WO2015079742A1 - Torque converter for automobile provided with lockup device, and method for welding impeller shell and front cover thereof - Google Patents

Torque converter for automobile provided with lockup device, and method for welding impeller shell and front cover thereof Download PDF

Info

Publication number
WO2015079742A1
WO2015079742A1 PCT/JP2014/070540 JP2014070540W WO2015079742A1 WO 2015079742 A1 WO2015079742 A1 WO 2015079742A1 JP 2014070540 W JP2014070540 W JP 2014070540W WO 2015079742 A1 WO2015079742 A1 WO 2015079742A1
Authority
WO
WIPO (PCT)
Prior art keywords
front cover
impeller shell
welding
laser
welded
Prior art date
Application number
PCT/JP2014/070540
Other languages
French (fr)
Japanese (ja)
Inventor
慎祐 菊池
義則 兵藤
浩平 實石
Original Assignee
ユニプレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニプレス株式会社 filed Critical ユニプレス株式会社
Priority to JP2015550586A priority Critical patent/JP6386473B2/en
Publication of WO2015079742A1 publication Critical patent/WO2015079742A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • F16H2041/243Connections between pump shell and cover shell of the turbine

Definitions

  • the present invention relates to an automotive torque converter provided with a lock-up device, and more particularly to a welding structure and a welding method at a joint portion between an impeller shell and a front cover.
  • JP 7-174208 A Japanese Patent Laid-Open No. 10-2398 JP 2002-147564 A JP 2006-509168 A Japanese Patent Publication No. 2013-87827
  • the impeller shell and the front cover have an insertion structure between the cylindrical portions, and arc welding is performed in the cylindrical portion where stress concentration hardly occurs, and the impeller shell in this cylindrical portion is formed.
  • the weld structure between the front cover and the front cover can be a countermeasure against the problems of deterioration of the flatness of the front cover surface facing the clutch fading and the flatness of the boss seat surface. I could't take complete measures against There was also a problem of interference with adjacent parts of the torque converter due to weld beads.
  • patent document 4 shows adoption of the laser welding for joining of the plate-shaped front cover with respect to a cylindrical impeller shell, it is not more than that, and is not intended to solve the above-mentioned problem. Nor could it give suggestions for a solution.
  • the present invention solves such a conventional problem, and the desired flatness of the portion of the front cover facing the clutch facing is irrespective of the heat input during the welding of the impeller shell and the front cover.
  • the purpose is to maintain.
  • the impeller shell and the front cover are welded at a plurality of locations spaced in the circumferential direction.
  • welding is performed so as to overlap with the portion temporarily fixed along the entire circumference along the joint portion between the impeller shell and the front cover.
  • welding is performed so that the solidified state of the molten metal is always maintained for each part temporarily secured in the first stage welding process. It is preferable that the molten metal extends along the circumferential direction at each welding point in the first stage welding process.
  • the adoption of laser welding in the first invention is a problem of deterioration in the flatness of the bearing surface of the boss nut and the friction material due to the fact that the stress concentration is difficult to occur due to the welding of the cylindrical portions as a result of the concentration of heat input. Will not occur. Therefore, the thermal strain after the welding process is reduced, and the waviness of the front cover surface that slides with the clutch facing can be reduced. Therefore, the desired slip lock-up operation can be performed, and the fuel consumption efficiency can be improved. Also, unlike arc welding, laser welding does not cause beading, so bead grinding was necessary because arc welding between the cylindrical parts of the impeller shell and the front cover could cause interference with adjacent components of the torque converter. It is possible to omit additional work such as this.
  • a structure in which the laser weld part is partially penetrated into the axially protruding part inside the radius beyond the abutting part is advantageous in improving the shearing characteristics.
  • laser welding with a rectangular beam cross-section makes it possible to weld with the desired quality regardless of the inevitable position and width variations in the circumferential direction of the abutment surface between the impeller shell and the front cover by appropriate selection of the beam width. Bonding can be ensured.
  • the laser beam has a vertically long rectangular cross section, and the vertically long direction of the rectangular cross section is the direction along the abutting surface.
  • the laser beam by making the laser beam a rectangular cross section, it is possible to ensure a wide irradiation area that can cover the entire area of the abutting portion that changes within the allowable tolerance range while ensuring the desired beam intensity, and the impeller shell and the front cover It is possible to reliably weld the abutting portion.
  • the welding of the outer peripheral portion of the impeller shell and the front cover is performed as a first stage by performing temporary fixing welding by welding at a plurality of locations spaced in the circumferential direction.
  • the second stage welding which is performed on each temporary welding part in the first stage, is performed so that the solidified state of the molten metal is always maintained partially in each part.
  • the temporary fixing state can be maintained at each part in the above, so that the effect of the temporary fixing is not impaired, the final thermal strain after the completion of the second stage all-around welding is reduced, and the clutch facing and sliding are reduced.
  • the undulation of the moving front cover surface can be reduced. Therefore, the desired slip lock-up operation can be performed, and the fuel consumption efficiency can be improved.
  • FIG. 1 is a sectional view of the torque converter.
  • FIG. 2 is a partially enlarged view of FIG. 1, and is a detailed view of the facing portion between the clutch facing and the front cover in the lock-up mechanism of the torque converter, (a) when not locked up, and (b) low pressing.
  • the slip lock-up state of force / high differential rotation and (c) show the slip lock-up state of high pressing force / low differential rotation, respectively.
  • 3 is an enlarged cross-sectional view of a welded portion between the impeller shell and the front cover in FIG.
  • FIG. 4 is an enlarged cross-sectional view of a conventional weld, similar to FIG.
  • FIG. 5 is a partial schematic circumferential development showing a contact surface (before welding) between the impeller shell and the front cover.
  • FIG. 6 is a schematic cross-sectional view of the abutment surface between the impeller shell and the front cover, and schematically shows a welding process using a rectangular cross-section laser.
  • FIG. 7 is similar to FIG. 2, but shows another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing only the impeller shell and the front cover along the line VIII-VIII in FIG. 1, and shows the progress of the welding process immediately after the start of main welding after temporary welding.
  • 9 (a) to 9 (e) are circumferential development views schematically showing the progress of the main welding process after one temporary fixing at the joint of the impeller shell and the front cover.
  • FIG. 10 is a graph showing the flatness of the clutch facing engagement surface of the front cover after the completion of the main welding, where (a) shows the present invention and (b) shows the conventional one.
  • FIG. 1 shows a torque converter according to an embodiment of the present invention in a cross section along an axial line.
  • Reference numeral 10 denotes an impeller shell, and a front cover 12 (press plate of a steel plate made of the same material as the impeller shell 10) is applied to the impeller shell 10.
  • the molded product is joined by the laser welded portion 11 around the entire periphery, and an internal space sealed from the outside is formed.
  • the fluid type power transmission device 13 and the lockup device 14 are accommodated in the internal space.
  • the fluid type power transmission device 13 includes an impeller 15, a turbine 16, and a stator 17 as basic components.
  • the turbine 16 is fixed to a turbine support plate 19 on the hub 18, and the hub 18 forms a spline 18-1 on the inner peripheral surface.
  • an input shaft (not shown) of the transmission is inserted from the left side of FIG. 1 into the sleeve 20 fixed to the inner peripheral side of the impeller shell 10, and the tip of the input shaft is the spline 18-1 of the hub 18. Fitted.
  • the lock-up device 14 includes a driven plate 22 that is an output side rotating member (clamped to the hub 18 by a rivet 24 together with the turbine support plate 19), a drive plate 26 that is an input side rotating member, A plurality of circumferentially separated damper springs 28 that elastically connect the driven plate 22 and the drive plate 26 in the circumferential direction as is well known, and an equalizer plate 29 that is an intermediate member that is moved together with the damper springs 28. It consists of. Further, the drive plate 26 is fixed by a rivet 31 to a piston plate 30 that can slide on the hub 18. A clutch facing (friction material) 32 is installed on the outer peripheral surface of the piston plate 30 so as to face the front cover 12 in a minute gap.
  • the inner and outer damper springs 28 and 33 allow the relative rotation of the driven plate 22 and the drive plate 26 according to the rotation fluctuation, and the outer peripheral damper spring 28 having a small elastic modulus when the relative rotation is small.
  • a vibration absorbing function is achieved by each of the high elastic modulus inner damper springs 33 when the rotation increases.
  • the configuration and operation of the spring damper including the inner and outer damper springs 28 and 33 are substantially the same as those disclosed in Patent Document 6.
  • the portion facing the cover 12 is partially enlarged and shown in FIG. 2A, and the clutch facing 32 is made of a special paper having a good friction characteristic, and the piston facing the front cover 12 of the piston plate 30 is used.
  • the plate 30 is fixed in an annular shape on the surface.
  • the surface 30-1 of the piston plate 30 to which the clutch facing 32 is fixed is somewhat so that the inner peripheral side is retracted from the outer peripheral side with respect to the surface of the front cover 12 perpendicular to the torque converter center line C (FIG. 1). Inclined.
  • the clutch facing 32 fixed to the surface 30-1 of the piston plate 30 also exhibits the same inclination with respect to the front cover facing surface. Therefore, in the non-lock-up state in which the clutch facing 32 is separated from the facing surface of the front cover 12, the size of the gap S between the front cover 12 and the clutch facing 32 is smaller on the outer peripheral side and larger on the inner peripheral side. . A portion 12A facing the clutch facing 32 on the surface of the front cover is roughened.
  • the piston shifts to the slip lock-up state due to the difference between the low rotational speed of the piston plate 30 and the large rotational speed of the front cover 12, but because of the inclination of the surface 30-1 of the piston plate 30,
  • the slip lock-up state at this time is a slip lock-up under a low pressing force and high differential rotation.
  • power transmission by a lock-up clutch is also performed, but the power transmission function by a torque converter is still effective, and power transmission occurs in the presence of both. Since the annular region 12A of the front cover 12 that comes into contact with the clutch facing 32 has a rough surface, the oil film between the clutch facing 32 and the front cover 12 can be satisfactorily cut and a good slip can be obtained. You can get a lockup.
  • the distal end of the cylindrical portion 12-1 forms an outer cylindrical protruding portion 12-1A that is stripped on the inner diameter side, and the inner cylindrical protruding portion 10-1A of the impeller shell 10 and the outer cylindrical shape of the front cover 12.
  • the protrusions 12-1A are axially fitted to each other, and in this embodiment, the laser beam is applied to the abutting surface of the outer cylindrical protrusion 12-1A with respect to the cylindrical part 10-1 of the impeller shell 10 as described later. Irradiation forms the weld 11.
  • the problem with the welded part 111 by this conventional arc welding is that the flatness of the part of the front cover 12 (FIG. 2) facing the clutch facing 32 is deteriorated due to heat input during welding. That is, in the arc welding, heat input to the adjacent portion of the welded portion is large, and thermal distortion is generated in the front cover 12 at the portion facing the clutch facing 32. This thermal strain, particularly the surface facing the clutch facing 32, is generated.
  • the flatness of the front cover 12 deteriorates. The deterioration of the flatness of the surface 12A adversely affects the above-described slip lock-up control in which the clutch facing 32 is slid with respect to the surface of the front cover 12 facing the lock-up control, particularly when the lock-up control is started.
  • the presence of the undulation on the front cover surface 12A increases the pressure fluctuation of the oil film due to the so-called wedge effect, and the desired slip lock-up control cannot be performed. Further, the deteriorated flatness of the front cover 12 at the portion facing the clutch facing 32 is caused by the sliding resistance with the clutch facing 32 (the gap between the clutch facing and the front cover 12 facing portion cannot be increased so much).
  • a material having a high yield strength is required in order to increase the frictional force of the clutch phasing 32.
  • the large heat input to the part adjacent to the welded part by arc welding also deteriorates the flatness of the seating surface 34A of the boss nut 34 (the mounting surface of the rotating plate 35 in FIG. 1).
  • the expected processing of the seat surface 34A of the boss nut 34 (the seat surface 34A of the boss nut 34 is cut into a taper shape in accordance with the assumed thermal strain, and the seat surface 34A is formed by thermal strain. It is necessary to perform a process for correcting so as to be parallel. Further, there is a problem of buffering to adjacent components of the torque converter due to the weld bead. That is, in the case of arc welding, a weld bead 111A is inevitably generated as shown in FIG. 4, and the swell of the weld bead 111A is likely to interfere with external parts (the interference line is schematically indicated by L). ) In order not to exceed the interference line L, a cutting process for removing the raised portion of the weld bead 111A is required as a post-process.
  • a rectangular beam spot shape is employed so as to cover the variation range of the abutting surface in the circumferential direction.
  • a laser beam having a rectangular cross section for example, a YAG laser is described in Japanese Patent Application Laid-Open No. 2011-18823. Is preferable.
  • an L1 type laser welding apparatus (output 4 kW) manufactured by Enshu Corporation can be used.
  • the welded portion is composed of two stages, that is, temporary fixing between the impeller shell 10 and the front cover 12 and final fixing, in particular, the temporary fixing welding portion Wp is elongated in the circumferential direction, and temporary fixing welding is performed during final fixing welding.
  • the welding method that always maintains a part in a solidified state is not limited to laser welding, and the effects described in relation to FIGS. The effect according to can be produced.

