WO2015080019A1 - Carbon fiber composite laminate - Google Patents

Carbon fiber composite laminate Download PDF

Info

Publication number
WO2015080019A1
WO2015080019A1 PCT/JP2014/080746 JP2014080746W WO2015080019A1 WO 2015080019 A1 WO2015080019 A1 WO 2015080019A1 JP 2014080746 W JP2014080746 W JP 2014080746W WO 2015080019 A1 WO2015080019 A1 WO 2015080019A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon fiber
laminate
thermoplastic resin
less
Prior art date
Application number
PCT/JP2014/080746
Other languages
French (fr)
Japanese (ja)
Inventor
保 西澤
昌次 伊藤
田中 一也
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Publication of WO2015080019A1 publication Critical patent/WO2015080019A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a laminate in which a thermoplastic resin and carbon fiber are combined.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-254276 discloses a laminate for an automobile exterior having a carbon fiber reinforced layer containing carbon fibers and a thermoplastic resin layer and having a specific linear expansion coefficient. And discloses that the thermoplastic resin layer is a polyolefin-based resin, and various inorganic fillers that are fillers may be included as additives.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-45040 discloses that a main layer is composed of a thermoplastic resin (A) and a filler (B) composed of glass fiber and at least one filler other than glass fiber.
  • a single-layer or multi-layer low-linear expansion extruded sheet in which the main layer contains the filler (B) in a specific ratio and has a specific linear expansion coefficient and Charpy impact strength.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2007-169561 discloses (A) polypropylene resin, (B) elastomer, (C) talc, and (D) fine carbon fibers having a fiber diameter of 100 nm or less.
  • a molded body is disclosed, which is characterized in that the average fiber length of the component (D) in the molded body is 2.5 ⁇ m or more.
  • Patent Document 2 Since the sheet disclosed in Patent Document 2 contains a considerable amount of glass fiber and filler in the main layer, it has low linear expansion, but press formability during secondary processing, particularly drawing die The following ability is not sufficient, and both formability and low linear expansion are not achieved.
  • Patent Document 3 The molded body disclosed in Patent Document 3 is excellent in press formability at the time of secondary processing, but low linear expansion is not sufficient because carbon fiber is too fine, and formability and low linear expansion Are not compatible.
  • An object of the present invention is to solve the above-mentioned conventional problems and to provide a carbon fiber composite laminate excellent in the balance between low linear expansion, good surface appearance and press formability.
  • the carbon fiber composite laminate of the first aspect of the present invention (hereinafter sometimes referred to as “laminate of the first aspect”) is as follows. [1] A carbon fiber composite laminate having at least a five-layer structure, wherein the thermoplastic resin layer (A layer) contains 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin; A carbon fiber layer (B layer) and a thermoplastic resin layer (C layer) containing a thermoplastic resin as a main component and not containing the inorganic filler are provided in the order of A layer / B layer / C layer / B layer / A layer.
  • thermoplastic resin used for the A layer and the C layer is at least one resin selected from the group consisting of a polyolefin resin, a polycarbonate resin, a polyamide resin, and a polyester resin.
  • the carbon fiber composite laminate according to [1] or [2], wherein the inorganic filler used in the A layer is a plate-like particle having an aspect ratio of 20 or more and 500 or less.
  • the carbon fiber composite laminate of the second aspect of the present invention (hereinafter sometimes referred to as “laminate of the second aspect”) is as follows. [1] A carbon fiber composite laminate having at least a five-layer structure, wherein the thermoplastic resin layer (A layer) contains 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin; A layer / B layer / D layer of carbon fiber layer (B layer) and thermoplastic resin layer (D layer) containing 100 parts by mass or less of inorganic filler with respect to 100 parts by mass of thermoplastic resin / B layer / A layer in this order, A carbon fiber composite laminate in which the maximum diameter of the carbon fiber bundle in the B layer is 10 ⁇ m or more and 1000 ⁇ m or less, and the average fiber length of the carbon fibers is 0.1 mm or more and less than 5 mm.
  • the thermoplastic resin used for the A layer and the D layer is at least one resin selected from the group consisting of a polyolefin resin, a polycarbonate resin, a polyamide resin, and a polyester resin.
  • the carbon fiber composite laminate of the third aspect of the present invention (hereinafter sometimes referred to as “laminate of the third aspect”) is as follows.
  • a carbon fiber composite laminate having at least a three-layer structure, wherein 30 to 200 parts by mass of plate-like inorganic particles having an aspect ratio of 20 to 500 with respect to 100 parts by mass of the thermoplastic resin. It has a thermoplastic resin layer (E layer) and a carbon fiber layer (B layer), and the E layer is a front and back layer, and the maximum diameter of the carbon fiber bundle in the B layer is 10 ⁇ m or more and 1000 ⁇ m or less. And an average fiber length of the carbon fibers is 0.1 mm or more and less than 5 mm.
  • thermoplastic resin used for the E layer is at least one resin selected from the group consisting of a polyolefin resin, a polycarbonate resin, a polyamide resin, and a polyester resin.
  • Fiber composite laminate [3] The carbon fiber composite laminate according to [1] or [2], wherein the B layer is a layer formed using carbon fiber mat or carbon fiber paper as a carbon fiber material.
  • the laminate of the first aspect, the laminate of the second aspect, and the laminate of the third aspect are collectively referred to as “the laminate of the present invention”.
  • a carbon fiber composite having an excellent balance of low linear expansion, good surface appearance and press formability, and suitable for a casing of a large electrical appliance, an interior material of an automobile or a railway, an exterior material, etc.
  • a laminate can be provided.
  • thermoplastic resin layer (A layer) constituting the laminate of the first aspect is a layer containing 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin, and the first aspect. It exists as a substantial front and back layer of the laminate.
  • the thermoplastic resin that can be used for the A layer is preferably at least one resin selected from the group consisting of polyolefin resins, polycarbonate resins, polyamide resins, and polyester resins. These resins may be used alone or in combination of two or more.
  • a polyolefin-based resin the laminate of the first aspect is excellent in moldability and particularly in impact resistance.
  • a polycarbonate resin, a polyamide resin, or a polyester resin the laminate of the first aspect is excellent in moldability and particularly excellent in heat resistance.
  • the polyolefin resin that can be used for the A layer is not particularly limited, and is a homopolymer obtained by polymerizing an ⁇ -olefin such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene. Or a copolymer is mentioned. Also, two or more of these homopolymers or copolymers can be mixed. Among these, it is preferable to use a polypropylene resin or a polyethylene resin, and it is particularly preferable to use a polypropylene resin from the viewpoint of lightness.
  • the polypropylene-based resin used for the A layer is a resin in which propylene exceeds 50 mol%, preferably 70 mol% or more, more preferably 90 mol% or more, among the constituent monomers.
  • Propylene homopolymer or one of propylene and an ⁇ -olefin such as ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, or the like
  • Examples thereof include random copolymers and block copolymers with two or more kinds.
  • homopolypropylene is more preferably used from the viewpoint of rigidity and heat resistance.
  • polypropylene resin may be one in which a part of its molecular structure is modified with acid or alkali.
  • Specific examples include maleic acid-modified polypropylene resins and amine-modified polypropylene resins.
  • the polypropylene resin preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%.
  • the isotactic pentad fraction of the polypropylene resin is more preferably 83 to 98%, still more preferably 85 to 97%. If the isotactic pentad fraction is within such a range, there is little possibility that the strength of the laminate of the first aspect is lowered.
  • the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
  • the isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. It conforms to Zambelli et al (Macromolecules 8,687, (1975)).
  • the melt mass flow rate R A of the polypropylene resin used for the A layer is measured in accordance with JIS K7210 (1999) under conditions of a temperature of 230 ° C. and a load of 2.16 kgf, and is 0.1 g / 10 min or more and 60 g / 10 min or less. It is preferably 0.1 g / 10 min or more and 30 g / 10 min or less, more preferably 0.1 g / 10 min or more and 20 g / 10 min or less.
  • R A is 0.1 g / 10 min or more, followability to the mold during press molding of the laminate of the first aspect becomes easy.
  • it is 60 g / 10 min or less, there is no risk of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
  • Mw / Mn which is a parameter indicating the molecular weight distribution of the polypropylene resin used for the A layer, is measured by a GPC (gel permeation chromatography) method according to JIS K7252-1 (2008), and is 1.5 or more and 10 Or less, more preferably 1.5 or more and 8 or less, and particularly preferably 1.5 or more and 6 or less.
  • the smaller the Mw / Mn the narrower the molecular weight distribution.
  • Mw / Mn is 1.5 or more, the followability to the mold during press molding of the laminate of the first aspect becomes easy.
  • Mw / Mn is 10 or less, various mechanical properties of the laminate of the first aspect can be satisfied.
  • the production method of the polypropylene resin used for the A layer is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene system. Examples thereof include a slurry polymerization method, a melt polymerization method, a bulk polymerization method, a gas phase polymerization method using a single site catalyst represented by a catalyst, and a bulk polymerization method using a radical initiator.
  • a known polymerization method using a known olefin polymerization catalyst for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene system. Examples thereof include a slurry polymerization method, a melt polymerization method, a bulk polymerization method, a gas phase polymerization method using a single site catalyst represented by a catalyst, and a bulk polymerization method using a radical initiator.
  • the polyethylene-based resin used for the layer A is a resin in which ethylene is more than 50 mol%, preferably 70 mol% or more, more preferably 90 mol% or more among the constituent monomers.
  • polyethylene resins at least one polyethylene resin selected from low density polyethylene, linear low density polyethylene, and high density polyethylene is preferable, and the strength and heat resistance of the laminate of the first aspect are improved. High-density polyethylene is more preferable from the viewpoint.
  • the melt mass flow rate RA of the polyethylene resin used for the A layer is measured in accordance with JIS K7210 (1999) under conditions of a temperature of 190 ° C. and a load of 2.16 kgf, and is 0.05 g / 10 min or more and 30 g / 10 min or less. It is preferably 0.1 g / 10 min or more and 20 g / 10 min or less, more preferably 1 g / 10 min or more and 20 g / 10 min or less.
  • RA is 0.05 g / 10 min or more, the followability to the mold during press molding of the laminate of the first aspect becomes easy.
  • it is 30 g / 10 min or less, there is no fear of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers becomes easy.
  • the density of the polyethylene resin used for the A layer can be measured using a density gradient tube method according to JIS K7112 (1999), and is preferably 0.910 to 0.970 g / cm 3. It is more preferably 930 to 0.970 g / cm 3 , further preferably 0.940 to 0.970 g / cm 3 .
  • the density is 0.910 g / cm 3 or more, the laminate of the first aspect satisfies various mechanical properties.
  • the laminated body of a 1st aspect can maintain lightness.
  • the production method of the polyethylene resin used for the A layer is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst or a metallocene catalyst represented by a Ziegler-Natta type catalyst. And a polymerization method using a single site catalyst represented by.
  • a polymerization method of the polyethylene resin there are a one-stage polymerization, a two-stage polymerization, or a multistage polymerization more than that.
  • the polycarbonate resin used for the A layer may be either a homopolymer or a copolymer. Further, the polycarbonate-based resin may have a branched structure, a linear structure, or a mixture of a branched structure and a linear structure. A plurality of polycarbonate resins may be mixed and used. The so-called polyester carbonate resin (resin having both ester bond and carbonate bond in the molecular chain) is also included in the polycarbonate resin.
  • dihydric alcohol (diol) constituting the polycarbonate resin used in the A layer include bisphenols.
  • 2,2-bis (4-hydroxyphenyl) propane that is, bisphenol A is preferably used.
  • a diol other than bisphenol A may be used alone, or a polycarbonate resin using a plurality of diols may be used, and any of an aromatic diol, an aliphatic diol, and an alicyclic diol may be used.
  • the melt mass flow rate RA of the polycarbonate resin used for the A layer is measured under the conditions of a temperature of 300 ° C. and a load of 1.2 kgf in accordance with JIS K7210 (1999), and is 1 g / 10 min or more and 40 g / 10 min or less. It is preferably 2 g / 10 min or more and 35 g / 10 min or less, more preferably 3 g / 10 min or more and 30 g / 10 min or less.
  • RA is 1 g / 10 min or more, the followability to the mold during press molding of the laminate of the first aspect becomes easy.
  • it is 40 g / 10 min or less, there is no fear of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
  • the method for producing the polycarbonate resin used for the A layer is not particularly limited, and a known polymerization method such as a phosgene method, a transesterification method, a pyridine method and the like can be mentioned.
  • the polyamide-based resin used for the A layer is preferably an aliphatic polyamide, obtained by ring-opening homopolymerization of ⁇ -amino acids, obtained by ring-opening copolymerization of different ⁇ -amino acids, or by copolymerization of diamine and dicarboxylic acid. Any of those obtained may be used.
  • An aromatic polyamide or an aromatic-aliphatic polyamide can also be used.
  • the melt mass flow rate RA of the polyamide-based resin used for the A layer is measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210 (1999), 0.1 g / 10 min or more, It is preferably 60 g / 10 min or less, more preferably 0.5 g / 10 min or more and 30 g / 10 min or less, and particularly preferably 1 g / 10 min or more and 20 g / 10 min or less.
  • R A is 0.1 g / 10 min or more, followability to the mold during press molding of the laminate of the first aspect becomes easy.
  • it is 60 g / 10 min or less, there is no risk of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
  • the production method of the polyamide-based resin used for the A layer is not particularly limited, and a known polymerization method can be employed.
  • the polyester-based resin that can be used for the A layer is preferably an aromatic polyester-based resin from the viewpoint of heat resistance and moldability, and specifically, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, and the like. Can be mentioned.
  • the melt mass flow rate RA of the polyester-based resin used for the A layer is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210 (1999), and is 0.1 g / 10 min or more and 60 g / 10 min or less. It is preferably 0.5 g / 10 min or more and 30 g / 10 min or less, more preferably 1 g / 10 min or more and 20 g / 10 min or less.
  • R A is 0.1 g / 10 min or more, followability to the mold during press molding of the laminate of the first aspect becomes easy.
  • it is 60 g / 10 min or less, there is no risk of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
  • the manufacturing method of the polyester resin used for the A layer is not particularly limited, and a known polymerization method can be employed.
  • the A layer of the laminate of the first aspect contains 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin.
  • the content of the inorganic filler is preferably 30 parts by mass or more and 160 parts by mass or less, and particularly preferably 30 parts by mass or more and 120 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the laminated body of the first aspect contributes to the improvement of low linear expansion.
  • it contributes to the improvement of the moldability of the laminated body of a 1st aspect by containing an inorganic filler 200 mass parts or less with respect to 100 mass parts of thermoplastic resins.
  • the inorganic filler used in the A layer include metal carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, metal sulfates such as calcium sulfate, barium sulfate, and magnesium sulfate, calcium oxide, magnesium oxide, Examples thereof include metal oxides such as zinc oxide, alumina, silica and titanium oxide, metal chlorides such as sodium chloride, magnesium chloride, silver chloride and calcium chloride, and clay minerals such as talc, clay, mica and montmorillonite. Among these, talc or mica is preferably used from the viewpoint of low linear expansion and cost, and mica is particularly preferable.
  • the average particle size of the inorganic filler used in the A layer is preferably 1 ⁇ m or more and 500 ⁇ m or less, more preferably 5 ⁇ m or more and 300 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size of the inorganic filler is 1 ⁇ m or more, the laminated body of the first aspect contributes to improvement of low linear expansion.
  • an average particle diameter is 500 micrometers or less, it will contribute to the improvement of the surface external appearance of the laminated body of a 1st aspect.
  • the “average particle diameter of the inorganic filler” is, for example, a value obtained by averaging the minor axis and the major axis of a two-dimensional projection image when the filler is projected from a certain direction using an image analyzer. Can be calculated as a value obtained by further averaging the maximum value and the minimum value after calculating the projection images from 10 different directions.
  • the inorganic filler used in the A layer is preferably so-called plate-like particles having a relatively large aspect ratio (major axis / minor axis value).
  • the aspect ratio is preferably 20 or more and 500 or less, more preferably 20 or more and 300 or less, and particularly preferably 20 or more and 100 or less. If the aspect ratio of the inorganic filler is 20 or more, the laminate of the first aspect is excellent in low linear expansion. On the other hand, if the aspect ratio of the inorganic filler is 500 or less, the laminate of the first aspect is excellent in surface appearance.
  • the aspect ratio of the inorganic filler for example, the ratio of the minor axis to the major axis (major axis / minor axis) of the two-dimensional projection image when the filler is projected from a certain direction using an image analysis device is different from ten directions. Can be calculated as an average value.
  • the inorganic filler used for the A layer may be surface-treated.
  • the surface treatment method is not particularly limited, and examples thereof include a method using a surface treatment agent such as a general silane coupling agent.
  • a surface treatment agent such as a general silane coupling agent.
  • inorganic fillers may be used alone or in combination of two or more different materials, particle sizes, aspect ratios, presence / absence of surface treatment, type of surface treatment agent, and the like.
  • the A layer can further contain a flame retardant.
  • the flame retardant used in the A layer is not particularly limited, such as phosphorus flame retardants such as various condensed phosphate esters, nitrogen flame retardants such as melamine, phosphorus / nitrogen flame retardants such as phosphazene, brominated aromatic compounds, etc.
  • phosphorus flame retardants such as various condensed phosphate esters
  • nitrogen flame retardants such as melamine
  • phosphorus / nitrogen flame retardants such as phosphazene
  • brominated aromatic compounds etc.
  • One or more known flame retardants such as bromine flame retardants and antimony flame retardants such as antimony trioxide can be appropriately selected and used.
  • the content is preferably 20 parts by mass or more and 60 parts by mass or less, and 25 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. Is more preferably 30 parts by mass or more and 60 parts by mass or less.
  • the laminate of the first aspect can exhibit excellent flame retardancy.
  • the laminate of the first aspect satisfies various mechanical properties.
  • the A layer may appropriately contain other thermoplastic resins and additives generally added to the resin composition as long as the characteristics and effects of the present invention are not impaired.
  • additives include pigments such as carbon black, weather resistance stabilizers, heat resistance stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, antiaging agents, and antioxidants.
  • the laminate of the first embodiment is prepared by laminating the thermoplastic resin sheet constituting the A layer, the carbon fiber material constituting the B layer, and the thermoplastic resin sheet constituting the C layer, respectively. Can be obtained. It does not specifically limit as a preparation method of the thermoplastic resin sheet which comprises A layer, A well-known melt film-forming method, such as a T die-cast method, a calendar method, a press method, is employable.
  • thermoplastic resin the inorganic filler, and, if necessary, other components including a flame retardant are directly mixed to form a melt film, the thermoplastic resin, and the inorganic
  • the filler and other components including a flame retardant as necessary can be melt-kneaded in advance to prepare pellets of the mixture, and a method of melt-forming a thermoplastic resin sheet using this can be mentioned.
  • the thickness of the thermoplastic resin sheet constituting the A layer before producing the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, 0.5 mm or more, 1.5 mm More preferably, it is more preferably 0.5 mm or more and 1 mm or less.
  • the thickness of the thermoplastic resin sheet constituting the A layer is 0.5 mm or more, deterioration of the surface appearance such as the exposure of the carbon fiber layer of the B layer on the product surface after press molding can be suppressed.
  • the thickness of the thermoplastic resin sheet which comprises A layer is 2 mm or less, lightness can be maintained.
  • the thickness of the A layer in the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, more preferably 0.5 mm or more and 1.5 mm or less, and It is particularly preferably 5 mm or more and 1 mm or less. If the thickness of the A layer is 0.5 mm or more, deterioration of the surface appearance such as the exposure of the carbon fiber layer of the B layer on the product surface after press molding can be suppressed. Moreover, if the thickness of the A layer is 2 mm or less, the lightness can be maintained.
  • the carbon fiber layer (B layer) constituting the laminate of the first aspect is a layer mainly composed of a carbon fiber material. By having a carbon fiber layer, it is possible to achieve excellent low linear expansion for the laminate of the first aspect.
  • the type of carbon fiber used for the B layer may be either pitch-based carbon fiber or PAN-based carbon fiber, and may be used in combination, but pitch-based carbon fiber is preferable from the viewpoint of low linear expansion.
  • the pitch-based carbon fiber may be either a mesophase pitch-based carbon fiber or an isotropic pitch-based carbon fiber. From the viewpoint of improving the strength and low linear expansion of the laminate of the first aspect, the mesophase pitch is used. More preferred are carbon fibers.
  • the carbon fiber material used for the B layer is preferably a carbon fiber mat or carbon fiber paper.
  • carbon fiber mat and carbon fiber paper are materials in which carbon fiber bundles are opened and dispersed, and formed and paper-formed by a wet method or a dry method to form a flat film.
  • Any carbon fiber material described above preferably contains a binder resin so that the carbon fibers do not easily dissociate, and may be a so-called prepreg in which carbon fiber is impregnated with a binder resin.
  • “carbon fiber mat” is distinguished from “carbon fiber paper” in terms of the content and thickness of the binder resin. Usually, the carbon fiber mat has a larger binder resin content and a larger thickness than the carbon fiber paper.
  • the binder resin is not particularly limited, and examples thereof include crystalline thermoplastic resins such as polyolefin resins, polyester resins, polyacetal resins, polyphenylene sulfide resins, and crystalline polyamide resins; aromatic vinyl compound resins (polystyrene elastomers).
  • Polycarbonate resins polyphenylene ether resins, polysulfone resins, polyolefin elastomers, amorphous polyamide resins, and other amorphous thermoplastic resins; unsaturated polyester resins, vinyl ester resins, and other polyester resins; epoxy resins, phenols (resol type) Examples thereof include thermosetting resins such as resins, urea resins, melamine resins, polyimide resins, bismaleimide resins, and cyanate ester resins. Moreover, these copolymers, modified bodies, etc. may be sufficient and these may be used in combination of 2 or more types.
  • the content when the binder resin is contained in the carbon fiber material is preferably 1 part by mass or more and 90 parts by mass or less, and preferably 5 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the carbon fiber. More preferably, it is more preferably 10 parts by mass or more and 70 parts by mass or less.
  • carbon fiber paper is particularly preferred.
  • the carbon fiber paper is usually produced by either a dry papermaking method or a wet papermaking method, but it is preferable to use one produced by a wet papermaking method from the viewpoint of better fiber opening.
  • Carbon fiber paper having a high basis weight (carbon fiber amount) is preferable from the viewpoint of low linear expansion, but preferably 20 to 100 g / m in view of the balance between productivity and cost of the paper itself. 2 , more preferably 30 to 100 g / m 2 , particularly preferably 40 to 100 g / m 2 basis weight can be used.
  • the maximum diameter of the carbon fiber bundle in the B layer is 10 ⁇ m or more and 1000 ⁇ m or less.
  • the maximum diameter of the carbon fiber bundle in the B layer is more preferably 10 ⁇ m or more and 950 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 900 ⁇ m or less.
  • the average fiber diameter of one carbon fiber is 7 to 10 ⁇ m, but these are aggregated into a carbon fiber bundle by electrostatic adhesion or a sizing agent.
  • the maximum diameter to 10 ⁇ m or more and 1000 ⁇ m or less in the laminate of the first aspect by controlling the maximum diameter to 10 ⁇ m or more and 1000 ⁇ m or less in the laminate of the first aspect, the low linear expansion property and good surface appearance and press formability of the laminate of the first aspect are achieved. Balance can be maintained.
  • the maximum diameter of the carbon fiber bundle can be measured and evaluated by the method described in the examples described later.
  • the average fiber length of the carbon fiber in B layer is 0.1 mm or more and less than 5 mm.
  • the average fiber length of the carbon fibers in the B layer is more preferably 0.1 mm or more and 4.5 mm or less, and particularly preferably 0.1 mm or more and 4.0 mm or less.
  • the fiber is sufficiently opened.
  • the method of performing is mentioned. Specifically, when carbon fiber paper is produced by a wet papermaking method, a method of controlling the number of revolutions of a disaggregator used for fiber opening is exemplified. In the case of producing by a dry papermaking method, or for carbon fiber materials other than carbon fiber paper, the fiber opening may be performed by controlling the fiber opening conditions.
  • the maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fiber are contradictory characteristics. If the fiber is excessively opened, the maximum diameter of the carbon fiber bundle becomes small, but the average fiber length becomes too short, resulting in low linear expansion. Not fully expressed. On the other hand, if the fiber opening is insufficient, the maximum diameter of the carbon fiber bundle becomes large, and the laminate may have a poor appearance or the press formability may be insufficient.
  • the laminate of the first aspect can maintain the balance between low linear expansion, good surface appearance and press formability by controlling the maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fibers within the above ranges. .
  • the preferable range of the maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fiber in the carbon fiber material used for the B layer is the same as the range of the maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fiber in the B layer. It is.
  • the thickness of the B layer in the laminate of the first aspect is not particularly limited, but is preferably 0.1 mm or more and 0.3 mm or less, more preferably 0.1 mm or more and 0.25 mm or less, and It is particularly preferably 1 mm or more and 0.2 mm or less. If the thickness of the B layer is 0.1 mm or more, the laminate of the first aspect can exhibit excellent low linear expansion. Moreover, if the thickness of B layer is 0.3 mm or less, there are few surface unevenness
  • the carbon fiber material used for the B layer has various thicknesses because the porosity varies depending on the type. Therefore, the carbon fiber material has a thickness such that the preferred thickness when it is provided in the laminate of the first aspect is in the above range. preferable.
  • the thermoplastic resin layer (C layer) constituting the laminate of the first aspect is a layer containing a thermoplastic resin as a main component and not containing the inorganic filler, and is substantially a central layer of the laminate of the first aspect.
  • the “main component” means that the thermoplastic resin accounts for more than 50 mass%, preferably 70 mass% or more, more preferably 90 mass% or more (including 100 mass%) in the C layer.
  • does not contain inorganic filler means that the inorganic filler is not actively added and added, but it is allowed to contain a very small amount that does not affect the characteristics and effects of the laminate of the first aspect. This is the purpose.
  • C layer is composed mainly of thermoplastic resin and does not contain the inorganic filler, thus achieving light weight and low cost while maintaining good low linear expansion and press formability for the laminate of the first aspect. it can.
  • thermoplastic resin A preferable kind of the thermoplastic resin used for the C layer is the same as that used for the A layer. Among them, the same type of material as the A layer (for example, if the A layer is a polypropylene resin, the C layer is also a polypropylene resin) is preferable from the viewpoint of improving the interlayer adhesion of the laminate of the first aspect.
  • the melt mass flow rate R A (g / 10 min) of the thermoplastic resin of the A layer and the melt mass flow rate R C (g of the thermoplastic resin of the C layer at the same temperature and the same load. / 10 min) preferably has a relationship of R A ⁇ RC .
  • R A of the thermoplastic resin itself of the A layer is R C or more.
  • thermoplastic resin layer A contain an inorganic filler, the balance of flow characteristics of the A layer and the C layer is deteriorated, 10 ⁇ R C It is preferable that ⁇ R A ⁇ RC .
  • the layer C may appropriately contain other thermoplastic resins and additives generally blended into the resin composition within a range not impairing the characteristics and effects of the present invention. However, it does not contain what corresponds to the said inorganic filler.
  • additives include flame retardants, pigments such as carbon black, weather resistance stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, colorants and the like can be mentioned.
  • thermoplastic resin sheet constituting the C layer is not particularly limited, as is the case with the thermoplastic resin sheet constituting the A layer, and known melt film forming methods such as a T-die casting method, a calendar method, and a pressing method. Can be adopted.
  • the thickness of the thermoplastic resin sheet constituting the C layer before producing the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, and is 1 mm or more and 2 mm or less. Is more preferable, and 1 mm or more and 1.5 mm or less are particularly preferable. If the thickness of the thermoplastic resin sheet which comprises C layer is 0.5 mm or more, the laminated body of a 1st aspect is excellent in press moldability. Moreover, if the thickness of the thermoplastic resin sheet which comprises C layer is 2 mm or less, the laminated body of a 1st aspect is excellent in low linear expansion property.
  • the thickness of the C layer in the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, more preferably 1 mm or more and 2 mm or less, and 1 mm or more and 1.5 mm. It is particularly preferred that If the thickness of the C layer is 0.5 mm or more, the laminate of the first aspect is excellent in press moldability. Moreover, if the thickness of C layer is 2 mm or less, the laminated body of a 1st aspect is excellent in low linear expansion property.
  • the laminated body of the first aspect may have a configuration of A layer / B layer / C layer / B layer / A layer, but has a design property such as a printed layer on the outer side of the A layer, for example.
  • a surface protective layer such as a layer or an antifouling layer can also be provided.
  • an adhesive layer or the like can be provided between the A layer and the B layer or between the B layer and the C layer as necessary.
  • the laminate of the first aspect is prepared by laminating the thermoplastic resin sheet constituting the A layer, the carbon fiber material constituting the B layer, and the thermoplastic resin sheet constituting the C layer, respectively. It is obtained by doing.
  • thermoplastic resin sheet used for the A layer and the C layer a step of producing a thermoplastic resin sheet used for the A layer and the C layer, a step of producing a carbon fiber material used for the B layer by opening a carbon fiber bundle, and the heat
  • the plastic resin sheet and the carbon fiber material are laminated so as to have a structure of A layer / B layer / C layer / B layer / A layer, and an appropriate one is selected according to the thermoplastic resin used for the A layer and the C layer.
  • the laminate of the first aspect can be obtained by a manufacturing method including a step of press molding under temperature and pressure conditions.
  • the above manufacturing method may be a so-called batch method. While producing the thermoplastic resin sheets used for the A layer and the C layer, the carbon fiber material used for the B layer is supplied and these are continuously laminated. However, a continuous pressing method in which press molding is performed may be used.
  • the press molding temperature is preferably 180 to 230 ° C., more preferably 180 to 220 ° C., and 190 to 210 ° C. Is particularly preferred.
  • the pressing pressure is preferably from 0.5 to 4.0 MPa, more preferably from 0.5 to 3.0 MPa, and particularly preferably from 1 to 3 MPa.
  • the press molding temperature is preferably 230 to 280 ° C., more preferably 240 to 280 ° C., and 250 to 280 ° C. Is particularly preferred.
  • the pressing pressure is preferably from 0.5 to 4.0 MPa, more preferably from 0.5 to 3.0 MPa, and particularly preferably from 1 to 3 MPa.
  • the laminate of the second aspect has the same configuration as the laminate of the first aspect except that the C layer of the laminate of the first aspect described above is replaced with a D layer described later.
  • the A layer and the B layer are the same as the A layer and the B layer of the laminate of the first aspect as follows.
  • thermoplastic resin layer (A layer) The thermoplastic resin layer (A layer) constituting the laminate of the second aspect is a layer containing 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin, and the second aspect. It exists as a substantial front and back layer of the laminate.
  • the A layer constituting the laminate of the second aspect is the same as the A layer constituting the laminate of the first aspect, and the preferred aspects and production methods thereof are also the same.
  • the carbon fiber layer (B layer) constituting the laminate of the second aspect is a layer mainly composed of a carbon fiber material. By having the carbon fiber layer, excellent low linear expansion can be realized for the laminate of the second embodiment.
  • the B layer constituting the laminate of the second aspect is the same as the B layer constituting the laminate of the first aspect described above, and the preferred aspects and production methods thereof are also the same.
  • thermoplastic resin layer (D layer) The thermoplastic resin layer (D layer) constituting the laminate of the second embodiment is a layer containing an inorganic filler in an amount exceeding 0 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin. It becomes the center layer of the laminate of the second aspect.
  • thermoplastic resin A preferable kind of the thermoplastic resin used for the D layer is the same as that used for the A layer. Among them, the same type of material as the A layer (for example, if the A layer is a polypropylene resin, the D layer is also a polypropylene resin) is preferable from the viewpoint of improving the interlayer adhesion of the laminate of the second aspect.
  • the melt mass flow rate R A (g / 10 min) of the thermoplastic resin of the A layer and the melt mass flow rate R D (g / g) of the thermoplastic resin of the D layer at the same temperature and the same load. 10 min) differs depending on the content of the inorganic filler in the A layer and the content of the inorganic filler in the D layer.
  • the content of the inorganic filler in the D layer is equal to or less than the content of the inorganic filler in the A layer.
  • R A of the thermoplastic resin itself of the A layer is R D or more.
  • RA is excessively large with respect to RD
  • the thermoplastic resin of the A layer contains more inorganic filler than the D layer
  • the balance between the flow characteristics of the A layer and the D layer becomes poor. It is preferable that 10 ⁇ R D ⁇ R A ⁇ R D.
  • the melt mass flow rate R A (g / g) of the thermoplastic resin of the A layer at the same temperature and the same load is used.
  • 10 min) and the melt mass flow rate R D (g / 10 min) of the thermoplastic resin of the D layer preferably have a relationship of R D ⁇ R A , particularly 10 ⁇ R A ⁇ R D ⁇ R A. It is preferable.
  • the D layer of the laminate of the second aspect contains an inorganic filler in an amount of more than 0 parts by mass and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the content of the inorganic filler is more preferably 5 parts by mass or more and 100 parts by mass or less, and particularly preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the content rate of the inorganic filler in D layer of the laminated body of a 2nd aspect is below the content rate of the inorganic filler in A layer.
  • Examples of the inorganic filler used in the D layer include those described above as the inorganic filler used in the A layer, and preferred examples thereof are also the same. Further, the preferred average particle diameter and aspect ratio of the inorganic filler used in the D layer are the same as the average particle diameter and aspect ratio of the inorganic filler used in the A layer for the same reason as in the A layer, This inorganic filler may also be surface-treated.
  • the inorganic filler used for the A layer and the inorganic filler used for the D layer may be the same or different. It is preferable that they are the same from the standpoint of material procurement.
  • the D layer may appropriately contain other thermoplastic resins and additives that are generally blended into the resin composition within a range not impairing the characteristics and effects of the present invention.
  • additives include flame retardants, pigments such as carbon black, weather resistance stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, colorants and the like can be mentioned.
  • the suitable content rate is the same as that in A layer.
  • thermoplastic resin sheet constituting the D layer is not particularly limited, as is the case with the thermoplastic resin sheet constituting the A layer, and known melt film forming methods such as a T-die casting method, a calendering method, and a pressing method. Can be adopted.
  • the thickness of the thermoplastic resin sheet constituting the D layer before producing the laminate of the second aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, and is 1 mm or more and 2 mm or less. Is more preferable, and 1 mm or more and 1.5 mm or less are particularly preferable. If the thickness of the thermoplastic resin sheet which comprises D layer is 0.5 mm or more, the laminated body of a 2nd aspect is excellent in press moldability and low linear expansion property. Moreover, if the thickness of the thermoplastic resin sheet which comprises D layer is 2 mm or less, the laminated body of a 2nd aspect is excellent in press moldability.
  • the thickness of the D layer in the laminate of the second aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, more preferably 1 mm or more and 2 mm or less, and 1 mm or more and 1.5 mm. It is particularly preferred that When the thickness of the D layer is 0.5 mm or more, the laminate of the second aspect is excellent in press moldability and low linear expansion. Moreover, if the thickness of D layer is 2 mm or less, the laminated body of a 2nd aspect is excellent in press moldability.
  • the laminated body of the second aspect may be provided with other layers in addition to the A layer, B layer, and D layer as long as the features and effects of the present invention are not impaired.
  • the layered product of the second embodiment may have a configuration of A layer / B layer / D layer / B layer / A layer, but has a design property such as a printed layer on the outer side of the A layer, for example.
  • a surface protective layer such as a layer or an antifouling layer can also be provided.
  • an adhesive layer or the like can be provided between the A layer and the B layer or between the B layer and the D layer as necessary.
  • the laminate of the second aspect is prepared by respectively producing the thermoplastic resin sheet constituting the A layer, the carbon fiber material constituting the B layer, and the thermoplastic resin sheet constituting the D layer. It is obtained by doing.
  • the manufacturing method it is the same as that of the manufacturing method of the laminated body of the above-mentioned 1st aspect except arrange
  • thermoplastic resin layer (E layer) constituting the laminate of the third aspect is 30 parts by mass or more and 200 parts by mass of plate-like inorganic particles having an aspect ratio of 20 or more and 500 or less with respect to 100 parts by mass of the thermoplastic resin. It is a layer to be contained below, and exists as the front and back layers of the laminate of the third embodiment.
  • thermoplastic resin examples include those similar to the thermoplastic resin that constitutes the A layer according to the laminate of the first aspect, and the preferred aspects thereof are also the same.
  • the E layer of the laminate of the third aspect contains 30 to 200 parts by mass of plate-like inorganic particles having an aspect ratio of 20 to 500 with respect to 100 parts by mass of the thermoplastic resin.
  • the content ratio of the plate-like inorganic particles is preferably 30 parts by mass or more and 160 parts by mass or less, and particularly preferably 30 parts by mass or more and 120 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  • the laminated body of the third aspect contributes to the improvement of low linear expansion. Moreover, it contributes to the improvement of the moldability of the laminated body of the 3rd aspect by containing 200 mass parts or less of plate-like inorganic particles with respect to 100 mass parts of polyolefin resin.
  • the plate-like inorganic particles used for the E layer include metal carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, metal sulfates such as calcium sulfate, barium sulfate, and magnesium sulfate, calcium oxide, and oxidation.
  • metal oxides such as magnesium, zinc oxide, alumina, silica, and titanium oxide
  • metal chlorides such as sodium chloride, magnesium chloride, silver chloride, and calcium chloride
  • clay minerals such as talc, clay, mica, and montmorillonite.
  • talc or mica is preferably used from the viewpoint of low linear expansion and cost, and mica is particularly preferable.
  • the average particle size of the plate-like inorganic particles used for the E layer is preferably 1 ⁇ m or more and 500 ⁇ m or less, more preferably 5 ⁇ m or more and 300 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 100 ⁇ m or less. If the average particle diameter of the plate-like inorganic particles is 1 ⁇ m or more, the laminated body of the third aspect contributes to improvement of low linear expansion. Moreover, if an average particle diameter is 500 micrometers or less, it will contribute to the improvement of the surface external appearance of the laminated body of a 3rd aspect.
  • the average particle diameter of the plate-like inorganic particles can be calculated in the same manner as the average particle diameter of the inorganic filler in the A layer of the laminate of the first aspect described above.
  • the aspect ratio (major axis / minor axis value) of the plate-like inorganic particles used for the E layer is 20 or more and 500 or less, preferably 20 or more and 300 or less, and particularly preferably 20 or more and 100 or less. . If the aspect ratio of the plate-like inorganic particles is 20 or more, the laminate of the third aspect is excellent in low linear expansion. On the other hand, if the aspect ratio of the plate-like inorganic particles is 500 or less, the laminate of the third aspect is excellent in surface appearance.
  • the aspect ratio of the plate-like inorganic particles can be calculated in the same manner as the aspect ratio of the inorganic filler in the A layer of the laminate of the first aspect described above.
  • the plate-like inorganic particles used for the E layer may be surface-treated.
  • the surface treatment method is not particularly limited, and examples thereof include a method using a surface treatment agent such as a general silane coupling agent.
  • plate-like inorganic particles may be used alone, or may be used in combination of two or more kinds having different materials, particle sizes, aspect ratios, presence / absence of surface treatment, types of surface treatment agents, and the like.
  • the E layer can further contain a flame retardant.
  • the flame retardant used for the E layer is not particularly limited, such as phosphorus flame retardants such as various condensed phosphate esters, nitrogen flame retardants such as melamine, phosphorus / nitrogen flame retardants such as phosphazenes, brominated aromatic compounds, etc.
  • phosphorus flame retardants such as various condensed phosphate esters
  • nitrogen flame retardants such as melamine
  • phosphorus / nitrogen flame retardants such as phosphazenes
  • brominated aromatic compounds etc.
  • One or more known flame retardants such as bromine flame retardants and antimony flame retardants such as antimony trioxide can be appropriately selected and used.
  • the content ratio is preferably 20 parts by mass or more and 60 parts by mass or less, and 25 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. Is more preferably 30 parts by mass or more and 60 parts by mass or less.
  • the laminate of the third aspect can exhibit excellent flame retardancy.
  • the laminate of the third aspect satisfies various mechanical properties.
  • the E layer may appropriately contain other thermoplastic resins and additives generally added to the resin composition as long as the characteristics and effects of the present invention are not impaired.
  • additives include pigments such as carbon black, weather resistance stabilizers, heat resistance stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, antiaging agents, and antioxidants.
  • the laminate of the third aspect is obtained by producing a thermoplastic resin sheet constituting the E layer and a carbon fiber material constituting the B layer and laminating them. It does not specifically limit as a preparation method of the thermoplastic resin sheet which comprises E layer, Well-known melt film-forming methods, such as a T die-cast method, a calendar method, a press method, are employable.
  • thermoplastic resin the plate-like inorganic particles, and other components including a flame retardant as required, a method of directly mixing and melt-forming, the thermoplastic resin
  • examples include a method of melt-kneading the plate-like inorganic particles and other components including a flame retardant as necessary to prepare a pellet of a mixture and melt-forming a thermoplastic resin sheet using the mixture.
  • the thickness of the thermoplastic resin sheet constituting the E layer before producing the laminate of the third aspect is not particularly limited, but is preferably 0.5 mm or more and 2.5 mm or less, preferably 0.5 mm or more and 2 mm. Or less, more preferably 0.5 mm or more and 1.5 mm or less, and particularly preferably 0.5 mm or more and 1 mm or less. If the thickness of the thermoplastic resin sheet constituting the E layer is 0.5 mm or more, deterioration of the surface appearance such as the exposure of the carbon fiber layer of the B layer on the product surface after press molding can be suppressed. Moreover, if the thickness of the thermoplastic resin sheet which comprises E layer is 2.5 mm or less, lightness can be maintained.
  • the thickness of the E layer in the laminate of the third aspect is not particularly limited, but is preferably 0.5 mm or more and 2.5 mm or less, more preferably 0.5 mm or more and 2 mm or less. More preferably, it is 5 mm or more and 1.5 mm or less, and particularly preferably 0.5 mm or more and 1 mm or less.
  • the carbon fiber layer (B layer) constituting the laminate of the third aspect is a layer mainly composed of a carbon fiber material. By having the carbon fiber layer, excellent low linear expansion can be realized for the laminate of the third embodiment.
  • the B layer constituting the laminate of the third aspect is the same as the B layer constituting the laminate of the first aspect described above, and the preferred aspects and production methods thereof are also the same.
  • the laminated body of the third aspect in addition to the E layer and the B layer, other layers may be provided as long as the features and effects of the present invention are not impaired.
  • the E layer is the front and back layers, and for example, the structure of E layer / B layer / E layer may be used, but between the E layer and B layer, if necessary, An adhesive layer or the like can be provided.
  • it can also be set as the laminated body which provided two B layers and provided the other layer between the layers like E layer / B layer / other layer / B layer / E layer.
  • the laminated body of a 3rd aspect uses E layer as front and back layers, it does not prevent providing a surface protection layer, such as a layer which has designability, such as a printing layer, and an antifouling layer in the further outside of E layer. .
  • the laminate of the third aspect can be obtained by preparing and laminating the thermoplastic resin sheet constituting the E layer and the carbon fiber material constituting the B layer.
  • thermoplastic resin sheet used for the E layer a step of producing a thermoplastic resin sheet used for the E layer, a step of producing a carbon fiber material used for the B layer by opening a carbon fiber bundle, the thermoplastic resin sheet and A production method comprising a step of laminating the carbon fiber material so as to have a configuration of E layer / B layer / E layer, and press molding at an appropriate temperature and pressure condition according to the thermoplastic resin used for the E layer
  • the manufacturing method described above may be a so-called batch method. While producing the thermoplastic resin sheet used for the E layer, the carbon fiber material used for the B layer is supplied and press-molded while continuously laminating them.
  • the continuous press method may be used.
  • the press molding conditions are the same as the press molding conditions in the method for manufacturing the laminate of the first aspect described above.
  • the laminates of the present invention that is, the laminates of the first, second, and third embodiments preferably have the following physical properties.
  • the maximum cross-sectional height (Rt) of the surface of the layer A of the laminate of the first embodiment and the second embodiment and the surface of the E layer of the laminate of the third embodiment is measured according to JIS B0601 (2013) and is 3 ⁇ m. Or less, more preferably 2.5 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • the laminate of the present invention has a particularly good surface appearance.
  • the maximum cross-sectional height (Rt) of the surface of the A layer and the E layer is preferably as small as possible, and the lower limit is not particularly defined.
  • Examples of the method for setting the maximum cross-sectional height (Rt) of the surfaces of the A layer and the E layer include the content ratio of the inorganic filler in the A layer or the plate-like inorganic particles in the E layer, and the B The method of adjusting the maximum diameter of the carbon fiber bundle in a layer in the range specified in this invention is mentioned.
  • the thickness of the laminate of the present invention is not particularly limited, but is preferably 1.7 mm or more and 5 mm or less, more preferably 1.7 mm or more and 4 mm or less, and 1.7 mm or more and 3 mm or less. It is particularly preferred.
  • the thickness of the laminate of the present invention is 1.7 mm or more, the laminate of the present invention and a product obtained by press molding the laminate of the present invention are excellent in surface appearance.
  • the thickness of the laminated body of this invention is 5 mm or less, the laminated body of this invention is excellent in low linear expansion property.
  • the laminate of the present invention is excellent in low linear expansion, and the linear expansion coefficient measured according to JIS K7197 (2012) is preferably 5 ⁇ 10 ⁇ 5 / ° C. or less, preferably 1 ⁇ More preferably, it is 10 ⁇ 5 / ° C. or less.
  • the two A layers included in the laminates of the first and second embodiments are not necessarily the same thermoplastic resin and inorganic filler. Need not be of the same thickness used in the same composition, the type of the thermoplastic resin and the inorganic filler, the content ratio of the inorganic filler, the content ratio of other components, etc. may differ, and the thickness May be different.
  • the type of the carbon fiber material, the maximum diameter of the carbon fiber bundle, the average fiber length of the carbon fiber, the basis weight, the thickness, and the like may be different. .
  • the two A layers in the laminate of the first embodiment and the second embodiment it is preferable that the two B layers have the same physical properties or thicknesses made of the same material.
  • the two E layers included in the laminate of the third embodiment are not necessarily required to have the same thickness using the same thermoplastic resin and plate-like inorganic particles in the same composition, and the thermoplastic resin and the plate.
  • the shape of the particle-like inorganic particles, the content ratio of the plate-like inorganic particles, the content ratio of the other components, and the like may be different, and the thicknesses may be different.
  • the two E layers in the laminate of the third aspect were each made of the same material. It is preferable that they have the same physical properties or thickness.
  • thermoplastic resin was measured by a GPC (gel permeation chromatography) method according to JIS K7252-1 (2008).
  • PP is a PP resin
  • Carbon fiber is not exposed on the surface of the A layer or E layer and cracks are not generated.
  • The carbon fiber is exposed on the surface of the A layer or E layer, or a shaping type drawing. A state in which the laminate cannot follow and is cracked.
  • Lubricant MS-6 (12-hydroxystearic acid manufactured by Nitto Kasei Kogyo Co., Ltd.)
  • Antioxidant IRGANOX B225 (Phosphorus heat stabilizer + hindered phenol antioxidant manufactured by BASF Corporation)
  • Carbon fiber DIALEAD K6371T (Mesophase pitch carbon fiber manufactured by Mitsubishi Plastics, Inc.)
  • the sheet used for the produced A layer and C layer and the high-spread paper used for the B layer produced in Example I-1 are configured as A layer / B layer / C layer / B layer / A layer.
  • the obtained laminate was evaluated and the results are shown in Table 1.
  • the obtained laminate was evaluated and the results are shown in Table 1.
  • Example 3 Mica 1, a flame retardant, a lubricant, and an antioxidant were mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the PP resin to prepare a sheet used for the A layer in the same manner as in Example I-1.
  • a sheet used for the C layer was prepared in the same manner as in Example I-1, and was sandwiched between two metal plates so as to have a configuration of A layer / B layer / C layer / B layer / A layer.
  • the obtained laminate was evaluated and the results are shown in Table 1.
  • a sheet used for the C layer was prepared in the same manner as in Example I-1, and was sandwiched between two metal plates so as to have a configuration of A layer / B layer / C layer / B layer / A layer.
  • the obtained laminate was evaluated and the results are shown in Table 1.
  • Example 5 Mica 1, a flame retardant, a lubricant, and an antioxidant were mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the PP resin to prepare a sheet used for the A layer in the same manner as in Example I-1.
  • a sheet used for the C layer was prepared in the same manner as in Example I-1, and was stacked between two metal plates so as to have a configuration of A layer / C layer / A layer.
  • the obtained laminate was evaluated and the results are shown in Table 1.
  • the sheet used for the prepared A layer and B layer and the high-spread paper used for the B layer prepared in Example II-1 are configured as A layer / B layer / D layer / B layer / A layer.
  • the obtained laminate was evaluated, and the results are shown in Table 2.
  • the sheet used for the other layers produced, the sheet used for the E layer produced in Example III-2, and the high-spread paper used for the B layer produced in Example III-1 were E layer / B layer / others.
  • the obtained laminate was evaluated, and the results are shown in Table 3.
  • the sheet used for the produced E layer and other layers and the high spread paper used for the B layer produced in Example III-1 have a configuration of E layer / B layer / other layers / B layer / E layer.
  • the thickness of the E layer 500 ⁇ m
  • the thickness of the B layer 150 ⁇ m
  • the thicknesses of the other layers 700 ⁇ m.
  • the obtained laminate was evaluated, and the results are shown in Table 3.
  • the sheet used for the other layers produced, the sheet used for the E layer produced in Example III-2, and the high-spread paper used for the B layer produced in Example III-1 were E layer / B layer / others.
  • the obtained laminate was evaluated, and the results are shown in Table 3.
  • the carbon fiber composite laminates of the present invention produced in the examples have excellent balance between low linear expansion, good surface appearance and press formability.
  • those produced in the comparative examples do not satisfy the ranges specified in the present invention, the maximum diameter of the carbon fiber bundle, the average fiber length of the carbon fiber, low linear expansion, surface appearance, and press formability. At least one of them was insufficient.
  • the laminate of the present invention is a carbon fiber composite laminate that has an excellent balance of low linear expansion, good surface appearance and press formability, and can meet the demands for light weight and low cost. It can be suitably used for various molded products such as housings of electrical appliances, interior materials and exterior materials of automobiles and railways.

