WO2015079632A1 - Atomic layer deposition device - Google Patents

Atomic layer deposition device Download PDF

Info

Publication number
WO2015079632A1
WO2015079632A1 PCT/JP2014/005650 JP2014005650W WO2015079632A1 WO 2015079632 A1 WO2015079632 A1 WO 2015079632A1 JP 2014005650 W JP2014005650 W JP 2014005650W WO 2015079632 A1 WO2015079632 A1 WO 2015079632A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
atomic layer
container
deposition
upper electrode
Prior art date
Application number
PCT/JP2014/005650
Other languages
French (fr)
Japanese (ja)
Inventor
昂陽 堀内
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Publication of WO2015079632A1 publication Critical patent/WO2015079632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings

Definitions

  • the present disclosure relates to an atomic layer deposition apparatus that forms a thin film on a substrate.
  • an organic metal gas as a source gas By flowing an organic metal gas as a source gas above a substrate disposed in the film formation space, the organic metal is adsorbed on the substrate, and the first gas that does not chemically react with the organic metal is used in the film formation space. After the plasma is generated and the first gas is exhausted, the oxidizing gas is introduced into the film formation space as the second gas, and the plasma is generated in the film formation space using the oxidation gas, so that the metal component of the organic metal is formed on the substrate.
  • An atomic layer deposition method is disclosed in which a metal oxide film is oxidized to form a metal oxide film (see, for example, Patent Document 1).
  • the present disclosure provides an atomic layer deposition apparatus capable of forming a thin film more uniformly on a substrate.
  • An atomic layer deposition apparatus includes a film formation container, a flat plate-like upper electrode disposed inside the film formation container, a flat plate that is disposed to face the upper electrode and generates plasma between the upper electrode.
  • the lower electrode, the first frame disposed so as to surround the periphery of the upper electrode, the first deposition member disposed outside the first frame, and the first frame disposed so as to surround the periphery of the lower electrode Two frames, and a second deposition member disposed outside the second frame.
  • a portion exposed to the inside of the film formation container is an insulator.
  • the atomic layer deposition apparatus is effective for forming a thin film more uniformly on a substrate.
  • Flow diagram showing one cycle of atomic layer deposition method The figure which shows the state (raw material gas supply) in which a thin film is formed on a board
  • substrate The figure which shows the state (reactive gas supply) in which a thin film is formed on a board
  • a technique for forming a thin film of alumina (Al 2 O 3 ) by using TMA (Tri-Methyl-Alminum) as a source gas and oxygen (O 2 ) gas as a reaction gas is exemplified.
  • TMA Tri-Methyl-Alminum
  • oxygen (O 2 ) gas oxygen
  • the present disclosure is not limited to this.
  • ozone (O 3 ) gas may be used as the reaction gas.
  • TDAMAS Tris (dimethylamino) silane
  • TDAMAS Tris (dimethylamino) silane
  • the raw material gas supply unit 70 supplies a raw material gas such as TMA to the film forming container 20 through the raw material gas supply port 72 provided in the film forming container 20.
  • the source gas supply unit 70 and the source gas supply port 72 are connected by, for example, a stainless steel pipe.
  • a mass flow controller may be disposed between the source gas supply unit 70 and the source gas supply port 72.
  • the source gas supply unit 70 is electrically connected to the control unit 60. The timing at which the source gas supply unit 70 supplies the source gas is controlled by the control unit 60.
  • the reaction gas supply unit 80 supplies a reaction gas such as oxygen gas to the film formation container 20 via a reaction gas supply port 82 provided in the film formation container 20.
  • the reactive gas supply unit 80 and the reactive gas supply port 82 are connected by, for example, a stainless steel pipe.
  • a mass flow controller may be disposed between the reaction gas supply unit 80 and the reaction gas supply port 82.
  • the reactive gas supply unit 80 is electrically connected to the control unit 60. The timing at which the reaction gas supply unit 80 supplies the reaction gas is controlled by the control unit 60.
  • the source gas supply unit 70 and the reaction gas supply unit 80 supply a purge gas such as nitrogen (N 2 ) gas or argon (Ar) gas to the inside of the film forming container 20, respectively. It is configured to be able to.
  • a purge gas such as nitrogen (N 2 ) gas or argon (Ar) gas
  • the exhaust unit 40 exhausts the source gas, reaction gas, and purge gas supplied into the film forming container 20 through the exhaust pipe 42.
  • the exhaust unit 40 is, for example, a dry pump.
  • the exhaust unit 40 may further include a turbo molecular pump.
  • the exhaust unit 40 exhausts the film formation container 20 so that the pressure in the film formation container 20 is maintained at about 1 Pa to 200 Pa even when the source gas, the reaction gas, and the purge gas are supplied into the film formation container 20.
  • the exhaust capacity of the exhaust unit 40 is designed in consideration of the capacity of the film forming container 20, the supply gas amount, the set pressure range, and the like.
  • the high frequency power supply 50 is electrically connected to the film forming container 20 via the matching unit 90.
  • the high frequency power supply 50 supplies a high frequency current having a predetermined frequency (for example, 13.56 to 135.6 MHz) to the film forming container 20, plasma is generated inside the film forming container 20.
  • the high frequency power supply 50 is electrically connected to the control unit 60.
  • the timing at which the high frequency power supply 50 supplies the high frequency current to the film forming container 20 is controlled by the control unit 60.
  • the control unit 60 independently controls the timing at which the source gas supply unit 70 supplies the source gas, the timing at which the reaction gas supply unit 80 supplies the reaction gas, and the timing at which the high frequency power supply 50 supplies the high frequency current.
  • the film forming container 20 includes a flat plate-like upper electrode 221 disposed on the upper part of the film forming container 20 and a flat plate-shaped lower electrode disposed on the lower part of the film forming container 20. 321 is provided.
  • the upper electrode 221 and the lower electrode 321 are disposed so as to face each other.
  • the upper electrode 221 and the lower electrode 321 constitute a parallel plate electrode 200. That is, in the present embodiment, capacitively coupled plasma is generated.
  • the upper electrode 221 and the lower electrode 321 are made of stainless steel.
  • the upper electrode 221 is fixed to the film forming container 20.
  • the upper electrode 221 is electrically connected to the high frequency power supply 50 shown in FIG.
  • a matching unit 90 provided between the upper electrode 221 and the high-frequency power source 50 adjusts the inductance of the inductor and the capacitance of the capacitor in the matching unit 90 so as to match the impedance of the parallel plate electrode 200.
  • the lower electrode 321 is fixed on the susceptor 32 disposed at the lower part of the film forming container 20.
  • the lower electrode 321 is grounded.
  • a heater 324 is provided inside the susceptor 32.
  • a resistance heater is used as the heater 324.
  • the heater 324 keeps the temperature of the substrate 100 during the process at, for example, 50 ° C. or more and 100 ° C. or less.
  • the substrate 100 is supported by lift pins (not shown) from below the film forming container 20.
  • the lift pins can be moved up and down by a lifting mechanism (not shown). With the lift pins supporting the substrate 100, the lifting mechanism moves the lift pins downward, so that the substrate 100 is placed on the upper surface of the lower electrode 321.
  • the first frame 222 is arranged so as to surround the periphery of the upper electrode 221. As shown in FIG. 3, the first frame 222 is configured in a frame shape as an example. The first frame 222 is configured such that a portion exposed to the inside of the film forming container 20 is an insulator. A first deposition member 223 is disposed outside the first frame 222. The first deposition member 223 may have a more complicated shape than the first frame 222 in order to match the inner shape of the film forming container 20. The first deposition preventing member 223 is configured such that a portion exposed to the inside of the film forming container 20 is an insulator.
  • the first frame 222 and the first deposition preventing member 223 are fixed to the film forming container 20 with a fixture.
  • the fixture is a bolt 230 configured such that a portion exposed to the inside of the film forming container 20 is an insulator.
  • the second frame 322 is disposed so as to surround the periphery of the lower electrode 321.
  • the second frame 322 is configured in a frame shape.
  • the second frame 322 is configured such that a portion exposed in the film forming container 20 is an insulator.
  • a second deposition preventing member 323 is disposed outside the second frame 322.
  • the second deposition member 323 may have a more complicated shape than the second frame 322 in order to match the shape of the susceptor 32.
  • the second deposition member 323 is configured such that a portion exposed to the inside of the film forming container 20 is an insulator.
  • the second frame 322 and the second adhesion preventing member 323 are fixed to the susceptor 32 disposed in the film forming container 20 with a fixture.
  • the fixture is a bolt 230 configured such that a portion exposed to the inside of the film forming container 20 is an insulator.
  • the second frame 322 and the second adhesion preventing member 323 may be fixed to the film forming container 20.
  • the first frame 222 and the second frame 322 are made of ceramics. Specifically, the first frame 222 and the second frame 322 are made of Al 2 O 3 .
  • the first frame 222 and the second frame 322 may be made of yttria (Y 2 O 3 ). Further, the first frame 222 and the second frame 322 may be made of a metal having a ceramic film. As an example, a configuration in which an iron member is coated with Al 2 O 3 can be given.
  • the ceramic film is formed by, for example, a thermal spraying method.
  • the first deposition member 223 and the second deposition member 323 have a configuration in which the main component is aluminum and the surface is anodized.
  • first deposition member 223 and the second deposition member 323 may be made of ceramics.
  • first deposition member 223 and the second deposition member 323 may be made of Al 2 O 3 or Y 2 O 3 .