Abstract

 The present invention relates to a welded structure and a laser welding method for a bonded section of an impeller shell and a front cover in a torque converter for an automobile. An impeller shell (10) and a front cover (12) have a structure in which axial tubular protrusions (10-1A, 12-1A) thereof are engaged with each other in an axial direction, and the axial tubular protrusion (12-1A) positioned on the radially outer side and an opposing abutting surface are welded in a laser welded section (14) through the entire periphery. A laser welded section (11) extends from the radially outer peripheral surface into the space between the abutting surfaces, so as to partially penetrate into the axial tubular protrusion (10-1A) on the radially inner side (depth of penetration = d). A welding beam has a rectangular cross section. The shape of the welded section (11) is configured of a tack weld leaving a gap along the circumferential direction in a first stage and a final weld in the entire periphery in a second stage, and the tack welded section has a long, thin shape so that a part thereof remains in a solidified state during the final weld.

Description

ロックアップ装置を備えた自動車用トルクコンバータ及びそのインペラシェルとフロントカバーとの溶接方法Torque converter for automobile with lock-up device and method for welding impeller shell to front cover
 この発明はロックアップ装置を備えた自動車用トルクコンバータ、特に、そのインペラシェルとフロントカバーとの接合部における溶接構造及び溶接方法に関する。 The present invention relates to an automotive torque converter provided with a lock-up device, and more particularly to a welding structure and a welding method at a joint portion between an impeller shell and a front cover.
 トルクコンバータはインペラ、タービン及びステータの3種の羽根車からなる流体式動力伝達部と、内部油圧により駆動されて、フロントカバー対向面にクラッチフェーシングを介して係合され、入力側と出力側とを直接動力伝達するロックアップ部材とをインペラシェル内部に収容して構成される。インペラシェルはフロントカバーに対して外周においてアーク溶接等により全周溶接することで外部に対して閉鎖される。また、ロックアップ部材は、所定以上の車速域においてトルクコンバータの入出力の機械的な締結を行う。ロックアップ部材は、前面にクラッチフェーシングを取り付け、タービンハブに軸方向に移動可能に嵌挿されたピストンプレートとして構成される。ロックアップ時には、ピストンプレートの前室の圧力が解放され、後室の動力伝達油の圧力によって、ピストンプレートが前進し、これによりピストンプレート前面のクラッチフェーシングがフロントカバーの対向面に押し付けられる。そして、高速域ではピストンプレートの前後の高い差圧によってクラッチフェーシングをカバーに接触させて完全ロックアップを行わせるが、低速域では差圧を相対的に下げることによりある程度トルクコンバータ機能を効かせつつクラッチフェーシングをフロントカバーに対して油膜を介在させつつ滑らせる所謂スリップロックアップを行うようになっている。そして、スリップロックアップ時における摩擦面の急速磨耗抑制の観点からクラッチフエーシングに対向するフロントカバーの環状部位は粗面化されている。スリップロックアップについては特許文献1を参照。また、フロントカバーとインペラシェルとの溶接構造については特許文献2-4参照。ロックアップ機構を備えトルクコンバータについては特許文献5参照。 The torque converter is driven by internal hydraulic pressure and is engaged with a front cover facing surface via a clutch facing, and is connected to an input side and an output side. And a lock-up member for directly transmitting power to the impeller shell. The impeller shell is closed to the outside by welding the entire circumference of the front cover by arc welding or the like at the outer periphery. The lock-up member mechanically fastens the input / output of the torque converter in a vehicle speed range above a predetermined level. The lockup member is configured as a piston plate having a clutch facing attached to the front surface and fitted into the turbine hub so as to be movable in the axial direction. At the time of lockup, the pressure in the front chamber of the piston plate is released, and the piston plate moves forward by the pressure of the power transmission oil in the rear chamber, whereby the clutch facing on the front surface of the piston plate is pressed against the opposing surface of the front cover. In the high-speed range, the clutch facing is brought into contact with the cover by a high differential pressure before and after the piston plate, and in the low-speed range, the torque converter function is effective to some extent by relatively reducing the differential pressure. A so-called slip lock-up is performed in which the clutch facing is slid with respect to the front cover while interposing an oil film. And the annular part of the front cover which opposes a clutch facing is roughened from a viewpoint of the rapid wear suppression of the friction surface at the time of slip lock-up. See Patent Document 1 for slip lockup. For the welded structure between the front cover and the impeller shell, see Patent Documents 2-4. See Patent Document 5 for a torque converter with a lock-up mechanism.
特開平7-174208号公報JP 7-174208 A 特開平10-2398号公報Japanese Patent Laid-Open No. 10-2398 特開2002-147564号公報JP 2002-147564 A 特表2006-509168号公報JP 2006-509168 A 特2013-87827号公報Japanese Patent Publication No. 2013-87827
 安定なスリップロックアップのためにクラッチフエーシングとフロントカバーとの間の油膜の圧力を一定にすることが必要であり、このためクラッチフエーシングと対向するフロントカバーの部位の平面度が重要であるが、インペラシェルとフロントカバーとの溶接は内部の密閉のため全周にて行う必要があり、その大きな入熱はクラッチフエーシングと対向するフロントカバーの部位に熱歪下でうねりを生じさせ、その平面度を悪化させる懸念があり、平面度の悪化はクラッチフエーシングとフロントカバーとの間における油膜の圧力の変動を大きくし、安定なスリップロックアップ動作を損なうことになる。特許文献2や特許文献3においてはインペラシェルとフロントカバーとは筒状部同士における挿入構造とし、アーク溶接は応力集中の起こり難い筒状部において行われており、この筒状部でのインペラシェルとフロントカバーとの溶接構造はクラッチフエージングと対向するフロントカバー面の平面度悪化やボス座面の平面度悪化の問題に対する幾分の対策となり得たが、入熱が大きいアーク溶接では上記問題に対する完全な対策たり得なかった。また溶接ビードによるトルクコンバータ隣接部品への干渉の問題があった。また、特許文献4は筒状のインペラシェルに対する板状のフロントカバーの接合のためのレーザ溶接の採用を示すが、それ以上のものではなく、もとより上記問題点を解決を意図したものではなく、また解決のための示唆を与え得るものでもなかった。 For stable slip lock-up, it is necessary to keep the oil film pressure between the clutch facing and the front cover constant. For this reason, the flatness of the portion of the front cover facing the clutch facing is important. However, it is necessary to weld the impeller shell and the front cover all around for sealing the inside, and the large heat input causes the front cover part facing the clutch facing to swell under thermal strain, There is a concern that the flatness is deteriorated, and the deterioration of flatness increases the fluctuation of the pressure of the oil film between the clutch facing and the front cover, thereby impairing the stable slip lock-up operation. In Patent Literature 2 and Patent Literature 3, the impeller shell and the front cover have an insertion structure between the cylindrical portions, and arc welding is performed in the cylindrical portion where stress concentration hardly occurs, and the impeller shell in this cylindrical portion is formed. The weld structure between the front cover and the front cover can be a countermeasure against the problems of deterioration of the flatness of the front cover surface facing the clutch fading and the flatness of the boss seat surface. I couldn't take complete measures against There was also a problem of interference with adjacent parts of the torque converter due to weld beads. Moreover, although patent document 4 shows adoption of the laser welding for joining of the plate-shaped front cover with respect to a cylindrical impeller shell, it is not more than that, and is not intended to solve the above-mentioned problem. Nor could it give suggestions for a solution.
 本発明は本発明はこのような従来の問題点を解決し、インペラシェルとフロントカバーとの溶接時の入熱に係らず、クラッチフエーシングと対向したフロントカバーの部位の所期の平面度の維持を図ることを目的とする。 The present invention solves such a conventional problem, and the desired flatness of the portion of the front cover facing the clutch facing is irrespective of the heat input during the welding of the impeller shell and the front cover. The purpose is to maintain.
 本発明の第1発明によれば、インペラシェルと、インペラシェルに対して外周部の全周に沿った溶接部にて溶接されるフロントカバーと、インペラシェル及びフロントカバーにより形成される内部空間に収容され、インペラ、タービン及びステータを具備して成る流体式動力伝達装置と、同じく前記内部空間に収容され、内部油圧により駆動されて、フロントカバー対向面にクラッチフェーシングを介して係合され、入力側と出力側とを直接動力伝達するピストンプレートとを具備し、インペラシェルとフロントカバーとは相互に軸方向に嵌合される軸方向筒状突出部を夫々備え、前記溶接部は、インペラシェルとフロントカバーとの一方における径方向外側に位置する軸方向筒状突出部とインペラシェルとフロントカバーとの他方との突当面を全周において溶接するレーザ溶接部であるトルクコンバータが提供される。好ましくは、レーザ溶接部は突当面より径方向内側の軸方向筒状突出部に一部食い込むように延設されており、また、レーザ溶接ビームは矩形断面のもの、特に、縦長が突当面に沿った方向に延びる細長矩形断面のものであることが好ましい。 According to the first aspect of the present invention, the impeller shell, the front cover welded to the impeller shell at the welded portion along the entire circumference of the outer peripheral portion, and the internal space formed by the impeller shell and the front cover A hydrodynamic power transmission device that is housed and includes an impeller, a turbine, and a stator, and is housed in the internal space, driven by internal hydraulic pressure, and engaged with the front cover facing surface via a clutch facing. A piston plate that directly transmits power to the output side and the output side, and the impeller shell and the front cover are each provided with an axial cylindrical protruding portion that is axially fitted to each other. Of the axial cylindrical protrusion located on the radially outer side of one of the front cover and the other of the front cover and the impeller shell A torque converter is a laser welding unit for welding the entire circumference of the surface is provided. Preferably, the laser welded portion extends so as to partially bite into the axial cylindrical protruding portion radially inward from the abutting surface, and the laser welding beam has a rectangular cross section, particularly, a vertically long shape on the abutting surface. It is preferably an elongated rectangular cross section extending in the direction along.
 第1発明を実施するレーザ溶接方法にあっては、インペラシェルとフロントカバーとはその軸方向筒状突出部を軸方向にて嵌合し、インペラシェルとフロントカバーとの一方における径方向外側に位置する軸方向筒状突出部とインペラシェルとフロントカバーとの他方との対向面が突当られ、突当部に外周よりレーザビームを当て、全周に沿ってレーザ溶接することにより突当面間にレーザ溶接部を形成している。 In the laser welding method embodying the first invention, the impeller shell and the front cover are fitted with the axial cylindrical projections in the axial direction, and the outer side in the radial direction at one of the impeller shell and the front cover. The opposed axial projection of the axial cylindrical projection, the impeller shell, and the other of the front cover are abutted against each other, a laser beam is applied to the abutment from the outer periphery, and laser welding is performed along the entire circumference between the abutment surfaces A laser weld is formed on the surface.
 本発明の第2の発明によれば、また、インペラシェルと、インペラシェルに対して外周部の全周に沿った溶接部にて溶接されるフロントカバーと、インペラシェル及びフロントカバーにより形成される内部空間に収容され、インペラ、タービン及びステータを具備して成る流体式動力伝達装置と、同じく前記内部空間に収容され、内部油圧により駆動されて、フロントカバー対向面にクラッチフェーシングを介して係合され、入力側と出力側とを直接動力伝達するピストンプレートとを具備し、前記溶接部は、インペラシェルとフロントカバーとを、円周方向において間隔を置いた複数の箇所において接合し、かつ円周方向に延びる仮止め溶接部と、インペラシェルとフロントカバーとを前記仮止め溶接部も含めた全周において溶接する全周溶接部とから成るトルクコンバータが提供される。 According to the second aspect of the present invention, the impeller shell, the front cover welded to the impeller shell at the welded portion along the entire outer periphery, and the impeller shell and the front cover are formed. A fluid-type power transmission device housed in an internal space and comprising an impeller, a turbine and a stator, and also housed in the internal space, driven by internal hydraulic pressure, and engaged with the front cover facing surface via a clutch facing A piston plate that directly transmits power between the input side and the output side, and the welded portion joins the impeller shell and the front cover at a plurality of locations spaced in the circumferential direction, and a circular shape. A welded part temporarily extending in the circumferential direction, an impeller shell and a front cover are all welded on the entire circumference including the welded part. A torque converter comprising a weld is provided.
 第2発明の実施である溶接構造を得るための溶接方法にあっては、第1段階の溶接工程として、インペラシェルとフロントカバーとは、円周方向において間隔を置いた複数の箇所にて溶接することで仮止めを行い、第2段階の溶接工程として、インペラシェルとフロントカバーとの接合部に沿った全周に沿ってかつ仮止めされた箇所についてはこれと重なるように溶接を行い、この第2段階の溶接に際して、第1段階の溶接工程で仮止めされた各箇所については、溶肉の凝固状態が一部でいつも維持されるように溶接が行われるようにされる。第1段階の溶接工程における各溶接箇所において溶肉は円周方向に沿って延在するようにされることが好ましい。 In the welding method for obtaining the welded structure according to the second aspect of the invention, as the first stage welding process, the impeller shell and the front cover are welded at a plurality of locations spaced in the circumferential direction. As a second stage welding process, welding is performed so as to overlap with the portion temporarily fixed along the entire circumference along the joint portion between the impeller shell and the front cover, At the time of the second stage welding, welding is performed so that the solidified state of the molten metal is always maintained for each part temporarily secured in the first stage welding process. It is preferable that the molten metal extends along the circumferential direction at each welding point in the first stage welding process.
