are executed under the control of the control unit 10.
また、画像処理部50で得られた蛍光の画像データは、特性解析部70に供給される。特性解析部70は、蛍光の画像データから、被写体90の蛍光特性の分布状態を解析する。また、特性解析部70は、反射光成分の分布状態や、吸光成分の分布状態を解析してもよい。
画像処理部50における反射光の画像データと蛍光の画像データとを得る処理と、吸光成分の波長分布を判断する処理は、制御部10の制御下で実行される。 The image data obtained by the
The fluorescence image data obtained by the
The process of obtaining the reflected light image data and the fluorescence image data in the
[2.画像処理部の構成例]
図3は、本例の画像処理部50の構成例を示す。
画像処理部50は、カメラ40から供給された画像データを記憶する第1画像メモリ51及び第2画像メモリ52を備える。第1画像メモリ51は、第1の照明光L1で照明された被写体90を撮影して得た1フレームの画像データを記憶する。第2画像メモリ52は、第2の照明光L2で照明された被写体90を撮影して得た1フレームの画像データを記憶する。第1,第2画像メモリ51,52が画像データを取り込むタイミングは、制御部10(図1)の制御により、プログラマブル光源30で第1,第2の照明光L1,L2を照射するタイミングに同期して設定される。
以下の説明では、第1画像メモリ51が記憶した第1の照明光L1で照明された画像データを第1の画像データと称し、第2画像メモリ52が記憶した第2の照明光L2で照明された画像データを第2の画像データと称する。 [2. Configuration example of image processing unit]
FIG. 3 shows a configuration example of theimage processing unit 50 of this example.
Theimage processing unit 50 includes a first image memory 51 and a second image memory 52 that store image data supplied from the camera 40. The first image memory 51 stores one frame of image data obtained by photographing the subject 90 illuminated with the first illumination light L1. The second image memory 52 stores one frame of image data obtained by photographing the subject 90 illuminated with the second illumination light L2. The timing at which the first and second image memories 51 and 52 capture image data is synchronized with the timing at which the programmable light source 30 emits the first and second illumination lights L1 and L2 under the control of the control unit 10 (FIG. 1). Is set.
In the following description, image data illuminated with the first illumination light L1 stored in thefirst image memory 51 is referred to as first image data, and illumination is performed with the second illumination light L2 stored in the second image memory 52. The processed image data is referred to as second image data.
図3は、本例の画像処理部50の構成例を示す。
画像処理部50は、カメラ40から供給された画像データを記憶する第1画像メモリ51及び第2画像メモリ52を備える。第1画像メモリ51は、第1の照明光L1で照明された被写体90を撮影して得た1フレームの画像データを記憶する。第2画像メモリ52は、第2の照明光L2で照明された被写体90を撮影して得た1フレームの画像データを記憶する。第1,第2画像メモリ51,52が画像データを取り込むタイミングは、制御部10(図1)の制御により、プログラマブル光源30で第1,第2の照明光L1,L2を照射するタイミングに同期して設定される。
以下の説明では、第1画像メモリ51が記憶した第1の照明光L1で照明された画像データを第1の画像データと称し、第2画像メモリ52が記憶した第2の照明光L2で照明された画像データを第2の画像データと称する。 [2. Configuration example of image processing unit]
FIG. 3 shows a configuration example of the
The
In the following description, image data illuminated with the first illumination light L1 stored in the
そして、画像処理部50は、反射光画像生成部53と蛍光画像生成部54とを備える。
反射光画像生成部53には、第1画像メモリ51が記憶した第1の画像データと、第2画像メモリ52が記憶した第2の画像データとが供給される。反射光画像生成部53では、第1の画像データの画素と第2の画像データの画素との、同じ画素位置での差分が算出される。この例では、画像データが、分光カメラを使用して撮影した波長帯域(例えば30帯域)ごとの画素データであり、第1の画像データと第2の画像データとの差分を算出する際には、それぞれの波長帯域ごとに、同じ画素位置の画素データどうしで差分の算出を行う。
さらに、第1の画像データと第2の画像データとの差分を、照明光L1と照明光L2の輝度差で割る処理を行うことで、反射光成分の画像(反射光画像データ)が得られる。
このように2つの画像データの差分に基づいて反射光画像データが得られる原理については後述するが、誤差の少ない反射光画像データを得るためには、図2に示したように第1の照明光L1と第2の照明光L2の分光分布の周波数が所定以上に高いことが重要である。 Theimage processing unit 50 includes a reflected light image generation unit 53 and a fluorescence image generation unit 54.
The reflectedimage generator 53 is supplied with the first image data stored in the first image memory 51 and the second image data stored in the second image memory 52. The reflected light image generation unit 53 calculates a difference at the same pixel position between the pixel of the first image data and the pixel of the second image data. In this example, the image data is pixel data for each wavelength band (for example, 30 bands) captured using a spectroscopic camera, and when calculating the difference between the first image data and the second image data. The difference is calculated between the pixel data at the same pixel position for each wavelength band.
Further, by performing a process of dividing the difference between the first image data and the second image data by the luminance difference between the illumination light L1 and the illumination light L2, an image of the reflected light component (reflected light image data) can be obtained. .
The principle of obtaining reflected light image data based on the difference between the two image data in this way will be described later. To obtain reflected light image data with less error, the first illumination is used as shown in FIG. It is important that the frequency of the spectral distribution of the light L1 and the second illumination light L2 is higher than a predetermined value.
反射光画像生成部53には、第1画像メモリ51が記憶した第1の画像データと、第2画像メモリ52が記憶した第2の画像データとが供給される。反射光画像生成部53では、第1の画像データの画素と第2の画像データの画素との、同じ画素位置での差分が算出される。この例では、画像データが、分光カメラを使用して撮影した波長帯域(例えば30帯域)ごとの画素データであり、第1の画像データと第2の画像データとの差分を算出する際には、それぞれの波長帯域ごとに、同じ画素位置の画素データどうしで差分の算出を行う。
さらに、第1の画像データと第2の画像データとの差分を、照明光L1と照明光L2の輝度差で割る処理を行うことで、反射光成分の画像(反射光画像データ)が得られる。
このように2つの画像データの差分に基づいて反射光画像データが得られる原理については後述するが、誤差の少ない反射光画像データを得るためには、図2に示したように第1の照明光L1と第2の照明光L2の分光分布の周波数が所定以上に高いことが重要である。 The
The reflected
Further, by performing a process of dividing the difference between the first image data and the second image data by the luminance difference between the illumination light L1 and the illumination light L2, an image of the reflected light component (reflected light image data) can be obtained. .
The principle of obtaining reflected light image data based on the difference between the two image data in this way will be described later. To obtain reflected light image data with less error, the first illumination is used as shown in FIG. It is important that the frequency of the spectral distribution of the light L1 and the second illumination light L2 is higher than a predetermined value.
上述したように、第1の画像データと第2の画像データとの差分を、照明光L1と照明光L2の輝度差で割る処理を行うことで、各波長において照明光L1と照明光L2のどちらが発光しているかについて考慮する必要がないと共に、照明光L1と照明光L2の輝度の差の考慮をしなくても良いことになる。
具体的には、例えば、第1の照明光L1のもとで撮影して得た画像の画素値がP1、第2の照明光L2のもとで撮影して得た画像の画素値がP2であるとすると、反射光R(λ)は、以下の式で得る。
R(λ)=(P1(λ)-P2(λ))/(L1(λ)-L2(λ))
ここで、λは各波長を表す。L1(λ)は、波長λでの第1の照明光L1の輝度であり、L2(λ)は、波長λでの第2の照明光L2の輝度である。 As described above, by performing the process of dividing the difference between the first image data and the second image data by the luminance difference between the illumination light L1 and the illumination light L2, the illumination light L1 and the illumination light L2 at each wavelength. It is not necessary to consider which light is emitted, and it is not necessary to consider the difference in luminance between the illumination light L1 and the illumination light L2.
Specifically, for example, the pixel value of an image obtained by photographing under the first illumination light L1 is P1, and the pixel value of an image obtained by photographing under the second illumination light L2 is P2. , The reflected light R (λ) is obtained by the following equation.
R (λ) = (P1 (λ) −P2 (λ)) / (L1 (λ) −L2 (λ))
Here, λ represents each wavelength. L1 (λ) is the luminance of the first illumination light L1 at the wavelength λ, and L2 (λ) is the luminance of the second illumination light L2 at the wavelength λ.
具体的には、例えば、第1の照明光L1のもとで撮影して得た画像の画素値がP1、第2の照明光L2のもとで撮影して得た画像の画素値がP2であるとすると、反射光R(λ)は、以下の式で得る。
R(λ)=(P1(λ)-P2(λ))/(L1(λ)-L2(λ))
ここで、λは各波長を表す。L1(λ)は、波長λでの第1の照明光L1の輝度であり、L2(λ)は、波長λでの第2の照明光L2の輝度である。 As described above, by performing the process of dividing the difference between the first image data and the second image data by the luminance difference between the illumination light L1 and the illumination light L2, the illumination light L1 and the illumination light L2 at each wavelength. It is not necessary to consider which light is emitted, and it is not necessary to consider the difference in luminance between the illumination light L1 and the illumination light L2.
Specifically, for example, the pixel value of an image obtained by photographing under the first illumination light L1 is P1, and the pixel value of an image obtained by photographing under the second illumination light L2 is P2. , The reflected light R (λ) is obtained by the following equation.
R (λ) = (P1 (λ) −P2 (λ)) / (L1 (λ) −L2 (λ))
Here, λ represents each wavelength. L1 (λ) is the luminance of the first illumination light L1 at the wavelength λ, and L2 (λ) is the luminance of the second illumination light L2 at the wavelength λ.
照明光が図2C,図2Dに示す矩形波の特性である場合、特定の波長位置λ1での反射光R(λ1)の式は、次のように示すことができる。
R(λ1)=P1(λ1)-P2(λ1)
そして、ここで、図2A,図2Bの例と同様に、このR(λ1)の条件は、波長λ1のときに、照明光L1の方が照明光L2よりも強度が強い場合である。照明光L2の方が照明光L1よりも強度が強い波長位置では、式のP1とP2が逆になる。 When the illumination light has the rectangular wave characteristics shown in FIGS. 2C and 2D, the expression of the reflected light R (λ 1 ) at the specific wavelength position λ 1 can be expressed as follows.
R (λ 1 ) = P1 (λ 1 ) −P2 (λ 1 )
Here, as in the example of FIGS. 2A and 2B, the condition of R (λ 1 ) is when the intensity of the illumination light L1 is stronger than that of the illumination light L2 at the wavelength λ 1. . In the wavelength position where the intensity of the illumination light L2 is stronger than that of the illumination light L1, the expressions P1 and P2 are reversed.
R(λ1)=P1(λ1)-P2(λ1)
そして、ここで、図2A,図2Bの例と同様に、このR(λ1)の条件は、波長λ1のときに、照明光L1の方が照明光L2よりも強度が強い場合である。照明光L2の方が照明光L1よりも強度が強い波長位置では、式のP1とP2が逆になる。 When the illumination light has the rectangular wave characteristics shown in FIGS. 2C and 2D, the expression of the reflected light R (λ 1 ) at the specific wavelength position λ 1 can be expressed as follows.
R (λ 1 ) = P1 (λ 1 ) −P2 (λ 1 )
Here, as in the example of FIGS. 2A and 2B, the condition of R (λ 1 ) is when the intensity of the illumination light L1 is stronger than that of the illumination light L2 at the wavelength λ 1. . In the wavelength position where the intensity of the illumination light L2 is stronger than that of the illumination light L1, the expressions P1 and P2 are reversed.