  • the 1st adhesion preventing member 223 and the 2nd adhesion preventing member 323 may be comprised with the metal which has a ceramic membrane
  • a configuration in which an iron member is coated with Al 2 O 3 can be given.
  • the bolt 230 is made of ceramics. Specifically, the bolt 230 may be made of Al 2 O 3 or Y 2 O 3 .
  • the bolt 230 may be made of a metal having a ceramic film. As an example, a configuration in which an iron member is coated with Al 2 O 3 can be given.
  • first frame 222, the second frame 322, the first attachment member 223, and the second attachment member 323 may be fixed by a method that does not use the bolt 230.
  • the second frame 322 and the second adhesion preventing member 323 may be configured to be fitted to the susceptor 32.
  • the deposition container 20 in the present embodiment has a function of generating plasma 106 between the upper electrode 221 and the lower electrode 321.
  • the main function of the first frame 222 and the second frame 322 is to suppress the spread of the plasma 106 generated between the upper electrode 221 and the lower electrode 321.
  • the first frame 222 is disposed around the upper electrode 221.
  • the second frame 322 is disposed around the lower electrode 321. Further, the first frame 222 and the second frame 322 are made of an insulator in the portions exposed to the inside of the film forming container 20.
  • the plasma 106 is generated by the first frame 222 and the second frame 322. It is suppressed to extend beyond the unintended range beyond.
  • each of the first frame 222 and the second frame 322 is disposed at a location close to each of the upper electrode 221 and the lower electrode 321, it may be directly exposed to plasma. Considering the damage that the first frame 222 and the second frame 322 receive from plasma, it is more preferable that the whole is made of an insulator than the structure that only the surface is an insulator. This is because the lifetime of the first frame 222 and the second frame 322 is extended.
  • the main function of the first deposition member 223 and the second deposition member 323 is to suppress unnecessary films from adhering to the inside of the film forming container 20. If an unnecessary film adheres to the inside of the film forming container 20, it may be easily peeled off due to an increase in the film thickness or a change with time. The peeled film becomes a foreign substance and may deteriorate the yield and quality of the product. Adhesion of unnecessary films is suppressed in the portions covered by the first and second deposition members 223 and 323. On the other hand, an unnecessary film adheres to the first deposition member 223 and the second deposition member 323. Accordingly, the first and second anti-adhesive members 223 and 323 are periodically subjected to processing such as cleaning. This is for preventing unnecessary films from being peeled off from the first and second deposition members 223 and 323.
  • the first deposition member 223 and the second deposition member 323 may be configured in a more complicated shape than the first frame 222 and the second frame 322. Specifically, it is a case where it matches with the shape of the film forming container 20 or the like. When forming a complicated shape, it is easier to process a metal material than to process a ceramic material. However, when the first deposition member 223 and the second deposition member 323 are made of a metal material, the plasma 106 generated between the upper electrode 221 and the lower electrode 321 is generated in the first frame 222 and the second frame 321. In some cases, it extends beyond two frames 322. Alternatively, an unintended discharge may occur from the plasma 106 to the first deposition member 223 and the second deposition member 323. If the control of the plasma 106 becomes unstable, it may adversely affect the formation of a homogeneous film. Further, the first and second anti-adhesive members 223 and 323 are not directly exposed to the plasma 106 in a steady manner.
  • the first deposition member 223 and the second deposition member 323 are mainly composed of metal, and the portion exposed to the inside of the film formation container 20 is configured of an insulator. preferable. This is because it contributes to improving the controllability of the plasma 106 and facilitates processing when the first and second anti-adhesive members 223 and 323 are manufactured.
  • the plasma 106 is generated when the bolt 230 is conductive. Sometimes an unintended discharge to the bolt 230 may occur. Therefore, it is preferable that the part exposed to the inside of the film forming container 20 is made of an insulator. This is because it contributes to improving the controllability of the plasma 106.
  • step 101 as shown in FIGS. 1 and 6A, first, the source gas supply unit 70 supplies TMA as the source gas 110 into the film forming container 20. At a timing controlled by the control unit 60, the source gas 110 is supplied from the source gas supply unit 70 into the film forming container 20. The source gas supply unit 70 supplies the source gas 110 into the film forming container 20 for 0.1 seconds, for example. By supplying the source gas 110 into the film forming container 20, the source gas 110 is adsorbed on the substrate 100. An adsorption layer 102 is formed on the substrate 100.
  • the source gas supply unit 70 supplies N 2 as the purge gas 112 into the film forming container 20.
  • the source gas supply unit 70 supplies the purge gas 112 into the film forming container 20 for 0.1 seconds, for example.
  • the exhaust unit 40 exhausts the source gas 110 and the purge gas 112 inside the film forming container 20.
  • the exhaust unit 40 exhausts the source gas 110 and the purge gas 112 inside the film forming container 20 for 2 seconds, for example.
  • the reactive gas supply unit 80 supplies O 2 as the reactive gas 114 into the film forming container 20.
  • the reaction gas 114 is supplied from the reaction gas supply unit 80 into the film forming container 20 at a timing controlled by the control unit 60.
  • the reactive gas supply unit 80 supplies the reactive gas 114 into the film forming container 20 for 1 second, for example.
  • the adsorption layer 102 changes to the precursor layer 103 containing Al 2 O 3 by reacting with the reaction gas 114.
  • the precursor layer 103 is a layer containing Al 2 O 3 , but unreacted molecules remain.
  • the high frequency power supply 50 supplies a high frequency current of a predetermined frequency to the upper electrode 221.
  • a high frequency current is supplied from the high frequency power supply 50 to the upper electrode 221 at a timing controlled by the control unit 60.
  • the high frequency power supply 50 supplies a high frequency current for 0.2 seconds, for example.
  • plasma 106 is generated between the upper electrode 221 and the lower electrode 321.
  • the precursor layer 103 is activated by the plasma 106. As the reaction of unreacted molecules proceeds, the precursor layer 103 changes to the thin film layer 104. In this way, plasma processing is performed.
  • step 105 the reaction gas supply unit 80 supplies N 2 as the purge gas 112 into the film forming container 20.
  • the reactive gas supply unit 80 supplies the purge gas 112 to the inside of the film forming container 20 for 0.1 seconds, for example.
  • the exhaust unit 40 exhausts the reaction gas 114 and the purge gas 112 inside the film formation container 20.
  • the purge gas 112 is supplied into the film formation container 20, and the reaction gas 114 is purged from the film formation container 20.
  • steps 101 to 105 are one cycle of the atomic layer deposition method.
  • steps 101 to 105 may be repeated 100 cycles. By controlling the number of cycles, the thin film layer 104 having a desired thickness can be formed.
  • the stability of the plasma 106 is impaired. May be.
  • a nonuniform distribution of plasma density may adversely affect the formation of the thin film layer 104.
  • the atomic layer deposition apparatus 10 includes a film formation container 20, a flat plate-like upper electrode 221 disposed inside the film formation container 20, an upper electrode 221, and an upper electrode 221.
  • a second frame 322 disposed so as to surround the periphery of the electrode 321 and a second adhesion-preventing member 323 disposed outside the second frame 322 are provided.
  • the first frame 222, the second frame 322, the first deposition member 223, and the second deposition member 323 are portions that are exposed to the inside of the film forming container 20.
  • the periphery of the upper electrode 221 and the lower electrode 321 is surrounded by the first frame 222 and the second frame 322, which are the portions exposed to the inside of the film forming container 20, which are insulators. Furthermore, since the exposed portions of the first deposition member 223 and the second deposition member 323 inside the film forming container 20 are made of an insulator, the plasma 106 spreads to an unintended range or abnormal discharge occurs. Occurrence is suppressed. Therefore, the atomic layer deposition apparatus 10 can generate a stable plasma 106. Therefore, the atomic layer deposition apparatus 10 can form a more uniform thin film layer 104 on the substrate 100.
  • first frame 222 and the second frame 322 may be made of ceramics.
  • first anti-adhesion member 223 and the second anti-adhesion member 323 may be configured such that the main material is aluminum and the surface thereof is anodized.
  • a bolt 230 that is a fixture for fixing any one of the first frame 222, the second frame 322, the first deposition member 223, and the second deposition member 323 to the film forming container 20 may be further provided.
  • the portion of the bolt 230 exposed inside the film forming container 20 is an insulator.
  • the bolt 230 may be made of ceramics.
  • the source gas supply unit 70 that supplies the source gas 110 to the film formation container 20, the reaction gas supply unit 80 that supplies the reaction gas 114 that reacts with the source gas 110 to the film formation container 20, and the inside of the film formation container 20
  • the source gas supply unit 70 and the reaction gas supply unit 80 are controlled so that a high frequency power source 50 for supplying a high frequency current for generating plasma 106 on the substrate, a source gas 110 and a reaction gas 114 are alternately supplied.
  • the control part 60 which controls the timing which the high frequency power supply 50 supplies a high frequency current may be provided.
  • constituent elements described in the accompanying drawings and the detailed description may include constituent elements that are not essential for solving the problem. This is to illustrate the above technique.
  • the non-essential components are described in the accompanying drawings and the detailed description, so that the non-essential components should not be recognized as essential.
  • the technique of the present disclosure is useful for an atomic layer deposition apparatus or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