 第1発明におけるレーザ溶接の採用は、入熱の集中の結果、筒状部同士の溶接であり応力集中が生じ難いことも相俟って、ボスナットの座面や摩擦材の平面度悪化の問題が生ずることはない。そのため、溶接工程後の熱歪が低減され、クラッチフェーシングと摺動するフロントカバー面のうねりを低減することができる。そのため、所期のスリップロックアップ動作を行うことができ、燃料消費効率の向上を図ることができる。また、レーザ溶接はアーク溶接と異なりビードは生じないため、インペラシェルとフロントカバーとの筒状部同士のアーク溶接の場合にトルクコンバータ隣接部品への干渉の原因となり得るため必要であったビード研削といった事後の追加的作業を省くことができる。レーザ溶接部を突当部を超えて半径内側の軸方向突出部に一部貫入させた構造はせん断特性の向上に有利である。また、ビーム形状が矩形断面を呈するレーザ溶接はビーム幅の適当な選定によりインペラシェルとフロントカバーとの突当面の円周方向の避け得ない位置変動及び幅変動にかかわらず所期の品質の溶接接合を確保することができる。効率的なレーザエネルギ利用の観点からはレーザビームは縦長の矩形断面のものを採用し、矩形断面の縦長方向を突当面に沿った方向とさせる配置が好適である。レーザ溶接として半導体溶接を採用することにより、そのビーム強度の均一性により、より一層高い溶接品質を得ることができる。また、レーザビームを矩形断面とすることにより所望ビーム強度を確保しつつ許容公差範囲内で変化する突当部の全域をカバーし得る広い照射面積を確保することができ、インペラシェルとフロントカバーとの突当部の確実な溶接を行うことができる。 The adoption of laser welding in the first invention is a problem of deterioration in the flatness of the bearing surface of the boss nut and the friction material due to the fact that the stress concentration is difficult to occur due to the welding of the cylindrical portions as a result of the concentration of heat input. Will not occur. Therefore, the thermal strain after the welding process is reduced, and the waviness of the front cover surface that slides with the clutch facing can be reduced. Therefore, the desired slip lock-up operation can be performed, and the fuel consumption efficiency can be improved. Also, unlike arc welding, laser welding does not cause beading, so bead grinding was necessary because arc welding between the cylindrical parts of the impeller shell and the front cover could cause interference with adjacent components of the torque converter. It is possible to omit additional work such as this. A structure in which the laser weld part is partially penetrated into the axially protruding part inside the radius beyond the abutting part is advantageous in improving the shearing characteristics. Also, laser welding with a rectangular beam cross-section makes it possible to weld with the desired quality regardless of the inevitable position and width variations in the circumferential direction of the abutment surface between the impeller shell and the front cover by appropriate selection of the beam width. Bonding can be ensured. From the viewpoint of efficient use of laser energy, it is preferable that the laser beam has a vertically long rectangular cross section, and the vertically long direction of the rectangular cross section is the direction along the abutting surface. By adopting semiconductor welding as laser welding, it is possible to obtain even higher welding quality due to the uniformity of the beam intensity. In addition, by making the laser beam a rectangular cross section, it is possible to ensure a wide irradiation area that can cover the entire area of the abutting portion that changes within the allowable tolerance range while ensuring the desired beam intensity, and the impeller shell and the front cover It is possible to reliably weld the abutting portion.
 第2発明によれば、インペラシェルとフロントカバーとの外周部の溶接は、第1段階としての、円周方向において間隔を置いた複数の箇所にて溶接することで仮止め溶接と、第2段階としての、全周での溶接との2段階で行われる。そのため、第1段階の各仮溶接部位に重ねて行われる第2段階の溶接はその各部位で溶肉の凝固状態が一部ではいつも維持されるように行われるため、第1段階の溶接部における各部位での仮止め状態を維持することができるため、仮止めの効果が損なわれることがなく、第2段階の全周溶接完了後における最終的な熱歪が低減され、クラッチフェーシングと摺動するフロントカバー面のうねり低減することができる。そのため、所期のスリップロックアップ動作を行うことができ、燃料消費効率の向上を図ることができる。 According to the second invention, the welding of the outer peripheral portion of the impeller shell and the front cover is performed as a first stage by performing temporary fixing welding by welding at a plurality of locations spaced in the circumferential direction. As a stage, it is performed in two stages, that is, welding around the entire circumference. For this reason, the second stage welding, which is performed on each temporary welding part in the first stage, is performed so that the solidified state of the molten metal is always maintained partially in each part. In this case, the temporary fixing state can be maintained at each part in the above, so that the effect of the temporary fixing is not impaired, the final thermal strain after the completion of the second stage all-around welding is reduced, and the clutch facing and sliding are reduced. The undulation of the moving front cover surface can be reduced. Therefore, the desired slip lock-up operation can be performed, and the fuel consumption efficiency can be improved.
図1はトルクコンバータの断面図である。FIG. 1 is a sectional view of the torque converter. 図2は図1の部分的拡大図であり、トルクコンバータのロックアップ機構におけるクラッチフェーシングとフロントカバーとの対向部の詳細図であり、(a)は非ロックアップ時、(b)は低押付力・高差回転のスリップロックアップ状態、(c)は高押付力・低差回転のスリップロックアップ状態を夫々示す。FIG. 2 is a partially enlarged view of FIG. 1, and is a detailed view of the facing portion between the clutch facing and the front cover in the lock-up mechanism of the torque converter, (a) when not locked up, and (b) low pressing. The slip lock-up state of force / high differential rotation and (c) show the slip lock-up state of high pressing force / low differential rotation, respectively. 図3は図1におけるインペラシェルとフロントカバーとの溶接部の拡大断面図である。3 is an enlarged cross-sectional view of a welded portion between the impeller shell and the front cover in FIG. 図4は図2と同様であるが従来の溶接部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a conventional weld, similar to FIG. 図5はインペラシェルとフロントカバーとの突当面(溶接前)を示す部分的模式的円周方向展開図である。FIG. 5 is a partial schematic circumferential development showing a contact surface (before welding) between the impeller shell and the front cover. 図6はインペラシェルとフロントカバーとの突当面の模式的断面図であり、矩形断面レーザによる溶接工程を模式的に示す。FIG. 6 is a schematic cross-sectional view of the abutment surface between the impeller shell and the front cover, and schematically shows a welding process using a rectangular cross-section laser. 図7は図2と同様であるが本発明の別実施形態を示す。FIG. 7 is similar to FIG. 2, but shows another embodiment of the present invention. 図8は図1のVIII-VIII線に沿ってインペラシェルとフロントカバーのみを示す矢視断面図であり、仮溶接後で本溶接開始直後の溶接工程の進行状態を示している。FIG. 8 is a cross-sectional view showing only the impeller shell and the front cover along the line VIII-VIII in FIG. 1, and shows the progress of the welding process immediately after the start of main welding after temporary welding. 図9(a)~(e)はインペラシェルとフロントカバーとの合せ目での一つの仮止め後の本溶接工程の進行を模式的に示す円周方向展開図である。9 (a) to 9 (e) are circumferential development views schematically showing the progress of the main welding process after one temporary fixing at the joint of the impeller shell and the front cover. 図10は本溶接完了後のフロントカバーのクラッチフエーシング係合面の平面度を示すグラフであり、(a)は本発明、(b)は従来を示す。FIG. 10 is a graph showing the flatness of the clutch facing engagement surface of the front cover after the completion of the main welding, where (a) shows the present invention and (b) shows the conventional one.
 図1はこの発明の実施形態におけるトルクコンバータを軸線に沿った断面にて示しており、10はインペラシェルであり、インペラシェル10にフロントカバー12(インペラシェル10と素材を同様とする鋼板のプレス成形品)が後述のように全周にてレーザ溶接部11にて接合され、外部に対して密閉された内部空間が形成される。この内部空間に流体式動力伝達装置13とロックアップ装置14とが収容される。流体式動力伝達装置13は周知のようにインペラ15、タービン16及びステータ17を基本的構成要素とする。タービン16はハブ18上のタービン支持プレート19に固定され、ハブ18は内周面にスプライン18-1を形成している。他方、インペラシェル10の内周側に固定されるスリーブ20に、周知のように、変速機の図示しない入力軸が図1の左側より挿入され、入力軸の先端がハブ18のスプライン18-1に嵌合される。ロックアップ装置14は出力側回転部材であるドリブンプレート22(ハブ18にタービン支持プレート19と共にリベット24にて供締めされる)と、入力側回転部材であるドライブプレート26と、周知のように、円周方向に離間して複数設けられ、ドリブンプレート22とドライブプレート26とを周知のように円周方向に弾性連結するダンパスプリング28と、ダンパスプリング28と共に移動される中間部材であるイコライザプレート29とからなる。更に、ドライブプレート26はハブ18上を摺動可能なピストンプレート30にリベット31にて固定される。ピストンプレート30の外周面にクラッチフエーシング(摩擦材)32がフロントカバー12と微小間隙にて対向するように設置される。外周側のダンパスプリング28に加え、内周側にもダンパスプリング33が設けられ、外周側のダンパスプリング28と同様に内周側ダンパスプリング33もドリブンプレート22とドライブプレート26とを円周方向に弾性連結し、スプリング28による緩衝域より高弾性域において回転変動の抑制を行うように機能する。フロントカバー12は外面にボスナット34を溶接(アーク溶接)固定しており、このボスナット34に、周知のように、エンジンの出力軸と一体回転する回転プレート35がボルト36にて連結・固定される。そして、図2においてクラッチフエーシング32に対向するフロントカバー12の表面における環状部位12Aは粗面をなしている。 FIG. 1 shows a torque converter according to an embodiment of the present invention in a cross section along an axial line. Reference numeral 10 denotes an impeller shell, and a front cover 12 (press plate of a steel plate made of the same material as the impeller shell 10) is applied to the impeller shell 10. As will be described later, the molded product) is joined by the laser welded portion 11 around the entire periphery, and an internal space sealed from the outside is formed. The fluid type power transmission device 13 and the lockup device 14 are accommodated in the internal space. As is well known, the fluid type power transmission device 13 includes an impeller 15, a turbine 16, and a stator 17 as basic components. The turbine 16 is fixed to a turbine support plate 19 on the hub 18, and the hub 18 forms a spline 18-1 on the inner peripheral surface. On the other hand, as is well known, an input shaft (not shown) of the transmission is inserted from the left side of FIG. 1 into the sleeve 20 fixed to the inner peripheral side of the impeller shell 10, and the tip of the input shaft is the spline 18-1 of the hub 18. Fitted. As is well known, the lock-up device 14 includes a driven plate 22 that is an output side rotating member (clamped to the hub 18 by a rivet 24 together with the turbine support plate 19), a drive plate 26 that is an input side rotating member, A plurality of circumferentially separated damper springs 28 that elastically connect the driven plate 22 and the drive plate 26 in the circumferential direction as is well known, and an equalizer plate 29 that is an intermediate member that is moved together with the damper springs 28. It consists of. Further, the drive plate 26 is fixed by a rivet 31 to a piston plate 30 that can slide on the hub 18. A clutch facing (friction material) 32 is installed on the outer peripheral surface of the piston plate 30 so as to face the front cover 12 in a minute gap. In addition to the outer damper spring 28, a damper spring 33 is also provided on the inner peripheral side. Like the outer damper spring 28, the inner damper spring 33 also connects the driven plate 22 and the drive plate 26 in the circumferential direction. It is elastically connected and functions to suppress rotational fluctuation in a higher elastic region than the buffer region by the spring 28. A boss nut 34 is fixed to the outer surface of the front cover 12 by welding (arc welding). As is well known, a rotating plate 35 that rotates integrally with the output shaft of the engine is connected and fixed to the boss nut 34 with bolts 36. . In FIG. 2, the annular portion 12 </ b> A on the surface of the front cover 12 facing the clutch facing 32 is a rough surface.
 以上の構成はトルクコンバータとしては周知のものであり、エンジンの出力軸の回転は回転プレート35よりフロントカバー12及びインペラシェル10を介してインペラ15に伝達され、インペラ15よりタービン16、タービン16からステータ17を介しインペラ15に循環されるオイルの流れにより回転トルクはハブ18を介して図示しない変速機の入力軸に伝達される。また、ロックアップ時には前後差圧によってピストンプレート30がフロントカバー12側に移動され、クラッチフエーシング32がフロントカバー12の対向面と摩擦係合することによりエンジン出力側と変速機入力側が直結される。また、内周、外周のダンパスプリング28, 33は回転変動に応じてドリブンプレート22とドライブプレート26との相対回転を許容し、相対回転が小さいときの小弾性率の外周側ダンパスプリング28、相対回転が大きくなったときの高弾性率の内周側ダンパスプリング33の夫々による振動吸収機能が達成される。内、外周のダンパスプリング28, 33を備えたスプリングダンパの構成及び作用は特許文献6に開示のものと実質的に同様である。 The above configuration is well known as a torque converter, and the rotation of the output shaft of the engine is transmitted from the rotating plate 35 to the impeller 15 via the front cover 12 and the impeller shell 10, and from the impeller 15 from the turbine 16 and the turbine 16. The rotational torque is transmitted to the input shaft of the transmission (not shown) via the hub 18 by the flow of oil circulated to the impeller 15 via the stator 17. Further, at the time of lock-up, the piston plate 30 is moved to the front cover 12 side by the differential pressure across the front, and the clutch facing 32 is frictionally engaged with the opposing surface of the front cover 12 so that the engine output side and the transmission input side are directly connected. . Further, the inner and outer damper springs 28 and 33 allow the relative rotation of the driven plate 22 and the drive plate 26 according to the rotation fluctuation, and the outer peripheral damper spring 28 having a small elastic modulus when the relative rotation is small. A vibration absorbing function is achieved by each of the high elastic modulus inner damper springs 33 when the rotation increases. The configuration and operation of the spring damper including the inner and outer damper springs 28 and 33 are substantially the same as those disclosed in Patent Document 6.