反射光画像生成部53で得られた反射光画像データは、光源分布乗算部55に供給される。光源分布乗算部55は、光源設定部20で設定した第1の照明光L1の分布特性を取得する。そして、光源分布乗算部55は、第1の照明光L1の分布特性を、反射光画像データに乗算する。この第1の照明光L1の分布特性を反射光画像データに乗算することで、反射光画像データが、第1の照明光L1による反射光成分だけになり、第2の照明光L2による反射光成分が除去される。
The reflected light image data obtained by the reflected light image generation unit 53 is supplied to the light source distribution multiplication unit 55. The light source distribution multiplication unit 55 acquires the distribution characteristic of the first illumination light L1 set by the light source setting unit 20. Then, the light source distribution multiplication unit 55 multiplies the reflected light image data by the distribution characteristic of the first illumination light L1. By multiplying the reflected light image data by the distribution characteristic of the first illumination light L1, the reflected light image data becomes only the reflected light component by the first illumination light L1, and the reflected light by the second illumination light L2. Ingredients are removed.
蛍光画像生成部54には、光源分布乗算部55で得られた第1の照明光L1による反射光画像データと、第1画像メモリ51が記憶した第1の画像データとが供給される。蛍光画像生成部54では、第1の照明光L1による反射光画像データと第1の画像データとの差分が算出され、この算出した差分に基づいた画像データが、蛍光成分の画像(蛍光画像データ)になる。この蛍光画像生成部54で差分を算出する際にも、反射光画像生成部53で差分を算出する際と同様に、それぞれの波長帯域ごとに、同じ画素位置の画素データどうしで差分の算出を行う。
第1の照明光L1と第2の照明光L2の下で観察される蛍光の分光分布は、以下の式で示される。下記の式において、e(λ)は、蛍光発光の分光分布(波長λの光をどれだけ返すかを示す、すなわち蛍光発光の色を決定する発光分布)、Kは、蛍光物質が、第1の照明光L1または第2の照明光L2の光をどれだけ吸収するか表す係数であり、蛍光物質の吸光成分と光源の分光分布により求まる。この係数Kにより蛍光発光e(λ)の強度が決定される。
ここで、物質の吸光成分の分光分布がある程度の周波数帯域に制限される低周波な分布、すなわち分光領域で滑らかに変化するような分布を持つ場合、第1の照明光L1と第2の照明光L2の分光分布を吸光成分の分布より高周波に設定することにより、第1の照明光L1の光源下での光の吸収量Kは同じとなり、第1の照明光L1下で観察される蛍光成分と第2の照明光L2下で観察される蛍光成分は、ほぼ同一の分光分布となる。なお、この点は図5で後述する。
Ke(λ)=(P1(λ))-[(P1(λ)-P2(λ))/(L1(λ)-L2(λ))]・L1(λ)
なお、各画素でKe(λ)の値を正規化することで、蛍光発光の分光分布を表す関数e(λ)を得ることができる。
照明光が図2C,図2Dに示す矩形波の特性である場合、第1の照明光L1と第2の照明光L2の下で観察される蛍光の分光分布の式は、次のように示すことができる。
Ke(λ1)=2・P2(λ1) The fluorescentimage generation unit 54 is supplied with the reflected light image data of the first illumination light L1 obtained by the light source distribution multiplication unit 55 and the first image data stored in the first image memory 51. In the fluorescence image generation unit 54, a difference between the reflected light image data of the first illumination light L1 and the first image data is calculated, and image data based on the calculated difference is an image of the fluorescence component (fluorescence image data). )become. When the difference is calculated by the fluorescent image generation unit 54, the difference is calculated between the pixel data at the same pixel position for each wavelength band as in the case of calculating the difference by the reflected light image generation unit 53. Do.
The fluorescence spectral distribution observed under the first illumination light L1 and the second illumination light L2 is expressed by the following equation. In the following equation, e (λ) is a spectral distribution of fluorescence emission (showing how much light of wavelength λ is returned, that is, an emission distribution that determines the color of fluorescence emission), and K is the first fluorescent substance. Is a coefficient representing how much light of the illumination light L1 or the second illumination light L2 is absorbed, and is obtained from the light-absorbing component of the fluorescent material and the spectral distribution of the light source. The intensity of the fluorescence emission e (λ) is determined by this coefficient K.
Here, when the spectral distribution of the light absorption component of the substance has a low frequency distribution limited to a certain frequency band, that is, a distribution that smoothly changes in the spectral region, the first illumination light L1 and the second illumination By setting the spectral distribution of the light L2 to be higher than the distribution of the light absorption component, the light absorption amount K under the light source of the first illumination light L1 becomes the same, and the fluorescence observed under the first illumination light L1. The component and the fluorescent component observed under the second illumination light L2 have substantially the same spectral distribution. This point will be described later with reference to FIG.
Ke (λ) = (P1 (λ)) − [(P1 (λ) −P2 (λ)) / (L1 (λ) −L2 (λ))] · L1 (λ)
Note that by normalizing the value of Ke (λ) in each pixel, a function e (λ) representing the spectral distribution of fluorescence emission can be obtained.
When the illumination light has the rectangular wave characteristics shown in FIGS. 2C and 2D, the expression of the spectral distribution of fluorescence observed under the first illumination light L1 and the second illumination light L2 is as follows: be able to.
Ke (λ 1 ) = 2 · P2 (λ 1 )
第1の照明光L1と第2の照明光L2の下で観察される蛍光の分光分布は、以下の式で示される。下記の式において、e(λ)は、蛍光発光の分光分布(波長λの光をどれだけ返すかを示す、すなわち蛍光発光の色を決定する発光分布)、Kは、蛍光物質が、第1の照明光L1または第2の照明光L2の光をどれだけ吸収するか表す係数であり、蛍光物質の吸光成分と光源の分光分布により求まる。この係数Kにより蛍光発光e(λ)の強度が決定される。
ここで、物質の吸光成分の分光分布がある程度の周波数帯域に制限される低周波な分布、すなわち分光領域で滑らかに変化するような分布を持つ場合、第1の照明光L1と第2の照明光L2の分光分布を吸光成分の分布より高周波に設定することにより、第1の照明光L1の光源下での光の吸収量Kは同じとなり、第1の照明光L1下で観察される蛍光成分と第2の照明光L2下で観察される蛍光成分は、ほぼ同一の分光分布となる。なお、この点は図5で後述する。
Ke(λ)=(P1(λ))-[(P1(λ)-P2(λ))/(L1(λ)-L2(λ))]・L1(λ)
なお、各画素でKe(λ)の値を正規化することで、蛍光発光の分光分布を表す関数e(λ)を得ることができる。
照明光が図2C,図2Dに示す矩形波の特性である場合、第1の照明光L1と第2の照明光L2の下で観察される蛍光の分光分布の式は、次のように示すことができる。
Ke(λ1)=2・P2(λ1) The fluorescent
The fluorescence spectral distribution observed under the first illumination light L1 and the second illumination light L2 is expressed by the following equation. In the following equation, e (λ) is a spectral distribution of fluorescence emission (showing how much light of wavelength λ is returned, that is, an emission distribution that determines the color of fluorescence emission), and K is the first fluorescent substance. Is a coefficient representing how much light of the illumination light L1 or the second illumination light L2 is absorbed, and is obtained from the light-absorbing component of the fluorescent material and the spectral distribution of the light source. The intensity of the fluorescence emission e (λ) is determined by this coefficient K.
Here, when the spectral distribution of the light absorption component of the substance has a low frequency distribution limited to a certain frequency band, that is, a distribution that smoothly changes in the spectral region, the first illumination light L1 and the second illumination By setting the spectral distribution of the light L2 to be higher than the distribution of the light absorption component, the light absorption amount K under the light source of the first illumination light L1 becomes the same, and the fluorescence observed under the first illumination light L1. The component and the fluorescent component observed under the second illumination light L2 have substantially the same spectral distribution. This point will be described later with reference to FIG.
Ke (λ) = (P1 (λ)) − [(P1 (λ) −P2 (λ)) / (L1 (λ) −L2 (λ))] · L1 (λ)
Note that by normalizing the value of Ke (λ) in each pixel, a function e (λ) representing the spectral distribution of fluorescence emission can be obtained.
When the illumination light has the rectangular wave characteristics shown in FIGS. 2C and 2D, the expression of the spectral distribution of fluorescence observed under the first illumination light L1 and the second illumination light L2 is as follows: be able to.
Ke (λ 1 ) = 2 · P2 (λ 1 )
蛍光画像生成部54で得られた蛍光画像データは、吸光成分変換部58に供給される。吸光成分変換部58は、蛍光画像データで示された蛍光成分の分布特性にほぼ一致した分布特性のデータを、データベース59の記憶データから検索する。データベース59は、蛍光成分の分布特性と吸光成分の分布特性との関係を示すデータが、複数種類(例えば1000種類程度)記憶されている。また、このデータベース59には、吸光成分の周波数特性についても記憶されている。なお、吸光成分は、蛍光を生じる物質(蛍光物質)に吸収される光の成分であり、光の各波長においてどれだけの光を吸収するかを示す吸光分布として表現される。
Fluorescence image data obtained by the fluorescence image generation unit 54 is supplied to the light absorption component conversion unit 58. The light absorption component converter 58 searches the data stored in the database 59 for data having distribution characteristics that substantially match the distribution characteristics of the fluorescent component indicated by the fluorescence image data. The database 59 stores a plurality of types (for example, about 1000 types) of data indicating the relationship between the distribution characteristics of the fluorescent component and the distribution characteristics of the light absorption component. The database 59 also stores the frequency characteristics of the light absorption component. The light-absorbing component is a component of light absorbed by a substance that generates fluorescence (fluorescent substance), and is expressed as an absorption distribution indicating how much light is absorbed at each wavelength of light.
データベース59の記憶データを検索した結果、完全に一致した分布特性がデータベース59に記憶されていない場合には、吸光成分変換部58は、最も類似した分布特性を一致した分布特性とする。または、複数の蛍光成分の組み合わせを考え、組み合わせとして最も近い分布を推定し、吸光成分もこれらの蛍光物質の吸光分布の組み合わせとして得る。さらに、吸光成分変換部58は、一致した分布特性を検索した後、その検索した分布特性に対応づけられた吸光成分の分布特性をデータベース59から読み出し、その分布特性を、蛍光画像データで示された蛍光成分の分布特性に対応した吸光成分の分布特性とする。吸光成分の画像データは、画像形成部56に供給される。
なお、それぞれの差分画像から反射光画像データと蛍光画像データと吸光成分の画像データとが得られる原理については後述する。 As a result of searching the stored data in thedatabase 59, when the completely matched distribution characteristic is not stored in the database 59, the light absorption component conversion unit 58 sets the most similar distribution characteristic as the matched distribution characteristic. Alternatively, a combination of a plurality of fluorescent components is considered, a distribution closest to the combination is estimated, and a light absorption component is also obtained as a combination of the light absorption distributions of these fluorescent materials. Further, the light-absorbing component conversion unit 58 retrieves the matched distribution characteristics, reads out the light-absorbing component distribution characteristics associated with the retrieved distribution characteristics from the database 59, and the distribution characteristics are indicated by the fluorescence image data. The light absorption component distribution characteristic corresponds to the distribution characteristic of the fluorescent component. The image data of the light absorption component is supplied to the image forming unit 56.