Provided is an atomic layer deposition device able to form a thin film with more uniform quality on a substrate. An atomic layer deposition device (10) is provided with the following: a film deposition container (20); a plate-shaped upper electrode disposed inside the film deposition container (20); a plate-shaped lower electrode that is disposed facing the upper electrode and that generates plasma with the upper electrode; a first frame disposed so as to surround the periphery of the upper electrode; a first anti-adhesion member disposed outside of the first frame; a second frame disposed so as to surround the periphery of the lower electrode; and a second anti-adhesion member disposed outside of the second frame. Portions of the first frame, the second frame, the first anti-adhesion member, and the second anti-adhesion member exposed to the inside of the film deposition container (20) are insulators.

Description

原子層堆積装置Atomic layer deposition equipment
 本開示は、基板上に薄膜を形成する原子層堆積装置に関する。 The present disclosure relates to an atomic layer deposition apparatus that forms a thin film on a substrate.
 成膜空間内に配置された基板の上方に有機金属のガスを原料ガスとして流すことにより、基板に有機金属を吸着させ、有機金属に対して化学反応しない第1ガスを用いて成膜空間でプラズマを発生させ、第1ガスを排気した後、酸化ガスを第2ガスとして成膜空間に導入して酸化ガスを用いて成膜空間でプラズマを発生させることで、基板に有機金属の金属成分が酸化し金属酸化膜を形成する原子層堆積方法が開示されている(例えば、特許文献1参照)。 By flowing an organic metal gas as a source gas above a substrate disposed in the film formation space, the organic metal is adsorbed on the substrate, and the first gas that does not chemically react with the organic metal is used in the film formation space. After the plasma is generated and the first gas is exhausted, the oxidizing gas is introduced into the film formation space as the second gas, and the plasma is generated in the film formation space using the oxidation gas, so that the metal component of the organic metal is formed on the substrate. An atomic layer deposition method is disclosed in which a metal oxide film is oxidized to form a metal oxide film (see, for example, Patent Document 1).
特開2013-26479号公報JP 2013-26479 A
 本開示は基板上に、より均質に薄膜を形成できる原子層堆積装置を提供する。 The present disclosure provides an atomic layer deposition apparatus capable of forming a thin film more uniformly on a substrate.
 本開示における原子層堆積装置は、成膜容器と、成膜容器の内部に配置された平板状の上部電極と、上部電極と対向配置され、かつ、上部電極との間にプラズマを発生させる平板状の下部電極と、上部電極の周辺を囲むように配置された第1枠と、第1枠の外側に配置された第1防着部材と、下部電極の周辺を囲むように配置された第2枠と、第2枠の外側に配置された第2防着部材と、を備える。第1枠、第2枠、第1防着部材および第2防着部材は、成膜容器の内部に露出する部分が絶縁体である。 An atomic layer deposition apparatus according to the present disclosure includes a film formation container, a flat plate-like upper electrode disposed inside the film formation container, a flat plate that is disposed to face the upper electrode and generates plasma between the upper electrode. The lower electrode, the first frame disposed so as to surround the periphery of the upper electrode, the first deposition member disposed outside the first frame, and the first frame disposed so as to surround the periphery of the lower electrode Two frames, and a second deposition member disposed outside the second frame. In the first frame, the second frame, the first deposition member, and the second deposition member, a portion exposed to the inside of the film formation container is an insulator.
 本開示における原子層堆積装置は、基板上に、より均質に薄膜を形成することに有効である。 The atomic layer deposition apparatus according to the present disclosure is effective for forming a thin film more uniformly on a substrate.
原子層堆積装置の概要を示す図Diagram showing an overview of atomic layer deposition equipment 成膜容器の概要を示す図Diagram showing the outline of the deposition container 上部電極、第1枠、第2枠および下部電極の関係を示す分解斜視図Exploded perspective view showing relationship between upper electrode, first frame, second frame and lower electrode 成膜容器内にプラズマが発生した状態を示す図Diagram showing the state where plasma is generated in the deposition container 原子層堆積方法の1サイクルを示すフロー図Flow diagram showing one cycle of atomic layer deposition method 基板上に薄膜が形成される状態(原料ガス供給)を示す図The figure which shows the state (raw material gas supply) in which a thin film is formed on a board | substrate 基板上に薄膜が形成される状態(パージガス供給)を示す図The figure which shows the state (purge gas supply) in which a thin film is formed on a board | substrate 基板上に薄膜が形成される状態(反応ガス供給)を示す図The figure which shows the state (reactive gas supply) in which a thin film is formed on a board | substrate 基板上に薄膜が形成される状態(プラズマ処理)を示す図The figure which shows the state (plasma processing) where a thin film is formed on a substrate 基板上に薄膜が形成される状態(パージガス供給)を示す図The figure which shows the state (purge gas supply) in which a thin film is formed on a board | substrate
 以下に、実施の形態が詳細に説明される。実施の形態の説明には、適宜図面が参照される。但し、必要以上に詳細な説明は、省略される場合がある。例えば、既によく知られた事項の詳細な説明や、実質的に同一の構成についての重複した説明は、省略される場合がある。説明が冗長になることを避け、当業者の理解を容易にするためである。 The embodiment will be described in detail below. The drawings are referred to as appropriate for the description of the embodiments. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and overlapping descriptions of substantially the same configuration may be omitted. This is for avoiding redundant description and facilitating understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。発明者は、請求の範囲に記載された主題が本開示によって限定されることを意図しない。 The inventor provides the accompanying drawings and the following description so that those skilled in the art fully understand the present disclosure. The inventor does not intend the claimed subject matter to be limited by the present disclosure.
 [1.原子層堆積装置の構成]
 [1.-1.原子層堆積装置の全体構成]
 図1に示される原子層堆積装置10は、形成しようとする薄膜を構成する金属を主成分とする有機金属の原料ガスと反応ガスを、成膜容器20内に載置された基板上に交互に供給する。また、原子層堆積装置10は、反応活性を高めるためにプラズマを生成して基板上に原子層単位で原料ガスの酸化膜を形成する。原子層堆積装置10は、上記処理を1サイクルとして、処理を複数サイクル繰り返すことにより予め定められた厚さの薄膜を形成する。この際、発生させるプラズマの安定性によっては、形成される薄膜の膜質が影響を受ける。
[1. Configuration of atomic layer deposition equipment]
[1. -1. Overall configuration of atomic layer deposition system]
In the atomic layer deposition apparatus 10 shown in FIG. 1, an organic metal source gas mainly composed of a metal constituting a thin film to be formed and a reactive gas are alternately placed on a substrate placed in a film forming container 20. To supply. In addition, the atomic layer deposition apparatus 10 generates plasma to increase the reaction activity, and forms an oxide film of the source gas on the substrate in units of atomic layers. The atomic layer deposition apparatus 10 forms a thin film having a predetermined thickness by repeating the processing a plurality of cycles, with the above processing as one cycle. At this time, depending on the stability of the generated plasma, the film quality of the formed thin film is affected.
 以下の説明では、原料ガスとしてTMA(Tri―Methyl―Alminum)を用い、反応ガスとして酸素(O)ガスを用いることにより、アルミナ(Al)の薄膜を形成する技術が例示される。しかし、本開示は、これに限定されるものではない。例えば、反応ガスとしてオゾン(O)ガスを用いてもよい。他の例として、シリコンを含む薄膜を形成する場合には、原料ガスとしてTDAMAS(Tris(dimethylamino)silane)などを用いてもよい。 In the following description, a technique for forming a thin film of alumina (Al 2 O 3 ) by using TMA (Tri-Methyl-Alminum) as a source gas and oxygen (O 2 ) gas as a reaction gas is exemplified. . However, the present disclosure is not limited to this. For example, ozone (O 3 ) gas may be used as the reaction gas. As another example, when forming a thin film containing silicon, TDAMAS (Tris (dimethylamino) silane) or the like may be used as a source gas.
 図1に示されるように、原料ガス供給部70は、成膜容器20に設けられた原料ガス供給口72を介して、TMAなどの原料ガスを成膜容器20に供給する。原料ガス供給部70と、原料ガス供給口72は、例えば、ステンレスパイプで接続されている。原料ガス供給部70と、原料ガス供給口72の間に、マスフローコントローラを配置してもよい。原料ガス供給部70は制御部60と電気的に接続されている。原料ガス供給部70が原料ガスを供給するタイミングは、制御部60により制御される。 As shown in FIG. 1, the raw material gas supply unit 70 supplies a raw material gas such as TMA to the film forming container 20 through the raw material gas supply port 72 provided in the film forming container 20. The source gas supply unit 70 and the source gas supply port 72 are connected by, for example, a stainless steel pipe. A mass flow controller may be disposed between the source gas supply unit 70 and the source gas supply port 72. The source gas supply unit 70 is electrically connected to the control unit 60. The timing at which the source gas supply unit 70 supplies the source gas is controlled by the control unit 60.
 反応ガス供給部80は、成膜容器20に設けられた反応ガス供給口82を介して、酸素ガスなどの反応ガスを成膜容器20に供給する。反応ガス供給部80と、反応ガス供給口82は、例えば、ステンレスパイプで接続されている。反応ガス供給部80と、反応ガス供給口82の間に、マスフローコントローラを配置してもよい。反応ガス供給部80は制御部60と電気的に接続されている。反応ガス供給部80が反応ガスを供給するタイミングは、制御部60により制御される。 The reaction gas supply unit 80 supplies a reaction gas such as oxygen gas to the film formation container 20 via a reaction gas supply port 82 provided in the film formation container 20. The reactive gas supply unit 80 and the reactive gas supply port 82 are connected by, for example, a stainless steel pipe. A mass flow controller may be disposed between the reaction gas supply unit 80 and the reaction gas supply port 82. The reactive gas supply unit 80 is electrically connected to the control unit 60. The timing at which the reaction gas supply unit 80 supplies the reaction gas is controlled by the control unit 60.
 なお、図示されていないが、原料ガス供給部70、反応ガス供給部80は、それぞれ、成膜容器20の内部に、窒素(N)ガスやアルゴン(Ar)ガスなどのパージガスを供給することができるように構成されている。 Although not shown, the source gas supply unit 70 and the reaction gas supply unit 80 supply a purge gas such as nitrogen (N 2 ) gas or argon (Ar) gas to the inside of the film forming container 20, respectively. It is configured to be able to.