 次に、ロックアップ機構におけるクラッチフエーシング32とこれに対向するフロントカバー12との間のロックアップ動作について図2を参照してより詳細に説明すると、非ロックアップ状態におけるクラッチフエーシング32とフロントカバー12との対向部は部分的に拡大して図2(a)に示され、クラッチフエーシング32は摩擦特性の良好な特殊な紙を素材とし、ピストンプレート30のフロントカバー12に対向するピストンプレート30の面上に環状に固着されている。クラッチフエーシング32を固着したピストンプレート30の面30-1はトルクコンバータ中心線C(図1)に鉛直なフロントカバー12の表面に対して外周側に対し内周側が後退するように幾分の傾斜をなしている。そのため、ピストンプレート30の面30-1に固定されたクラッチフエーシング32もフロントカバー対向面に対して同様な傾斜を呈している。従って、クラッチフエーシング32がフロントカバー12の対向面から離間した非ロックアップ状態においてはフロントカバー12とクラッチフエーシング32との間の隙間Sの大きさは外周側が小さく内周側が大きくなっている。フロントカバーの表面におけるクラッチフエーシング32と対向した部位12Aは粗面化されている。 Next, the lock-up operation between the clutch facing 32 and the front cover 12 facing the clutch facing 32 in the lock-up mechanism will be described in more detail with reference to FIG. The portion facing the cover 12 is partially enlarged and shown in FIG. 2A, and the clutch facing 32 is made of a special paper having a good friction characteristic, and the piston facing the front cover 12 of the piston plate 30 is used. The plate 30 is fixed in an annular shape on the surface. The surface 30-1 of the piston plate 30 to which the clutch facing 32 is fixed is somewhat so that the inner peripheral side is retracted from the outer peripheral side with respect to the surface of the front cover 12 perpendicular to the torque converter center line C (FIG. 1). Inclined. Therefore, the clutch facing 32 fixed to the surface 30-1 of the piston plate 30 also exhibits the same inclination with respect to the front cover facing surface. Therefore, in the non-lock-up state in which the clutch facing 32 is separated from the facing surface of the front cover 12, the size of the gap S between the front cover 12 and the clutch facing 32 is smaller on the outer peripheral side and larger on the inner peripheral side. . A portion 12A facing the clutch facing 32 on the surface of the front cover is roughened.
 次に、本発明におけるロックアップ動作について説明すると、ロックアップ前は図2(a)に示すように、ピストンプレート30はフロントカバー12の対向面から離間して位置しており、ピストンプレート30は回転はしているがフロントカバー12とは差回転が大きい状態にある。ロックアップ域への移行のため、ピストンプレート30に前後の差圧をかけて行くとピストンプレート30はフロントカバー12に向けて摺動移動される。そして、このとき、ピストンプレート30にかかる圧力は未だ小さいため、ピストンプレート30はその姿勢を維持したまま、フロントカバー12の対向内面における粗面部位12Aに油膜を介して軽く押し付けられる。そして、ピストンプレート30の未だ低い回転数とフロントカバー12の大きな回転数との差の下でスリップロックアップ状態に移行するが、ピストンプレート30の面30-1の傾斜故に、フロントカバー12との接触は図2(b)に示すように対向面が滑りながら主にクラッチフエーシング32の外周部において起こる。このときのスリップロックアップ状態は低押し付け力及び高差回転下でのスリップロックアップとなる。スリップロックアップにおいてはロックアップクラッチによる動力伝達も行われるが、トルクコンバータによる動力伝達機能もまだ効いており、両者の並存下での動力伝達となる。そして、クラッチフエーシング32と接触するフロントカバー12の環状領域12Aは粗面をなしているためクラッチフエーシング32とフロントカバー12との間の油膜の良好な切れを得ることができ、良好なスリップロックアップを得ることができる。 Next, the lock-up operation according to the present invention will be described. Before the lock-up, as shown in FIG. 2A, the piston plate 30 is positioned away from the facing surface of the front cover 12, and the piston plate 30 is Although it is rotating, the differential rotation with the front cover 12 is large. In order to shift to the lockup region, when a differential pressure is applied to the piston plate 30 in the front-rear direction, the piston plate 30 is slid toward the front cover 12. At this time, since the pressure applied to the piston plate 30 is still small, the piston plate 30 is lightly pressed through the oil film against the rough surface portion 12A on the opposed inner surface of the front cover 12 while maintaining the posture. Then, the piston shifts to the slip lock-up state due to the difference between the low rotational speed of the piston plate 30 and the large rotational speed of the front cover 12, but because of the inclination of the surface 30-1 of the piston plate 30, As shown in FIG. 2B, the contact mainly occurs at the outer peripheral portion of the clutch facing 32 while the facing surface slips. The slip lock-up state at this time is a slip lock-up under a low pressing force and high differential rotation. In slip lock-up, power transmission by a lock-up clutch is also performed, but the power transmission function by a torque converter is still effective, and power transmission occurs in the presence of both. Since the annular region 12A of the front cover 12 that comes into contact with the clutch facing 32 has a rough surface, the oil film between the clutch facing 32 and the front cover 12 can be satisfactorily cut and a good slip can be obtained. You can get a lockup.
 スリップロックアップ域への移行によりピストンプレート30の回転数が大きくなってゆき、また、ピストンプレート30にかかる動力伝達油の圧力が大きくなると、高押し付け力及び低差回転下でのスリップロックアップ領域に入る。このとき、ピストンプレート30はクラッチフエーシング32を介してフロントカバー12の接触面を起点として変形するため、ピストンプレート30は図2(c)に示すように、中心部がフロントカバー側に変形し、ピストンプレート30の面30-1(クラッチフエーシング32の表面)は(a)(b)に示す当初の傾斜が解消し、むしろ、クラッチフエーシング32の内周側がフロントカバー12の表面における粗面領域12Aに主として当たる。このときにおいても、クラッチフエーシング32と接触するフロントカバー12の環状領域12Aは表面が粗面をなしているためクラッチフエーシング32とフロントカバー12との間の油膜の良好な切れを得ることができ、良好なスリップロックアップを得ることができる。そして、押し付け力がさらに上昇し、ロックアップピストンとフロントカバーとの差回転が完全に消失すると完全ロックアップ動作に移行する。 As the rotational speed of the piston plate 30 increases due to the transition to the slip lock-up region, and the pressure of the power transmission oil applied to the piston plate 30 increases, the slip lock-up region under high pressing force and low differential rotation to go into. At this time, since the piston plate 30 is deformed starting from the contact surface of the front cover 12 via the clutch facing 32, the center of the piston plate 30 is deformed to the front cover side as shown in FIG. The surface 30-1 of the piston plate 30 (the surface of the clutch facing 32) eliminates the initial inclination shown in (a) and (b). Rather, the inner peripheral side of the clutch facing 32 is rough on the surface of the front cover 12. It mainly hits the surface area 12A. Even at this time, the annular region 12A of the front cover 12 that is in contact with the clutch facing 32 has a rough surface, so that the oil film between the clutch facing 32 and the front cover 12 can be cut well. And good slip lockup can be obtained. Then, when the pressing force further increases and the differential rotation between the lockup piston and the front cover completely disappears, the operation shifts to a complete lockup operation.
 次に、インペラシェル10とフロントカバー12とのレーザ溶接による溶接部11の構成を説明する。溶接部11は後述するように第1段階での仮止め溶接と、その後の第2段階での全周溶接(本溶接)とから構成される。溶接部11は図1-図3に示すようにインペラシェル10はフロントカバー12の側が筒状部10-1を構成し、フロントカバー12もインペラシェル10の側が筒状部12-1を構成する。図3に拡大して示すようにインペラシェル10の筒状部10-1の先端部が外径側において肉を取られた内側筒状突出部10-1Aを形成し、他方、フロントカバー12の筒状部12-1の先端部は内径側において肉を取られた外側筒状突出部12-1Aを形成し、インペラシェル10の内側筒状突出部10-1Aとフロントカバー12の外側筒状突出部12-1Aとが相互に軸方向に嵌合され、本実施形態では後述のようにインペラシェル10の筒状部10-1に対する外側筒状突出部12-1Aの突当面にレーザビームが照射され、溶接部11が形成される。 Next, the configuration of the welded portion 11 by laser welding between the impeller shell 10 and the front cover 12 will be described. As will be described later, the welded portion 11 is composed of temporary fixing welding in the first stage and all-around welding (main welding) in the second stage thereafter. As shown in FIGS. 1 to 3, the welded portion 11 includes an impeller shell 10 on the front cover 12 side that forms the cylindrical portion 10-1, and the front cover 12 also includes the impeller shell 10 side that forms the cylindrical portion 12-1. . As shown in an enlarged view in FIG. 3, the tip of the cylindrical portion 10-1 of the impeller shell 10 forms an inner cylindrical protruding portion 10-1 </ b> A whose thickness is removed on the outer diameter side. The distal end of the cylindrical portion 12-1 forms an outer cylindrical protruding portion 12-1A that is stripped on the inner diameter side, and the inner cylindrical protruding portion 10-1A of the impeller shell 10 and the outer cylindrical shape of the front cover 12. The protrusions 12-1A are axially fitted to each other, and in this embodiment, the laser beam is applied to the abutting surface of the outer cylindrical protrusion 12-1A with respect to the cylindrical part 10-1 of the impeller shell 10 as described later. Irradiation forms the weld 11.
 図4はインペラシェルとフロントカバーとの間に軸方向の嵌合構造を持つ特許文献2及び3における溶接構造を模式的に示すが、この場合、溶接方法は溶肉部の形状からアークであると推認され、溶接部111はインペラシェルの筒状部10-1に対するフロントカバーの外側筒状突出部112-1Aの突当面に位置しており、外面はビード111Aが盛り上がった構造となっている。また、アーク溶接部111は内側筒状突部110-1Aの外面に留まっており、内側筒状突出部110-1Aの中まで食い込む(貫通する)構造は見られない。この従来のアーク溶接による溶接部111による問題点として、溶接時の入熱によるフロントカバー12(図2)のクラッチフエーシング32との対向部の平面度の悪化がある。即ち、アーク溶接では被溶接部の隣接部位への入熱が大きく、クラッチフエーシング32との対向部においてフロントカバー12に熱歪を発生させ、この熱歪特に、クラッチフエーシング32との対向面12Aにおいてフロントカバー12の平面度が悪化する。面12Aの平面度の悪化は、ロックアップ制御、特にロックアップ制御開始時にクラッチフエーシング32をこれに対向するフロントカバー12の表面に対して滑らせる前述したスリップロックアップ制御に悪影響を及ぼす。即ち、フロントカバー表面12Aのうねりの存在は所謂くさび効果により油膜の圧力変動を大きくし、所期のスリップロックアップ制御ができなくなる。また、クラッチフエーシング32との対向部におけるフロントカバー12の悪化した平面度はクラッチフエーシング32との摺動抵抗(クラッチフエーシングとフロントカバー12の対向部位との隙間はあまり大きくできないため被係合状態でも多少の摺動抵抗は発生する)を大きくするため、クラッチフエージング32を構成する摩擦材として耐力の大きなものを必要とする。また、アーク溶接による溶接部に隣接した部位への大きな入熱は、ボスナット34の座面34A(図1の回転プレート35の取付け面)の平面度も悪化させる。従って、溶接時の熱歪を考慮し、ボスナット34の座面34Aの見込み加工(想定される熱歪に合わせてボスナット34の座面34Aをテーパ状に切削加工し、熱歪によって座面34Aが平行となるように補正を行う加工)を行う必要が出てくる。更に、溶接ビードによるトルクコンバータ隣接部品への緩衝の問題もある。即ち、アーク溶接の場合、図4に示すように溶接ビード111Aが必ず発生し、溶接ビード111Aの盛り上がりは、外側の部品との干渉の懸念があるため(干渉ラインをLにて模式的に示す)、この干渉ラインLを超えないように、溶接ビード111Aの盛り上がり部分を除去するための切削加工が後工程として必要となる。 FIG. 4 schematically shows a welding structure in Patent Documents 2 and 3 having an axial fitting structure between the impeller shell and the front cover. In this case, the welding method is an arc from the shape of the melted portion. The welded portion 111 is located on the abutting surface of the outer cylindrical protruding portion 112-1A of the front cover with respect to the cylindrical portion 10-1 of the impeller shell, and the outer surface has a structure in which the bead 111A is raised. . Further, the arc welded portion 111 remains on the outer surface of the inner cylindrical protrusion 110-1A, and a structure that penetrates (penetrates) into the inner cylindrical protrusion 110-1A is not seen. The problem with the welded part 111 by this conventional arc welding is that the flatness of the part of the front cover 12 (FIG. 2) facing the clutch facing 32 is deteriorated due to heat input during welding. That is, in the arc welding, heat input to the adjacent portion of the welded portion is large, and thermal distortion is generated in the front cover 12 at the portion facing the clutch facing 32. This thermal strain, particularly the surface facing the clutch facing 32, is generated. At 12A, the flatness of the front cover 12 deteriorates. The deterioration of the flatness of the surface 12A adversely affects the above-described slip lock-up control in which the clutch facing 32 is slid with respect to the surface of the front cover 12 facing the lock-up control, particularly when the lock-up control is started. That is, the presence of the undulation on the front cover surface 12A increases the pressure fluctuation of the oil film due to the so-called wedge effect, and the desired slip lock-up control cannot be performed. Further, the deteriorated flatness of the front cover 12 at the portion facing the clutch facing 32 is caused by the sliding resistance with the clutch facing 32 (the gap between the clutch facing and the front cover 12 facing portion cannot be increased so much). In order to increase the frictional force of the clutch phasing 32, a material having a high yield strength is required. Moreover, the large heat input to the part adjacent to the welded part by arc welding also deteriorates the flatness of the seating surface 34A of the boss nut 34 (the mounting surface of the rotating plate 35 in FIG. 1). Accordingly, in consideration of thermal strain during welding, the expected processing of the seat surface 34A of the boss nut 34 (the seat surface 34A of the boss nut 34 is cut into a taper shape in accordance with the assumed thermal strain, and the seat surface 34A is formed by thermal strain. It is necessary to perform a process for correcting so as to be parallel. Further, there is a problem of buffering to adjacent components of the torque converter due to the weld bead. That is, in the case of arc welding, a weld bead 111A is inevitably generated as shown in FIG. 4, and the swell of the weld bead 111A is likely to interfere with external parts (the interference line is schematically indicated by L). ) In order not to exceed the interference line L, a cutting process for removing the raised portion of the weld bead 111A is required as a post-process.