Abstract

 The present invention provides a carbon fiber composite laminate having excellent balance among low linear expansion, surface attractiveness, and press formability. A carbon fiber composite laminate having at least a five-layer structure, wherein the laminate has a thermoplastic resin layer (A) containing 30-200 mass parts of inorganic filler to 100 mass parts of the thermoplastic resin, a carbon fiber layer (B), and a thermoplastic resin layer (C) having a thermoplastic resin as a main component and not containing the inorganic filler. The layers are layered in the order A/B/C/B/A, the maximum diameter of the carbon fiber bundles in layer (B) is 10-1000 µm, and the average length of the carbon fibers is 0.1 mm or more, and less than 5 mm.

Description

炭素繊維複合積層体Carbon fiber composite laminate
 本発明は、熱可塑性樹脂と炭素繊維を複合した積層体に関する。 The present invention relates to a laminate in which a thermoplastic resin and carbon fiber are combined.
 近年、大型の電化製品の筐体や、自動車や鉄道の内装材、外装材など、軽量かつ高強度で、耐熱性にも優れる成形品のニーズが高まっている。特に、こうした成形品は熱に対しての寸法変化の応答性が小さいこと、すなわち低線膨張性の材料であることが求められている。そのような背景を踏まえて、熱可塑性樹脂と無機繊維を複合した低線膨張性の材料が提案されている。 In recent years, there is a growing need for molded products that are lightweight, high-strength, and excellent in heat resistance, such as housings for large electrical appliances, automobile and railway interior materials, and exterior materials. In particular, such a molded article is required to have a low responsiveness to dimensional change with respect to heat, that is, a low linear expansion material. Based on such a background, a low linear expansion material in which a thermoplastic resin and inorganic fibers are combined has been proposed.
 例えば、特許文献1(特開2010-254276号公報)には、炭素繊維を含有する炭素繊維強化層と、熱可塑性樹脂層とを有し、特定の線膨張係数を有する自動車外装用の積層体が開示されており、熱可塑性樹脂層がポリオレフィン系樹脂であることや、添加剤として充填剤である各種無機フィラーを含んでも良いこと等が記載されている。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2010-254276) discloses a laminate for an automobile exterior having a carbon fiber reinforced layer containing carbon fibers and a thermoplastic resin layer and having a specific linear expansion coefficient. And discloses that the thermoplastic resin layer is a polyolefin-based resin, and various inorganic fillers that are fillers may be included as additives.
 また、特許文献2(特開2008-45040号公報)には、メイン層が熱可塑性樹脂(A)と、ガラス繊維とガラス繊維以外の少なくとも1種の充填剤とからなる充填剤(B)からなり、該メイン層が充填剤(B)を特定の割合で含有し、特定の線膨張係数とシャルピー衝撃強さを有する、単層又は複層の低線膨張押出シートが開示されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-45040) discloses that a main layer is composed of a thermoplastic resin (A) and a filler (B) composed of glass fiber and at least one filler other than glass fiber. Thus, there is disclosed a single-layer or multi-layer low-linear expansion extruded sheet in which the main layer contains the filler (B) in a specific ratio and has a specific linear expansion coefficient and Charpy impact strength.
 また、特許文献3(特開2007-169561号公報)には、(A)ポリプロピレン系樹脂、(B)エラストマー、(C)タルク、及び(D)繊維径が100nm以下の微細炭素繊維を所定の割合で含み、成形体中の(D)成分の平均繊維長が2.5μm以上であることを特徴とする成形体が開示されている。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2007-169561) discloses (A) polypropylene resin, (B) elastomer, (C) talc, and (D) fine carbon fibers having a fiber diameter of 100 nm or less. A molded body is disclosed, which is characterized in that the average fiber length of the component (D) in the molded body is 2.5 μm or more.
特開2010-254276号公報JP 2010-254276 A 特開2008-45040号公報JP 2008-45040 A 特開2007-169561号公報JP 2007-169561 A
 特許文献1に開示されている積層体では、1層の炭素繊維強化層で低線膨張性を発現しようと試みるとともに、全体の反りを改良するためにさらに、公知のフィラーや強化繊維を含有する熱可塑性樹脂層を設けても良いとしている。しかしこの構成では、積層体を熱成形や真空成形などにより二次加工する際の成形性(プレス成形性)が十分ではないうえ、積層体自体の軽量化の観点からも十分ではない。また、使用する炭素繊維によっては積層体の表面の凹凸による外観不良が生じるおそれがあることについて何ら考慮されておらず、積層体の外観についても改良の余地がある。 In the laminate disclosed in Patent Document 1, an attempt is made to express low linear expansion with a single carbon fiber reinforced layer, and a known filler or reinforcing fiber is further contained to improve the overall warpage. It is said that a thermoplastic resin layer may be provided. However, in this configuration, the formability (press formability) when the laminate is subjected to secondary processing by thermoforming or vacuum forming is not sufficient, and it is not sufficient from the viewpoint of reducing the weight of the laminate itself. Further, no consideration is given to the appearance failure due to the unevenness of the surface of the laminate depending on the carbon fiber used, and there is room for improvement in the appearance of the laminate.
 特許文献2に開示されているシートは、メイン層に相当多量のガラス繊維や充填剤を含有しているため、低線膨張性は有するものの、二次加工する際のプレス成形性、特に絞り型への追従性が十分ではなく、成形性と低線膨張性の両立ができていない。 Since the sheet disclosed in Patent Document 2 contains a considerable amount of glass fiber and filler in the main layer, it has low linear expansion, but press formability during secondary processing, particularly drawing die The following ability is not sufficient, and both formability and low linear expansion are not achieved.
 特許文献3に開示されている成形体は、二次加工する際のプレス成形性には優れる一方で、炭素繊維が微細過ぎることから低線膨張性は十分ではなく、成形性と低線膨張性の両立ができていない。 The molded body disclosed in Patent Document 3 is excellent in press formability at the time of secondary processing, but low linear expansion is not sufficient because carbon fiber is too fine, and formability and low linear expansion Are not compatible.
 すなわち、従来の技術においては、低線膨張性と良好な表面外観とプレス成形時の絞り型等への追従性のバランスが取れた積層体を得ることはできていなかった。 That is, in the prior art, it has not been possible to obtain a laminate having a balance between low linear expansion, good surface appearance and followability to a drawing die during press molding.
 本発明は上記従来の問題点を解決し、低線膨張性と良好な表面外観とプレス成形性のバランスに優れた炭素繊維複合積層体を提供することを課題とする。 An object of the present invention is to solve the above-mentioned conventional problems and to provide a carbon fiber composite laminate excellent in the balance between low linear expansion, good surface appearance and press formability.
 本発明者らは上記の課題に鑑みて鋭意検討した結果、特定の炭素繊維複合積層体が、低線膨張性と良好な表面外観とプレス成形性のバランスに優れることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the above problems, the present inventors have found that a specific carbon fiber composite laminate is excellent in balance between low linear expansion, good surface appearance and press formability, and completed the present invention. It came to do.
 本発明の第1態様の炭素繊維複合積層体(以下「第1態様の積層体」と称す場合がある。)は以下の通りである。
[1] 少なくとも5層構造を有する炭素繊維複合積層体であって、熱可塑性樹脂100質量部に対し無機フィラーを30質量部以上、200質量部以下含有する熱可塑性樹脂層(A層)と、炭素繊維層(B層)と、熱可塑性樹脂を主成分とし、前記無機フィラーを含有しない熱可塑性樹脂層(C層)を、A層/B層/C層/B層/A層の順に有し、
 前記B層中の炭素繊維束の最大径が10μm以上、1000μm以下であり、かつ該炭素繊維の平均繊維長が0.1mm以上、5mm未満である、炭素繊維複合積層体。
[2] 前記A層及び前記C層に用いる熱可塑性樹脂が、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂及びポリエステル系樹脂からなる群より選ばれる少なくとも1種の樹脂である、[1]に記載の炭素繊維複合積層体。
[3] 前記A層に用いる無機フィラーが、アスペクト比が20以上、500以下の板状粒子である、[1]又は[2]に記載の炭素繊維複合積層体。
[4] 前記B層が、炭素繊維材料として炭素繊維マット、又は、炭素繊維ペーパーを用いてなる層である、[1]~[3]のいずれかに記載の炭素繊維複合積層体。
[5] 同一温度かつ同一荷重における、前記A層の熱可塑性樹脂のメルトマスフローレートR(g/10min)と、前記C層の熱可塑性樹脂のメルトマスフローレートR(g/10min)が、R≧Rの関係を有する、[1]~[4]のいずれかに記載の炭素繊維複合積層体。
[6] 前記A層表面の最大断面高さ(Rt)が3μm以下である、[1]~[5]のいずれかに記載の炭素繊維複合積層体。
The carbon fiber composite laminate of the first aspect of the present invention (hereinafter sometimes referred to as “laminate of the first aspect”) is as follows.
[1] A carbon fiber composite laminate having at least a five-layer structure, wherein the thermoplastic resin layer (A layer) contains 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin; A carbon fiber layer (B layer) and a thermoplastic resin layer (C layer) containing a thermoplastic resin as a main component and not containing the inorganic filler are provided in the order of A layer / B layer / C layer / B layer / A layer. And
A carbon fiber composite laminate in which the maximum diameter of the carbon fiber bundle in the B layer is 10 μm or more and 1000 μm or less, and the average fiber length of the carbon fibers is 0.1 mm or more and less than 5 mm.
[2] The thermoplastic resin used for the A layer and the C layer is at least one resin selected from the group consisting of a polyolefin resin, a polycarbonate resin, a polyamide resin, and a polyester resin. The carbon fiber composite laminate described.
[3] The carbon fiber composite laminate according to [1] or [2], wherein the inorganic filler used in the A layer is a plate-like particle having an aspect ratio of 20 or more and 500 or less.
[4] The carbon fiber composite laminate according to any one of [1] to [3], wherein the B layer is a layer formed using carbon fiber mat or carbon fiber paper as a carbon fiber material.
[5] The melt mass flow rate R A (g / 10 min) of the thermoplastic resin of the A layer and the melt mass flow rate R C (g / 10 min) of the thermoplastic resin of the C layer at the same temperature and the same load, The carbon fiber composite laminate according to any one of [1] to [4], which has a relationship of R ARC .
[6] The carbon fiber composite laminate according to any one of [1] to [5], wherein the maximum cross-sectional height (Rt) of the surface of the A layer is 3 μm or less.
 本発明の第2態様の炭素繊維複合積層体(以下「第2態様の積層体」と称す場合がある。)は以下の通りである。
[1] 少なくとも5層構造を有する炭素繊維複合積層体であって、熱可塑性樹脂100質量部に対し無機フィラーを30質量部以上、200質量部以下含有する熱可塑性樹脂層(A層)と、炭素繊維層(B層)と、熱可塑性樹脂100質量部に対し無機フィラーを0質量部を超え、100質量部以下含有する熱可塑性樹脂層(D層)を、A層/B層/D層/B層/A層の順に有し、
 前記B層中の炭素繊維束の最大径が10μm以上、1000μm以下であり、かつ該炭素繊維の平均繊維長が0.1mm以上、5mm未満である、炭素繊維複合積層体。
[2] 前記A層及び前記D層に用いる熱可塑性樹脂が、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂及びポリエステル系樹脂からなる群より選ばれる少なくとも1種の樹脂である、[1]に記載の炭素繊維複合積層体。
[3] 前記A層及び前記D層に用いる無機フィラーが、アスペクト比が20以上、500以下の板状粒子である、[1]又は[2]に記載の炭素繊維複合積層体。
[4] 前記B層が、炭素繊維材料として炭素繊維マット、又は、炭素繊維ペーパーを用いてなる層である、[1]~[3]のいずれかに記載の炭素繊維複合積層体。
[5] 前記D層における無機フィラーの含有割合が、前記A層における無機フィラーの含有割合以下である、[1]~[4]のいずれかに記載の炭素繊維複合積層体。
[6] 前記A層表面の最大断面高さ(Rt)が3μm以下である、[1]~[5]のいずれかに記載の炭素繊維複合積層体。
The carbon fiber composite laminate of the second aspect of the present invention (hereinafter sometimes referred to as “laminate of the second aspect”) is as follows.
[1] A carbon fiber composite laminate having at least a five-layer structure, wherein the thermoplastic resin layer (A layer) contains 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin; A layer / B layer / D layer of carbon fiber layer (B layer) and thermoplastic resin layer (D layer) containing 100 parts by mass or less of inorganic filler with respect to 100 parts by mass of thermoplastic resin / B layer / A layer in this order,
A carbon fiber composite laminate in which the maximum diameter of the carbon fiber bundle in the B layer is 10 μm or more and 1000 μm or less, and the average fiber length of the carbon fibers is 0.1 mm or more and less than 5 mm.
[2] The thermoplastic resin used for the A layer and the D layer is at least one resin selected from the group consisting of a polyolefin resin, a polycarbonate resin, a polyamide resin, and a polyester resin. The carbon fiber composite laminate described.
[3] The carbon fiber composite laminate according to [1] or [2], wherein the inorganic filler used in the A layer and the D layer is a plate-like particle having an aspect ratio of 20 or more and 500 or less.
[4] The carbon fiber composite laminate according to any one of [1] to [3], wherein the B layer is a layer formed using carbon fiber mat or carbon fiber paper as a carbon fiber material.
[5] The carbon fiber composite laminate according to any one of [1] to [4], wherein a content ratio of the inorganic filler in the D layer is equal to or less than a content ratio of the inorganic filler in the A layer.
[6] The carbon fiber composite laminate according to any one of [1] to [5], wherein the maximum cross-sectional height (Rt) of the surface of the A layer is 3 μm or less.
 本発明の第3態様の炭素繊維複合積層体(以下「第3態様の積層体」と称す場合がある。)は以下の通りである。
[1] 少なくとも3層構造を有する炭素繊維複合積層体であって、熱可塑性樹脂100質量部に対し、アスペクト比が20以上、500以下の板状無機粒子を30質量部以上、200質量部以下含有する熱可塑性樹脂層(E層)と、炭素繊維層(B層)とを有し、前記E層が表裏層であり、前記B層中の炭素繊維束の最大径が10μm以上、1000μm以下であり、かつ該炭素繊維の平均繊維長が0.1mm以上、5mm未満である、炭素繊維複合積層体。
[2] 前記E層に用いる熱可塑性樹脂が、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂及びポリエステル系樹脂からなる群より選ばれる少なくとも1種以上の樹脂である、[1]に記載の炭素繊維複合積層体。
[3] 前記B層が、炭素繊維材料として炭素繊維マット、又は、炭素繊維ペーパーを用いてなる層である、[1]又は[2]に記載の炭素繊維複合積層体。
[4] 前記E層表面の最大断面高さ(Rt)が3μm以下である、[1]~[3]のいずれかに記載の炭素繊維複合積層体。
The carbon fiber composite laminate of the third aspect of the present invention (hereinafter sometimes referred to as “laminate of the third aspect”) is as follows.
[1] A carbon fiber composite laminate having at least a three-layer structure, wherein 30 to 200 parts by mass of plate-like inorganic particles having an aspect ratio of 20 to 500 with respect to 100 parts by mass of the thermoplastic resin. It has a thermoplastic resin layer (E layer) and a carbon fiber layer (B layer), and the E layer is a front and back layer, and the maximum diameter of the carbon fiber bundle in the B layer is 10 μm or more and 1000 μm or less. And an average fiber length of the carbon fibers is 0.1 mm or more and less than 5 mm.
[2] The carbon according to [1], wherein the thermoplastic resin used for the E layer is at least one resin selected from the group consisting of a polyolefin resin, a polycarbonate resin, a polyamide resin, and a polyester resin. Fiber composite laminate.
[3] The carbon fiber composite laminate according to [1] or [2], wherein the B layer is a layer formed using carbon fiber mat or carbon fiber paper as a carbon fiber material.
[4] The carbon fiber composite laminate according to any one of [1] to [3], wherein a maximum cross-sectional height (Rt) of the surface of the E layer is 3 μm or less.
 なお、以下において、第1態様の積層体、第2態様の積層体及び第3態様の積層体を「本発明の積層体」と総称する。 In the following, the laminate of the first aspect, the laminate of the second aspect, and the laminate of the third aspect are collectively referred to as “the laminate of the present invention”.
 本発明によれば、低線膨張性と良好な表面外観とプレス成形性のバランスに優れ、大型の電化製品の筐体や、自動車や鉄道の内装材、外装材などに好適な、炭素繊維複合積層体を提供することができる。 According to the present invention, a carbon fiber composite having an excellent balance of low linear expansion, good surface appearance and press formability, and suitable for a casing of a large electrical appliance, an interior material of an automobile or a railway, an exterior material, etc. A laminate can be provided.
[I] 第1態様の積層体
〔熱可塑性樹脂層(A層)〕
 第1態様の積層体を構成する熱可塑性樹脂層(A層)は、熱可塑性樹脂100質量部に対し無機フィラーを30質量部以上、200質量部以下含有する層であり、かつ、第1態様の積層体の実質的な表裏層として存在する。
[I] Laminate of the first embodiment [thermoplastic resin layer (A layer)]
The thermoplastic resin layer (A layer) constituting the laminate of the first aspect is a layer containing 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin, and the first aspect. It exists as a substantial front and back layer of the laminate.
[熱可塑性樹脂]
 A層に用いることができる熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂及びポリエステル系樹脂からなる群より選ばれる少なくとも1種の樹脂であることが好ましい。これらの樹脂は1種単独で使用しても良く、2種以上を混合して用いても構わない。
 例えば、ポリオレフィン系樹脂を用いることで、第1態様の積層体が成形性に優れると共に、耐衝撃性にも特に優れる。また、ポリカーボネート系樹脂やポリアミド系樹脂、ポリエステル系樹脂を使用することで、第1態様の積層体が成形性に優れると共に、耐熱性にも特に優れる。
[Thermoplastic resin]
The thermoplastic resin that can be used for the A layer is preferably at least one resin selected from the group consisting of polyolefin resins, polycarbonate resins, polyamide resins, and polyester resins. These resins may be used alone or in combination of two or more.
For example, by using a polyolefin-based resin, the laminate of the first aspect is excellent in moldability and particularly in impact resistance. Further, by using a polycarbonate resin, a polyamide resin, or a polyester resin, the laminate of the first aspect is excellent in moldability and particularly excellent in heat resistance.
<ポリオレフィン系樹脂>
 A層に用いることができるポリオレフィン系樹脂としては特に限定されるものではなく、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセンなどのα-オレフィンを重合した単独重合体または共重合体が挙げられる。また、これらの単独重合体または共重合体を2種以上混合することもできる。この中でもポリプロピレン系樹脂又はポリエチレン系樹脂を用いることが好ましく、特に、軽量性の観点から、ポリプロピレン系樹脂を用いることが好ましい。
<Polyolefin resin>
The polyolefin resin that can be used for the A layer is not particularly limited, and is a homopolymer obtained by polymerizing an α-olefin such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene. Or a copolymer is mentioned. Also, two or more of these homopolymers or copolymers can be mixed. Among these, it is preferable to use a polypropylene resin or a polyethylene resin, and it is particularly preferable to use a polypropylene resin from the viewpoint of lightness.
(ポリプロピレン系樹脂)
 A層に用いるポリプロピレン系樹脂とは、構成するモノマーのうちプロピレンが50モル%を超え、好ましくは70モル%以上、さらに好ましくは90モル%以上の樹脂であり、具体的には、ホモポリプロピレン(プロピレン単独重合体)、またはプロピレンと、エチレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセンなどのα-オレフィンの1種又は2種以上とのランダム共重合体やブロック共重合体などが挙げられる。この中でも、剛性・耐熱性の観点から、ホモポリプロピレンがより好適に用いられる。
(Polypropylene resin)
The polypropylene-based resin used for the A layer is a resin in which propylene exceeds 50 mol%, preferably 70 mol% or more, more preferably 90 mol% or more, among the constituent monomers. Propylene homopolymer), or one of propylene and an α-olefin such as ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, or the like Examples thereof include random copolymers and block copolymers with two or more kinds. Among these, homopolypropylene is more preferably used from the viewpoint of rigidity and heat resistance.
 また、前記ポリプロピレン系樹脂は、その分子構造の一部が酸やアルカリで変性されたものを用いても構わない。具体的には、マレイン酸変性ポリプロピレン系樹脂や、アミン変性ポリプロピレン系樹脂などが挙げられる。 In addition, the polypropylene resin may be one in which a part of its molecular structure is modified with acid or alkali. Specific examples include maleic acid-modified polypropylene resins and amine-modified polypropylene resins.
 また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80~99%であることが好ましい。ポリプロピレン系樹脂のアイソタクチックペンタッド分率は、より好ましくは83~98%、さらに好ましくは85~97%である。アイソタクチックペンタッド分率が係る範囲にあれば、第1態様の積層体の強度が低下するおそれが小さい。なお、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルでさらに規則性の高い樹脂が開発された場合についてはこの限りではない。
 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules8,687,(1975))に準拠する。
The polypropylene resin preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%. The isotactic pentad fraction of the polypropylene resin is more preferably 83 to 98%, still more preferably 85 to 97%. If the isotactic pentad fraction is within such a range, there is little possibility that the strength of the laminate of the first aspect is lowered. The upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
The isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. It conforms to Zambelli et al (Macromolecules 8,687, (1975)).
 A層に用いるポリプロピレン系樹脂のメルトマスフローレートRは、JIS K7210(1999年)に従い、温度230℃、荷重2.16kgfの条件で測定され、0.1g/10min以上、60g/10min以下であることが好ましく、0.1g/10min以上、30g/10min以下であることがさらに好ましく、0.1g/10min以上、20g/10min以下であることが特に好ましい。Rが0.1g/10分以上であることで、第1態様の積層体のプレス成形時の型への追従性が容易となる。一方、60g/10min以下であることで、第1態様の積層体のプレス成形時に、加圧によって成形型より流れ出るおそれがなく、炭素繊維やフィラー間への樹脂含浸が容易となる。 The melt mass flow rate R A of the polypropylene resin used for the A layer is measured in accordance with JIS K7210 (1999) under conditions of a temperature of 230 ° C. and a load of 2.16 kgf, and is 0.1 g / 10 min or more and 60 g / 10 min or less. It is preferably 0.1 g / 10 min or more and 30 g / 10 min or less, more preferably 0.1 g / 10 min or more and 20 g / 10 min or less. When R A is 0.1 g / 10 min or more, followability to the mold during press molding of the laminate of the first aspect becomes easy. On the other hand, when it is 60 g / 10 min or less, there is no risk of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
 A層に用いるポリプロピレン系樹脂の分子量分布を示すパラメータであるMw/Mnは、JIS K7252-1(2008年)に準じてGPC(ゲルパーミエーションクロマトグラフィー)法によって測定され、1.5以上、10以下であることが好ましく、1.5以上、8以下であることがさらに好ましく、1.5以上、6以下であることが特に好ましい。Mw/Mnが小さいほど分子量分布が狭いことを意味し、Mw/Mnが1.5以上であることで、第1態様の積層体のプレス成形時の型への追従性が容易となる。一方、Mw/Mnが10以下であることで、第1態様の積層体の各種機械物性を満足させることができる。 Mw / Mn, which is a parameter indicating the molecular weight distribution of the polypropylene resin used for the A layer, is measured by a GPC (gel permeation chromatography) method according to JIS K7252-1 (2008), and is 1.5 or more and 10 Or less, more preferably 1.5 or more and 8 or less, and particularly preferably 1.5 or more and 6 or less. The smaller the Mw / Mn, the narrower the molecular weight distribution. When the Mw / Mn is 1.5 or more, the followability to the mold during press molding of the laminate of the first aspect becomes easy. On the other hand, when Mw / Mn is 10 or less, various mechanical properties of the laminate of the first aspect can be satisfied.
 A層に用いるポリプロピレン系樹脂の製造方法は、特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合法、溶融重合法、塊状重合法、気相重合法、またラジカル開始剤を用いた塊状重合法などが挙げられる。 The production method of the polypropylene resin used for the A layer is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene system. Examples thereof include a slurry polymerization method, a melt polymerization method, a bulk polymerization method, a gas phase polymerization method using a single site catalyst represented by a catalyst, and a bulk polymerization method using a radical initiator.
(ポリエチレン系樹脂)
 A層に用いるポリエチレン系樹脂とは、構成するモノマーのうちエチレンが50モル%を超え、好ましくは70モル%以上、さらに好ましくは90モル%以上の樹脂であり、具体的には、低密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、及びエチレンを主成分とする共重合体、すなわち、エチレンと、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1などのα-オレフィン;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの不飽和カルボン酸エステル、共役ジエンや非共役ジエンのような不飽和化合物の中から選ばれる1種または2種以上のコモノマーとの共重合体または多元共重合体あるいはその混合組成物が挙げられる。
(Polyethylene resin)
The polyethylene-based resin used for the layer A is a resin in which ethylene is more than 50 mol%, preferably 70 mol% or more, more preferably 90 mol% or more among the constituent monomers. , Linear low density polyethylene, linear ultra low density polyethylene, medium density polyethylene, high density polyethylene, and copolymers based on ethylene, ie, ethylene and propylene, butene-1, pentene-1, hexene 1, α-olefins such as heptene-1 and octene-1; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate; conjugates One or two selected from unsaturated compounds such as dienes and non-conjugated dienes It includes copolymers or multicomponent copolymer or a mixture composition with more comonomers.
 これらのポリエチレン系樹脂の中でも、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレンの中から選ばれる少なくとも1種のポリエチレン系樹脂が好ましく、第1態様の積層体の強度や耐熱性が向上する観点から高密度ポリエチレンがさらに好ましい。 Among these polyethylene resins, at least one polyethylene resin selected from low density polyethylene, linear low density polyethylene, and high density polyethylene is preferable, and the strength and heat resistance of the laminate of the first aspect are improved. High-density polyethylene is more preferable from the viewpoint.
 A層に用いるポリエチレン系樹脂のメルトマスフローレートRは、JIS K7210(1999年)に従い、温度190℃、荷重2.16kgfの条件で測定され、0.05g/10min以上、30g/10min以下であることが好ましく、0.1g/10min以上、20g/10min以下であることがさらに好ましく、1g/10min以上、20g/10min以下であることが特に好ましい。Rが0.05g/10分以上であることで、第1態様の積層体のプレス成形時の型への追従性が容易となる。一方、30g/10min以下であることで、第1態様の積層体のプレス成形時に、加圧によって成形型より流れ出るおそれがなく、炭素繊維やフィラー間への樹脂含浸が容易となる。 The melt mass flow rate RA of the polyethylene resin used for the A layer is measured in accordance with JIS K7210 (1999) under conditions of a temperature of 190 ° C. and a load of 2.16 kgf, and is 0.05 g / 10 min or more and 30 g / 10 min or less. It is preferably 0.1 g / 10 min or more and 20 g / 10 min or less, more preferably 1 g / 10 min or more and 20 g / 10 min or less. When RA is 0.05 g / 10 min or more, the followability to the mold during press molding of the laminate of the first aspect becomes easy. On the other hand, when it is 30 g / 10 min or less, there is no fear of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers becomes easy.
A層に用いるポリエチレン系樹脂の密度は、JIS K7112(1999年)に準じて密度勾配管法を用いて測定することができ、0.910~0.970g/cmであることが好ましく、0.930~0.970g/cmであることがより好ましく、0.940~0.970g/cmであることがさらに好ましい。密度が0.910g/cm以上であれば、第1態様の積層体が各種機械物性を満足する。一方、0.970g/cm以下であれば、第1態様の積層体が軽量性を維持できる。 The density of the polyethylene resin used for the A layer can be measured using a density gradient tube method according to JIS K7112 (1999), and is preferably 0.910 to 0.970 g / cm 3. It is more preferably 930 to 0.970 g / cm 3 , further preferably 0.940 to 0.970 g / cm 3 . When the density is 0.910 g / cm 3 or more, the laminate of the first aspect satisfies various mechanical properties. On the other hand, if it is 0.970 g / cm < 3 > or less, the laminated body of a 1st aspect can maintain lightness.
 A層に用いるポリエチレン系樹脂の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン触媒に代表されるシングルサイト触媒を用いた重合方法が挙げられる。ポリエチレン系樹脂の重合方法として、一段重合、二段重合、もしくはそれ以上の多段重合等があり、いずれの方法も使用可能である。 The production method of the polyethylene resin used for the A layer is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst or a metallocene catalyst represented by a Ziegler-Natta type catalyst. And a polymerization method using a single site catalyst represented by. As a polymerization method of the polyethylene resin, there are a one-stage polymerization, a two-stage polymerization, or a multistage polymerization more than that.
<ポリカーボネート系樹脂>
 A層に用いるポリカーボネート系樹脂は、ホモポリマー及びコポリマーのいずれであってもよい。また、ポリカーボネート系樹脂は、分岐構造であっても、直鎖構造であってもよいし、さらに分岐構造と直鎖構造との混合物であってもよい。また、複数のポリカーボネート系樹脂を混合して用いても良い。
 なお、いわゆるポリエステルカーボネート樹脂(分子鎖中にエステル結合とカーボネート結合を両方有する樹脂)も、ポリカーボネート系樹脂に含む。
<Polycarbonate resin>
The polycarbonate resin used for the A layer may be either a homopolymer or a copolymer. Further, the polycarbonate-based resin may have a branched structure, a linear structure, or a mixture of a branched structure and a linear structure. A plurality of polycarbonate resins may be mixed and used.
The so-called polyester carbonate resin (resin having both ester bond and carbonate bond in the molecular chain) is also included in the polycarbonate resin.
 A層に用いるポリカーボネート系樹脂を構成する2価アルコール(ジオール)の代表例としてはビスフェノール類が挙げられ、特に2,2-ビス(4-ヒドロキシフェニル)プロパン、すなわちビスフェノールAが好ましく用いられる。
 なお、ビスフェノールA以外のジオールを単独で使用したり、複数のジオールを併用したポリカーボネート系樹脂でも良く、芳香族ジオール、脂肪族ジオール、脂環式ジオールのいずれでも構わない。
Representative examples of the dihydric alcohol (diol) constituting the polycarbonate resin used in the A layer include bisphenols. In particular, 2,2-bis (4-hydroxyphenyl) propane, that is, bisphenol A is preferably used.
In addition, a diol other than bisphenol A may be used alone, or a polycarbonate resin using a plurality of diols may be used, and any of an aromatic diol, an aliphatic diol, and an alicyclic diol may be used.
 A層に用いるポリカーボネート系樹脂のメルトマスフローレートRは、JIS K7210(1999年)に従い、温度300℃、荷重1.2kgfの条件で測定され、1g/10min以上、40g/10min以下であることが好ましく、2g/10min以上、35g/10min以下であることがさらに好ましく、3g/10min以上、30g/10min以下であることが特に好ましい。Rが1g/10分以上であることで、第1態様の積層体のプレス成形時の型への追従性が容易となる。一方、40g/10min以下であることで、第1態様の積層体のプレス成形時に、加圧によって成形型より流れ出るおそれがなく、炭素繊維やフィラー間への樹脂含浸が容易となる。 The melt mass flow rate RA of the polycarbonate resin used for the A layer is measured under the conditions of a temperature of 300 ° C. and a load of 1.2 kgf in accordance with JIS K7210 (1999), and is 1 g / 10 min or more and 40 g / 10 min or less. It is preferably 2 g / 10 min or more and 35 g / 10 min or less, more preferably 3 g / 10 min or more and 30 g / 10 min or less. When RA is 1 g / 10 min or more, the followability to the mold during press molding of the laminate of the first aspect becomes easy. On the other hand, when it is 40 g / 10 min or less, there is no fear of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