 排気部40は、排気管42を介して成膜容器20内に供給された原料ガス、反応ガス、パージガスを排気する。排気部40は、例えば、ドライポンプである。排気部40は、さらに、ターボ分子ポンプを備えても良い。排気部40が成膜容器20内を排気することにより、原料ガス、反応ガス、パージガスが成膜容器20内に供給されても、成膜容器20内の圧力は、1Pa~200Pa程度に維持される。排気部40の排気能力は、成膜容器20の容量、供給ガス量、設定圧力範囲などが勘案された上で、設計される。 The exhaust unit 40 exhausts the source gas, reaction gas, and purge gas supplied into the film forming container 20 through the exhaust pipe 42. The exhaust unit 40 is, for example, a dry pump. The exhaust unit 40 may further include a turbo molecular pump. The exhaust unit 40 exhausts the film formation container 20 so that the pressure in the film formation container 20 is maintained at about 1 Pa to 200 Pa even when the source gas, the reaction gas, and the purge gas are supplied into the film formation container 20. The The exhaust capacity of the exhaust unit 40 is designed in consideration of the capacity of the film forming container 20, the supply gas amount, the set pressure range, and the like.
 高周波電源50は、整合器90を介して成膜容器20と電気的に接続されている。高周波電源50が所定の周波数(例えば13.56~135.6MHz)の高周波電流を、成膜容器20に供給することにより、成膜容器20の内部にプラズマが発生する。 The high frequency power supply 50 is electrically connected to the film forming container 20 via the matching unit 90. When the high frequency power supply 50 supplies a high frequency current having a predetermined frequency (for example, 13.56 to 135.6 MHz) to the film forming container 20, plasma is generated inside the film forming container 20.
 また、高周波電源50は制御部60と電気的に接続されている。高周波電源50が成膜容器20に高周波電流を供給するタイミングは、制御部60により制御される。 The high frequency power supply 50 is electrically connected to the control unit 60. The timing at which the high frequency power supply 50 supplies the high frequency current to the film forming container 20 is controlled by the control unit 60.
 制御部60は、原料ガス供給部70が原料ガスを供給するタイミング、反応ガス供給部80が反応ガスを供給するタイミング、高周波電源50が高周波電流を供給するタイミングをそれぞれ独立に制御する。 The control unit 60 independently controls the timing at which the source gas supply unit 70 supplies the source gas, the timing at which the reaction gas supply unit 80 supplies the reaction gas, and the timing at which the high frequency power supply 50 supplies the high frequency current.
 [1.-2.成膜容器の構成]
 図2、図3に示されるように、成膜容器20は、成膜容器20の上部に配置された平板状の上部電極221と、成膜容器20の下部に配置された平板状の下部電極321を備える。上部電極221と下部電極321は、対向するように配置されている。上部電極221と下部電極321とが平行平板電極200を構成する。つまり、本実施の形態においては、容量結合型のプラズマが発生する。一例として、上部電極221および下部電極321は、ステンレスで構成されている。
[1. -2. Structure of film formation container]
As shown in FIGS. 2 and 3, the film forming container 20 includes a flat plate-like upper electrode 221 disposed on the upper part of the film forming container 20 and a flat plate-shaped lower electrode disposed on the lower part of the film forming container 20. 321 is provided. The upper electrode 221 and the lower electrode 321 are disposed so as to face each other. The upper electrode 221 and the lower electrode 321 constitute a parallel plate electrode 200. That is, in the present embodiment, capacitively coupled plasma is generated. As an example, the upper electrode 221 and the lower electrode 321 are made of stainless steel.
 上部電極221は、成膜容器20に固定されている。上部電極221は、図1に示された高周波電源50と電気的に接続されている。上部電極221と、高周波電源50の間に設けられた整合器90は、平行平板電極200のインピーダンスに整合するように、整合器90内のインダクタのインダクタンス及びキャパシタのキャパシタンスを調整する。 The upper electrode 221 is fixed to the film forming container 20. The upper electrode 221 is electrically connected to the high frequency power supply 50 shown in FIG. A matching unit 90 provided between the upper electrode 221 and the high-frequency power source 50 adjusts the inductance of the inductor and the capacitance of the capacitor in the matching unit 90 so as to match the impedance of the parallel plate electrode 200.
 下部電極321は、成膜容器20の下部に配置されたサセプタ32上に固定されている。また、下部電極321は、接地されている。サセプタ32の内部にはヒータ324が設けられている。ヒータ324には、一例として、抵抗加熱ヒータが用いられる。ヒータ324は、プロセス中の基板100の温度を、例えば50℃以上100℃以下に保つ。 The lower electrode 321 is fixed on the susceptor 32 disposed at the lower part of the film forming container 20. The lower electrode 321 is grounded. A heater 324 is provided inside the susceptor 32. For example, a resistance heater is used as the heater 324. The heater 324 keeps the temperature of the substrate 100 during the process at, for example, 50 ° C. or more and 100 ° C. or less.
 基板100は、成膜容器20の下方から図示しないリフトピンによって支持される。リフトピンは図示しない昇降機構によって上下方向に昇降可能である。リフトピンが基板100を支持した状態で昇降機構がリフトピンを下方向に移動させることにより、基板100は下部電極321の上面に載置される。 The substrate 100 is supported by lift pins (not shown) from below the film forming container 20. The lift pins can be moved up and down by a lifting mechanism (not shown). With the lift pins supporting the substrate 100, the lifting mechanism moves the lift pins downward, so that the substrate 100 is placed on the upper surface of the lower electrode 321.
 [1.-3.第1枠、第2枠、第1防着部材、第2防着部材の構成]
 図2、図3に示されるように、上部電極221の周辺を囲むように、第1枠222が配置される。図3に示されるように、第1枠222は、一例として、額縁状に構成される。第1枠222は、成膜容器20の内部に露出する部分が絶縁体であるように構成される。第1枠222の外側には、第1防着部材223が配置される。第1防着部材223は、成膜容器20の内部形状に合わせるために、第1枠222より複雑な形状を有する場合がある。第1防着部材223は、成膜容器20の内部に露出する部分が絶縁体であるように構成される。
[1. -3. Configuration of first frame, second frame, first deposition member, second deposition member]
As shown in FIGS. 2 and 3, the first frame 222 is arranged so as to surround the periphery of the upper electrode 221. As shown in FIG. 3, the first frame 222 is configured in a frame shape as an example. The first frame 222 is configured such that a portion exposed to the inside of the film forming container 20 is an insulator. A first deposition member 223 is disposed outside the first frame 222. The first deposition member 223 may have a more complicated shape than the first frame 222 in order to match the inner shape of the film forming container 20. The first deposition preventing member 223 is configured such that a portion exposed to the inside of the film forming container 20 is an insulator.
 第1枠222および第1防着部材223は、成膜容器20に固定具により固定される。固定具は、一例として、成膜容器20の内部に露出する部分が絶縁体であるように構成されたボルト230である。 The first frame 222 and the first deposition preventing member 223 are fixed to the film forming container 20 with a fixture. For example, the fixture is a bolt 230 configured such that a portion exposed to the inside of the film forming container 20 is an insulator.
 図2、図3に示されるように、下部電極321の周辺を囲むように、第2枠322が配置される。一例として、第2枠322は、額縁状に構成される。第2枠322は、成膜容器20内に露出する部分が絶縁体であるように構成される。第2枠322の外側には、第2防着部材323が配置される。第2防着部材323は、サセプタ32の形状に合わせるために、第2枠322より複雑な形状を有する場合がある。第2防着部材323は、成膜容器20の内部に露出する部分が絶縁体であるように構成される。 2 and 3, the second frame 322 is disposed so as to surround the periphery of the lower electrode 321. As an example, the second frame 322 is configured in a frame shape. The second frame 322 is configured such that a portion exposed in the film forming container 20 is an insulator. A second deposition preventing member 323 is disposed outside the second frame 322. The second deposition member 323 may have a more complicated shape than the second frame 322 in order to match the shape of the susceptor 32. The second deposition member 323 is configured such that a portion exposed to the inside of the film forming container 20 is an insulator.
 第2枠322および第2防着部材323は、成膜容器20に配置されたサセプタ32に固定具により固定される。固定具は、一例として、成膜容器20の内部に露出する部分が絶縁体であるように構成されたボルト230である。また、成膜容器20がサセプタ32を有さない構成の場合、第2枠322および第2防着部材323は、成膜容器20に固定されてもよい。 The second frame 322 and the second adhesion preventing member 323 are fixed to the susceptor 32 disposed in the film forming container 20 with a fixture. For example, the fixture is a bolt 230 configured such that a portion exposed to the inside of the film forming container 20 is an insulator. In the case where the film forming container 20 does not have the susceptor 32, the second frame 322 and the second adhesion preventing member 323 may be fixed to the film forming container 20.
 一例として、第1枠222、第2枠322はセラミックスで構成されている。具体的には、第1枠222、第2枠322はAlで構成されている。第1枠222、第2枠322は、イットリア(Y)で構成されてもよい。また、第1枠222、第2枠322は、セラミックス皮膜を有する金属で構成されてもよい。一例として、鉄製の部材に、Alが被覆された構成があげられる。セラミックス皮膜は、例えば、溶射法により形成される。 As an example, the first frame 222 and the second frame 322 are made of ceramics. Specifically, the first frame 222 and the second frame 322 are made of Al 2 O 3 . The first frame 222 and the second frame 322 may be made of yttria (Y 2 O 3 ). Further, the first frame 222 and the second frame 322 may be made of a metal having a ceramic film. As an example, a configuration in which an iron member is coated with Al 2 O 3 can be given. The ceramic film is formed by, for example, a thermal spraying method.
 一例として、第1防着部材223、第2防着部材323は、主成分がアルミニウムであり、表面がアルマイト処理された構成である。 As an example, the first deposition member 223 and the second deposition member 323 have a configuration in which the main component is aluminum and the surface is anodized.
 なお、第1防着部材223、第2防着部材323のいずれか、または両方は、セラミックスで構成されてもよい。具体的には、第1防着部材223、第2防着部材323はAlや、Yで、構成されてもよい。また第1防着部材223、第2防着部材323は、セラミックス皮膜を有する金属で構成されてもよい。一例として、鉄製の部材に、Alが被覆された構成があげられる。 Note that either one or both of the first deposition member 223 and the second deposition member 323 may be made of ceramics. Specifically, the first deposition member 223 and the second deposition member 323 may be made of Al 2 O 3 or Y 2 O 3 . Moreover, the 1st adhesion preventing member 223 and the 2nd adhesion preventing member 323 may be comprised with the metal which has a ceramic membrane | film | coat. As an example, a configuration in which an iron member is coated with Al 2 O 3 can be given.