 これに対し、本実施形態では突当面の溶接はアーク溶接ではなくレーザ溶接によっている。即ち、図3において、インペラシェル10の内側筒状突出部10-1Aとフロントカバー12の外側筒状突出部12-1Aとが相互に軸方向に嵌合され、インペラシェル10の筒状部10-1に対する外側筒状突出部12-1Aの突当面がレーザ溶接による溶接部11を構成する。この溶接部11は突当面間を半径内方に延びていることはもとより、径方向内側の内側筒状突出部10-1Aに一部食い込むように延設されている。レーザ溶接部11は内側筒状突出部10-1Aに部分的に貫通するようになっている。レーザ溶接はその高いエネルギ密度によって溶接ビームの貫徹力が大きく、このような貫通溶接が実現可能であり、せん断強度の保証が可能となる。そして、フロントカバー側の板厚(フロントカバー12の外側筒状突出部12-1Aの肉厚)を薄くし、溶着面積を大きく確保することによりせん断強度の向上に繋げることができる。また、インペラシェル10とフロントカバー12とを圧入構造(インペラシェル10の内側筒状突出部10-1Aとフロントカバー12の外側筒状突出部12-1Aとを圧入構造)とし、これにより溶接隙間が非常に狭くなりボイド等の溶接不良の対策となる。尚、図示した実施形態のようにフロントカバー先端(外側筒状突出部12-1A)をインペラシェルに突当構造とする代わりに、インペラシェル先端をフロントカバーに突当構造とする(外側筒状突出部をインペラシェル10側、内側筒状突出部をフロントカバー12側とする)ことも可能である。 In contrast, in this embodiment, the abutment surface is welded by laser welding instead of arc welding. That is, in FIG. 3, the inner cylindrical protrusion 10-1A of the impeller shell 10 and the outer cylindrical protrusion 12-1A of the front cover 12 are fitted to each other in the axial direction, so that the cylindrical portion 10 of the impeller shell 10 is fitted. The abutting surface of the outer cylindrical projecting portion 12-1A with respect to -1 constitutes a welded portion 11 by laser welding. The welded portion 11 extends not only inwardly between the abutting surfaces, but also extends partially into the radially inner cylindrical projecting portion 10-1A. The laser weld 11 is partially penetrated through the inner cylindrical protrusion 10-1A. Laser welding has a high penetration density of the welding beam due to its high energy density, such penetration welding can be realized, and shear strength can be guaranteed. Further, by reducing the plate thickness on the front cover side (thickness of the outer cylindrical protrusion 12-1A of the front cover 12) and securing a large welding area, it is possible to improve the shear strength. Further, the impeller shell 10 and the front cover 12 have a press-fit structure (the inner cylindrical projecting portion 10-1A of the impeller shell 10 and the outer cylindrical projecting portion 12-1A of the front cover 12 are press-fitted structure), so that the welding gap Becomes very narrow, and it becomes a countermeasure against welding defects such as voids. Instead of the front cover tip (outer cylindrical protrusion 12-1A) having an abutting structure against the impeller shell as in the illustrated embodiment, the impeller shell tip has an abutting structure against the front cover (outer cylindrical shape). It is also possible that the projecting portion is the impeller shell 10 side and the inner cylindrical projecting portion is the front cover 12 side).
 レーザ溶接においてはエネルギ密度が高いためビームを被溶接部(突当部)に熱を集中させることができ、溶接部以外の部位への入熱(フロントカバー12側への入熱)が少なく、クラッチフエーシング32に対するフロントカバー12の平面度が維持されるため、クラッチフエーシング32との摺動抵抗が小さく維持され、クラッチフエーシング32として耐力の大きなものを必要としない(クラッチフエーシング32のコスト低減)。また、ボスナット34の座面34Aの平面度を維持することができるため、アーク溶接の場合は必要であったボスナット34の座面(回転プレート35の取付け面)の見込み加工工程を省略することができる(加工コストの低減)。加えて、レーザ溶接においては、溶接ビードの盛り上がりは殆ど生じない(被溶接部と面一に維持される)ため、溶接ビードはそのままにしておいても外側の部品との干渉ラインLに対し図3に示すように余裕があり、これを超えてしまう懸念がない(アーク溶接で必要であったビード部の切削加工が不要でありこの分の加工コストの低減)。 In laser welding, since the energy density is high, the beam can concentrate heat on the welded part (butting part), and there is little heat input to the part other than the welded part (heat input to the front cover 12 side), Since the flatness of the front cover 12 with respect to the clutch facing 32 is maintained, the sliding resistance with the clutch facing 32 is kept small, and the clutch facing 32 does not require a large proof strength (the clutch facing 32). Cost reduction). In addition, since the flatness of the seating surface 34A of the boss nut 34 can be maintained, it is possible to omit the prospective processing step for the seating surface of the boss nut 34 (the mounting surface of the rotating plate 35), which was necessary in the case of arc welding. Yes (reduction of processing costs). In addition, in laser welding, there is almost no swell of the weld bead (maintained to be flush with the welded portion), so even if the weld bead is left as it is, the interference bead L with respect to the outer part is not shown. As shown in FIG. 3, there is a margin, and there is no concern that this will be exceeded (there is no need for the cutting of the bead portion, which is necessary for arc welding, and this reduces the processing cost).
 インペラシェル10とフロントカバー12との接合部の溶接は内部に作動油を封入する必要上全周において行う必要がある。溶接すべきインペラシェル10とフロントカバー12との対向面間に残る隙間(図3ではフロントカバー12の筒状部12-1の外側筒状突出部12-1Aとこれに対向するインペラシェル10の筒状部10-1との間の隙間)は平均的には0.2mm程度であるが、許容範囲内の突当部の隙間の大きさ変動及び隙間位置の変動更にはレーザ溶接機の位置ずれ、平面度、軸直角度の各々の公差を考慮すると、これらを全てカバーするように、レーザビームにより直接照射溶融される範囲にその両側の直接照射部位からの熱伝導により溶融される範囲を付加したトータルの範囲が最低限0.6mm程度は得られることが溶接品質の確保のため必要である。図5はインペラシェル10とフロントカバー12との突当面間の隙間を円周方向に展開して模式的に示しており、インペラシェル10とフロントカバー12間の突当面間の隙間(合わせ目)Gは円周方向に一定ではなく或る程度の範囲で変化しており、また、突当面の位置も一定ではなく、レーザトーチから発生される溶接ビームとしてはこの変動範囲の隙間において所望の溶接品質を得ることができるものであることが必要である。そこで、本発明の実施においては円周方向における突当面の変動範囲をカバーするようにビームスポットの形状として矩形のものを採用している。そして、矩形断面のレーザビームについては例えばYAGレーザに関しては特開2011-18823号公報等に記載があるが、ビームスポットの広い矩形断面における強度分布が均一な観点において本発明の実施においては半導体レーザの採用が好ましい。このような半導体レーザとして市販のものとしては例えばエンシュウ株式会社製のL1型レーザ溶接装置(出力4KW)を採用することができる。即ち、半導体レーザにおいてもレーザ発信器により得られるレーザビームの断面は円形断面であるが、クラッドにより被覆された縦長矩形断面の光ファイバコアを有するビーム形状変換器を通過させるとき、コアとクラッドとの界面での全反射を繰り返すことによりレーザビーム断面を縦長矩形断面形状に変換することができる。即ち、図6においてビーム形状変換器(図示せず)により得られたこのような縦長矩形断面形状のレーザビームを40にて示し、縦長矩形断面形状のレーザビーム40は集光レンズ42により集光され、インペラシェル10とフロントカバー12間の突当面に照射(照射位置でのレーザビームを40Aにて示す)され、図1-図3のレーザ溶接部11を得ることができる。図5において、レーザビームの縦長矩形断面形状のインペラシェル10とフロントカバー12間の突当面間の隙間Gに対する位置関係が示され、レーザビーム40の縦長矩形断面における縦長Lの方向が突当面間の隙間Gに沿うような位置関係となっている。この位置関係は矩形断面のレーザエネルギの効率的利用のため重要である。即ち、上述L1型レーザ溶接装置によるレーザビーム40の縦長矩形断面は1.6mm×0.4mmといった極細長形状であり、溶接方向(円周方向)における被溶接部の各一点を想定すると、この各一点におけるレーザエネルギの照射を受ける時間の実質的最長(その点で受ける照射レーザエネルギの総量の実質的最大)はレーザビーム40の縦長矩形断面における縦長Lの方向を突当部に沿うように配置することにより得ることができるからである。そして、突当面間の溶肉の形成はレーザビームが直接当たることにより溶融が行われることと、この溶融部からの伝導熱により溶融されること、とが合併して行われる。換言すれば、レーザビーム40の縦長矩形断面形状における縦長L分に熱伝導効果により溶融される分を上下に付加した範囲(上述L1型レーザ溶接装置の場合上下に夫々0.5mm程度の範囲)において溶接が行い得る。レーザビームによる直接加熱分に伝熱による加熱分を付加した溶接範囲の上下縁の軌跡は想像線M1, M2にて示される。上述のように、突当面間の隙間Gはその位置及び大きさが円周方向に沿って変動があるが、隙間Gが全周に亘って軌跡M1, M2の内側に位置するようにレーザビーム40の矩形断面における縦長Lが選定され、これにより全周に亘ってのインペラシェル10とフロントカバー12間の突当面間の完全密閉溶接が可能となる。 It is necessary to weld the joint portion between the impeller shell 10 and the front cover 12 over the entire circumference because it is necessary to enclose the hydraulic oil therein. A gap remaining between the opposed surfaces of the impeller shell 10 to be welded and the front cover 12 (in FIG. 3, the outer cylindrical protruding portion 12-1A of the cylindrical portion 12-1 of the front cover 12 and the impeller shell 10 opposed thereto). The gap between the cylindrical part 10-1) is on the order of 0.2 mm on average, but the gap size variation and gap position variation within the allowable range, as well as the position of the laser welder Considering each tolerance of deviation, flatness, and axial perpendicularity, the range melted by the heat conduction from the direct irradiation sites on both sides of the range is directly covered by the laser beam so as to cover all of them. It is necessary for ensuring the welding quality that the added total range is about 0.6 mm. FIG. 5 schematically shows a gap between the abutment surfaces of the impeller shell 10 and the front cover 12 developed in the circumferential direction, and a gap between the abutment surfaces between the impeller shell 10 and the front cover 12 (joint). G is not constant in the circumferential direction but varies within a certain range, and the position of the abutting surface is also not constant, and the welding beam generated from the laser torch has a desired welding quality in the gap of this variation range. It is necessary to be able to obtain Therefore, in the embodiment of the present invention, a rectangular beam spot shape is employed so as to cover the variation range of the abutting surface in the circumferential direction. As for a laser beam having a rectangular cross section, for example, a YAG laser is described in Japanese Patent Application Laid-Open No. 2011-18823. Is preferable. As such a semiconductor laser, for example, an L1 type laser welding apparatus (output 4 kW) manufactured by Enshu Corporation can be used. That is, even in a semiconductor laser, the cross section of the laser beam obtained by the laser transmitter is a circular cross section, but when passing through a beam shape converter having an optical fiber core having a vertically long rectangular cross section covered with a clad, the core and the clad By repeating total reflection at the interface, the laser beam cross section can be converted into a vertically long rectangular cross section. That is, in FIG. 6, a laser beam having such a vertically long rectangular cross section obtained by a beam shape converter (not shown) is indicated by 40, and the laser beam 40 having a vertically long rectangular cross section is condensed by a condenser lens 42. Then, the abutting surface between the impeller shell 10 and the front cover 12 is irradiated (a laser beam at the irradiation position is indicated by 40A), and the laser welded portion 11 shown in FIGS. 1 to 3 can be obtained. In FIG. 5, the positional relationship with respect to the gap G between the abutting surfaces between the impeller shell 10 having a vertically long rectangular cross section of the laser beam and the front cover 12 is shown, and the direction of the vertically long L in the vertically long rectangular cross section of the laser beam 40 is between the abutting surfaces. The positional relationship is along the gap G. This positional relationship is important for efficient use of the laser energy of the rectangular cross section. That is, the longitudinal rectangular cross section of the laser beam 40 by the above-described L1 type laser welding apparatus is an extremely narrow shape of 1.6 mm × 0.4 mm, and each point of the welded portion in the welding direction (circumferential direction) is assumed. The laser beam 40 is arranged so that the substantially longest time (substantially maximum of the total amount of irradiation laser energy received at that point) of the laser beam 40 in the longitudinal rectangular section of the laser beam 40 is along the abutting portion. This is because it can be obtained. The formation of the molten metal between the abutting surfaces is performed by a combination of melting by direct application of the laser beam and melting by conduction heat from the melting portion. In other words, in the range in which the portion melted by the heat conduction effect is added to the vertical length L in the vertical rectangular cross-sectional shape of the laser beam 40 (in the case of the above-described L1 type laser welding apparatus, the range is about 0.5 mm in the vertical direction). Welding can be performed. The trajectories of the upper and lower edges of the welding range obtained by adding the heating part by the heat transfer to the direct heating part by the laser beam are indicated by imaginary lines M 1 and M 2 . As described above, the position and size of the gap G between the abutting surfaces vary along the circumferential direction, but the gap G is located inside the trajectories M 1 and M 2 over the entire circumference. The longitudinal length L in the rectangular cross section of the laser beam 40 is selected, and thereby, complete sealing welding between the abutting surfaces between the impeller shell 10 and the front cover 12 is possible over the entire circumference.
 レーザビームの強力な貫徹力により溶接部11は図3に示すようにインペラシェルの筒状部10-1に対するフロントカバー12の外側筒状突出部12-1Aの突当面を超えて、先端部11-1がインペラシェル10の内側筒状突出部10-1Aに部分的に食い込むようにされ(貫入深さ=d)、せん断に対する高い強度を得ることができる。 Due to the strong penetrating force of the laser beam, the welded portion 11 exceeds the abutting surface of the outer cylindrical protruding portion 12-1A of the front cover 12 with respect to the cylindrical portion 10-1 of the impeller shell, as shown in FIG. -1 partially bites into the inner cylindrical protrusion 10-1A of the impeller shell 10 (penetration depth = d), and high strength against shearing can be obtained.
 図7は変形実施形態を示し、図1-図3に示すレーザ溶接部11に加えて、第2のレーザ溶接部44を設けたものである。この第2のレーザ溶接部44も全周に設けられ、レーザ溶接部11から軸方向に離間して、フロントカバー12の外周よりその外側筒状突出部12-1Aを貫通し、インペラシェル10の内側筒状突出部10-1Aに少し食い込むようにされる。この実施形態では溶接部を2箇所に設けることで、せん断に対する一層高い強度を得ることができる。 FIG. 7 shows a modified embodiment in which a second laser weld 44 is provided in addition to the laser weld 11 shown in FIGS. The second laser welded portion 44 is also provided on the entire circumference, is spaced apart from the laser welded portion 11 in the axial direction, penetrates the outer cylindrical protruding portion 12-1A from the outer periphery of the front cover 12, and the impeller shell 10 The inner cylindrical protrusion 10-1A is slightly bitten. In this embodiment, a higher strength against shearing can be obtained by providing the welds at two locations.
 本実施形態においては、レーザ溶接部11の形成は、従来と同様であるが、仮止めと本止めとの2段階にて行う。以下、この2段階溶接について説明すると、第1段階の仮止めにおいてはインペラシェル10に対し、フロントカバー12を円周方向に離間した例えば3箇所において局部的な溶接(仮止め)を行う。図8はインペラシェル10の筒状部10-1に対するフロントカバー12の外側筒状突出部12-1Aの突当部における横断面図(図1のVIII-VIII線に沿ったインペラシェル10及びフロントカバー12の横断面図)を示す。図3によって説明したように溶接時にインペラシェル10の筒状部10-1とフロントカバー12の筒状部12-1とは、内側筒状突出部10-1Aと外側筒状突出部12-1Aとの間で相互に挿入され、インペラシェル10の筒状部10-1に対するフロントカバー12の筒状部12-1の外側筒状突出部12-1Aの突当部においてレーザ溶接が行われる。図8において、仮止め溶接部をWpにて示し、インペラシェル10とフロントカバー12との突当部Gに図6のようにレーザビーム40を当てることで、突当部のレーザ溶接が行われる。この実施形態では図8に示すように仮止め溶接部Wpは円周方向に120度の等間隔で3箇所において行われる。また、溶接部の円周方向における部分的展開形状を図9に示す。図9ではインペラシェル10とフロントカバー12との溶接時の合わせ目G(インペラシェル10の筒状部10-1に対するフロントカバー12の外側筒状突出部12-1Aの突当部)は本来は円周方向で隙間が一定でなく、またその位置も変動があるが、説明の便宜上に直線にて表している。そして、仮止めのための溶接部Wpはインペラシェル10とフロントカバー12との溶接時の合わせ目Gに沿って細長く延びている。従来も仮止めは行われていたのであるが、従来の仮止め溶接部の形状はWp´で示すように点状であったが、本発明において仮止め溶接部Wpを合わせ目Gに沿って円周方向に細長く延在させたことが相違点である。このような仮溶接部Wpの形状は本溶接の際に仮止め部においてインペラシェル10とフロントカバー12が相対的に動いてしまい仮止めの効果が消失することを防止することに役立つ。 In the present embodiment, the laser weld 11 is formed in the same manner as in the prior art, but is performed in two stages, temporarily and permanently. Hereinafter, the two-stage welding will be described. In the first stage of temporary fixing, local welding (temporary fixing) is performed on the impeller shell 10 at, for example, three locations where the front cover 12 is separated in the circumferential direction. 8 is a cross-sectional view of the abutting portion of the outer cylindrical protrusion 12-1A of the front cover 12 with respect to the cylindrical portion 10-1 of the impeller shell 10 (the impeller shell 10 and the front along the line VIII-VIII in FIG. 1). A cross-sectional view of the cover 12) is shown. As described with reference to FIG. 3, the cylindrical portion 10-1 of the impeller shell 10 and the cylindrical portion 12-1 of the front cover 12 during welding are an inner cylindrical protruding portion 10-1A and an outer cylindrical protruding portion 12-1A. Are inserted into each other, and laser welding is performed at the abutting portion of the outer cylindrical protruding portion 12-1A of the cylindrical portion 12-1 of the front cover 12 with respect to the cylindrical portion 10-1 of the impeller shell 10. In FIG. 8, the temporary fixing welded portion is indicated by Wp, and the laser beam 40 is applied to the abutting portion G of the impeller shell 10 and the front cover 12 as shown in FIG. . In this embodiment, as shown in FIG. 8, the temporary fixing welds Wp are performed at three locations at equal intervals of 120 degrees in the circumferential direction. Moreover, the partial expansion | deployment shape in the circumferential direction of a welding part is shown in FIG. In FIG. 9, the seam G (the abutting portion of the outer cylindrical protruding portion 12-1A of the front cover 12 with respect to the cylindrical portion 10-1 of the impeller shell 10) at the time of welding between the impeller shell 10 and the front cover 12 is originally The gap is not constant in the circumferential direction, and its position varies, but is represented by a straight line for convenience of explanation. The welded portion Wp for temporary fixing extends elongated along the seam G when the impeller shell 10 and the front cover 12 are welded. Conventionally, temporary fixing has been performed, but the shape of the conventional temporary fixing welded portion is a dot shape as indicated by Wp ′. In the present invention, the temporary fixing welded portion Wp is aligned along the joint G. The difference is that it is elongated in the circumferential direction. Such a shape of the temporarily welded portion Wp is useful for preventing the impeller shell 10 and the front cover 12 from moving relative to each other at the temporarily fixed portion during the main welding, thereby losing the effect of temporary fixing.
 本溶接は円周方向における適当な位置から開始され、図8ではレーザビーム溶接の場合は溶接ビーム40がインペラシェル10とフロントカバー12との合せ目に沿って円周方向に矢印fのように移動させて行く事で本溶接Wrが開始されている様子が分かる。図9(a)(b)(c)(d)(e)は全周での本溶接部Wrの形成過程を円周方向に展開された合せ目Gに沿って模式的に示すが、図9(a)~(e)を通じて、溶接部における白抜き部分を溶融部分とし斜線部分を凝固部分とする。図9(a)は一つの仮止め溶接部を示し、本溶接は未だ行われていない状態を示す。図9(b)では本溶接部Wrは仮止め溶接部Wpの手前に位置するが、本溶接が少し進んだ(c)の位置では本溶接部Wrの先端部分が仮止め溶接部Wpの先端部分にかかっており、このとき仮止め溶接部Wpの先端部分は本溶接部Wrからの熱により完全に溶融状態(白抜きにて表す)となるが、仮止め溶接部Wpの溶融は全体ではなく仮止め溶接部Wpの前方部分は凝固状態(斜線)のままである。本溶接は(d)では更に進行し、下側の仮止め溶接部Wpとの重なりが大きくなるが、仮止め溶接部Wpの前方部はまだ凝固状態のままであり、他方、(c)で一旦溶融した仮止め部分(最初に本溶接と重なった部分)は本溶接部分と共に凝固状態(斜線)に戻っている。そして、(e)では本溶接部の溶接アークは一箇所の仮止め溶接部Wpを完全に通過しており、前方側部位において仮止め溶接部Wpは溶融状態(白抜き)であるが、下流側部位における再凝固部分は更に広がっている。従って、当初図9(a)の仮止め溶接部Wpにより固定化した部位におけるインペラシェル10とフロントカバー12との間の固定状態(仮止め状態)は(b)-(e)の本溶接の過程を通じて維持される。このように本発明では仮止め溶接部Wpを溶接時の合わせ目Gに沿って細長くすることによって本溶接の進行にかかわらず第1段階の溶接で仮止めを受けた各部位はその一部が必ず凝固状態であるため、仮止め溶接部においてインペラシェル10とフロントカバー12との相対位置は固定されたままであり、仮止め効果を維持することができる。これに対し、従来の点溶接による仮止めの場合、本溶接の熱によって仮止め溶接部(図9(a)のWp´)が完全に溶融してしまい、その仮止め部位でインペラシェル10とフロントカバー12との相対位置はフリーとなるため、仮止め効果がその部位で消失してしまい、仮止め効果としては弱くなってしまっていた。図10はこの本発明の仮止め溶接方式と従来の仮止め溶接方式とで本溶接後のフロントカバーのクラッチフエーシング対向面(図2の12A)の平面度の測定結果を示す。仮止め部位は円周方向で0度、120度及び240度の3箇所とし、平面度の測定値は基準値(零点)に対するプラス若しくはマイナス方向における変位量として表示している。本発明仮止め方法(a)によって従来の仮止め方法(b)との比較で平面度の向上(うねり縮小)が得られることが分かる。これにより、スリップロックアップにおけるクラッチフエーシング32とフロントカバー12との間の油膜における圧力変動を抑え、クラッチフエーシング32とフロントカバー12とを油膜を介して滑らせるスリップロックアップ下での良好な動力伝達を確保することができる。また、熱歪低減のためのトルクコンバータに組立完了後の二次加工の廃止若しくは最小化を図ることができる。 The main welding is started from an appropriate position in the circumferential direction. In FIG. 8, in the case of laser beam welding, the welding beam 40 is circumferentially along the joint between the impeller shell 10 and the front cover 12 as indicated by an arrow f. It can be seen that the main welding Wr is started by moving it. FIGS. 9A, 9B, 9C, 9D, and 9E schematically show the formation process of the main welded portion Wr along the entire circumference along the seam G developed in the circumferential direction. Through 9 (a) to (e), the white portion in the welded portion is the molten portion and the shaded portion is the solidified portion. FIG. 9 (a) shows one temporarily welded portion, and shows a state where the main welding has not yet been performed. In FIG. 9B, the main weld Wr is located in front of the temporarily welded portion Wp. However, at the position (c) where the main weld has advanced a little, the tip of the main weld Wr is the tip of the temporarily welded portion Wp. At this time, the tip of the temporarily welded portion Wp is completely melted by heat from the main welded portion Wr (represented by white lines), but the temporary welded portion Wp is melted as a whole. In other words, the front portion of the temporarily welded portion Wp remains in a solidified state (oblique line). The main welding further proceeds in (d), and the overlap with the lower temporary welding portion Wp is increased, but the front portion of the temporary welding portion Wp is still in a solid state, while in (c) The temporarily fixed portion (the portion first overlapping with the main welding) once melted returns to the solidified state (shaded line) together with the main welding portion. And in (e), the welding arc of this welding part has completely passed through one temporary fixing weld Wp, and the temporary fixing weld Wp is in a molten state (outlined) at the front side portion, but it is downstream. The re-coagulated part in the side part is further expanded. Accordingly, the fixed state (temporarily fixed state) between the impeller shell 10 and the front cover 12 at the site fixed by the temporarily fixed weld Wp in FIG. 9A is the same as that of the main welding of (b)-(e). Maintained throughout the process. As described above, in the present invention, by temporarily elongating the temporarily welded portion Wp along the seam G at the time of welding, a part of each part that has been temporarily fixed in the first stage welding regardless of the progress of the main welding is partially included. Since it is always in a solidified state, the relative position between the impeller shell 10 and the front cover 12 remains fixed at the temporary fixing weld, and the temporary fixing effect can be maintained. On the other hand, in the case of temporary fixing by conventional spot welding, the temporary fixing weld (Wp ′ in FIG. 9A) is completely melted by the heat of the main welding, and the impeller shell 10 and Since the relative position with respect to the front cover 12 is free, the temporary fixing effect disappears at the site, and the temporary fixing effect is weakened. FIG. 10 shows the measurement results of the flatness of the clutch facing facing surface (12A in FIG. 2) of the front cover after the main welding by the temporary welding method of the present invention and the conventional temporary welding method. Temporary fixing parts are three in the circumferential direction, 0 degrees, 120 degrees and 240 degrees, and the measured flatness is displayed as a displacement amount in the plus or minus direction with respect to the reference value (zero point). It can be seen that the temporary fixing method (a) of the present invention improves the flatness (swelling reduction) in comparison with the conventional temporary fixing method (b). Thereby, the pressure fluctuation in the oil film between the clutch facing 32 and the front cover 12 in the slip lock-up is suppressed, and the slip lock-up under the slip lock-up that causes the clutch facing 32 and the front cover 12 to slide through the oil film is good. Power transmission can be ensured. In addition, secondary processing after assembly of the torque converter for reducing thermal strain can be eliminated or minimized.
 本実施形態におけるインペラシェル10とフロントカバー12との仮止め及び本止めの2段階からなる溶接部の形成、特に、仮止め溶接部Wpを円周方向に細長くし、本止め溶接時に仮止め溶接が一部を必ず凝固した状態に維持する溶接方式は、溶接方式をレーザ溶接に限定せず、電子ビーム方式やアーク溶接によって行ってもレーザ溶接による図9及び図10に関連して説明した効果に準じた効果を奏することができる。 In the present embodiment, the welded portion is composed of two stages, that is, temporary fixing between the impeller shell 10 and the front cover 12 and final fixing, in particular, the temporary fixing welding portion Wp is elongated in the circumferential direction, and temporary fixing welding is performed during final fixing welding. The welding method that always maintains a part in a solidified state is not limited to laser welding, and the effects described in relation to FIGS. The effect according to can be produced.
10…インペラシェル
10-1…インペラシェルの筒状部10-1
10-1A…内側筒状突出部
11…レーザ溶接部
12…フロントカバー
12-1…フロントカバーの筒状部
12-1A…外側筒状突出部
13…流体式動力伝達部
14…ロックアップ部
15…インペラ
16…タービン
17…ステータ
22…ドリブンプレート(出力側回転部材)
26…ドライブプレート(入力側回転部材)
28…ダンパスプリング
29…イコライザプレート(中間部材)
30…ピストンプレート30
32…クラッチフエーシング
34…ボスナット
34A…ボスナットの座面
35…回転プレート
40…レーザビーム
42…集光レンズ
44…第2のレーザ溶接部
M1, M2…レーザ溶接範囲上下縁の軌跡
Wp…仮止め溶接部
Wr…本溶接部
10 ... Impeller shell
10-1 ... Cylinder part of impeller shell 10-1
10-1A ... Inner cylindrical projection 11 ... Laser weld 12 ... Front cover
12-1… The cylindrical part of the front cover
12-1A ... Outer cylindrical projection 13 ... Fluid power transmission unit 14 ... Lock-up unit 15 ... Impeller 16 ... Turbine 17 ... Stator 22 ... Driven plate (output side rotating member)
26 ... Drive plate (input side rotating member)
28 ... Damper spring 29 ... Equalizer plate (intermediate member)
30 ... Piston plate 30
32 ... Clutch facing 34 ... Boss nut 34A ... Boss nut seat 35 ... Rotating plate 40 ... Laser beam 42 ... Condensing lens 44 ... Second laser weld
M 1 , M 2 ... Laser welding range upper and lower edge trajectory Wp ... Temporary fixing weld Wr ... Main weld