 A層に用いるポリカーボネート系樹脂の製造方法は特に限定されるものではなく、公知の重合方法、例えば、ホスゲン法、エステル交換法、ピリジン法等が挙げられる。 The method for producing the polycarbonate resin used for the A layer is not particularly limited, and a known polymerization method such as a phosgene method, a transesterification method, a pyridine method and the like can be mentioned.
<ポリアミド系樹脂>
 A層に用いるポリアミド系樹脂としては、脂肪族ポリアミドが好ましく、ωアミノ酸の開環単独重合で得られるもの、異なるωアミノ酸の開環共重合で得られるもの、及びジアミンとジカルボン酸の共重合で得られるもののいずれでも良い。なお、芳香族ポリアミドや、芳香族-脂肪族ポリアミドを用いることもできる。
<Polyamide resin>
The polyamide-based resin used for the A layer is preferably an aliphatic polyamide, obtained by ring-opening homopolymerization of ω-amino acids, obtained by ring-opening copolymerization of different ω-amino acids, or by copolymerization of diamine and dicarboxylic acid. Any of those obtained may be used. An aromatic polyamide or an aromatic-aliphatic polyamide can also be used.
 A層に用いるポリアミド系樹脂のメルトマスフローレートRは、脂肪族ポリアミドの場合、JIS K7210(1999年)に従い、温度230℃、荷重 2.16kgfの条件で測定され、0.1g/10min以上、60g/10min以下であることが好ましく、0.5g/10min以上、30g/10min以下であることがさらに好ましく、1g/10min以上、20g/10min以下であることが特に好ましい。Rが0.1g/10分以上であることで、第1態様の積層体のプレス成形時の型への追従性が容易となる。一方、60g/10min以下であることで、第1態様の積層体のプレス成形時に、加圧によって成形型より流れ出るおそれがなく、炭素繊維やフィラー間への樹脂含浸が容易となる。 In the case of aliphatic polyamide, the melt mass flow rate RA of the polyamide-based resin used for the A layer is measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210 (1999), 0.1 g / 10 min or more, It is preferably 60 g / 10 min or less, more preferably 0.5 g / 10 min or more and 30 g / 10 min or less, and particularly preferably 1 g / 10 min or more and 20 g / 10 min or less. When R A is 0.1 g / 10 min or more, followability to the mold during press molding of the laminate of the first aspect becomes easy. On the other hand, when it is 60 g / 10 min or less, there is no risk of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
 A層に用いるポリアミド系樹脂の製造方法は特に限定されるものではなく、公知の重合方法を採用することができる。 The production method of the polyamide-based resin used for the A layer is not particularly limited, and a known polymerization method can be employed.
<ポリエステル系樹脂>
 A層に用いることができるポリエステル系樹脂としては、耐熱性や成形性の観点から芳香族ポリエステル系樹脂が好ましく、具体的にはポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどが挙げられる。
<Polyester resin>
The polyester-based resin that can be used for the A layer is preferably an aromatic polyester-based resin from the viewpoint of heat resistance and moldability, and specifically, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, and the like. Can be mentioned.
 A層に用いるポリエステル系樹脂のメルトマスフローレートRは、JIS K7210(1999年)に従い、温度230℃、荷重 2.16kgfの条件で測定され、0.1g/10min以上、60g/10min以下であることが好ましく、0.5g/10min以上、30g/10min以下であることがさらに好ましく、1g/10min以上、20g/10min以下であることが特に好ましい。Rが0.1g/10分以上であることで、第1態様の積層体のプレス成形時の型への追従性が容易となる。一方、60g/10min以下であることで、第1態様の積層体のプレス成形時に、加圧によって成形型より流れ出るおそれがなく、炭素繊維やフィラー間への樹脂含浸が容易となる。 The melt mass flow rate RA of the polyester-based resin used for the A layer is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210 (1999), and is 0.1 g / 10 min or more and 60 g / 10 min or less. It is preferably 0.5 g / 10 min or more and 30 g / 10 min or less, more preferably 1 g / 10 min or more and 20 g / 10 min or less. When R A is 0.1 g / 10 min or more, followability to the mold during press molding of the laminate of the first aspect becomes easy. On the other hand, when it is 60 g / 10 min or less, there is no risk of flowing out of the mold due to pressurization during press molding of the laminate of the first aspect, and resin impregnation between carbon fibers and fillers is facilitated.
 A層に用いるポリエステル系樹脂の製造方法は特に限定されるものではなく、公知の重合方法を採用することができる。 The manufacturing method of the polyester resin used for the A layer is not particularly limited, and a known polymerization method can be employed.
[無機フィラー]
 第1態様の積層体のA層は、熱可塑性樹脂100質量部に対し無機フィラーを30質量部以上、200質量部以下含有する。
 無機フィラーの含有割合は、熱可塑性樹脂100質量部に対し30質量部以上、160質量部以下であることが好ましく、30質量部以上、120質量部以下であることが特に好ましい。
 無機フィラーを熱可塑性樹脂100質量部に対し30質量部以上含有することにより、第1態様の積層体について低線膨張性の向上に資する。また、無機フィラーを熱可塑性樹脂100質量部に対し200質量部以下含有することにより、第1態様の積層体の成形性の向上に資する。
[Inorganic filler]
The A layer of the laminate of the first aspect contains 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin.
The content of the inorganic filler is preferably 30 parts by mass or more and 160 parts by mass or less, and particularly preferably 30 parts by mass or more and 120 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
By containing 30 parts by mass or more of the inorganic filler with respect to 100 parts by mass of the thermoplastic resin, the laminated body of the first aspect contributes to the improvement of low linear expansion. Moreover, it contributes to the improvement of the moldability of the laminated body of a 1st aspect by containing an inorganic filler 200 mass parts or less with respect to 100 mass parts of thermoplastic resins.
 A層に用いる無機フィラーの種類としては、具体的には、炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの金属炭酸塩、硫酸カルシウム、硫酸バリウム、硫酸マグネシウムなどの金属硫酸塩、酸化カルシウム、酸化マグネシウム、酸化亜鉛、アルミナ、シリカ、酸化チタンなどの金属酸化物、塩化ナトリウム、塩化マグネシウム、塩化銀、塩化カルシウムなどの金属塩化物、タルク、クレー、マイカ、モンモリロナイトなどの粘土鉱物が挙げられる。
 これらの中でも、低線膨張性とコストの観点から、タルク又はマイカを用いることが好ましく、マイカが特に好ましい。
Specific examples of the inorganic filler used in the A layer include metal carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, metal sulfates such as calcium sulfate, barium sulfate, and magnesium sulfate, calcium oxide, magnesium oxide, Examples thereof include metal oxides such as zinc oxide, alumina, silica and titanium oxide, metal chlorides such as sodium chloride, magnesium chloride, silver chloride and calcium chloride, and clay minerals such as talc, clay, mica and montmorillonite.
Among these, talc or mica is preferably used from the viewpoint of low linear expansion and cost, and mica is particularly preferable.
 A層に用いる無機フィラーの平均粒径は、1μm以上、500μm以下であることが好ましく、5μm以上、300μm以下であることがさらに好ましく、5μm以上、100μm以下であることが特に好ましい。
 無機フィラーの平均粒径が1μm以上であれば、第1態様の積層体について低線膨張性の向上に資する。また、平均粒径が500μm以下であれば、第1態様の積層体の表面外観の向上に資する。
 なお、本発明において「無機フィラーの平均粒径」とは、例えば、画像解析装置を用いて、当該フィラーをある方向から投影した場合の二次元的な投影像の短径と長径を平均した値を異なる10方向からの投影像について算出した後に、その最大値と最小値をさらに平均した値として算出することができる。
The average particle size of the inorganic filler used in the A layer is preferably 1 μm or more and 500 μm or less, more preferably 5 μm or more and 300 μm or less, and particularly preferably 5 μm or more and 100 μm or less.
When the average particle size of the inorganic filler is 1 μm or more, the laminated body of the first aspect contributes to improvement of low linear expansion. Moreover, if an average particle diameter is 500 micrometers or less, it will contribute to the improvement of the surface external appearance of the laminated body of a 1st aspect.
In the present invention, the “average particle diameter of the inorganic filler” is, for example, a value obtained by averaging the minor axis and the major axis of a two-dimensional projection image when the filler is projected from a certain direction using an image analyzer. Can be calculated as a value obtained by further averaging the maximum value and the minimum value after calculating the projection images from 10 different directions.
 A層に用いる無機フィラーは、アスペクト比(長径/短径の値)が比較的大きい、いわゆる板状粒子であることが好ましい。具体的には、アスペクト比が20以上、500以下であることが好ましく、20以上、300以下であることがさらに好ましく、20以上、100以下であることが特に好ましい。
 無機フィラーのアスペクト比が20以上であれば、第1態様の積層体が低線膨張性に優れる。一方、無機フィラーのアスペクト比が500以下であれば、第1態様の積層体が表面外観に優れる。
 無機フィラーのアスペクト比は、例えば、画像解析装置を用いて、当該フィラーをある方向から投影した場合の二次元的な投影像の短径と長径の比(長径/短径)を、異なる10方向からの投影像について算出し、平均した値として算出することができる。
The inorganic filler used in the A layer is preferably so-called plate-like particles having a relatively large aspect ratio (major axis / minor axis value). Specifically, the aspect ratio is preferably 20 or more and 500 or less, more preferably 20 or more and 300 or less, and particularly preferably 20 or more and 100 or less.
If the aspect ratio of the inorganic filler is 20 or more, the laminate of the first aspect is excellent in low linear expansion. On the other hand, if the aspect ratio of the inorganic filler is 500 or less, the laminate of the first aspect is excellent in surface appearance.
As for the aspect ratio of the inorganic filler, for example, the ratio of the minor axis to the major axis (major axis / minor axis) of the two-dimensional projection image when the filler is projected from a certain direction using an image analysis device is different from ten directions. Can be calculated as an average value.
 A層に用いる無機フィラーは、表面処理されたものであっても構わない。表面処理方法としては特に限定されることなく、例えば一般的なシランカップリング剤等の表面処理剤を用いる方法が挙げられる。無機フィラーを表面処理することによって、前記熱可塑性樹脂中における無機フィラーの分散性の向上や、A層からの無機フィラーの脱落防止といった効果が得られる。 The inorganic filler used for the A layer may be surface-treated. The surface treatment method is not particularly limited, and examples thereof include a method using a surface treatment agent such as a general silane coupling agent. By surface-treating the inorganic filler, effects such as improvement of the dispersibility of the inorganic filler in the thermoplastic resin and prevention of the inorganic filler from falling off from the A layer can be obtained.
 これらの無機フィラーは、1種のみを用いてもよく、材質、粒径やアスペクト比、表面処理の有無、表面処理剤の種類等の異なるものを2種以上組み合わせて用いてもよい。 These inorganic fillers may be used alone or in combination of two or more different materials, particle sizes, aspect ratios, presence / absence of surface treatment, type of surface treatment agent, and the like.
[他の成分]
 第1態様の積層体が難燃性を要求されるものである場合、A層にはさらに難燃剤を含有することができる。A層に用いる難燃剤としては特に限定されず、各種縮合リン酸エステルなどのリン系難燃剤、メラミンなどの窒素系難燃剤、ホスファゼンなどのリン・窒素系難燃剤、臭素化芳香族化合物などの臭素系難燃剤、三酸化アンチモンなどのアンチモン系難燃剤といった、公知の難燃剤の1種又は2種以上を適宜選択して使用することができる。
[Other ingredients]
When the laminate of the first aspect requires flame retardancy, the A layer can further contain a flame retardant. The flame retardant used in the A layer is not particularly limited, such as phosphorus flame retardants such as various condensed phosphate esters, nitrogen flame retardants such as melamine, phosphorus / nitrogen flame retardants such as phosphazene, brominated aromatic compounds, etc. One or more known flame retardants such as bromine flame retardants and antimony flame retardants such as antimony trioxide can be appropriately selected and used.
 A層に難燃剤を含有する場合の含有割合は、熱可塑性樹脂100質量部に対し、20質量部以上、60質量部以下であることが好ましく、25質量部以上、60質量部以下であることがさらに好ましく、30質量部以上、60質量部以下であることが特に好ましい。
 難燃剤を熱可塑性樹脂100質量部に対し20質量部以上含有することにより、第1態様の積層体が優れた難燃性を発現することができ。一方、難燃剤を熱可塑性樹脂100質量部に対し60質量部以下含有することにより、第1態様の積層体が各種機械物性を満足する。
When the flame retardant is contained in the A layer, the content is preferably 20 parts by mass or more and 60 parts by mass or less, and 25 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. Is more preferably 30 parts by mass or more and 60 parts by mass or less.
By containing 20 parts by mass or more of the flame retardant with respect to 100 parts by mass of the thermoplastic resin, the laminate of the first aspect can exhibit excellent flame retardancy. On the other hand, by containing 60 parts by mass or less of the flame retardant with respect to 100 parts by mass of the thermoplastic resin, the laminate of the first aspect satisfies various mechanical properties.
 A層には前述した成分のほか、本発明の特徴や効果を阻害しない範囲内で、他の熱可塑性樹脂や一般に樹脂組成物に配合される添加剤を適宜含有してもよい。添加剤の具体例としては、カーボンブラック等の顔料、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などが挙げられる。 In addition to the components described above, the A layer may appropriately contain other thermoplastic resins and additives generally added to the resin composition as long as the characteristics and effects of the present invention are not impaired. Specific examples of additives include pigments such as carbon black, weather resistance stabilizers, heat resistance stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, antiaging agents, and antioxidants. , Light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents or coloring agents.
[A層の作製方法]
 第1態様の積層体は後述する通り、A層を構成する熱可塑性樹脂シートと、B層を構成する炭素繊維材料と、C層を構成する熱可塑性樹脂シートを各々作製し、これを積層することで得られる。
 A層を構成する熱可塑性樹脂シートの作製方法としては特に限定されず、Tダイキャスト法、カレンダー法、プレス法など、公知の溶融製膜方法を採用することができる。
[Method for producing layer A]
As will be described later, the laminate of the first embodiment is prepared by laminating the thermoplastic resin sheet constituting the A layer, the carbon fiber material constituting the B layer, and the thermoplastic resin sheet constituting the C layer, respectively. Can be obtained.
It does not specifically limit as a preparation method of the thermoplastic resin sheet which comprises A layer, A well-known melt film-forming method, such as a T die-cast method, a calendar method, a press method, is employable.
 より具体的には、前記熱可塑性樹脂と、前記無機フィラーと、必要に応じて難燃剤を含めた他の成分を、直接混合して溶融製膜する方法や、前記熱可塑性樹脂と、前記無機フィラーと、必要に応じて難燃剤を含めた他の成分を、あらかじめ溶融混練して混合物のペレットを作製し、これを用いて熱可塑性樹脂シートを溶融製膜する方法を挙げることができる。 More specifically, the thermoplastic resin, the inorganic filler, and, if necessary, other components including a flame retardant are directly mixed to form a melt film, the thermoplastic resin, and the inorganic The filler and other components including a flame retardant as necessary can be melt-kneaded in advance to prepare pellets of the mixture, and a method of melt-forming a thermoplastic resin sheet using this can be mentioned.
[A層の厚み]
 第1態様の積層体を製造する前における、A層を構成する熱可塑性樹脂シートの厚みは特に限定されないが、0.5mm以上、2mm以下であることが好ましく、0.5mm以上、1.5mm以下であることがさらに好ましく、0.5mm以上、1mm以下であることが特に好ましい。A層を構成する熱可塑性樹脂シートの厚みが0.5mm以上であれば、プレス成形後の製品表面にB層の炭素繊維層が露出するなどの表面外観の悪化を抑制できる。また、A層を構成する熱可塑性樹脂シートの厚みが2mm以下であれば、軽量性を維持できる。
[Thickness of layer A]
The thickness of the thermoplastic resin sheet constituting the A layer before producing the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, 0.5 mm or more, 1.5 mm More preferably, it is more preferably 0.5 mm or more and 1 mm or less. When the thickness of the thermoplastic resin sheet constituting the A layer is 0.5 mm or more, deterioration of the surface appearance such as the exposure of the carbon fiber layer of the B layer on the product surface after press molding can be suppressed. Moreover, if the thickness of the thermoplastic resin sheet which comprises A layer is 2 mm or less, lightness can be maintained.
 また、第1態様の積層体におけるA層の厚みは特に限定されないが、0.5mm以上、2mm以下であることが好ましく、0.5mm以上、1.5mm以下であることがさらに好ましく、0.5mm以上、1mm以下であることが特に好ましい。
 A層の厚みが0.5mm以上であれば、プレス成形後の製品表面にB層の炭素繊維層が露出するなどの表面外観の悪化を抑制できる。また、A層の厚みが2mm以下であれば、軽量性を維持できる。
The thickness of the A layer in the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, more preferably 0.5 mm or more and 1.5 mm or less, and It is particularly preferably 5 mm or more and 1 mm or less.
If the thickness of the A layer is 0.5 mm or more, deterioration of the surface appearance such as the exposure of the carbon fiber layer of the B layer on the product surface after press molding can be suppressed. Moreover, if the thickness of the A layer is 2 mm or less, the lightness can be maintained.
〔炭素繊維層(B層)〕
 第1態様の積層体を構成する炭素繊維層(B層)は、炭素繊維材料を主とする層である。炭素繊維層を有することによって、第1態様の積層体について優れた低線膨張性を実現できる。
[Carbon fiber layer (B layer)]
The carbon fiber layer (B layer) constituting the laminate of the first aspect is a layer mainly composed of a carbon fiber material. By having a carbon fiber layer, it is possible to achieve excellent low linear expansion for the laminate of the first aspect.
 B層に用いる炭素繊維の種類としては、ピッチ系炭素繊維、PAN系炭素繊維のいずれでも良く、これらを組み合わせて用いても良いが、低線膨張性の観点からピッチ系炭素繊維が好ましい。また、ピッチ系炭素繊維としては、メソフェーズピッチ系炭素繊維と、等方性ピッチ系炭素繊維のいずれでも良いが、第1態様の積層体の強度や低線膨張性を向上する観点から、メソフェーズピッチ系炭素繊維がさらに好ましい。 The type of carbon fiber used for the B layer may be either pitch-based carbon fiber or PAN-based carbon fiber, and may be used in combination, but pitch-based carbon fiber is preferable from the viewpoint of low linear expansion. The pitch-based carbon fiber may be either a mesophase pitch-based carbon fiber or an isotropic pitch-based carbon fiber. From the viewpoint of improving the strength and low linear expansion of the laminate of the first aspect, the mesophase pitch is used. More preferred are carbon fibers.
 B層に用いる炭素繊維材料としては、炭素繊維マット、又は、炭素繊維ペーパーが好ましい。「炭素繊維マット」と「炭素繊維ペーパー」はいずれも炭素繊維束を開繊・分散し、湿式法や乾式法で成形・抄紙して平膜状とした材料である。 The carbon fiber material used for the B layer is preferably a carbon fiber mat or carbon fiber paper. Both “carbon fiber mat” and “carbon fiber paper” are materials in which carbon fiber bundles are opened and dispersed, and formed and paper-formed by a wet method or a dry method to form a flat film.
 前記のいずれの炭素繊維材料についても、炭素繊維同士が容易に解離しないようにバインダー樹脂を含有することが好ましく、炭素繊維にバインダー樹脂を含浸させた所謂プリプレグなどであっても構わない。一般に「炭素繊維マット」は、バインダー樹脂の含有量や厚みの点において「炭素繊維ペーパー」と区別される。通常、炭素繊維マットは炭素繊維ペーパーに比べ、バインダー樹脂の含有量が多く、厚みが厚い。 Any carbon fiber material described above preferably contains a binder resin so that the carbon fibers do not easily dissociate, and may be a so-called prepreg in which carbon fiber is impregnated with a binder resin. In general, “carbon fiber mat” is distinguished from “carbon fiber paper” in terms of the content and thickness of the binder resin. Usually, the carbon fiber mat has a larger binder resin content and a larger thickness than the carbon fiber paper.
 前記バインダー樹脂としては特に限定されることなく、例えば、ポリオレフィン系樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、結晶性ポリアミド樹脂等の結晶性熱可塑性樹脂;芳香族ビニル化合物系樹脂(ポリスチレン系エラストマー)、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルホン樹脂、ポリオレフィン系エラストマー、非晶性ポリアミド樹脂等非晶性熱可塑性樹脂;不飽和ポリエステル樹脂、ビニルエステル樹脂等のポリエステル樹脂;エポキシ樹脂、フェノール(レゾール型)樹脂、ユリア樹脂、メラミン樹脂、ポリイミド樹脂、ビスマレイミド樹脂、シアネートエステル樹脂等の熱硬化性樹脂等が挙げられる。また、これらの共重合体及び変性体等であってもよく、これらを2種以上組み合わせて用いてもよい。 The binder resin is not particularly limited, and examples thereof include crystalline thermoplastic resins such as polyolefin resins, polyester resins, polyacetal resins, polyphenylene sulfide resins, and crystalline polyamide resins; aromatic vinyl compound resins (polystyrene elastomers). ), Polycarbonate resins, polyphenylene ether resins, polysulfone resins, polyolefin elastomers, amorphous polyamide resins, and other amorphous thermoplastic resins; unsaturated polyester resins, vinyl ester resins, and other polyester resins; epoxy resins, phenols (resol type) Examples thereof include thermosetting resins such as resins, urea resins, melamine resins, polyimide resins, bismaleimide resins, and cyanate ester resins. Moreover, these copolymers, modified bodies, etc. may be sufficient and these may be used in combination of 2 or more types.
 前記炭素繊維材料にバインダー樹脂を含有する場合の含有量は、炭素繊維100質量部に対して、1質量部以上、90質量部以下であることが好ましく、5質量部以上、80質量部以下であることがさらに好ましく、10質量部以上、70質量部以下であることが特に好ましい。
 係る範囲でバインダー樹脂を含有することにより、前記炭素繊維を安定して炭素繊維マットや、炭素繊維ペーパーなどの炭素繊維材料に成形することができる。
The content when the binder resin is contained in the carbon fiber material is preferably 1 part by mass or more and 90 parts by mass or less, and preferably 5 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the carbon fiber. More preferably, it is more preferably 10 parts by mass or more and 70 parts by mass or less.
By containing a binder resin in such a range, the carbon fiber can be stably formed into a carbon fiber material such as a carbon fiber mat or carbon fiber paper.
 中でも、第1態様の積層体に用いる炭素繊維材料としては、樹脂含浸性や低線膨張性、コストの観点より、抄紙する時に繊維の開繊を進めることができ、炭素繊維量を高く維持できる炭素繊維ペーパーが特に好ましい。
 炭素繊維ペーパーは、通常乾式抄紙法と湿式抄紙法のいずれかで製造されるが、繊維の開繊がより良好となる観点から湿式抄紙法で製造されたものを用いることが好ましい。
 また、炭素繊維ペーパーは低線膨張性の観点より、坪量(炭素繊維量)の多いものが好ましいが、ペーパー自体の生産性とコストとのバランスを考慮して、好ましくは20~100g/m、さらに好ましくは30~100g/m、特に好ましくは40~100g/mの坪量のものを用いることができる。
Among them, as the carbon fiber material used for the laminate of the first aspect, fiber opening can be promoted when making paper from the viewpoint of resin impregnation property, low linear expansion property, and cost, and the amount of carbon fiber can be kept high. Carbon fiber paper is particularly preferred.
The carbon fiber paper is usually produced by either a dry papermaking method or a wet papermaking method, but it is preferable to use one produced by a wet papermaking method from the viewpoint of better fiber opening.
Carbon fiber paper having a high basis weight (carbon fiber amount) is preferable from the viewpoint of low linear expansion, but preferably 20 to 100 g / m in view of the balance between productivity and cost of the paper itself. 2 , more preferably 30 to 100 g / m 2 , particularly preferably 40 to 100 g / m 2 basis weight can be used.
 第1態様の積層体においては、B層中の炭素繊維束の最大径は10μm以上、1000μm以下である。B層中の炭素繊維束の最大径は、10μm以上、950μm以下であることがさらに好ましく、10μm以上、900μm以下であることが特に好ましい。
 通常、炭素繊維1本の平均繊維径は7~10μmであるが、これらは静電密着や収束剤等で凝集して炭素繊維束となっている。このような炭素繊維束について、第1態様の積層体においては最大径を10μm以上、1000μm以下に制御することにより、第1態様の積層体の低線膨張性と良好な表面外観とプレス成形性のバランスを維持することができる。
 なお、炭素繊維束の最大径は後述する実施例に記載の方法で測定・評価できる。
In the laminated body of the first aspect, the maximum diameter of the carbon fiber bundle in the B layer is 10 μm or more and 1000 μm or less. The maximum diameter of the carbon fiber bundle in the B layer is more preferably 10 μm or more and 950 μm or less, and particularly preferably 10 μm or more and 900 μm or less.
Normally, the average fiber diameter of one carbon fiber is 7 to 10 μm, but these are aggregated into a carbon fiber bundle by electrostatic adhesion or a sizing agent. For such a carbon fiber bundle, by controlling the maximum diameter to 10 μm or more and 1000 μm or less in the laminate of the first aspect, the low linear expansion property and good surface appearance and press formability of the laminate of the first aspect are achieved. Balance can be maintained.
The maximum diameter of the carbon fiber bundle can be measured and evaluated by the method described in the examples described later.
 また、第1態様の積層体においては、B層中の炭素繊維の平均繊維長が0.1mm以上、5mm未満である。B層中の炭素繊維の平均繊維長は、0.1mm以上、4.5mm以下であることがさらに好ましく、0.1mm以上、4.0mm以下であることが特に好ましい。
 炭素繊維の平均繊維長を0.1mm以上、5mm未満に制御することにより、第1態様の積層体の低線膨張性と良好な表面外観とプレス成形性のバランスを維持することができる。
なお、炭素繊維の平均繊維長は後述する実施例に記載の方法で測定・評価できる。
Moreover, in the laminated body of a 1st aspect, the average fiber length of the carbon fiber in B layer is 0.1 mm or more and less than 5 mm. The average fiber length of the carbon fibers in the B layer is more preferably 0.1 mm or more and 4.5 mm or less, and particularly preferably 0.1 mm or more and 4.0 mm or less.
By controlling the average fiber length of the carbon fibers to be 0.1 mm or more and less than 5 mm, it is possible to maintain the balance between the low linear expansion property, good surface appearance and press formability of the laminate of the first aspect.
In addition, the average fiber length of carbon fiber can be measured and evaluated by the method as described in the Example mentioned later.
 第1態様の積層体においてB層中の炭素繊維束の最大径や炭素繊維の平均繊維長を上記範囲とするための好ましい方法としては、例えば前記炭素繊維材料を作製する際に十分に開繊を行う方法が挙げられる。具体的には、炭素繊維ペーパーを湿式抄紙法により作製する場合に、開繊に使用する離解機の回転数を制御する等の方法が挙げられる。乾式抄紙法で作製する場合や、炭素繊維ペーパー以外の炭素繊維材料についても、それぞれ開繊条件などを制御して開繊を行えば良い。 As a preferable method for setting the maximum diameter of the carbon fiber bundle in the B layer and the average fiber length of the carbon fibers in the above-mentioned range in the laminate of the first aspect, for example, when the carbon fiber material is produced, the fiber is sufficiently opened. The method of performing is mentioned. Specifically, when carbon fiber paper is produced by a wet papermaking method, a method of controlling the number of revolutions of a disaggregator used for fiber opening is exemplified. In the case of producing by a dry papermaking method, or for carbon fiber materials other than carbon fiber paper, the fiber opening may be performed by controlling the fiber opening conditions.
 炭素繊維束の最大径と炭素繊維の平均繊維長は背反特性であり、開繊を過剰に施すと、炭素繊維束の最大径は小さくなるが平均繊維長が短くなり過ぎて低線膨張性が十分に発現しない。一方、開繊が不十分だと炭素繊維束の最大径が大きくなり、積層体が外観不良となったり、プレス成形性が十分でなかったりするおそれがある。第1態様の積層体は炭素繊維束の最大径と炭素繊維の平均繊維長を上記範囲に制御することで、低線膨張性と良好な表面外観とプレス成形性のバランスを維持することができる。 The maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fiber are contradictory characteristics.If the fiber is excessively opened, the maximum diameter of the carbon fiber bundle becomes small, but the average fiber length becomes too short, resulting in low linear expansion. Not fully expressed. On the other hand, if the fiber opening is insufficient, the maximum diameter of the carbon fiber bundle becomes large, and the laminate may have a poor appearance or the press formability may be insufficient. The laminate of the first aspect can maintain the balance between low linear expansion, good surface appearance and press formability by controlling the maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fibers within the above ranges. .
 B層に用いる炭素繊維材料における炭素繊維束の最大径や炭素繊維の平均繊維長の好ましい範囲については、前記のB層中における炭素繊維束の最大径や炭素繊維の平均繊維長の範囲と同様である。 The preferable range of the maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fiber in the carbon fiber material used for the B layer is the same as the range of the maximum diameter of the carbon fiber bundle and the average fiber length of the carbon fiber in the B layer. It is.
 第1態様の積層体におけるB層の厚みは特に限定されないが、0.1mm以上、0.3mm以下であることが好ましく、0.1mm以上、0.25mm以下であることがさらに好ましく、0.1mm以上、0.2mm以下であることが特に好ましい。
 B層の厚みが0.1mm以上であれば、第1態様の積層体が優れた低線膨張性を発揮できる。また、B層の厚みが0.3mm以下であれば、第1態様の積層体の表面凹凸が少なく、表面外観に優れる。
 なお、B層に用いる炭素繊維材料は種類によって空隙率が異なるためその厚みは多様であり、従って第1態様の積層体に設けた時の好適な厚みが上記範囲になるような厚みのものが好ましい。
The thickness of the B layer in the laminate of the first aspect is not particularly limited, but is preferably 0.1 mm or more and 0.3 mm or less, more preferably 0.1 mm or more and 0.25 mm or less, and It is particularly preferably 1 mm or more and 0.2 mm or less.
If the thickness of the B layer is 0.1 mm or more, the laminate of the first aspect can exhibit excellent low linear expansion. Moreover, if the thickness of B layer is 0.3 mm or less, there are few surface unevenness | corrugations of the laminated body of a 1st aspect, and it is excellent in surface appearance.
The carbon fiber material used for the B layer has various thicknesses because the porosity varies depending on the type. Therefore, the carbon fiber material has a thickness such that the preferred thickness when it is provided in the laminate of the first aspect is in the above range. preferable.
〔熱可塑性樹脂層(C層)〕
 第1態様の積層体を構成する熱可塑性樹脂層(C層)は、熱可塑性樹脂を主成分とし、前記無機フィラーを含有しない層であり、実質的に第1態様の積層体の中心層となる。
 ここで「主成分」とは、C層において熱可塑性樹脂が50質量%を超え、好ましくは70質量%以上、さらに好ましくは90質量%以上(100質量%を含む)を占める趣旨である。
 また、「無機フィラーを含有しない」とは前記無機フィラーを積極的には配合添加しないが、第1態様の積層体の特徴や効果に影響のない程度のごくわずかな量を含有することを許容する趣旨である。
 C層が熱可塑性樹脂を主成分とし、前記無機フィラーを含有しないことにより、第1態様の積層体について良好な低線膨張性やプレス成形性を維持しながら、軽量化かつ低コスト化を実現できる。