 一例として、ボルト230は、セラミックスで構成されている。具体的には、ボルト230はAlや、Yで、構成されてもよい。また、ボルト230は、セラミックス皮膜を有する金属で構成されてもよい。一例として、鉄製の部材に、Alが被覆された構成があげられる。 As an example, the bolt 230 is made of ceramics. Specifically, the bolt 230 may be made of Al 2 O 3 or Y 2 O 3 . The bolt 230 may be made of a metal having a ceramic film. As an example, a configuration in which an iron member is coated with Al 2 O 3 can be given.
 なお、第1枠222、第2枠322、第1防着部材223、第2防着部材323は、ボルト230を用いない方法で、固定されてもよい。一例として、第2枠322、第2防着部材323は、サセプタ32とはめ合せるような構成としてもよい。 Note that the first frame 222, the second frame 322, the first attachment member 223, and the second attachment member 323 may be fixed by a method that does not use the bolt 230. As an example, the second frame 322 and the second adhesion preventing member 323 may be configured to be fitted to the susceptor 32.
 [1.-4.第1枠、第2枠、第1防着部材、第2防着部材の機能]
 図4に示されるように、本実施の形態における成膜容器20は、上部電極221と下部電極321との間でプラズマ106を発生させる機能を有する。第1枠222、第2枠322の主な機能は、上部電極221と下部電極321との間で発生させたプラズマ106の拡がりを抑制することである。第1枠222は、上部電極221の周辺に配置される。第2枠322は、下部電極321の周辺に配置される。さらに、第1枠222、第2枠322は、成膜容器20の内部に露出する部分が絶縁体で構成される。上部電極221、下部電極321の周辺が、表面が絶縁体で構成されている第1枠222、第2枠322で囲まれているために、プラズマ106が、第1枠222、第2枠322を超えて意図しない範囲まで拡がることが抑制される。
[1. -4. Functions of first frame, second frame, first deposition member, and second deposition member]
As shown in FIG. 4, the deposition container 20 in the present embodiment has a function of generating plasma 106 between the upper electrode 221 and the lower electrode 321. The main function of the first frame 222 and the second frame 322 is to suppress the spread of the plasma 106 generated between the upper electrode 221 and the lower electrode 321. The first frame 222 is disposed around the upper electrode 221. The second frame 322 is disposed around the lower electrode 321. Further, the first frame 222 and the second frame 322 are made of an insulator in the portions exposed to the inside of the film forming container 20. Since the periphery of the upper electrode 221 and the lower electrode 321 is surrounded by a first frame 222 and a second frame 322 whose surfaces are made of an insulator, the plasma 106 is generated by the first frame 222 and the second frame 322. It is suppressed to extend beyond the unintended range beyond.
 また、第1枠222、第2枠322のそれぞれは、上部電極221、下部電極321のそれぞれに近い場所に配置されるので、直接プラズマに晒される場合がある。第1枠222、第2枠322がプラズマから受けるダメージを考慮すると、表面のみが絶縁体である構成より、全体が絶縁体で構成される方が、より好ましい。第1枠222、第2枠322の寿命が長くなるからである。 Further, since each of the first frame 222 and the second frame 322 is disposed at a location close to each of the upper electrode 221 and the lower electrode 321, it may be directly exposed to plasma. Considering the damage that the first frame 222 and the second frame 322 receive from plasma, it is more preferable that the whole is made of an insulator than the structure that only the surface is an insulator. This is because the lifetime of the first frame 222 and the second frame 322 is extended.
 第1防着部材223、第2防着部材323の主な機能は、不要な膜が成膜容器20の内部に付着することを抑制することである。成膜容器20の内部に不要な膜が付着すると、膜厚の増大化や、経時変化によって剥がれやすくなる場合がある。剥がれた膜は、異物となり製品の歩留まりや品質を悪化させる場合がある。第1防着部材223、第2防着部材323にカバーされた部分は不要な膜の付着が抑制される。一方、第1防着部材223、第2防着部材323には不要な膜が付着する。よって、第1防着部材223、第2防着部材323は定期的に洗浄等の処理が施される。第1防着部材223、第2防着部材323から、不要な膜が剥がれることを抑制するためである。 The main function of the first deposition member 223 and the second deposition member 323 is to suppress unnecessary films from adhering to the inside of the film forming container 20. If an unnecessary film adheres to the inside of the film forming container 20, it may be easily peeled off due to an increase in the film thickness or a change with time. The peeled film becomes a foreign substance and may deteriorate the yield and quality of the product. Adhesion of unnecessary films is suppressed in the portions covered by the first and second deposition members 223 and 323. On the other hand, an unnecessary film adheres to the first deposition member 223 and the second deposition member 323. Accordingly, the first and second anti-adhesive members 223 and 323 are periodically subjected to processing such as cleaning. This is for preventing unnecessary films from being peeled off from the first and second deposition members 223 and 323.
 第1防着部材223、第2防着部材323は、第1枠222、第2枠322より複雑な形状で構成される場合がある。具体的には、成膜容器20等の形状に合わせる場合である。複雑な形状を形成する場合、金属材料を加工する方がセラミックス材料を加工するより容易である。しかし、第1防着部材223、第2防着部材323が金属材料で構成された場合には、上部電極221と下部電極321との間で発生させたプラズマ106が、第1枠222、第2枠322を超えて拡がる場合がある。あるいは、プラズマ106から第1防着部材223、第2防着部材323へ意図しない放電が発生する場合がある。プラズマ106の制御が不安定になると、均質な膜の形成に悪影響を与える場合がある。さらに、第1防着部材223、第2防着部材323は、定常的には、直接、プラズマ106に晒されない。 The first deposition member 223 and the second deposition member 323 may be configured in a more complicated shape than the first frame 222 and the second frame 322. Specifically, it is a case where it matches with the shape of the film forming container 20 or the like. When forming a complicated shape, it is easier to process a metal material than to process a ceramic material. However, when the first deposition member 223 and the second deposition member 323 are made of a metal material, the plasma 106 generated between the upper electrode 221 and the lower electrode 321 is generated in the first frame 222 and the second frame 321. In some cases, it extends beyond two frames 322. Alternatively, an unintended discharge may occur from the plasma 106 to the first deposition member 223 and the second deposition member 323. If the control of the plasma 106 becomes unstable, it may adversely affect the formation of a homogeneous film. Further, the first and second anti-adhesive members 223 and 323 are not directly exposed to the plasma 106 in a steady manner.
 これらの観点を考慮すると、第1防着部材223、第2防着部材323は、主材料が金属であり、成膜容器20の内部に露出する部分が絶縁体で構成されることが、より好ましい。プラズマ106の制御性向上に貢献し、かつ、第1防着部材223、第2防着部材323の製造時に加工が容易になるからである。 In consideration of these viewpoints, the first deposition member 223 and the second deposition member 323 are mainly composed of metal, and the portion exposed to the inside of the film formation container 20 is configured of an insulator. preferable. This is because it contributes to improving the controllability of the plasma 106 and facilitates processing when the first and second anti-adhesive members 223 and 323 are manufactured.
 第1枠222、第2枠322、第1防着部材223、第2防着部材323がボルト230などの固定具により固定される構成では、ボルト230が導電性であると、プラズマ106の発生時にボルト230へ意図しない放電が発生する場合がある。よって、ボルト230は成膜容器20の内部に露出する部分が絶縁体で構成されることが好ましい。プラズマ106の制御性向上に貢献するからである。 In the configuration in which the first frame 222, the second frame 322, the first deposition member 223, and the second deposition member 323 are fixed by a fixture such as the bolt 230, the plasma 106 is generated when the bolt 230 is conductive. Sometimes an unintended discharge to the bolt 230 may occur. Therefore, it is preferable that the part exposed to the inside of the film forming container 20 is made of an insulator. This is because it contributes to improving the controllability of the plasma 106.
 [2.原子層堆積方法]
 図5に示されるフローにしたがって、原子層堆積法の1サイクルが実施される。ステップ101では、図1、図6Aに示されるように、まず、原料ガス供給部70が、成膜容器20の内部に原料ガス110としてTMAを供給する。制御部60によって制御されるタイミングで、原料ガス供給部70から成膜容器20の内部に原料ガス110が供給される。原料ガス供給部70は、例えば、0.1秒間、成膜容器20の内部に原料ガス110を供給する。成膜容器20の内部に原料ガス110が供給されることによって、基板100の上に原料ガス110が吸着する。基板100上に、吸着層102が形成される。
[2. Atomic layer deposition method]
According to the flow shown in FIG. 5, one cycle of the atomic layer deposition method is performed. In step 101, as shown in FIGS. 1 and 6A, first, the source gas supply unit 70 supplies TMA as the source gas 110 into the film forming container 20. At a timing controlled by the control unit 60, the source gas 110 is supplied from the source gas supply unit 70 into the film forming container 20. The source gas supply unit 70 supplies the source gas 110 into the film forming container 20 for 0.1 seconds, for example. By supplying the source gas 110 into the film forming container 20, the source gas 110 is adsorbed on the substrate 100. An adsorption layer 102 is formed on the substrate 100.
 次に、ステップ102では、図1、図6Bに示されるように、原料ガス供給部70が、成膜容器20の内部にパージガス112としてNを供給する。原料ガス供給部70は、例えば、0.1秒間、成膜容器20の内部にパージガス112を供給する。また、排気部40が、成膜容器20の内部の原料ガス110やパージガス112を排気する。排気部40は、例えば、2秒間、成膜容器20の内部の原料ガス110やパージガス112を排気する。成膜容器20の内部にパージガス112が供給されることによって、基板100の上に吸着していない原料ガス110が成膜容器20からパージされる。 Next, in step 102, as shown in FIGS. 1 and 6B, the source gas supply unit 70 supplies N 2 as the purge gas 112 into the film forming container 20. The source gas supply unit 70 supplies the purge gas 112 into the film forming container 20 for 0.1 seconds, for example. Further, the exhaust unit 40 exhausts the source gas 110 and the purge gas 112 inside the film forming container 20. The exhaust unit 40 exhausts the source gas 110 and the purge gas 112 inside the film forming container 20 for 2 seconds, for example. By supplying the purge gas 112 into the film formation container 20, the source gas 110 that is not adsorbed on the substrate 100 is purged from the film formation container 20.
 次に、ステップ103では、図1、図6Cに示されるように、反応ガス供給部80が、成膜容器20の内部に反応ガス114としてOを供給する。制御部60によって制御されるタイミングで、反応ガス供給部80から成膜容器20の内部に反応ガス114が供給される。反応ガス供給部80は、例えば、1秒間、成膜容器20の内部に反応ガス114を供給する。吸着層102は、反応ガス114と反応することにより、Alを含む前駆体層103に変化する。前駆体層103は、Alを含む層ではあるが、未反応の分子が残留している。 Next, in step 103, as shown in FIGS. 1 and 6C, the reactive gas supply unit 80 supplies O 2 as the reactive gas 114 into the film forming container 20. The reaction gas 114 is supplied from the reaction gas supply unit 80 into the film forming container 20 at a timing controlled by the control unit 60. The reactive gas supply unit 80 supplies the reactive gas 114 into the film forming container 20 for 1 second, for example. The adsorption layer 102 changes to the precursor layer 103 containing Al 2 O 3 by reacting with the reaction gas 114. The precursor layer 103 is a layer containing Al 2 O 3 , but unreacted molecules remain.