Claims (16)

  1.  インペラシェルと、インペラシェルに対して外周部の全周に沿った溶接部にて溶接されるフロントカバーと、インペラシェル及びフロントカバーにより形成される内部空間に収容され、インペラ、タービン及びステータを具備して成る流体式動力伝達装置と、同じく前記内部空間に収容され、内部油圧により駆動されて、フロントカバー対向面にクラッチフェーシングを介して係合され、入力側と出力側とを直接動力伝達するピストンプレートとを具備し、インペラシェルとフロントカバーとは相互に軸方向に嵌合される軸方向筒状突出部を夫々備え、前記溶接部は、インペラシェルとフロントカバーとの一方における径方向外側に位置する軸方向筒状突出部とインペラシェルとフロントカバーとの他方との突当面を全周において溶接するレーザ溶接部であるトルクコンバータ。 An impeller shell, a front cover that is welded to the impeller shell at a welded portion along the entire outer circumference, and an impeller, a turbine, and a stator that are accommodated in an internal space formed by the impeller shell and the front cover In the same manner, the fluid type power transmission device is housed in the internal space, driven by the internal hydraulic pressure, and engaged with the front cover facing surface via the clutch facing to directly transmit power between the input side and the output side. A piston plate, and the impeller shell and the front cover are each provided with an axial cylindrical protrusion that is axially fitted to each other, and the welded portion is radially outward of one of the impeller shell and the front cover. The abutting surfaces of the axial cylindrical protrusion, the impeller shell, and the other of the front cover are welded all around. Torque converter is over laser welding unit.
  2.  請求項1に記載の発明において、レーザ溶接部は突当面より径方向内側の軸方向筒状突出部に一部食い込むように延設されているトルクコンバータ。 2. The torque converter according to claim 1, wherein the laser welded portion extends so as to partially bite into the axial cylindrical protruding portion radially inward from the abutting surface.
  3.  請求項1若しくは2に記載の発明において、前記溶接部は溶接ビームが矩形断面のレーザによるレーザ溶接部であるトルクコンバータ。 3. The torque converter according to claim 1, wherein the weld is a laser weld with a laser having a rectangular cross section.
  4.  請求項1から3のいずれか一項に記載の発明において、前記溶接部より軸方向に離間した部位において、全周に延びる第2のレーザ溶接部を備え、径方向においては第2のレーザ溶接部は径方向外側の軸方向の筒状突出部の外面より径方向外側の筒状突出部を貫通し、径方向内側の軸方向筒状突出部に一部食い込むように延設されているトルクコンバータ。 4. The invention according to claim 1, further comprising a second laser welding portion extending in the entire circumference at a portion spaced in the axial direction from the welding portion, and the second laser welding in the radial direction. The torque extends so as to penetrate the axial cylindrical projection on the radially inner side through the cylindrical projection on the radially outer side from the outer surface of the axial cylindrical projection on the radially outer side. converter.
  5.  請求項1から4のいずれか一項に記載の発明において、インペラシェルとフロントカバーとの前記突当面に、円周方向において間隔を置いた複数の箇所においてレーザ溶接による仮止め溶接部を有し、仮止め溶接部は外側からの前記全周に沿った溶接部と一体溶融されているトルクコンバータ。 The invention according to any one of claims 1 to 4, wherein the abutting surfaces of the impeller shell and the front cover have temporary welding portions by laser welding at a plurality of locations spaced in the circumferential direction. The torque converter in which the temporarily welded portion is integrally melted with the welded portion along the entire circumference from the outside.
  6.  請求項5に記載の発明において、前記仮止め溶接部は円周方向に延在しているトルクコンバータ。 6. The torque converter according to claim 5, wherein the temporarily welded portion extends in a circumferential direction.
  7.  請求項1に記載のレーザ溶接部を得るためのレーザ溶接方法であって、インペラシェルとフロントカバーとはその軸方向筒状突出部を軸方向にて嵌合し、インペラシェルとフロントカバーとの一方における径方向外側に位置する軸方向筒状突出部とインペラシェルとフロントカバーとの他方との対向面が突当られ、突当部に外周よりレーザビームを当て、全周に沿ってレーザ溶接することにより突当面間にレーザ溶接部を形成するレーザ溶接方法。 It is a laser welding method for obtaining the laser welding part of Claim 1, Comprising: An impeller shell and a front cover fit the axial direction cylindrical protrusion part in an axial direction, and between an impeller shell and a front cover, On the other hand, the axially cylindrical projecting portion located on the radially outer side, the impeller shell, and the other surface of the front cover are abutted against each other, a laser beam is applied to the abutting portion from the outer periphery, and laser welding is performed along the entire circumference A laser welding method in which a laser weld is formed between the abutting surfaces.
  8.  請求項7に記載の発明において、レーザ溶接はレーザ溶接部が突当面間を越えて、径方向内側の軸方向筒状突出部に一部食い込むように行われるレーザ溶接方法。 8. The laser welding method according to claim 7, wherein the laser welding is performed so that the laser welding portion extends beyond the abutting surface and partially bites into the axial cylindrical protruding portion on the radially inner side.
  9.  請求項7若しくは8に記載の発明において、レーザ溶接ビームは矩形断面形状をなし、前記突当面間の隙間を全周におけるどの部位にあっても前記突当面に溶肉を形成し得るようにビーム幅の大きさが設定されるレーザ溶接方法。 9. The laser welding beam according to claim 7 or 8, wherein the laser welding beam has a rectangular cross-sectional shape, and a beam can be formed on the abutting surface regardless of the gap between the abutting surfaces in any part of the circumference. Laser welding method in which the width is set.
  10.  請求項9に記載の発明において、レーザ溶接ビームの矩形断面は縦長形状をなし、矩形断面の縦長は突当面に沿った方向に延びているレーザ溶接方法。 10. The laser welding method according to claim 9, wherein the rectangular cross section of the laser welding beam has a vertically long shape, and the vertically long rectangular cross section extends in a direction along the abutting surface.
  11.  請求項7から10のいずれか一項に記載の発明において、前記溶接部より軸方向に離間した部位において外周よりレーザビームを当て径方向外側の軸方向の筒状突出部の外面より径方向外側の筒状突出部を貫通し、径方向内側の軸方向筒状突出部に一部食い込む第2の溶接部を形成するレーザ溶接方法。 The invention according to any one of claims 7 to 10, wherein a laser beam is applied from the outer periphery at a portion spaced in the axial direction from the welded portion, and is radially outward from the outer surface of the axial cylindrical protruding portion on the radially outer side. Laser welding method for forming a second weld that penetrates through the cylindrical protrusion and partially digs into the radially inner axial protrusion.
  12.  請求項7から11のいずれか一項に記載の発明において、全周に沿った前記レーザ溶接部の形成に先立ち、第1段階の溶接工程として、インペラシェルとフロントカバーとは、円周方向において間隔を置いた複数の箇所にて突当部に外周よりレーザビームを当てることで仮止め溶接部の形成を行い、その後の第2段階の溶接工程として、前記全周に沿ったレーザ溶接部の形成を行い、第2段階の溶接に際し、第1段階の溶接工程で得られた各仮止め溶接部ついては、溶肉の凝固状態が一部でいつも維持されるレーザ溶接方法。 The invention according to any one of claims 7 to 11, wherein the impeller shell and the front cover are arranged in a circumferential direction as a first stage welding process prior to the formation of the laser welded portion along the entire circumference. A temporary fixing weld is formed by applying a laser beam from the outer periphery to the abutting portion at a plurality of intervals, and as a subsequent second-stage welding process, the laser welding portion along the entire periphery is formed. A laser welding method in which the solidified state of the molten metal is always maintained partially for each temporarily welded portion obtained in the first stage welding process during the second stage welding.
  13.  請求項12に記載の発明において、第1段階の溶接工程における各溶接箇所において溶肉は円周方向に沿って延在するようにされる溶接方法。 13. The welding method according to claim 12, wherein the molten metal extends along the circumferential direction at each welding point in the first stage welding process.
  14. インペラシェルと、インペラシェルに対して外周部の全周に沿った溶接部にて溶接されるフロントカバーと、インペラシェル及びフロントカバーにより形成される内部空間に収容され、インペラ、タービン及びステータを具備して成る流体式動力伝達装置と、同じく前記内部空間に収容され、内部油圧により駆動されて、フロントカバー対向面にクラッチフェーシングを介して係合され、入力側と出力側とを直接動力伝達するピストンプレートとを具備し、前記溶接部は、インペラシェルとフロントカバーとを、円周方向において間隔を置いた複数の箇所において接合し、かつ円周方向に延びる仮止め溶接部と、インペラシェルとフロントカバーとを前記仮止め溶接部も含めた全周において溶接する全周溶接部とから成るトルクコンバータ。 An impeller shell, a front cover that is welded to the impeller shell at a welded portion along the entire outer circumference, and an impeller, a turbine, and a stator that are accommodated in an internal space formed by the impeller shell and the front cover In the same manner, the fluid type power transmission device is housed in the internal space, driven by the internal hydraulic pressure, and engaged with the front cover facing surface via the clutch facing to directly transmit power between the input side and the output side. A piston plate, wherein the welded portion joins the impeller shell and the front cover at a plurality of locations spaced apart in the circumferential direction, and extends temporarily in the circumferential direction; and the impeller shell; A torque converter comprising a front cover and an all-around welded portion that welds the entire circumference including the temporarily welded portion.
  15.  インペラシェルと、インペラシェルに対して外周部の全周に沿って溶接されるフロントカバーと、インペラシェル及びフロントカバーにより形成される内部空間に収容され、インペラ、タービン及びステータを具備して成る流体式動力伝達装置と、同じく前記内部空間に収容され、内部油圧により駆動されて、フロントカバー対向面にクラッチフェーシングを介して係合され、入力側と出力側とを直接動力伝達するピストンプレートとを具備して成るトルクコンバータにおけるインペラシェルとフロントカバーとの外周部の全周溶接方法であって、第1段階の溶接工程として、インペラシェルとフロントカバーとは、円周方向において間隔を置いた複数の箇所にて溶接することで仮止めを行い、第2段階の溶接工程として、インペラシェルとフロントカバーとの接合部に沿った全周に沿ってかつ仮止めされた箇所についてはこれと重なるように溶接を行い、この第2段階の溶接に際して、第1段階の溶接工程で仮止めされた各箇所については、溶肉の凝固状態が一部でいつも維持されるように溶接が行われることを特徴とする溶接方法。 An impeller shell, a front cover welded along the entire circumference of the outer periphery of the impeller shell, and a fluid that is housed in an internal space formed by the impeller shell and the front cover and includes an impeller, a turbine, and a stator And a piston plate that is housed in the internal space and is driven by internal hydraulic pressure, is engaged with the front cover facing surface via a clutch facing, and directly transmits power between the input side and the output side. A circumferential welding method for an outer peripheral portion of an impeller shell and a front cover in a torque converter comprising the impeller shell and the front cover as a first stage welding step, wherein the impeller shell and the front cover are spaced apart in the circumferential direction. Temporary fixing is performed by welding at the location of the impeller shell as the second stage welding process The part temporarily fixed along the entire circumference along the joint with the front cover was welded so as to overlap with this, and in the second stage welding, it was temporarily fixed in the first stage welding process. A welding method characterized in that the welding is performed so that the solidified state of the molten metal is always maintained partially in each part.
  16.  請求項15に記載の発明において、第1段階の溶接工程における各溶接箇所において溶肉は円周方向に沿って延在するようにされる溶接方法。 16. The welding method according to claim 15, wherein the molten metal extends along the circumferential direction at each welding point in the first stage welding process.
PCT/JP2014/070540 2013-11-26 2014-08-05 Torque converter for automobile provided with lockup device, and method for welding impeller shell and front cover thereof WO2015079742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015550586A JP6386473B2 (en) 2013-11-26 2014-08-05 Torque converter for automobile with lock-up device and method for welding impeller shell to front cover