[Thermoplastic resin layer (C layer)]
The thermoplastic resin layer (C layer) constituting the laminate of the first aspect is a layer containing a thermoplastic resin as a main component and not containing the inorganic filler, and is substantially a central layer of the laminate of the first aspect. Become.
Here, the “main component” means that the thermoplastic resin accounts for more than 50 mass%, preferably 70 mass% or more, more preferably 90 mass% or more (including 100 mass%) in the C layer.
In addition, “does not contain inorganic filler” means that the inorganic filler is not actively added and added, but it is allowed to contain a very small amount that does not affect the characteristics and effects of the laminate of the first aspect. This is the purpose.
C layer is composed mainly of thermoplastic resin and does not contain the inorganic filler, thus achieving light weight and low cost while maintaining good low linear expansion and press formability for the laminate of the first aspect. it can.
[熱可塑性樹脂]
 C層に用いる熱可塑性樹脂の好ましい種類については、A層で用いるものと同様である。中でもA層と同一種類の材料(例えばA層がポリプロピレン系樹脂であればC層もポリプロピレン系樹脂)であることが、第1態様の積層体の層間接着性を向上する観点から好ましい。
[Thermoplastic resin]
A preferable kind of the thermoplastic resin used for the C layer is the same as that used for the A layer. Among them, the same type of material as the A layer (for example, if the A layer is a polypropylene resin, the C layer is also a polypropylene resin) is preferable from the viewpoint of improving the interlayer adhesion of the laminate of the first aspect.
 第1態様の積層体においては、同一温度かつ同一荷重における、前記A層の熱可塑性樹脂のメルトマスフローレートR(g/10min)と、C層の熱可塑性樹脂のメルトマスフローレートR(g/10min)が、R≧Rの関係を有することが好ましい。
 第1態様の積層体を作製する際にはA層とC層の流動特性が近い方が好ましいが、A層は無機フィラーを含有することから、その流動特性は熱可塑性樹脂のみの場合と比較してメルトマスフローレートが小さくなる傾向にある。従って、A層の熱可塑性樹脂自体のRはR以上であることが好ましい。
 ただし、RがRに対して過度に大きいと、A層の熱可塑性樹脂が無機フィラーを含有していても、A層とC層の流動特性のバランスが悪くなるため、10×R≧R≧Rであることが好ましい。
In the laminate of the first aspect, the melt mass flow rate R A (g / 10 min) of the thermoplastic resin of the A layer and the melt mass flow rate R C (g of the thermoplastic resin of the C layer at the same temperature and the same load. / 10 min) preferably has a relationship of R ARC .
When the laminate of the first aspect is produced, it is preferable that the fluidity characteristics of the A layer and the C layer are close to each other. However, since the A layer contains an inorganic filler, the fluidity characteristics are compared with the case of using only a thermoplastic resin. As a result, the melt mass flow rate tends to decrease. Therefore, it is preferable that R A of the thermoplastic resin itself of the A layer is R C or more.
However, if R A is excessively large with respect to R C, even thermoplastic resin layer A contain an inorganic filler, the balance of flow characteristics of the A layer and the C layer is deteriorated, 10 × R C It is preferable that ≧ R ARC .
 C層に用いる熱可塑性樹脂がポリプロピレン系樹脂である場合や、ポリエチレン系樹脂、その他の熱可塑性樹脂である場合のメルトマスフローレートR(g/10min)についての好ましい範囲も、前記A層に用いる熱可塑性樹脂のメルトマスフローレートR(g/10min)の好ましい範囲と同様であり、なおかつ、同一温度・同一荷重において上記のR≧Rの関係を有することが好ましい。 A preferable range for the melt mass flow rate R C (g / 10 min) when the thermoplastic resin used for the C layer is a polypropylene resin, or a polyethylene resin or other thermoplastic resin is also used for the A layer. It is preferably the same as the preferable range of the melt mass flow rate R A (g / 10 min) of the thermoplastic resin, and preferably has the relationship of R ARC at the same temperature and the same load.
[その他の成分]
 C層には、本発明の特徴や効果を阻害しない範囲内で、他の熱可塑性樹脂や一般に樹脂組成物に配合される添加剤を適宜含有してもよい。但し、前記無機フィラーに該当するものについては含有しない。
 添加剤の具体例としては、難燃剤、カーボンブラック等の顔料、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などが挙げられる。
[Other ingredients]
The layer C may appropriately contain other thermoplastic resins and additives generally blended into the resin composition within a range not impairing the characteristics and effects of the present invention. However, it does not contain what corresponds to the said inorganic filler.
Specific examples of additives include flame retardants, pigments such as carbon black, weather resistance stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, colorants and the like can be mentioned.
[C層の作製方法]
 C層を構成する熱可塑性樹脂シートの作製方法としては、A層を構成する熱可塑性樹脂シートと同様、特に限定されず、Tダイキャスト法、カレンダー法、プレス法など、公知の溶融製膜方法を採用することができる。
[Method for producing layer C]
The method for producing the thermoplastic resin sheet constituting the C layer is not particularly limited, as is the case with the thermoplastic resin sheet constituting the A layer, and known melt film forming methods such as a T-die casting method, a calendar method, and a pressing method. Can be adopted.
[C層の厚み]
 第1態様の積層体を製造する前における、C層を構成する熱可塑性樹脂シートの厚みは特に限定されないが、0.5mm以上、2mm以下であることが好ましく、1mm以上、2mm以下であることがさらに好ましく、1mm以上、1.5mm以下であることが特に好ましい。C層を構成する熱可塑性樹脂シートの厚みが0.5mm以上であれば、第1態様の積層体がプレス成形性に優れる。また、C層を構成する熱可塑性樹脂シートの厚みが2mm以下であれば、第1態様の積層体が低線膨張性に優れる。
[C layer thickness]
The thickness of the thermoplastic resin sheet constituting the C layer before producing the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, and is 1 mm or more and 2 mm or less. Is more preferable, and 1 mm or more and 1.5 mm or less are particularly preferable. If the thickness of the thermoplastic resin sheet which comprises C layer is 0.5 mm or more, the laminated body of a 1st aspect is excellent in press moldability. Moreover, if the thickness of the thermoplastic resin sheet which comprises C layer is 2 mm or less, the laminated body of a 1st aspect is excellent in low linear expansion property.
 また、第1態様の積層体におけるC層の厚みは特に限定されないが、0.5mm以上、2mm以下であることが好ましく、1mm以上、2mm以下であることがさらに好ましく、1mm以上、1.5mm以下であることが特に好ましい。
 C層の厚みが0.5mm以上であれば、第1態様の積層体がプレス成形性に優れる。また、C層の厚みが2mm以下であれば、第1態様の積層体が低線膨張性に優れる。
The thickness of the C layer in the laminate of the first aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, more preferably 1 mm or more and 2 mm or less, and 1 mm or more and 1.5 mm. It is particularly preferred that
If the thickness of the C layer is 0.5 mm or more, the laminate of the first aspect is excellent in press moldability. Moreover, if the thickness of C layer is 2 mm or less, the laminated body of a 1st aspect is excellent in low linear expansion property.
〔その他の層〕
 第1態様の積層体は、前記A~C層以外に、本発明の特徴や効果を阻害しない範囲内で、他の層を設けても良い。
 具体的には、第1態様の積層体はA層/B層/C層/B層/A層の構成であれば良いが、例えばA層のさらに外側に、印刷層などの意匠性を有する層や、防汚層などの表面保護層を設けることもできる。また、A層とB層の層間やB層とC層の層間に、必要に応じて接着層などを設けることもできる。
[Other layers]
In the laminated body of the first aspect, other layers may be provided in addition to the A to C layers as long as the features and effects of the present invention are not impaired.
Specifically, the laminated body of the first aspect may have a configuration of A layer / B layer / C layer / B layer / A layer, but has a design property such as a printed layer on the outer side of the A layer, for example. A surface protective layer such as a layer or an antifouling layer can also be provided. Further, an adhesive layer or the like can be provided between the A layer and the B layer or between the B layer and the C layer as necessary.
〔第1態様の積層体の製造方法〕
 第1態様の積層体は、前記の通り、A層を構成する熱可塑性樹脂シートと、B層を構成する炭素繊維材料と、C層を構成する熱可塑性樹脂シートを各々作製し、これを積層することで得られる。
[Method for Producing Laminate of First Aspect]
As described above, the laminate of the first aspect is prepared by laminating the thermoplastic resin sheet constituting the A layer, the carbon fiber material constituting the B layer, and the thermoplastic resin sheet constituting the C layer, respectively. It is obtained by doing.
 より具体的には例えば、前記A層及び前記C層に用いる熱可塑性樹脂シートを作製する工程と、炭素繊維束を開繊して前記B層に用いる炭素繊維材料を作製する工程と、該熱可塑性樹脂シート及び該炭素繊維材料を、A層/B層/C層/B層/A層の構成となるように積層し、A層及びC層に用いた熱可塑性樹脂に応じて、適当な温度及び圧力条件でプレス成形する工程を含む製造方法によって、第1態様の積層体を得ることができる。
 上記の製造方法は、いわゆるバッチ法でも良く、前記A層及び前記C層に用いる熱可塑性樹脂シートを作製しつつ、前記B層に用いる炭素繊維材料を供給して、これらを連続的に積層しながらプレス成形する、連続プレス法でも良い。
More specifically, for example, a step of producing a thermoplastic resin sheet used for the A layer and the C layer, a step of producing a carbon fiber material used for the B layer by opening a carbon fiber bundle, and the heat The plastic resin sheet and the carbon fiber material are laminated so as to have a structure of A layer / B layer / C layer / B layer / A layer, and an appropriate one is selected according to the thermoplastic resin used for the A layer and the C layer. The laminate of the first aspect can be obtained by a manufacturing method including a step of press molding under temperature and pressure conditions.
The above manufacturing method may be a so-called batch method. While producing the thermoplastic resin sheets used for the A layer and the C layer, the carbon fiber material used for the B layer is supplied and these are continuously laminated. However, a continuous pressing method in which press molding is performed may be used.
 例えば、A層及びC層に用いた熱可塑性樹脂がポリオレフィン系樹脂である場合、プレス成形温度としては、180~230℃が好ましく、180~220℃の範囲がさらに好ましく、190~210℃の範囲が特に好ましい。また、プレス圧力としては0.5~4.0MPaが好ましく、0.5~3.0MPaの範囲がさらに好ましく、1~3MPaの範囲が特に好ましい。
 また、A層及びC層に用いた熱可塑性樹脂がポリカーボネート系樹脂である場合、プレス成形温度としては、230~280℃が好ましく、240~280℃の範囲がさらに好ましく、250~280℃の範囲が特に好ましい。また、プレス圧力としては0.5~4.0MPaが好ましく、0.5~3.0MPaの範囲がさらに好ましく、1~3MPaの範囲が特に好ましい。
 係る範囲においてプレス成形することにより、低線膨張性と良好な表面外観のバランスに優れた積層体を作製することができる。
For example, when the thermoplastic resin used for the A layer and the C layer is a polyolefin resin, the press molding temperature is preferably 180 to 230 ° C., more preferably 180 to 220 ° C., and 190 to 210 ° C. Is particularly preferred. The pressing pressure is preferably from 0.5 to 4.0 MPa, more preferably from 0.5 to 3.0 MPa, and particularly preferably from 1 to 3 MPa.
When the thermoplastic resin used for the A layer and the C layer is a polycarbonate resin, the press molding temperature is preferably 230 to 280 ° C., more preferably 240 to 280 ° C., and 250 to 280 ° C. Is particularly preferred. The pressing pressure is preferably from 0.5 to 4.0 MPa, more preferably from 0.5 to 3.0 MPa, and particularly preferably from 1 to 3 MPa.
By press-molding in such a range, a laminate excellent in the balance between low linear expansion and good surface appearance can be produced.
[II] 第2態様の積層体
 第2態様の積層体は、前述の第1態様の積層体のC層を、後述のD層に置き換えたこと以外は第1態様の積層体と同様の構成とされており、A層及びB層については、以下の通り、第1態様の積層体のA層及びB層と同様である。
[II] Laminate of Second Aspect The laminate of the second aspect has the same configuration as the laminate of the first aspect except that the C layer of the laminate of the first aspect described above is replaced with a D layer described later. The A layer and the B layer are the same as the A layer and the B layer of the laminate of the first aspect as follows.
〔熱可塑性樹脂層(A層)〕
 第2態様の積層体を構成する熱可塑性樹脂層(A層)は、熱可塑性樹脂100質量部に対し無機フィラーを30質量部以上、200質量部以下含有する層であり、かつ、第2態様の積層体の実質的な表裏層として存在する。
 第2態様の積層体を構成するA層は、前述の第1態様の積層体を構成するA層と同様であり、その好適な態様や作製方法等についても同様である。
[Thermoplastic resin layer (A layer)]
The thermoplastic resin layer (A layer) constituting the laminate of the second aspect is a layer containing 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the thermoplastic resin, and the second aspect. It exists as a substantial front and back layer of the laminate.
The A layer constituting the laminate of the second aspect is the same as the A layer constituting the laminate of the first aspect, and the preferred aspects and production methods thereof are also the same.
〔炭素繊維層(B層)〕
 第2態様の積層体を構成する炭素繊維層(B層)は、炭素繊維材料を主とする層である。炭素繊維層を有することによって、第2態様の積層体について優れた低線膨張性を実現できる。
 第2態様の積層体を構成するB層は、前述の第1態様の積層体を構成するB層と同様であり、その好適な態様や作製方法等についても同様である。
[Carbon fiber layer (B layer)]
The carbon fiber layer (B layer) constituting the laminate of the second aspect is a layer mainly composed of a carbon fiber material. By having the carbon fiber layer, excellent low linear expansion can be realized for the laminate of the second embodiment.
The B layer constituting the laminate of the second aspect is the same as the B layer constituting the laminate of the first aspect described above, and the preferred aspects and production methods thereof are also the same.
〔熱可塑性樹脂層(D層)〕
 第2態様の積層体を構成する熱可塑性樹脂層(D層)は、熱可塑性樹脂100質量部に対し無機フィラーを、0質量部を超えて100質量部以下含有する層であり、実質的に第2態様の積層体の中心層となる。
[Thermoplastic resin layer (D layer)]
The thermoplastic resin layer (D layer) constituting the laminate of the second embodiment is a layer containing an inorganic filler in an amount exceeding 0 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin. It becomes the center layer of the laminate of the second aspect.
[熱可塑性樹脂]
 D層に用いる熱可塑性樹脂の好ましい種類については、A層で用いるものと同様である。中でもA層と同一種類の材料(例えばA層がポリプロピレン系樹脂であればD層もポリプロピレン系樹脂)であることが、第2態様の積層体の層間接着性を向上する観点から好ましい。
[Thermoplastic resin]
A preferable kind of the thermoplastic resin used for the D layer is the same as that used for the A layer. Among them, the same type of material as the A layer (for example, if the A layer is a polypropylene resin, the D layer is also a polypropylene resin) is preferable from the viewpoint of improving the interlayer adhesion of the laminate of the second aspect.
 第2態様の積層体において、同一温度かつ同一荷重における、前記A層の熱可塑性樹脂のメルトマスフローレートR(g/10min)と、D層の熱可塑性樹脂のメルトマスフローレートR(g/10min)の関係は、A層における無機フィラーの含有割合とD層における無機フィラーの含有割合によって好適な関係が異なるが、例えばD層における無機フィラーの含有割合がA層における無機フィラーの含有割合以下である場合には、R≧Rの関係を有することが好ましい。
 第2態様の積層体を作製する際にはA層とD層の流動特性が近い方が好ましいが、A層が無機フィラーをD層より多く含有する場合、A層の成形材料の流動特性は、D層成形材料の流動特性に比べてメルトマスフローレートが小さくなる傾向にある。従って、A層の熱可塑性樹脂自体のRはR以上であることが好ましい。
 ただし、RがRに対して過度に大きいと、A層の熱可塑性樹脂がD層より多く無機フィラーを含有していても、A層とD層の流動特性のバランスが悪くなるため、10×R≧R≧Rであることが好ましい。
 また、例えばA層における無機フィラーの含有割合がD層における無機フィラーの含有割合未満である場合には、同一温度かつ同一荷重における、前記A層の熱可塑性樹脂のメルトマスフローレートR(g/10min)と、D層の熱可塑性樹脂のメルトマスフローレートR(g/10min)は、R≧Rの関係を有することが好ましく、特には10×R≧R≧Rであることが好ましい。
In the laminate of the second embodiment, the melt mass flow rate R A (g / 10 min) of the thermoplastic resin of the A layer and the melt mass flow rate R D (g / g) of the thermoplastic resin of the D layer at the same temperature and the same load. 10 min), the preferred relationship differs depending on the content of the inorganic filler in the A layer and the content of the inorganic filler in the D layer. For example, the content of the inorganic filler in the D layer is equal to or less than the content of the inorganic filler in the A layer. In this case, it is preferable to have a relationship of R A ≧ R D.
When the laminate of the second embodiment is produced, it is preferable that the flow characteristics of the A layer and the D layer are close to each other. However, when the A layer contains more inorganic filler than the D layer, the flow characteristics of the molding material of the A layer are The melt mass flow rate tends to be smaller than the flow characteristics of the D layer molding material. Therefore, it is preferable that R A of the thermoplastic resin itself of the A layer is R D or more.
However, if RA is excessively large with respect to RD, even if the thermoplastic resin of the A layer contains more inorganic filler than the D layer, the balance between the flow characteristics of the A layer and the D layer becomes poor. It is preferable that 10 × R D ≧ R A ≧ R D.
For example, when the content ratio of the inorganic filler in the A layer is less than the content ratio of the inorganic filler in the D layer, the melt mass flow rate R A (g / g) of the thermoplastic resin of the A layer at the same temperature and the same load is used. 10 min) and the melt mass flow rate R D (g / 10 min) of the thermoplastic resin of the D layer preferably have a relationship of R D ≧ R A , particularly 10 × R A ≧ R D ≧ R A. It is preferable.
 D層に用いる熱可塑性樹脂がポリプロピレン系樹脂である場合や、ポリエチレン系樹脂、その他の熱可塑性樹脂である場合のメルトマスフローレートR(g/10min)についての好ましい範囲も、前記A層に用いる熱可塑性樹脂のメルトマスフローレートR(g/10min)の好ましい範囲と同様であり、なおかつ、同一温度・同一荷重において上記の関係を有することが好ましい。 A preferable range for the melt mass flow rate R D (g / 10 min) when the thermoplastic resin used for the D layer is a polypropylene resin, or a polyethylene resin or other thermoplastic resin is also used for the A layer. It is the same as the preferable range of the melt mass flow rate R A (g / 10 min) of the thermoplastic resin, and preferably has the above relationship at the same temperature and the same load.
[無機フィラー]
 第2態様の積層体のD層には、熱可塑性樹脂100質量部に対し無機フィラーを、0質量部を超え、100質量部以下含有する。
 無機フィラーの含有割合は、熱可塑性樹脂100質量部に対し5質量部以上、100質量部以下であることがさらに好ましく、10質量部以上、100質量部以下であることが特に好ましい。
 無機フィラーを熱可塑性樹脂100質量部に対し、0質量部を超えて含有することにより、第2態様の積層体の低線膨張性の向上に資する。また、無機フィラーを熱可塑性樹脂100質量部に対し100質量部以下含有することにより、第2態様の積層体の成形性の向上に資する。
[Inorganic filler]
The D layer of the laminate of the second aspect contains an inorganic filler in an amount of more than 0 parts by mass and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
The content of the inorganic filler is more preferably 5 parts by mass or more and 100 parts by mass or less, and particularly preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
By containing an inorganic filler more than 0 mass part with respect to 100 mass parts of thermoplastic resins, it contributes to the improvement of the low linear expansion property of the laminated body of a 2nd aspect. Moreover, it contributes to the improvement of the moldability of the laminated body of a 2nd aspect by containing an inorganic filler 100 mass parts or less with respect to 100 mass parts of thermoplastic resins.
 また、第2態様の積層体のD層における無機フィラーの含有割合は、A層における無機フィラーの含有割合以下であることが好ましい。
 A層とD層の無機フィラーの含有割合が係る関係を有することにより、第2態様の積層体を製造する際にA層が先に流動するおそれが小さくなり、第2態様の積層体の生産性が高まる上、第2態様の積層体の軽量化及びプレス成形性の向上に資する。
Moreover, it is preferable that the content rate of the inorganic filler in D layer of the laminated body of a 2nd aspect is below the content rate of the inorganic filler in A layer.
By having the relationship which the content rate of the inorganic filler of A layer and D layer concerns, when manufacturing the laminated body of a 2nd aspect, a possibility that A layer will flow first becomes small, and production of the laminated body of a 2nd aspect is produced. In addition to improving the properties, it contributes to the weight reduction and press moldability of the laminate of the second embodiment.
 D層に用いる無機フィラーの種類としては、A層に用いる無機フィラーとして前述したものを挙げることができ、その好ましいものも同様である。また、D層に用いる無機フィラーの平均粒径やアスペクト比の好適範囲についても、A層におけると同様の理由から、A層に用いる無機フィラーの平均粒径やアスペクト比と同様であり、また、この無機フィラーについても表面処理されたものであってもよい。 Examples of the inorganic filler used in the D layer include those described above as the inorganic filler used in the A layer, and preferred examples thereof are also the same. Further, the preferred average particle diameter and aspect ratio of the inorganic filler used in the D layer are the same as the average particle diameter and aspect ratio of the inorganic filler used in the A layer for the same reason as in the A layer, This inorganic filler may also be surface-treated.
 なお、A層に用いる無機フィラーとD層に用いる無機フィラーとは、同一であってもよく、異なるものであってもよい。材料調達の簡便性からは同一であることが好ましい。 The inorganic filler used for the A layer and the inorganic filler used for the D layer may be the same or different. It is preferable that they are the same from the standpoint of material procurement.
[その他の成分]
 D層には、本発明の特徴や効果を阻害しない範囲内で、他の熱可塑性樹脂や一般に樹脂組成物に配合される添加剤を適宜含有してもよい。
 添加剤の具体例としては、難燃剤、カーボンブラック等の顔料、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などが挙げられる。
 なお、D層が難燃剤を含有する場合、その好適な含有割合はA層におけると同様である。
[Other ingredients]
The D layer may appropriately contain other thermoplastic resins and additives that are generally blended into the resin composition within a range not impairing the characteristics and effects of the present invention.
Specific examples of additives include flame retardants, pigments such as carbon black, weather resistance stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, colorants and the like can be mentioned.
In addition, when D layer contains a flame retardant, the suitable content rate is the same as that in A layer.
[D層の作製方法]
 D層を構成する熱可塑性樹脂シートの作製方法としては、A層を構成する熱可塑性樹脂シートと同様、特に限定されず、Tダイキャスト法、カレンダー法、プレス法など、公知の溶融製膜方法を採用することができる。
[Method for producing layer D]
The method for producing the thermoplastic resin sheet constituting the D layer is not particularly limited, as is the case with the thermoplastic resin sheet constituting the A layer, and known melt film forming methods such as a T-die casting method, a calendering method, and a pressing method. Can be adopted.
[D層の厚み]
 第2態様の積層体を製造する前における、D層を構成する熱可塑性樹脂シートの厚みは特に限定されないが、0.5mm以上、2mm以下であることが好ましく、1mm以上、2mm以下であることがさらに好ましく、1mm以上、1.5mm以下であることが特に好ましい。D層を構成する熱可塑性樹脂シートの厚みが0.5mm以上であれば、第2態様の積層体がプレス成形性と低線膨張性に優れる。また、D層を構成する熱可塑性樹脂シートの厚みが2mm以下であれば、第2態様の積層体がプレス成形性に優れる。
[D layer thickness]
The thickness of the thermoplastic resin sheet constituting the D layer before producing the laminate of the second aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, and is 1 mm or more and 2 mm or less. Is more preferable, and 1 mm or more and 1.5 mm or less are particularly preferable. If the thickness of the thermoplastic resin sheet which comprises D layer is 0.5 mm or more, the laminated body of a 2nd aspect is excellent in press moldability and low linear expansion property. Moreover, if the thickness of the thermoplastic resin sheet which comprises D layer is 2 mm or less, the laminated body of a 2nd aspect is excellent in press moldability.
 また、第2態様の積層体におけるD層の厚みは特に限定されないが、0.5mm以上、2mm以下であることが好ましく、1mm以上、2mm以下であることがさらに好ましく、1mm以上、1.5mm以下であることが特に好ましい。
 D層の厚みが0.5mm以上であれば、第2態様の積層体がプレス成形性と低線膨張性に優れる。また、D層の厚みが2mm以下であれば、第2態様の積層体がプレス成形性に優れる。
The thickness of the D layer in the laminate of the second aspect is not particularly limited, but is preferably 0.5 mm or more and 2 mm or less, more preferably 1 mm or more and 2 mm or less, and 1 mm or more and 1.5 mm. It is particularly preferred that
When the thickness of the D layer is 0.5 mm or more, the laminate of the second aspect is excellent in press moldability and low linear expansion. Moreover, if the thickness of D layer is 2 mm or less, the laminated body of a 2nd aspect is excellent in press moldability.
〔その他の層〕
 第2態様の積層体は、前記A層、B層及びD層以外に、本発明の特徴や効果を阻害しない範囲内で、他の層を設けても良い。
 具体的には、第2態様の積層体はA層/B層/D層/B層/A層の構成であれば良いが、例えばA層のさらに外側に、印刷層などの意匠性を有する層や、防汚層などの表面保護層を設けることもできる。また、A層とB層の層間やB層とD層の層間に、必要に応じて接着層などを設けることもできる。
[Other layers]
The laminated body of the second aspect may be provided with other layers in addition to the A layer, B layer, and D layer as long as the features and effects of the present invention are not impaired.
Specifically, the layered product of the second embodiment may have a configuration of A layer / B layer / D layer / B layer / A layer, but has a design property such as a printed layer on the outer side of the A layer, for example. A surface protective layer such as a layer or an antifouling layer can also be provided. Further, an adhesive layer or the like can be provided between the A layer and the B layer or between the B layer and the D layer as necessary.
〔第2態様の積層体の製造方法〕
 第2態様の積層体は、前記の通り、A層を構成する熱可塑性樹脂シートと、B層を構成する炭素繊維材料と、D層を構成する熱可塑性樹脂シートを各々作製し、これを積層することで得られる。その製造方法については、C層の代りにD層を配すること以外は、前述の第1態様の積層体の製造方法と同様である。
[Method for Producing Laminate of Second Aspect]
As described above, the laminate of the second aspect is prepared by respectively producing the thermoplastic resin sheet constituting the A layer, the carbon fiber material constituting the B layer, and the thermoplastic resin sheet constituting the D layer. It is obtained by doing. About the manufacturing method, it is the same as that of the manufacturing method of the laminated body of the above-mentioned 1st aspect except arrange | positioning D layer instead of C layer.
[III] 第3態様の積層体
〔熱可塑性樹脂層(E層)〕
 第3態様の積層体を構成する熱可塑性樹脂層(E層)は、熱可塑性樹脂100質量部に対し、アスペクト比が20以上、500以下の板状無機粒子を30質量部以上、200質量部以下含有する層であり、かつ、第3態様の積層体の表裏層として存在する。
[III] Laminate of Third Embodiment [Thermoplastic Resin Layer (E Layer)]
The thermoplastic resin layer (E layer) constituting the laminate of the third aspect is 30 parts by mass or more and 200 parts by mass of plate-like inorganic particles having an aspect ratio of 20 or more and 500 or less with respect to 100 parts by mass of the thermoplastic resin. It is a layer to be contained below, and exists as the front and back layers of the laminate of the third embodiment.
[熱可塑性樹脂]
 E層に用いることができる熱可塑性樹脂としては、第1態様の積層体に係るA層を構成する熱可塑性樹脂と同様のものが例示され、その好適な態様についても同様である。
[Thermoplastic resin]
Examples of the thermoplastic resin that can be used for the E layer include those similar to the thermoplastic resin that constitutes the A layer according to the laminate of the first aspect, and the preferred aspects thereof are also the same.
[板状無機粒子]
 第3態様の積層体のE層には、熱可塑性系樹脂100質量部に対し、アスペクト比が20以上、500以下の板状無機粒子を30質量部以上、200質量部以下含有する。
 板状無機粒子の含有割合は、ポリオレフィン系樹脂100質量部に対し30質量部以上、160質量部以下であることが好ましく、30質量部以上、120質量部以下であることが特に好ましい。
 板状無機粒子をポリオレフィン系樹脂100質量部に対し30質量部以上含有することにより、第3態様の積層体について低線膨張性の向上に資する。また、板状無機粒子をポリオレフィン系樹脂100質量部に対し200質量部以下含有することにより、第3態様の積層体の成形性の向上に資する。
[Plate-like inorganic particles]
The E layer of the laminate of the third aspect contains 30 to 200 parts by mass of plate-like inorganic particles having an aspect ratio of 20 to 500 with respect to 100 parts by mass of the thermoplastic resin.
The content ratio of the plate-like inorganic particles is preferably 30 parts by mass or more and 160 parts by mass or less, and particularly preferably 30 parts by mass or more and 120 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
By containing 30 parts by mass or more of the plate-like inorganic particles with respect to 100 parts by mass of the polyolefin-based resin, the laminated body of the third aspect contributes to the improvement of low linear expansion. Moreover, it contributes to the improvement of the moldability of the laminated body of the 3rd aspect by containing 200 mass parts or less of plate-like inorganic particles with respect to 100 mass parts of polyolefin resin.
 E層に用いる板状無機粒子の種類としては、具体的には、炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの金属炭酸塩、硫酸カルシウム、硫酸バリウム、硫酸マグネシウムなどの金属硫酸塩、酸化カルシウム、酸化マグネシウム、酸化亜鉛、アルミナ、シリカ、酸化チタンなどの金属酸化物、塩化ナトリウム、塩化マグネシウム、塩化銀、塩化カルシウムなどの金属塩化物、タルク、クレー、マイカ、モンモリロナイトなどの粘土鉱物が挙げられる。
 これらの中でも、低線膨張性とコストの観点から、タルク又はマイカを用いることが好ましく、マイカが特に好ましい。
Specific examples of the plate-like inorganic particles used for the E layer include metal carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, metal sulfates such as calcium sulfate, barium sulfate, and magnesium sulfate, calcium oxide, and oxidation. Examples thereof include metal oxides such as magnesium, zinc oxide, alumina, silica, and titanium oxide, metal chlorides such as sodium chloride, magnesium chloride, silver chloride, and calcium chloride, and clay minerals such as talc, clay, mica, and montmorillonite.
Among these, talc or mica is preferably used from the viewpoint of low linear expansion and cost, and mica is particularly preferable.