The principle of obtaining reflected light image data, fluorescence image data, and light absorption component image data from each difference image will be described later.
なお、それぞれの差分画像から反射光画像データと蛍光画像データと吸光成分の画像データとが得られる原理については後述する。 As a result of searching the stored data in the
The principle of obtaining reflected light image data, fluorescence image data, and light absorption component image data from each difference image will be described later.
反射光画像生成部53で得られた反射光画像データと、蛍光画像生成部54で得られた蛍光画像データは、画像形成部56に供給される。また、第1画像メモリ51が記憶した第1の画像データと、第2画像メモリ52が記憶した第2の画像データについても、画像形成部56に供給される。
画像形成部56は、そのときの出力モードに応じて、反射光画像データと蛍光画像データと第1,第2の画像データのいずれかを出力する。画像形成部56が出力する画像データは、画像表示部60に供給され、画像形成部56で選択された画像が表示される。 The reflected light image data obtained by the reflected lightimage generation unit 53 and the fluorescence image data obtained by the fluorescence image generation unit 54 are supplied to the image forming unit 56. Further, the first image data stored in the first image memory 51 and the second image data stored in the second image memory 52 are also supplied to the image forming unit 56.
Theimage forming unit 56 outputs reflected light image data, fluorescent image data, and first and second image data according to the output mode at that time. The image data output from the image forming unit 56 is supplied to the image display unit 60, and the image selected by the image forming unit 56 is displayed.
画像形成部56は、そのときの出力モードに応じて、反射光画像データと蛍光画像データと第1,第2の画像データのいずれかを出力する。画像形成部56が出力する画像データは、画像表示部60に供給され、画像形成部56で選択された画像が表示される。 The reflected light image data obtained by the reflected light
The
また、画像形成部56は、光源条件設定部57からの指示に基づいて、反射光画像データと蛍光画像データと吸光成分の画像データとを使用して、指示された光源で再現される画像を演算で形成する。例えば、画像形成部56は、青色の光源を被写体90に照射したときに、カメラ40で撮影される画像データを演算で形成し、その形成された画像データを出力する。
さらに、画像形成部56で得られた反射光画像データと蛍光画像データと吸光成分の画像データとは、特性解析部70に供給され、分布特性の解析処理が行われる。 Further, theimage forming unit 56 uses the reflected light image data, the fluorescence image data, and the light absorption component image data based on an instruction from the light source condition setting unit 57 to reproduce an image reproduced by the instructed light source. Form by calculation. For example, when the subject 90 is irradiated with a blue light source, the image forming unit 56 forms image data photographed by the camera 40 by calculation, and outputs the formed image data.
Further, the reflected light image data, the fluorescence image data, and the light-absorbing component image data obtained by theimage forming unit 56 are supplied to the characteristic analysis unit 70 to perform distribution characteristic analysis processing.
さらに、画像形成部56で得られた反射光画像データと蛍光画像データと吸光成分の画像データとは、特性解析部70に供給され、分布特性の解析処理が行われる。 Further, the
Further, the reflected light image data, the fluorescence image data, and the light-absorbing component image data obtained by the
[4.一実施の形態例の処理の流れ]
図4は、本例の画像処理装置で行われる反射光成分と蛍光成分を検出する処理の流れを示すフローチャートである。
まず、制御部10からの指示に基づいて光源設定部20が、プログラマブル光源30を第1の照明光L1で発光させる(ステップS11)。この第1の照明光L1により被写体90が照明された状態で、カメラ40が撮影した画像データが、画像処理部50内の第1画像メモリ51に記憶される(ステップS12)。次に、制御部10からの指示に基づいて光源設定部20が、プログラマブル光源30を第2の照明光L2で発光させる(ステップS13)。この第2の照明光L2により被写体90が照明された状態で、カメラ40が撮影した画像データが、画像処理部50内の第2画像メモリ52に記憶される(ステップS14)。 [4. Process flow of embodiment]
FIG. 4 is a flowchart showing a flow of processing for detecting the reflected light component and the fluorescence component performed in the image processing apparatus of this example.
First, based on an instruction from thecontrol unit 10, the light source setting unit 20 causes the programmable light source 30 to emit light with the first illumination light L1 (step S11). Image data captured by the camera 40 in a state in which the subject 90 is illuminated by the first illumination light L1 is stored in the first image memory 51 in the image processing unit 50 (step S12). Next, based on an instruction from the control unit 10, the light source setting unit 20 causes the programmable light source 30 to emit light with the second illumination light L2 (step S13). The image data captured by the camera 40 in a state where the subject 90 is illuminated by the second illumination light L2 is stored in the second image memory 52 in the image processing unit 50 (step S14).
図4は、本例の画像処理装置で行われる反射光成分と蛍光成分を検出する処理の流れを示すフローチャートである。
まず、制御部10からの指示に基づいて光源設定部20が、プログラマブル光源30を第1の照明光L1で発光させる(ステップS11)。この第1の照明光L1により被写体90が照明された状態で、カメラ40が撮影した画像データが、画像処理部50内の第1画像メモリ51に記憶される(ステップS12)。次に、制御部10からの指示に基づいて光源設定部20が、プログラマブル光源30を第2の照明光L2で発光させる(ステップS13)。この第2の照明光L2により被写体90が照明された状態で、カメラ40が撮影した画像データが、画像処理部50内の第2画像メモリ52に記憶される(ステップS14)。 [4. Process flow of embodiment]
FIG. 4 is a flowchart showing a flow of processing for detecting the reflected light component and the fluorescence component performed in the image processing apparatus of this example.
First, based on an instruction from the
そして、画像処理部50内の反射光画像生成部53が、第1画像メモリ51に記憶された第1画像データの各波長帯域の画素と、第2画像メモリ52に記憶された第2画像データの各波長帯域の画素との差分画像データを取得する(ステップS15)。この差分画像データが、反射光画像データになる。
さらに、画像処理部50内の蛍光画像生成部54が、光源分布乗算部55で得られた第1の照明光L1による反射光画像データの各波長帯域の画素と、第1画像メモリ51に記憶された第1画像データの各波長帯域の画素との差分画像データを取得する(ステップS16)。この差分画像データが、蛍光画像データになる。 Then, the reflected lightimage generation unit 53 in the image processing unit 50 includes pixels in each wavelength band of the first image data stored in the first image memory 51 and the second image data stored in the second image memory 52. Difference image data with pixels in each wavelength band is acquired (step S15). This difference image data becomes reflected light image data.
Further, the fluorescenceimage generation unit 54 in the image processing unit 50 stores the pixels in the respective wavelength bands of the reflected light image data by the first illumination light L 1 obtained by the light source distribution multiplication unit 55 and the first image memory 51. Difference image data with the pixels of each wavelength band of the first image data thus obtained is acquired (step S16). This difference image data becomes fluorescence image data.
さらに、画像処理部50内の蛍光画像生成部54が、光源分布乗算部55で得られた第1の照明光L1による反射光画像データの各波長帯域の画素と、第1画像メモリ51に記憶された第1画像データの各波長帯域の画素との差分画像データを取得する(ステップS16)。この差分画像データが、蛍光画像データになる。 Then, the reflected light
Further, the fluorescence
その後、吸光成分変換部58は、蛍光画像データで示された蛍光成分の分布特性に一致するか、又は最も類似した分布特性のデータをデータベース59から検索する(ステップS17)。そして、吸光成分変換部58が、そのデータベース59から検索した蛍光成分の分布特性に対応付けられた吸光成分の分布特性を読み出し、その読み出した吸光成分の分布特性を、被写体90の吸光成分の分布特性と判断する(ステップS18)。
Thereafter, the light-absorbing component converter 58 searches the database 59 for data having a distribution characteristic that matches or is most similar to the distribution characteristic of the fluorescent component indicated by the fluorescence image data (step S17). Then, the light absorption component converter 58 reads out the light absorption component distribution characteristic associated with the fluorescent light component distribution characteristic retrieved from the database 59, and uses the read light absorption component distribution characteristic as the light absorption component distribution of the subject 90. The characteristic is determined (step S18).
[5.各成分の画像が得られる原理]
次に、本例の画像処理装置で反射光画像と蛍光画像が得られる原理について、図5を参照して説明する。図5A~図5Fの各図において、横軸は波長であり、可視光の範囲を示す。また、縦軸は光の強度を示す。
図5Aは、第1の照明光L1で照明された被写体90を撮影した第1の画像データに含まれる反射光成分R1と蛍光成分F1の一例である。また、図5Bは、第2の照明光L2で照明された被写体90を撮影した第2の画像データに含まれる反射光成分R2と蛍光成分F2の一例である。
図5Aと図5Bを比較すると判るように、第1の画像データに含まれる反射光成分R1と、第2の画像データに含まれる反射光成分R2は、同一の被写体90を撮影した画像データであるため、可視光領域全体で見たとき、ほぼ同様の分布特性である。しかしながら、第1の照明光L1と第2の照明光L2は、図2に示したように、一定の波長間隔ごと発光と非発光を繰り返す高周波特性であり、その発光と非発光の波長位置が相互に逆である。このため、照明光L1を反射することで生成される反射光成分R1と、照明光L2を反射することで生成される反射光成分R2とでは、山と谷の位置が逆になる高周波特性を有する。 [5. Principle of obtaining an image of each component]
Next, the principle of obtaining a reflected light image and a fluorescent image with the image processing apparatus of this example will be described with reference to FIG. In each of FIGS. 5A to 5F, the horizontal axis represents the wavelength and represents the range of visible light. The vertical axis indicates the light intensity.
FIG. 5A is an example of the reflected light component R1 and the fluorescent component F1 included in the first image data obtained by photographing the subject 90 illuminated with the first illumination light L1. FIG. 5B is an example of the reflected light component R2 and the fluorescent component F2 included in the second image data obtained by photographing the subject 90 illuminated with the second illumination light L2.
5A and 5B, the reflected light component R1 included in the first image data and the reflected light component R2 included in the second image data are image data obtained by photographing thesame subject 90. Therefore, the distribution characteristics are almost the same when viewed in the entire visible light region. However, as shown in FIG. 2, the first illumination light L1 and the second illumination light L2 have high-frequency characteristics that repeat light emission and non-light emission at regular wavelength intervals, and the wavelength positions of the light emission and non-light emission are different. The opposite is true. For this reason, the reflected light component R1 generated by reflecting the illumination light L1 and the reflected light component R2 generated by reflecting the illumination light L2 have high frequency characteristics in which the positions of the peaks and valleys are reversed. Have.
次に、本例の画像処理装置で反射光画像と蛍光画像が得られる原理について、図5を参照して説明する。図5A~図5Fの各図において、横軸は波長であり、可視光の範囲を示す。また、縦軸は光の強度を示す。
図5Aは、第1の照明光L1で照明された被写体90を撮影した第1の画像データに含まれる反射光成分R1と蛍光成分F1の一例である。また、図5Bは、第2の照明光L2で照明された被写体90を撮影した第2の画像データに含まれる反射光成分R2と蛍光成分F2の一例である。
図5Aと図5Bを比較すると判るように、第1の画像データに含まれる反射光成分R1と、第2の画像データに含まれる反射光成分R2は、同一の被写体90を撮影した画像データであるため、可視光領域全体で見たとき、ほぼ同様の分布特性である。しかしながら、第1の照明光L1と第2の照明光L2は、図2に示したように、一定の波長間隔ごと発光と非発光を繰り返す高周波特性であり、その発光と非発光の波長位置が相互に逆である。このため、照明光L1を反射することで生成される反射光成分R1と、照明光L2を反射することで生成される反射光成分R2とでは、山と谷の位置が逆になる高周波特性を有する。 [5. Principle of obtaining an image of each component]
Next, the principle of obtaining a reflected light image and a fluorescent image with the image processing apparatus of this example will be described with reference to FIG. In each of FIGS. 5A to 5F, the horizontal axis represents the wavelength and represents the range of visible light. The vertical axis indicates the light intensity.