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-243782 2013-11-26
JP2013243782 2013-11-26
JP2014081206 2014-04-10
JP2014-081206 2014-04-10

Publications (1)

Publication Number Publication Date
WO2015079742A1 true WO2015079742A1 (en) 2015-06-04

Family

ID=53198699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070540 WO2015079742A1 (en) 2013-11-26 2014-08-05 Torque converter for automobile provided with lockup device, and method for welding impeller shell and front cover thereof

Country Status (2)

Country Link
JP (1) JP6386473B2 (en)
WO (1) WO2015079742A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210971A (en) * 2016-05-23 2017-11-30 アイシン・エィ・ダブリュ工業株式会社 Starting device
CN114670971A (en) * 2020-12-25 2022-06-28 株式会社岛野 Bicycle component and method of forming a bicycle component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215288A (en) * 1983-05-20 1984-12-05 Mitsubishi Motors Corp Laser welding method of plate material
JPH0215891A (en) * 1988-05-17 1990-01-19 Ford Motor Co Torque converter and welding method thereof
JPH0366485A (en) * 1989-07-31 1991-03-22 Komatsu Ltd Welding method for cylindrical members
DE19755168A1 (en) * 1997-12-11 1999-06-17 Mannesmann Sachs Ag Method of connecting at least two components of torque converter used in motor vehicle transmission
JPH11200397A (en) * 1998-01-10 1999-07-27 Komatsu Ltd Manufacture of box-shaped structure for construction-equipment working machine
JP2004063406A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Laser sealing battery, its manufacturing method and laser irradiation apparatus
JP2008057782A (en) * 2006-09-01 2008-03-13 Luk Lamellen & Kupplungsbau Beteiligungs Kg Seam gas welding for torque converter and method for gas welding torque converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215288A (en) * 1983-05-20 1984-12-05 Mitsubishi Motors Corp Laser welding method of plate material
JPH0215891A (en) * 1988-05-17 1990-01-19 Ford Motor Co Torque converter and welding method thereof
JPH0366485A (en) * 1989-07-31 1991-03-22 Komatsu Ltd Welding method for cylindrical members
DE19755168A1 (en) * 1997-12-11 1999-06-17 Mannesmann Sachs Ag Method of connecting at least two components of torque converter used in motor vehicle transmission
JPH11200397A (en) * 1998-01-10 1999-07-27 Komatsu Ltd Manufacture of box-shaped structure for construction-equipment working machine
JP2004063406A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Laser sealing battery, its manufacturing method and laser irradiation apparatus
JP2008057782A (en) * 2006-09-01 2008-03-13 Luk Lamellen & Kupplungsbau Beteiligungs Kg Seam gas welding for torque converter and method for gas welding torque converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210971A (en) * 2016-05-23 2017-11-30 アイシン・エィ・ダブリュ工業株式会社 Starting device
CN114670971A (en) * 2020-12-25 2022-06-28 株式会社岛野 Bicycle component and method of forming a bicycle component

Also Published As

Publication number Publication date
JPWO2015079742A1 (en) 2017-03-16
JP6386473B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP4779877B2 (en) Fluid transmission device
JP2009541668A (en) Fluid torque converter and manufacturing method thereof
US7476080B2 (en) Impeller for fluid transmitting device and method of manufacturing the same
JP6386473B2 (en) Torque converter for automobile with lock-up device and method for welding impeller shell to front cover
US8168285B2 (en) Joined component, in particular a pilot boss for a force transfer device, method for manufacture of a continuous material connection and a force transfer device
WO2020167922A1 (en) Torque converter and method of assembly
JP4114727B2 (en) Fluid coupling device lock-up clutch mainly mounted on vehicles
US7543694B2 (en) Hydrokinetic coupling device, particularly for a motor vehicle
JP7184906B2 (en) Lockup clutch for torque converter
JP3406458B2 (en) Re-welding of the front cover of the torque converter and the pump shell
JP4425052B2 (en) Shock absorption structure of propeller shaft
JP2007136499A (en) Insert drive type friction welding method and equipment
JP2007533456A (en) Joint site structure for friction welding and manufacturing method thereof
EP2362110B1 (en) Method of fabricating a friction element
JP4090840B2 (en) Propeller shaft friction welding method
EP2283246B1 (en) Attachment of friction fittings to a clutch disc
JP5109699B2 (en) Torque converter case and joining method of torque converter case
US11384824B2 (en) Lock-up device
JP2022048011A (en) Propeller shaft
JP2002178169A (en) Structure for transport vehicle and its method of manufacture
JP7254566B2 (en) Joint member manufacturing method and joint member used for constant velocity joint
JP2008137481A (en) Energy absorbing type intermediate shaft and its manufacturing method
JP2011183936A (en) Propeller shaft and method of manufacturing the same
JP2011144882A (en) Fluid transmission device with lock-up clutch
JP5833412B2 (en) Electron beam welding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865147

Country of ref document: EP

Kind code of ref document: A1