 E層に用いる板状無機粒子の平均粒径は、1μm以上、500μm以下であることが好ましく、5μm以上、300μm以下であることがさらに好ましく、5μm以上、100μm以下であることが特に好ましい。
 板状無機粒子の平均粒径が1μm以上であれば、第3態様の積層体について低線膨張性の向上に資する。また、平均粒径が500μm以下であれば、第3態様の積層体の表面外観の向上に資する。
 なお、板状無機粒子の平均粒径は、前述の第1態様の積層体のA層の無機フィラーの平均粒径と同様に算出することができる。
The average particle size of the plate-like inorganic particles used for the E layer is preferably 1 μm or more and 500 μm or less, more preferably 5 μm or more and 300 μm or less, and particularly preferably 5 μm or more and 100 μm or less.
If the average particle diameter of the plate-like inorganic particles is 1 μm or more, the laminated body of the third aspect contributes to improvement of low linear expansion. Moreover, if an average particle diameter is 500 micrometers or less, it will contribute to the improvement of the surface external appearance of the laminated body of a 3rd aspect.
The average particle diameter of the plate-like inorganic particles can be calculated in the same manner as the average particle diameter of the inorganic filler in the A layer of the laminate of the first aspect described above.
 E層に用いる板状無機粒子のアスペクト比(長径/短径の値)は20以上、500以下であり、20以上、300以下であることが好ましく、20以上、100以下であることが特に好ましい。
 板状無機粒子のアスペクト比が20以上であれば、第3態様の積層体が低線膨張性に優れる。一方、板状無機粒子のアスペクト比が500以下であれば、第3態様の積層体が表面外観に優れる。
 板状無機粒子のアスペクト比は、前述の第1態様の積層体のA層の無機フィラーのアスペクト比と同様に算出することができる。
The aspect ratio (major axis / minor axis value) of the plate-like inorganic particles used for the E layer is 20 or more and 500 or less, preferably 20 or more and 300 or less, and particularly preferably 20 or more and 100 or less. .
If the aspect ratio of the plate-like inorganic particles is 20 or more, the laminate of the third aspect is excellent in low linear expansion. On the other hand, if the aspect ratio of the plate-like inorganic particles is 500 or less, the laminate of the third aspect is excellent in surface appearance.
The aspect ratio of the plate-like inorganic particles can be calculated in the same manner as the aspect ratio of the inorganic filler in the A layer of the laminate of the first aspect described above.
 E層に用いる板状無機粒子は、表面処理されたものであっても構わない。表面処理方法としては特に限定されることなく、例えば一般的なシランカップリング剤等の表面処理剤を用いる方法が挙げられる。板状無機粒子を表面処理することによって、前記熱可塑性樹脂中における板状無機粒子の分散性の向上や、E層からの板状無機粒子の脱落防止といった効果が得られる。 The plate-like inorganic particles used for the E layer may be surface-treated. The surface treatment method is not particularly limited, and examples thereof include a method using a surface treatment agent such as a general silane coupling agent. By surface-treating the plate-like inorganic particles, the effects of improving the dispersibility of the plate-like inorganic particles in the thermoplastic resin and preventing the plate-like inorganic particles from falling off from the E layer can be obtained.
 これらの板状無機粒子は、1種のみを用いてもよく、材質、粒径やアスペクト比、表面処理の有無、表面処理剤の種類等の異なるものを2種以上組み合わせて用いてもよい。 These plate-like inorganic particles may be used alone, or may be used in combination of two or more kinds having different materials, particle sizes, aspect ratios, presence / absence of surface treatment, types of surface treatment agents, and the like.
[他の成分]
 第3態様の積層体が難燃性を要求されるものである場合、E層にはさらに難燃剤を含有することができる。E層に用いる難燃剤としては特に限定されず、各種縮合リン酸エステルなどのリン系難燃剤、メラミンなどの窒素系難燃剤、ホスファゼンなどのリン・窒素系難燃剤、臭素化芳香族化合物などの臭素系難燃剤、三酸化アンチモンなどのアンチモン系難燃剤といった、公知の難燃剤の1種又は2種以上を適宜選択して使用することができる。
[Other ingredients]
When the laminate of the third aspect is required to have flame retardancy, the E layer can further contain a flame retardant. The flame retardant used for the E layer is not particularly limited, such as phosphorus flame retardants such as various condensed phosphate esters, nitrogen flame retardants such as melamine, phosphorus / nitrogen flame retardants such as phosphazenes, brominated aromatic compounds, etc. One or more known flame retardants such as bromine flame retardants and antimony flame retardants such as antimony trioxide can be appropriately selected and used.
 E層に難燃剤を含有する場合の含有割合は、熱可塑性樹脂100質量部に対し、20質量部以上、60質量部以下であることが好ましく、25質量部以上、60質量部以下であることがさらに好ましく、30質量部以上、60質量部以下であることが特に好ましい。
 難燃剤を熱可塑性樹脂100質量部に対し20質量部以上含有することにより、第3態様の積層体が優れた難燃性を発現することができ。一方、難燃剤を熱可塑性樹脂100質量部に対し60質量部以下含有することにより、第3態様の積層体が各種機械物性を満足する。
When the flame retardant is contained in the E layer, the content ratio is preferably 20 parts by mass or more and 60 parts by mass or less, and 25 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. Is more preferably 30 parts by mass or more and 60 parts by mass or less.
By containing 20 parts by mass or more of the flame retardant with respect to 100 parts by mass of the thermoplastic resin, the laminate of the third aspect can exhibit excellent flame retardancy. On the other hand, by containing 60 parts by mass or less of the flame retardant with respect to 100 parts by mass of the thermoplastic resin, the laminate of the third aspect satisfies various mechanical properties.
 E層には前述した成分のほか、本発明の特徴や効果を阻害しない範囲内で、他の熱可塑性樹脂や一般に樹脂組成物に配合される添加剤を適宜含有してもよい。添加剤の具体例としては、カーボンブラック等の顔料、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などが挙げられる。 In addition to the components described above, the E layer may appropriately contain other thermoplastic resins and additives generally added to the resin composition as long as the characteristics and effects of the present invention are not impaired. Specific examples of additives include pigments such as carbon black, weather resistance stabilizers, heat resistance stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, antiaging agents, and antioxidants. , Light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents or coloring agents.
[E層の作製方法]
 第3態様の積層体は後述する通り、E層を構成する熱可塑性樹脂シートと、B層を構成する炭素繊維材料を各々作製し、これを積層することで得られる。
 E層を構成する熱可塑性樹脂シートの作製方法としては特に限定されず、Tダイキャスト法、カレンダー法、プレス法など、公知の溶融製膜方法を採用することができる。
[Method for producing layer E]
As will be described later, the laminate of the third aspect is obtained by producing a thermoplastic resin sheet constituting the E layer and a carbon fiber material constituting the B layer and laminating them.
It does not specifically limit as a preparation method of the thermoplastic resin sheet which comprises E layer, Well-known melt film-forming methods, such as a T die-cast method, a calendar method, a press method, are employable.
 より具体的には、前記熱可塑性樹脂と、前記板状無機粒子と、必要に応じて難燃剤を含めた他の成分を、直接混合して溶融製膜する方法や、前記熱可塑性樹脂と、前記板状無機粒子と、必要に応じて難燃剤を含めた他の成分を、あらかじめ溶融混練して混合物のペレットを作製し、これを用いて熱可塑性樹脂シートを溶融製膜する方法を挙げることができる。 More specifically, the thermoplastic resin, the plate-like inorganic particles, and other components including a flame retardant as required, a method of directly mixing and melt-forming, the thermoplastic resin, Examples include a method of melt-kneading the plate-like inorganic particles and other components including a flame retardant as necessary to prepare a pellet of a mixture and melt-forming a thermoplastic resin sheet using the mixture. Can do.
[E層の厚み]
 第3態様の積層体を製造する前における、E層を構成する熱可塑性樹脂シートの厚みは特に限定されないが、0.5mm以上、2.5mm以下であることが好ましく、0.5mm以上、2mm以下であることがより好ましく、0.5mm以上、1.5mm以下であることがさらに好ましく、0.5mm以上、1mm以下であることが特に好ましい。E層を構成する熱可塑性樹脂シートの厚みが0.5mm以上であれば、プレス成形後の製品表面にB層の炭素繊維層が露出するなどの表面外観の悪化を抑制できる。また、E層を構成する熱可塑性樹脂シートの厚みが2.5mm以下であれば、軽量性を維持できる。
[E layer thickness]
The thickness of the thermoplastic resin sheet constituting the E layer before producing the laminate of the third aspect is not particularly limited, but is preferably 0.5 mm or more and 2.5 mm or less, preferably 0.5 mm or more and 2 mm. Or less, more preferably 0.5 mm or more and 1.5 mm or less, and particularly preferably 0.5 mm or more and 1 mm or less. If the thickness of the thermoplastic resin sheet constituting the E layer is 0.5 mm or more, deterioration of the surface appearance such as the exposure of the carbon fiber layer of the B layer on the product surface after press molding can be suppressed. Moreover, if the thickness of the thermoplastic resin sheet which comprises E layer is 2.5 mm or less, lightness can be maintained.
 また、第3態様の積層体におけるE層の厚みは特に限定されないが、0.5mm以上、2.5mm以下であることが好ましく、0.5mm以上、2mm以下であることがより好ましく、0.5mm以上、1.5mm以下であることがさらに好ましく、0.5mm以上、1mm以下であることが特に好ましい。 Further, the thickness of the E layer in the laminate of the third aspect is not particularly limited, but is preferably 0.5 mm or more and 2.5 mm or less, more preferably 0.5 mm or more and 2 mm or less. More preferably, it is 5 mm or more and 1.5 mm or less, and particularly preferably 0.5 mm or more and 1 mm or less.
〔炭素繊維層(B層)〕
 第3態様の積層体を構成する炭素繊維層(B層)は、炭素繊維材料を主とする層である。炭素繊維層を有することによって、第3態様の積層体について優れた低線膨張性を実現できる。
 第3態様の積層体を構成するB層は、前述の第1態様の積層体を構成するB層と同様であり、その好適な態様や作製方法等についても同様である。
[Carbon fiber layer (B layer)]
The carbon fiber layer (B layer) constituting the laminate of the third aspect is a layer mainly composed of a carbon fiber material. By having the carbon fiber layer, excellent low linear expansion can be realized for the laminate of the third embodiment.
The B layer constituting the laminate of the third aspect is the same as the B layer constituting the laminate of the first aspect described above, and the preferred aspects and production methods thereof are also the same.
〔その他の層〕
 第3態様の積層体は、前記E層及び前記B層以外に、本発明の特徴や効果を阻害しない範囲内で、他の層を設けても良い。
 具体的には、第3態様の積層体はE層が表裏層であって、例えばE層/B層/E層の構成であれば良いが、E層とB層の層間に、必要に応じて接着層などを設けることもできる。さらに、E層/B層/その他の層/B層/E層のように、B層を2層設けてその層間にその他の層を設けた積層体とすることもできる。
 また、第3態様の積層体はE層を表裏層とするが、E層のさらに外側に、印刷層などの意匠性を有する層や、防汚層などの表面保護層を設けることを妨げない。
[Other layers]
In the laminated body of the third aspect, in addition to the E layer and the B layer, other layers may be provided as long as the features and effects of the present invention are not impaired.
Specifically, in the laminate of the third aspect, the E layer is the front and back layers, and for example, the structure of E layer / B layer / E layer may be used, but between the E layer and B layer, if necessary, An adhesive layer or the like can be provided. Furthermore, it can also be set as the laminated body which provided two B layers and provided the other layer between the layers like E layer / B layer / other layer / B layer / E layer.
Moreover, although the laminated body of a 3rd aspect uses E layer as front and back layers, it does not prevent providing a surface protection layer, such as a layer which has designability, such as a printing layer, and an antifouling layer in the further outside of E layer. .
〔第3態様の積層体の製造方法〕
 第3態様の積層体は、前記の通り、E層を構成する熱可塑性樹脂シートと、B層を構成する炭素繊維材料を各々作製し、これを積層することで得られる。
[Method for Producing Laminate of Third Aspect]
As described above, the laminate of the third aspect can be obtained by preparing and laminating the thermoplastic resin sheet constituting the E layer and the carbon fiber material constituting the B layer.
 より具体的には例えば、前記E層に用いる熱可塑性樹脂シートを作製する工程と、炭素繊維束を開繊して前記B層に用いる炭素繊維材料を作製する工程と、該熱可塑性樹脂シート及び該炭素繊維材料を、E層/B層/E層の構成となるように積層し、E層に用いた熱可塑性樹脂に応じて、適当な温度及び圧力条件でプレス成形する工程を含む製造方法によって、第3態様の積層体を得ることができる。
 上記の製造方法は、いわゆるバッチ法でも良く、前記E層に用いる熱可塑性樹脂シートを作製しつつ、前記B層に用いる炭素繊維材料を供給して、これらを連続的に積層しながらプレス成形する、連続プレス法でも良い。
 プレス成形条件については、前述の第1態様の積層体の製造方法におけるプレス成形条件と同様である。
More specifically, for example, a step of producing a thermoplastic resin sheet used for the E layer, a step of producing a carbon fiber material used for the B layer by opening a carbon fiber bundle, the thermoplastic resin sheet and A production method comprising a step of laminating the carbon fiber material so as to have a configuration of E layer / B layer / E layer, and press molding at an appropriate temperature and pressure condition according to the thermoplastic resin used for the E layer Thus, the laminate of the third aspect can be obtained.
The manufacturing method described above may be a so-called batch method. While producing the thermoplastic resin sheet used for the E layer, the carbon fiber material used for the B layer is supplied and press-molded while continuously laminating them. The continuous press method may be used.
The press molding conditions are the same as the press molding conditions in the method for manufacturing the laminate of the first aspect described above.
[IV] 本発明の積層体の物性等
 本発明の積層体、即ち、第1態様、第2態様及び第3態様の積層体は、以下の物性等を有することが好ましい。
[IV] Physical Properties of the Laminate of the Present Invention The laminates of the present invention, that is, the laminates of the first, second, and third embodiments preferably have the following physical properties.
 第1態様及び第2態様の積層体の前記A層、並びに第3態様の積層体の前記E層の表面の最大断面高さ(Rt)はJIS B0601(2013年)に準じて測定され、3μm以下であることが好ましく、2.5μm以下であることがさらに好ましく、2μm以下であることが特に好ましい。
 前記A層及びE層の表面の最大断面高さ(Rt)が3μm以下であれば、本発明の積層体が特に良好な表面外観を有するものとなる。A層及びE層の表面の最大断面高さ(Rt)は小さい程好ましく、その下限は特に規定されない。
 前記A層及びE層の表面の最大断面高さ(Rt)を係る範囲とする方法としては、例えば前記A層中の無機フィラー又は前記E層中の板状無機粒子の含有割合や、前記B層中の炭素繊維束の最大径を本発明において特定する範囲で調整する方法が挙げられる。
The maximum cross-sectional height (Rt) of the surface of the layer A of the laminate of the first embodiment and the second embodiment and the surface of the E layer of the laminate of the third embodiment is measured according to JIS B0601 (2013) and is 3 μm. Or less, more preferably 2.5 μm or less, and particularly preferably 2 μm or less.
When the maximum cross-sectional height (Rt) of the surface of the A layer and the E layer is 3 μm or less, the laminate of the present invention has a particularly good surface appearance. The maximum cross-sectional height (Rt) of the surface of the A layer and the E layer is preferably as small as possible, and the lower limit is not particularly defined.
Examples of the method for setting the maximum cross-sectional height (Rt) of the surfaces of the A layer and the E layer include the content ratio of the inorganic filler in the A layer or the plate-like inorganic particles in the E layer, and the B The method of adjusting the maximum diameter of the carbon fiber bundle in a layer in the range specified in this invention is mentioned.
 また、本発明の積層体の厚みは特に限定されないが、1.7mm以上、5mm以下であることが好ましく、1.7mm以上、4mm以下であることがさらに好ましく、1.7mm以上、3mm以下であることが特に好ましい。
 本発明の積層体の厚みが1.7mm以上であれば、本発明の積層体や、本発明の積層体をプレス成形した製品が表面外観に優れる。また、本発明の積層体の厚みが5mm以下であれば、本発明の積層体が低線膨張性に優れる。
The thickness of the laminate of the present invention is not particularly limited, but is preferably 1.7 mm or more and 5 mm or less, more preferably 1.7 mm or more and 4 mm or less, and 1.7 mm or more and 3 mm or less. It is particularly preferred.
When the thickness of the laminate of the present invention is 1.7 mm or more, the laminate of the present invention and a product obtained by press molding the laminate of the present invention are excellent in surface appearance. Moreover, if the thickness of the laminated body of this invention is 5 mm or less, the laminated body of this invention is excellent in low linear expansion property.
 また、本発明の積層体は低線膨張性に優れるものであり、JIS K7197(2012年)に準じて測定した線膨張係数は、5×10-5/℃以下であることが好ましく、1×10-5/℃以下であることがさらに好ましい。 Further, the laminate of the present invention is excellent in low linear expansion, and the linear expansion coefficient measured according to JIS K7197 (2012) is preferably 5 × 10 −5 / ° C. or less, preferably 1 × More preferably, it is 10 −5 / ° C. or less.
 なお、第1態様及び第2態様の積層体に含まれる2つのA層、即ち、一方の表面側のA層と、他方の表面側のA層とは、必ずしも同一の熱可塑性樹脂及び無機フィラーを同配合で用いた同一厚みのものである必要はなく、熱可塑性樹脂及び無機フィラーの種類や、無機フィラーの含有割合、その他の成分の含有割合等が異なるものであってよく、また、厚みが異なるものであってもよい。同様に、第2態様の積層体に含まれる2つのB層についても、炭素繊維材料の種類や炭素繊維束の最大径、炭素繊維の平均繊維長、坪量、厚みなどが異なっていてもよい。ただし、第1態様及び第2態様の積層体の厚み方向の物性の均一性や、反りの問題、製造の容易さ等において、第1態様及び第2態様の積層体中の2つのA層、2つのB層は、それぞれ同一材料で構成された同一物性ないし厚みのものであることが好ましい。 Note that the two A layers included in the laminates of the first and second embodiments, that is, the A layer on one surface side and the A layer on the other surface side are not necessarily the same thermoplastic resin and inorganic filler. Need not be of the same thickness used in the same composition, the type of the thermoplastic resin and the inorganic filler, the content ratio of the inorganic filler, the content ratio of other components, etc. may differ, and the thickness May be different. Similarly, regarding the two B layers included in the laminate of the second aspect, the type of the carbon fiber material, the maximum diameter of the carbon fiber bundle, the average fiber length of the carbon fiber, the basis weight, the thickness, and the like may be different. . However, in the uniformity of the physical properties in the thickness direction of the laminate of the first embodiment and the second embodiment, the problem of warpage, ease of production, etc., two A layers in the laminate of the first embodiment and the second embodiment, It is preferable that the two B layers have the same physical properties or thicknesses made of the same material.
 同様に第3態様の積層体に含まれる2つのE層は、必ずしも同一の熱可塑性樹脂及び板状無機粒子を同配合で用いた、同一厚みのものである必要はなく、熱可塑性樹脂及び板状無機粒子の種類や、板状無機粒子の含有割合、その他の成分の含有割合等が異なるものであってよく、また、厚みが異なるものであってもよい。ただし、第3態様の積層体の厚み方向の物性の均一性や、反りの問題、製造の容易さ等において、第3態様の積層体中の2つのE層は、それぞれ同一材料で構成された同一物性ないし厚みのものであることが好ましい。 Similarly, the two E layers included in the laminate of the third embodiment are not necessarily required to have the same thickness using the same thermoplastic resin and plate-like inorganic particles in the same composition, and the thermoplastic resin and the plate. The shape of the particle-like inorganic particles, the content ratio of the plate-like inorganic particles, the content ratio of the other components, and the like may be different, and the thicknesses may be different. However, in the uniformity of physical properties in the thickness direction of the laminate of the third aspect, the problem of warpage, ease of production, etc., the two E layers in the laminate of the third aspect were each made of the same material. It is preferable that they have the same physical properties or thickness.
 以下、本発明をより具体的に説明するための実施例を示すが、本発明は実施例に示される具体的態様に限定されるものではない。 Hereinafter, examples for more specifically explaining the present invention will be shown, but the present invention is not limited to the specific modes shown in the examples.
[測定・評価]
 実施例及び比較例における測定・評価は以下の方法・基準で行った。
[Measurement / Evaluation]
Measurement and evaluation in Examples and Comparative Examples were performed by the following methods and standards.
(1)メルトマスフローレート
 JIS K7210(1999年)に従い、熱可塑性樹脂のメルトマスフローレートを測定した。
(1) Melt mass flow rate According to JIS K7210 (1999), the melt mass flow rate of the thermoplastic resin was measured.
(2)Mw/Mn
 JIS K7252-1(2008年)に準じてGPC(ゲルパーミエーションクロマトグラフィー)法によって、熱可塑性樹脂のMw/Mnを測定した。
(2) Mw / Mn
Mw / Mn of the thermoplastic resin was measured by a GPC (gel permeation chromatography) method according to JIS K7252-1 (2008).
(3)B層中の炭素繊維束の最大径
 作製した積層体の厚み方向の断面を、光学顕微鏡を用いて観察した。B層について高さ500μm×幅2mmの視野を任意に50箇所観察し、全視野中に存在する炭素繊維束の最大径をB層中の炭素繊維束の最大径とした。
(3) Maximum diameter of carbon fiber bundle in layer B A cross section in the thickness direction of the produced laminate was observed using an optical microscope. For the B layer, 50 visual fields having a height of 500 μm and a width of 2 mm were arbitrarily observed, and the maximum diameter of the carbon fiber bundle existing in the entire visual field was defined as the maximum diameter of the carbon fiber bundle in the B layer.
(4)B層中の炭素繊維の平均繊維長
 作製した積層体の厚み方向の断面を、光学顕微鏡を用いて観察した。B層について高さ500μm×幅2mmの視野を任意に50箇所観察し、全視野中に存在する炭素繊維の長さを1本ずつ測り、この総和の平均をB層中の炭素繊維の平均繊維長とした。
(4) Average fiber length of carbon fibers in layer B A cross section in the thickness direction of the produced laminate was observed using an optical microscope. Observe 50 fields of view of height 500 μm x width 2 mm for layer B, measure the length of each carbon fiber in the entire field of view one by one, and the average of this sum is the average fiber of carbon fibers in layer B It was long.
(5)低線膨張性
 日立ハイテクサイエンス社製TMA測定装置7100を用い、JIS K7197(2012年)に準じて、作製した積層体について20℃から150℃までの線膨張率を測定し、線膨張係数を算出し、以下の基準で評価した。
  ◎:線膨張係数が1×10-5/℃以下
  ○:線膨張係数が1×10-5/℃より大きく5×10-5/℃以下
  ×:線膨張係数が5×10-5/℃より大きい
(5) Low linear expansion Using a TMA measuring device 7100 manufactured by Hitachi High-Tech Science Co., Ltd., the linear expansion coefficient from 20 ° C. to 150 ° C. was measured for the produced laminate in accordance with JIS K7197 (2012). Coefficients were calculated and evaluated according to the following criteria.
A: The linear expansion coefficient is 1 × 10 −5 / ° C. or less. ○: The linear expansion coefficient is larger than 1 × 10 −5 / ° C. and not more than 5 × 10 −5 / ° C. ×: The linear expansion coefficient is 5 × 10 −5 / ° C. Greater than
(6)表面外観(A層又はE層の最大断面高さ(Rt))
 (株)小坂研究所製三次元粗さ計を用い、JIS B0601(2013年)に準じて、作製した積層体のA層又はE層表面の最大断面高さ(Rt)を測定し、以下の基準で評価した。
  ○:最大断面高さが3μm以下
  ×:最大断面高さが3μmより大きい。
(6) Surface appearance (A or E layer maximum cross-sectional height (Rt))
Using a three-dimensional roughness meter manufactured by Kosaka Laboratory, the maximum cross-sectional height (Rt) of the surface of the layer A or layer E of the prepared laminate was measured according to JIS B0601 (2013). Evaluated by criteria.
○: The maximum cross-sectional height is 3 μm or less. X: The maximum cross-sectional height is larger than 3 μm.
(7)プレス成形性
 作製した積層体について、凹凸形状高さが10mmの段差のある賦形型を用いて、A層及びC層、A層及びD層、或いはE層に用いた熱可塑性樹脂がPP樹脂の場合は、温度=200℃、圧力=2MPa、成形時間=15分の条件で、A層及びC層、A層及びD層、或いはE層に用いた熱可塑性樹脂がPC樹脂の場合は、温度=260℃、圧力=2MPa、成形時間=15分の条件で、それぞれ、プレス成形を行い、A層又はE層表面を目視で観察して、以下の基準で評価した。
 ○:A層又はE層表面に炭素繊維が露出せず、かつ、割れが生じていない状態
 ×:A層又はE層表面に炭素繊維が露出している状態、又は、賦形型の絞りに積層体が追従できず割れが生じている状態。
(7) Press moldability Thermoplastic resin used for layer A and layer C, layer A and layer D, or layer E using a stepped shaping mold with a concavo-convex shape height of 10 mm for the produced laminate. When PP is a PP resin, the thermoplastic resin used for the A layer and the C layer, the A layer and the D layer, or the E layer is a PC resin under the conditions of temperature = 200 ° C., pressure = 2 MPa, and molding time = 15 minutes. In this case, press molding was performed under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and the surface of the A layer or E layer was visually observed and evaluated according to the following criteria.
○: Carbon fiber is not exposed on the surface of the A layer or E layer and cracks are not generated. ×: The carbon fiber is exposed on the surface of the A layer or E layer, or a shaping type drawing. A state in which the laminate cannot follow and is cracked.
[使用材料]
 実施例及び比較例で用いた材料は以下の通りである。
[Materials used]
The materials used in Examples and Comparative Examples are as follows.
<熱可塑性樹脂>
 ポリプロピレン(PP)樹脂:ノバテックPP EA9(日本ポリプロ(株)製 ホモポリプロピレン、メルトマスフローレート(温度=230℃、荷重=2.16kgf)=0.5g/10min、Mw/Mn=5)
 ポリカーボネート(PC)樹脂:カリバー301-30(住化スタイロン(株)製 ビスフェノール-A系ホモポリカーボネート、メルトマスフローレート(温度=300℃、荷重=1.2kgf)=30g/10min)
<無機フィラー>
 マイカ1:白雲母W400((株)キララ製、平均粒径=18μm、アスペクト比=35の板状無機粒子)
 マイカ2:白雲母200W((株)キララ製、平均粒径=100μm、アスペクト比=60の板状無機粒子)
 マイカ3:白雲母30-C((株)キララ製、平均粒径=680μm、アスペクト比=90の板状無機粒子)
<その他の成分>
 難燃剤:ファイアカットP-1590((株)鈴裕化学製 アンチモン系難燃剤+臭素系難燃剤)
 滑剤:MS-6(日東化成工業(株)製 12-ヒドロキシステアリン酸)
 酸化防止剤:IRGANOX B225(BASF(株)製 リン系熱安定剤+ヒンダードフェノール系酸化防止剤)
 炭素繊維:ダイアリードK6371T(三菱樹脂(株)製 メソフェーズピッチ系炭素繊維)
<Thermoplastic resin>
Polypropylene (PP) resin: Novatec PP EA9 (Nippon Polypro Co., Ltd. homopolypropylene, melt mass flow rate (temperature = 230 ° C., load = 2.16 kgf) = 0.5 g / 10 min, Mw / Mn = 5)
Polycarbonate (PC) resin: Caliber 301-30 (Bisphenol-A homopolycarbonate manufactured by Sumika Stylon Co., Ltd., melt mass flow rate (temperature = 300 ° C., load = 1.2 kgf) = 30 g / 10 min)
<Inorganic filler>
Mica 1: muscovite W400 (made by Kirara Co., Ltd., plate-like inorganic particles having an average particle size = 18 μm and an aspect ratio = 35)
Mica 2: muscovite 200W (made by Kirara Co., Ltd., plate-like inorganic particles having an average particle size = 100 μm and an aspect ratio = 60)
Mica 3: muscovite 30-C (made by Kirara Co., Ltd., plate-like inorganic particles having an average particle size = 680 μm and an aspect ratio = 90)
<Other ingredients>
Flame retardant: Fire Cut P-1590 (Suzuhiro Chemical Co., Ltd. antimony flame retardant + bromine flame retardant)
Lubricant: MS-6 (12-hydroxystearic acid manufactured by Nitto Kasei Kogyo Co., Ltd.)
Antioxidant: IRGANOX B225 (Phosphorus heat stabilizer + hindered phenol antioxidant manufactured by BASF Corporation)
Carbon fiber: DIALEAD K6371T (Mesophase pitch carbon fiber manufactured by Mitsubishi Plastics, Inc.)
〔第1態様の積層体の実施例及び比較例〕
[実施例I-1]
(A層に用いるシートの作製)
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表1に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=190℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ0.5mmの無機フィラー含有ポリプロピレン樹脂シートを作製した。
[Example and Comparative Example of Laminate of First Aspect]
[Example I-1]
(Preparation of sheet used for layer A)
Mica 1, flame retardant, lubricant, and antioxidant are mixed in proportions shown in Table 1 with respect to 100 parts by mass of PP resin, and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 190 ° C., Melting and kneading were carried out under the conditions of rotational speed = 50 rpm and kneading time = 5 minutes to obtain a resin composition. The obtained resin composition was sandwiched between two metal plates and press molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and an inorganic filler-containing polypropylene resin sheet having a thickness of 0.5 mm was obtained. Produced.
(C層に用いるシートの作製)
 PP樹脂を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ1mmのポリプロピレン樹脂シートを作製した。
(Preparation of sheet used for layer C)
A PP resin was sandwiched between two metal plates and press molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a polypropylene resin sheet having a thickness of 1 mm was produced.
(B層に用いる炭素繊維材料の作製)
 炭素繊維を、JIS P8220-1(2012年)に準じて、湿式抄紙法により離解機を用いて開繊・分散し、抄紙して秤量100g/mの炭素繊維ペーパーを作製した。この時、離解機は、プロペラの回転数=3000rpm、回転時間=10秒の条件で運転した。得られた炭素繊維ペーパーを「高開繊ペーパー」と称する。
(Production of carbon fiber material used for layer B)
The carbon fibers were opened and dispersed by a wet papermaking method using a disaggregator according to JIS P8220-1 (2012), and papermaking was performed to prepare carbon fiber paper having a weight of 100 g / m 2 . At this time, the disaggregator was operated under the conditions of propeller rotation speed = 3000 rpm and rotation time = 10 seconds. The obtained carbon fiber paper is referred to as “highly spread paper”.
(積層体の作製)
 作製したA層及びC層に用いるシートとB層に用いる炭素繊維材料を、A層/B層/C層/B層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、C層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表1に示した。
(Production of laminate)
The sheet used for the A layer and C layer and the carbon fiber material used for the B layer are stacked so as to have a configuration of A layer / B layer / C layer / B layer / A layer and sandwiched between two metal plates. Then, press molding was performed under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a laminate having a thickness of 2 mm was produced. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the C layer = 700 μm.
The obtained laminate was evaluated and the results are shown in Table 1.
[実施例I-2]
 実施例I-1において、A層に用いるシートにおけるマイカ1の含有割合を表1に記載した通りに変更した以外は、同様にして積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、C層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表1に示した。
[Example I-2]
A laminate was prepared in the same manner as in Example I-1, except that the content of mica 1 in the sheet used for layer A was changed as described in Table 1. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the C layer = 700 μm.
The obtained laminate was evaluated and the results are shown in Table 1.
[実施例I-3]
(A層に用いるシートの作製)
 PC樹脂100質量部に対し、マイカ1を表1に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=260℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ0.5mmの無機フィラー含有ポリカーボネート樹脂シートを作製した。
[Example I-3]
(Preparation of sheet used for layer A)
Mica 1 is mixed at a ratio shown in Table 1 with respect to 100 parts by mass of PC resin and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 260 ° C., rotation speed = 50 rpm, kneading time = 5. The resin composition was obtained by melt-kneading under the conditions of minutes. The obtained resin composition was sandwiched between two metal plates and press molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and an inorganic filler-containing polycarbonate resin sheet having a thickness of 0.5 mm was obtained. Produced.
(C層に用いるシートの作製)
 PC樹脂を2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ1.0mmのポリカーボネート樹脂シートを作製した。
(Preparation of sheet used for layer C)
A PC resin was sandwiched between two metal plates and press molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and a polycarbonate resin sheet having a thickness of 1.0 mm was produced.
(積層体の作製)
 作製したA層及びC層に用いるシートと、実施例I-1で作製したB層に用いる高開繊ペーパーを、A層/B層/C層/B層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2.0mmの積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、C層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表1に示した。
(Production of laminate)
The sheet used for the produced A layer and C layer and the high-spread paper used for the B layer produced in Example I-1 are configured as A layer / B layer / C layer / B layer / A layer. The laminate was sandwiched between two metal plates and press-molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and a laminate having a thickness of 2.0 mm was produced. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the C layer = 700 μm.
The obtained laminate was evaluated and the results are shown in Table 1.
[比較例1]
 PP樹脂を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの単層のポリプロピレン樹脂シートを作製した。
 得られたシートについて評価を実施し、結果を表1に示した。
[Comparative Example 1]
A PP resin was sandwiched between two metal plates and press-molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a single-layer polypropylene resin sheet having a thickness of 2 mm was produced.
The obtained sheet was evaluated and the results are shown in Table 1.
[比較例2]
 A層に用いるシートとして、PP樹脂を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ0.5mmのポリプロピレン樹脂シートを作製した。
 実施例I-1と同様にB層に用いる高開繊ペーパー、及びC層に用いるシートを作製し、A層/B層/C層/B層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、A層の厚み=425μm、B層の厚み=150μm、C層の厚み=850μmであった。
 得られた積層体について評価を実施し、結果を表1に示した。
[Comparative Example 2]
As a sheet used for the A layer, a PP resin is sandwiched between two metal plates, press-molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a polypropylene resin sheet having a thickness of 0.5 mm is obtained. Produced.
As in Example I-1, a high-spread paper used for the B layer and a sheet used for the C layer were prepared and stacked so as to have a configuration of A layer / B layer / C layer / B layer / A layer. The laminate was sandwiched between two metal plates, and press molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a laminate having a thickness of 2 mm was produced. At this time, the thickness of the A layer = 425 μm, the thickness of the B layer = 150 μm, and the thickness of the C layer = 850 μm.
The obtained laminate was evaluated and the results are shown in Table 1.
[比較例3]
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表1に記載の割合で混合して、実施例I-1と同様にA層に用いるシートを作製した。
 次に、B層に用いる炭素繊維材料の作製において、離解機をプロペラの回転数=500rpm、回転時間=10秒の条件で運転した以外は実施例I-1と同様にして、炭素繊維ペーパーを作製した。この炭素繊維ペーパーを「低開繊ペーパー」と称する。
 実施例I-1と同様にC層に用いるシートを作製し、A層/B層/C層/B層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、C層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表1に示した。
[Comparative Example 3]
Mica 1, a flame retardant, a lubricant, and an antioxidant were mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the PP resin to prepare a sheet used for the A layer in the same manner as in Example I-1.
Next, in the production of the carbon fiber material used for the B layer, the carbon fiber paper was prepared in the same manner as in Example I-1, except that the disintegrator was operated under the conditions of the rotation speed of the propeller = 500 rpm and the rotation time = 10 seconds. Produced. This carbon fiber paper is referred to as “low spread paper”.
A sheet used for the C layer was prepared in the same manner as in Example I-1, and was sandwiched between two metal plates so as to have a configuration of A layer / B layer / C layer / B layer / A layer. The laminate was press-molded under the conditions of 200 ° C., pressure = 2 MPa, and molding time = 15 minutes to produce a laminate having a thickness of 2 mm. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the C layer = 700 μm.
The obtained laminate was evaluated and the results are shown in Table 1.
[比較例4]
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表1に記載の割合で混合して、実施例I-1と同様にA層に用いるシートを作製した。
 次に、B層に用いる炭素繊維材料の作製において、離解機をプロペラの回転数=1000rpm、回転時間=10秒の条件で運転した以外は実施例I-1と同様にして、炭素繊維ペーパーを作製した。この炭素繊維ペーパーを「標準開繊ペーパー」と称する。
 実施例I-1と同様にC層に用いるシートを作製し、A層/B層/C層/B層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、C層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表1に示した。
[Comparative Example 4]
Mica 1, a flame retardant, a lubricant, and an antioxidant were mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the PP resin to prepare a sheet used for the A layer in the same manner as in Example I-1.
Next, in the production of the carbon fiber material used for the B layer, a carbon fiber paper was prepared in the same manner as in Example I-1, except that the disintegrator was operated under the conditions of the propeller rotation speed = 1000 rpm and the rotation time = 10 seconds. Produced. This carbon fiber paper is referred to as “standard spread paper”.
A sheet used for the C layer was prepared in the same manner as in Example I-1, and was sandwiched between two metal plates so as to have a configuration of A layer / B layer / C layer / B layer / A layer. The laminate was press-molded under the conditions of 200 ° C., pressure = 2 MPa, and molding time = 15 minutes to produce a laminate having a thickness of 2 mm. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the C layer = 700 μm.
The obtained laminate was evaluated and the results are shown in Table 1.
[比較例5]
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表1に記載の割合で混合して、実施例I-1と同様にA層に用いるシートを作製した。
 実施例I-1と同様にC層に用いるシートを作製し、A層/C層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、A層の厚み=500μm、C層の厚み=1000μmであった。
 得られた積層体について評価を実施し、結果を表1に示した。
[Comparative Example 5]
Mica 1, a flame retardant, a lubricant, and an antioxidant were mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the PP resin to prepare a sheet used for the A layer in the same manner as in Example I-1.
A sheet used for the C layer was prepared in the same manner as in Example I-1, and was stacked between two metal plates so as to have a configuration of A layer / C layer / A layer. Temperature = 200 ° C., pressure = 2 MPa Then, press molding was carried out under the condition of molding time = 15 minutes to produce a laminate having a thickness of 2 mm. At this time, the thickness of the A layer = 500 μm and the thickness of the C layer = 1000 μm.
The obtained laminate was evaluated and the results are shown in Table 1.
[比較例6]
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表1に記載の割合で混合して、実施例I-1と同様にA層に用いるシートを作製しようとしたが、マイカの含有割合が多すぎてシートを得ることができなかった。
[Comparative Example 6]
Although 100 parts by mass of PP resin was mixed with mica 1, flame retardant, lubricant, and antioxidant in the proportions shown in Table 1, an attempt was made to produce a sheet used for layer A as in Example I-1. The content of mica was too high to obtain a sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔第2態様の積層体の実施例及び比較例〕
[実施例II-1]
(A層に用いるシートの作製)
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表2に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=190℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ0.5mmの無機フィラー含有ポリプロピレン樹脂シートを作製した。
[Example and Comparative Example of Laminate of Second Aspect]
[Example II-1]
(Preparation of sheet used for layer A)
Mica 1, flame retardant, lubricant, and antioxidant are mixed in proportions shown in Table 2 with respect to 100 parts by mass of PP resin, and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 190 ° C., Melting and kneading were carried out under the conditions of rotational speed = 50 rpm and kneading time = 5 minutes to obtain a resin composition. The obtained resin composition was sandwiched between two metal plates and press molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and an inorganic filler-containing polypropylene resin sheet having a thickness of 0.5 mm was obtained. Produced.
(D層に用いるシートの作製)
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表2に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=190℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ1mmの無機フィラー含有ポリプロピレン樹脂シートを作製した。
(Preparation of sheet used for layer D)
Mica 1, flame retardant, lubricant, and antioxidant are mixed in proportions shown in Table 2 with respect to 100 parts by mass of PP resin, and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 190 ° C., Melting and kneading were carried out under the conditions of rotational speed = 50 rpm and kneading time = 5 minutes to obtain a resin composition. The obtained resin composition was sandwiched between two metal plates and press-molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and an inorganic filler-containing polypropylene resin sheet having a thickness of 1 mm was produced. .
(B層に用いる炭素繊維材料の作製)
 炭素繊維を、JIS P8220-1(2012年)に準じて、湿式抄紙法により離解機を用いて開繊・分散し、抄紙して秤量100g/mの炭素繊維ペーパーを作製した。この時、離解機は、プロペラの回転数=3000rpm、回転時間=10秒の条件で運転した。得られた炭素繊維ペーパーを「高開繊ペーパー」と称する。
(Production of carbon fiber material used for layer B)
The carbon fibers were opened and dispersed by a wet papermaking method using a disaggregator according to JIS P8220-1 (2012), and papermaking was performed to prepare carbon fiber paper having a weight of 100 g / m 2 . At this time, the disaggregator was operated under the conditions of propeller rotation speed = 3000 rpm and rotation time = 10 seconds. The obtained carbon fiber paper is referred to as “highly spread paper”.
(積層体の作製)
 作製したA層及びD層に用いるシートとB層に用いる炭素繊維材料を、A層/B層/D層/B層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、D層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表2に示した。
(Production of laminate)
The sheets used for the A layer and D layer and the carbon fiber material used for the B layer are stacked so as to have a configuration of A layer / B layer / D layer / B layer / A layer and sandwiched between two metal plates. Then, press molding was performed under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a laminate having a thickness of 2 mm was produced. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the D layer = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 2.
[実施例II-2]
(A層に用いるシートの作製)
 PC樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表2に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=260℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ0.5mmの無機フィラー含有ポリカーボネート樹脂シートを作製した。
[Example II-2]
(Preparation of sheet used for layer A)
Mica 1, flame retardant, lubricant, and antioxidant are mixed in proportions shown in Table 2 with respect to 100 parts by mass of PC resin, and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 260 ° C., Melting and kneading were carried out under the conditions of rotational speed = 50 rpm and kneading time = 5 minutes to obtain a resin composition. The obtained resin composition was sandwiched between two metal plates and press molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and an inorganic filler-containing polycarbonate resin sheet having a thickness of 0.5 mm was obtained. Produced.
(D層に用いるシートの作製)
 PC樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表2に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=260℃、回転数=50rpm、混練時間=15分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ1mmの無機フィラー含有ポリカーボネート樹脂シートを作製した。
(Preparation of sheet used for layer D)
Mica 1, flame retardant, lubricant, and antioxidant are mixed in proportions shown in Table 2 with respect to 100 parts by mass of PC resin, and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 260 ° C., Melting and kneading were carried out under the conditions of rotation speed = 50 rpm and kneading time = 15 minutes to obtain a resin composition. The obtained resin composition was sandwiched between two metal plates and press-molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and an inorganic filler-containing polycarbonate resin sheet having a thickness of 1 mm was produced. .
(積層体の作製)
 作製したA層及びB層に用いるシートと、実施例II-1で作製したB層に用いる高開繊ペーパーを、A層/B層/D層/B層/A層の構成となるように重ねて2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、D層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表2に示した。
(Production of laminate)
The sheet used for the prepared A layer and B layer and the high-spread paper used for the B layer prepared in Example II-1 are configured as A layer / B layer / D layer / B layer / A layer. The laminate was sandwiched between two metal plates and press-molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and a 2 mm-thick laminate was produced. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the D layer = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 2.
[実施例II-3]
 実施例II-1において、D層に用いるシートにおけるマイカ1の含有割合を表2に記載した通りに変更した以外は、同様にして積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、D層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表2に示した。
[Example II-3]
A laminate was prepared in the same manner as in Example II-1, except that the content of mica 1 in the sheet used for the D layer was changed as shown in Table 2. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the D layer = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 2.
[実施例II-4]
 実施例II-1において、D層に用いるシートにおけるマイカ1の含有割合を表2に記載した通りに変更した以外は、同様にして積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、D層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表2に示した。
[Example II-4]
A laminate was prepared in the same manner as in Example II-1, except that the content of mica 1 in the sheet used for the D layer was changed as shown in Table 2. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the D layer = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 2.
[比較例7]
 実施例II-1において、D層に用いるシートにおけるマイカ1の含有割合を表2に記載した通りに変更した以外は、同様にして積層体を作製した。この時、A層の厚み=500μm、B層の厚み=150μm、D層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表2に示した。
[Comparative Example 7]
A laminate was prepared in the same manner as in Example II-1, except that the content of mica 1 in the sheet used for the D layer was changed as shown in Table 2. At this time, the thickness of the A layer = 500 μm, the thickness of the B layer = 150 μm, and the thickness of the D layer = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔第3態様の積層体の実施例〕
[実施例III-1]
(E層に用いるシートの作製)
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表3に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=190℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ0.925mmの板状無機粒子含有ポリプロピレン樹脂シートを作製した。
[Example of Laminate of Third Aspect]
[Example III-1]
(Preparation of sheet used for E layer)
Mica 1, flame retardant, lubricant, and antioxidant are mixed in proportions shown in Table 3 with respect to 100 parts by mass of PP resin, and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 190 ° C., Melting and kneading were carried out under the conditions of rotational speed = 50 rpm and kneading time = 5 minutes to obtain a resin composition. The obtained resin composition is sandwiched between two metal plates, press molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a plate-like inorganic particle-containing polypropylene resin having a thickness of 0.925 mm A sheet was produced.
(B層に用いる炭素繊維材料の作製)
 炭素繊維を、JIS P8220-1(2012年)に準じて、湿式抄紙法により離解機を用いて開繊・分散し、抄紙して秤量100g/mの炭素繊維ペーパーを作製した。この時、離解機は、プロペラの回転数=3000rpm、回転時間=10秒の条件で運転した。得られた炭素繊維ペーパーを「高開繊ペーパー」と称する。
(Production of carbon fiber material used for layer B)
The carbon fibers were opened and dispersed by a wet papermaking method using a disaggregator according to JIS P8220-1 (2012), and papermaking was performed to prepare carbon fiber paper having a weight of 100 g / m 2 . At this time, the disaggregator was operated under the conditions of propeller rotation speed = 3000 rpm and rotation time = 10 seconds. The obtained carbon fiber paper is referred to as “highly spread paper”.
(積層体の作製)
 作製したE層に用いるシートとB層に用いる炭素繊維材料を、E層/B層/E層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、E層の厚み=925μm、B層の厚み=150μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
(Production of laminate)
The sheet used for the E layer and the carbon fiber material used for the B layer are stacked so as to have a configuration of E layer / B layer / E layer and sandwiched between two metal plates, temperature = 200 ° C., pressure = 2 MPa Then, press molding was carried out under the condition of molding time = 15 minutes to produce a laminate having a thickness of 2 mm. At this time, the thickness of the E layer = 925 μm and the thickness of the B layer = 150 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
[実施例III-2]
 実施例III-1において、E層に用いるシートにおけるマイカ1の含有割合を表3に記載した通りに変更した以外は、同様にして積層体を作製した。この時、E層の厚み=925μm、B層の厚み=150μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
[Example III-2]
A laminate was prepared in the same manner as in Example III-1, except that the content ratio of mica 1 in the sheet used for the E layer was changed as shown in Table 3. At this time, the thickness of the E layer = 925 μm and the thickness of the B layer = 150 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
[実施例III-3]
 実施例III-1において、E層に用いるシートにおけるマイカ1の含有割合を表3に記載した通りに変更した以外は、同様にして積層体を作製した。この時、E層の厚み=925μm、B層の厚み=150μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
[Example III-3]
A laminate was prepared in the same manner as in Example III-1, except that the content ratio of mica 1 in the sheet used for the E layer was changed as shown in Table 3. At this time, the thickness of the E layer = 925 μm and the thickness of the B layer = 150 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
[実施例III-4]
 実施例III-1において、E層に用いるシートにおけるマイカ1をマイカ2に変更した以外は、同様にして積層体を作製した。この時、E層の厚み=925μm、B層の厚み=150μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
[Example III-4]
A laminate was produced in the same manner as in Example III-1, except that mica 1 in the sheet used for the E layer was changed to mica 2. At this time, the thickness of the E layer = 925 μm and the thickness of the B layer = 150 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
[実施例III-5]
 実施例III-1において、E層に用いるシートにおけるマイカ1をマイカ3に変更した以外は、同様にして積層体を作製した。この時、E層の厚み=925μm、B層の厚み=150μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
[Example III-5]
A laminate was prepared in the same manner as in Example III-1, except that mica 1 in the sheet used for the E layer was changed to mica 3. At this time, the thickness of the E layer = 925 μm and the thickness of the B layer = 150 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
[実施例III-6]
(その他の層に用いるシートの作製)
 PP樹脂を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ1mmのポリプロピレン樹脂シートを作製した。
[Example III-6]
(Preparation of sheets used for other layers)
A PP resin was sandwiched between two metal plates and press molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a polypropylene resin sheet having a thickness of 1 mm was produced.
(積層体の作製)
 作製したその他の層に用いるシートと、実施例III-2で作製したE層に用いるシートと、実施例III-1で作製したB層に用いる高開繊ペーパーを、E層/B層/その他の層/B層/E層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、E層の厚み=500μm、B層の厚み=150μm、その他の層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
(Production of laminate)
The sheet used for the other layers produced, the sheet used for the E layer produced in Example III-2, and the high-spread paper used for the B layer produced in Example III-1 were E layer / B layer / others. The layers are stacked so as to have the structure of layer B / layer E and sandwiched between two metal plates, press-molded under conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a thickness of 2 mm. A laminate was produced. At this time, the thickness of the E layer = 500 μm, the thickness of the B layer = 150 μm, and the thicknesses of the other layers = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
[実施例III-7]
(E層に用いるシートの作製)
 PC樹脂100質量部に対し、マイカ1を表3に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=260℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ0.5mmの板状無機粒子含有ポリカーボネート樹脂シートを作製した。
[Example III-7]
(Preparation of sheet used for E layer)
Mica 1 is mixed at a ratio shown in Table 3 with respect to 100 parts by mass of PC resin and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 260 ° C., rotation speed = 50 rpm, kneading time = 5. The resin composition was obtained by melt-kneading under the conditions of minutes. The obtained resin composition is sandwiched between two metal plates, press molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and a plate-like inorganic particle-containing polycarbonate resin having a thickness of 0.5 mm. A sheet was produced.
(その他の層に用いるシートの作製)
 PC樹脂を2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ1mmのポリカーボネート樹脂シートを作製した。
(Preparation of sheets used for other layers)
A PC resin was sandwiched between two metal plates and press molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and a polycarbonate resin sheet having a thickness of 1 mm was produced.
(積層体の作製)
 作製したE層及びその他の層に用いるシートと、実施例III-1で作製したB層に用いる高開繊ペーパーを、E層/B層/その他の層/B層/E層の構成となるように重ねて2枚の金属板間に挟み込み、温度=260℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、E層の厚み=500μm、B層の厚み=150μm、その他の層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
(Production of laminate)
The sheet used for the produced E layer and other layers and the high spread paper used for the B layer produced in Example III-1 have a configuration of E layer / B layer / other layers / B layer / E layer. Thus, the laminate was sandwiched between two metal plates and press-molded under the conditions of temperature = 260 ° C., pressure = 2 MPa, molding time = 15 minutes, and a laminate having a thickness of 2 mm was produced. At this time, the thickness of the E layer = 500 μm, the thickness of the B layer = 150 μm, and the thicknesses of the other layers = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
[実施例III-8]
(その他の層に用いるシートの作製)
 PP樹脂100質量部に対し、マイカ1、難燃剤、滑剤、酸化防止剤を表3に記載の割合で混合して、東洋精機(株)製のプラストグラフミキサーに供給し、温度=190℃、回転数=50rpm、混練時間=5分の条件で溶融混練し、樹脂組成物を得た。得られた樹脂組成物を2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ1mmの板状無機粒子含有ポリプロピレン樹脂シートを作製した。
[Example III-8]
(Preparation of sheets used for other layers)
Mica 1, flame retardant, lubricant, and antioxidant are mixed in proportions shown in Table 3 with respect to 100 parts by mass of PP resin, and supplied to a plastograph mixer manufactured by Toyo Seiki Co., Ltd., temperature = 190 ° C., Melting and kneading were carried out under the conditions of rotational speed = 50 rpm and kneading time = 5 minutes to obtain a resin composition. The obtained resin composition was sandwiched between two metal plates and press molded under the conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a 1 mm thick plate-like inorganic particle-containing polypropylene resin sheet was obtained. Produced.
(積層体の作製)
 作製したその他の層に用いるシートと、実施例III-2で作製したE層に用いるシートと、実施例III-1で作製したB層に用いる高開繊ペーパーを、E層/B層/その他の層/B層/E層の構成となるように重ねて2枚の金属板間に挟み込み、温度=200℃、圧力=2MPa、成形時間=15分の条件でプレス成形し、厚さ2mmの積層体を作製した。この時、E層の厚み=500μm、B層の厚み=150μm、その他の層の厚み=700μmであった。
 得られた積層体について評価を実施し、結果を表3に示した。
(Production of laminate)
The sheet used for the other layers produced, the sheet used for the E layer produced in Example III-2, and the high-spread paper used for the B layer produced in Example III-1 were E layer / B layer / others. The layers are stacked so as to have the structure of layer B / layer E and sandwiched between two metal plates, press-molded under conditions of temperature = 200 ° C., pressure = 2 MPa, molding time = 15 minutes, and a thickness of 2 mm. A laminate was produced. At this time, the thickness of the E layer = 500 μm, the thickness of the B layer = 150 μm, and the thicknesses of the other layers = 700 μm.
The obtained laminate was evaluated, and the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3に示したように、実施例において作製した本発明の炭素繊維複合積層体は、低線膨張性と良好な表面外観とプレス成形性のバランスに優れたものとなっている。
 一方、比較例において作製したものは、いずれも本発明において特定する組成や炭素繊維束の最大径、炭素繊維の平均繊維長の範囲を満たさず、低線膨張性、表面外観、及びプレス成形性のうち少なくとも一つが不十分であった。
As shown in Tables 1 to 3, the carbon fiber composite laminates of the present invention produced in the examples have excellent balance between low linear expansion, good surface appearance and press formability.
On the other hand, those produced in the comparative examples do not satisfy the ranges specified in the present invention, the maximum diameter of the carbon fiber bundle, the average fiber length of the carbon fiber, low linear expansion, surface appearance, and press formability. At least one of them was insufficient.
 本発明の積層体は、低線膨張性と良好な表面外観とプレス成形性のバランスに優れ、しかも軽量性や低コスト化の要求に応えることが可能な炭素繊維複合積層体であるから、大型の電化製品の筐体や、自動車や鉄道の内装材、外装材などの各種成形品に好適に利用することができる。 The laminate of the present invention is a carbon fiber composite laminate that has an excellent balance of low linear expansion, good surface appearance and press formability, and can meet the demands for light weight and low cost. It can be suitably used for various molded products such as housings of electrical appliances, interior materials and exterior materials of automobiles and railways.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年11月28日付で出願された日本特許出願2013-245788に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-245788 filed on November 28, 2013, which is incorporated by reference in its entirety.

Claims (16)

  1.  少なくとも5層構造を有する炭素繊維複合積層体であって、熱可塑性樹脂100質量部に対し無機フィラーを30質量部以上、200質量部以下含有する熱可塑性樹脂層(A層)と、炭素繊維層(B層)と、熱可塑性樹脂を主成分とし、前記無機フィラーを含有しない熱可塑性樹脂層(C層)を、A層/B層/C層/B層/A層の順に有し、
     前記B層中の炭素繊維束の最大径が10μm以上、1000μm以下であり、かつ該炭素繊維の平均繊維長が0.1mm以上、5mm未満である、炭素繊維複合積層体。
    A carbon fiber composite laminate having at least a five-layer structure, a thermoplastic resin layer (A layer) containing 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of a thermoplastic resin, and a carbon fiber layer (B layer) and a thermoplastic resin layer (C layer) containing thermoplastic resin as a main component and not containing the inorganic filler, in the order of A layer / B layer / C layer / B layer / A layer,
    A carbon fiber composite laminate in which the maximum diameter of the carbon fiber bundle in the B layer is 10 μm or more and 1000 μm or less, and the average fiber length of the carbon fibers is 0.1 mm or more and less than 5 mm.
  2.  前記A層及び前記C層に用いる熱可塑性樹脂が、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂及びポリエステル系樹脂からなる群より選ばれる少なくとも1種の樹脂である、請求項1に記載の炭素繊維複合積層体。 2. The carbon according to claim 1, wherein the thermoplastic resin used in the A layer and the C layer is at least one resin selected from the group consisting of a polyolefin resin, a polycarbonate resin, a polyamide resin, and a polyester resin. Fiber composite laminate.
  3.  前記A層に用いる無機フィラーが、アスペクト比が20以上、500以下の板状粒子である、請求項1又は2に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to claim 1 or 2, wherein the inorganic filler used in the A layer is a plate-like particle having an aspect ratio of 20 or more and 500 or less.
  4.  前記B層が、炭素繊維材料として炭素繊維マット、又は、炭素繊維ペーパーを用いてなる層である、請求項1~3のいずれか1項に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to any one of claims 1 to 3, wherein the B layer is a layer made of carbon fiber mat or carbon fiber paper as a carbon fiber material.
  5.  同一温度かつ同一荷重における、前記A層の熱可塑性樹脂のメルトマスフローレートR(g/10min)と、前記C層の熱可塑性樹脂のメルトマスフローレートR(g/10min)が、R≧Rの関係を有する、請求項1~4のいずれか1項に記載の炭素繊維複合積層体。 The melt mass flow rate R A (g / 10 min) of the thermoplastic resin of the A layer and the melt mass flow rate R C (g / 10 min) of the thermoplastic resin of the C layer at the same temperature and the same load are R A ≧ The carbon fiber composite laminate according to any one of claims 1 to 4, which has an RC relationship.
  6.  前記A層表面の最大断面高さ(Rt)が3μm以下である、請求項1~5のいずれか1項に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to any one of claims 1 to 5, wherein a maximum cross-sectional height (Rt) of the surface of the A layer is 3 µm or less.
  7.  少なくとも5層構造を有する炭素繊維複合積層体であって、熱可塑性樹脂100質量部に対し無機フィラーを30質量部以上、200質量部以下含有する熱可塑性樹脂層(A層)と、炭素繊維層(B層)と、熱可塑性樹脂100質量部に対し無機フィラーを0質量部を超え、100質量部以下含有する熱可塑性樹脂層(D層)を、A層/B層/D層/B層/A層の順に有し、
     前記B層中の炭素繊維束の最大径が10μm以上、1000μm以下であり、かつ該炭素繊維の平均繊維長が0.1mm以上、5mm未満である、炭素繊維複合積層体。
    A carbon fiber composite laminate having at least a five-layer structure, a thermoplastic resin layer (A layer) containing 30 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of a thermoplastic resin, and a carbon fiber layer (B layer) and thermoplastic resin layer (D layer) containing more than 0 part by mass and 100 parts by mass or less of inorganic filler with respect to 100 parts by mass of thermoplastic resin, A layer / B layer / D layer / B layer / A layer in order,
    A carbon fiber composite laminate in which the maximum diameter of the carbon fiber bundle in the B layer is 10 μm or more and 1000 μm or less, and the average fiber length of the carbon fibers is 0.1 mm or more and less than 5 mm.
  8.  前記A層及び前記D層に用いる熱可塑性樹脂が、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂及びポリエステル系樹脂からなる群より選ばれる少なくとも1種の樹脂である、請求項7に記載の炭素繊維複合積層体。 The carbon according to claim 7, wherein the thermoplastic resin used for the A layer and the D layer is at least one resin selected from the group consisting of polyolefin resins, polycarbonate resins, polyamide resins, and polyester resins. Fiber composite laminate.
  9.  前記A層及び前記D層に用いる無機フィラーが、アスペクト比が20以上、500以下の板状粒子である、請求項7又は8に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to claim 7 or 8, wherein the inorganic filler used in the A layer and the D layer is a plate-like particle having an aspect ratio of 20 or more and 500 or less.
  10.  前記B層が、炭素繊維材料として炭素繊維マット、又は、炭素繊維ペーパーを用いてなる層である、請求項7~9のいずれか1項に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to any one of claims 7 to 9, wherein the B layer is a layer made of carbon fiber mat or carbon fiber paper as a carbon fiber material.
  11.  前記D層における無機フィラーの含有割合が、前記A層における無機フィラーの含有割合以下である、請求項7~10のいずれか1項に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to any one of claims 7 to 10, wherein a content ratio of the inorganic filler in the D layer is equal to or less than a content ratio of the inorganic filler in the A layer.
  12.  前記A層表面の最大断面高さ(Rt)が3μm以下である、請求項7~11のいずれか1項に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to any one of claims 7 to 11, wherein a maximum cross-sectional height (Rt) of the surface of the A layer is 3 µm or less.
  13.  少なくとも3層構造を有する炭素繊維複合積層体であって、熱可塑性樹脂100質量部に対し、アスペクト比が20以上、500以下の板状無機粒子を30質量部以上、200質量部以下含有する熱可塑性樹脂層(E層)と、炭素繊維層(B層)とを有し、前記E層が表裏層であり、前記B層中の炭素繊維束の最大径が10μm以上、1000μm以下であり、かつ該炭素繊維の平均繊維長が0.1mm以上、5mm未満である、炭素繊維複合積層体。 A carbon fiber composite laminate having at least a three-layer structure, comprising 30 to 200 parts by mass of plate-like inorganic particles having an aspect ratio of 20 to 500 with respect to 100 parts by mass of the thermoplastic resin. It has a plastic resin layer (E layer) and a carbon fiber layer (B layer), the E layer is a front and back layer, the maximum diameter of the carbon fiber bundle in the B layer is 10 μm or more, 1000 μm or less, And the carbon fiber composite laminated body whose average fiber length of this carbon fiber is 0.1 mm or more and less than 5 mm.
  14.  前記E層に用いる熱可塑性樹脂が、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂及びポリエステル系樹脂からなる群より選ばれる少なくとも1種以上の樹脂である、請求項13に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to claim 13, wherein the thermoplastic resin used in the E layer is at least one resin selected from the group consisting of polyolefin resins, polycarbonate resins, polyamide resins, and polyester resins. body.
  15.  前記B層が、炭素繊維材料として炭素繊維マット、又は、炭素繊維ペーパーを用いてなる層である、請求項13又は14に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to claim 13 or 14, wherein the B layer is a layer made of carbon fiber mat or carbon fiber paper as a carbon fiber material.
  16.  前記E層表面の最大断面高さ(Rt)が3μm以下である、請求項13~15のいずれか1項に記載の炭素繊維複合積層体。 The carbon fiber composite laminate according to any one of claims 13 to 15, wherein a maximum cross-sectional height (Rt) of the surface of the E layer is 3 µm or less.
PCT/JP2014/080746 2013-11-28 2014-11-20 Carbon fiber composite laminate WO2015080019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013245788 2013-11-28
JP2013-245788 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015080019A1 true WO2015080019A1 (en) 2015-06-04