FIG. 5A is an example of the reflected light component R1 and the fluorescent component F1 included in the first image data obtained by photographing the subject 90 illuminated with the first illumination light L1. FIG. 5B is an example of the reflected light component R2 and the fluorescent component F2 included in the second image data obtained by photographing the subject 90 illuminated with the second illumination light L2.
5A and 5B, the reflected light component R1 included in the first image data and the reflected light component R2 included in the second image data are image data obtained by photographing the
一方、被写体90を構成する物質の蛍光特性で決まる蛍光成分F1,F2については、その物質に入射した光により励起された光が出力されるものであり、図5A及び図5Bに示すように、ある程度の帯域幅を持った分布特性である。これはこの物質の吸光成分の分光分布がある程度の帯域を持つ低周波な分布、すなわち分光領域で滑らかに変化する ような分布を持つことに起因している。したがって、光源の分光分布を吸収分布よ りも高周波に設定する事により、第1の画像データに含まれる蛍光成分F1と、第2の画像データに含まれる蛍光成分F2は、ほぼ同一の分布特性である。
On the other hand, for the fluorescence components F1 and F2 determined by the fluorescence characteristics of the substance constituting the subject 90, the light excited by the light incident on the substance is output. As shown in FIGS. 5A and 5B, It is a distribution characteristic with a certain bandwidth. This is due to the fact that the spectral distribution of the light-absorbing component of this substance has a low-frequency distribution having a certain band, that is, a distribution that changes smoothly in the spectral region. Therefore, by setting the spectral distribution of the light source at a higher frequency than the absorption distribution, the fluorescent component F1 included in the first image data and the fluorescent component F2 included in the second image data have substantially the same distribution characteristics. It is.
まとめると、反射光成分R1と反射光成分R2とは山と谷の位置が逆になる高周波特性を有し、蛍光成分F1と蛍光成分F2はほぼ同一である。このため、反射光画像生成部53で、図5Aに示す第1の画像データと、図5Bに示す第2の画像データとの差分を求めて、第1の照明光L1と第2の照明光L2の光源輝度で割ることにより、ほぼ同一の分布特性である2つの蛍光成分F1,F2が消え、2つの反射光成分R1と反射光成分R2を加算した反射光成分R0だけが残る。
したがって、反射光画像生成部53で第1の画像データと第2の画像データとの差分画像データを求めて、第1の照明光L1と第2の照明光L2の光源輝度で割ることにより、被写体90の反射光成分(図5Cの反射光成分R0)が抽出された反射光画像データが得られる。なお、第1の画像データと第2の画像データとの差分画像データを得る際には、既に説明したように、照明光L1と照明光L2の輝度差で反射成分の画像を割る処理を行うことが好ましい。 In summary, the reflected light component R1 and the reflected light component R2 have high frequency characteristics in which the positions of peaks and valleys are reversed, and the fluorescent component F1 and the fluorescent component F2 are substantially the same. Therefore, the reflected lightimage generation unit 53 obtains a difference between the first image data shown in FIG. 5A and the second image data shown in FIG. 5B, and the first illumination light L1 and the second illumination light. By dividing by the light source luminance of L2, the two fluorescent components F1 and F2 having substantially the same distribution characteristics disappear, and only the reflected light component R0 obtained by adding the two reflected light components R1 and R2 remains.
Therefore, the reflected lightimage generation unit 53 obtains difference image data between the first image data and the second image data, and divides by the light source luminance of the first illumination light L1 and the second illumination light L2. Reflected light image data obtained by extracting the reflected light component of the subject 90 (reflected light component R0 in FIG. 5C) is obtained. In addition, when obtaining the difference image data between the first image data and the second image data, as described above, a process of dividing the reflection component image by the luminance difference between the illumination light L1 and the illumination light L2 is performed. It is preferable.
したがって、反射光画像生成部53で第1の画像データと第2の画像データとの差分画像データを求めて、第1の照明光L1と第2の照明光L2の光源輝度で割ることにより、被写体90の反射光成分(図5Cの反射光成分R0)が抽出された反射光画像データが得られる。なお、第1の画像データと第2の画像データとの差分画像データを得る際には、既に説明したように、照明光L1と照明光L2の輝度差で反射成分の画像を割る処理を行うことが好ましい。 In summary, the reflected light component R1 and the reflected light component R2 have high frequency characteristics in which the positions of peaks and valleys are reversed, and the fluorescent component F1 and the fluorescent component F2 are substantially the same. Therefore, the reflected light
Therefore, the reflected light
さらに、図5Cに示す反射光成分R0の反射光画像データに、第1の照明光L1の分布特性を乗算することで、図5Dに示す第1の照明光L1の反射光成分R1が得られる。この図5Dに示す第1の照明光L1の反射光成分R1と、図5Aに示す第1の画像データとの差分を取ることで、図5Eに示すように、第1の画像データに含まれた蛍光成分F1だけが取り出される。したがって、蛍光画像生成部54で反射光画像データと第1の画像データの内の一部の成分との差分を取ることで、被写体90の蛍光成分F1が抽出された蛍光画像データが得られる。
Furthermore, the reflected light component R1 of the first illumination light L1 shown in FIG. 5D is obtained by multiplying the reflected light image data of the reflected light component R0 shown in FIG. 5C by the distribution characteristic of the first illumination light L1. . By taking the difference between the reflected light component R1 of the first illumination light L1 shown in FIG. 5D and the first image data shown in FIG. 5A, it is included in the first image data as shown in FIG. 5E. Only the fluorescent component F1 is extracted. Therefore, the fluorescence image data obtained by extracting the fluorescence component F1 of the subject 90 is obtained by taking the difference between the reflected light image data and a part of the first image data in the fluorescence image generation unit 54.
また、蛍光成分F1の分布特性に対応した吸光成分の分布特性は一義的に決まる。このため、吸光成分変換部58は、データベース59の記憶データから一致(類似)する記憶データを検索することで、図5Fに示すように、被写体90の吸光成分A1を得ることができる。
Further, the distribution characteristics of the light absorption component corresponding to the distribution characteristics of the fluorescent component F1 are uniquely determined. Therefore, the light absorption component conversion unit 58 can obtain the light absorption component A1 of the subject 90 by searching the storage data that matches (similar) from the storage data of the database 59, as shown in FIG. 5F.
[6.画像の例]
図6及び図7は、本例の画像処理装置で第1の画像P1と第2の画像P2から反射光画像P3と蛍光画像P4を取得した一例を示す。
ここで用意した被写体は、図7に示すように、文字「ICCV」とその周囲の模様を配置したものである。この例では、文字「ICCV」と、その文字の周囲の一部の模様(蝶の形状した模様)については、蛍光物質を塗布して蛍光特性を持たせてある。その他の模様については蛍光特性を持たない素材(物質)よりなる。なお、図6及び図7に示す各画像は、カラー画像を白黒で示したものである。 [6. Example of image]
6 and 7 show an example in which the reflected light image P3 and the fluorescence image P4 are acquired from the first image P1 and the second image P2 by the image processing apparatus of this example.
The subject prepared here has characters “ICCV” and surrounding patterns arranged as shown in FIG. In this example, the character “ICCV” and a part of the pattern around the character (pattern having a butterfly shape) are coated with a fluorescent material to have a fluorescence characteristic. The other patterns are made of materials (substances) that do not have fluorescent properties. Each of the images shown in FIGS. 6 and 7 shows a color image in black and white.
図6及び図7は、本例の画像処理装置で第1の画像P1と第2の画像P2から反射光画像P3と蛍光画像P4を取得した一例を示す。
ここで用意した被写体は、図7に示すように、文字「ICCV」とその周囲の模様を配置したものである。この例では、文字「ICCV」と、その文字の周囲の一部の模様(蝶の形状した模様)については、蛍光物質を塗布して蛍光特性を持たせてある。その他の模様については蛍光特性を持たない素材(物質)よりなる。なお、図6及び図7に示す各画像は、カラー画像を白黒で示したものである。 [6. Example of image]
6 and 7 show an example in which the reflected light image P3 and the fluorescence image P4 are acquired from the first image P1 and the second image P2 by the image processing apparatus of this example.
The subject prepared here has characters “ICCV” and surrounding patterns arranged as shown in FIG. In this example, the character “ICCV” and a part of the pattern around the character (pattern having a butterfly shape) are coated with a fluorescent material to have a fluorescence characteristic. The other patterns are made of materials (substances) that do not have fluorescent properties. Each of the images shown in FIGS. 6 and 7 shows a color image in black and white.
図6は、第1の画像P1と第2の画像P2と、それらの画像P1,P2の差分から得た反射光画像P3とを示す。第1の画像P1と第2の画像P2は、見かけ上、ほぼ同一に見える画像であり、この2つの画像P1,P2は表示された状態では、ほとんど区別がつかない。
ここで、第1の画像P1と第2の画像P2との差分を取ることで、図5A~図5Cに示した原理により、蛍光成分が除去された反射光成分R0(成分R1+R2)の画像P3が得られる。画像P3は、蛍光成分が除去されているため、第1の画像P1や第2の画像P2と比べて、文字「ICCV」などの蛍光特性を有する箇所で、若干色調が変化している。 FIG. 6 shows the first image P1, the second image P2, and the reflected light image P3 obtained from the difference between the images P1 and P2. The first image P1 and the second image P2 appear to be substantially the same, and the two images P1 and P2 are almost indistinguishable when displayed.
Here, by taking the difference between the first image P1 and the second image P2, the image P3 of the reflected light component R0 (component R1 + R2) from which the fluorescent component has been removed according to the principle shown in FIGS. 5A to 5C. Is obtained. Since the fluorescent component is removed from the image P3, the color tone is slightly changed in the portion having the fluorescent characteristics such as the characters “ICCV” as compared with the first image P1 and the second image P2.
ここで、第1の画像P1と第2の画像P2との差分を取ることで、図5A~図5Cに示した原理により、蛍光成分が除去された反射光成分R0(成分R1+R2)の画像P3が得られる。画像P3は、蛍光成分が除去されているため、第1の画像P1や第2の画像P2と比べて、文字「ICCV」などの蛍光特性を有する箇所で、若干色調が変化している。 FIG. 6 shows the first image P1, the second image P2, and the reflected light image P3 obtained from the difference between the images P1 and P2. The first image P1 and the second image P2 appear to be substantially the same, and the two images P1 and P2 are almost indistinguishable when displayed.
Here, by taking the difference between the first image P1 and the second image P2, the image P3 of the reflected light component R0 (component R1 + R2) from which the fluorescent component has been removed according to the principle shown in FIGS. 5A to 5C. Is obtained. Since the fluorescent component is removed from the image P3, the color tone is slightly changed in the portion having the fluorescent characteristics such as the characters “ICCV” as compared with the first image P1 and the second image P2.
図7は、第1の画像P1と、反射光成分R0の画像P3と、それらの画像の差分から得た蛍光画像P4とを示す。第1の画像P1と、反射光成分R0の画像P3から取り出した反射光成分R1(第1の照明光L1による反射光成分)との差分を取ることで、蛍光成分F1が抽出された画像P4が得られる。画像P4では、蛍光物質を塗布した箇所である、文字「ICCV」と、蝶の形状した模様だけが表示されている。この画像P4では、蛍光成分を有さない模様(蛍光物質を塗布していない箇所)については表示されず、蛍光成分だけが取り出されたことが判る。
FIG. 7 shows the first image P1, the image P3 of the reflected light component R0, and the fluorescence image P4 obtained from the difference between these images. The difference between the first image P1 and the reflected light component R1 extracted from the image P3 of the reflected light component R0 (the reflected light component by the first illumination light L1) is taken to obtain an image P4 from which the fluorescent component F1 has been extracted. Is obtained. In the image P4, only the characters “ICCV” and the butterfly-shaped pattern, which are locations where the fluorescent material is applied, are displayed. In this image P4, it is understood that only the fluorescent component is extracted without displaying the pattern having no fluorescent component (the portion where the fluorescent material is not applied).
なお、この図7の例の場合には、蛍光の判りやすい例を示すために、文字などに蛍光物質を塗布した例を示すが、実際には、例えば植物などの各種物体が、その物体の状態に応じて蛍光を発することがあり、蛍光状態と相関がある物体の状態が蛍光画像から判るようになる。例えば、果物や野菜などの作物(例えばマンゴ)は、同じ種類の作物であっても、産地の相違によって、蛍光状態が異なることが知られており、本例の装置の特性解析部70は、分布特性を解析して被写体90の作物の産地が判断できるようになる。また、そばに含まれるそば粉の量などの製品の成分の分析が、反射光の分布特性や蛍光の分布特性から判断できるようになる。さらに、珊瑚などの生物の状態を反射光の分布特性や蛍光の分布特性から判断できるようになる。従来、反射光の分布特性や蛍光の分布特性を簡単に測定することは困難であったため、このような生物や農作物の状態,種類,産地などの解析に、これらの分布特性を利用することは殆ど行われていなかったが、本例の画像処理装置を利用することで簡単に行えるようになる。
In the case of the example of FIG. 7, in order to show an example in which fluorescence is easily understood, an example in which a fluorescent material is applied to characters or the like is shown. In practice, however, various objects such as plants are used as the objects. Fluorescence may be emitted depending on the state, and the state of the object having a correlation with the fluorescence state can be known from the fluorescence image. For example, crops such as fruits and vegetables (for example, mango) are known to have different fluorescence states depending on the production area, even if they are the same type of crop. By analyzing the distribution characteristics, the production area of the crop of the subject 90 can be determined. In addition, analysis of product components such as the amount of buckwheat contained in buckwheat can be judged from the distribution characteristics of reflected light and the distribution characteristics of fluorescence. Furthermore, the state of a living organism such as a moth can be judged from the distribution characteristics of reflected light and the distribution characteristics of fluorescence. Conventionally, it has been difficult to easily measure the distribution characteristics of reflected light and the distribution characteristics of fluorescence. Therefore, it is not possible to use these distribution characteristics to analyze the state, type, and production area of such organisms and crops. Although it was hardly performed, it can be easily performed by using the image processing apparatus of this example.
この図6及び図7から判るように、本例の画像処理装置によると、被測定対象物の反射光成分の画像と、蛍光成分の画像とが得られる。蛍光成分の画像が得られることで、蛍光成分の分布特性についても解析することができ、蛍光成分の分布から、被測定対象物の状態を測定することが可能になる。さらに、蛍光成分の分布特性を使って、その蛍光成分を生じさせる吸光成分の分布特性も得られる。
これらの画像や分布特性を得る処理は、プログラマブル光源30の発光状態を変えて、カメラ40で2回撮影した画像を演算処理するだけでよく、非常に簡単に反射光成分や蛍光成分が測定できるようになる。すなわち、従来は、被測定対象物に照射する光の波長範囲を狭くした上で、被測定対象物が発する光の波長を光スペクトルアナライザなどの精密な測定器で何回も測定する必要があったのに対して、本例の画像処理装置では非常に簡単に測定ができる。 As can be seen from FIGS. 6 and 7, according to the image processing apparatus of this example, an image of the reflected light component and an image of the fluorescent component of the measurement object are obtained. By obtaining an image of the fluorescent component, it is possible to analyze the distribution characteristic of the fluorescent component, and it is possible to measure the state of the object to be measured from the distribution of the fluorescent component. Furthermore, the distribution characteristic of the light-absorbing component that produces the fluorescent component can also be obtained using the distribution characteristic of the fluorescent component.
The processing for obtaining these images and distribution characteristics can be performed simply by changing the light emission state of the programmablelight source 30 and processing the image taken twice by the camera 40, and the reflected light component and the fluorescence component can be measured very easily. It becomes like this. That is, conventionally, it has been necessary to measure the wavelength of the light emitted from the measurement target object many times with a precise measuring instrument such as an optical spectrum analyzer after narrowing the wavelength range of the light irradiated to the measurement target object. On the other hand, the image processing apparatus of this example can measure very easily.
これらの画像や分布特性を得る処理は、プログラマブル光源30の発光状態を変えて、カメラ40で2回撮影した画像を演算処理するだけでよく、非常に簡単に反射光成分や蛍光成分が測定できるようになる。すなわち、従来は、被測定対象物に照射する光の波長範囲を狭くした上で、被測定対象物が発する光の波長を光スペクトルアナライザなどの精密な測定器で何回も測定する必要があったのに対して、本例の画像処理装置では非常に簡単に測定ができる。 As can be seen from FIGS. 6 and 7, according to the image processing apparatus of this example, an image of the reflected light component and an image of the fluorescent component of the measurement object are obtained. By obtaining an image of the fluorescent component, it is possible to analyze the distribution characteristic of the fluorescent component, and it is possible to measure the state of the object to be measured from the distribution of the fluorescent component. Furthermore, the distribution characteristic of the light-absorbing component that produces the fluorescent component can also be obtained using the distribution characteristic of the fluorescent component.
The processing for obtaining these images and distribution characteristics can be performed simply by changing the light emission state of the programmable
[7.実測した例]
次に、図8及び図9を参照して、本例の画像処理装置で反射光成分と蛍光成分を測定した例を説明する。
図8は、2つの照明光の発光帯域と非発光帯域とが比較的短い波長間隔で入れ替わる高周波特性を持った場合の例であり、図9は、2つの照明光の発光帯域と非発光帯域とが比較的広い波長間隔で入れ替わる特性を持った場合の例である。これら図8及び図9において、各図のAは、2つの照明光L1,L2又はL1′,L2′の波長位置ごとの強度を示し、各図のB及びCは、それぞれの照明光を使用して得られる反射光成分R0又はR0′と蛍光成分F1又はF1′を示す。また、図8B及び図9Bに示す反射光成分Rxと、図8C及び図9Cに破線で示す蛍光成分Fxは、本例の画像処理装置とは別の高精度な測定装置を使用して各成分を測定した特性である。 [7. Example of actual measurement]
Next, an example in which the reflected light component and the fluorescence component are measured by the image processing apparatus of this example will be described with reference to FIGS.
FIG. 8 is an example in the case of having a high frequency characteristic in which the emission band and the non-emission band of two illumination lights are switched at a relatively short wavelength interval, and FIG. This is an example in the case where the characteristics are switched at a relatively wide wavelength interval. 8 and 9, A in each figure shows the intensity of each of the two illumination lights L1, L2 or L1 'and L2' for each wavelength position, and B and C in each figure use the respective illumination lights. The reflected light component R0 or R0 ′ and the fluorescent component F1 or F1 ′ obtained in this manner are shown. Further, the reflected light component Rx shown in FIGS. 8B and 9B and the fluorescent component Fx shown by a broken line in FIGS. 8C and 9C are obtained by using a high-accuracy measuring apparatus different from the image processing apparatus of this example. Is a characteristic measured.
次に、図8及び図9を参照して、本例の画像処理装置で反射光成分と蛍光成分を測定した例を説明する。
図8は、2つの照明光の発光帯域と非発光帯域とが比較的短い波長間隔で入れ替わる高周波特性を持った場合の例であり、図9は、2つの照明光の発光帯域と非発光帯域とが比較的広い波長間隔で入れ替わる特性を持った場合の例である。これら図8及び図9において、各図のAは、2つの照明光L1,L2又はL1′,L2′の波長位置ごとの強度を示し、各図のB及びCは、それぞれの照明光を使用して得られる反射光成分R0又はR0′と蛍光成分F1又はF1′を示す。また、図8B及び図9Bに示す反射光成分Rxと、図8C及び図9Cに破線で示す蛍光成分Fxは、本例の画像処理装置とは別の高精度な測定装置を使用して各成分を測定した特性である。 [7. Example of actual measurement]
Next, an example in which the reflected light component and the fluorescence component are measured by the image processing apparatus of this example will be described with reference to FIGS.
FIG. 8 is an example in the case of having a high frequency characteristic in which the emission band and the non-emission band of two illumination lights are switched at a relatively short wavelength interval, and FIG. This is an example in the case where the characteristics are switched at a relatively wide wavelength interval. 8 and 9, A in each figure shows the intensity of each of the two illumination lights L1, L2 or L1 'and L2' for each wavelength position, and B and C in each figure use the respective illumination lights. The reflected light component R0 or R0 ′ and the fluorescent component F1 or F1 ′ obtained in this manner are shown. Further, the reflected light component Rx shown in FIGS. 8B and 9B and the fluorescent component Fx shown by a broken line in FIGS. 8C and 9C are obtained by using a high-accuracy measuring apparatus different from the image processing apparatus of this example. Is a characteristic measured.
図8の例は、図8Aに示すように、各照明光L1,L2の1周期(1つの発光期間と1つの非発光期間とよりなる期間)を約40nmに設定して、比較的短い波長間隔で2つの照明光L1,L2が発光と非発光を繰り返す高周波特性を持たせた例である。
この図8Aに示す高周波特性を持つ照明光L1,L2を被写体に照射して、2つの画像の差分から得た反射光成分R0が、図8Bに示すようになる。この図8Bに示す反射光成分R0と、破線で示した高精度な測定装置で得た反射光成分Rxとは、ほぼ一致する。
また、図8Cに示すように、照明光L1を照射して得た画像と、反射光成分R0の画像との差分に基づいて得た蛍光成分F1についても、破線で示した高精度な測定装置で得た蛍光成分Fxとほぼ一致するようになる。
したがって、本例の画像処理装置を使用することで、精度の高い反射光成分と蛍光成分の測定ができる効果を有する。 In the example of FIG. 8, as shown in FIG. 8A, one cycle of each of the illumination lights L <b> 1 and L <b> 2 (a period composed of one light emission period and one non-light emission period) is set to about 40 nm and a relatively short wavelength. This is an example in which two illumination lights L1 and L2 have high frequency characteristics that repeat light emission and non-light emission at intervals.
The reflected light component R0 obtained from the difference between the two images by irradiating the subject with illumination lights L1 and L2 having high-frequency characteristics shown in FIG. 8A is as shown in FIG. 8B. The reflected light component R0 shown in FIG. 8B and the reflected light component Rx obtained by the high-accuracy measuring device indicated by the broken line substantially coincide with each other.
Further, as shown in FIG. 8C, a high-accuracy measuring device indicated by a broken line also indicates the fluorescence component F1 obtained based on the difference between the image obtained by irradiating the illumination light L1 and the image of the reflected light component R0. It almost coincides with the fluorescent component Fx obtained in (1).
Therefore, by using the image processing apparatus of this example, there is an effect that the reflected light component and the fluorescence component can be measured with high accuracy.
この図8Aに示す高周波特性を持つ照明光L1,L2を被写体に照射して、2つの画像の差分から得た反射光成分R0が、図8Bに示すようになる。この図8Bに示す反射光成分R0と、破線で示した高精度な測定装置で得た反射光成分Rxとは、ほぼ一致する。
また、図8Cに示すように、照明光L1を照射して得た画像と、反射光成分R0の画像との差分に基づいて得た蛍光成分F1についても、破線で示した高精度な測定装置で得た蛍光成分Fxとほぼ一致するようになる。
したがって、本例の画像処理装置を使用することで、精度の高い反射光成分と蛍光成分の測定ができる効果を有する。 In the example of FIG. 8, as shown in FIG. 8A, one cycle of each of the illumination lights L <b> 1 and L <b> 2 (a period composed of one light emission period and one non-light emission period) is set to about 40 nm and a relatively short wavelength. This is an example in which two illumination lights L1 and L2 have high frequency characteristics that repeat light emission and non-light emission at intervals.
The reflected light component R0 obtained from the difference between the two images by irradiating the subject with illumination lights L1 and L2 having high-frequency characteristics shown in FIG. 8A is as shown in FIG. 8B. The reflected light component R0 shown in FIG. 8B and the reflected light component Rx obtained by the high-accuracy measuring device indicated by the broken line substantially coincide with each other.
Further, as shown in FIG. 8C, a high-accuracy measuring device indicated by a broken line also indicates the fluorescence component F1 obtained based on the difference between the image obtained by irradiating the illumination light L1 and the image of the reflected light component R0. It almost coincides with the fluorescent component Fx obtained in (1).
Therefore, by using the image processing apparatus of this example, there is an effect that the reflected light component and the fluorescence component can be measured with high accuracy.
図9は、1周期の期間を長くした2つの照明光L1′,L2′を用意して、本例の画像処理装置で測定した例である。
図9の例では、図9Aに示すように、照明光L1′,L2′の1周期を約160nmに設定したものである。
この図9Aに示す照明光L1′,L2′を被写体に照射して、2つの画像の差分から得た反射光成分R0′が、図9Bに示すようになる。この図9Bに示す反射光成分R0′と、破線で示した高精度な測定装置で得た反射光成分Rxとを比較すると判るように、ある程度の誤差がある。
また、図9Cに示すように、照明光L1′を照射して得た画像と、反射光成分R0′の画像との差分に基づいて得た蛍光成分F1′についても、破線で示した高精度な測定装置で得た蛍光成分Fxと比較して、それなりの誤差があることが判る。 FIG. 9 shows an example in which two illumination lights L1 ′ and L2 ′ having a longer period of one cycle are prepared and measured by the image processing apparatus of this example.
In the example of FIG. 9, as shown in FIG. 9A, one cycle of the illumination lights L1 ′ and L2 ′ is set to about 160 nm.
The reflected light component R0 ′ obtained from the difference between the two images by irradiating the subject with the illumination lights L1 ′ and L2 ′ shown in FIG. 9A is as shown in FIG. 9B. There is a certain amount of error as can be seen by comparing the reflected light component R0 ′ shown in FIG. 9B with the reflected light component Rx obtained by the high-accuracy measuring device indicated by the broken line.
Further, as shown in FIG. 9C, the fluorescence component F1 ′ obtained based on the difference between the image obtained by irradiating the illumination light L1 ′ and the image of the reflected light component R0 ′ is also highly accurate indicated by a broken line. It can be seen that there is a certain amount of error compared to the fluorescent component Fx obtained with a simple measuring apparatus.
図9の例では、図9Aに示すように、照明光L1′,L2′の1周期を約160nmに設定したものである。
この図9Aに示す照明光L1′,L2′を被写体に照射して、2つの画像の差分から得た反射光成分R0′が、図9Bに示すようになる。この図9Bに示す反射光成分R0′と、破線で示した高精度な測定装置で得た反射光成分Rxとを比較すると判るように、ある程度の誤差がある。
また、図9Cに示すように、照明光L1′を照射して得た画像と、反射光成分R0′の画像との差分に基づいて得た蛍光成分F1′についても、破線で示した高精度な測定装置で得た蛍光成分Fxと比較して、それなりの誤差があることが判る。 FIG. 9 shows an example in which two illumination lights L1 ′ and L2 ′ having a longer period of one cycle are prepared and measured by the image processing apparatus of this example.
In the example of FIG. 9, as shown in FIG. 9A, one cycle of the illumination lights L1 ′ and L2 ′ is set to about 160 nm.
The reflected light component R0 ′ obtained from the difference between the two images by irradiating the subject with the illumination lights L1 ′ and L2 ′ shown in FIG. 9A is as shown in FIG. 9B. There is a certain amount of error as can be seen by comparing the reflected light component R0 ′ shown in FIG. 9B with the reflected light component Rx obtained by the high-accuracy measuring device indicated by the broken line.
Further, as shown in FIG. 9C, the fluorescence component F1 ′ obtained based on the difference between the image obtained by irradiating the illumination light L1 ′ and the image of the reflected light component R0 ′ is also highly accurate indicated by a broken line. It can be seen that there is a certain amount of error compared to the fluorescent component Fx obtained with a simple measuring apparatus.
このように図8の特性と図9の特性を比較すると判るように、各照明光L1,L2の1周期が短い波長間隔である方が、誤差の少ない優れた特性の反射光画像や蛍光画像が得られる。但し、ある程度の測定誤差まで許容できる使用目的の場合には、図9Aに示すような波長間隔が広い照明光L1′,L2′で撮影した画像を使用して測定するようにしてもよい。
As can be seen from the comparison of the characteristics of FIG. 8 and the characteristics of FIG. 9, the reflected light image or the fluorescence image having excellent characteristics with fewer errors is obtained when one period of each of the illumination lights L1 and L2 is a shorter wavelength interval. Is obtained. However, in the case of a purpose of use that allows a certain amount of measurement error, measurement may be performed using images taken with illumination light L1 ′ and L2 ′ having a wide wavelength interval as shown in FIG. 9A.
[8.他の実施の形態例]
図10は、本発明の他の実施の形態の例のシステム構成である。この図10において、上述した図1に対応する部分には、図1と同一の符号を付す。
図10の例では、光源81として、可視光の波長帯域内である程度フラットな強度特性を有する白色の照明光を照射するものとする。そして、その光源81の照明光出力部81aに、第1フィルタ83と第2フィルタ84とを選択的に配置する。第1フィルタ83又は第2フィルタ84の配置状態は、制御部10の制御に基づいたフィルタ設定部82からの指令で決まる。すなわち、フィルタ設定部82からの指令により、光源81の照明光出力部81aに、第1フィルタ83が配置された状態と、第2フィルタ84が配置された状態のいずれかに設定される。 [8. Other Embodiments]
FIG. 10 shows a system configuration of an example of another embodiment of the present invention. In FIG. 10, the same reference numerals as those in FIG.
In the example of FIG. 10, thelight source 81 is irradiated with white illumination light having a somewhat flat intensity characteristic within the wavelength band of visible light. And the 1st filter 83 and the 2nd filter 84 are selectively arrange | positioned in the illumination light output part 81a of the light source 81. FIG. The arrangement state of the first filter 83 or the second filter 84 is determined by a command from the filter setting unit 82 based on the control of the control unit 10. That is, according to a command from the filter setting unit 82, the state is set to either the state in which the first filter 83 is disposed or the state in which the second filter 84 is disposed in the illumination light output unit 81a of the light source 81.
図10は、本発明の他の実施の形態の例のシステム構成である。この図10において、上述した図1に対応する部分には、図1と同一の符号を付す。
図10の例では、光源81として、可視光の波長帯域内である程度フラットな強度特性を有する白色の照明光を照射するものとする。そして、その光源81の照明光出力部81aに、第1フィルタ83と第2フィルタ84とを選択的に配置する。第1フィルタ83又は第2フィルタ84の配置状態は、制御部10の制御に基づいたフィルタ設定部82からの指令で決まる。すなわち、フィルタ設定部82からの指令により、光源81の照明光出力部81aに、第1フィルタ83が配置された状態と、第2フィルタ84が配置された状態のいずれかに設定される。 [8. Other Embodiments]
FIG. 10 shows a system configuration of an example of another embodiment of the present invention. In FIG. 10, the same reference numerals as those in FIG.
In the example of FIG. 10, the
第1フィルタ83と第2フィルタ84は、それぞれ異なる透過特性を有する。具体的には、第1フィルタ83として、光源81が出力する照明光を透過させたとき、図2に示した第1の照明光L1の特性となるようにする。また、第2フィルタ84として、光源81が出力する照明光を透過させたとき、図2に示した第2の照明光L2の特性となるようにする。つまり、第1フィルタ83と第2フィルタ84とで、光が透過する帯域と光が透過しない帯域が交互に逆となる高周波特性を持たせる。ここでの高周波特性とは、光が通過する帯域と光が通過しない帯域とが、比較的短い波長間隔で交互に設定されていることを示す。なお、このような特性を有する第1フィルタ83と第2フィルタ84は、例えばガラスなどの透明基板に所定の材質の膜を蒸着する等して形成される。
その他の構成については、図1に示した画像処理装置と同様に構成する。 Thefirst filter 83 and the second filter 84 have different transmission characteristics. Specifically, as the first filter 83, when the illumination light output from the light source 81 is transmitted, the characteristics of the first illumination light L1 shown in FIG. Further, as the second filter 84, when the illumination light output from the light source 81 is transmitted, the characteristics of the second illumination light L2 shown in FIG. 2 are obtained. That is, the first filter 83 and the second filter 84 have a high frequency characteristic in which a band where light is transmitted and a band where light is not transmitted are alternately reversed. Here, the high frequency characteristics indicate that the band through which light passes and the band through which light does not pass are alternately set at relatively short wavelength intervals. The first filter 83 and the second filter 84 having such characteristics are formed by depositing a film of a predetermined material on a transparent substrate such as glass.
Other configurations are the same as those of the image processing apparatus shown in FIG.
その他の構成については、図1に示した画像処理装置と同様に構成する。 The
Other configurations are the same as those of the image processing apparatus shown in FIG.
図10の例の画像処理装置で反射光成分と蛍光成分の測定を行う際には、フィルタ設定部82が第1フィルタ83を配置した状態で、カメラ40が撮影を行い第1の画像データを得る。そして、フィルタ設定部82が第2フィルタ84を配置した状態で、カメラ40が撮影を行い第2の画像データを得る。第1の画像データと第2の画像データを得た後の画像処理については、図4のフローチャートで説明した画像処理が行われる。
この図10の構成の場合にも、図5で説明した原理で画像処理が行われ、反射光成分の画像と蛍光成分の画像を得ることができる。なお、図10の例の場合には、発光体からの光を光源81として使用する代わりに、太陽光を光源81として使用してもよい。 When the reflected light component and the fluorescence component are measured by the image processing apparatus in the example of FIG. 10, thecamera 40 captures the first image data while the filter setting unit 82 has the first filter 83 disposed. obtain. Then, in a state where the filter setting unit 82 arranges the second filter 84, the camera 40 performs shooting to obtain second image data. For the image processing after obtaining the first image data and the second image data, the image processing described in the flowchart of FIG. 4 is performed.
Also in the configuration of FIG. 10, image processing is performed based on the principle described with reference to FIG. 5, and an image of reflected light components and an image of fluorescent components can be obtained. In the case of the example in FIG. 10, sunlight may be used as thelight source 81 instead of using the light from the light emitter as the light source 81.
この図10の構成の場合にも、図5で説明した原理で画像処理が行われ、反射光成分の画像と蛍光成分の画像を得ることができる。なお、図10の例の場合には、発光体からの光を光源81として使用する代わりに、太陽光を光源81として使用してもよい。 When the reflected light component and the fluorescence component are measured by the image processing apparatus in the example of FIG. 10, the
Also in the configuration of FIG. 10, image processing is performed based on the principle described with reference to FIG. 5, and an image of reflected light components and an image of fluorescent components can be obtained. In the case of the example in FIG. 10, sunlight may be used as the
[9.その他の変形例]
なお、図2に示した2つの照明光L1,L2の特性は一例を示したものであり、この図2に示した特性に限定されない。例えば図2A,図2Bの例では、発光波長帯域と非発光波長帯域とが正弦波状に交差する特性とし、図2C,図2Dの例では、急峻な特性で発光波長帯域と非発光波長帯域とが交差する照明光としたが、これらの例とは異なる特性としてもよい。また、発光波長帯域と非発光波長帯域を分割する数についても、図2の例は一例であり、図2の例とは異なる分割数としてもよい。発光波長帯域と非発光波長帯域の分割数が多い方が、反射光画像や蛍光画像を得る上で好ましいが、少ない分割数の場合でも、それなりの精度で反射光画像や蛍光画像を得ることができる。 [9. Other variations]
The characteristics of the two illumination lights L1 and L2 shown in FIG. 2 are examples, and are not limited to the characteristics shown in FIG. For example, in the examples of FIGS. 2A and 2B, the emission wavelength band and the non-emission wavelength band intersect with each other in a sinusoidal shape, and in the examples of FIGS. 2C and 2D, the emission wavelength band and the non-emission wavelength band have steep characteristics. However, it may have different characteristics from those of these examples. In addition, regarding the number of dividing the emission wavelength band and the non-emission wavelength band, the example of FIG. 2 is an example, and the number of divisions may be different from the example of FIG. A larger number of divisions between the emission wavelength band and the non-emission wavelength band is preferable for obtaining a reflected light image and a fluorescent image, but even with a small number of divisions, it is possible to obtain a reflected light image and a fluorescent image with reasonable accuracy. it can.
なお、図2に示した2つの照明光L1,L2の特性は一例を示したものであり、この図2に示した特性に限定されない。例えば図2A,図2Bの例では、発光波長帯域と非発光波長帯域とが正弦波状に交差する特性とし、図2C,図2Dの例では、急峻な特性で発光波長帯域と非発光波長帯域とが交差する照明光としたが、これらの例とは異なる特性としてもよい。また、発光波長帯域と非発光波長帯域を分割する数についても、図2の例は一例であり、図2の例とは異なる分割数としてもよい。発光波長帯域と非発光波長帯域の分割数が多い方が、反射光画像や蛍光画像を得る上で好ましいが、少ない分割数の場合でも、それなりの精度で反射光画像や蛍光画像を得ることができる。 [9. Other variations]
The characteristics of the two illumination lights L1 and L2 shown in FIG. 2 are examples, and are not limited to the characteristics shown in FIG. For example, in the examples of FIGS. 2A and 2B, the emission wavelength band and the non-emission wavelength band intersect with each other in a sinusoidal shape, and in the examples of FIGS. 2C and 2D, the emission wavelength band and the non-emission wavelength band have steep characteristics. However, it may have different characteristics from those of these examples. In addition, regarding the number of dividing the emission wavelength band and the non-emission wavelength band, the example of FIG. 2 is an example, and the number of divisions may be different from the example of FIG. A larger number of divisions between the emission wavelength band and the non-emission wavelength band is preferable for obtaining a reflected light image and a fluorescent image, but even with a small number of divisions, it is possible to obtain a reflected light image and a fluorescent image with reasonable accuracy. it can.
また、図1に示したプログラマブル光源30や、図10に示した光源82とフィルタ83,84を使用して照明光を得るのは、それぞれ好適な一例であり、その他の構成の光源を使用してもよい。例えば、発光波長帯域が異なる複数の発光ダイオードを多数用意して、その複数の発光ダイオードの発光状態の選択で、2つの照明光L1,L2と同等の特性の照明光を得るようにしてもよい。
Further, obtaining the illumination light by using the programmable light source 30 shown in FIG. 1 or the light source 82 and the filters 83 and 84 shown in FIG. 10 is a preferable example, and light sources having other configurations are used. May be. For example, a plurality of light emitting diodes having different emission wavelength bands may be prepared, and illumination light having characteristics equivalent to those of the two illumination lights L1 and L2 may be obtained by selecting the light emission state of the plurality of light emitting diodes. .
また、上述した実施の形態例では、検出した蛍光成分の分布特性に最も類似したデータをデータベース74から検索して、その検索したデータに対応してデータベース74に記憶された吸光成分のデータを、そのまま吸光成分の分布特性に確定するようにした。これに対して、吸光成分変換部73が、検出した蛍光成分の分布特性と、データベース74から検索された蛍光成分の分布特性との類似度を判断して、類似度に応じて吸光成分の分布特性を修正するようにしてもよい。
Further, in the embodiment described above, data most similar to the distribution characteristic of the detected fluorescent component is searched from the database 74, and the light absorption component data stored in the database 74 corresponding to the searched data is The distribution characteristic of the light absorption component was determined as it was. On the other hand, the light absorption component conversion unit 73 determines the similarity between the distribution characteristic of the detected fluorescent component and the distribution characteristic of the fluorescent component retrieved from the database 74, and the distribution of the light absorption component according to the similarity. The characteristics may be corrected.
すなわち、類似度が所定レベル以上であるとき、吸光成分変換部73は、データベース74に記憶された吸光成分のデータで示された吸光成分の分布特性を、検出した蛍光成分の分布特性に確定する。また、類似度が所定レベル未満であるとき、吸光成分変換部73は、データベース74に記憶された吸光成分の分布特性のデータに対して、何らかの修正を施して、検出した蛍光成分の分布特性に確定する。このようにして、吸光成分変換部73が、吸光成分の分布特性をより正確に変換するようにしてもよい。
That is, when the similarity is equal to or higher than a predetermined level, the light absorption component conversion unit 73 determines the distribution characteristic of the light absorption component indicated by the light absorption component data stored in the database 74 as the distribution characteristic of the detected fluorescent component. . When the similarity is less than the predetermined level, the light absorption component conversion unit 73 performs some correction on the light absorption component distribution characteristic data stored in the database 74 to obtain the detected fluorescent component distribution characteristic. Determine. In this way, the light absorption component conversion unit 73 may convert the distribution characteristic of the light absorption component more accurately.
また、図1や図10に示した画像処理装置は、画像処理部や画像解析部を専用の回路で構成してもよいが、例えば図4のフローチャートで説明した画像処理や画像解析などを順に実行する工程よりなるプログラム(ソフトウェア)を作成して、そのプログラムをコンピュータ装置に実装することで、画像処理装置を実現してもよい。この場合のプログラムは、例えば、光ディスクや半導体メモリなどの記録媒体に記録してもよい。
In the image processing apparatus shown in FIGS. 1 and 10, the image processing unit and the image analysis unit may be configured with dedicated circuits. For example, the image processing and image analysis described in the flowchart of FIG. An image processing apparatus may be realized by creating a program (software) composed of steps to be executed and mounting the program on a computer apparatus. The program in this case may be recorded on a recording medium such as an optical disk or a semiconductor memory.
10…制御部、20…光源設定部、30…プログラマブル光源、40…カメラ、50…画像処理部、51…第1画像メモリ、52…第2画像メモリ、53…反射光画像生成部、54…蛍光画像生成部、55…光源分布乗算部、56…画像形成部、57…光源条件設定部、58…吸光成分変換部、59…データベース、60…画像表示部、70…特性解析部、81…光源、81a…照明光出力部、82…フィルタ設定部、83…第1フィルタ、84…第2フィルタ、90…被写体(被測定対象物)、L1…第1の照明光、L2…第2の照明光
DESCRIPTION OF SYMBOLS 10 ... Control part, 20 ... Light source setting part, 30 ... Programmable light source, 40 ... Camera, 50 ... Image processing part, 51 ... 1st image memory, 52 ... 2nd image memory, 53 ... Reflected light image generation part, 54 ... Fluorescent image generation unit, 55 ... light source distribution multiplication unit, 56 ... image forming unit, 57 ... light source condition setting unit, 58 ... absorption component conversion unit, 59 ... database, 60 ... image display unit, 70 ... characteristic analysis unit, 81 ... Light source, 81a ... illumination light output unit, 82 ... filter setting unit, 83 ... first filter, 84 ... second filter, 90 ... subject (object to be measured), L1 ... first illumination light, L2 ... second Illumination light
Claims (8)
- 第1の発光強度と、第1の発光強度より弱い第2の発光強度とを、所定の波長間隔で繰り返す波長特性を持つ第1の照明光と、前記第1の照明光と第1の発光強度と第2の発光強度の波長位置が逆転した波長特性を持つ第2の照明光とを選択的に発生させる光源と、
前記第1の照明光が照射された被測定対象物を撮影した第1の画像と、前記第2の照明光が照射された被測定対象物を撮影した第2の画像とを取込み、前記第1の画像の画素と前記第2の画像の画素との差分を、前記第1の照明光と前記第2の照明光の輝度差で割る処理を行うことで被測定対象物の反射成分の画像を得、前記第1の画像の画素と前記反射成分の画像の画素との差分を、前記第1の照明光と前記第2の照明光の輝度差で割って得た反射成分の画像から、被測定対象物の蛍光成分の画像を得る画像処理部とを備えた
画像処理装置。 First illumination light having a wavelength characteristic that repeats a first emission intensity and a second emission intensity that is weaker than the first emission intensity at a predetermined wavelength interval, the first illumination light, and the first emission A light source that selectively generates intensity and second illumination light having a wavelength characteristic in which the wavelength position of the second emission intensity is reversed;
A first image obtained by photographing the object to be measured irradiated with the first illumination light, and a second image obtained by photographing the object to be measured irradiated by the second illumination light; An image of the reflection component of the object to be measured by performing a process of dividing the difference between the pixels of the first image and the pixels of the second image by the luminance difference between the first illumination light and the second illumination light. From the image of the reflection component obtained by dividing the difference between the pixel of the first image and the pixel of the reflection component by the luminance difference between the first illumination light and the second illumination light, An image processing apparatus comprising: an image processing unit that obtains an image of a fluorescent component of an object to be measured. - 前記第1の照明光と前記第2の照明光は、被測定対象物でほぼ同量の光が吸収される特性が確保されるような吸光度の周波数帯域に基づいた波長間隔で第1の発光強度と第2の発光強度とが連続する周波数特性を持つようにした
請求項1記載の画像処理装置。 The first illuminating light and the second illuminating light are first emitted at a wavelength interval based on a frequency band of absorbance so as to secure a characteristic that the object to be measured absorbs substantially the same amount of light. The image processing device according to claim 1, wherein the intensity and the second emission intensity have continuous frequency characteristics. - さらに、蛍光成分の波長の分布特性と吸光度の波長の分布特性との対応を記憶するデータベースを備え、
前記画像処理部は、被測定対象物の蛍光成分の分布特性と類似した吸光度を前記データベースから検索して、前記蛍光成分の吸光度を得る
請求項1記載の画像処理装置。 Furthermore, a database for storing the correspondence between the wavelength distribution characteristic of the fluorescent component and the wavelength distribution characteristic of the absorbance is provided,
The image processing apparatus according to claim 1, wherein the image processing unit retrieves the absorbance similar to the distribution characteristic of the fluorescence component of the measurement target object from the database to obtain the absorbance of the fluorescence component. - 前記光源は、光のスペクトルを任意にコントロールできるプログラマブル光源であり、プログラマブル光源の発光特性を、前記第1の照明光と前記第2の照明光の特性とする
請求項1記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the light source is a programmable light source capable of arbitrarily controlling a light spectrum, and the light emission characteristics of the programmable light source are characteristics of the first illumination light and the second illumination light. - 前記光源は、発光体からの光又は太陽光を前記第1の照明光とする第1の光フィルタと、発光体からの光又は太陽光を前記第2の照明光とする第2の光フィルタとを有し、
前記第1の光フィルタと前記第2の光フィルタとを選択的に使用して、前記第1の照明光と前記第2の照明光を得る
請求項1記載の画像処理装置。 The light source includes a first optical filter that uses light or sunlight from a light emitter as the first illumination light, and a second optical filter that uses light or sunlight from the light emitter as the second illumination light. And
The image processing apparatus according to claim 1, wherein the first illumination light and the second illumination light are obtained by selectively using the first optical filter and the second optical filter. - 前記第1の画像及び第2の画像は、複数の波長帯域ごとに各画素の輝度値のデータを得る画像であり、
前記第1の画像の画素と前記第2の画像の画素との差分と、前記第1の画像の画素と前記反射成分の画像の画素との差分を得る際には、それぞれの波長帯域の画素ごとに差分を得る
請求項1記載の画像処理装置。 The first image and the second image are images for obtaining luminance value data of each pixel for each of a plurality of wavelength bands,
When obtaining the difference between the pixel of the first image and the pixel of the second image and the difference between the pixel of the first image and the pixel of the image of the reflection component, the pixels of the respective wavelength bands The image processing apparatus according to claim 1, wherein a difference is obtained for each. - 第1の発光強度と、第1の発光強度より弱い第2の発光強度とを、所定の波長間隔で繰り返す波長特性を持つ第1の照明光と、前記第1の照明光と第1の発光強度と第2の発光強度の波長位置が逆転した波長特性を持つ第2の照明光とを選択的に発生させる照明光生成工程と、
前記照明光生成工程で得られた照明光が照射された被測定対象物を撮影する撮影工程と、
前記撮影工程で前記第1の照明光が照射された被測定対象物を撮影した第1の画像と、前記第2の照明光が照射された被測定対象物を撮影した第2の画像とを取込み、前記第1の画像の画素と前記第2の画像の画素との差分を、前記第1の照明光と前記第2の照明光の輝度差で割る処理を行うことで、被測定対象物の反射成分の画像を得、前記第1の画像の画素と前記反射成分の画像の画素との差分を、前記第1の照明光と前記第2の照明光の輝度差で割って得た反射成分の画像から、被測定対象物の蛍光成分の画像を得る画像処理工程とを含む
画像処理方法。 First illumination light having a wavelength characteristic that repeats a first emission intensity and a second emission intensity that is weaker than the first emission intensity at a predetermined wavelength interval, the first illumination light, and the first emission An illumination light generation step for selectively generating intensity and second illumination light having a wavelength characteristic in which the wavelength position of the second emission intensity is reversed;
An imaging process for imaging the measurement object irradiated with the illumination light obtained in the illumination light generation process;
A first image obtained by photographing the object to be measured irradiated with the first illumination light in the photographing step, and a second image obtained by photographing the object to be measured irradiated by the second illumination light. The object to be measured is acquired by performing a process of dividing the difference between the pixel of the first image and the pixel of the second image by the luminance difference between the first illumination light and the second illumination light. The reflection component image obtained by dividing the difference between the pixel of the first image and the pixel of the reflection component image by the luminance difference between the first illumination light and the second illumination light. An image processing method comprising: an image processing step of obtaining an image of a fluorescent component of an object to be measured from a component image. - 第1の発光強度と、第1の発光強度より弱い第2の発光強度とを、所定の波長間隔で繰り返す波長特性を持つ第1の照明光と、前記第1の照明光と第1の発光強度と第2の発光強度の波長位置が逆転した波長特性を持つ第2の照明光とを選択的に発生させる照明光生成手順と、
前記照明光生成手順で得られた照明光が照射された被測定対象物を撮影する撮影手順と、
前記撮影手順で前記第1の照明光が照射された被測定対象物を撮影した第1の画像と、前記第2の照明光が照射された被測定対象物を撮影した第2の画像とを取込み、前記第1の画像の画素と前記第2の画像の画素との差分を、前記第1の照明光と前記第2の照明光の輝度差で割る処理を行うことで、被測定対象物の反射成分の画像を得、前記第1の画像の画素と前記反射成分の画像の画素との差分を、前記第1の照明光と前記第2の照明光の輝度差で割って得た反射成分の画像から、被測定対象物の蛍光成分の画像を得る画像処理手順とを、
コンピュータに実装させて実行するプログラムを記録した
記録媒体。 First illumination light having a wavelength characteristic that repeats a first emission intensity and a second emission intensity that is weaker than the first emission intensity at a predetermined wavelength interval, the first illumination light, and the first emission An illumination light generation procedure for selectively generating intensity and second illumination light having a wavelength characteristic in which the wavelength position of the second emission intensity is reversed;
An imaging procedure for imaging the object to be measured irradiated with the illumination light obtained in the illumination light generation procedure,
A first image obtained by photographing the measurement object irradiated with the first illumination light in the photographing procedure, and a second image obtained by photographing the measurement object irradiated by the second illumination light. The object to be measured is acquired by performing a process of dividing the difference between the pixel of the first image and the pixel of the second image by the luminance difference between the first illumination light and the second illumination light. The reflection component image obtained by dividing the difference between the pixel of the first image and the pixel of the reflection component image by the luminance difference between the first illumination light and the second illumination light. An image processing procedure for obtaining an image of the fluorescent component of the object to be measured from the component image,
A recording medium that records a program that is executed by a computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015551030A JP6471942B2 (en) | 2013-11-29 | 2014-11-28 | Image processing apparatus, image processing method, and recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013248300 | 2013-11-29 | ||
JP2013-248300 | 2013-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015080275A1 true WO2015080275A1 (en) | 2015-06-04 |
Family
ID=53199210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081649 WO2015080275A1 (en) | 2013-11-29 | 2014-11-28 | Image processing device, image processing method, and recording medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6471942B2 (en) |
WO (1) | WO2015080275A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106877A (en) * | 2015-12-11 | 2017-06-15 | 大学共同利用機関法人情報・システム研究機構 | Image processing apparatus, image processing method, and program |
US10605661B2 (en) | 2015-10-05 | 2020-03-31 | Nikon Corporation | Image capturing with filters of overlapping passbands |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986271A (en) * | 1997-07-03 | 1999-11-16 | Lazarev; Victor | Fluorescence imaging system |
US20120085932A1 (en) * | 2005-11-04 | 2012-04-12 | George Themelis | Systems and methods for multispectral imaging |
JP2013114233A (en) * | 2011-11-30 | 2013-06-10 | Olympus Corp | Image processing device, microscope system, image processing method and image processing program |
JP2013521900A (en) * | 2010-03-17 | 2013-06-13 | ズオン、ハイシャン | High-speed multispectral imaging method and apparatus and application to cancer detection and localization |
-
2014
- 2014-11-28 WO PCT/JP2014/081649 patent/WO2015080275A1/en active Application Filing
- 2014-11-28 JP JP2015551030A patent/JP6471942B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986271A (en) * | 1997-07-03 | 1999-11-16 | Lazarev; Victor | Fluorescence imaging system |
US20120085932A1 (en) * | 2005-11-04 | 2012-04-12 | George Themelis | Systems and methods for multispectral imaging |
JP2013521900A (en) * | 2010-03-17 | 2013-06-13 | ズオン、ハイシャン | High-speed multispectral imaging method and apparatus and application to cancer detection and localization |
JP2013114233A (en) * | 2011-11-30 | 2013-06-10 | Olympus Corp | Image processing device, microscope system, image processing method and image processing program |
Non-Patent Citations (3)
Title |
---|
FU Y ET AL.: "Separating Reflective and Fluorescent Components Using High Frequency Illumination in the Spectral Domain", 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, pages 457 - 464 * |
NAYAR S K ET AL.: "Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination", ACM TRANS. GRAPH., vol. 24, no. 3, July 2006 (2006-07-01), pages 935 - 944 * |
YASUYUKI KOHASHI ET AL.: "Keiko Busshitsu o Fukumu Buttai no Bunko Hansharitsu Keiko Tokusei Suitei", IPSJ SIG NOTES, vol. 112, no. 385, 16 January 2013 (2013-01-16), pages 9 - 14 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10605661B2 (en) | 2015-10-05 | 2020-03-31 | Nikon Corporation | Image capturing with filters of overlapping passbands |
JP2017106877A (en) * | 2015-12-11 | 2017-06-15 | 大学共同利用機関法人情報・システム研究機構 | Image processing apparatus, image processing method, and program |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015080275A1 (en) | 2017-03-16 |
JP6471942B2 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6676398B2 (en) | Colorimetric system for display inspection | |
US10161796B1 (en) | LED lighting based multispectral imaging system for color measurement | |
JP6670327B2 (en) | Gemstone color measurement | |
JP6364777B2 (en) | Image data acquisition system and image data acquisition method | |
US20180210395A1 (en) | Method for observing a sample | |
JPH10508940A (en) | Apparatus and method for measuring and analyzing spectral radiation mainly for measuring and analyzing color characteristics | |
JP7190561B2 (en) | Raman spectrometer | |
US10178381B2 (en) | Depth-spatial frequency-response assessment | |
JP2016507752A (en) | Surface topography interferometer with surface color | |
KR20130091194A (en) | 3d image acquisition apparatus and method of extractig depth information in the 3d image acquisition apparatus | |
KR20180084035A (en) | Method and related device for determining the reflectance of an object | |
CN105928895A (en) | Systems And Methods For Wavelength Spectrum Analysis For Detection Of Various Gases By Using Treated Tape | |
JP2022524735A (en) | Assembly for spectrophotometric measurement of turbid samples using multicolored square optical sheets | |
JP6471942B2 (en) | Image processing apparatus, image processing method, and recording medium | |
JP2019032298A (en) | System and method for high speed low noise in process hyper spectrum nondestructive evaluation of rapid composite manufacture | |
US10021356B2 (en) | Method and apparatus for wide-band imaging based on narrow-band image data | |
TW201923315A (en) | Spectral analysis apparatus and spectral analysis method | |
US10107745B2 (en) | Method and device for estimating optical properties of a sample | |
US20240119645A1 (en) | Signal processing apparatus and signal processing method | |
JP6671653B2 (en) | Image processing apparatus, image processing method, and program | |
JP7284457B2 (en) | Quantum efficiency distribution acquisition method, quantum efficiency distribution display method, quantum efficiency distribution acquisition program, quantum efficiency distribution display program, spectrofluorophotometer and display device | |
JP2019092088A (en) | Imaging apparatus | |
JP2021001777A (en) | Growth state evaluation method and evaluation device for plant | |
CN117561426A (en) | Coded light for target imaging or analysis | |
JP7429931B2 (en) | Apparatus and method for processing spectral data of image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14866746 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015551030 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14866746 Country of ref document: EP Kind code of ref document: A1 |