 次に、ステップ104では、図1、図2、図6Dに示されるように、高周波電源50が上部電極221に所定の周波数の高周波電流を供給する。制御部60によって制御されるタイミングで、高周波電源50から上部電極221に高周波電流が供給される。高周波電源50は、例えば、0.2秒間、高周波電流を供給する。このとき、上部電極221と下部電極321との間にプラズマ106が発生する。前駆体層103は、プラズマ106によって活性化される。未反応の分子の反応が進むことにより、前駆体層103は、薄膜層104に変化する。このようにして、プラズマ処理が行われる。 Next, in step 104, as shown in FIGS. 1, 2, and 6D, the high frequency power supply 50 supplies a high frequency current of a predetermined frequency to the upper electrode 221. A high frequency current is supplied from the high frequency power supply 50 to the upper electrode 221 at a timing controlled by the control unit 60. The high frequency power supply 50 supplies a high frequency current for 0.2 seconds, for example. At this time, plasma 106 is generated between the upper electrode 221 and the lower electrode 321. The precursor layer 103 is activated by the plasma 106. As the reaction of unreacted molecules proceeds, the precursor layer 103 changes to the thin film layer 104. In this way, plasma processing is performed.
 次に、ステップ105では、図1、図6Eに示されるように、反応ガス供給部80が、成膜容器20の内部にパージガス112としてNを供給する。反応ガス供給部80は、例えば、0.1秒間、成膜容器20の内部にパージガス112を供給する。また、排気部40が、成膜容器20の内部の反応ガス114やパージガス112を排気する。このステップ105によって、成膜容器20の内部にパージガス112が供給され、反応ガス114が成膜容器20からパージされる。 Next, in step 105, as shown in FIGS. 1 and 6E, the reaction gas supply unit 80 supplies N 2 as the purge gas 112 into the film forming container 20. The reactive gas supply unit 80 supplies the purge gas 112 to the inside of the film forming container 20 for 0.1 seconds, for example. The exhaust unit 40 exhausts the reaction gas 114 and the purge gas 112 inside the film formation container 20. By this step 105, the purge gas 112 is supplied into the film formation container 20, and the reaction gas 114 is purged from the film formation container 20.
 以上のステップ101~105により、基板100の上に一原子層分の薄膜層104が形成される。つまり、ステップ101~105が原子層堆積法の1サイクルである。例えば、100原子層分の膜厚を形成するためには、ステップ101~105を、100サイクルを繰り返せばよい。サイクル数を制御することによって、所望の膜厚の薄膜層104を形成できる。 Through the above steps 101 to 105, the thin film layer 104 for one atomic layer is formed on the substrate 100. That is, steps 101 to 105 are one cycle of the atomic layer deposition method. For example, in order to form a film thickness of 100 atomic layers, steps 101 to 105 may be repeated 100 cycles. By controlling the number of cycles, the thin film layer 104 having a desired thickness can be formed.
 [3.効果等]
 均質な薄膜層104を形成するためには、上部電極221と下部電極321との間で発生させるプラズマ106の安定性が一つの要因である。
[3. Effect]
In order to form the homogeneous thin film layer 104, the stability of the plasma 106 generated between the upper electrode 221 and the lower electrode 321 is one factor.
 より具体的には、上部電極221と下部電極321との間で発生させたプラズマ106が、意図しない範囲に拡がったり、プラズマ発生中に異常放電が発生したりすると、プラズマ106の安定性が損なわれる場合がある。例えば、プラズマ密度が不均一な分布となることにより、薄膜層104の形成に悪影響を与える場合がある。 More specifically, if the plasma 106 generated between the upper electrode 221 and the lower electrode 321 spreads to an unintended range or abnormal discharge occurs during plasma generation, the stability of the plasma 106 is impaired. May be. For example, a nonuniform distribution of plasma density may adversely affect the formation of the thin film layer 104.
 本開示における原子層堆積装置10は、成膜容器20と、成膜容器20の内部に配置された平板状の上部電極221と、上部電極221と対向配置され、かつ、上部電極221との間にプラズマを発生させる平板状の下部電極321と、上部電極221の周辺を囲むように配置された第1枠222と、第1枠222の外側に配置された第1防着部材223と、下部電極321の周辺を囲むように配置された第2枠322と、第2枠322の外側に配置された第2防着部材323と、を備える。第1枠222、第2枠322、第1防着部材223および第2防着部材323は、成膜容器20の内部に露出する部分が絶縁体である。 The atomic layer deposition apparatus 10 according to the present disclosure includes a film formation container 20, a flat plate-like upper electrode 221 disposed inside the film formation container 20, an upper electrode 221, and an upper electrode 221. A flat lower electrode 321 for generating plasma, a first frame 222 disposed so as to surround the periphery of the upper electrode 221, a first deposition member 223 disposed outside the first frame 222, and a lower portion A second frame 322 disposed so as to surround the periphery of the electrode 321 and a second adhesion-preventing member 323 disposed outside the second frame 322 are provided. The first frame 222, the second frame 322, the first deposition member 223, and the second deposition member 323 are portions that are exposed to the inside of the film forming container 20.
 上記の構成によれば、上部電極221、下部電極321の周辺が、成膜容器20の内部に露出する部分が絶縁体である第1枠222、第2枠322で囲まれている。さらに、第1防着部材223、第2防着部材323の成膜容器20の内部に露出する部分が絶縁体で構成されているために、プラズマ106が意図しない範囲まで拡がることや異常放電の発生が抑制される。したがって、原子層堆積装置10は、安定したプラズマ106を発生させることができる。よって、原子層堆積装置10は、基板100上に、より均質な薄膜層104を形成できる。 According to the above configuration, the periphery of the upper electrode 221 and the lower electrode 321 is surrounded by the first frame 222 and the second frame 322, which are the portions exposed to the inside of the film forming container 20, which are insulators. Furthermore, since the exposed portions of the first deposition member 223 and the second deposition member 323 inside the film forming container 20 are made of an insulator, the plasma 106 spreads to an unintended range or abnormal discharge occurs. Occurrence is suppressed. Therefore, the atomic layer deposition apparatus 10 can generate a stable plasma 106. Therefore, the atomic layer deposition apparatus 10 can form a more uniform thin film layer 104 on the substrate 100.
 また、第1枠222および第2枠322は、セラミックスで構成されてもよい。 Further, the first frame 222 and the second frame 322 may be made of ceramics.
 また、第1防着部材223および第2防着部材323のいずれかは、主材料がアルミニウムで構成され、表面がアルマイト処理されてもよい。 Further, either of the first anti-adhesion member 223 and the second anti-adhesion member 323 may be configured such that the main material is aluminum and the surface thereof is anodized.
 また、第1枠222、第2枠322、第1防着部材223および第2防着部材323のいずれかを成膜容器20に固定する固定具であるボルト230をさらに備えてもよい。ボルト230は、成膜容器20の内部に露出する部分が絶縁体である。さらに、ボルト230は、セラミックスで構成されてもよい。 Further, a bolt 230 that is a fixture for fixing any one of the first frame 222, the second frame 322, the first deposition member 223, and the second deposition member 323 to the film forming container 20 may be further provided. The portion of the bolt 230 exposed inside the film forming container 20 is an insulator. Further, the bolt 230 may be made of ceramics.
 また、原料ガス110を成膜容器20に供給する原料ガス供給部70と、原料ガス110と反応する反応ガス114を成膜容器20に供給する反応ガス供給部80と、成膜容器20の内部にプラズマ106を発生させるための高周波電流を供給する高周波電源50と、原料ガス110と反応ガス114とが交互に供給されるように、原料ガス供給部70と反応ガス供給部80とを制御し、かつ、高周波電源50が高周波電流を供給するタイミングを制御する制御部60と、を備えてもよい。 The source gas supply unit 70 that supplies the source gas 110 to the film formation container 20, the reaction gas supply unit 80 that supplies the reaction gas 114 that reacts with the source gas 110 to the film formation container 20, and the inside of the film formation container 20 The source gas supply unit 70 and the reaction gas supply unit 80 are controlled so that a high frequency power source 50 for supplying a high frequency current for generating plasma 106 on the substrate, a source gas 110 and a reaction gas 114 are alternately supplied. And the control part 60 which controls the timing which the high frequency power supply 50 supplies a high frequency current may be provided.
 以上のように、本開示における技術の例示として、実施の形態が説明された。そのために、添付図面および詳細な説明が提供された。 As described above, the embodiment has been described as an example of the technique in the present disclosure. To that end, the accompanying drawings and detailed description have been provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のためには必須でない構成要素も含まれ得る。上記技術を例示するためである。必須ではない構成要素が添付図面や詳細な説明に記載されていることによって、それら必須ではない構成要素が必須であるとの認定がなされるべきではない。 Therefore, the constituent elements described in the accompanying drawings and the detailed description may include constituent elements that are not essential for solving the problem. This is to illustrate the above technique. The non-essential components are described in the accompanying drawings and the detailed description, so that the non-essential components should not be recognized as essential.
 また、上述の実施の形態は、本開示における技術を例示するためのものである。よって、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, the above-described embodiment is for illustrating the technique in the present disclosure. Therefore, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims or an equivalent scope thereof.
 本開示の技術は、原子層堆積装置などに有用である。 The technique of the present disclosure is useful for an atomic layer deposition apparatus or the like.
 10  原子層堆積装置
 20  成膜容器
 32  サセプタ
 40  排気部
 42  排気管
 50  高周波電源
 60  制御部
 70  原料ガス供給部
 72  原料ガス供給口
 80  反応ガス供給部
 82  反応ガス供給口
 90  整合器
 100  基板
 102  吸着層
 103  前駆体層
 104  薄膜層
 106  プラズマ
 110  原料ガス
 112  パージガス
 114  反応ガス
 200  平行平板電極
 221  上部電極
 222  第1枠
 223  第1防着部材
 230  ボルト
 321  下部電極
 322  第2枠
 323  第2防着部材
 324  ヒータ
DESCRIPTION OF SYMBOLS 10 Atomic layer deposition apparatus 20 Film-forming container 32 Susceptor 40 Exhaust part 42 Exhaust pipe 50 High frequency power supply 60 Control part 70 Source gas supply part 72 Source gas supply port 80 Reaction gas supply part 82 Reaction gas supply port 90 Matching device 100 Substrate 102 Adsorption Layer 103 precursor layer 104 thin film layer 106 plasma 110 source gas 112 purge gas 114 reaction gas 200 parallel plate electrode 221 upper electrode 222 first frame 223 first adhesion member 230 bolt 321 lower electrode 322 second frame 323 second adhesion member 324 Heater