Family

ID=53198963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080746 WO2015080019A1 (en) 2013-11-28 2014-11-20 Carbon fiber composite laminate

Country Status (2)

Country Link
JP (2) JP6327127B2 (en)
WO (1) WO2015080019A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402268A (en) * 2017-03-09 2019-11-01 帝人株式会社 Laminated body and the fiber-reinforced resin complex being made of laminated body
CN111433015A (en) * 2017-12-05 2020-07-17 大塚化学株式会社 Composite laminate and method for producing same
CN113710448A (en) * 2019-05-17 2021-11-26 大塚化学株式会社 Composite laminate and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3970962A4 (en) * 2019-05-17 2023-06-28 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240588A (en) * 1975-09-25 1977-03-29 Allied Chem Fiber reinforced multiilayer thermosetting sheet capable of stamping
JPS63214444A (en) * 1986-12-29 1988-09-07 ゼネラル・エレクトリック・カンパニイ Multilayer composite structure with smooth surface
JPH05117411A (en) * 1991-04-23 1993-05-14 Teijin Ltd Fiber-reinforced thermoplastic resin sheet and its production
JPH08118354A (en) * 1994-10-26 1996-05-14 Nitto Boseki Co Ltd Fiber reinforced thermoplastic resin impregnated sheet and production thereof
JPH10316770A (en) * 1997-05-21 1998-12-02 Kawasaki Steel Corp Papermaking process stampable sheet, lightweight stampable sheet and its production
JP2002212311A (en) * 2001-01-15 2002-07-31 Japan Vilene Co Ltd Carbon fiber-reinforced stampable sheet, method for producing the same and molded product thereof
WO2012108446A1 (en) * 2011-02-07 2012-08-16 帝人株式会社 Molded object with thickness gradient and process for producing same
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
JP2014051023A (en) * 2012-09-07 2014-03-20 Toray Ind Inc Stampable sheet, and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114741A (en) * 1989-09-28 1991-05-15 Kuraray Co Ltd Laminated molded form
JPH1036631A (en) * 1996-04-18 1998-02-10 Fudoo Kk Granular carbon-fiber-containing phenol resin molding material and molded product thereof
JP3213841B2 (en) * 1997-12-05 2001-10-02 大阪瓦斯株式会社 Carbon fiber nonwoven
JP2004231910A (en) * 2003-02-03 2004-08-19 Toyo Ink Mfg Co Ltd Fiber-containing thermoplastic resin composition and use of the same
EP1873283B1 (en) * 2005-04-18 2010-09-08 Teijin Limited Pitch-derived carbon fibers, mat, and molded resin containing these
JP5504688B2 (en) * 2009-05-07 2014-05-28 東レ株式会社 Laminated resin molding
JP5468964B2 (en) * 2010-04-01 2014-04-09 三菱樹脂株式会社 Laminated body
JP5799517B2 (en) * 2011-02-09 2015-10-28 三菱レイヨン株式会社 Method for producing carbon fiber-containing nonwoven fabric
JP2013072042A (en) * 2011-09-28 2013-04-22 Toray Ind Inc Carbon fiber-reinforced thermoplastic resin sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240588A (en) * 1975-09-25 1977-03-29 Allied Chem Fiber reinforced multiilayer thermosetting sheet capable of stamping
JPS63214444A (en) * 1986-12-29 1988-09-07 ゼネラル・エレクトリック・カンパニイ Multilayer composite structure with smooth surface
JPH05117411A (en) * 1991-04-23 1993-05-14 Teijin Ltd Fiber-reinforced thermoplastic resin sheet and its production
JPH08118354A (en) * 1994-10-26 1996-05-14 Nitto Boseki Co Ltd Fiber reinforced thermoplastic resin impregnated sheet and production thereof
JPH10316770A (en) * 1997-05-21 1998-12-02 Kawasaki Steel Corp Papermaking process stampable sheet, lightweight stampable sheet and its production
JP2002212311A (en) * 2001-01-15 2002-07-31 Japan Vilene Co Ltd Carbon fiber-reinforced stampable sheet, method for producing the same and molded product thereof
WO2012108446A1 (en) * 2011-02-07 2012-08-16 帝人株式会社 Molded object with thickness gradient and process for producing same
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
JP2014051023A (en) * 2012-09-07 2014-03-20 Toray Ind Inc Stampable sheet, and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402268A (en) * 2017-03-09 2019-11-01 帝人株式会社 Laminated body and the fiber-reinforced resin complex being made of laminated body
EP3594273A4 (en) * 2017-03-09 2020-03-25 Teijin Limited Laminate and fiber-reinforced resin composite obtained therefrom
CN111433015A (en) * 2017-12-05 2020-07-17 大塚化学株式会社 Composite laminate and method for producing same
US11491759B2 (en) 2017-12-05 2022-11-08 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same
CN113710448A (en) * 2019-05-17 2021-11-26 大塚化学株式会社 Composite laminate and method for producing same
EP3970936A4 (en) * 2019-05-17 2023-06-28 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same

Also Published As

Publication number Publication date
JP6327127B2 (en) 2018-05-23
JP2015127141A (en) 2015-07-09
JP6330632B2 (en) 2018-05-30
JP2015127140A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP6330632B2 (en) Carbon fiber composite laminate
JP4747827B2 (en) Extruded laminate for heating and foaming
KR101804609B1 (en) Fluoropolymer composition
JP2019524927A (en) Polypropylene composition having flame retardant activity
JP5635413B2 (en) High flame retardant panel
JP2010254276A (en) Laminated body for automobile exterior and automobile horizontal outer panel component
KR20090123910A (en) Aliphatic polyester resin composition, aliphatic polyester film, reflective film and reflective plate
WO2020196617A1 (en) Resin composition, cured molded article, fiber-reinforced plastic molding material, fiber-reinforced plastic, fiber-reinforced plastic laminated molded body, and methods for producing same
WO2012043248A1 (en) Multilayered polyolefin resin film for back protection sheet for solar cell
JP6439403B2 (en) Carbon fiber composite laminate
JP7372129B2 (en) Polypropylene multilayer sheet and its manufacturing method
JP2023172715A (en) Laminate sheet, and food packaging container
WO2012133008A1 (en) Adhesive resin composition and multilayer structure using same
US7393890B2 (en) Flame-retardant polyolefin compounds and their use in surface coverings
JPWO2013069414A1 (en) Flame retardant resin laminate film, method for producing the resin laminate film, and sheet for solar cell module
KR101019656B1 (en) Resin composition of elastomer and metallocene polyethylene and film using the same
US7232856B1 (en) Flame-retardant polyolefin compounds and their use in surface coverings
JP3776223B2 (en) Air chamber sheet and resin material thereof
JP6657831B2 (en) Reinforced fiber composite laminate
JP5102462B2 (en) Composite sheet
JP7069977B2 (en) Thermoplastic resin laminate
WO2023248587A1 (en) Laminated structure
KR102628973B1 (en) Carbon Neutral Eco-Friendly Nanoinorganic Particle Filled Polyethylene Film Wrap
JP7132253B2 (en) Formulation for use in greenhouse films with high transparency
JP5860637B2 (en) Multilayer structure and method for producing multilayer structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865201

Country of ref document: EP

Kind code of ref document: A1