Claims (6)

  1. 成膜容器と、
    前記成膜容器の内部に配置された平板状の上部電極と、
    前記上部電極と対向配置され、かつ、前記上部電極との間にプラズマを発生させる平板状の下部電極と、
    前記上部電極の周辺を囲むように配置された第1枠と、
    前記第1枠の外側に配置された第1防着部材と、
    前記下部電極の周辺を囲むように配置された第2枠と、
    前記第2枠の外側に配置された第2防着部材と、を備え、
    前記第1枠、前記第2枠、前記第1防着部材および前記第2防着部材は、前記成膜容器の内部に露出する部分が絶縁体である、
    原子層堆積装置。
    A deposition container;
    A plate-like upper electrode disposed inside the film-forming container;
    A flat lower electrode disposed opposite to the upper electrode and generating plasma between the upper electrode;
    A first frame arranged to surround the periphery of the upper electrode;
    A first deposition member disposed outside the first frame;
    A second frame arranged to surround the periphery of the lower electrode;
    A second anti-adhesion member disposed outside the second frame,
    In the first frame, the second frame, the first deposition member, and the second deposition member, a portion exposed to the inside of the film formation container is an insulator.
    Atomic layer deposition equipment.
  2. 前記第1枠および前記第2枠は、セラミックスで構成されている、
    請求項1に記載の原子層堆積装置。
    The first frame and the second frame are made of ceramics.
    The atomic layer deposition apparatus according to claim 1.
  3. 前記第1防着部材および前記第2防着部材のいずれかは、主材料がアルミニウムで構成され、表面がアルマイト処理されている、
    請求項1に記載の原子層堆積装置。
    Either of the first deposition member and the second deposition member, the main material is composed of aluminum, the surface is anodized,
    The atomic layer deposition apparatus according to claim 1.
  4. 前記第1枠、前記第2枠、前記第1防着部材および前記第2防着部材のいずれかを前記成膜容器に固定する固定具をさらに備え、
    前記固定具は、前記成膜容器の内部に露出する部分が絶縁体である、
    請求項1に記載の原子層堆積装置。
    A fixture for fixing any one of the first frame, the second frame, the first deposition member, and the second deposition member to the film formation container;
    The fixing tool has an insulating portion exposed inside the film formation container.
    The atomic layer deposition apparatus according to claim 1.
  5. 前記固定具は、セラミックスで構成されている、
    請求項4に記載の原子層堆積装置。
    The fixture is made of ceramics,
    The atomic layer deposition apparatus according to claim 4.
  6. 原料ガスを前記成膜容器に供給する原料ガス供給部と、
    前記原料ガスと反応する反応ガスを前記成膜容器に供給する反応ガス供給部と、
    前記成膜容器の内部にプラズマを発生させるための高周波電流を供給する高周波電源と、
    前記原料ガスと前記反応ガスとが交互に供給されるように、前記原料ガス供給部と前記反応ガス供給部とを制御し、かつ、前記高周波電源が高周波電流を供給するタイミングを制御する制御部と、
    を備えた、
    請求項1から5のいずれか一項に記載の原子層堆積装置。
    A source gas supply unit for supplying source gas to the film formation container;
    A reaction gas supply unit that supplies a reaction gas that reacts with the source gas to the film formation container;
    A high-frequency power source for supplying a high-frequency current for generating plasma in the film formation container;
    A control unit that controls the source gas supply unit and the reaction gas supply unit so that the source gas and the reaction gas are alternately supplied, and controls the timing at which the high-frequency power supply supplies a high-frequency current. When,
    With
    The atomic layer deposition apparatus according to any one of claims 1 to 5.
PCT/JP2014/005650 2013-11-28 2014-11-11 Atomic layer deposition device WO2015079632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-245741 2013-11-28
JP2013245741 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015079632A1 true WO2015079632A1 (en) 2015-06-04

Family

ID=53198610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005650 WO2015079632A1 (en) 2013-11-28 2014-11-11 Atomic layer deposition device

Country Status (1)

Country Link
WO (1) WO2015079632A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507663B2 (en) 2020-11-17 2024-06-28 東京エレクトロン株式会社 Fastening structure, fastening method, and plasma processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179054A (en) * 2001-08-30 2003-06-27 Tokyo Electron Ltd Method of forming insulation film and apparatus of forming the insulation film
JP2006137999A (en) * 2004-11-12 2006-06-01 Sharp Corp Plasma cvd apparatus
JP2008506255A (en) * 2004-07-06 2008-02-28 東京エレクトロン株式会社 Processing system and method for chemically treating a TERA layer
JP2009242835A (en) * 2008-03-28 2009-10-22 Tokyo Electron Ltd Film forming method and film forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179054A (en) * 2001-08-30 2003-06-27 Tokyo Electron Ltd Method of forming insulation film and apparatus of forming the insulation film
JP2008506255A (en) * 2004-07-06 2008-02-28 東京エレクトロン株式会社 Processing system and method for chemically treating a TERA layer
JP2006137999A (en) * 2004-11-12 2006-06-01 Sharp Corp Plasma cvd apparatus
JP2009242835A (en) * 2008-03-28 2009-10-22 Tokyo Electron Ltd Film forming method and film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507663B2 (en) 2020-11-17 2024-06-28 東京エレクトロン株式会社 Fastening structure, fastening method, and plasma processing apparatus

Similar Documents

Publication Publication Date Title
JP7079686B2 (en) Film formation method and film formation equipment
TWI727995B (en) Systems and methods for controlling plasma instability in semiconductor fabrication
KR100915722B1 (en) Constitutional member for semiconductor processing apparatus and method for producing same
KR20210035770A (en) Film formation apparatus and film formation method
US20120160808A1 (en) Substrate processing apparatus and substrate processing method
TW201805471A (en) Systems and methods for using electrical asymmetry effect to control plasma process space in semiconductor fabrication
JP5793170B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
KR102626138B1 (en) Method for processing target object
US10519549B2 (en) Apparatus for plasma atomic layer deposition
JP2012054508A (en) Film deposition apparatus
TWI665727B (en) Batch type plasma substrate processing apparatus
KR20220057609A (en) Methods for forming a protective coating on processing chamber surfaces or components
TWI697049B (en) Batch type plasma substrate processing apparatus
JP2009206341A (en) Microwave plasma processing apparatus, dielectric window member used therefor, and manufacturing method of dielectric window member
CN104241183A (en) Manufacturing method of electrostatic suction cup, electrostatic suction cup and plasma processing device
KR100988291B1 (en) Apparatus for surface treatment with plasma in atmospheric pressure having parallel plates type electrode structure
WO2015079632A1 (en) Atomic layer deposition device
WO2019235282A1 (en) Substrate processing apparatus and shower head
US11062883B2 (en) Atomic layer deposition apparatus
JP4890313B2 (en) Plasma CVD equipment
KR101364196B1 (en) Batch type ald apparatus and cluster type ald apparatus comprising the same
WO2023153298A1 (en) Substrate processing method
KR20120013763A (en) Multiple atmosphere plasma device without cooling system
KR20040045750A (en) Chemical vapor deposition with high density plasma
KR101071248B1 (en) ElectroStatic Chuck and manufacturing process for ElectroStatic Chuck

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP