WO2015078800A1 - New pesticidal compounds and uses - Google Patents

New pesticidal compounds and uses Download PDF

Info

Publication number
WO2015078800A1
WO2015078800A1 PCT/EP2014/075354 EP2014075354W WO2015078800A1 WO 2015078800 A1 WO2015078800 A1 WO 2015078800A1 EP 2014075354 W EP2014075354 W EP 2014075354W WO 2015078800 A1 WO2015078800 A1 WO 2015078800A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
halogen atoms
halogen
halogenoalkyl
group
Prior art date
Application number
PCT/EP2014/075354
Other languages
French (fr)
Inventor
Hans-Georg Schwarz
Anne Decor
Ulrich Goergens
Kerstin Ilg
Martin Fuesslein
Daniela Portz
Claudia WELZ
Peter Luemmen
Kirsten Boerngen
Adeline Koehler
Daniel Kulke
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Priority to JP2016554909A priority Critical patent/JP2016540832A/en
Priority to EP14802067.0A priority patent/EP3073827A1/en
Priority to RU2016125306A priority patent/RU2016125306A/en
Priority to MX2016006841A priority patent/MX2016006841A/en
Priority to AU2014356673A priority patent/AU2014356673B2/en
Priority to US15/039,138 priority patent/US20170044104A1/en
Priority to CA2931265A priority patent/CA2931265A1/en
Priority to CN201480073760.3A priority patent/CN106061255A/en
Publication of WO2015078800A1 publication Critical patent/WO2015078800A1/en
Priority to ZA2016/03549A priority patent/ZA201603549B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/08Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/601,4-Diazines; Hydrogenated 1,4-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/26Radicals substituted by halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • C07D213/6432-Phenoxypyridines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • C07D213/71Sulfur atoms to which a second hetero atom is attached
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/30Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/24Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/28Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to the use of known and novel phenalkyl carboxamide derivatives for the control of nematodes and/or other helminths, particularly in agriculture and in the animal health field, formulations containing such compounds, particularly agrochemical formulations, and methods for the control of nematodes and helminths.
  • the present invention further relates to certain phenalkyl carboxamide derivatives as to processes for their preparation, to formulations comprising those compounds and their use in agriculture and veterinary fields and fields relying on pest management.
  • the compounds are active for controlling plant damaging pests; they are particularly active for the control of nematodes.
  • the compounds act as anthelmintic agents against endoparasites in animals and humans.
  • N-2-(pyridyl)ethyl-carboxamide derivatives for controlling nematodes is described in WO2007/108483 Al and EP 2 132 987 Al.
  • Another particular object of the present invention was to provide compounds which can be used as endoparasiticides with a satisfactory or improved anthelmintic activity against a broad spectrum of helminths and nematodes, particularly at relatively low dosages, without any adverse toxic effects to the treated vertebratic organism.
  • the present invention relates to the use of a compound of formula (I)
  • n is 0, 1 , 2, 3 or 4, limited by the number of available positions in the ring to which a substituent X can be connected, each X is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF 5 , -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , -CONH(OH), -OCONH 2 , (hydroxyimino)-Ci-C6-alkyl, Ci-C 8 -alkyl, Ci-C 8 -halogenoalkyl having 1 to 5 halogen atoms, C 2 - Cs-alkenyl, C 2 -C 8 -alkynyl, Ci-C 8 -alkylamino, di-(Ci-C8-alkyl)amino, Ci-C 8 -alkoxy, Ci-C 8 - halogenoalkoxy having 1
  • Q represents an aromatic or partially saturated or saturated, 5- or 6-membered heterocyclic ring containing one to four heteroatoms chosen from N, S, and O bearing the substituent Ym with m is 0, 1 , 2, 3 or 4, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF 5 , -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , -CONH(OH), -OCONH 2 , (hydroxyimino)-Ci-C6-alkyl, Ci-C 8 -alkyl, Ci-C 8 -halogenoalkyl having 1 to 5 halogen atoms, C 2 -
  • R 1 , R 2 , R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , -CONH(OH), -OCONH 2 , a (hydroxyimino)-Ci-C6-alkyl group, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, Ci- C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3- alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms,
  • R 1 and R 2 together with the carbon atom to which they are bonded form a 4-, 5- or 6-membered carbocycle and R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , - CONH(OH), -OCONH 2 , a (hydroxyimino)-Ci-C 6 -alkyl group, Ci-Ce-alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 - alkynyl, Ci-C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, C 1 -C4- alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to 5
  • R 3 and R 4 together with the carbon atom to which they are bonded form a 3-, 4-, 5- or 6- membered carbocycle and R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , -CONH(OH), -OCONH 2 , a (hydroxyimino)-Ci-C 6 -alkyl group, Ci-Ce-alkyl, C 2 -C 6 - alkenyl, C 2 -C6-alkynyl, Ci-C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C 4 - alkyl, Ci-C 4 -alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to
  • R 2 and R 4 together with the carbon atoms to which they are bonded form a 5- or 6-membered non- aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-Cs-alkyl groups and one to four halogen atoms
  • R 1 and R 3 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , -CONH(OH), -OCONH2, a (hydroxyimino)-
  • Ci-C6-alkyl group Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-alkylamino, di-(Ci-C6- alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C2-C6- alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6-alkynyloxy, C3-C6- halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having
  • each R is independently selected from the group consisting of halogen, nitro, -OH, N3 ⁇ 4, SH, SF5, CHO, OCHO, NHCHO, COOH, cyano, Ci-Cg-alkyl, Ci-C 8 -halogenoalkyl having 1 to 9 halogen atoms, C 2 -C8-alkenyl, C 2 -Cs-alkynyl, C3-C6-cycloalkyl, -S-Ci-Cs-alkyl, -S-Ci-Cs-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-alkoxy, Ci-Cs-halogenoalkoxy having 1 to 5 halogen atoms, Ci-Cs- alkoxy-C 2 -C 8 -alkenyl, Ci-Cs-alkoxycarbonyl, Ci-Cs-halogenoalkoxycarbonyl having
  • A represents a heterocycle of the formula (Het-1)
  • R 6 and R 7 may be the same or different and are selected from the group consisting of hydrogen, halogen, amino, nitro, Ci-C 4 -alkyl and Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, and
  • R 8 is selected from the group consisting of hydrogen, halogen, nitro, Ci-C 4 -alkyl and C 1 -C4- halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-2)
  • R 9 is selected from the group consisting of hydrogen, halogen, Ci-C 4 -alkyl and Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms
  • R 10 and R 11 may be the same or different and are selected from the group consisting of hydrogen, halogen, amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-3)
  • R 12 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 13 is selected from the group consisting of hydrogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-4)
  • R 14 and R may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)2- Ci-C4-alkyl, phenyl (optionally substituted by halogen or Ci-C4-alkyl) and pyridyl (optionally substituted by halogen or Ci-C4-alkyl), and
  • R 16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-5)
  • R 17 and R 18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 19 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 atoms, or
  • A represents a heterocycle of the formula (Het-6)
  • R 20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and C 1 -C4- halogenoalkyl having 1 to 5 halogen atoms, and
  • R 21 and R 23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
  • R 22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxyl-Ci-C4-alkyl, -S(0) 2 -Ci-C4-alkyl, -S(0)2-N(Ci-C4-alkyl)2, Ci-C6-alkylcarbonyl, -S(0)2-phenyl (optionally substituted by halogen or Ci-C4-alkyl) and benzoyl (optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-7)
  • R 24 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci-C4-alkyl, -S(0) 2 -Ci-C4-alkyl, -S(0)2-N(Ci-C4-alkyl)2, Ci-C6-alkylcarbonyl, -S(0)2-phenyl (optionally substituted by halogen or Ci-C4-alkyl) and benzoyl (optionally substituted by halogen or a Ci-C4-alkyl), and R 25 , R 26 and R 27 may be the same or different and are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenalkyl having 1 to 5 halogen atoms and C 1 -C4- alkyl
  • A represents a heterocycle of the formula (Het-8)
  • R 28 is selected from the group consisting of hydrogen and Ci-C4-alkyl
  • R 29 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-9)
  • R 30 is selected from the group consisting of hydrogen and Ci-C4-alkyl
  • R 31 is selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-10)
  • R 32 is selected from the group consisting of hydrogen, halogen, amino, cyano, Ci-C4-alkylamino, di- (Ci-C4-alkyl)amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), and R 33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy having 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci-C5-alkyl)-amino, or
  • A represents a heterocycle of the formula (Het-11)
  • R 34 is selected from the group consisting of hydrogen, halogen, amino, cyano, Ci-C4-alkylamino, di- (Ci-C4-alkyl)amino, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 35 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-12)
  • R 36 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl- Ci-C4-alkyl, and
  • R 37 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C 1 -C 4 - alkoxy, -S-Ci-C 4 -alkyl, -S(0)-Ci-C 4 -alkyl, and -S(0) 2 -Ci-C 4 -alkyl, and
  • R 38 is selected from the group consisting of hydrogen, phenyl, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C 2 -C6-alkenyl, C3-C6-cycloalkyl, C 1 -C 4 - alkylthio-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0)-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0) 2 -Ci-C 4 -alkyl, C 1 -C4- halogenoalkylthio-Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and C 1 -C 4 - halogenoalkoxy-Ci-C4-alkyl having 1 to 5 halogen atoms, or A
  • R 39 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 atoms, aminocarbonyl and aminocarbonyl-Ci-C4- alkyl, and
  • R 40 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms,-S-Ci-C4-alkylS(0)-Ci-C4-alkyl, and -S(0)2-Ci- C4-alkyl, and
  • R 41 is selected from the group consisting of hydrogen, Ci-C 4 -alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-CU-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci-C4- alkyl, Ci-C 4 -alkyl-S(0)-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0) 2 -Ci-C 4 -alkyl, Ci-C 4 -halogenoalkylthio-Ci- C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-halogenoalkoxy-Ci-C4- alkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen, Ci-C -
  • A represents a heterocycle of the formula (Het-14)
  • R 42 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C 4 -alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl- Ci-C4-alkyl, and R 43 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, -S- Ci-C 4 -alkyl, S(0)-Ci-C
  • R is selected from the group consisting of hydrogen, phenyl, benzyl, Ci-C4-alkyl, Ci-C halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C 2 -C6-alkenyl, C3-C6-cycloalkyl, Ci-C 4 -alkylthio-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0)-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0) 2 -Ci-C 4 -alkyl, Ci-C 4 - halogenoalkylthio-Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and C 1 -C4- halogenoalkoxy-Ci-C4-alkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-15)
  • R 45 and R 46 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-16)
  • R 47 and R 48 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl (optionally substituted by halogen or a Ci-C4-alkyl), and heterocyclyl like pyridyl, pyrimidinyl and thiadiazolyl (each optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-17)
  • R 49 and R 50 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-18)
  • R 51 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-19)
  • R 52 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 53 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-20)
  • R 54 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or A represents a heterocycle of the formula (Het-21)
  • R 55 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, and
  • R 56 , R 57 and R 58 which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2- Ci-C4-alkyl, or
  • A represents a heterocycle of the formula (Het-22)
  • R 59 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-CU-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C1-C4 alkoxy, -S-Ci-Cs-alkyl, S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci- C4-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C 4 -alkyl), and
  • R 60 , R 61 and R 62 which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C 4 -alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)2-Ci- C4-alkyl, N-mo holine optionally substituted by halogen or Ci-C 4 -alkyl, and thienyl (optionally substituted by halogen or a Ci-C -alkyl), or
  • A represents a heterocycle of the formula (Het-23) in which
  • R 63 , R 64 , R 65 and R 66 which may be the same or different, are selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
  • A represents a heterocycle of the formula (Het-24)
  • R 67 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 68 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-alkoxycarbonyl, benzyl (optionally substituted by 1 to 3 halogen atoms), benzyloxycarbonyl (optionally substituted by 1 to 3 halogen atoms), and heterocyclyl like pyridyl and pyrimidinyl (each optionally substituted by halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms), or
  • A represents a heterocycle of the formula (Het-25)
  • R 69 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-C1-C4- halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, and
  • R 70 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and benzyl, or A represents a heterocycle of the formula (Het-26)
  • X 1 is selected from the group consisting of sulphur, -SO-, -SO2- and -CH2-, and
  • R 71 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 72 and R 73 may be the same or different and are selected from the group consisting of hydrogen and Ci- C4-alkyl, or
  • A represents a heterocycle of the formula (Het-27)
  • R 74 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-28)
  • R 75 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-29)
  • R 76 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, for controlling nematodes and/or other helminths.
  • any of the compounds according to the invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound.
  • the invention thus relates equally to all the optical isomers and to their racemic or scalemic mixtures (the term "scalemic” denotes a mixture of enantiomers in different proportions), and to the mixtures of all the possible stereoisomers, in all proportions.
  • the diastereoisomers and/or the optical isomers can be separated according to the methods which are known per se by the man ordinary skilled in the art.
  • the invention also relates to salts, N-oxides, metal complexes and metalloid complexes of compounds of formula (I) and the uses thereof.
  • Compounds of the present invention can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound, especially all syn/anti (or cis/trans) isomers and to all possible syn/anti (or cis/trans) mixtures.
  • the invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions.
  • the geometric isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art.
  • alkyl used either alone or in compound words such as “haloalkyl” includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers.
  • alkenyl includes straight-chain or branched alkenes such as ethenyl, 1- propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers.
  • Alkenyl also includes polyenes such as 1 ,2-propadienyl and 2,4-hexadienyl.
  • Alkynyl includes straight -chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl” can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl.
  • Alkoxy includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers.
  • Alkoxyalkyl denotes alkoxy substitution on alkyl. Examples of “alkoxyalkyl” include CH 3 OCH 2 , CH 3 OCH 2 CH 2 , CH 3 CH 2 OCH 2 , CH 3 CH 2 CH 2 CH 2 OCH 2 and CH 3 CH 2 OCH 2 CH 2 .
  • Cycloalkyl includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • the term “cycloalkylalkyl” denotes cycloalkyl substitution on an alkyl moiety. Examples of “cycloalkylalkyl” include cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to straight-chain or branched alkyl groups.
  • Cycloalkenyl includes groups such as cyclopentenyl and cyclohexenyl as well as groups with more than 10 one double bond such as 1,3- and 1 ,4-cyclohexadienyl.
  • cycloalkylcycloalkyl denotes cycloalkyl substitution on another cycloalkyl ring, wherein each cycloalkyl ring independently has from 3 to 7 carbon atom ring members.
  • cycloalkylcycloalkyl include cyclopropylcyclopropyl (such as ⁇ , ⁇ -bicyclopropyl-l-yl, l,l'-bicyclopropyl-2 -yl), cyclohexylcyclopentyl (such as 4-cyclopentylcyclohexyl) and cyclohexylcyclohexyl (such as 1,1'- bicyclohexyl-l-yl), and the different cis- and ira «s-cycloaikylcycloaikyl isomers, (such as (1R,25)-1,1 '- bicyclopropyl-2-yl and (lR,2R)-l,l '-bic
  • halogen either alone or in compound words such as “haloalkyl”, or when used in descriptions such as “alkyl substituted with halogen” includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as “haloalkyl”, or when used in descriptions such as “alkyl substituted with halogen” said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of “haloalkyl” or “alkyl substituted with halogen” include F 3 C, C1CH 2 , CF 3 CH 2 and CF 3 CC1 2 .
  • haloalkoxy haloalkenyl
  • haloalkynyl haloalkynyl
  • examples of “haloalkoxy” include CF 3 0, CC1 3 CH 2 0, HCF 2 CH 2 CH 2 0 and CF 3 CH 2 0.
  • Examples of “haloalkynyl” include HC ⁇ CCHC1, CF 3 C ⁇ C, CC1 3 C ⁇ C and FCH 2 C ⁇ CCH 2 .
  • C(O) represents a carbonyl moiety.
  • C(0)CH 3 represents an acetyl group.
  • C0 2 and C(0)0 as used herein represent an ester moiety.
  • C0 2 Me and C(0)OMe represent a methyl ester.
  • CHO represents an aldehyde moiety.
  • OCN means -0-C ⁇ N
  • SCN means -S-ON
  • C 2 alkoxyalkyl designates CH 3 OCH 2
  • C 3 alkoxyalkyl designates, for example, CH 3 CH(OCH 3 ), CH 3 OCH 2 CH 2 or CH 3 CH 2 OCH 2
  • C 4 alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH3CH2CH2OCH2 and CH3CH2OCH2CH2.
  • substituents When a group contains a substituent which can be hydrogen, for example R 2 or R 3 , then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.
  • a “ring” or “ring system” as a component of formula (I) is carbocyclic or heterocyclic.
  • ring system denotes two or more fused rings.
  • heterocyclic ring denotes a ring in which at least one atom forming the ring backbone is not carbon, e.g., nitrogen, oxygen or sulfur.
  • a heterocyclic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs.
  • a heterocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring.
  • heterocyclic ring system denotes a ring system in which at least one ring of the ring system is a heterocyclic ring. Unless otherwise indicated, heterocyclic rings and ring systems can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.
  • n is as defined in embodiment 1-1
  • each X is as defined in embodiment 1-1
  • Q represents an aromatic or partially saturated or saturated, 5- or 6-membered heterocyclic ring containing one to four heteroatoms chosen from N, S, and O bearing the substituent Ym with m is 0, 1 , 2, 3 or 4, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF 5 , -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , -CONH(OH), -OCONH2, (hydroxyimino)-Ci-C6-alkyl, Ci-C 8 -alkyl, Ci-C 8 -halogenoalkyl having 1 to 5 halogen atoms, C 2 - Cs-alkenyl, C 2 -C 8 -alkynyl, Ci-C 8 -alkylamino, di-(Ci-C8-
  • L , R 2 , R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH 2 , -CONH(OH), -OCONH 2 , a (hydroxyimino)-Ci-C6-alkyl group, Ci-C6-alkyl, C 2 -C6-alkenyl, C 2 -C6-alkynyl, Ci- C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3- alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C
  • R 5 is as defined in embodiment 1-1, and
  • A is as defined in embodiment 1-1 with the proviso that for Het-21, R 55 ist not CF3.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl. In another individual aspect of embodiment 1-1, the combination RVR 2 is fluorine/hydrogen.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • Q preferably represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-l to Q-64 (embodiments 1-la and l-2a):
  • Q-62 Q-63 Q-64 with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, C 1 -C 4 - alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C 2 -C4-alkenyl, C 2 -C4-alkynyl, C 1 -C 4 - alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C4-alkenyloxy, C 2 -C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4- alkynyloxy, C3-C4-halogenoalkynyloxy having 1
  • n is 1 or 2, limited by the number of available positions in the ring to which a substituent X can be connected, each X is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, C 1 -C 4 - alkyl, Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, C 1 -C 4 - alkylamino, di-(Ci-C 4 -alkyl)amino, Ci-C 4 -alkoxy, Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C 4 -alkenyloxy, C 2 -C 4 -halogenoalkenyloxy having 1 to 5 halogen atoms,
  • R 1 , R 2 , R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH 2 , Ci-C4-alkyl, C 2 -C4-alkenyl, C 2 -C4- alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C4-alkenyloxy, C 2 -C4- halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3
  • halogen atoms 1 to 5 halogen atoms, -S(0) 2 -Ci-C4-alkyl, -S(0) 2 -Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0) 2 -benzyl, benzylamino, phenoxy, -S-phenyl, - S(0)-phenyl, -S(0) 2 -phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl- carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, or
  • R 1 and R 2 together with the carbon atom to which they are bonded form a 4- or 5-membered carbocycle and R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH 2 , Ci-C4-alkyl, C 2 -C4-alkenyl, C 2 -C4-alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C4- alkenyloxy, C 2 -C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-
  • R 3 and R 4 together with the carbon atom to which they are bonded form a 3-, 4- or 5-membered carbocycle and R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH 2 , Ci-C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, Ci-C 4 -alkylamino, di-(Ci-C 4 -alkyl)amino, Ci-C 4 -alkoxy, Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C 4 - alkenyloxy, C 2 -C 4 -halogenoalkenyloxy having 1 to 5 halogen atoms, C 3 -C 4 -
  • R 2 and R 4 together with the carbon atoms to which they are bonded form a 5-membered non- aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-C 4 -alkyl groups and one to four halogen atoms, and R 1 and R 3 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino,
  • Ci-C 4 -alkyl C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, Ci-C 4 -alkylamino, di-(Ci- C 4 -alkyl)amino, Ci-C 4 -alkoxy, Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, Ci-C 4 - halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C 4 -alkenyloxy, C 2 -C 4 -halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C 4 -alkynyloxy, C3-C 4 -halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl,
  • C 4 -halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C 4 -alkyl), -OCON(Ci-C 4 -alkyl) 2 , - OCONH(OCi-C 4 -alkyl), OCO(OCi-C 4 -alkyl), -S-Ci-C 4 -alkyl, -S-Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C 4 -alkyl, -S(0)-Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, - S(0) 2 -Ci-C 4 -alkyl, -S(0) 2 -Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, - S-benzyl, -S(0)-benzyl,
  • R 1 and R 3 together with the carbon atoms to which they are bonded form a 5-membered non- aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-C 4 -alkyl groups and one to four halogen atoms
  • R 2 and R 4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH 2 , Ci-C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, Ci-C 4 -alkylamino, di-(Ci- C 4 -alkyl)amino, Ci-C 4 -alkoxy, Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, Ci-C 4 - halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C 4 -al
  • R 5 is selected from the group consisting of hydrogen, -CHO, -OH, Ci-C 4 -alkyl, Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, Ci-C 4 -alkoxy, Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms, C 3 -C6-cycloalkyl, C 3 -C6-halogenocycloalkyl having 1 to 5 halogen atoms, C 2 -C 4 -alkenyl, C 2 -C 4 - alkynyl, Ci-C 4 -alkoxy-Ci-C 4 -alkyl, C 3 -C6-cycloalkyl-Ci-C 3 -alkyl, cyano-Ci-C 4 -alkyl, amino-Ci- C 4 -alkyl, Ci-C 4 -alkylamino-Ci-C 4 -alkyl, di-(Ci-
  • A represents a phenyl group of formula (Al)
  • each R is independently selected from the group consisting of halogen, nitro, -OH, CHO, OCHO, NHCHO,, cyano, Ci-C 4 -alkyl, Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, C 3 -C6-cycloalkyl, -S-Ci-C 4 -alkyl, -S-Ci-C 4 -halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, Ci-C4-alkoxy-C2-C4- alkenyl, Ci-C 4 -alkoxycarbonyl, Ci-C 4 -halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci- C- C
  • A represents a heterocycle of the formula (Het-1)
  • R 6 and R 7 may be the same or different and are selected from the group consisting of hydrogen, halogen, nitro, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 8 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-2)
  • R 9 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 10 and R 11 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-4)
  • R 14 and R 15 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)2- Ci-C4-alkyl, phenyl (optionally substituted by halogen or Ci-C4-alkyl) and pyridyl (optionally substituted by halogen or Ci-C4-alkyl), and
  • R 16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-5)
  • R 17 and R 18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 19 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 atoms, or
  • A represents a heterocycle of the formula (Het-6)
  • R 20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and C 1 -C4- halogenoalkyl having 1 to 5 halogen atoms, and
  • R 21 and R 23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
  • R 22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, or
  • A represents a heterocycle of the formula (Het-7) (Het-7) in which
  • R 24 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C6-alkylcarbonyl, or benzoyl (optionally substituted by halogen or a Ci-C4-alkyl), and
  • R 25 , R 26 and R 27 may be the same or different and are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenalkyl having 1 to 5 halogen atoms and C 1 -C4- alkylcarbonyl, or
  • A represents a heterocycle of the formula (Het-9)
  • R 30 is selected from the group consisting of hydrogen and Ci-C4-alkyl
  • R 31 is selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-10)
  • R 33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy comprising 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci-C5-alkyl)-amino, or
  • A represents a heterocycle of the formula (Het-11)
  • R 34 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkylamino, di-(Ci-C4- alkyl)amino, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 35 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-12)
  • R 36 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-CU-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl and -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 37 ist selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C 4 -alkyl, C 1 -C 4 - alkoxy and -S-Ci-C 4 -alkyl, -S(0)-Ci-C 4 -alkyl, -S(0) 2 -Ci-C 4 -alkyl, and
  • R 38 is selected from the group consisting of phenyl, Ci-C 4 -alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-CU-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci-C4- alkyl, Ci-C 4 -alkyl-S(0)-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0) 2 -Ci-C 4 -alkyl, Ci-C 4 -halogenoalkylthio-Ci- C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and Ci-C4-halogenoalkoxy-Ci- C4-alkyl having 1 to 5 halogen atoms, or A represents a heterocycle of the formula (Het-13)
  • R 39 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 atoms, aminocarbonyl and aminocarbonyl-Ci-C4- alkyl, and
  • R 40 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms,-S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, and -S(0)2- Ci-C4-alkyl, and
  • R 41 is selected from the group consisting of hydrogen, Ci-C 4 -alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-CU-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci-C4- alkyl, Ci-C 4 -alkyl-S(0)-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0) 2 -Ci-C 4 -alkyl, Ci-C 4 -halogenoalkylthio-Ci- C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-halogenoalkoxy-Ci-C4- alkyl having 1 to 5 halogen atoms and phenyl optionally substituted by halogen, Ci-C -al
  • A represents a heterocycle of the formula (Het-14)
  • R 42 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C 4 -alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C 1 -C 4 - halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, and -S(0)2-Ci- C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl-Ci-C4-alkyl, and R 43 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, -S- Ci-C 4 -alkyl, -S(0)-C
  • R 44 is selected from the group consisting of phenyl, benzyl, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci- C 4 -alkyl, Ci-C 4 -alkyl-S(0)-Ci-C 4 -alkyl, Ci-C 4 -alkyl-S(0) 2 -Ci-C 4 -alkyl, Ci-C 4 -halogenoalkylthio- Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and Ci-C4-halogenoalkoxy- Ci-C4-alkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-15)
  • R 45 and R 46 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-16)
  • R 47 and R 48 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl (optionally substituted by halogen or a Ci-C4-alkyl), or heterocyclyl like pyridyl, pyrimidinyl and thiadiazolyl (optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-17)
  • R 49 and R 50 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-19)
  • R 52 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 53 is selected from the group consisting of Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-20)
  • R 54 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-21)
  • R 55 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, and
  • R 56 , R 57 and R 58 which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C 4 -alkyl, -S(0)-Ci-C 4 -alkyl, -S(0) 2 -Ci-C 4 -alkyl, Ci-C 4 -halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C 4 -alkyl and -S(0) 2 -Ci-C 4 -alkyl, or
  • A represents a heterocycle of the formula (Het-22)
  • R 59 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C 1 -C 4 alkoxy, -S-Ci-Cs-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci- C4-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C 4 -alkyl), and
  • R 60 , R 61 and R 62 which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C 4 -alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C 4 -alkyl, -S(0) 2 -Ci- C4-alkyl, N-mo holine (optionally substituted by halogen or Ci-C 4 -alkyl) and thienyl (optionally substituted by halogen or a Ci-C 4 -alkyl), or
  • A represents a heterocycle of the formula (Het-23)
  • R 63 , R 64 , R 65 and R 66 which may be the same or different, are selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C 1 -C4- halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
  • A represents a heterocycle of the formula (Het-24)
  • R 67 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 68 is selected from the group consisting of Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-alkoxycarbonyl, benzyl (optionally substituted by 1 to 3 halogen atoms), benzyloxycarbonyl (optionally substituted by 1 to 3 halogen atoms) and heterocyclyl like pyrimidinyl, (optionally substituted by halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms), or
  • A represents a heterocycle of the formula (Het-25)
  • Het-25 in which is selected from the group consisting of hydrogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and benzyl, or
  • A represents a heterocycle of the formula (Het-26) in which
  • X 1 is selected from the group consisting of sulphur, -SO-, or -SO 2 -, and
  • R 71 is selected from the group consisting of Ci-CU-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 72 and R 73 may be the same or different and are selected from the group consisting of hydrogen and Ci- C4-alkyl, or
  • A represents a heterocycle of the formula (Het-29)
  • R is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms.
  • n is as defined in embodiment 2-1
  • each X is as defined in embodiment 2-1, represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-1, Q-2, Q-3, Q-4, Q-5, Q-6, Q-7, Q-8, Q-9, Q-10, Q-11, Q-12, Q-13, Q-14, Q-15, Q-16, Q-17, Q-18, Q-19, Q-20, Q-21, Q-22, Q-23, Q-24, Q-25, Q-26, Q-27, Q-28, Q-29, Q-30, Q-31, Q-32, Q- 33, Q-34, Q-35, Q-36, Q-37, Q-38, Q-39, Q-40, Q-41, Q-42, Q-43, Q-44, Q-45, Q-46, Q-47, Q-48, Q-49, Q-50, Q-51, Q
  • R 1 , R 2 , R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH 2 , Ci-C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 - alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C 2 -C4-alkenyloxy, C 2 -C4- halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms
  • A is as defined in embodiment 2-1 with the proviso that for Het-21, R 55 ist not CF3.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • X is selected from the group consisting of hydrogen, halogen, nitro, cyano, Ci-CU-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms,
  • Q represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-4, Q-l l, Q-21, Q-22, Q-25, Q-36, Q-37, Q-38, Q-40, Q-41, Q-42, Q-53, Q-58, Q-62, Q-63 and Q-64, with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, -CF3, -CH2CF3, methyl, ethyl, fluorine, chlorine, bromine, iodine, cyano, -OCH3, -OCH2CH3, -OCH(CH 3 ) 2 , -OCH2CF3, S(0) 2 - CH 3 , NHC(0)CH 3 ,
  • R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkoxy, C3-C6-cycloalkyl-Ci- C 3 -alkyl, Ci-C 4 -alkoxycarbonyl, -OC(0)-Ci-C 4 -alkyl, -NHC(0)-Ci-C 4 -alkyl, and phenyl,
  • R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, -COOH, Ci- C 4 -alkyl, Ci-C 4 -halogenoalkyl Ci-C 4 -alkoxy, hydroxy-Ci-C 4 -alkyl, Ci-C 4 -alkoxy-Ci-C3-alkyl, - CONH(Ci-C 4 -alkyl), Ci-C 4 -alkoxycarbonyl, -OC(0)-Ci-C 4 -alkyl, and phenyl, or R 1 and R 2 together with the carbon atom to which they are bonded form a 4 or 5-membered carbocycle, and R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, - COOH, Ci-C -alkyl, Ci-C 4 -halogenoalkyl Ci-C 4 -alkoxy, hydroxy-Ci-C 4 -alkyl, Ci-C 4 -alk
  • R 3 and R 4 together with the carbon atom to which they are bonded form a 3-, 4- or 5-membered carbocycle
  • R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, Ci-C 4 -alkoxy, C3- Ce-cycloalkyl-Ci-Cs-alkyl, Ci-C 4 -alkoxycarbonyl, -OC(0)-Ci-C 4 -alkyl, -NHC(0)-Ci-C 4 -alkyl,
  • R 2 and R 4 together with the carbon atoms to which they are bonded form a 5-membered non-aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four
  • Ci-C3-alkyl groups and one to two halogen atoms and R 1 is selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, Ci-C 4 -alkoxy, C3- Ce-cycloalkyl-Ci-Cs-alkyl, Ci-C 4 -alkoxycarbonyl, -OC(0)-Ci-C 4 -alkyl, -NHC(0)-Ci-C 4 -alkyl, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, and R 3 is selected from the group consisting of hydrogen, -COOH, Ci-C 4 -alkyl, Ci-C 4 -halogenoalkyl Ci-C 4 -alkoxy, hydroxy-Ci-C 4 -al
  • A represents a phenyl group of formula (Al)
  • each R is independently selected from the group consisting of halogen, nitro, -OH, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C 1 C 1 -C4- alkoxycarbonyl, -NH(Ci-C4-alkyl), phenyl (optionally substituted by Ci-C4-alkoxy) and phenoxy, or
  • A represents a heterocycle of the formula (Het-1)
  • R 6 and R 7 may be the same or different and are selected from the group consisting of hydrogen, halogen, nitro, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 8 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-2)
  • R 9 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms
  • R 10 and R 11 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl optionally substituted by halogen or Ci-C4-alkyl), or
  • A represents a heterocycle of the formula (Het-4)
  • R 14 and R may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)2- Ci-C4-alkyl, phenyl (optionally substituted by halogen or Ci-C4-alkyl) and pyridyl (optionally substituted by halogen or Ci-C4-alkyl), and
  • R 16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
  • A represents a heterocycle of the formula (Het-5)
  • R 17 and R 18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
  • R 19 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 atoms, or
  • A represents a heterocycle of the formula (Het-6)
  • R 20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, and
  • R 21 and R 23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
  • R 22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, or
  • A represents a heterocycle of the formula (Het-10)
  • R 32 is selected from the group consisting of hydrogen, halogen, amino, cyano, Ci-C4-alkylamino, di- (Ci-C4-alkyl)amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
  • R 33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy comprising 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci-C5-alkyl)-amino, or
  • A represents a heterocycle of the formula (Het-21)
  • R 55 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, and R 56 , R 57 and R 58 , which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-
  • R 59 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C 1 -C 4 - halogenoalkyl having 1 to 5 halogen atoms, C1-C4 alkoxy, -S-Ci-Cs-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci- C4-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C 4 -alkyl), and
  • R 60 , R 61 and R 62 which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C 4 -alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)2-Ci- C4-alkyl, N-mo holine (optionally substituted by halogen or Ci-C 4 -alkyl) and thienyl (optionally substituted by halogen or a Ci-CU-alkyl), or
  • A represents a heterocycle of the formula (Het-29)
  • R is selected from the group consisting of hydrogen, halogen, Ci-C 4 -alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms.
  • n is 1 or 2
  • each X is as defined in embodiment 3-1
  • Q represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-4, Q-l l, Q-21, Q-22, Q-25, Q-36, Q-37, Q-38, Q-40, Q-41, Q-42, Q-45, Q-53, Q-58, Q-62, Q-63 and Q-64, with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, -CF3, -CH2CF3, methyl, ethyl, fluorine, chlorine, bromine, iodine, cyano, -OCH3, -OCH2CH3, -OCH(CH 3 ) 2 , -OCH2CF3, S(0) 2 - CH 3 , NHC(0)CH 3 , NHCH 3 and N(CH 3 ) 2 ,
  • R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C 2 -C4-alkenyl, C 2 -C4-alkynyl, Ci-C4-alkoxy, C3-C6-cycloalkyl-Ci- C 3 -alkyl, Ci-C 4 -alkoxycarbonyl, -OC(0)-Ci-C 4 -alkyl, -NHC(0)-Ci-C 4 -alkyl, and phenyl, with the proviso that R 1 is fluorine and/or R 2 is fluorine, R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, -COOH, Ci- C 4 -alkyl, Ci-C 4 -halogenoalkyl Ci-C 4 -alkoxy, hydroxy-Ci-C 4 -alkyl, Ci-C 4 -alkoxy-
  • R 5 is as defined in embodiment 3-1, and
  • A is as defined in embodiment 3-1 with the proviso that for Het-21, R 55 ist not CF3.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • n 1, is selected from the group consisting of hydrogen, halogen, nitro, cyano, Ci-C4-alkyl, C 1 -C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, is selected from:
  • R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, methyl, ethyl, methoxy, ethoxy or fluorine, particularly wherein both R 1 and R 2 are not hydrogen, R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, methyl or ethyl,
  • R 5 is hydrogen
  • A is selected from:
  • Q is selected from:
  • R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, methyl, ethyl, methoxy, ethoxy or fluorine, with the proviso that R 1 is fluorine and/or R 2 is fluorine, R 3 and R 4 are the same or different and are selected from the group consisting of hydrogen, methyl or ethyl,
  • R 5 is as defined in embodiment 4-1, and A is selected from:
  • A is selected from:
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • R 1 is fluorine. In another individual aspect of embodiment 4-2, R 2 is fluorine. In another individual aspect of embodiment 4-2, R 1 is fluorine and R 2 is fluorine. In another individual aspect of embodiment 4-2, the combination RVR 2 is fluorine/methyl. In another individual aspect of embodiment 4-2, the combination RVR 2 is fluorine/hydrogen.
  • n 1 ,
  • X is selected from the group consisting of hydrogen or chlorine
  • R 1 , R 2 , R 3 , R 4 and R 5 are hydrogen, or
  • R 1 and R 2 are fluorine and R 3 , R 4 and R 5 are hydrog
  • A is or In a second very specific aspect (embodiment 5-2) of the especially preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I), is 1 or 2,
  • X is selected from the group consisting of hydrogen, chlorine, cyano, fluorine, methyl, trifluoromethyl and methoxy, preferably if n is 1 then X is selected from the group consisting of hydrogen, chlorine, fluorine, methyl, trifluormethyl and methoxy; if n is 2 then X is fluorine,
  • Q is selected from:
  • R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, methyl or fluorine, with the proviso that R 1 is fluorine and/or R 2 is fluorine, R 3 , R 4 and R 5 are hydrogen, A is
  • X is selected from the group consisting of hydrogen or chlorine
  • Q is selected from:
  • R 1 and R 2 are both fluorine, or
  • R 1 and R 2 are one fluorine and one hydrogen
  • R 1 and R 2 are one fluorine and one methyl
  • R 3 , R 4 and R 5 are hydrogen
  • n is 1 or 2
  • each X is selected from the group consisting of hydrogen, chlorine, cyano, fluorine, methyl, trifluoromethyl and methoxy, preferably if n is 1 then X is selected from the group consisting of hydrogen, chlorine, fluorine, methyl, trifluormethyl and methoxy; if n is 2 then X is fluorine,
  • Q is selected from:
  • R 1 and R 2 are the same or different and are selected from the group consisting of hydrogen, methyl or fluorine, with the proviso that R 1 is fluorine and/or R 2 is fluorine, R 3 , R 4 and R 5 are hydrogen, A is selected from or A is
  • R 1 is fluorine and R 2 is fluorine.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • R 1 is fluorine.
  • R 2 is fluorine.
  • R 1 is fluorine and R 2 is fluorine.
  • the combination RVR 2 is fluorine/methyl.
  • the combination RVR 2 is fluorine/hydrogen.
  • Especially preferred in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being especially preferred (especially preferably), wherein each embodiment described above as being especially preferred constitutes an individual combination.
  • a very specific aspect in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being a first very specific aspect (embodiment 5- 1) of the especially preferred substituents or ranges of the structural elements.
  • Another very specific aspect in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being a third very specific aspect (embodiment 5-3) of the especially preferred substituents or ranges of the structural elements.
  • Another very specific aspect in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being a fourth very specific aspect (embodiment 5-4) of the especially preferred substituents or ranges of the structural elements.
  • Saturated or unsaturated hydrocarbon radicals such as alkyl, alkanediyl or alkenyl may in each case, both alone and in conjunction with heteroatoms, as in alkoxy, for example, be - where possible - either straight-chain or branched.
  • halogen is fluoro, chloro, bromo and iodo, very preferably fluoro, chloro and bromo, and especially preferably fluoro and chloro.
  • the invention relates to the use of compounds of formula (I), in which R 3 and R 4 and R 5 are hydrogen, i.e. compounds of the formula (1- 1).
  • a specific embodiment (embodiment 6-1) of the invention is the use of a compound of the formula (1-1)
  • R 1 , R 2 , Q, X, n and A are as defined above in embodiment 1-1, for controlling nematodes and/or other helminths.
  • FIG. 6-2 Another specific embodiment (embodiment 6-2) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 1-2, for controlling nematodes and/or other helminths.
  • FIG. 6- la Another specific embodiment (embodiment 6- la) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 1-la, for controlling nematodes and/or other helminths.
  • FIG. 6-2a Another specific embodiment (embodiment 6-2a) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment l-2a, for controlling nematodes and/or other helminths.
  • Another specific embodiment (embodiment 7-1) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 2-1, for controlling nematodes and/or other helminths.
  • Another specific embodiment (embodiment 7-2) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 2-2, for controlling nematodes and/or other helminths.
  • FIG. 8-1 Another specific embodiment (embodiment 8-1) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 3-1, for controlling nematodes and/or other helminths.
  • Another specific embodiment (embodiment 8-2) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 3-2, for controlling nematodes and/or other helminths.
  • Another specific embodiment (embodiment 9-1) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 4-1, for controlling nematodes and/or other helminths.
  • FIG. 9-2 Another specific embodiment (embodiment 9-2) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 4-2, for controlling nematodes and/or other helminths.
  • Another specific embodiment (embodiment 10-1) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 5-1, for controlling nematodes and/or other helminths.
  • Another specific embodiment (embodiment 10-2) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 5-2, for controlling nematodes and/or other helminths.
  • FIG. 10 Another specific embodiment (embodiment 10-3) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 5-3, for controlling nematodes and/or other helminths.
  • FIG. 10 Another specific embodiment (embodiment 10-4) of the invention is the use of a compound of the formula (1-1) wherein R 1 , R 2 , Q, X, n and A are as defined above in embodiment 5-4, for controlling nematodes and/or other helminths.
  • Q preferably is in para- position (embodiment 1-1.1).
  • Q preferably is in para- position (embodiment 1-2.1).
  • Q preferably is in para- position (embodiment 1-la. l).
  • Q preferably is in para- position (embodiment l-2a. l).
  • Q preferably is in para- position (embodiment 2-1.1).
  • Q preferably is in para- position (embodiment 2-2.1).
  • Q preferably is in para- position (embodiment 3-1.1).
  • Q preferably is in para- position (embodiment 3-2.1).
  • Q preferably is in para- position (embodiment 4-1.1).
  • Q preferably is in para- position (embodiment 4-2.1).
  • Q preferably is in para- position (embodiment 5-1.1).
  • Q preferably is in para- position (embodiment 5-2.1).
  • Q preferably is in para- position (embodiment 5-3.1). In embodiment 5-4 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 5-4.1).
  • Q preferably is in para- position (embodiment 6-1.1).
  • Q preferably is in para- position (embodiment 6-2.1).
  • Q preferably is in para- position (embodiment 6-la. l).
  • Q preferably is in para- position (embodiment 6-2a. l).
  • Q preferably is in para- position (embodiment 7-1.1).
  • Q preferably is in para- position (embodiment 7-2.1).
  • Q preferably is in para- position (embodiment 8-1.1).
  • Q preferably is in para- position (embodiment 8-2.1).
  • Q preferably is in para- position (embodiment 9-1.1).
  • Q preferably is in para- position (embodiment 9-2.1).
  • Q preferably is in para- position (embodiment 10-1.1).
  • Q preferably is in para- position (embodiment 10-2.1).
  • Q preferably is in para- position (embodiment 10-3.1).
  • Q preferably is in para- position (embodiment 10-4.1).
  • the present invention is also directed to novel compounds of formula (la)
  • n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 1-1 and
  • R la is fluorine (embodiment la- 1-1), preferably as defined above in embodiment 1-1.1 and R la is fluorine (embodiment la- 1 - 1.1 ) .
  • FIG. 1 Another embodiment (embodiment Ia-1-2) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 1-2 and R la is fluorine, preferably as defined above in embodiment 1-2.1 and R la is fluorine (embodiment Ia-1-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 1-1 a and R la is fluorine, preferably as defined above in embodiment 1-la.l and R la is fluorine (embodiment Ia-l-la. l).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment l-2a and R la is fluorine, preferably as defined above in embodiment l-2a.l and R la is fluorine (embodiment Ia-l-2a. l).
  • FIG. 1 Another embodiment (embodiment Ia-2-1) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 2-1 and R la is fluorine, preferably as defined above in embodiment 2-1.1 and R la is fluorine (embodiment Ia-2-1.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 2-2 and R la is fluorine, preferably as defined above in embodiment 2-2.1 and R la is fluorine (embodiment Ia-2-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 3-1 and R la is fluorine, preferably as defined above in embodiment 3-1.1 and R la is fluorine (embodiment Ia-3-1.1).
  • FIG. 1 Another embodiment (embodiment Ia-3-2) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 3-2 and R la is fluorine, preferably as defined above in embodiment 3-2.1 and R la is fluorine (embodiment Ia-3-2.1).
  • FIG. 1 Another embodiment (embodiment Ia-4-1) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 4-1 and R la is fluorine, preferably as defined above in embodiment 4-1.1 and R la is fluorine (embodiment Ia-4-1.1).
  • FIG. 1 Another embodiment (embodiment Ia-4-2) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 4-2 and R la is fluorine, preferably as defined above in embodiment 4-2.1 and R la is fluorine (embodiment Ia-4-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-1 and R la is fluorine, preferably as defined above in embodiment 5-1.1 and R la is fluorine (embodiment Ia-5-1.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-2 and R la is fluorine, preferably as defined above in embodiment 5-2.1 and R la is fluorine (embodiment Ia-5-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-3 and R la is fluorine, preferably as defined above in embodiment 5-3.1 and R la is fluorine (embodiment Ia-5-3.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-4 and R la is fluorine, preferably as defined above in embodiment 5-4.1 and R la is fluorine (embodiment Ia-5-4.1).
  • FIG. 1 Another embodiment (embodiment Ia-6-1) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6-1 and R la is fluorine, preferably as defined above in embodiment 6-1.1 and R la is fluorine (embodiment Ia-6-1.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6-2 and R la is fluorine, preferably as defined above in embodiment 6-2.1 and R la is fluorine (embodiment Ia-6-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6- la and R la is fluorine, preferably as defined above in embodiment 6-la.l and R la is fluorine (embodiment Ia-6-la. l).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6-2a and R la is fluorine, preferably as defined above in embodiment 6-2a.l and R la is fluorine (embodiment Ia-6-2a. l).
  • FIG. 7-1 Another embodiment (embodiment Ia-7-1) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 7-1 and R la is fluorine, preferably as defined above in embodiment 7-1.1 and R la is fluorine (embodiment Ia-7-1.1).
  • FIG. 7-2 Another embodiment (embodiment Ia-7-2) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 7-2 and R la is fluorine, preferably as defined above in embodiment 7-2.1 and R la is fluorine (embodiment Ia-7-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 8-1 and R la is fluorine, preferably as defined above in embodiment 8-1.1 and R la is fluorine (embodiment Ia-8-1.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 8-2 and R la is fluorine, preferably as defined above in embodiment 8-2.1 and R la is fluorine (embodiment Ia-8-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 9-1 and R la is fluorine, preferably as defined above in embodiment 9-1.1 and R la is fluorine (embodiment Ia-9-1.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 9-2 and R la is fluorine, preferably as defined above in embodiment 9-2.1 and R la is fluorine (embodiment Ia-9-2.1).
  • FIG. 10-1 Another embodiment (embodiment la- 10-1) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-1 and R la is fluorine, preferably as defined above in embodiment 10-1.1 and R la is fluorine (embodiment Ia-10-1.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-2 and R la is fluorine, preferably as defined above in embodiment 10-2.1 and R la is fluorine (embodiment Ia-10-2.1).
  • Another embodiment is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-3 and R la is fluorine, preferably as defined above in embodiment 10-3.1 and R la is fluorine (embodiment Ia-10-3.1).
  • FIG. 10-4 Another embodiment (embodiment la- 10-4) is a compound of formula (la) wherein n, X, Q, R 2 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-4 and R la is fluorine, preferably as defined above in embodiment 10-4.1 and R la is fluorine (embodiment Ia-10-4.1).
  • n, X, Q, R la , R 2 and A are as described in the embodiments above (Ia-1-1 to Ia-10-4.1) and R 3 and R 4 and R 5 are hydrogen.
  • the present invention is also directed to novel compounds of formula (lb)
  • n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 1-1 and
  • R 2a is fluorine (embodiment lb- 1-1), preferably as defined above in embodiment 1-1.1 and R 2a is fluorine (embodiment Ib-1-1.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 1-2 and R 2a is fluorine, preferably as defined above in embodiment 1-2.1 and R 2a is fluorine (embodiment lb- 1-2.1).
  • FIG. 1 Another embodiment (embodiment Ib-l-la) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 1-1 a and R 2a is fluorine, preferably as defined above in embodiment 1-la.l and R 2a is fluorine (embodiment Ib-l-la.1).
  • FIG. 1 Another embodiment (embodiment Ib-l-2a) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment l-2a and R 2a is fluorine, preferably as defined above in embodiment l-2a.l and R 2a is fluorine (embodiment Ib-l-2a.l).
  • FIG. 1 Another embodiment (embodiment Ib-2-1) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 2-1 and R 2a is fluorine, preferably as defined above in embodiment 2-1.1 and R 2a is fluorine (embodiment Ib-2-1.1).
  • FIG. 1 Another embodiment (embodiment Ib-2-2) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 2-2 and R 2a is fluorine, preferably as defined above in embodiment 2-2.1 and R 2a is fluorine (embodiment Ib-2-2.1).
  • FIG. 1 Another embodiment (embodiment Ib-3-1) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 3-1 and R 2a is fluorine, preferably as defined above in embodiment 3-1.1 and R 2a is fluorine (embodiment Ib-3-1.1).
  • FIG. 1 Another embodiment (embodiment Ib-3-2) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 3-2 and R 2a is fluorine, preferably as defined above in embodiment 3-2.1 and R 2a is fluorine (embodiment Ib-3-2.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 4-1 and R 2a is fluorine, preferably as defined above in embodiment 4-1.1 and R 2a is fluorine (embodiment Ib-4-1.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 4-2 and R 2a is fluorine, preferably as defined above in embodiment 4-2.1 and R 2a is fluorine (embodiment Ib-4-2.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-1 and R 2a is fluorine, preferably as defined above in embodiment 5-1.1 and R 2a is fluorine (embodiment Ib-5-1.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-2 and R 2a is fluorine, preferably as defined above in embodiment 5-2.1 and R 2a is fluorine (embodiment Ib-5-2.1).
  • FIG. 1 Another embodiment (embodiment Ib-5-3) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-3 and R 2a is fluorine, preferably as defined above in embodiment 5-3.1 and R 2a is fluorine (embodiment Ib-5-3.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 5-4 and R 2a is fluorine, preferably as defined above in embodiment 5-4.1 and R 2a is fluorine (embodiment Ib-5-4.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6-1 and R 2a is fluorine, preferably as defined above in embodiment 6-1.1 and R 2a is fluorine (embodiment Ib-6-1.1).
  • FIG. 1 Another embodiment (embodiment Ib-6-2) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6-2 and R 2a is fluorine, preferably as defined above in embodiment 6-2.1 and R 2a is fluorine (embodiment Ib-6-2.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6- la and R 2a is fluorine, preferably as defined above in embodiment 6-la.l and R 2a is fluorine (embodiment Ib-6-la.l).
  • FIG. 1 Another embodiment (embodiment Ib-6-2a) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 6-2a and R 2a is fluorine, preferably as defined above in embodiment 6-2a.l and R 2a is fluorine (embodiment Ib-6-2a.l).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 7-1 and R 2a is fluorine, preferably as defined above in embodiment 7-1.1 and R 2a is fluorine (embodiment Ib-7-1.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 7-2 and R 2a is fluorine, preferably as defined above in embodiment 7-2.1 and R 2a is fluorine (embodiment Ib-7-2.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 8-1 and R 2a is fluorine, preferably as defined above in embodiment 8-1.1 and R 2a is fluorine (embodiment Ib-8-1.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 8-2 and R 2a is fluorine, preferably as defined above in embodiment 8-2.1 and R 2a is fluorine (embodiment Ib-8-2.1).
  • FIG. 1 Another embodiment (embodiment Ib-9-1) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 9-1 and R 2a is fluorine, preferably as defined above in embodiment 9-1.1 and R 2a is fluorine (embodiment Ib-9-1.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 9-2 and R 2a is fluorine, preferably as defined above in embodiment 9-2.1 and R 2a is fluorine (embodiment Ib-9-2.1).
  • Another embodiment is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-1 and R 2a is fluorine, preferably as defined above in embodiment 10-1.1 and R 2a is fluorine (embodiment Ib-10-1.1).
  • FIG. 1 Another embodiment (embodiment Ib-10-2) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-2 and R 2a is fluorine, preferably as defined above in embodiment 10-2.1 and R 2a is fluorine (embodiment Ib-10-2.1).
  • FIG. 1 Another embodiment (embodiment Ib-10-3) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-3 and R 2a is fluorine, preferably as defined above in embodiment 10-3.1 and R 2a is fluorine (embodiment Ib-10-3.1).
  • FIG. 10-4 Another embodiment (embodiment Ib-10-4) is a compound of formula (lb) wherein n, X, Q, R 1 , R 3 , R 4 , R 5 and A are as defined above in embodiment 10-4 and R 2a is fluorine, preferably as defined above in embodiment 10-4.1 and R 2a is fluorine (embodiment Ib-10-4.1).
  • n, X, Q, R 2a , R 1 and A are as described in the embodiments above (Ib-1-1 to Ib-10-4.1) and R 3 and R 4 and R 5 are hydrogen.
  • the present invention is also directed to novel compounds of formula (Ic)
  • n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 1-1 and both R la and R 2a are fluorine (embodiment Ic-1-1), preferably as defined above in embodiment 1-1.1 and both R la and R 2a are fluorine (embodiment Ic-1-1.1).
  • FIG. 1 Another embodiment (embodiment Ic-1-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 1-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 1-2.1 and both R la and R 2a are fluorine (embodiment Ic-1-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-l-la) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 1-1 a and both R la and R 2a are fluorine, preferably as defined above in embodiment 1-la.l and both R la and R 2a are fluorine (embodiment Ic-l-la. l).
  • FIG. 1 Another embodiment (embodiment Ic-l-2a) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment l-2a and both R la and R 2a are fluorine, preferably as defined above in embodiment l-2a.l and both R la and R 2a are fluorine (embodiment Ic-l-2a. l).
  • FIG. 1 Another embodiment (embodiment Ic-2-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 2-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 2-1.1 and both R la and R 2a are fluorine (embodiment Ic-2-1.1).
  • FIG. 1 Another embodiment (embodiment Ic-2-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 2-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 2-2.1 and both R la and R 2a are fluorine (embodiment Ic-2-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-3-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 3-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 3-1.1 and both R la and R 2a are fluorine (embodiment Ic-3-1.1).
  • FIG. 1 Another embodiment (embodiment Ic-3-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 3-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 3-2.1 and both R la and R 2a are fluorine (embodiment Ic-3-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-4-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 4-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 4-1.1 and both R la and R 2a are fluorine (embodiment Ic-4-1.1).
  • FIG. 1 Another embodiment (embodiment Ic-4-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 4-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 4-2.1 and both R la and R 2a are fluorine (embodiment Ic-4-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-5-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 5-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 5-1.1 and both R la and R 2a are fluorine (embodiment Ic-5-1.1).
  • FIG. 1 Another embodiment (embodiment Ic-5-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 5-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 5-2.1 and both R la and R 2a are fluorine (embodiment Ic-5-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-5-3) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 5-3 and both R la and R 2a are fluorine, preferably as defined above in embodiment 5-3.1 and both R la and R 2a are fluorine (embodiment Ic-5-3.1).
  • FIG. 1 Another embodiment (embodiment Ic-5-4) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 5-4 and both R la and R 2a are fluorine, preferably as defined above in embodiment 5-4.1 and both R la and R 2a are fluorine (embodiment Ic-5-4.1).
  • FIG. 1 Another embodiment (embodiment Ic-6-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 6-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 6-1.1 and both R la and R 2a are fluorine (embodiment Ic-6-1.1).
  • FIG. 1 Another embodiment (embodiment Ic-6-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 6-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 6-2.1 and both R la and R 2a are fluorine (embodiment Ic-6-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-6-la) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 6- la and both R la and R 2a are fluorine, preferably as defined above in embodiment 6-la.l and both R la and R 2a are fluorine (embodiment Ic-6-la. l).
  • FIG. 1 Another embodiment (embodiment Ic-6-2a) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 6-2a and both R la and R 2a are fluorine, preferably as defined above in embodiment 6-2a.l and both R la and R 2a are fluorine (embodiment Ic-6-2a. l).
  • FIG. 1 Another embodiment (embodiment Ic-7-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 7-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 7-1.1 and both R la and R 2a are fluorine (embodiment Ic-7-1.1).
  • FIG. 7-2 Another embodiment (embodiment Ic-7-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 7-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 7-2.1 and both R la and R 2a are fluorine (embodiment Ic-7-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-8-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 8-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 8-1.1 and both R la and R 2a are fluorine (embodiment Ic-8-1.1).
  • FIG. 8-2 Another embodiment (embodiment Ic-8-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 8-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 8-2.1 and both R la and R 2a are fluorine (embodiment Ic-8-2.1).
  • FIG. 1 Another embodiment (embodiment Ic-9-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 9-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 9-1.1 and both R la and R 2a are fluorine (embodiment Ic-9-1.1).
  • FIG. 9-2 Another embodiment (embodiment Ic-9-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 9-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 9-2.1 and both R la and R 2a are fluorine (embodiment Ic-9-2.1).
  • FIG. 10-1 Another embodiment (embodiment Ic-10-1) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 10-1 and both R la and R 2a are fluorine, preferably as defined above in embodiment 10-1.1 and both R la and R 2a are fluorine (embodiment Ic-10-1.1).
  • FIG. 10-2 Another embodiment (embodiment Ic-10-2) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 10-2 and both R la and R 2a are fluorine, preferably as defined above in embodiment 10-2.1 and both R la and R 2a are fluorine (embodiment Ic-10-2.1).
  • FIG. 10-3 Another embodiment (embodiment Ic-10-3) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 10-3 and both R la and R 2a are fluorine, preferably as defined above in embodiment 10-3.1 and both R la and R 2a are fluorine (embodiment Ic-10-3.1).
  • FIG. 10 Another embodiment (embodiment Ic-10-4) is a compound of formula (Ic) wherein n, X, Q, R 3 , R 4 , R 5 and A are as defined above in embodiment 10-4 and both R la and R 2a are fluorine, preferably as defined above in embodiment 10-4.1 and both R la and R 2a are fluorine (embodiment Ic-10-4.1).
  • the structural elements n, X, Q, R la , R 2a and A are as described in the embodiments above (Ic-1-1 to Ic-10-4.1) and R 3 and R 4 and R 5 are hydrogen.
  • Benzylnitriles like (II) are commercial available or are synthesized as described in WO2013043232, followed by reduction to the Boc -protected amines (III) with sodium borohydride in the presence of nickel chloride and Boc-anhydride.
  • the protected amines (III) can be cleaved with hydrogen chloride in methanol to the amine -hydrochlorides (IV).
  • phenethylamines and their salts are also commercially available.
  • amides (V), (IX), (XIV) or (I-d) can be prepared using the appropriate acylchloride moiety and a base e.g. Hiinig's one.
  • the compounds of the formula (I-a), (I-b) or (I-c) are then synthesized by a coupling reaction.
  • Q N-bonded azoles
  • a copper-mediated process with copper-(I) -oxide, salicylaldoxime as ligand in a solvent as acetonitrile in the presence of a base as cesium carbonate may be used.
  • a Suzuki-type coupling with the appropriate boronic acid or ester in the presence of a palladium catalyst and a base may be used.
  • the Q moiety can also be introduced earlier in the synthesis, following a synthetic pathway similar to the one exemplified in scheme 4.
  • Compounds of formula (VIII) (scheme 2) can be prepared from nitriles (VII) by reduction using for example borane-THF.
  • Nitriles of formula (VII) can be prepared from ketones or aldehydes (VI) in a solvent such as dichloromethane using in a first time zinc iodide and an addition of trimethylsilylcyanide and in a second time diethylaminosulfur trifluoride to convert the in situ formed alcohol into fluoro derivatives (VII) as it is described in PI 8.
  • Amines of formula (XIII) (scheme 3) can be prepared from carboxamides (XII) by reduction using for example borane-THF.
  • Carboxamides of formula (XII) are easily prepared by the reaction of ethyl esters of formula (XI) and ammonia dissolved in methanol.
  • Ethyl esters of formula (XI) can be prepared by copper-mediated reaction of phenyl iodides e.g. formula (X) with bromdifluoroacetic acid ethylester as it is described in PI 7.
  • Amines with pyridyl substitution like (XVIII; D 1 , D 2 are CH or N for 3- or 4-pyridyl, Y and m are as described as before) are synthesized via Suzuki type couplings of phenyl bromides like (XVI) with the appropriate boronic acid (XVII-a ; D 1 , D 2 are CH or N for 3- or 4-pyridyl, Y and m are as described as before) or pinacol ester (XVII-b; D 1 , D 2 are CH or N for 3- or 4-pyridyl, Y and m are as described as before) in the presence of a palladium catalyst and a base may be used (scheme 5).
  • Another embodiment of the invention is a compound of formula (INT)
  • R 1 , R 2 , Q, X and n are as defined above.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 1-1 , preferably as defined above in embodiment 1-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 1-2, preferably as defined above in embodiment 1-2.1. In an individual aspect, R 1 , R 2 , Q, X and n are as defined above in embodiment 1-la, preferably as defined above in embodiment 1-la.l.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment l-2a, preferably as defined above in embodiment l-2a.l.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 2-1 , preferably as defined above in embodiment 2-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 2-2 and R la is fluorine, preferably as defined above in embodiment 2-2.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 3-1 , preferably as defined above in embodiment 3-1.1. In an individual aspect, R 1 , R 2 , Q, X and n are as defined above in embodiment 3-2, preferably as defined above in embodiment 3-2.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 4-1 , preferably as defined above in embodiment 4-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 4-2, preferably as defined above in embodiment 4-2.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 5-1 , preferably as defined above in embodiment 5-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 5-2, preferably as defined above in embodiment 5-2.1. In an individual aspect, R 1 , R 2 , Q, X and n are as defined above in embodiment 5-3, preferably as defined above in embodiment 5-3.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 5-4, preferably as defined above in embodiment 5-4.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 6-1 , preferably as defined above in embodiment 6-1.1. In an individual aspect, R 1 , R 2 , Q, X and n are as defined above in embodiment 6-2, preferably as defined above in embodiment 6-2.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 6- la, preferably as defined above in embodiment 6-la.l. In an individual aspect, R 1 , R 2 , Q, X and n are as defined above in embodiment 6-2a, preferably as defined above in embodiment 6-2a.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 7-1 , preferably as defined above in embodiment 7-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 7-2, preferably as defined above in embodiment 7-2.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 8-1 , preferably as defined above in embodiment 8-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 8-2, preferably as defined above in embodiment 8-2.1. In an individual aspect, R 1 , R 2 , Q, X and n are as defined above in embodiment 9-1 , preferably as defined above in embodiment 9-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 9-2, preferably as defined above in embodiment 9-2.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 10-1, preferably as defined above in embodiment 10-1.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 10-2, preferably as defined above in embodiment 10-2.1.
  • R 1 , R 2 , Q, X and n are as defined above in embodiment 10-3, preferably as defined above in embodiment 10-3.1. In an individual aspect, R 1 , R 2 , Q, X and n are as defined above in embodiment 10-4, preferably as defined above in embodiment 10-4.1.
  • An example of a preferred compound of formula (INT) is a compound which is represented by formula (INT-1)
  • Another example of a preferred compound of formula (INT) is a compound which is represented by formula (INT-2)
  • the compound according to the present invention can be prepared according to the processes described above. It will nevertheless be understood that, on the basis of his general knowledge and of available publications, the skilled worker will be able to adapt this method according to the specifics of each of the compounds, which it is desired to synthesize.
  • the compounds of the formula (I), (la), (lb) or (Ic) may be in the form of geometric and/or optically active isomers or corresponding isomer mixtures in different compositions.
  • These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers. Accordingly, the invention encompasses both pure stereoisomers and any mixture of these isomers.
  • the invention also relates to methods for controlling animal pests, in which compounds of the formula (I), (la), (lb) or (Ic) are allowed to act on animal pests and/or their habitat.
  • the control of the animal pests is preferably conducted in agriculture and forestry, and in material protection.
  • Preferably excluded herefrom are methods for the surgical or therapeutic treatment of the human or animal body and diagnostic methods carried out on the human or animal body.
  • the invention furthermore relates to the use of the compounds of the formula (I), (la), (lb) or (Ic) as pesticides, in particular crop protection agents.
  • pesticide in each case also always comprises the term "crop protection agent”.
  • the compounds of the formula (I), (la), (lb) or (Ic), having good plant tolerance, favourable homeotherm toxicity and good environmental compatibility, are suitable for protecting plants and plant organs against biotic and abiotic stressors, for increasing harvest yields, for improving the quality of the harvested material and for controlling animal pests, especially insects, arachnids, helminths, nematodes and molluscs, which are encountered in agriculture, in horticulture, in animal husbandry, in aquatic cultures, in forests, in gardens and leisure facilities, in the protection of stored products and of materials, and in the hygiene sector. They can preferably be used as pesticides. They are active against normally sensitive and resistant species and against all or some stages of development.
  • the abovementioned pests include:
  • Pests from the phylum of the Arthropoda in particular from the class of the Arachnida, for example Acarus spp., for example Acarus siro, Aceria kuko, Aceria sheldoni, Aculops spp., Aculus spp., for example Aculus fockeui, Aculus pointedendali, Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., for example Brevipalpus phoenicis, Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., for example Eote
  • Nephotettix spp. Myzus nicotianae, Nasonovia ribisnigri, Nephotettix spp., for example Nephotettix cincticeps,, Nephotettix nigropictus, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., for example Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., for example Pemphigus bursarius, Pemphigus populivenae, Peregrinus maidis, Phenacoccus spp., for example Phenacoccus madeirensis, Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., for example
  • Hymenoptera for example Acromyrmex spp., Athalia spp., for example Athalia rosae, Atta spp., Diprion spp., for example Diprion similis
  • Hoplocampa spp. for example Hoplocampa cookei, Hoplocampa testudinea, Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Urocerus spp., Vespa spp., for example Vespa crabro, Xeris spp.
  • Isopoda for example Armadillidium vulgare, Oniscus asellus, Porcellio scaber
  • From the order of the Isoptera for example Coptotermes spp., for example Coptotermes formosanus, Cornitermes cumulans, Cryptotermes spp., Incisitermes
  • phytoparasitic nematodes in particular Aglenchus spp., for example Aglenchus agricola, Anguina spp., for example Anguina tritici, Aphelenchoides spp., for example Aphelenchoides arachidis, Aphelenchoides fragariae, Belonolaimus spp., for example Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Bursaphelenchus spp., for example Bursaphelenchus cocophilus, Bursaphelenchus eremus, Bursaphelenchus xylophilus, Cacopaurus spp., for example Cacopaurus pestis, Criconemella spp., for example Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella
  • nematodes comprises all species of the phylum Nematoda and here in particular species acting as parasites on plants or fungi (for example species of the order Aphelenchida, Meloidogyne, Tylenchida and others) or else on humans and animals (for example species of the orders Trichinellida, Tylenchida, Rhabditina and Spirurida) and causing damage in or on these living organisms, and also other parasitic helminths.
  • a nematicide in crop protection is capable of controlling nematodes.
  • controlling nematodes means killing the nematodes or preventing or impeding their development or their growth or preventing or impeding their penetration into or their sucking on plant tissue.
  • the efficacy of the compounds is determined by comparing mortalities, gall formation, cyst formation, nematode density per volume of soil, nematode density per root, number of nematode eggs per soil volume, mobility of the nematodes between a plant or plant part treated with the compound of the formula (I), (la), (lb) or (Ic) or the treated soil and an untreated plant or plant part or the untreated soil (100%).
  • the reduction achieved is 25-50% in comparison to an untreated plant, plant part or the untreated soil, particularly preferably 51 - 79% and very particularly preferably the complete kill or the complete prevention of development and growth of the nematodes by a reduction of 80 to 100%.
  • the control of nematodes as described herein also comprises the control of proliferation of the nematodes (development of cysts and/or eggs).
  • Compounds of the formula (I), (la), (lb) or (Ic) can also be used to keep the plants or animals healthy, and they can be employed curatively, preventatively or systemically for the control of nematodes.
  • the person skilled in the art knows methods for determining mortalities, gall formation, cyst formation, nematode density per volume of soil, nematode density per root, number of nematode eggs per volume of soil, mobility of the nematodes.
  • the use of a compound of the formula (I), (la), (lb) or (Ic) may keep the plant healthy and also comprises a reduction of the damage caused by nematodes and an increase of the harvest yield.
  • nematodes refers to plant nematodes which comprise all nematodes which damage plants.
  • Plant nematodes comprise phytoparasitic nematodes and soil-borne nematodes.
  • the phytoparasitic nematodes include ectoparasites such as Xiphinema spp., Longidorus spp. and Trichodorus spp.; semiparasites such as Tylenchulus spp.; migratory endoparasites such as Pratylenchus spp., Radopholus spp.
  • Root-parasitic soil nematodes are, for example, cyst-forming nematodes of the genera Heterodera or Globodera, and/or root gall nematodes of the genus Meloidogyne.
  • Damaging species of these genera are, for example, Meloidogyne incognita, Heterodera glycines (soya bean cyst nematode), Globodera pallida and Globodera rostochiensis (yellow potato cyst nematode), these species being controlled effectively by the compounds described in the present text.
  • the use of the compounds described in the present text is by no means restricted to these genera or species, but also extends in the same manner to other nematodes.
  • Nematodes for the control of which a compound of the formula (I), (la), (lb) or (Ic) may be used include nematodes of the genus Meloidogyne such as the Southern root-knot nematode (Meloidogyne incognita), the Javanese root-knot nematode (Meloidogyne javanica), the Northern root-knot nematode (Meloidogyne hapla) and the peanut root-knot nematode (Meloidogyne arenaria); nematodes of the genus Ditylenchus such as the potato rot nematode (Ditylenchus destructor) and stem and bulb eelworm (Ditylenchus dipsaci); nematodes of the genus Pratylenchus such as the cob root-lesion nematode (Pratylenchus penetrans), the chrys
  • Plants for the protection of which a compound of the formula (I), (la), (lb) or (Ic) can be used include plants such as cereals (for example rice, barley, wheat, rye, oats, maize and the like), beans (soya bean, aduki bean, bean, broadbean, peas, peanuts and the like), fruit trees/fruits (apples, citrus species, pears, grapevines, peaches, Japanese apricots, cherries, walnuts, almonds, bananas, strawberries and the like), vegetable species (cabbage, tomato, spinach, broccoli, lettuce, onions, spring onion, pepper and the like), root crops (carrot, potato, sweet potato, radish, lotus root, turnip and the like), plant for industrial raw materials (cotton, hemp, paper mulberry, mitsumata, rape, beet, hops, sugar cane, sugar beet, olive, rubber, palm trees, coffee, tobacco, tea and the like), cucurbits (pumpkin,
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling coffee nematodes, in particular Pratylenchus brachyurus, Pratylenchus coffeae, Meloidogyne exigua, Meloidogyne incognita, Meloidogyne coffeicola, Helicotylenchus spp. and also Meloidogyne paranaensis, Rotylenchus spp., Xiphinema spp., Tylenchorhynchus spp. and Scutellonema spp..
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling potato nematodes, in particular Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci and of Pratylenchus alleni, Pratylenchus andinus, Pratylenchus cerealis, Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Belonolaimus longicaudatus, Trichodorus cylindricus, Trichodorus primitivus, Trichodorus proximus, Trichodorus simili
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling tomato nematodes, in particular Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Pratylenchus penetrans and also Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus vulnus, Paratrichodorus minor, Meloidogyne exigua, Nacobbus aberrans, Globodera solanacearum, Dolichodorus heterocephalus and Rotylenchulus reniformis.
  • tomato nematodes in particular Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Pratylenchus
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling cucumber plant nematodes, in particular Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Rotylenchulus reniformis and Pratylenchus thornei.
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling cotton nematodes, in particular Belonolaimus longicaudatus, Meloidogyne incognita, Hoplolaimus columbus, Hoplolaimus galeatus and Rotylenchulus reniformis.
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling maize nematodes, in particular Belonolaimus longicaudatus, Paratrichodorus minor and also Pratylenchus brachyurus, Pratylenchus delattrei, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus zeae, (Belonolaimus gracilis), Belonolaimus nortoni, Longidorus breviannulatus, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne graminis, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne naasi, Heterodera avenae
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling soya bean nematodes, in particular Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus penetrans, Pratylenchus scribneri, Belonolaimus longicaudatus, Heterodera glycines, Hoplolaimus columbus and also Pratylenchus coffeae, Pratylenchus hexincisus, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus alleni, Pratylenchus agilis, Pratylenchus zeae, Pratylenchus vulnus, (Belonolaimus gracilis), Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Meloi
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling tobacco nematodes, in particular Meloidogyne incognita, Meloidogyne javanica and also Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae, Longidorus elongatu, Paratrichodorus lobatus, Trichodorus spp., Meloidogyne arenaria, Meloidogyne hapla, Globodera tabacum, Globodera solanacearum, Globodera virginiae, Ditylenchus dipsaci, Rotylenchus spp.,
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling citrus nematodes, in particular Pratylenchus coffeae and also Pratylenchus brachyurus, Pratylenchus vulnus, Belonolaimus longicaudatus, Paratrichodorus minor, Paratrichodorus porosus, Trichodorus , Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Rotylenchus macrodoratus, Xiphinema americanum, Xiphinema brevicolle, Xiphinema index, Criconemella spp., Hemicriconemoides, Radopholus similis and Radopholus citrophilus, Hemicycliophora arenaria, Hemicycliophora nudata and Tylenchulus semipenetrans.
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling banana nematodes, in particular Pratylenchus coffeae, Radopholus similis and also Pratylenchus giibbicaudatus, Pratylenchus loosi, Meloidogyne spp., Helicotylenchus multicinctus, Helicotylenchus dihystera and Rotylenchulus spp..
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling pineapple nematodes, in particular Pratylenchus zeae, Pratylenchus pratensis, Pratylenchus brachyurus, Pratylenchus goodeyi., Meloidogyne spp., Rotylenchulus reniformis and also Longidorus elongatus, Longidorus laevicapitatus, Trichodorus primitivus, Trichodorus minor, Heterodera spp., Ditylenchus myceliophagus, Hoplolaimus californicus, Hoplolaimus pararobustus, Hoplolaimus indicus, Helicotylenchus dihystera, Helicotylenchus nannus, Helicotylenchus multicinctus, Helicotylenchus erythrine, Xiphinema dimorphicau
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling grapevine nematodes, in particular Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Xiphinema americanum, Xiphinema index and also Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus neglectus, Pratylenchus brachyurus, Pratylenchus thornei and Tylenchulus semipenetrans.
  • Pratylenchus vulnus Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Xiphinema americanum, Xiphinema index and also Pratylenchus pratensis, Pratylenchus scrib
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling nematodes in tree crops - pome fruit, in particular Pratylenchus penetrans and also Pratylenchus vulnus, Longidorus elongatus, Meloidogyne incognita and Meloidogyne hapla.
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling nematodes in tree crops - stone fruit, in particular Pratylenchus penetrans, Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Criconemella xenoplax and of Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus zeae, Belonolaimus longicaudatus, Helicotylenchus dihystera, Xiphinema americanum, Criconemella curvata, Tylenchorhynchus claytoni, Paratylenchus hamatus, Paratylenchus projectus, Scutellonema brachyurum and Hoplo
  • the compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling nematodes in tree crops, sugar cane and rice, in particular Trichodorus spp., Criconemella spp. and also Pratylenchus spp., Paratrichodorus spp., Meloidogyne spp., Helicotylenchus spp., Tylenchorhynchus spp., Aphelenchoides spp., Heterodera spp, Xiphinema spp. and Cacopaurus pestis.
  • nematodes also refers to nematodes damaging humans or animals.
  • Trichinellida for example: Trichuris spp., Capillaria spp., Paracapillaria spp., Eucoleus spp., Trichomosoides spp., Trichinella spp.; from the order of the Tylenchida, for example: Micronema spp., Strongyloides spp.; from the order of the Rhabditida, for example: Strongylus spp., Triodontophorus spp., Oesophagodontus spp., Trichonema spp., Gyalocephalus spp., Cylindropharynx spp., Poteriostomum spp., Cyclococercus spp., Cylicostephanus spp., Oesophagostomum spp., Chabertia spp., Stephanurus spp., Ancylostoma spp., Unc
  • Draschia spp. Dracunculus spp.; Stephanoiilaria spp., Parafilaria spp., Setaria spp., Loa spp., Dirofilaria spp., Litomosoides spp., Brugia spp., Wuchereria spp., Onchocerca spp., Spirocerca spp..
  • Many known nematicides also act against other parasitic helminths and are therefore used for controlling worms - not necessarily belonging to the group Nematoda - which are parasites in humans and animals.
  • the present invention also relates to the use of the compounds of the formula (I), (la), (lb) or (Ic) as anthelmintic medicaments.
  • the pathogenic endoparasitic helminths include Platyhelminthes (e.g. Monogenea, cestodes and trematodes), Acanthocephala and Pentastoma. The following helminths may be mentioned as being preferred:
  • Monogenea e.g.: Gyrodactylus spp., Dactylogyrus spp., Polystoma spp.;
  • Cestodes from the order of the Pseudophyllidea, for example: Diphyllobothrium spp., Spirometra spp., Schistocephalus spp., Ligula spp., Bothridium spp., Diplogonoporus spp.; from the order of the Cyclophyllida, for example: Mesocestoides spp., Anoplocephala spp., Paranoplocephala spp., Moniezia spp., Thysanosoma spp., Thysaniezia spp., Avitellina spp., Stilesia spp., Cittotaenia spp., Andyra spp., Bertiella spp., Taenia spp., Echinococcus spp., Hydatigera spp., Davainea spp., Raillietina spp., Hymeno
  • Acanthocephala from the order of the Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp.; from the order of the Polymorphida, for example: Filicollis spp.; from the order of the Moniliformida, for example: Moniliformis spp.; from the order of the Echinorhynchida, for example, Acanthocephalus spp., Echinorhynchus spp., Leptorhynchoides spp. ;
  • Pentastoma from the order of the Porocephalida, for example, Linguatula spp..
  • the administration of the compounds of the formula (I), (la), (lb) or (Ic) is carried out by methods generally known in the art, directly or enterally, parenterally, dermally or nasally in the form of suitable preparations. Administration can be carried out prophylactically or therapeutically.
  • the compounds of the formula (I), (la), (lb) or (Ic) can optionally, at certain concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, as microbicides or gametocides, for example as fungicides, antimycotics, bactericides, viricides (including agents against viroids) or as agents against MLO (mycoplasma-like organisms) and RLO (rickettsia-like organisms). If appropriate, they can also be used as intermediates or precursors for the synthesis of other active compounds.
  • the present invention further relates to formulations and use forms prepared therefrom as pesticides, for example drench, drip and spray liquors, comprising at least one compound of the formula (I), (la), (lb) or (Ic).
  • the use forms comprise further pesticides and/or adjuvants which improve action, such as penetrants, e.g.
  • vegetable oils for example rapeseed oil, sunflower oil, mineral oils, for example paraffin oils, alkyl esters of vegetable fatty acids, for example rapeseed oil methyl ester or soya oil methyl ester, or alkanol alkoxylates and/or spreaders, for example alkylsiloxanes and/or salts, for example organic or inorganic ammonium or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate and/or retention promoters, for example dioctyl sulphosuccinate or hydroxypropyl guar polymers and/or humectants, for example glycerol and/or fertilizers, for example ammonium-, potassium- or phosphorus-containing fertilizers.
  • alkylsiloxanes and/or salts for example organic or inorganic ammonium or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate and/or retention promoter
  • Customary formulations are, for example, water-soluble liquids (SL), emulsion concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS); these and further possible formulation types are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576.
  • the formulations in addition to one or more compounds of the formula (I), (la), (lb) or (Ic), optionally comprise further agrochemically active compounds.
  • auxiliaries for example extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, biocides, thickeners and/or further auxiliaries, for example adjuvants.
  • An adjuvant in this context is a component which enhances the biological effect of the formulation, without the component itself having any biological effect.
  • Examples of adjuvants are agents which promote retention, spreading, attachment to the leaf surface or penetration.
  • These formulations are prepared in a known way, for example by mixing the compounds of the formula (I), (la), (lb) or (Ic) with auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or other auxiliaries such as, for example, surfactants.
  • auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or other auxiliaries such as, for example, surfactants.
  • the formulations are prepared either in suitable facilities or else before or during application.
  • the auxiliaries used may be substances suitable for imparting special properties, such as certain physical, technical and/or biological properties, to the formulation of the compounds of the formula (I), (la), (lb) or (Ic), or to the use forms prepared from these formulations (for example ready-to-use pesticides such as spray liquors or seed dressing products).
  • Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N- alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • the alcohols and polyols
  • suitable liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride
  • aliphatic hydrocarbons
  • suitable solvents are aromatic hydrocarbons, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, such as chlorobenzene, chloroethylene or methylene chloride, aliphatic hydrocarbons, such as cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, such as methanol, ethanol, isopropanol, butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethyl sulphoxide, and also water.
  • aromatic hydrocarbons such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatic or chlorinated aliphatic hydrocarbons such as chlorobenzene, chloroethylene or methylene chloride
  • Useful carriers include especially: for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic materials such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and/or solid fertilizers. Mixtures of such carriers can likewise be used.
  • Useful carriers for granules include: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stalks.
  • Liquefied gaseous extenders or solvents can also be used.
  • Particularly suitable extenders or carriers are those which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellant gases, such as halohydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
  • emulsifiers and/or foam-formers examples include salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, protein hydrolysates, lig
  • colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc as further auxiliaries in the formulations and the use forms derived therefrom.
  • inorganic pigments for example iron oxide, titanium oxide and Prussian Blue
  • organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes
  • nutrients and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc
  • Additional components may be stabilizers, such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability. Foam formers or antifoams may also be present.
  • Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids such as cephalins and lecithins and synthetic phospholipids may also be present as additional auxiliaries in the formulations and the use forms derived therefrom. Further possible auxiliaries are mineral and vegetable oils.
  • auxiliaries may be present in the formulations and the use forms derived therefrom.
  • additives include fragrances, protective colloids, binders, adhesives, thickeners, thixotropic agents, penetrants, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreaders.
  • the compounds of the formula (I), (la), (lb) or (Ic) can be combined with any solid or liquid additive commonly used for formulation purposes.
  • Useful retention promoters include all those substances which reduce the dynamic surface tension, for example dioctyl sulphosuccinate, or increase the viscoelasticity, for example hydroxypropylguar polymers.
  • Suitable penetrants in the present context are all those substances which are usually used for improving the penetration of agrochemical active compounds into plants.
  • Penetrants are defined in this context by their ability to penetrate from the (generally aqueous) application liquor and/or from the spray coating into the cuticle of the plant and thereby increase the mobility of active compounds in the cuticle.
  • the method described in the literature can be used to determine this property.
  • Examples include alcohol alkoxylates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12), fatty acid esters, for example rapeseed oil methyl ester or soya oil methyl ester, fatty amine alkoxylates, for example tallowamine ethoxylate (15), or ammonium and/or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate.
  • alcohol alkoxylates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12)
  • fatty acid esters for example rapeseed oil methyl ester or soya oil methyl ester
  • fatty amine alkoxylates for example tallowamine ethoxylate (15)
  • ammonium and/or phosphonium salts for example ammonium sulphate or diammonium hydrogenphosphate.
  • the formulations preferably comprise between 0.00000001 and 98% by weight of the respective compound of the formula (I), (la), (lb) or (Ic) or, with particular preference, between 0.01% and 95% by weight of the respective compound of the formula (I), (la), (lb) or (Ic), more preferably between 0.5% and 90% by weight of the respective compound of the formula (I), (la), (lb) or (Ic), based on the weight of the formulation.
  • the content of the respective compound of the formula (I), (la), (lb) or (Ic) in the use forms prepared from the formulations (in particular pesticides) may vary within wide ranges.
  • the concentration of the respective compound of the formula (I), (la), (lb) or (Ic) in the use forms is usually between 0.00000001 and 95% by weight, preferably between 0.00001 and 1% by weight, based on the weight of the use form.
  • the compounds are employed in a customary manner appropriate for the use forms.
  • the compounds of the formula (I), (la), (lb) or (Ic) may also be employed as a mixture with one or more suitable fungicides, bactericides, acaricides, molluscicides, nematicides, insecticides, microbiologicals, beneficial species, herbicides, fertilizers, bird repellents, phytotonics, sterilants, safeners, semiochemicals and/or plant growth regulators, in order thus, for example, to broaden the spectrum of action, to prolong the duration of action, to increase the rate of action, to prevent repulsion or prevent evolution of resistance.
  • such active compound combinations may improve plant growth and/or tolerance to abiotic factors, for example high or low temperatures, to drought or to elevated water content or soil salinity. It is also possible to improve flowering and fruiting performance, optimize germination capacity and root development, facilitate harvesting and improve yields, influence maturation, improve the quality and/or the nutritional value of the harvested products, prolong storage life and/or improve the processability of the harvested products.
  • the compounds of the formula (I), (la), (lb) or (Ic) can be present in a mixture with other active compounds or semiochemicals such as attractants and/or bird repellants and/or plant activators and/or growth regulators and/or fertilizers.
  • the compounds of the formula (I), (la), (lb) or (Ic) can be used to improve plant properties such as, for example, growth, yield and quality of the harvested material.
  • the compounds of the formula (I), (la), (lb) or (Ic) are present in formulations or the use forms prepared from these formulations in a mixture with further compounds, preferably those as described below. If one of the compounds mentioned below can occur in different tautomeric forms, these forms are also included even if not explicitly mentioned in each case.
  • the active compounds identified here by their common names are known and are described, for example, in the pesticide handbook ("The Pesticide Manual” 16th Ed., British Crop Protection Council 2012) or can be found on the Internet (e.g. http://www.alanwood.net/pesticides).
  • Acetylcholinesterase (AChE) inhibitors such as, for example, carbamates, for example alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb; or organophosphates, for example acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifo
  • GABA-gated chloride channel antagonists such as, for example, cyclodiene-organochlorines, for example chlordane and endosulfan or phenylpyrazoles (fiproles), for example ethiprole and fipronil.
  • Sodium channel modulators / voltage-gated sodium channel blockers such as, for example, pyrethroids, e.g. acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin s-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta- cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(lR)-trans-isomer], deltamethrin, empenthrin [
  • Nicotinergic acetylcholine receptor (nAChR) agonists such as, for example, neonicotinoids, e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor.
  • Allosteric activators of the nicotinergic acetylcholine receptor (nAChR) such as, for example, spinosyns, e.g. spinetoram and spinosad.
  • Chloride channel activators such as, for example, avermectins/niilbemycins, for example abamectin, emamectin benzoate, lepimectin and milbemectin.
  • Juvenile hormone imitators such as, for example, juvenile hormone analogues, e.g. hydroprene, kinoprene and methoprene or fenoxycarb or pyriproxyfen.
  • Active compounds with unknown or nonspecific mechanisms of action such as, for example, alkyl halides, e.g. methyl bromide and other alkyl halides; or chloropicrine or sulphuryl fluoride or borax or tartar emetic.
  • Selective antifeedants for example pymetrozine or flonicamid.
  • Mite growth inhibitors for example clofentezine, hexythiazox and diflovidazin or etoxazole.
  • Microbial disruptors of the insect gut membrane for example Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT plant proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl.
  • Oxidative phosphorylation inhibitors, ATP disruptors such as, for example, diafenthiuron or organotin compounds, for example azocyclotin, cyhexatin and fenbutatin oxide or propargite or tetradifon;
  • Oxidative phosphorylation decouplers acting by interrupting the H proton gradient such as, for example, chlorfenapyr, DNOC and sulfluramid.
  • Nicotinergic acetylcholine receptor antagonists such as, for example, bensultap, cartap hydrochloride, thiocylam, and thiosultap-sodium.
  • Chitin biosynthesis inhibitors type 0, such as, for example, bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
  • Chitin biosynthesis inhibitors type 1, for example buprofezin.
  • Moulting inhibitors in particular for Diptera, i.e. dipterans
  • such as, for example, cyromazine such as, for example, cyromazine.
  • Ecdysone receptor agonists such as, for example, chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
  • Octopaminergic agonists such as, for example, amitraz.
  • Inhibitors of acetyl-CoA carboxylase such as, for example, tetronic and tetramic acid derivatives, e.g. spirodiclofen, spiromesifen and spirotetramat.
  • Complex-IV electron transport inhibitors such as, for example, phosphines, e.g. aluminium phosphide, calcium phosphide, phosphine and zinc phosphide or cyanide.
  • Ryanodine receptor effectors such as, for example, diamides, e.g. chlorantraniliprole, cyantraniliprole and flubendiamide, further active compounds such as, for example, afidopyropen, azadirachtin, benclothiaz, benzoximate, bifenazate, bromopropylate, chinomethionat, cryolite, dicofol, diflovidazin, fluensulfone, flometoquin, flufenerim, flufenoxystrobin, flufiprole, fluopyram, flupyradifurone, fufenozide, heptafluthrin, imidaclothiz, iprodione, meperfluthrin, paichongding, pyflubumide, pyrifluquinazon, pyriminostrobin, tetramethylfluthrin and iodomethane;
  • Inhibitors of ergosterol biosynthesis such as, for example, (1.1) aldimorph, (1.2) azaconazole, (1.3) bitertanol, (1.4) bromuconazole, (1.5) cyproconazole, (1.6) diclobutrazole, (1.7) difenoconazole, (1.8) diniconazole, (1.9) diniconazole-M, (1.10) dodemorph, (1.11) dodemorph acetate, (1.12) epoxiconazole, (1.13) etaconazole, (1.14) fenarimol, (1.15) fenbuconazole, (1.16) fenhexamid, (1.17) fenpropidin, (1.18) fenpropimorph, (1.19) fluquinconazole
  • Inhibitors of ergosterol biosynthesis such as, for example, (1.1) aldimorph, (1.2) azaconazole, (1.3) bitertanol, (1.4
  • Respiration inhibitors such as, for example, (2.1) bixafen, (2.2) boscalid, (2.3) carboxin, (2.4) diflumetorim, (2.5) fenfuram, (2.6) fluopyram, (2.7) flutolanil, (2.8) fluxapyroxad, (2.9) furametpyr, (2.10) furmecyclox, (2.11) isopyrazam mixture of the syn-epimeric racemate 1RS,4SR,9RS and the anti-empimeric racemate 1RS,4SR,9SR, (2.12) isopyrazam (anti-epimeric racemate ), (2.13) isopyrazam (anti-epimeric enantiomer 1R,4S,9S), (2.14) isopyrazam (anti-epimeric enantiomer 1S,4R,9R), (2.15) isopyrazam (syn-epimeric racemate 1RS,4SR,
  • Respiration inhibitors acting on complex III of the respiratory chain such as, for example, (3.1) ametoctradin, (3.2) amisulbrom, (3.3) azoxystrobin, (3.4) cyazofamid, (3.5) coumethoxystrobin, (3.6) coumoxystrobin, (3.5) dimoxystrobin, (3.8) enestroburin, (3.9) famoxadone,
  • Inhibitors of amino acid and protein biosynthesis such as, for example, (7.1) , (7.2) blasticidin-S, (7.3) cyprodinil, (7.4) kasugamycin, (7.5) kasugamycin hydrochloride hydrate, (7.6) mepanipyrim, (7.7) pyrimethanil, (7.8) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-l-yl)quinoline and (7.9) oxytetracycline and (7.10) streptomycin.
  • Inhibitors of amino acid and protein biosynthesis such as, for example, (7.1) , (7.2) blasticidin-S, (7.3) cyprodinil, (7.4) kasugamycin, (7.5) kasugamycin hydrochloride hydrate, (7.6) mepanipyrim, (7.7) pyrimethanil, (7.8) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydr
  • ATP production inhibitors such as, for example, (8.1) fentin acetate, (8.2) fentin chloride, (8.3) fentin hydroxide and (8.4) silthiofam.
  • Inhibitors of cell wall synthesis such as, for example, (9.1) benthiavalicarb, (9.2) dimethomorph, (9.3) flumorph, (9.4) iprovalicarb, (9.5) mandipropamid, (9.6) polyoxins, (9.7) polyoxorim, (9.8) validamycin A, (9.9) valifenalate and (9.10) polyoxin B.
  • Inhibitors of lipid and membrane synthesis such as, for example, (10.1) biphenyl, (10.2) chlorneb,
  • Inhibitors of nucleic acid synthesis such as, for example, (12.1) benalaxyl, (12.2) benalaxyl-M (kiralaxyl), (12.3) bupirimate, (12.4) clozylacon, (12.5) dimethirimol, (12.6) ethirimol, (12.7) furalaxyl,
  • Signal transduction inhibitors such as, for example, (13.1) chlozolinate, (13.2) fenpiclonil, (13.3) fludioxonil, (13.4) iprodione, (13.5) procymidone, (13.6) quinoxyfen, (13.7) vinclozolin and (13.8) proquinazid.
  • Decouplers such as, for example, (14.1) binapacryl, (14.2) dinocap, (14.3) ferimzone, (14.4) fluazinam and (14.5) meptyldinocap.
  • the compounds of the formula (I), (la), (lb) or (Ic) can be combined with biological pesticides.
  • Biological pesticides comprise in particular bacteria, fungi, yeasts, plant extracts and products formed by microorganisms, including proteins and secondary metabolites.
  • Biological pesticides comprise bacteria such as spore-forming bacteria, root-colonising bacteria and bacteria which act as biological insecticides, fungicides or nematicides. Examples of such bacteria which are employed or can be used as biological pesticides are:
  • Bacillus amyloliquefaciens strain FZB42 (DSM 231179), or Bacillus cereus, in particular B. cereus strain CNCM 1-1562 or Bacillus firmus, strain 1-1582 (Accession number CNCM 1-1582) or Bacillus pumilus, in particular strain GB34 (Accession No. ATCC 700814) and strain QST2808 (Accession No.
  • Bacillus subtilis in particular strain GB03 (Accession No. ATCC SD-1397), or Bacillus subtilis strain QST713 (Accession No. NRRL B -21661) or Bacillus subtilis strain OST 30002
  • Bacillus thuringiensis in particular B. thuringiensis subspecies israelensis (serotype H-14), strain AM65-52 (Accession No. ATCC 1276), or B. thuringiensis subsp. aizawai, in particular strain ABTS-1857 (SD-1372), or B. thuringiensis subsp. kurstaki strain HD-1, or B. thuringiensis subsp. tenebrionis strain NB 176 (SD-5428), Pasteuria penetrans, Pasteuria spp.
  • fungi and yeasts which are employed or can be used as biological pesticides are:
  • Beauveria bassiana in particular strain ATCC 74040, Coniothyrium minitans, in particular strain CON/M/91-8 (Accession No. DSM-9660), Lecanicillium spp., in particular strain HRO LEC 12, Lecanicillium lecanii, (formerly known as Verticillium lecanii), in particular strain KV01, Metarhizium anisopliae, in particular strain F52 (DSM3884/ ATCC 90448), Metschnikowia fructicola, in particular strain NRRL Y-30752, Paecilomyces fumosoroseus (now: Isaria fumosorosea) , in particular strain IFPC 200613, or strain Apopka 97 (Accesion No.
  • Paecilomyces lilacinus in particular P. lilacinus strain 251 (AGAL 89/030550), Talaromyces flavus, in particular strain VI 17b, Trichoderma atroviride, in particular strain SCI (Accession Number CBS 122089), Trichoderma harzianum, in particular T. harzianum rifai T39. (Accession Number CNCM 1-952).
  • viruses which are employed or can be used as biological pesticides are:
  • Agrobacterium spp. Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., in particular Burkholderia cepacia (formerly known as Pseudomonas cepacia), Gigaspora spp., or Gigaspora monosporum, Glomus spp., Laccaria spp., Lactobacillus buchneri, Paraglomus spp., Pisolithus tinctorus, Pseudomonas spp., Rhizobium spp., in particular Rhizobium trifolii, Rhizopogon spp., Scleroderma spp., Suillus spp., Streptomyces spp.
  • plant extracts and products formed by microorganisms including proteins and secondary metabolites which are employed or can be used as biological pesticides are:
  • the compounds of the formula (I), (la), (lb) or (Ic) can be combined with safeners such as, for example, benoxacor, cloquintocet (-mexyl), cyometrinil, cyprosulfamide, dichlormid, fenchlorazole (-ethyl), fenclorim, flurazole, fluxofenim, furilazole, isoxadifen (-ethyl), mefenpyr (-diethyl), naphthalic anhydride, oxabetrinil, 2-methoxy-N-( ⁇ 4-[(methylcarbamoyl)amino]phenyl ⁇ sulphonyl)benzamide (CAS 129531-12-0), 4-(dichloroacetyl)-l-oxa-4-azaspiro[4.5]decane (CAS 71526-07-3), 2,2,5-trimethyl-3- (dichloroacetyl)-l,3
  • plants are to be understood to mean all plants and plant parts such as wanted and unwanted wild plants or crop plants (including naturally occurring crop plants), for example cereals (wheat, rice, triticale, barley, rye, oats), maize, soya bean, potato, sugar beet, sugar cane, tomatoes, peas and other vegetable species, cotton, tobacco, oilseed rape, and also fruit plants (with the fruits apples, pears, citrus fruits and grapevines).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or cannot be protected by varietal property rights.
  • Plant parts should be understood to mean all parts and organs of the plants above and below ground, such as shoot, leaf, flower and root, examples given being leaves, needles, stalks, stems, flowers, fruit bodies, fruits and seeds, and also tubers, roots and rhizomes. Parts of plants also include harvested plants and vegetative and generative propagation material, for example seedlings, tubers, rhizomes, cuttings and seeds.
  • Treatment according to the invention of the plants and plant parts with the compounds of the formula (I), (la), (lb) or (Ic) is carried out directly or by allowing the compounds to act on the surroundings, environment or storage space by the customary treatment methods, for example by immersion, spraying, evaporation, fogging, scattering, painting on, injection and, in the case of propagation material, in particular in the case of seeds, also by applying one or more coats.
  • the customary treatment methods for example by immersion, spraying, evaporation, fogging, scattering, painting on, injection and, in the case of propagation material, in particular in the case of seeds, also by applying one or more coats.
  • wild plant species and plant cultivars, or those obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and also parts thereof, are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods if appropriate in combination with conventional methods (genetically modified organisms), and parts thereof are treated.
  • the term “parts” or “parts of plants” or “plant parts” has been explained above.
  • the invention is used with particular preference to treat plants of the respective commercially customary cultivars or those that are in use.
  • Plant cultivars are to be understood as meaning plants having new properties ("traits") and which have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes.
  • transgenic plants or plant cultivars which are to be treated with preference in accordance with the invention include all plants which, through the genetic modification, received genetic material which imparts particular advantageous useful properties ("traits") to these plants.
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to levels of water or soil salinity, enhanced flowering performance, easier harvesting, accelerated ripening, higher yields, higher quality and/or a higher nutritional value of the harvested products, better storage life and/or processability of the harvested products.
  • Such properties are increased resistance of the plants against animal and microbial pests, such as against insects, arachnids, nematodes, mites, slugs and snails owing, for example, to toxins formed in the plants, in particular those formed in the plants by the genetic material from Bacillus thuringiensis (for example by the genes CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF and also combinations thereof), furthermore increased resistance of the plants against phytopathogenic fungi, bacteria and/or viruses owing, for example, to systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and also resistance genes and correspondingly expressed proteins and toxins, and also increased tolerance of the plants to certain herbicidally active compounds, for example imidazolinones, sulphonylureas, glyphosate or
  • transgenic plants which may be mentioned are the important crop plants, such as cereals (wheat, rice, triticale, barley, rye, oats), maize, soya beans, potatoes, sugar beet, sugar cane, tomatoes, peas and other types of vegetable, cotton, tobacco, oilseed rape and also fruit plants (with the fruits apples, pears, citrus fruits and grapes), with particular emphasis being given to maize, soya beans, wheat, rice, potatoes, cotton, sugar cane, tobacco and oilseed rape. Traits which are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and slugs and snails.
  • the treatment of the plants and plant parts with the compounds of the formula (I), (la), (lb) or (Ic) is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, injecting, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seed, furthermore as a powder for dry seed treatment, a solution for liquid seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more coats, etc.
  • customary treatment methods for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, injecting, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seed, furthermore as
  • a preferred direct treatment of the plants is foliar application, i.e. the compounds of the formula (I), (la), (lb) or (Ic) are applied to the foliage, where treatment frequency and the application rate should be adjusted according to the level of infestation with the pest in question.
  • the compounds of the formula (I), (la), (lb) or (Ic) also access the plants via the root system.
  • the plants are then treated by the action of the compounds of the formula (I), (la), (lb) or (Ic) on the habitat of the plant. This may be done, for example, by drenching, or by mixing into the soil or the nutrient solution, i.e. the locus of the plant (e.g. soil or hydroponic systems) is impregnated with a liquid form of the compounds of the formula (I), (la), (lb) or (Ic), or by soil application, i.e.
  • the compounds of the formula (I), (la), (lb) or (Ic) according to the invention are introduced in solid form (e.g. in the form of granules) into the locus of the plants. In the case of paddy rice crops, this can also be done by metering the compound of the formula (I), (la), (lb) or (Ic) in a solid application form (for example as granules) into a flooded paddy field.
  • methods for the treatment of seed should also take into consideration the intrinsic insecticidal or nematicidal properties of pest-resistant or - tolerant transgenic plants in order to achieve optimum protection of the seed and also the germinating plant with a minimum of pesticides being employed.
  • the present invention therefore in particular also relates to a method for the protection of seed and germinating plants, from attack by pests, by treating the seed with one of the compounds of the formula (I), (la), (lb) or (Ic).
  • the method according to the invention for protecting seed and germinating plants against attack by pests furthermore comprises a method where the seed is treated simultaneously in one operation or sequentially with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component. It also comprises a method where the seed is treated at different times with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component.
  • the invention likewise relates to the use of the compounds of the formula (I), (la), (lb) or (Ic) for the treatment of seed for protecting the seed and the resulting plant from animal pests.
  • the invention relates to seed which has been treated with a compound of the formula (I), (la), (lb) or (Ic) according to the invention so as to afford protection from animal pests.
  • the invention also relates to seed which has been treated simultaneously with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component.
  • the invention furthermore relates to seed which has been treated at different times with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component.
  • the individual substances may be present on the seed in different layers.
  • the layers comprising a compound of the formula (I), (la), (lb) or (Ic) and mixing components may optionally be separated by an intermediate layer.
  • the invention also relates to seed where a compound of the formula (I), (la), (lb) or (Ic) and a mixing component have been applied as component of a coating or as a further layer or further layers in addition to a coating.
  • the invention relates to seed which, after the treatment with a compound of the formula (I), (la), (lb) or (Ic), is subjected to a film-coating process to prevent dust abrasion on the seed.
  • One of the advantages encountered with a systemically acting compound of the formula (I), (la), (lb) or (Ic) is the fact that, by treating the seed, not only the seed itself but also the plants resulting therefrom are, after emergence, protected against animal pests. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with. It has to be considered a further advantage that by treatment of the seed with a compound of the formula (I), (la), (lb) or (Ic), germination and emergence of the treated seed may be enhanced.
  • compounds of the formula (I), (la), (lb) or (Ic) can be employed in combination with compositions or compounds of signalling technology, leading to better colonization by symbionts such as, for example, rhizobia, mycorrhizae and/or endophytic bacteria or fungi, and/or to optimized nitrogen fixation.
  • symbionts such as, for example, rhizobia, mycorrhizae and/or endophytic bacteria or fungi, and/or to optimized nitrogen fixation.
  • the compounds of the formula (I), (la), (lb) or (Ic) are suitable for protection of seed of any plant variety which is used in agriculture, in the greenhouse, in forests or in horticulture.
  • this takes the form of seed of cereals (for example wheat, barley, rye, millet and oats), corn, cotton, soya beans, rice, potatoes, sunflowers, coffee, tobacco, canola, oilseed rape, beets (for example sugarbeets and fodder beets), peanuts, vegetables (for example tomatoes, cucumbers, bean, cruciferous vegetables, onions and lettuce), fruit plants, lawns and ornamental plants.
  • cereals for example wheat, barley, rye and oats
  • corn for example wheat, barley, rye, millet and oats
  • corn cotton, soya beans, rice, potatoes, sunflowers
  • coffee tobacco, canola, oilseed rape, beets (for example sugarbeets and fodder
  • transgenic seed with a compound of the formula (I), (la), (lb) or (Ic) is also of particular importance.
  • the heterologous genes in transgenic seed can originate from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly suitable for the treatment of transgenic seed which comprises at least one heterologous gene originating from Bacillus sp.
  • the compound of the formula (I), (la), (lb) or (Ic) is applied to the seed.
  • the seed is treated in a state in which it is stable enough to avoid damage during treatment.
  • the seed may be treated at any point in time between harvest and sowing.
  • the seed usually used has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits.
  • seed which has been harvested, cleaned and dried down to a moisture content which allows storage.
  • seed which, after drying, has been treated with, for example, water and then dried again, for example priming.
  • the amount of the compound of the formula (I), (la), (lb) or (Ic) applied to the seed and/or the amount of further additives is chosen in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged. This must be ensured particularly in the case of active compounds which can exhibit phytotoxic effects at certain application rates.
  • the compounds of the formula (I), (la), (lb) or (Ic) are applied to the seed in a suitable formulation.
  • suitable formulations and processes for seed treatment are known to the person skilled in the art.
  • the compounds of the formula (I), (la), (lb) or (Ic) can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
  • customary seed dressing formulations such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
  • formulations are prepared in a known manner, by mixing the compounds of the formula (I), (la), (lb) or (Ic) with customary additives such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • customary additives such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • Colorants which may be present in the seed-dressing formulations which can be used in accordance with the invention are all colorants which are customary for such purposes. It is possible to use either pigments, which are sparingly soluble in water, or dyes, which are soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1.
  • Useful wetting agents which may be present in the seed dressing formulations usable in accordance with the invention are all substances which promote wetting and which are conventionally used for the formulation of agrochemically active compounds. Preference is given to using alkylnaphthalenesulphonates, such as diisopropyl- or diisobutylnaphthalenesulphonates.
  • Useful dispersants and/or emulsifiers which may be present in the seed dressing formulations usable in accordance with the invention are all nonionic, anionic and cationic dispersants conventionally used for the formulation of active agrochemical ingredients. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Suitable nonionic dispersants include in particular ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers, and the phosphated or sulphated derivatives thereof.
  • Suitable anionic dispersants are in particular lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.
  • Antifoams which may be present in the seed dressing formulations usable in accordance with the invention are all foam-inhibiting substances conventionally used for the formulation of active agrochemical ingredients. Preference is given to using silicone antifoams and magnesium stearate.
  • Preservatives which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal.
  • the gibberellins are known (cf. R. Wegler "Chemie der convinced- and Schadlingsbekampfungsstoff", vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations usable in accordance with the invention can be used to treat a wide variety of different kinds of seed either directly or after prior dilution with water.
  • the concentrates or the preparations obtainable therefrom by dilution with water can be used to dress the seed of cereals, such as wheat, barley, rye, oats, and triticale, and also the seed of maize, rice, oilseed rape, peas, beans, cotton, sunflowers, soya beans and beets, or else a wide variety of different vegetable seed.
  • the seed dressing formulations usable in accordance with the invention, or the dilute use forms thereof, can also be used to dress seed of transgenic plants.
  • all mixing units usable customarily for the seed dressing are useful. Specifically, the procedure in the seed dressing is to place the seed into a mixer, operated batch-wise or continously, to add the particular desired amount of seed dressing formulations, either as such or after prior dilution with water, and to mix everything until the formulation is distributed homogeneously on the seed. If appropriate, this is followed by a drying operation.
  • the application rate of the seed dressing formulations usable in accordance with the invention can be varied within a relatively wide range. It is guided by the particular content of the compounds of the formula (I), (la), (lb) or (Ic) in the formulations and by the seed.
  • the application rates of the respective compound of the formula (I), (la), (lb) or (Ic) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
  • the compounds of the formula (I), (la), (lb) or (Ic) are active against animal parasites, in particular ectoparasites or endoparasites.
  • endoparasites includes in particular helminths and protozoans, such as coccidia.
  • Ectoparasites are typically and preferably arthropods, in particular insects and acarids.
  • Agricultural livestock include, for example, mammals, such as sheep, goats, horses, donkeys, camels, buffaloes, rabbits, reindeers, fallow deers, and in particular cattle and pigs; or poultry such as turkeys, ducks, geese, and in particular chickens; fish and crustaceans, for example in aquaculture; and also insects such as bees.
  • Domestic animals include, for example, mammals, such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets and in particular dogs, cats, cage birds, reptiles, amphibians and aquarium fish.
  • mammals such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets and in particular dogs, cats, cage birds, reptiles, amphibians and aquarium fish.
  • the compounds of the formula (I), (la), (lb) or (Ic) are administered to mammals.
  • the compounds of the formula (I), (la), (lb) or (Ic) are administered to birds, namely cage birds and in particular poultry.
  • birds namely cage birds and in particular poultry.
  • the compounds of the formula (I), (la), (lb) or (Ic) to control animal parasites, it is intended to reduce or prevent illness, cases of deaths and performance reductions (in the case of meat, milk, wool, hides, eggs, honey and the like), so that more economical and simpler animal keeping is made possible and better animal well-being is achievable.
  • control means that the compounds of the formula (I), (la), (lb) or (Ic) are effective in reducing the incidence of the respective parasite in an animal infected with such parasites to innocuous levels. More specifically, “controlling”, as used herein, means that the compound of the formula (I), (la), (lb) or (Ic) is effective in killing the respective parasite, inhibiting its growth, or inhibiting its proliferation.
  • Arthropods include: from the order of the Anoplurida, for example Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.; from the order of the Mallophagida and the suborders Amblycerina and Ischnocerina, for example Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.; from the order of the Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus s
  • Arthropods furthermore include: from the subclass of the Acari (Acarina) and the order of the Metastigmata, for example from the family of argasidae like Argas spp., Ornithodorus spp., Otobius spp., from the family of Ixodidae like Ixodes spp., Amblyomma spp., Rhipicephalus (Boophilus) spp Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp.
  • Parasitic Protozoa include:
  • Mastigophora such as, for example, Trypanosomatidae, for example, Trypanosoma b. brucei, T.b. gambiense, T.b. rhodesiense, T. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica, such as, for example, Trichomonadidae, for example, Giardia lamblia, G. canis.;
  • Sarcomastigophora such as Entamoebidae, for example, Entamoeba histolytica, Hartmanellidae, for example, Acanthamoeba sp., Harmanella sp.; Apicomplexa (Sporozoa) such as Eimeridae, for example, Eimeria acervulina, E. adenoides, E. alabamensis, E. anatis, E. anserina, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E. canis,
  • Entamoebidae for example, Entamoeba histolytica, Hartmanellidae, for example, Acanthamoeba sp., Harmanella sp.
  • Apicomplexa such as Eimeridae, for example, Eimeria acervulina, E. adenoides, E. alabamens
  • Besnoitia besnoitii such as Sarcocystidae, for example, Sarcocystis bovicanis, S. bovihominis, S. ovicanis, S. ovifelis, S. neurona, S. spec, S. suihominis, such as Leucozoidae, for example,
  • Leucozytozoon simondi such as Plasmodiidae, for example, Plasmodium berghei, P. falciparum, P. malariae, P. ovale, P. vivax, P. spec, such as Piroplasmea, for example, Babesia argentina, B. bovis, B. canis, B. spec, Theileria parva, Theileria spec, such as Adeleina, for example, Hepatozoon canis, H. spec.
  • Pathogenic endoparasites which are helminths, include Platyhelmintha (e.g. Monogenea, cestodes and trematodes), nematodes, Acanthocephala, and Pentastoma, including:
  • Monogenea e.g.: Gyrodactylus spp., Dactylogyrus spp., Polystoma spp.; Cestodes: from the order of the Pseudophyllidea for example: Diphyllobothrium spp., Spirometra spp., Schistocephalus spp., Ligula spp., Bothridium spp., Diplogonoporus spp.; from the order of the Cyclophyllida for example: Mesocestoides spp., Anoplocephala spp., Paranoplocephala spp., Moniezia spp., Thysanosoma spp., Thysaniezia spp., Avitellina spp., Stilesia spp., Cittotaenia spp., Andyra spp., Bertiella spp., Taenia spp., Echinoc
  • Trematodes from the class of the Digenea for example: Diplostomum spp., Posthodiplostomum spp., Schistosoma spp., Trichobilharzia spp., Ornithobilharzia spp., Austrobilharzia spp., Gigantobilharzia spp., Leucochloridium spp., Brachylaima spp., Echinostoma spp., Echinoparyphium spp., Echinochasmus spp., Hypoderaeum spp., Fasciola spp., Fascioloides spp., Fasciolopsis spp., Cyclocoelum spp., Typhlocoelum spp., Paramphistomum spp., Calicophoron spp., Cotylophoron spp., Gigantocotyle
  • Parelaphostrongylus spp. Crenosoma spp., Paracrenosoma spp., Oslerus spp., Angiostrongylus spp., Aelurostrongylus spp., Filaroides spp., Parafilaroides spp., Trichostrongylus spp., Haemonchus spp., Ostertagia spp., Teladorsagia spp., Marshallagia spp., Cooperia spp., Nippostrongylus spp., Heligmosomoides spp., Nematodirus spp., Hyostrongylus spp., Obeliscoides spp., Amidostomum spp., Ollulanus spp.; from the order of the Spirurida, for example: Oxyuris spp., Enterobius spp., Passalurus spp., Syphacia
  • Acanthocephala from the order of the Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp.; from the order of the Polymorphida, for example: Filicollis spp.; from the order of the Moniliformida, for example: Moniliformis spp.; from the order of the Echinorhynchida, for example, Acanthocephalus spp., Echinorhynchus spp., Leptorhynchoides spp. ;
  • Pentastoma from the order of the Porocephalida, for example, Linguatula spp..
  • administration of the compounds of the formula (I), (la), (lb) or (Ic) is carried out by methods generally known in the art, such as enterally, parenterally, dermally or nasally in the form of suitable preparations. Administration can be carried out prophylactically or therapeutically.
  • one embodiment of the present invention refers to the use of a compound of the formula (I), (la), (lb) or (Ic) as medicament.
  • a further aspect refers to the use of a compound of the formula (I), (la), (lb) or (Ic) as an antiendoparasitic agent, in particular a helminthicidal agent or antiprotozoic agent.
  • Compounds of the formula (I), (la), (lb) or (Ic) are suitable for use as an antiendoparasitic agent, in particular a helminthicidal agent or antiprotozoic agent, for example in animal husbandry, in animal breeding, in animal housing and in the hygiene sector.
  • a further aspect in turn relates to the use of a compound of the formula (I), (la), (lb) or (Ic) as an antiectoparasitic, in particular an arthropodicide such as an insecticide or an acaricide.
  • a further aspect relates to the use of a compound of the formula (I), (la), (lb) or (Ic) as an antiectoparasitic, in particular an arthropodicide such as an insecticide or an acaricide, for example in animal husbandry, in animal breeding, in stables or in the hygiene sector.
  • anthelmintic mixing components may be mentioned by way of example:
  • Anthelmintically active compounds including trematicidally and cestocidally active compounds: from the class of the macrocyclic lactones, for example: abamectin, doramectin, emamectin, eprinomectin, ivermectin, milbemycin, moxidectin, nemadectin, selamectin; from the class of the benzimidazoles and probenzimidazoles, for example: albendazole, albendazole - sulphoxide, cambendazole, cyclobendazole, febantel, fenbendazole, flubendazole, mebendazole, netobimin, oxfendazole, oxibendazole, parbendazole, thiabendazole, thiophanate, triclabendazole; from the class of the cyclooctadepsipeptides, for example: emodepside
  • a vector is an arthropod, in particular an insect or arachnid, capable of transmitting pathogens such as, for example, viruses, worms, single -cell organisms and bacteria from a reservoir (plant, animal, human, etc.) to a host.
  • pathogens can be transmitted either mechanically (for example trachoma by non-stinging flies) to a host, or by injection (for example malaria parasites by mosquitoes) into a host. Examples of vectors and the diseases or pathogens they transmit are:
  • Anopheles malaria, filariasis
  • - Aedes yellow fever, dengue fever, filariasis, other viral diseases
  • - Simuliidae transmission of worms, in particular Onchocerca volvulus
  • Flies sleeping sickness (trypanosomiasis); cholera, other bacterial diseases;
  • Mites acariosis, epidemic typhus, rickettsialpox, tularaemia, Saint Louis encephalitis, tick-borne encephalitis (TBE), Crimean-Congo haemorrhagic fever, borreliosis;
  • Ticks borellioses such as Borrelia duttoni, tick-borne encephalitis, Q fever (Coxiella burnetii), babesioses (Babesia canis canis).
  • vectors in the sense of the present invention are insects, for example aphids, flies, leafhoppers or thrips, which are capable of transmitting plant viruses to plants.
  • Other vectors capable of transmitting plant viruses are spider mites, lice, beetles and nematodes.
  • vectors in the sence of the present invention are insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, for example A. gambiae, A. arabiensis, A. funestus, A. dims (malaria) and Culex, lice, fleas, flies, mites and ticks capable of transmitting pathogens to animals and/or humans.
  • insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, for example A. gambiae, A. arabiensis, A. funestus, A. dims (malaria) and Culex, lice, fleas, flies, mites and ticks capable of transmitting pathogens to animals and/or humans.
  • Vector control is also possible if the compounds of the formula (I), (la), (lb) or (Ic) are resistance- breaking.
  • Compounds of the formula (I), (la), (lb) or (Ic) are suitable for use in the prevention of diseases and/or pathogens transmitted by vectors.
  • a further aspect of the present invention is the use of compounds of the formula (I), (la), (lb) or (Ic) for vector control, for example in agriculture, in horticulture, in gardens and in leisure facilities, and also in the protection of materials and stored products.
  • the compounds of the formula (I), (la), (lb) or (Ic) are suitable for protecting industrial materials against attack or destruction by insects, for example from the orders Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma.
  • Industrial materials in the present context are understood to mean inanimate materials, such as preferably plastics, adhesives, sizes, papers and cards, leather, wood, processed wood products and coating compositions.
  • plastics such as preferably plastics, adhesives, sizes, papers and cards, leather, wood, processed wood products and coating compositions.
  • the use of the invention for protecting wood is particularly preferred.
  • the compounds of the formula (I), (la), (lb) or (Ic) are used together with at least one further insecticide and/or at least one fungicide.
  • the compounds of the formula (I), (la), (lb) or (Ic) are present as a ready-to-use pesticide, i.e. they can be applied to the material in question without further modifications. Suitable further insecticides or fungicides are in particular those mentioned above.
  • the compounds of the formula (I), (la), (lb) or (Ic) can be employed for protecting objects which come into contact with saltwater or brackish water, in particular hulls, screens, nets, buildings, moorings and signalling systems, against fouling.
  • the compounds of the formula (I), (la), (lb) or (Ic), alone or in combinations with other active compounds, can be used as antifouling agents. Control of animal pests in the hygiene sector
  • the compounds of the formula (I), (la), (lb) or (Ic) are suitable for controlling animal pests in the hygiene sector.
  • the invention can be applied in the domestic sector, in the hygiene sector and in the protection of stored products, especially for controlling insects, arachnids and mites encountered in enclosed spaces such as dwellings, factory halls, offices, vehicle cabins.
  • the compounds of the formula (I), (la), (lb) or (Ic) are used alone or in combination with other active compounds and/or auxiliaries. They are preferably used in domestic insecticide products.
  • the compounds of the formula (I), (la), (lb) or (Ic) are effective against sensitive and resistant species, and against all developmental stages.
  • pests from the class Arachnida from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda.
  • Method Ml ⁇ -NMR-data were determined with a Bruker Avance 400 equipped with a flow cell (60 ⁇ volume) or with a Bruker AVIII 400 equipped with 1.7 mm cryo CPTCI probe head or with a Bruker AVII 600 (600.13 MHz) equipped with a 5 mm cryo TCI probe head or with a Bruker AVIII 600 (601.6 MHz) equipped with a 5 mm cryo CPMNP probe head with tetramethylsilane as reference (0.0) and the solvents CD 3 CN, CDC1 3 or D 6 -DMSO.
  • Method M2 Alternatively ⁇ -NMR-data were determined with a Bruker DMX300 ⁇ -NMR: 300 MHz) using tetramethylsilane as reference standard.
  • NMR-data of selected examples are listed in classic format (chemical shift ⁇ , multiplicity, number of hydrogen atoms) or as NMR-peak-lists.
  • Step 2 Synthesis of N- ⁇ 2-[2-chloro-4-(5-chloropyridin-3-yl)phenyl]ethyl ⁇ -2-(trifluoromethyl)benz- amide (corresponds to product expl. 1-45)
  • Step 2 Synthesis of N-[2-(4-bromo-2-chloro-phenyl)-2,2-difluoro-ethyl]-2-(trifluoromethyl)benzamide
  • Step 3 Synthesis of l-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]ethanone
  • Step 5 Synthesis of 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-fluoropropan-l-amine hydrochloride
  • Step 6 Synthesis of N- ⁇ 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-fluoropropyl ⁇ -2- (trifluoromethyl)benzamide (corresponds to product expl. 1-101)
  • Trimethylsilylcyanide (5.3 mL, 39.7 mmol) was added dropwise to a stirred suspension of ZnL (19.036 mg, 0.06 mmol), l-(2,4-dichlorophenyl)ethanone (7.516 g, 39.7 mmol) and dichloromethane (3.8 ml) under nitrogen atmosphere at 0°C.
  • the reaction mixture was stirred at room temperature overnight. It was then diluted with dry dichloromethane (49 mL), cooled again to 0°C, and a solution of DAST (5.78 mL, 43.7 mmol) in dichloromethane (20.4 mL) was added dropwise. The reaction mixture was stirred overnight at room temperature.
  • the reaction mixture is poured in 61 mL of iced water and extracted with dichloromethane.
  • the organic layer was washed sequentially with a 0.5N aqueous HC1 solution, water, a saturated aqueous solution of NaHC03, and water again.
  • the organic layer was dried over sodium sulfate, filtered, and concentrated.
  • the residue obtained was further purified by flash chromatography on silicagel (eluent: cyclohexane/ethylacetate). This afforded 8.576 g of the title compound.
  • Step 3 Synthesis of N- ⁇ 2-[2-chloro-4-(6-fluoropyridin-3-yl)phenyl]-2-fluoropropyl ⁇ -2- (trifluoromethyl)benzamide (corresponds to product expl. 1-130)
  • reaction mixture was heated 30 minutes at reflux.
  • the reaction mixture was cooled down and some methyl tertiary butyl ether was added. After filtration on celite, the reaction mixture was dried with sodium sulfate. After evaporation, the residue obtained was purified by flash chromatography on silicagel (eluent: cyclohexane/ethylacetate). This afforded 10.6 mg of the title compound.
  • the reaction mixture was diluted with water (300 ml) and the organic layer was separated.
  • the water layer was extracted with diethyl ether (2*100 ml).
  • the combined organic layers were mixed with 10% hydrochloric acid (500 ml) and the mixture was filtered.
  • the filtercake was washed with ether and toluene. The filtrate was separated.
  • the water layer was combined with the solid material and the mixture was neutralized with sodium hydrogencarbonate then with sodium carbonate.
  • Crude amine was extracted with ether (3 x 150 ml). The extract was washed with water (150 ml), brine (150 ml), dried and treated with an ether- hydrogenchlorid solution.
  • R 1 , R 2 , Q, X, n, A are as defined by each individual structure.
  • R 1 , R 2 , Q, X, n are as defined by each individual structure and might occur as salts like hydrochlorides.
  • ⁇ -NMR data of selected examples are written in form of ⁇ -NMR-peak lists.
  • the ⁇ -value in ppm and the signal intensity are listed to each signal peak in round brackets. Between the ⁇ -value - signal intensity pairs are semicolons as delimiters.
  • the peak list of an example has therefore the form: ⁇ (intensityi); 82 (intensitV2); ; 3 ⁇ 4 (intensity,); ; ⁇ (intensity,,)
  • Intensity of sharp signals correlates with the height of the signals in a printed example of a NMR spectrum in cm and shows the real relations of signal intensities. From broad signals several peaks or the middle of the signal and their relative intensity in comparison to the most intensive signal in the spectrum can be shown.
  • the ⁇ -NMR peak lists are similar to classical ⁇ -NMR prints and contain therefore usually all peaks, which are listed at classical NMR-interpretation.
  • peaks of solvents for example peaks of DMSO in DMSO-D6 and the peak of water, are given in the ⁇ -NMR peak lists to show compound signals in the delta-range of solvents and/or water. They have usually on average a high intensity.
  • the peaks of stereoisomers of the target compounds and/or peaks of impurities have usually on average a lower intensity than the peaks of target compounds (for example with a purity >90 ).
  • Such stereoisomers and/or impurities can be typical for the specific preparation process. Therefore, their peaks can help to recognize the reproduction of our preparation process via "side-products-fingerprints".

Abstract

The invention relates to the use of known and novel phenalkyl carboxamide derivatives of the formula (I) wherein the structural elements have the meaning as indicated in the description, for the control of nematodes and/or other helminths, particularly in agriculture and in the animal health field, formulations containing such compounds, particularly agrochemical formulations, and methods for the control of nematodes and helminths. The invention further relates to novel phenalkyl carboxamide derivatives, processes for their preparation, formulations containing such compounds, methods for the control of nematodes and helminths and their use as pest controlling agents, particularly their use as nematicides and their use as anthelmintics against endoparasites in animals and humans.

Description

New pesticidal compounds and uses
The present invention relates to the use of known and novel phenalkyl carboxamide derivatives for the control of nematodes and/or other helminths, particularly in agriculture and in the animal health field, formulations containing such compounds, particularly agrochemical formulations, and methods for the control of nematodes and helminths.
The present invention further relates to certain phenalkyl carboxamide derivatives as to processes for their preparation, to formulations comprising those compounds and their use in agriculture and veterinary fields and fields relying on pest management. The compounds are active for controlling plant damaging pests; they are particularly active for the control of nematodes. Furthermore, the compounds act as anthelmintic agents against endoparasites in animals and humans.
Nematodes cause a substantial loss in agricultural product including food and industrial crops and are combated with chemical compounds having nematicidal activity. These compounds should have high activity, broad spectrum activity against different strains of nematodes and should not be toxic to non- target organisms. The occurrence of resistances against all commercial anthelmintics seems to be a growing problem in the area of veterinary medicine. Therefore, endoparasiticides with new molecular modes of actions are urgently desired. The new active ingredients should perform with excellent efficacy against a broad spectrum of helminths and nematodes without any adverse toxic effects to the treated vertebratic organism. Endoparasiticides are pharmaceuticals for combat or suppression of endoparasites in animals or humans.
The use of certain N-2-(pyridyl)ethyl-carboxamide derivatives for controlling nematodes is described in WO2007/108483 Al and EP 2 132 987 Al.
The use of certain carboxamides as parasiticides is described in EP 1 997 800 Al, WO2012/118139 Al WO2013/0676230 Al, WO2014/004064 Al, WO2014/034750 Al and WO2014/034751 Al. Furthermore, certain carboxamides are described as pesticides in WO2013/064518 Al, WO2013/064519 Al, WO2013/064520 Al, WO2013/064521 Al or as nematicides in WO2013/064460 Al, WO2013/064461 Al and WO2013/ 120940 A2.
Modern anthelmintic/nematicidal agents have to meet many demands, for example in relation to the level, duration and breadth of their action and possible use. Questions of toxicity and of combinability with other active ingredients or formulation auxiliaries play a role, as does the question of the expense that the synthesis of an active ingredient requires. In addition, resistances can occur. For all these reasons, the search for novel anthelmintic/nematicidal agents cannot be considered to be complete, and there is a constant need for novel compounds having properties which, compared to the known compounds, are improved at least in relation to individual aspects.
It was an object of the present invention to provide compounds which widen the spectrum of the pesticides in various respects. In particular, it was an object of the present invention to provide compounds which can be used as nematicides with a satisfactory or improved nematicidal activity, particularly at relatively low application rates, with a high selectivity and high compatibility in crop- plant cultures. Another particular object of the present invention was to provide compounds which can be used as endoparasiticides with a satisfactory or improved anthelmintic activity against a broad spectrum of helminths and nematodes, particularly at relatively low dosages, without any adverse toxic effects to the treated vertebratic organism.
The present invention relates to the use of a compound of formula (I)
Figure imgf000003_0001
wherein (embodiment 1-1) n is 0, 1 , 2, 3 or 4, limited by the number of available positions in the ring to which a substituent X can be connected, each X is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF5, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, (hydroxyimino)-Ci-C6-alkyl, Ci-C8-alkyl, Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, C2- Cs-alkenyl, C2-C8-alkynyl, Ci-C8-alkylamino, di-(Ci-C8-alkyl)amino, Ci-C8-alkoxy, Ci-C8- halogenoalkoxy having 1 to 5 halogen atoms, C2-C8-alkenyloxy, C2-C8-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C8-alkynyloxy, C3-C8-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C8-cycloalkyl, C3-C8-halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C8- alkylcarbonyl, Ci-C8-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C8-alkyl), - CON(Ci-C8-alkyl)2, -CONH(OCi-C8-alkyl), -CON(OCi-C8-alkyl)(Ci-C8-alkyl), Ci-C8- alkoxycarbonyl, Ci-C8-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-C8- alkylcarbonyloxy, Ci-C8-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, Ci-C8- alkylcarbonylamino, Ci-C8-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, - OCONH(Ci-C8-alkyl), -OCON(Ci-C8-alkyl)2, -OCONH(OCi-C8-alkyl), -OCO(OCi-C8-alkyl), -S- Ci-C8-alkyl, -S-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C8-alkyl, -S(0)-Ci- C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C8-alkyl, -S(0)2-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, (Ci-C6-alkoxyimino)-Ci-C6-alkyl, (C2-C6-alkenyloxyimino)-Ci-C6- alkyl, (C3-C6-alkynyloxyimino)-Ci-C6-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino,
Q represents an aromatic or partially saturated or saturated, 5- or 6-membered heterocyclic ring containing one to four heteroatoms chosen from N, S, and O bearing the substituent Ym with m is 0, 1 , 2, 3 or 4, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF5, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, (hydroxyimino)-Ci-C6-alkyl, Ci-C8-alkyl, Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, C2-
Cs-alkenyl, C2-C8-alkynyl, Ci-C8-alkylamino, di-(Ci-C8-alkyl)amino, Ci-C8-alkoxy, Ci-C8- halogenoalkoxy having 1 to 5 halogen atoms,, C2-C8-alkenyloxy, C2-C8-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C8-alkynyloxy, C3-C8-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C8-cycloalkyl, C3-C8-halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C8- alkylcarbonyl, Ci-C8-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C8-alkyl), -
CON(Ci-C8-alkyl)2, -CONH(OCi-C8-alkyl), -CON(OCi-C8-alkyl)(Ci-C8-alkyl), -NH(Ci-C8- alkylcarbonyl), Ci-C8-alkoxycarbonyl, Ci-C8-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-C8-alkylcarbonyloxy, Ci-C8-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, Ci-C8-alkylcarbonylamino, Ci-C8-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, - OCONH(Ci-C8-alkyl), -OCON(Ci-C8-alkyl)2, -OCONH(OCi-C8-alkyl), -OCO(OCi-C8-alkyl), -S-
Ci-Cg-alkyl, -S-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C8-alkyl, -S(0)-Ci- C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C8-alkyl, -S(0)2-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -CH2-S-Ci-C8-alkyl, -CH2-S(0)-Ci-C8-alkyl, -CH2-S(0)2-Ci-C8-alkyl, (Ci-C6-alkoxyimino)-Ci-C6-alkyl, (C2-C6-alkenyloxyimino)-Ci-C6-alkyl, (C3-C6- alkynyloxyimino)-Ci-C6-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino,
R1, R2, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, a (hydroxyimino)-Ci-C6-alkyl group, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci- C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3- alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C2-C6-alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6- alkynyloxy, C3-C6-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6- halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C6-alkyl, C3-C6- halogenocycloalkyl-Ci-C6-alkyl having 1 to 5 halogen atoms, Ci-C6-alkylcarbonyl, Ci-Ce- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C6-alkyl), -CON(Ci-C6-alkyl)2, - CONH(OCi-C6-alkyl), -CON(OCi-C6-alkyl)(Ci-C6-alkyl), Ci-Ce-alkoxycarbonyl, a Ci-C6- halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C6-alkyl, -OC(0)-Ci-C6- halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C6-alkyl, -NHC(0)-Ci-C6 -halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C6-alkyl), -OCON(Ci-C6-alkyl)2, -OCONH(OCi-C6- alkyl), OCO(OCi-C6-alkyl), -S-Ci-C6-alkyl, -S-Ci-Ce-halogenoalkyl having 1 to 5 halogen atoms, - S(0)-Ci-C6-alkyl, -S(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C6-alkyl, - S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(O)- benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl- carbonylamino and phenyl, or
R1 and R2 together with the carbon atom to which they are bonded form a 4-, 5- or 6-membered carbocycle and R3 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, - CONH(OH), -OCONH2, a (hydroxyimino)-Ci-C6-alkyl group, Ci-Ce-alkyl, C2-C6-alkenyl, C2-C6- alkynyl, Ci-C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, C1-C4- alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C2-C6-alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6-alkynyloxy, C3-C6-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6- cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C6-alkyl, C3-C6-halogenocycloalkyl-Ci-C6-alkyl having 1 to 5 halogen atoms, Ci-C6-alkylcarbonyl, C1-C6- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C6-alkyl), -CON(Ci-C6-alkyl)2, - CONH(OCi-C6-alkyl), -CON(OCi-C6-alkyl)(Ci-C6-alkyl), Ci-Ce-alkoxycarbonyl, a Ci-C6- halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C6-alkyl, -OC(0)-Ci-C6- halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C6-alkyl, -NHC(0)-Ci-C6- halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C6-alkyl), -OCON(Ci-C6-alkyl)2, - OCONH(OCi-C6-alkyl), OCO(OCi-C6-alkyl), -S-Ci-C6-alkyl, -S-Ci-Ce-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C6-alkyl, -S(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, - S(0)2-Ci-C6-alkyl, -S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, - S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2- phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl- carbonylamino and phenyl, or
R3 and R4 together with the carbon atom to which they are bonded form a 3-, 4-, 5- or 6- membered carbocycle and R1 and R2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, a (hydroxyimino)-Ci-C6-alkyl group, Ci-Ce-alkyl, C2-C6- alkenyl, C2-C6-alkynyl, Ci-C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4- alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-Ce- halogenoalkoxy having 1 to 5 halogen atoms, C2-C6-alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6-alkynyloxy, C3-C6 -halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6- cycloalkyl-Ci-C6-alkyl, C3-C6-halogenocycloalkyl-Ci-C6-alkyl having 1 to 5 halogen atoms, Ci- C6-alkylcarbonyl, Ci-C6-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C6- alkyl), -CON(Ci-C6-alkyl)2, -CONH(OCi-C6-alkyl), -CON(OCi-C6-alkyl)(Ci-C6-alkyl), Ci-C6- alkoxycarbonyl, a Ci-C6-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C6- alkyl, -OC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C6-alkyl, - NHC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C6-alkyl), -OCON(Ci- C6-alkyl)2, -OCONH(OCi-C6-alkyl), OCO(OCi-C6-alkyl), -S-Ci-C6-alkyl, -S-Ci-Ce-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C6-alkyl, -S(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C6-alkyl, -S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(O)- phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, or
R2 and R4 together with the carbon atoms to which they are bonded form a 5- or 6-membered non- aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-Cs-alkyl groups and one to four halogen atoms, and R1 and R3 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, a (hydroxyimino)-
Ci-C6-alkyl group, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-alkylamino, di-(Ci-C6- alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C2-C6- alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6-alkynyloxy, C3-C6- halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C6-alkyl, C3-C6-halogenocycloalkyl-Ci-C6-alkyl having 1 to 5 halogen atoms, Ci-C6-alkylcarbonyl, Ci-C6-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C6-alkyl), -CON(Ci-C6-alkyl)2, -CONH(OCi-C6-alkyl), -CON(OCi- C6-alkyl)(Ci-C6-alkyl), Ci-C6-alkoxycarbonyl, a Ci-C6-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C6-alkyl, -OC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -
NHC(0)-Ci-C6-alkyl, -NHC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci- Ce-alkyl), -OCON(Ci-C6-alkyl)2, -OCONH(OCi-C6-alkyl), OCO(OCi-C6-alkyl), -S-Ci-C6-alkyl, - S-Ci-Ce-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C6-alkyl, -S(0)-Ci-C6- halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C6-alkyl, -S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, or R1 and R3 together with the carbon atoms to which they are bonded form a 5- or 6-membered non- aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-Cs-alkyl groups and one to four halogen atoms, and R2 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, a (hydroxyimino)- Ci-C6-alkyl group, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-alkylamino, di-(Ci-C6- alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C2-C6- alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6-alkynyloxy, C3-C6- halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C6-alkyl, C3-C6-halogenocycloalkyl-Ci-C6-alkyl having 1 to 5 halogen atoms, Ci-C6-alkylcarbonyl, Ci-C6-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C6-alkyl), -CON(Ci-C6-alkyl)2, -CONH(OCi-C6-alkyl), -CON(OCi- C6-alkyl)(Ci-C6-alkyl), Ci-C6-alkoxycarbonyl, a Ci-C6-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C6-alkyl, -OC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, - NHC(0)-Ci-C6-alkyl, -NHC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci- Ce-alkyl), -OCON(Ci-C6-alkyl)2, -OCONH(OCi-C6-alkyl), OCO(OCi-C6-alkyl), -S-Ci-Ce-alkyl, - S-Ci-Ce-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C6-alkyl, -S(0)-Ci-C6- halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C6-alkyl, -S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, is selected from the group consisting of hydrogen, cyano, -CHO, -OH, Ci-C6-alkyl, C1-C6- halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-alkoxy, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C3-C7-cycloalkyl, C3-C7-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C7- cycloalkyl-Ci-Ce-alkyl, -CONH(Ci-C6-alkyl), C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-alkoxy-Ci-C6- alkyl, C3-C7-cycloalkyl-Ci-C6-alkyl, cyano-Ci-C6-alkyl, amino-Ci-C6-alkyl, Ci-C6-alkylamino-Ci- C6-alkyl, di-(Ci-C6-alkyl)amino-Ci-C6-alkyl, Ci-C6-alkylcarbonyl, Ci-C6-halogenoalkylcarbonyl having 1 to 5 halogen atoms, Ci-C6-alkoxycarbonyl, Ci-C6-benzyloxycarbonyl, Ci-C6-alkoxy-Ci- C6-alkylcarbonyl, -S-Ci-C6-alkyl, -S-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2- Ci-C6-alkyl, and -S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, represents a phenyl group of the formula (Al)
Figure imgf000007_0001
(Al) wherein o is 0, 1, 2, 3, 4 or 5, and each R is independently selected from the group consisting of halogen, nitro, -OH, N¾, SH, SF5, CHO, OCHO, NHCHO, COOH, cyano, Ci-Cg-alkyl, Ci-C8-halogenoalkyl having 1 to 9 halogen atoms, C2-C8-alkenyl, C2-Cs-alkynyl, C3-C6-cycloalkyl, -S-Ci-Cs-alkyl, -S-Ci-Cs-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-alkoxy, Ci-Cs-halogenoalkoxy having 1 to 5 halogen atoms, Ci-Cs- alkoxy-C2-C8-alkenyl, Ci-Cs-alkoxycarbonyl, Ci-Cs-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-Cs-alkylcarbonyloxy, Ci-Cs-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, -S(0)-Ci-C8-alkyl, -S(0)-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-Cs- alkyl, -S(0)2-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-alkylsulfonamide, -NH(Ci- Ce-alkyl), N(Ci-Cs-alkyl)2, phenyl (optionally substituted by Ci-C6-alkoxy) and phenoxy, or two R bonded to adjacent carbon atoms together represent -0(CH2)P0-, wherein p represents 1 or 2, or
A represents a heterocycle of the formula (Het-1)
Figure imgf000008_0001
in which
R6 and R7 may be the same or different and are selected from the group consisting of hydrogen, halogen, amino, nitro, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R8 is selected from the group consisting of hydrogen, halogen, nitro, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-2)
Figure imgf000008_0002
in which
R9 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and R10 and R11 may be the same or different and are selected from the group consisting of hydrogen, halogen, amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-3)
Figure imgf000009_0001
in which
R12 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R13 is selected from the group consisting of hydrogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-4)
Figure imgf000009_0002
in which
R14 and R may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)2- Ci-C4-alkyl, phenyl (optionally substituted by halogen or Ci-C4-alkyl) and pyridyl (optionally substituted by halogen or Ci-C4-alkyl), and
R16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-5)
Figure imgf000009_0003
in which R17 and R18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R19 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 atoms, or
A represents a heterocycle of the formula (Het-6)
Figure imgf000010_0001
in which
R20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, and
R21 and R23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
R22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxyl-Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, -S(0)2-N(Ci-C4-alkyl)2, Ci-C6-alkylcarbonyl, -S(0)2-phenyl (optionally substituted by halogen or Ci-C4-alkyl) and benzoyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-7)
Figure imgf000010_0002
in which
R24 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, -S(0)2-N(Ci-C4-alkyl)2, Ci-C6-alkylcarbonyl, -S(0)2-phenyl (optionally substituted by halogen or Ci-C4-alkyl) and benzoyl (optionally substituted by halogen or a Ci-C4-alkyl), and R25, R26 and R27 may be the same or different and are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenalkyl having 1 to 5 halogen atoms and C1-C4- alkylcarbonyl, or
A represents a heterocycle of the formula (Het-8)
Figure imgf000011_0001
in which
R28 is selected from the group consisting of hydrogen and Ci-C4-alkyl, and
R29 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-9)
Figure imgf000011_0002
in which
R30 is selected from the group consisting of hydrogen and Ci-C4-alkyl, and
R31 is selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-10)
Figure imgf000011_0003
in which
R32 is selected from the group consisting of hydrogen, halogen, amino, cyano, Ci-C4-alkylamino, di- (Ci-C4-alkyl)amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), and R33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy having 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci-C5-alkyl)-amino, or
A represents a heterocycle of the formula (Het-11)
Figure imgf000012_0001
in which
R34 is selected from the group consisting of hydrogen, halogen, amino, cyano, Ci-C4-alkylamino, di- (Ci-C4-alkyl)amino, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R35 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-12)
Figure imgf000012_0002
in which
R36 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl- Ci-C4-alkyl, and
R37 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C1-C4- alkoxy, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, and -S(0)2-Ci-C4-alkyl, and
R38 is selected from the group consisting of hydrogen, phenyl, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, C1-C4- alkylthio-Ci-C4-alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl-S(0)2-Ci-C4-alkyl, C1-C4- halogenoalkylthio-Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and C1-C4- halogenoalkoxy-Ci-C4-alkyl having 1 to 5 halogen atoms, or A represents a heterocycle of the formula (Het-13)
Figure imgf000013_0001
in which
R39 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 atoms, aminocarbonyl and aminocarbonyl-Ci-C4- alkyl, and
R40 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms,-S-Ci-C4-alkylS(0)-Ci-C4-alkyl, and -S(0)2-Ci- C4-alkyl, and
R41 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-CU-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci-C4- alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl-S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkylthio-Ci- C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-halogenoalkoxy-Ci-C4- alkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen, Ci-C -alkyl, Ci- C4-alkoxy-Ci-C4-alkyl or nitro), or
A represents a heterocycle of the formula (Het-14)
Figure imgf000013_0002
in which
R42 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl- Ci-C4-alkyl, and R43 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, -S- Ci-C4-alkyl, S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R is selected from the group consisting of hydrogen, phenyl, benzyl, Ci-C4-alkyl, Ci-C halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci-C4-alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl-S(0)2-Ci-C4-alkyl, Ci-C4- halogenoalkylthio-Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and C1-C4- halogenoalkoxy-Ci-C4-alkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-15)
Figure imgf000014_0001
in which
R45 and R46 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-16)
Figure imgf000014_0002
in which
R47 and R48 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl (optionally substituted by halogen or a Ci-C4-alkyl), and heterocyclyl like pyridyl, pyrimidinyl and thiadiazolyl (each optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-17)
Figure imgf000014_0003
in which
R49 and R50 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-18)
Figure imgf000015_0001
in which
R51 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-19)
Figure imgf000015_0002
in which
R52 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R53 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-20)
Figure imgf000015_0003
in which
R54 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or A represents a heterocycle of the formula (Het-21)
Figure imgf000016_0001
in which
R55 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, and
R56, R57 and R58, which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2- Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-22)
Figure imgf000016_0002
in which
R59 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-CU-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C1-C4 alkoxy, -S-Ci-Cs-alkyl, S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci- C4-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R60, R61 and R62, which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)2-Ci- C4-alkyl, N-mo holine optionally substituted by halogen or Ci-C4-alkyl, and thienyl (optionally substituted by halogen or a Ci-C -alkyl), or
A represents a heterocycle of the formula (Het-23)
Figure imgf000017_0001
in which
R63, R64, R65 and R66, which may be the same or different, are selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-24)
Figure imgf000017_0002
in which
R67 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R68 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-alkoxycarbonyl, benzyl (optionally substituted by 1 to 3 halogen atoms), benzyloxycarbonyl (optionally substituted by 1 to 3 halogen atoms), and heterocyclyl like pyridyl and pyrimidinyl (each optionally substituted by halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms), or
A represents a heterocycle of the formula (Het-25)
Figure imgf000017_0003
(Het-25) in which
R69 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-C1-C4- halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, and
R70 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and benzyl, or A represents a heterocycle of the formula (Het-26)
Figure imgf000018_0001
in which
X1 is selected from the group consisting of sulphur, -SO-, -SO2- and -CH2-, and
R71 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R72 and R73 may be the same or different and are selected from the group consisting of hydrogen and Ci- C4-alkyl, or
A represents a heterocycle of the formula (Het-27)
Figure imgf000018_0002
in which
R74 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-28)
Figure imgf000018_0003
in which R75 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-29)
Figure imgf000019_0001
in which
R76 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, for controlling nematodes and/or other helminths.
In formulae (Het-1) to (Het-29) # depicts the bond which connects A to the C(0)NR5-moiety in the compounds of formula (I). In general, in the present application # depicts the connecting bond of the structural element, unless otherwise indicated.
Any of the compounds according to the invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound. The invention thus relates equally to all the optical isomers and to their racemic or scalemic mixtures (the term "scalemic" denotes a mixture of enantiomers in different proportions), and to the mixtures of all the possible stereoisomers, in all proportions. The diastereoisomers and/or the optical isomers can be separated according to the methods which are known per se by the man ordinary skilled in the art.
The invention also relates to salts, N-oxides, metal complexes and metalloid complexes of compounds of formula (I) and the uses thereof. Compounds of the present invention can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound, especially all syn/anti (or cis/trans) isomers and to all possible syn/anti (or cis/trans) mixtures. The invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions. The geometric isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art. Compounds of formula (I) may be found in its tautomeric form resulting from the shift of the proton of a hydroxy, sulfanyl or amino group. Such tautomeric forms of such compounds are also part of the present invention. More generally speaking, all tautomeric forms of compounds of formula (I), as well as the tautomeric forms of the compounds which can optionally be used as intermediates in the preparation processes and which will be defined in the description of these processes, are also part of the present invention. As used herein, the terms "comprises", "comprising", "includes", "including", "has", "having", "contains", "containing", "characterized by" or any other variation thereof, are intended to cover a nonexclusive inclusion, subject to any limitation explicitly indicated. For example, a composition, mixture, process or method that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process or method.
The transitional phrase "consisting of excludes any element, step or ingredient not specified. If in the claim, such would close the claim to the inclusion of materials other than those recited except for impurities ordinarily associated therewith. When the phrase "consisting of appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.
The transitional phrase "consisting essentially of is used to define a composition or method that includes materials, steps, features, components or elements, in addition to those literally disclosed, provided that these additional materials, steps, features, components or elements do not materially affect the basic and novel characteristic(s) of the claimed invention. The term "consisting essentially of occupies a middle ground between "comprising" and "consisting of.
Where applicants have defined an invention or a portion thereof with an open-ended term such as "comprising", it should be readily understood that (unless otherwise stated) the description should be interpreted to also describe such an invention using the terms "consisting essentially of or "consisting of.
Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present). Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular. In the above recitations, the term "alkyl", used either alone or in compound words such as "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1- propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1 ,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight -chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl.
"Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH3OCH2, CH3OCH2CH2, CH3CH2OCH2, CH3CH2CH2CH2OCH2 and CH3CH2OCH2CH2.
"Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "cycloalkylalkyl" denotes cycloalkyl substitution on an alkyl moiety. Examples of "cycloalkylalkyl" include cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to straight-chain or branched alkyl groups. "Cycloalkenyl" includes groups such as cyclopentenyl and cyclohexenyl as well as groups with more than 10 one double bond such as 1,3- and 1 ,4-cyclohexadienyl. The term "cycloalkylcycloalkyl" denotes cycloalkyl substitution on another cycloalkyl ring, wherein each cycloalkyl ring independently has from 3 to 7 carbon atom ring members. Examples of cycloalkylcycloalkyl include cyclopropylcyclopropyl (such as Ι,Γ-bicyclopropyl-l-yl, l,l'-bicyclopropyl-2 -yl), cyclohexylcyclopentyl (such as 4-cyclopentylcyclohexyl) and cyclohexylcyclohexyl (such as 1,1'- bicyclohexyl-l-yl), and the different cis- and ira«s-cycloaikylcycloaikyl isomers, (such as (1R,25)-1,1 '- bicyclopropyl-2-yl and (lR,2R)-l,l '-bicyclopropyl-2-yl).
The term "halogen", either alone or in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" or "alkyl substituted with halogen" include F3C, C1CH2, CF3CH2 and CF3CC12. The terms "haloalkoxy", "haloalkenyl", "haloalkynyl", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkoxy" include CF30, CC13CH20, HCF2CH2CH20 and CF3CH20. Examples of "haloalkenyl" include (C1)2C=CHCH2 and CF3CH2CH=CHCH2. Examples of "haloalkynyl" include HC≡CCHC1, CF3C≡C, CC13C≡C and FCH2C≡CCH2.
The chemical abbreviation C(O) as used herein represents a carbonyl moiety. For example, C(0)CH3 represents an acetyl group. The chemical abbreviations C02 and C(0)0 as used herein represent an ester moiety. For example, C02Me and C(0)OMe represent a methyl ester. CHO represents an aldehyde moiety.
"OCN" means -0-C≡N, and "SCN" means -S-ON.
The total number of carbon atoms in a substituent group is indicated by the "Ci— Cj" prefix where i and j are numbers from 1 to 14. C2 alkoxyalkyl designates CH3OCH2; C3 alkoxyalkyl designates, for example, CH3CH(OCH3), CH3OCH2CH2 or CH3CH2OCH2; and C4 alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH3CH2CH2OCH2 and CH3CH2OCH2CH2.
When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents, e.g. n = 0, 1, 2, 3 or 4. When a group contains a substituent which can be hydrogen, for example R2 or R3, then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.
Unless otherwise indicated, a "ring" or "ring system" as a component of formula (I) is carbocyclic or heterocyclic. The term "ring system" denotes two or more fused rings. The term "heterocyclic ring" denotes a ring in which at least one atom forming the ring backbone is not carbon, e.g., nitrogen, oxygen or sulfur. Typically a heterocyclic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs. Unless otherwise indicated, a heterocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. The term "heterocyclic ring system" denotes a ring system in which at least one ring of the ring system is a heterocyclic ring. Unless otherwise indicated, heterocyclic rings and ring systems can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.
As used herein, the following definitions shall apply unless otherwise indicated. The term "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted" or with the term "(un)substituted". The expression "optionally substituted with 1 to 4 substituents" means that no substituent is present (i.e. unsubstituted) or that 1, 2, 3 or 4 substituents are present (limited by the number of available bonding positions). Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other.
In an individual embodiment (embodiment 1-2), the structural elements in the compound of formula (I) are defined as follows: n is as defined in embodiment 1-1, each X is as defined in embodiment 1-1,
Q represents an aromatic or partially saturated or saturated, 5- or 6-membered heterocyclic ring containing one to four heteroatoms chosen from N, S, and O bearing the substituent Ym with m is 0, 1 , 2, 3 or 4, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF5, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, (hydroxyimino)-Ci-C6-alkyl, Ci-C8-alkyl, Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, C2- Cs-alkenyl, C2-C8-alkynyl, Ci-C8-alkylamino, di-(Ci-C8-alkyl)amino, Ci-C8-alkoxy, Ci-C8- halogenoalkoxy having 1 to 5 halogen atoms,, C2-C8-alkenyloxy, C2-C8-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C8-alkynyloxy, C3-C8-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C8-cycloalkyl, C3-C8-halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C8- alkylcarbonyl, Ci-C8-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C8-alkyl), - CON(Ci-C8-alkyl)2, -CONH(OCi-C8-alkyl), -CON(OCi-C8-alkyl)(Ci-C8-alkyl), -NH(Ci-C8- alkylcarbonyl), Ci-C8-alkoxycarbonyl, Ci-C8-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-C8-alkylcarbonyloxy, Ci-C8-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, Ci-C8-alkylcarbonylamino, Ci-C8-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, - OCONH(Ci-C8-alkyl), -OCON(Ci-C8-alkyl)2, -OCONH(OCi-C8-alkyl), -OCO(OCi-C8-alkyl), -S- Ci-C8-alkyl, -S-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C8-alkyl, -S(0)-Ci- C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C8-alkyl, -S(0)2-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -CH2-S-Ci-C8-alkyl, -CH2-S(0)-Ci-C8-alkyl, -CH2-S(0)2-Ci-C8-alkyl, (Ci-C6-alkoxyimino)-Ci-C6-alkyl, (C2-C6-alkenyloxyimino)-Ci-C6-alkyl, (C3-C6- alkynyloxyimino)-Ci-C6-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino,
L, R2, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, a (hydroxyimino)-Ci-C6-alkyl group, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci- C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3- alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C2-C6-alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6- alkynyloxy, C3-C6-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6- halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C6-alkyl, C3-C6- halogenocycloalkyl-Ci-C6-alkyl having 1 to 5 halogen atoms, Ci-C6-alkylcarbonyl, Ci-Ce- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C6-alkyl), -CON(Ci-C6-alkyl)2, - CONH(OCi-C6-alkyl), -CON(OCi-C6-alkyl)(Ci-C6-alkyl), Ci-C6-alkoxycarbonyl, a Ci-C6- halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C6-alkyl, -OC(0)-Ci-C6- halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C6-alkyl, -NHC(0)-Ci-C6 -halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C6-alkyl), -OCON(Ci-C6-alkyl)2, -OCONH(OCi-C6- alkyl), OCO(OCi-C6-alkyl), -S-Ci-Ce-alkyl, -S-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, - S(0)-Ci-C6-alkyl, -S(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C6-alkyl, - S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(O)- benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl- carbonylamino and phenyl, with the proviso that R1 is fluorine and/or R2 is fluorine,
R5 is as defined in embodiment 1-1, and
A is as defined in embodiment 1-1 with the proviso that for Het-21, R55 ist not CF3.
In another individual aspect of embodiment 1-1, R1 is fluorine. In another individual aspect of embodiment 1-1, R2 is fluorine. In another individual aspect of embodiment 1-1, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 1-1, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 1-1, the combination RVR2 is fluorine/hydrogen.
In another individual aspect of embodiment 1-2, R1 is fluorine. In another individual aspect of embodiment 1-2, R2 is fluorine. In another individual aspect of embodiment 1-2, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 1-2, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 1-2, the combination RVR2 is fluorine/hydrogen.
In embodiments 1-1 and 1-2 as well as in each individual aspect of said embodiments, Q preferably represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-l to Q-64 (embodiments 1-la and l-2a):
Figure imgf000024_0001
Q-1 Q-2 Q-3 Q-4 Q-5 Q-6 Q-7
Figure imgf000024_0002
Q-8 Q-9 Q-1 0 Q-1 1 Q-12 Q-13 Q-14
Figure imgf000024_0003
Q-16 Q-17 Q-1 8 Q-19 -20 Q-21
Figure imgf000024_0004
Q-22 Q-23 Q-24 Q-25 Q-26 Q-27 Q-28
Figure imgf000024_0005
Q-30 Q-31 Q-32 Q-33 Q-34 Q-35
Figure imgf000025_0001
Q-36 Q-37 Q-38 Q-39 Q-40 Q-41 Q-42
Figure imgf000025_0002
Q-62 Q-63 Q-64 with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, C1-C4- alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C2-C4-alkenyl, C2-C4-alkynyl, C1-C4- alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4- alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6- halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, C1-C4- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, - CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4-alkyl), -NH(Ci-C4-alkylcarbonyl), C1-C4- alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, C1-C4- alkylcarbonyloxy, Ci-C4-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, C1-C4- alkylcarbonylamino, Ci-C4-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, - OCONH(Ci-C4-alkyl), -OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4-alkyl), -OCO(OCi-C4-alkyl), -S- Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4- halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -CH2-S-Ci-C4-alkyl, -CH2-S(0)-Ci-C4-alkyl, -CH2-S(0)2-Ci-C4-alkyl,
(C l -C4-alkoxyimino) -C i -C4-alkyl, (C2-C6-alkenyloxyimino) -C i -C4-alkyl, (C3 -Ce- alkynyloxyimino)-Ci-C4-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino.
Preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I) are explained below (embodiment 2-1). n is 1 or 2, limited by the number of available positions in the ring to which a substituent X can be connected, each X is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, C1-C4- alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C2-C4-alkenyl, C2-C4-alkynyl, C1-C4- alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4- alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6- halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, C1-C4- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, - CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, C1-C4- halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyloxy, C1-C4- halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, Ci-C4-alkylcarbonylamino, C1-C4- halogenoalkylcarbonylamino having 1 to 5 halogen atoms, -OCONH(Ci-C4-alkyl), -OCON(Ci-C4- alkyl)2, -OCONH(OCi-C4-alkyl), -OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, (C1-C4- alkoxyimino)-Ci-C4-alkyl, (C2-C6-alkenyloxyimino)-Ci-C4-alkyl, (C3-C6-alkynyloxyimino)-Ci-C4- alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino, Q represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-1 , Q-2, Q-3, Q-4, Q-5, Q-6, Q-7, Q-8, Q-9, Q-10, Q-11 , Q-12, Q-13, Q-14, Q-15, Q-16, Q-17, Q-18, Q-19, Q-20, Q-21 , Q-22, Q-23, Q-24, Q-25, Q-26, Q-27, Q-28, Q-29, Q-30, Q-31 , Q-32, Q- 33, Q-34, Q-35, Q-36, Q-37, Q-38, Q-39, Q-40, Q-41 , Q-42, Q-43, Q-44, Q-45, Q-46, Q-47, Q-48, Q-49, Q-50, Q-51 , Q-52, Q-53, Q-54, Q-55, Q-56, Q-57, Q-58, Q-59, Q-60, Q-61 , Q-62, Q-63 and Q-64 with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, C1-C4- alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C2-C4-alkenyl, C2-C4-alkynyl, C1-C4- alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4- alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6- halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, C1-C4- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, -
CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4-alkyl), -NH(Ci-C4-alkylcarbonyl), C1-C4- alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, C1-C4- alkylcarbonyloxy, Ci-C4-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, C1-C4- alkylcarbonylamino, Ci-C4-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, - OCONH(Ci-C4-alkyl), -OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4-alkyl), -OCO(OCi-C4-alkyl), -S-
Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4- halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -CH2-S-Ci-C4-alkyl, -CH2-S(0)-Ci-C4-alkyl, -CH2-S(0)2-Ci-C4-alkyl, (C 1 -C4-alkoxyimino) -C 1 -C4-alkyl, (C2-C6-alkenyloxyimino) -C 1 -C4-alkyl, (C3 -Ce- alkynyloxyimino)-Ci-C4-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino,
R1, R2, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH2, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4- alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4- halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C3-alkyl, C3-C6-halogenocycloalkyl-Ci-C3-alkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, - CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, -CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4- alkyl), Ci-C4-alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, - OC(0)-Ci-C4-alkyl, -OC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C4- alkyl, -NHC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C4-alkyl), - OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4-alkyl), OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, -S-C1-C4- halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4-halogenoalkyl having
1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, - S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl- carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, or
R1 and R2 together with the carbon atom to which they are bonded form a 4- or 5-membered carbocycle and R3 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH2, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4- alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4- halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C3-alkyl, C3-C6-halogenocycloalkyl-Ci-C3-alkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, -CONH(OCi-C4-alkyl), -CON(OCi- C4-alkyl)(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C4-alkyl, -OC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -
NHC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci- C4-alkyl), -OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4-alkyl), OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, - S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4- halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, or
R3 and R4 together with the carbon atom to which they are bonded form a 3-, 4- or 5-membered carbocycle and R1 and R2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH2, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4- alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4- halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C3-alkyl, C3-C6-halogenocycloalkyl-Ci-C3- alkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, -CONH(OCi-C4-alkyl), -CON(OCi- C4-alkyl)(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C4-alkyl, -OC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -
NHC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci- C4-alkyl), -OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4-alkyl), OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, - S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4- halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, or
R2 and R4 together with the carbon atoms to which they are bonded form a 5-membered non- aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-C4-alkyl groups and one to four halogen atoms, and R1 and R3 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino,
-CHO, -COOH, -CONH2, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkylamino, di-(Ci- C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4- halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6- cycloalkyl-Ci-C3-alkyl, C3-C6-halogenocycloalkyl-Ci-C3-alkyl having 1 to 5 halogen atoms, Ci- C4-alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4- alkyl), -CON(Ci-C4-alkyl)2, -CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4-alkyl), C1-C4- alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C4-alkyl, -OC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C4-alkyl, -NHC(0)-Ci-
C4-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C4-alkyl), -OCON(Ci-C4-alkyl)2, - OCONH(OCi-C4-alkyl), OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, - S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, - S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2- phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl- carbonylamino and phenyl, or
R1 and R3 together with the carbon atoms to which they are bonded form a 5-membered non- aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-C4-alkyl groups and one to four halogen atoms, and R2 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH2, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkylamino, di-(Ci- C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4- halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6- cycloalkyl-Ci-C3-alkyl, C3-C6-halogenocycloalkyl-Ci-C3-alkyl having 1 to 5 halogen atoms, Ci- C4-alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4- alkyl), -CON(Ci-C4-alkyl)2, -CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4-alkyl), Ci-C4- alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(0)-Ci-C4-alkyl, -OC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C4-alkyl, -NHC(0)-Ci- C4-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C4-alkyl), -OCON(Ci-C4-alkyl)2, - OCONH(OCi-C4-alkyl), OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, - S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, - S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2- phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl- carbonylamino and phenyl,
R5 is selected from the group consisting of hydrogen, -CHO, -OH, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C2-C4-alkenyl, C2-C4- alkynyl, Ci-C4-alkoxy-Ci-C4-alkyl, C3-C6-cycloalkyl-Ci-C3-alkyl, cyano-Ci-C4-alkyl, amino-Ci- C4-alkyl, Ci-C4-alkylamino-Ci-C4-alkyl, di-(Ci-C4-alkyl)amino-Ci-C4-alkyl, Ci-C4-alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, Ci-C4-alkoxycarbonyl, benzyloxycarbonyl, Ci-C4-alkoxy-Ci-C4-alkylcarbonyl, -S(0)2-Ci-C4-alkyl, and -S(0)2-Ci-C4- halogenoalkyl having 1 to 5 halogen atoms,
A represents a phenyl group of formula (Al)
Figure imgf000030_0001
wherein o is 0, 1 or 2, and each R is independently selected from the group consisting of halogen, nitro, -OH, CHO, OCHO, NHCHO,, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C2-C4-alkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, Ci-C4-alkoxy-C2-C4- alkenyl, Ci-C4-alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci- C4-alkylcarbonyloxy, Ci-C4-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, -S(0)-Ci-C4- alkyl, -S(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkylsulfonamide, -NH(Ci-C4-alkyl), N(Ci-C4- alkyl)2, phenyl (optionally substituted by Ci-C4-alkoxy) and phenoxy, or two R bonded to adjacent carbon atoms together represent -0(Ο¾)ρ0-, wherein p represents 1 or 2, or
A represents a heterocycle of the formula (Het-1)
Figure imgf000031_0001
in which
R6 and R7 may be the same or different and are selected from the group consisting of hydrogen, halogen, nitro, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R8 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-2)
Figure imgf000031_0002
in which
R9 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R10 and R11 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-4)
Figure imgf000031_0003
in which R14 and R15 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)2- Ci-C4-alkyl, phenyl (optionally substituted by halogen or Ci-C4-alkyl) and pyridyl (optionally substituted by halogen or Ci-C4-alkyl), and
R16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-5)
Figure imgf000032_0001
in which
R17 and R18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R19 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 atoms, or
A represents a heterocycle of the formula (Het-6)
Figure imgf000032_0002
in which
R20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, and
R21 and R23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
R22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-7)
Figure imgf000033_0001
(Het-7) in which
R24 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C6-alkylcarbonyl, or benzoyl (optionally substituted by halogen or a Ci-C4-alkyl), and
R25, R26 and R27 may be the same or different and are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenalkyl having 1 to 5 halogen atoms and C1-C4- alkylcarbonyl, or
A represents a heterocycle of the formula (Het-9)
Figure imgf000033_0002
in which
R30 is selected from the group consisting of hydrogen and Ci-C4-alkyl, and
R31 is selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-10)
Figure imgf000033_0003
in which is selected from the group consisting of hydrogen, halogen, amino, cyano, Ci-C4-alkylamino, di- (Ci-C4-alkyl)amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), and R33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy comprising 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci-C5-alkyl)-amino, or
A represents a heterocycle of the formula (Het-11)
Figure imgf000034_0001
in which
R34 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkylamino, di-(Ci-C4- alkyl)amino, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R35 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-12)
Figure imgf000034_0002
in which
R36 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-CU-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl and -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R37 ist selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C1-C4- alkoxy and -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, and
R38 is selected from the group consisting of phenyl, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-CU-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci-C4- alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl-S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkylthio-Ci- C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and Ci-C4-halogenoalkoxy-Ci- C4-alkyl having 1 to 5 halogen atoms, or A represents a heterocycle of the formula (Het-13)
Figure imgf000035_0001
in which
R39 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4- alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 atoms, aminocarbonyl and aminocarbonyl-Ci-C4- alkyl, and
R40 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms,-S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, and -S(0)2- Ci-C4-alkyl, and
R41 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-CU-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci-C4- alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl-S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkylthio-Ci- C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-halogenoalkoxy-Ci-C4- alkyl having 1 to 5 halogen atoms and phenyl optionally substituted by halogen, Ci-C -alkyl, Ci- C4-alkoxy-Ci-C4-alkyl or nitro, or
A represents a heterocycle of the formula (Het-14)
Figure imgf000035_0002
in which
R42 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, and -S(0)2-Ci- C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl-Ci-C4-alkyl, and R43 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-alkoxy, -S- Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, and -S(0)2-Ci-C4-alkyl, and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R44 is selected from the group consisting of phenyl, benzyl, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci-C4-alkylthio-Ci- C4-alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl-S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkylthio- Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and Ci-C4-halogenoalkoxy- Ci-C4-alkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-15)
Figure imgf000036_0001
in which
R45 and R46 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-16)
Figure imgf000036_0002
in which
R47 and R48 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl (optionally substituted by halogen or a Ci-C4-alkyl), or heterocyclyl like pyridyl, pyrimidinyl and thiadiazolyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-17)
Figure imgf000036_0003
in which
R49 and R50 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-19)
Figure imgf000037_0001
(Het-19) in which
R52 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R53 is selected from the group consisting of Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-20)
Figure imgf000037_0002
(Het-20) in which
R54 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-21)
Figure imgf000037_0003
in which R55 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, and
R56, R57 and R58, which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-22)
Figure imgf000038_0001
in which
R59 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C1-C4 alkoxy, -S-Ci-Cs-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci- C4-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R60, R61 and R62, which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)2-Ci- C4-alkyl, N-mo holine (optionally substituted by halogen or Ci-C4-alkyl) and thienyl (optionally substituted by halogen or a Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-23)
Figure imgf000038_0002
in which R63, R64, R65 and R66, which may be the same or different, are selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-24)
Figure imgf000039_0001
in which
R67 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R68 is selected from the group consisting of Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-alkoxycarbonyl, benzyl (optionally substituted by 1 to 3 halogen atoms), benzyloxycarbonyl (optionally substituted by 1 to 3 halogen atoms) and heterocyclyl like pyrimidinyl, (optionally substituted by halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms), or
A represents a heterocycle of the formula (Het-25)
Figure imgf000039_0002
(Het-25) in which is selected from the group consisting of hydrogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and benzyl, or
A represents a heterocycle of the formula (Het-26)
Figure imgf000040_0001
in which
X1 is selected from the group consisting of sulphur, -SO-, or -SO2-, and
R71 is selected from the group consisting of Ci-CU-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R72 and R73 may be the same or different and are selected from the group consisting of hydrogen and Ci- C4-alkyl, or
A represents a heterocycle of the formula (Het-29)
Figure imgf000040_0002
in which
R is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms.
In another individual embodiment (embodiment 2-2), the structural elements in the compound of formula (I) are preferably defined as follows: n is as defined in embodiment 2-1, each X is as defined in embodiment 2-1, represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-1, Q-2, Q-3, Q-4, Q-5, Q-6, Q-7, Q-8, Q-9, Q-10, Q-11, Q-12, Q-13, Q-14, Q-15, Q-16, Q-17, Q-18, Q-19, Q-20, Q-21, Q-22, Q-23, Q-24, Q-25, Q-26, Q-27, Q-28, Q-29, Q-30, Q-31, Q-32, Q- 33, Q-34, Q-35, Q-36, Q-37, Q-38, Q-39, Q-40, Q-41, Q-42, Q-43, Q-44, Q-45, Q-46, Q-47, Q-48, Q-49, Q-50, Q-51, Q-52, Q-53, Q-54, Q-55, Q-56, Q-57, Q-58, Q-59, Q-60, Q-61, Q-62, Q-63 and Q-64 with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, C1-C4- alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C2-C4-alkenyl, C2-C4-alkynyl, C1-C4- alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4- alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6- halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, C1-C4- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, - CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4-alkyl), -NH(Ci-C4-alkylcarbonyl), C1-C4- alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, C1-C4- alkylcarbonyloxy, Ci-C4-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, C1-C4- alkylcarbonylamino, Ci-C4-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, - OCONH(Ci-C4-alkyl), -OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4-alkyl), -OCO(OCi-C4-alkyl), -S- Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4- halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -CH2-S-Ci-C4-alkyl, -CH2-S(0)-Ci-C4-alkyl, -CH2-S(0)2-Ci-C4-alkyl, (C 1 -C4-alkoxyimino) -C 1 -C4-alkyl, (C2-C6-alkenyloxyimino) -C 1 -C4-alkyl, (C3 -Ce- alkynyloxyimino)-Ci-C4-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino,
R1, R2, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -CHO, -COOH, -CONH2, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4- alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4- halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C3-alkyl, C3-C6-halogenocycloalkyl-Ci-C3-alkyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, - CONH(Ci-C4-alkyl), -CON(Ci-C4-alkyl)2, -CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4- alkyl), Ci-C4-alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, - OC(0)-Ci-C4-alkyl, -OC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci-C4- alkyl, -NHC(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C4-alkyl), -
OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4-alkyl), OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, -S-C1-C4- halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, - S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,6-dichlorophenyl- carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, with the proviso that R1 is fluorine and/or R2 is fluorine, R5 is as defined in embodiment 2-1, and
A is as defined in embodiment 2-1 with the proviso that for Het-21, R55 ist not CF3.
In another individual aspect of embodiment 2-1, R1 is fluorine. In another individual aspect of embodiment 2-1, R2 is fluorine. In another individual aspect of embodiment 2-1, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 2-1, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 2-1, the combination RVR2 is fluorine/hydrogen.
In another individual aspect of embodiment 2-2, R1 is fluorine. In another individual aspect of embodiment 2-2, R2 is fluorine. In another individual aspect of embodiment 2-2, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 2-2, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 2-2, the combination RVR2 is fluorine/hydrogen.
More preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I) are explained below (embodiment 3-1). n is 1,
X is selected from the group consisting of hydrogen, halogen, nitro, cyano, Ci-CU-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms,
Q represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-4, Q-l l, Q-21, Q-22, Q-25, Q-36, Q-37, Q-38, Q-40, Q-41, Q-42, Q-53, Q-58, Q-62, Q-63 and Q-64, with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, -CF3, -CH2CF3, methyl, ethyl, fluorine, chlorine, bromine, iodine, cyano, -OCH3, -OCH2CH3, -OCH(CH3)2, -OCH2CF3, S(0)2- CH3, NHC(0)CH3,
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkoxy, C3-C6-cycloalkyl-Ci- C3-alkyl, Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-alkyl, and phenyl,
R3 and R4 are the same or different and are selected from the group consisting of hydrogen, -COOH, Ci- C4-alkyl, Ci-C4-halogenoalkyl Ci-C4-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, - CONH(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, and phenyl, or R1 and R2 together with the carbon atom to which they are bonded form a 4 or 5-membered carbocycle, and R3 and R4 are the same or different and are selected from the group consisting of hydrogen, - COOH, Ci-C -alkyl, Ci-C4-halogenoalkyl Ci-C4-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci- Cs-alkyl, -CONH(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, and phenyl, preferably R1 and R2 together with the carbon atom to which they are bonded form a cyclobutyl or a cyclopentyl, or
R3 and R4 together with the carbon atom to which they are bonded form a 3-, 4- or 5-membered carbocycle, and R1 and R2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkoxy, C3- Ce-cycloalkyl-Ci-Cs-alkyl, Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-alkyl,
2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, preferably R3 and R4 together with the carbon atom to which they are bonded form a cyclopropyl or a cyclobutyl, or
R2 and R4 together with the carbon atoms to which they are bonded form a 5-membered non-aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four
Ci-C3-alkyl groups and one to two halogen atoms, and R1 is selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkoxy, C3- Ce-cycloalkyl-Ci-Cs-alkyl, Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-alkyl, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, and R3 is selected from the group consisting of hydrogen, -COOH, Ci-C4-alkyl, Ci-C4-halogenoalkyl Ci-C4-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, -CONH(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, - OC(0)-Ci-C4-alkyl, and phenyl, preferably R2 and R4 together with the carbon atoms to which they are bonded form a cyclopentyl, or R1 and R3 together with the carbon atoms to which they are bonded form a 5-membered non-aromatic carbocycle optionally substituted by substituents selected from the group consisting of one to four Ci-C3-alkyl groups and one to two halogen atoms, and R2 is selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkoxy, C3- Ce-cycloalkyl-Ci-Cs-alkyl, Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-alkyl, 2,6-dichlorophenyl-carbonylamino, 2-chlorophenyl-carbonylamino and phenyl, and R4 is selected from the group consisting of hydrogen, -COOH, Ci-C4-alkyl, Ci-C4-halogenoalkyl-Ci-C4-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, -CONH(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, - OC(0)-Ci-C4-alkyl, and phenyl, preferably R1 and R3 together with the carbon atoms to which they are bonded form a cyclopentyl, R5 is selected from the group consisting of hydrogen, Ci-C4-alkyl, C3-C6-cycloalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkylcarbonyl, Ci-C4-alkoxycarbonyl,
A represents a phenyl group of formula (Al)
Figure imgf000044_0001
wherein o is 0, 1 or 2, and each R is independently selected from the group consisting of halogen, nitro, -OH, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1C1-C4- alkoxycarbonyl, -NH(Ci-C4-alkyl), phenyl (optionally substituted by Ci-C4-alkoxy) and phenoxy, or
A represents a heterocycle of the formula (Het-1)
Figure imgf000044_0002
in which
R6 and R7 may be the same or different and are selected from the group consisting of hydrogen, halogen, nitro, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R8 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-2)
Figure imgf000044_0003
in which
R9 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and R10 and R11 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-4)
Figure imgf000045_0001
in which
R14 and R may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)2- Ci-C4-alkyl, phenyl (optionally substituted by halogen or Ci-C4-alkyl) and pyridyl (optionally substituted by halogen or Ci-C4-alkyl), and
R16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-5)
Figure imgf000045_0002
in which
R17 and R18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R19 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 atoms, or
A represents a heterocycle of the formula (Het-6)
Figure imgf000045_0003
(Het-6) in which
R20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, and
R21 and R23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
R22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-10)
Figure imgf000046_0001
in which
R32 is selected from the group consisting of hydrogen, halogen, amino, cyano, Ci-C4-alkylamino, di- (Ci-C4-alkyl)amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy comprising 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci-C5-alkyl)-amino, or
A represents a heterocycle of the formula (Het-21)
Figure imgf000046_0002
in which
R55 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, and R56, R57 and R58, which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2- Ci-C4-alkyl, or A represents a heterocycle of the formula (Het-22)
Figure imgf000047_0001
in which
R59 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, C1-C4 alkoxy, -S-Ci-Cs-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4- halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci- C4-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R60, R61 and R62, which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S- Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)2-Ci- C4-alkyl, N-mo holine (optionally substituted by halogen or Ci-C4-alkyl) and thienyl (optionally substituted by halogen or a Ci-CU-alkyl), or
A represents a heterocycle of the formula (Het-29)
Figure imgf000047_0002
in which
R is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms.
In another individual embodiment (embodiment 3-2), the structural elements in the compound of formula (I) are more preferably defined as follows: n is 1 or 2, each X is as defined in embodiment 3-1,
Q represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-4, Q-l l, Q-21, Q-22, Q-25, Q-36, Q-37, Q-38, Q-40, Q-41, Q-42, Q-45, Q-53, Q-58, Q-62, Q-63 and Q-64, with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, -CF3, -CH2CF3, methyl, ethyl, fluorine, chlorine, bromine, iodine, cyano, -OCH3, -OCH2CH3, -OCH(CH3)2, -OCH2CF3, S(0)2- CH3, NHC(0)CH3, NHCH3 and N(CH3)2,
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkoxy, C3-C6-cycloalkyl-Ci- C3-alkyl, Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-alkyl, and phenyl, with the proviso that R1 is fluorine and/or R2 is fluorine, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, -COOH, Ci- C4-alkyl, Ci-C4-halogenoalkyl Ci-C4-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, - CONH(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, and phenyl,
R5 is as defined in embodiment 3-1, and
A is as defined in embodiment 3-1 with the proviso that for Het-21, R55 ist not CF3. In another individual aspect of embodiment 3-1, R1 is fluorine. In another individual aspect of embodiment 3-1, R2 is fluorine. In another individual aspect of embodiment 3-1, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 3-1, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 3-1, the combination RVR2 is fluorine/hydrogen.
In another individual aspect of embodiment 3-2, R1 is fluorine. In another individual aspect of embodiment 3-2, R2 is fluorine. In another individual aspect of embodiment 3-2, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 3-2, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 3-2, the combination RVR2 is fluorine/hydrogen.
Especially preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I) are explained below (embodiment 4-1). n is 1, is selected from the group consisting of hydrogen, halogen, nitro, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, is selected from:
Figure imgf000049_0001
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, methyl, ethyl, methoxy, ethoxy or fluorine, particularly wherein both R1 and R2 are not hydrogen, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, methyl or ethyl,
R5 is hydrogen,
A is selected from:
Figure imgf000050_0001
Figure imgf000051_0001
In another individual embodiment (embodiment 4-2), the structural elements in the compound of formula (I) are especially preferably defined as follows: n is 1 or 2, each X is as defined in embodiment 4-1,
Q is selected from:
Figure imgf000051_0002
Figure imgf000052_0001
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, methyl, ethyl, methoxy, ethoxy or fluorine, with the proviso that R1 is fluorine and/or R2 is fluorine, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, methyl or ethyl,
R5 is as defined in embodiment 4-1, and A is selected from:
Figure imgf000052_0002
or
A is selected from:
Figure imgf000053_0001
In another individual aspect of embodiment 4-1 , R1 is fluorine. In another individual aspect of embodiment 4-1 , R2 is fluorine. In another individual aspect of embodiment 4-1 , R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 4-1 , the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 4-1 , the combination RVR2 is fluorine/hydrogen.
In another individual aspect of embodiment 4-2, R1 is fluorine. In another individual aspect of embodiment 4-2, R2 is fluorine. In another individual aspect of embodiment 4-2, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 4-2, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 4-2, the combination RVR2 is fluorine/hydrogen.
In a first very specific aspect (embodiment 5-1) of the especially preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I), n is 1 ,
X is selected from the group consisting of hydrogen or chlorine,
Figure imgf000054_0001
Figure imgf000054_0002
R1, R2, R3, R4 and R5 are hydrogen, or
R1 and R2 are fluorine and R3, R4 and R5 are hydrog
A is
Figure imgf000054_0003
or
Figure imgf000054_0004
In a second very specific aspect (embodiment 5-2) of the especially preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I), is 1 or 2,
X is selected from the group consisting of hydrogen, chlorine, cyano, fluorine, methyl, trifluoromethyl and methoxy, preferably if n is 1 then X is selected from the group consisting of hydrogen, chlorine, fluorine, methyl, trifluormethyl and methoxy; if n is 2 then X is fluorine,
Q is selected from:
Figure imgf000055_0001
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, methyl or fluorine, with the proviso that R1 is fluorine and/or R2 is fluorine, R3, R4 and R5 are hydrogen, A is
Figure imgf000056_0001
In a third very specific aspect (embodiment 5-3) of the especially preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I), n is 1,
X is selected from the group consisting of hydrogen or chlorine, Q is selected from:
Figure imgf000056_0002
Figure imgf000057_0001
R1 and R2 are both fluorine, or
R1 and R2 are one fluorine and one hydrogen,
R1 and R2 are one fluorine and one methyl,
R3, R4 and R5 are hydrogen,
A is
Figure imgf000057_0002
In a fourth very specific aspect (embodiment 5-4) of the especially preferred substituents or ranges of the structural elements mentioned in the compounds of formula (I), n is 1 or 2, each X is selected from the group consisting of hydrogen, chlorine, cyano, fluorine, methyl, trifluoromethyl and methoxy, preferably if n is 1 then X is selected from the group consisting of hydrogen, chlorine, fluorine, methyl, trifluormethyl and methoxy; if n is 2 then X is fluorine,
Q is selected from:
Figure imgf000058_0001
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, methyl or fluorine, with the proviso that R1 is fluorine and/or R2 is fluorine, R3, R4 and R5 are hydrogen, A is selected from
Figure imgf000059_0001
or A is
Figure imgf000059_0002
or A is
Figure imgf000059_0003
In another individual aspect of embodiment 5-1, R1 is fluorine and R2 is fluorine.
In another individual aspect of embodiment 5-2, R1 is fluorine. In another individual aspect of embodiment 5-2, R2 is fluorine. In another individual aspect of embodiment 5-2, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 5-2, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 5-2, the combination RVR2 is fluorine/hydrogen.
In another individual aspect of embodiment 5-3, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 5-3, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 5-3, the combination RVR2 is fluorine/hydrogen.
In another individual aspect of embodiment 5-4, R1 is fluorine. In another individual aspect of embodiment 5-4, R2 is fluorine. In another individual aspect of embodiment 5-4, R1 is fluorine and R2 is fluorine. In another individual aspect of embodiment 5-4, the combination RVR2 is fluorine/methyl. In another individual aspect of embodiment 5-4, the combination RVR2 is fluorine/hydrogen.
The definitions of radicals, and explanations, that are given above in general or in ranges of preference may be combined arbitrarily with one another, thus including combinations between the respective ranges and ranges of preference. Combinations of preferred features thus provide sub-classes of compounds according to the invention. The definitions and explanations apply to the end products and also to the precursors and intermediates accordingly. Preferred in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being preferred (preferably), wherein each embodiment described above as being preferred constitutes an individual combination.
More preferred in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being more preferred (more preferably), wherein each embodiment described above as being more preferred constitutes an individual combination.
Especially preferred in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being especially preferred (especially preferably), wherein each embodiment described above as being especially preferred constitutes an individual combination.
A very specific aspect in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being a first very specific aspect (embodiment 5- 1) of the especially preferred substituents or ranges of the structural elements.
Another very specific aspect in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being a second very specific aspect (embodiment 5-2) of the especially preferred substituents or ranges of the structural elements.
Another very specific aspect in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being a third very specific aspect (embodiment 5-3) of the especially preferred substituents or ranges of the structural elements. Another very specific aspect in accordance with the invention are the compounds of the formula (I) in which there is a combination of the definitions given above as being a fourth very specific aspect (embodiment 5-4) of the especially preferred substituents or ranges of the structural elements.
Saturated or unsaturated hydrocarbon radicals such as alkyl, alkanediyl or alkenyl may in each case, both alone and in conjunction with heteroatoms, as in alkoxy, for example, be - where possible - either straight-chain or branched.
Any substituted radicals may, unless indicated otherwise, be substituted one or more times, and the substituents in the case of multiple substitutions may be alike or different.
In the definitions of radicals that are stated as being preferred, halogen (halo) is fluoro, chloro, bromo and iodo, very preferably fluoro, chloro and bromo, and especially preferably fluoro and chloro.
Further specific embodiments of the invention are described hereafter. In further preferred embodiments, the invention relates to the use of compounds of formula (I), in which R3 and R4 and R5 are hydrogen, i.e. compounds of the formula (1- 1).
Therefore, a specific embodiment (embodiment 6-1) of the invention is the use of a compound of the formula (1-1)
Figure imgf000061_0001
wherein R1, R2, Q, X, n and A are as defined above in embodiment 1-1, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 6-2) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 1-2, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 6- la) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 1-la, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 6-2a) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment l-2a, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 7-1) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 2-1, for controlling nematodes and/or other helminths. Another specific embodiment (embodiment 7-2) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 2-2, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 8-1) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 3-1, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 8-2) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 3-2, for controlling nematodes and/or other helminths. Another specific embodiment (embodiment 9-1) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 4-1, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 9-2) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 4-2, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 10-1) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 5-1, for controlling nematodes and/or other helminths. Another specific embodiment (embodiment 10-2) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 5-2, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 10-3) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 5-3, for controlling nematodes and/or other helminths.
Another specific embodiment (embodiment 10-4) of the invention is the use of a compound of the formula (1-1) wherein R1, R2, Q, X, n and A are as defined above in embodiment 5-4, for controlling nematodes and/or other helminths.
In embodiment 1-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 1-1.1).
In embodiment 1-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 1-2.1).
In embodiment 1-1 a as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 1-la. l). In embodiment l-2a as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment l-2a. l).
In embodiment 2-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 2-1.1).
In embodiment 2-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 2-2.1). In embodiment 3-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 3-1.1).
In embodiment 3-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 3-2.1). In embodiment 4-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 4-1.1).
In embodiment 4-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 4-2.1).
In embodiment 5-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 5-1.1).
In embodiment 5-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 5-2.1).
In embodiment 5-3 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 5-3.1). In embodiment 5-4 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 5-4.1).
In embodiment 6-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 6-1.1).
In embodiment 6-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 6-2.1).
In embodiment 6-la as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 6-la. l).
In embodiment 6-2a as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 6-2a. l). In embodiment 7-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 7-1.1).
In embodiment 7-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 7-2.1).
In embodiment 8-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 8-1.1). In embodiment 8-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 8-2.1).
In embodiment 9-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 9-1.1). In embodiment 9-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 9-2.1).
In embodiment 10-1 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 10-1.1).
In embodiment 10-2 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 10-2.1).
In embodiment 10-3 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 10-3.1).
In embodiment 10-4 as well as in each individual aspect of said embodiment, Q preferably is in para- position (embodiment 10-4.1). The present invention is also directed to novel compounds of formula (la)
Figure imgf000064_0001
wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 1-1 and
Rla is fluorine (embodiment la- 1-1), preferably as defined above in embodiment 1-1.1 and Rla is fluorine (embodiment la- 1 - 1.1 ) .
Another embodiment (embodiment Ia-1-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 1-2 and Rla is fluorine, preferably as defined above in embodiment 1-2.1 and Rla is fluorine (embodiment Ia-1-2.1).
Another embodiment (embodiment Ia-l-la) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 1-1 a and Rla is fluorine, preferably as defined above in embodiment 1-la.l and Rla is fluorine (embodiment Ia-l-la. l). Another embodiment (embodiment Ia-l-2a) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment l-2a and Rla is fluorine, preferably as defined above in embodiment l-2a.l and Rla is fluorine (embodiment Ia-l-2a. l).
Another embodiment (embodiment Ia-2-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 2-1 and Rla is fluorine, preferably as defined above in embodiment 2-1.1 and Rla is fluorine (embodiment Ia-2-1.1).
Another embodiment (embodiment Ia-2-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 2-2 and Rla is fluorine, preferably as defined above in embodiment 2-2.1 and Rla is fluorine (embodiment Ia-2-2.1). Another embodiment (embodiment Ia-3-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 3-1 and Rla is fluorine, preferably as defined above in embodiment 3-1.1 and Rla is fluorine (embodiment Ia-3-1.1).
Another embodiment (embodiment Ia-3-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 3-2 and Rla is fluorine, preferably as defined above in embodiment 3-2.1 and Rla is fluorine (embodiment Ia-3-2.1).
Another embodiment (embodiment Ia-4-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 4-1 and Rla is fluorine, preferably as defined above in embodiment 4-1.1 and Rla is fluorine (embodiment Ia-4-1.1).
Another embodiment (embodiment Ia-4-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 4-2 and Rla is fluorine, preferably as defined above in embodiment 4-2.1 and Rla is fluorine (embodiment Ia-4-2.1).
Another embodiment (embodiment Ia-5-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 5-1 and Rla is fluorine, preferably as defined above in embodiment 5-1.1 and Rla is fluorine (embodiment Ia-5-1.1). Another embodiment (embodiment Ia-5-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 5-2 and Rla is fluorine, preferably as defined above in embodiment 5-2.1 and Rla is fluorine (embodiment Ia-5-2.1).
Another embodiment (embodiment Ia-5-3) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 5-3 and Rla is fluorine, preferably as defined above in embodiment 5-3.1 and Rla is fluorine (embodiment Ia-5-3.1). Another embodiment (embodiment Ia-5-4) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 5-4 and Rla is fluorine, preferably as defined above in embodiment 5-4.1 and Rla is fluorine (embodiment Ia-5-4.1).
Another embodiment (embodiment Ia-6-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 6-1 and Rla is fluorine, preferably as defined above in embodiment 6-1.1 and Rla is fluorine (embodiment Ia-6-1.1).
Another embodiment (embodiment Ia-6-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 6-2 and Rla is fluorine, preferably as defined above in embodiment 6-2.1 and Rla is fluorine (embodiment Ia-6-2.1). Another embodiment (embodiment Ia-6-1 a) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 6- la and Rla is fluorine, preferably as defined above in embodiment 6-la.l and Rla is fluorine (embodiment Ia-6-la. l).
Another embodiment (embodiment Ia-6-2a) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 6-2a and Rla is fluorine, preferably as defined above in embodiment 6-2a.l and Rla is fluorine (embodiment Ia-6-2a. l).
Another embodiment (embodiment Ia-7-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 7-1 and Rla is fluorine, preferably as defined above in embodiment 7-1.1 and Rla is fluorine (embodiment Ia-7-1.1).
Another embodiment (embodiment Ia-7-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 7-2 and Rla is fluorine, preferably as defined above in embodiment 7-2.1 and Rla is fluorine (embodiment Ia-7-2.1).
Another embodiment (embodiment Ia-8-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 8-1 and Rla is fluorine, preferably as defined above in embodiment 8-1.1 and Rla is fluorine (embodiment Ia-8-1.1). Another embodiment (embodiment Ia-8-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 8-2 and Rla is fluorine, preferably as defined above in embodiment 8-2.1 and Rla is fluorine (embodiment Ia-8-2.1).
Another embodiment (embodiment Ia-9-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 9-1 and Rla is fluorine, preferably as defined above in embodiment 9-1.1 and Rla is fluorine (embodiment Ia-9-1.1). Another embodiment (embodiment Ia-9-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 9-2 and Rla is fluorine, preferably as defined above in embodiment 9-2.1 and Rla is fluorine (embodiment Ia-9-2.1).
Another embodiment (embodiment la- 10-1) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 10-1 and Rla is fluorine, preferably as defined above in embodiment 10-1.1 and Rla is fluorine (embodiment Ia-10-1.1).
Another embodiment (embodiment la- 10-2) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 10-2 and Rla is fluorine, preferably as defined above in embodiment 10-2.1 and Rla is fluorine (embodiment Ia-10-2.1). Another embodiment (embodiment la- 10-3) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 10-3 and Rla is fluorine, preferably as defined above in embodiment 10-3.1 and Rla is fluorine (embodiment Ia-10-3.1).
Another embodiment (embodiment la- 10-4) is a compound of formula (la) wherein n, X, Q, R2, R3, R4, R5 and A are as defined above in embodiment 10-4 and Rla is fluorine, preferably as defined above in embodiment 10-4.1 and Rla is fluorine (embodiment Ia-10-4.1).
In especially preferred compounds of formula (la) the structural elements n, X, Q, Rla, R2 and A are as described in the embodiments above (Ia-1-1 to Ia-10-4.1) and R3 and R4 and R5 are hydrogen.
The present invention is also directed to novel compounds of formula (lb)
Figure imgf000067_0001
wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 1-1 and
R2a is fluorine (embodiment lb- 1-1), preferably as defined above in embodiment 1-1.1 and R2a is fluorine (embodiment Ib-1-1.1). Another embodiment (embodiment Ib-1-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 1-2 and R2a is fluorine, preferably as defined above in embodiment 1-2.1 and R2a is fluorine (embodiment lb- 1-2.1).
Another embodiment (embodiment Ib-l-la) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 1-1 a and R2a is fluorine, preferably as defined above in embodiment 1-la.l and R2a is fluorine (embodiment Ib-l-la.1).
Another embodiment (embodiment Ib-l-2a) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment l-2a and R2a is fluorine, preferably as defined above in embodiment l-2a.l and R2a is fluorine (embodiment Ib-l-2a.l). Another embodiment (embodiment Ib-2-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 2-1 and R2a is fluorine, preferably as defined above in embodiment 2-1.1 and R2a is fluorine (embodiment Ib-2-1.1).
Another embodiment (embodiment Ib-2-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 2-2 and R2a is fluorine, preferably as defined above in embodiment 2-2.1 and R2a is fluorine (embodiment Ib-2-2.1).
Another embodiment (embodiment Ib-3-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 3-1 and R2a is fluorine, preferably as defined above in embodiment 3-1.1 and R2a is fluorine (embodiment Ib-3-1.1).
Another embodiment (embodiment Ib-3-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 3-2 and R2a is fluorine, preferably as defined above in embodiment 3-2.1 and R2a is fluorine (embodiment Ib-3-2.1).
Another embodiment (embodiment Ib-4-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 4-1 and R2a is fluorine, preferably as defined above in embodiment 4-1.1 and R2a is fluorine (embodiment Ib-4-1.1). Another embodiment (embodiment Ib-4-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 4-2 and R2a is fluorine, preferably as defined above in embodiment 4-2.1 and R2a is fluorine (embodiment Ib-4-2.1).
Another embodiment (embodiment Ib-5-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 5-1 and R2a is fluorine, preferably as defined above in embodiment 5-1.1 and R2a is fluorine (embodiment Ib-5-1.1). Another embodiment (embodiment Ib-5-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 5-2 and R2a is fluorine, preferably as defined above in embodiment 5-2.1 and R2a is fluorine (embodiment Ib-5-2.1).
Another embodiment (embodiment Ib-5-3) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 5-3 and R2a is fluorine, preferably as defined above in embodiment 5-3.1 and R2a is fluorine (embodiment Ib-5-3.1).
Another embodiment (embodiment Ib-5-4) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 5-4 and R2a is fluorine, preferably as defined above in embodiment 5-4.1 and R2a is fluorine (embodiment Ib-5-4.1). Another embodiment (embodiment Ib-6-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 6-1 and R2a is fluorine, preferably as defined above in embodiment 6-1.1 and R2a is fluorine (embodiment Ib-6-1.1).
Another embodiment (embodiment Ib-6-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 6-2 and R2a is fluorine, preferably as defined above in embodiment 6-2.1 and R2a is fluorine (embodiment Ib-6-2.1).
Another embodiment (embodiment Ib-6-la) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 6- la and R2a is fluorine, preferably as defined above in embodiment 6-la.l and R2a is fluorine (embodiment Ib-6-la.l).
Another embodiment (embodiment Ib-6-2a) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 6-2a and R2a is fluorine, preferably as defined above in embodiment 6-2a.l and R2a is fluorine (embodiment Ib-6-2a.l).
Another embodiment (embodiment Ib-7-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 7-1 and R2a is fluorine, preferably as defined above in embodiment 7-1.1 and R2a is fluorine (embodiment Ib-7-1.1). Another embodiment (embodiment Ib-7-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 7-2 and R2a is fluorine, preferably as defined above in embodiment 7-2.1 and R2a is fluorine (embodiment Ib-7-2.1).
Another embodiment (embodiment Ib-8-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 8-1 and R2a is fluorine, preferably as defined above in embodiment 8-1.1 and R2a is fluorine (embodiment Ib-8-1.1). Another embodiment (embodiment Ib-8-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 8-2 and R2a is fluorine, preferably as defined above in embodiment 8-2.1 and R2a is fluorine (embodiment Ib-8-2.1).
Another embodiment (embodiment Ib-9-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 9-1 and R2a is fluorine, preferably as defined above in embodiment 9-1.1 and R2a is fluorine (embodiment Ib-9-1.1).
Another embodiment (embodiment Ib-9-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 9-2 and R2a is fluorine, preferably as defined above in embodiment 9-2.1 and R2a is fluorine (embodiment Ib-9-2.1). Another embodiment (embodiment Ib-10-1) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 10-1 and R2a is fluorine, preferably as defined above in embodiment 10-1.1 and R2a is fluorine (embodiment Ib-10-1.1).
Another embodiment (embodiment Ib-10-2) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 10-2 and R2a is fluorine, preferably as defined above in embodiment 10-2.1 and R2a is fluorine (embodiment Ib-10-2.1).
Another embodiment (embodiment Ib-10-3) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 10-3 and R2a is fluorine, preferably as defined above in embodiment 10-3.1 and R2a is fluorine (embodiment Ib-10-3.1).
Another embodiment (embodiment Ib-10-4) is a compound of formula (lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined above in embodiment 10-4 and R2a is fluorine, preferably as defined above in embodiment 10-4.1 and R2a is fluorine (embodiment Ib-10-4.1).
In especially preferred compounds of formula (lb) the structural elements n, X, Q, R2a, R1 and A are as described in the embodiments above (Ib-1-1 to Ib-10-4.1) and R3 and R4 and R5 are hydrogen.
The present invention is also directed to novel compounds of formula (Ic)
Figure imgf000070_0001
wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 1-1 and both Rla and R2a are fluorine (embodiment Ic-1-1), preferably as defined above in embodiment 1-1.1 and both Rla and R2a are fluorine (embodiment Ic-1-1.1).
Another embodiment (embodiment Ic-1-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 1-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 1-2.1 and both Rla and R2a are fluorine (embodiment Ic-1-2.1).
Another embodiment (embodiment Ic-l-la) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 1-1 a and both Rla and R2a are fluorine, preferably as defined above in embodiment 1-la.l and both Rla and R2a are fluorine (embodiment Ic-l-la. l). Another embodiment (embodiment Ic-l-2a) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment l-2a and both Rla and R2a are fluorine, preferably as defined above in embodiment l-2a.l and both Rla and R2a are fluorine (embodiment Ic-l-2a. l).
Another embodiment (embodiment Ic-2-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 2-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 2-1.1 and both Rla and R2a are fluorine (embodiment Ic-2-1.1).
Another embodiment (embodiment Ic-2-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 2-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 2-2.1 and both Rla and R2a are fluorine (embodiment Ic-2-2.1).
Another embodiment (embodiment Ic-3-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 3-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 3-1.1 and both Rla and R2a are fluorine (embodiment Ic-3-1.1).
Another embodiment (embodiment Ic-3-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 3-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 3-2.1 and both Rla and R2a are fluorine (embodiment Ic-3-2.1). Another embodiment (embodiment Ic-4-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 4-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 4-1.1 and both Rla and R2a are fluorine (embodiment Ic-4-1.1).
Another embodiment (embodiment Ic-4-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 4-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 4-2.1 and both Rla and R2a are fluorine (embodiment Ic-4-2.1). Another embodiment (embodiment Ic-5-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 5-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 5-1.1 and both Rla and R2a are fluorine (embodiment Ic-5-1.1).
Another embodiment (embodiment Ic-5-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 5-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 5-2.1 and both Rla and R2a are fluorine (embodiment Ic-5-2.1).
Another embodiment (embodiment Ic-5-3) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 5-3 and both Rla and R2a are fluorine, preferably as defined above in embodiment 5-3.1 and both Rla and R2a are fluorine (embodiment Ic-5-3.1). Another embodiment (embodiment Ic-5-4) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 5-4 and both Rla and R2a are fluorine, preferably as defined above in embodiment 5-4.1 and both Rla and R2a are fluorine (embodiment Ic-5-4.1).
Another embodiment (embodiment Ic-6-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 6-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 6-1.1 and both Rla and R2a are fluorine (embodiment Ic-6-1.1).
Another embodiment (embodiment Ic-6-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 6-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 6-2.1 and both Rla and R2a are fluorine (embodiment Ic-6-2.1).
Another embodiment (embodiment Ic-6-la) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 6- la and both Rla and R2a are fluorine, preferably as defined above in embodiment 6-la.l and both Rla and R2a are fluorine (embodiment Ic-6-la. l).
Another embodiment (embodiment Ic-6-2a) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 6-2a and both Rla and R2a are fluorine, preferably as defined above in embodiment 6-2a.l and both Rla and R2a are fluorine (embodiment Ic-6-2a. l). Another embodiment (embodiment Ic-7-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 7-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 7-1.1 and both Rla and R2a are fluorine (embodiment Ic-7-1.1).
Another embodiment (embodiment Ic-7-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 7-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 7-2.1 and both Rla and R2a are fluorine (embodiment Ic-7-2.1). Another embodiment (embodiment Ic-8-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 8-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 8-1.1 and both Rla and R2a are fluorine (embodiment Ic-8-1.1).
Another embodiment (embodiment Ic-8-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 8-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 8-2.1 and both Rla and R2a are fluorine (embodiment Ic-8-2.1).
Another embodiment (embodiment Ic-9-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 9-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 9-1.1 and both Rla and R2a are fluorine (embodiment Ic-9-1.1). Another embodiment (embodiment Ic-9-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 9-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 9-2.1 and both Rla and R2a are fluorine (embodiment Ic-9-2.1).
Another embodiment (embodiment Ic-10-1) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 10-1 and both Rla and R2a are fluorine, preferably as defined above in embodiment 10-1.1 and both Rla and R2a are fluorine (embodiment Ic-10-1.1).
Another embodiment (embodiment Ic-10-2) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 10-2 and both Rla and R2a are fluorine, preferably as defined above in embodiment 10-2.1 and both Rla and R2a are fluorine (embodiment Ic-10-2.1).
Another embodiment (embodiment Ic-10-3) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 10-3 and both Rla and R2a are fluorine, preferably as defined above in embodiment 10-3.1 and both Rla and R2a are fluorine (embodiment Ic-10-3.1).
Another embodiment (embodiment Ic-10-4) is a compound of formula (Ic) wherein n, X, Q, R3, R4, R5 and A are as defined above in embodiment 10-4 and both Rla and R2a are fluorine, preferably as defined above in embodiment 10-4.1 and both Rla and R2a are fluorine (embodiment Ic-10-4.1). In especially preferred compounds of formula (Ic) the structural elements n, X, Q, Rla, R2a and A are as described in the embodiments above (Ic-1-1 to Ic-10-4.1) and R3 and R4 and R5 are hydrogen.
Procedures and methods
The synthesis of the compounds of the formula (I) can be performed according to or in analogy to scheme 1, 2 or 3. The required starting materials are known or accessible via generally known procedures which are described in more detail in WO 2001/011965 Al (PI), WO 2005/058828 Al (P2), WO2005/014545 A2 (P3), WO 2005/103004 Al (P4), WO 2006/122952 Al (P5), EP 2 289 880 Al (P6), WO 2006/008191 Al (P7), WO 2006/008192 Al (P8), WO 2004/074280 Al (P9), WO 2005/058833 A2 (P10), WO 2005/085238 Al (Pl l), WO 2005/103006 Al (P12), WO 2006/122955 Al (P13), WO 2006/008194 Al (P14), WO 2006/008193 Al (P15), WO 2006/067103 A2 (P16) and in case of R1 = R2 = fluorine WO 2013/064460 Al (PI 7) or R1 = fluorine and R2 = alkyl or hydrogen WO 2007141009 Al (P18). Benzylnitriles like (II) are commercial available or are synthesized as described in WO2013043232, followed by reduction to the Boc -protected amines (III) with sodium borohydride in the presence of nickel chloride and Boc-anhydride. The protected amines (III) can be cleaved with hydrogen chloride in methanol to the amine -hydrochlorides (IV). In principle such phenethylamines and their salts are also commercially available. The amine -hydrochlorides or amines (IV), (VIII), (XIII) or (XV) are then coupled with the appropriate acids and a coupling reagent such as HOBT-EDC or TBTU to yield for example the amides (V), (IX) or (XIV) (wherein B3 or B6 represents N or CH and R0 is defined as described before) or the amide (I-d). Alternatively amides (V), (IX), (XIV) or (I-d) can be prepared using the appropriate acylchloride moiety and a base e.g. Hiinig's one. The compounds of the formula (I-a), (I-b) or (I-c) are then synthesized by a coupling reaction. In the case of Q = N-bonded azoles, a copper-mediated process with copper-(I) -oxide, salicylaldoxime as ligand in a solvent as acetonitrile in the presence of a base as cesium carbonate may be used. In the case of Q = carbon-bonded heterocycles, a Suzuki-type coupling with the appropriate boronic acid or ester in the presence of a palladium catalyst and a base may be used. Alternatively for the synthesis of compounds (I-d) the Q moiety can also be introduced earlier in the synthesis, following a synthetic pathway similar to the one exemplified in scheme 4.
Scheme 1:
Figure imgf000074_0001
Figure imgf000074_0002
Scheme 2:
Figure imgf000075_0001
Compounds of formula (VIII) (scheme 2) can be prepared from nitriles (VII) by reduction using for example borane-THF. Nitriles of formula (VII) can be prepared from ketones or aldehydes (VI) in a solvent such as dichloromethane using in a first time zinc iodide and an addition of trimethylsilylcyanide and in a second time diethylaminosulfur trifluoride to convert the in situ formed alcohol into fluoro derivatives (VII) as it is described in PI 8.
Scheme 3:
Figure imgf000075_0002
Amines of formula (XIII) (scheme 3) can be prepared from carboxamides (XII) by reduction using for example borane-THF. Carboxamides of formula (XII) are easily prepared by the reaction of ethyl esters of formula (XI) and ammonia dissolved in methanol. Ethyl esters of formula (XI) can be prepared by copper-mediated reaction of phenyl iodides e.g. formula (X) with bromdifluoroacetic acid ethylester as it is described in PI 7. Scheme 4:
Figure imgf000076_0001
H, Me or F
In principle, the synthesis of amines with N-bonded 5-membered heterocycles like (XV) according to scheme 4 are described in WO2014/004064 (PI 9).
Scheme 5:
Figure imgf000076_0002
Amines with pyridyl substitution like (XVIII; D1, D2 are CH or N for 3- or 4-pyridyl, Y and m are as described as before) are synthesized via Suzuki type couplings of phenyl bromides like (XVI) with the appropriate boronic acid (XVII-a ; D1, D2 are CH or N for 3- or 4-pyridyl, Y and m are as described as before) or pinacol ester (XVII-b; D1, D2 are CH or N for 3- or 4-pyridyl, Y and m are as described as before) in the presence of a palladium catalyst and a base may be used (scheme 5).
Of particular interest are intermediates of the procedures and methods described herein. These intermediates are further individual embodiments of the invention. In addition to the intermediates described above, further intermediates are described in the following.
Another embodiment of the invention is a compound of formula (INT)
Figure imgf000076_0003
wherein R1, R2, Q, X and n are as defined above. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 1-1 , preferably as defined above in embodiment 1-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 1-2, preferably as defined above in embodiment 1-2.1. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 1-la, preferably as defined above in embodiment 1-la.l.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment l-2a, preferably as defined above in embodiment l-2a.l.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 2-1 , preferably as defined above in embodiment 2-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 2-2 and Rla is fluorine, preferably as defined above in embodiment 2-2.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 3-1 , preferably as defined above in embodiment 3-1.1. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 3-2, preferably as defined above in embodiment 3-2.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 4-1 , preferably as defined above in embodiment 4-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 4-2, preferably as defined above in embodiment 4-2.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 5-1 , preferably as defined above in embodiment 5-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 5-2, preferably as defined above in embodiment 5-2.1. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 5-3, preferably as defined above in embodiment 5-3.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 5-4, preferably as defined above in embodiment 5-4.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 6-1 , preferably as defined above in embodiment 6-1.1. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 6-2, preferably as defined above in embodiment 6-2.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 6- la, preferably as defined above in embodiment 6-la.l. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 6-2a, preferably as defined above in embodiment 6-2a.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 7-1 , preferably as defined above in embodiment 7-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 7-2, preferably as defined above in embodiment 7-2.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 8-1 , preferably as defined above in embodiment 8-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 8-2, preferably as defined above in embodiment 8-2.1. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 9-1 , preferably as defined above in embodiment 9-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 9-2, preferably as defined above in embodiment 9-2.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 10-1, preferably as defined above in embodiment 10-1.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 10-2, preferably as defined above in embodiment 10-2.1.
In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 10-3, preferably as defined above in embodiment 10-3.1. In an individual aspect, R1, R2, Q, X and n are as defined above in embodiment 10-4, preferably as defined above in embodiment 10-4.1.
An example of a preferred compound of formula (INT) is a compound which is represented by formula (INT-1)
Figure imgf000079_0001
Another example of a preferred compound of formula (INT) is a compound which is represented by formula (INT-2)
Figure imgf000079_0002
The compound according to the present invention can be prepared according to the processes described above. It will nevertheless be understood that, on the basis of his general knowledge and of available publications, the skilled worker will be able to adapt this method according to the specifics of each of the compounds, which it is desired to synthesize.
Amongst others, this patent application is directed to the use of compounds of formula (I) as well as to specific compounds of formula (la), (lb) or (Ic). Therefore the following explanations shall be understood to refer to all subjects of the invention equally, especially to the use of the compounds of formula (I) as well as to the compounds of formula (la), (lb) or (Ic).
Isomers Depending on the nature of the substituents, the compounds of the formula (I), (la), (lb) or (Ic) may be in the form of geometric and/or optically active isomers or corresponding isomer mixtures in different compositions. These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers. Accordingly, the invention encompasses both pure stereoisomers and any mixture of these isomers. Methods and uses
The invention also relates to methods for controlling animal pests, in which compounds of the formula (I), (la), (lb) or (Ic) are allowed to act on animal pests and/or their habitat. The control of the animal pests is preferably conducted in agriculture and forestry, and in material protection. Preferably excluded herefrom are methods for the surgical or therapeutic treatment of the human or animal body and diagnostic methods carried out on the human or animal body.
The invention furthermore relates to the use of the compounds of the formula (I), (la), (lb) or (Ic) as pesticides, in particular crop protection agents. In the context of the present application, the term "pesticide" in each case also always comprises the term "crop protection agent".
The compounds of the formula (I), (la), (lb) or (Ic), having good plant tolerance, favourable homeotherm toxicity and good environmental compatibility, are suitable for protecting plants and plant organs against biotic and abiotic stressors, for increasing harvest yields, for improving the quality of the harvested material and for controlling animal pests, especially insects, arachnids, helminths, nematodes and molluscs, which are encountered in agriculture, in horticulture, in animal husbandry, in aquatic cultures, in forests, in gardens and leisure facilities, in the protection of stored products and of materials, and in the hygiene sector. They can preferably be used as pesticides. They are active against normally sensitive and resistant species and against all or some stages of development. The abovementioned pests include:
Pests from the phylum of the Arthropoda, in particular from the class of the Arachnida, for example Acarus spp., for example Acarus siro, Aceria kuko, Aceria sheldoni, Aculops spp., Aculus spp., for example Aculus fockeui, Aculus schlechtendali, Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., for example Brevipalpus phoenicis, Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., for example Eotetranychus hicoriae, Epitrimerus pyri, Eutetranychus spp., for example Eutetranychus banksi, Eriophyes spp., for example Eriophyes pyri, Glycyphagus domesticus, Halotydeus destructor, Hemitarsonemus spp., for example Hemitarsonemus latus (=Polyphagotarsonemus latus), Hyalomma spp., Ixodes spp., Latrodectus spp., Loxosceles spp., Neutrombicula autumnalis, Nuphersa spp., Oligonychus spp., for example Oligonychus coniferarum, Oligonychus ilicis, Oligonychus indicus, Oligonychus mangiferus, Oligonychus pratensis, Oligonychus punicae, Oligonychus yothersi, Ornithodorus spp., Ornithonyssus spp., Panonychus spp., for example Panonychus citri (=Metatetranychus citri), Panonychus ulmi (=Metatetranychus ulmi), Phyllocoptruta oleivora, Platytetranychus multidigituli, Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Steneotarsonemus spp., Steneotarsonemus spinki, Tarsonemus spp., for example Tarsonemus confusus, Tarsonemus pallidus, Tetranychus spp., for example Tetranychus canadensis, Tetranychus cinnabarinus, Tetranychus turkestani, Tetranychus urticae, Trombicula alfreddugesi, Vaejovis spp., Vasates lycopersici; from the class of the Chilopoda, for example Geophilus spp., Scutigera spp.; from the order or the class of the Collembola, for example Onychiurus armatus; Sminthurus viridis; from the class of the Diplopoda, for example Blaniulus guttulatus; from the class of the Insecta, for example from the order of the Blattodea, for example Blatta orientalis, Blattella asahinai, Blattella germanica, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., for example Periplaneta americana, Periplaneta australasiae, Supella longipalpa; from the order of the Coleoptera, for example Acalymma vittatum, Acanthoscelides obtectus, Adoretus spp., Agelastica alni, Agriotes spp., for example Agriotes linneatus, Agriotes mancus, Alphitobius diaperinus, Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., for example Anthonomus grandis, Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., for example Atomaria linearis, Attagenus spp., Baris caerulescens, Bruchidius obtectus, Bruchus spp., for example Bruchus pisorum, Bruchus rufimanus, Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., for example Ceutorrhynchus assimilis, Ceutorrhynchus quadridens, Ceutorrhynchus rapae, Chaetocnema spp., for example Chaetocnema confinis, Chaetocnema denticulata, Chaetocnema ectypa, Cleonus mendicus, Conoderus spp., Cosmopolites spp., for example Cosmopolites sordidus, Costelytra zealandica, Ctenicera spp., Curculio spp., for example Curculio caryae, Curculio caryatrypes,Curculio obtusus, Curculio sayi, Cryptolestes ferrugineus, Cryptolestes pusillus, Cryptorhynchus lapathi, Cryptorhynchus mangiferae, Cylindrocopturus spp., Cylindrocopturus adspersus, Cylindrocopturus furnissi, Dermestes spp., Diabrotica spp., for example Diabrotica balteata, Diabrotica barberi, Diabrotica undecimpunctata howardi, Diabrotica undecimpunctata undecimpunctata, Diabrotica virgifera virgifera, Diabrotica virgifera zeae, Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epilachna spp., for example Epilachna borealis, Epilachna varivestis, Epitrix spp., for example Epitrix cucumeris, Epitrix fuscula, Epitrix hirtipennis, Epitrix subcrinita, Epitrix tuberis, Faustinus spp., Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypomeces squamosus, Hypothenemus spp., for example Hypothenemus hampei, Hypothenemus obscurus, Hypothenemus pubescens, Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lema spp., Leptinotarsa decemlineata, Leucoptera spp., for example Leucoptera coffeella, Lissorhoptrus oryzophilus, Lixus spp., Luperomorpha xanthodera, Luperodes spp., Lyctus spp., Megascelis spp., Melanotus spp., for example Melanotus longulus oregonensis, Meligethes aeneus, Melolontha spp., for example Melolontha melolontha, Migdolus spp., Monochamus spp., Naupactus xanthographus, Necrobia spp., Niptus hololeucus, Oryctes rhinoceros, Qryzaephilus surinamensis, Oryzaphagus oryzae, Otiorhynchus spp., for example Otiorhynchus cribricollis, Otiorhynchus ligustici, Otiorhynchus ovatus, Otiorhynchus rugosostriarus, Otiorhynchus sulcatus, Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Phyllophaga helleri, Phyllotreta spp., for example Phyllotreta armoraciae, Phyllotreta pusilla, Phyllotreta ramosa, Phyllotreta striolata, Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., for example Psylliodes affinis, Psylliodes chrysocephala, Psylliodes punctulata, Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Sitophilus spp., for example Sitophilus granarius, Sitophilus linearis, Sitophilus oryzae, Sitophilus zeamais, Sphenophorus spp., Stegobium paniceum, Sternechus spp., for example Sternechus paludatus, Symphyletes spp., Tanymecus spp., for example Tanymecus dilaticollis, Tanymecus indicus, Tanymecus palliatus, Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp., for example Tribolium audax, Tribolium castaneum, Tribolium confusum, Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp., for example Zabrus tenebrioides; from the order of the Diptera, for example Aedes spp., for example Aedes aegypti, Aedes albopictus, Aedes sticticus, Aedes vexans, Agromyza spp., for example Agromyza frontella, Agromyza parvicornis, Anastrepha spp., Anopheles spp., for example Anopheles quadrimaculatus, Anopheles gambiae, Asphondylia spp., Bactrocera spp., for example Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera oleae, Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chironomus spp., Chrysomya spp., Chrysops spp., Chrysozona pluvialis, Cochliomya spp., Contarinia spp., for example Contarinia johnsoni, Contarinia nasturtii, Contarinia pyrivora, Contarinia schulzi, Contarinia sorghicola, Contarinia tritici,Cordylobia anthropophaga, Cricotopus sylvestris, Culex spp., for example Culex pipiens, Culex quinquefasciatus, Culicoides spp., Culiseta spp., Cuterebra spp., Dacus oleae, Dasineura spp., for example Dasineura brassicae, Delia spp., for example Delia antiqua, Delia coarctata, Delia florilega, Delia platura, Delia radicum, Dermatobia hominis, Drosophila spp., for example Drosphila melanogaster, Drosophila suzukii, Echinocnemus spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp., Liriomyza spp., for example Liriomyza brassicae, Liriomyza huidobrensis, Liriomyza sativae, Lucilia spp., for example Lucilia cuprina, Lutzomyia spp., Mansonia spp., Musca spp., for example Musca domestica, Musca domestica vicina, Oestrus spp., Oscinella frit, Paratanytarsus spp., Paralauterborniella subcincta, Pegomya spp., for example Pegomya betae, Pegomya hyoscyami, Pegomya rubivora, Phlebotomus spp., Phorbia spp., Phormia spp., Piophila casei, Prodiplosis spp., Psila rosae, Rhagoletis spp., for example Rhagoletis cingulata, Rhagoletis completa, Rhagoletis fausta, Rhagoletis indifferens, Rhagoletis mendax, Rhagoletis pomonella, Sarcophaga spp., Simulium spp., for example Simulium meridionale, Stomoxys spp., Tabanus spp., Tetanops spp., Tipula spp., for example Tipula paludosa, Tipula simplex; from the order of the Hemiptera, for example Acizzia acaciaebaileyanae, Acizzia dodonaeae, Acizzia uncatoides, Acrida turrita, Acyrthosipon spp., for example Acyrthosiphon pisum, Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleyrodes proletella, Aleurolobus barodensis, Aleurothrixus floccosus, Allocaridara malayensis, Amrasca spp., for example Amrasca bigutulla, Amrasca devastans, Anuraphis cardui, Aonidiella spp., for example Aonidiella aurantii, Aonidiella citrina, Aonidiella inornata, Aphanostigma piri, Aphis spp., for example Aphis citricola, Aphis craccivora, Aphis fabae, Aphis forbesi, Aphis glycines, Aphis gossypii, Aphis hederae, Aphis illinoisensis, Aphis middletoni, Aphis nasturtii, Aphis nerii, Aphis pomi, Aphis spiraecola, Aphis viburniphila, Arboridia apicalis, Arytainilla spp., Aspidiella spp., Aspidiotus spp., for example Aspidiotus nerii, Atanus spp., Aulacorthum solani, Bemisia tabaci, Blastopsylla occidentalis, Boreioglycaspis melaleucae, Brachycaudus helichrysi, Brachycolus spp., Brevicoryne brassicae, Cacopsylla spp., for example Cacopsylla pyricola, Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chondracris rosea, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., for example Coccus hesperidum, Coccus longulus, Coccus pseudomagnoliarum, Coccus viridis, Cryptomyzus ribis, Cryptoneossa spp., Ctenarytaina spp., Dalbulus spp., Dialeurodes citri, Diaphorina citri, Diaspis spp., Drosicha spp., Dysaphis spp., for example Dysaphis apiifolia, Dysaphis plantaginea, Dysaphis tulipae, Dysmicoccus spp., Empoasca spp., for example Empoasca abrupta, Empoasca fabae, Empoasca maligna, Empoasca solana, Empoasca stevensi, Eriosoma spp., for example Eriosoma americanum, Eriosoma lanigerum, Eriosoma pyricola, Erythroneura spp., Eucalyptolyma spp., Euphyllura spp., Euscelis bilobatus, Ferrisia spp., Geococcus coffeae, Glycaspis spp., Heteropsylla cubana, Heteropsylla spinulosa, Homalodisca coagulata, Hyalopterus arundinis, Hyalopterus pruni, Icerya spp., for example Icerya purchasi, Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., for example Lecanium corni (=Parthenolecanium corni), Lepidosaphes spp., for example Lepidosaphes ulmi, Lipaphis erysimi, Lycorma delicatula, Macrosiphum spp., for example Macrosiphum euphorbiae, Macrosiphum lilii, Macrosiphum rosae, Macrosteles facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metcalfa pruinosa, Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., for example Myzus ascalonicus, Myzus cerasi, Myzus ligustri, Myzus ornatus, Myzus persicae,. Myzus nicotianae, Nasonovia ribisnigri, Nephotettix spp., for example Nephotettix cincticeps,, Nephotettix nigropictus, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., for example Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., for example Pemphigus bursarius, Pemphigus populivenae, Peregrinus maidis, Phenacoccus spp., for example Phenacoccus madeirensis, Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., for example Phylloxera devastatrix, Phylloxera notabilis, Pinnaspis aspidistrae, Planococcus spp., for example Planococcus citri, Prosopidopsylla flava, Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., for example Pseudococcus calceolariae, Pseudococcus comstocki, Pseudococcus longispinus, Pseudococcus maritimus, Pseudococcus viburni, Psyllopsis spp., Psylla spp., for example Psylla buxi, Psylla mali, Psylla pyri, Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., for example Quadraspidiotus juglansregiae, Quadraspidiotus ostreaeformis, Quadraspidiotus perniciosus, Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., for example Rhopalosiphum maidis, Rhopalosiphum oxyacanthae, Rhopalosiphum padi, Rhopalosiphum rufiabdominale, Saissetia spp., for example Saissetia coffeae, Saissetia miranda, Saissetia neglecta, Saissetia oleae, Scaphoideus titanus, Schizaphis graminum, Selenaspidus articulatus, Sitobion avenae, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Siphoninus phillyreae, Tenalaphara malayensis,Tetragonocephela spp., Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., for example Toxoptera aurantii, Toxoptera citricidus, Trialeurodes vaporariorum, Trioza spp., for example Trioza diospyri, Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp.; from the suborder of the Heteroptera, for example Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., for example Cimex adjunctus, Cimex hemipterus, Cimex lectularius, Cimex pilosellus, Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., for example Euschistus heros, Euschistus servus, Euschistus tristigmus, Euschistus variolarius, Eurygaster spp., Halyomorpha halys, Heliopeltis spp., Horcias nobilellus, Leptocorisa spp., Leptocorisa varicornis, Leptoglossus occidentalis, Leptoglossus phyllopus, Lygocoris spp., for example Lygocoris pabulinus, Lygus spp., for example Lygus elisus, Lygus hesperus, Lygus lineolaris, Macropes excavatus, Monalonion atratum, Nezara spp., for example Nezara viridula, Oebalus spp., Piesma quadrata, Piezodorus spp., for example Piezodorus guildinii, Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp. ; from the order of the Hymenoptera, for example Acromyrmex spp., Athalia spp., for example Athalia rosae, Atta spp., Diprion spp., for example Diprion similis, Hoplocampa spp., for example Hoplocampa cookei, Hoplocampa testudinea, Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Urocerus spp., Vespa spp., for example Vespa crabro, Xeris spp.; from the order of the Isopoda, for example Armadillidium vulgare, Oniscus asellus, Porcellio scaber; from the order of the Isoptera, for example Coptotermes spp., for example Coptotermes formosanus, Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp., for example Reticulitermes flavipes, Reticulitermes hesperus; from the order of the Lepidoptera, for example Achroia grisella, Acronicta major, Adoxophyes spp., for example Adoxophyes orana, Aedia leucomelas, Agrotis spp., for example Agrotis segetum, Agrotis ipsilon, Alabama spp., for example Alabama argiUacea, Amyelois transitella, Anarsia spp., Anticarsia spp., for example Anticarsia gemmatalis, Argyroploce spp., Barathra brassicae, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Cheimatobia brumata, Chilo spp., for example Chilo plejadellus, Chilo suppressalis, Choristoneura spp., Clysia ambiguella, Cnaphalocerus spp., Cnaphalocrocis medinalis, Cnephasia spp., Conopomorpha spp., Conotrachelus spp., Copitarsia spp., Cydia spp., for example Cydia nigricana, Cydia pomonella, Dalaca noctuides, Diaphania spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Eldana saccharina, Ephestia spp., for example Ephestia elutella, Ephestia kuehniella, Epinotia spp., Epiphyas postvittana, Etiella spp., Eulia spp., Eupoecilia ambiguella, Euproctis spp., for example Euproctis chrysorrhoea, Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapholitha spp., for example Grapholita molesta, Grapholita prunivora, Hedylepta spp., Helicoverpa spp., for example Helicoverpa armigera, Helicoverpa zea, Heliothis spp., for example Heliothis virescens Hofmannophila pseudospretella, Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Laphygma spp., Leucinodes orbonalis, Leucoptera spp., for example Leucoptera coffeella, Lithocolletis spp., for example Lithocolletis blancardella, Lithophane antennata, Lobesia spp., for example Lobesia botrana, Loxagrotis albicosta, Lymantria spp., for example Lymantria dispar, Lyonetia spp., for example Lyonetia clerkella, Malacosoma neustria, Maruca testulalis, Mamestra brassicae, Melanitis leda, Mods spp., Monopis obviella, Mythimna separata, Nemapogon cloacellus, Nymphula spp., Oiketicus spp., Oria spp., Orthaga spp., Ostrinia spp., for example Ostrinia nubilalis, Oulema melanopus, Oulema oryzae, Panolis flammea, Parnara spp., Pectinophora spp., for example Pectinophora gossypiella, Perileucoptera spp., Phthorimaea spp., for example Phthorimaea operculella, Phyllocnistis citrella, Phyllonorycter spp., for example Phyllonorycter blancardella, Phyllonorycter crataegella, Pieris spp., for example Pieris rapae, Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella (=Plutella maculipennis), Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., for example Pseudaletia unipuncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., for example Schoenobius bipunctifer, Scirpophaga spp., for example Scirpophaga innotata, Scotia segetum, Sesamia spp., for example Sesamia inferens, Sparganothis spp., Spodoptera spp., for example Spodoptera eradiana, Spodoptera exigua, Spodoptera frugiperda, Spodoptera praefica, Stathmopoda spp., Stomopteryx subsecivella, Synanthedon spp., Tecia solanivora, Thermesia gemmatalis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., for example Trichoplusia ni, Tryporyza incertulas, Tuta absoluta, Virachola spp.; from the order of the Orthoptera or Saltatoria, for example Acheta domesticus, Dichroplus spp., Gryllotalpa spp., for example Gryllotalpa gryllotalpa, Hieroglyphus spp., Locusta spp., for example Locusta migratoria, Melanoplus spp., for example Melanoplus devastator, Paratlanticus ussuriensis, Schistocerca gregaria; from the order of the Phthiraptera, for example Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Phylloxera vastatrix, Phthirus pubis, Trichodectes spp.; from the order of the Psocoptera, for example Lepinotus spp., Liposcelis spp.; from the order of the Siphonaptera, for example, Ceratophyllus spp., Ctenocephalides spp., for example Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis; from the order of the Thysanoptera, for example Anaphothrips obscurus, Baliothrips biformis, Drepanothrips reuteri, Enneothrips Havens, Frankliniella spp., for example Frankliniella fusca, Frankliniella occidentalis, Frankliniella schultzei, Frankliniella tritici, Frankliniella vaccinii, Frankliniella williamsi, Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp., for example Thrips palmi, Thrips tabaci; from the order of the Zygentoma (= Thysanura), for example Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus, Thermobia domestica; from the class of the Symphyla, for example Scutigerella spp., for example Scutigerella immaculata; pests from the phylum of the Mollusca, for example from the class of the Bivalvia, for example Dreissena spp., and also from the class of the Gastropoda, for example Arion spp., for example Arion ater rufus, Biomphalaria spp., Bulinus spp., Deroceras spp., for example Deroceras laeve, Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.; animal and human parasites from the phyla of the Platylminthes and Nematoda, for example Aelurostrongylus spp., Amidostomum spp., Ancylostoma spp, Angiostrongylus spp., Anisakis spp., Anoplocephala spp., Ascaris spp., Ascaridia spp., Baylisascaris spp., Brugia spp., Bunostomum spp., Capillaria spp., Chabertia spp., Clonorchis spp., Cooperia spp., Crenosoma spp., Cyathostoma spp., Dicrocoelium spp., Dictyocaulus spp., Diphyllobothrium spp., Dipylidium spp., Dirofilaria spp., Dracunculus spp., Echinococcus spp., Echinostoma spp., Enterobius spp., Eucoleus spp., Fasciola spp., Fascioloides spp., Fasciolopsis spp., Filaroides spp., Gongylonema spp., Gyrodactylus spp., Habronema spp., Haemonchus spp., Heligmosomoides spp., Heterakis spp., Hymenolepis spp., Hyostrongylus spp., Litomosoides spp., Loa spp., Metastrongylus spp., Metorchis spp., Mesocestoides spp., Moniezia spp., Muellerius spp., Necator spp., Nematodirus spp., Nippostrongylus spp., Oesophagostomum spp., Ollulanus spp., Onchocerca spp, Opisthorchis spp., Oslerus spp., Ostertagia spp., Oxyuris spp., Paracapillaria spp., Parafilaria spp., Paragonimus spp., Paramphistomum spp., Paranoplocephala spp., Parascaris spp., Passalurus spp., Protostrongylus spp., Schistosoma spp., Setaria spp., Spirocerca spp., Stephanofilaria spp., Stephanurus spp., Strongyloides spp., Strongylus spp., Syngamus spp., Taenia spp., Teladorsagia spp., Thelazia spp., Toxascaris spp., Toxocara spp., Trichinella spp., Trichobilharzia spp., Trichostrongylus spp., Trichuris spp., Uncinaria spp., Wuchereria spp.; plant pests from the phylum of the Nematoda, i.e. phytoparasitic nematodes, in particular Aglenchus spp., for example Aglenchus agricola, Anguina spp., for example Anguina tritici, Aphelenchoides spp., for example Aphelenchoides arachidis, Aphelenchoides fragariae, Belonolaimus spp., for example Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Bursaphelenchus spp., for example Bursaphelenchus cocophilus, Bursaphelenchus eremus, Bursaphelenchus xylophilus, Cacopaurus spp., for example Cacopaurus pestis, Criconemella spp., for example Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella xenoplax (= Mesocriconema xenoplax), Criconemoides spp., for example Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum, Ditylenchus spp., for example Ditylenchus dipsaci, Dolichodorus spp., Globodera spp., for example Globodera pallida, Globodera rostochiensis, Helicotylenchus spp., for example Helicotylenchus dihystera, Hemicriconemoides spp., Hemicycliophora spp., Heterodera spp., for example Heterodera avenae, Heterodera glycines, Heterodera schachtii, Hoplolaimus spp., Longidorus spp., for example Longidorus africanus, Meloidogyne spp., for example Meloidogyne chitwoodi, Meloidogyne fallax, Meloidogyne hapla, Meloidogyne incognita, Meloinema spp., Nacobbus spp., Neotylenchus spp., Paraphelenchus spp., Paratrichodorus spp., for example Paratrichodorus minor, Pratylenchus spp., for example Pratylenchus penetrans, Pseudohalenchus spp., Psilenchus spp., Punctodera spp., Quinisulcius spp., Radopholus spp., for example Radopholus citrophilus, Radopholus similis, Rotylenchulus spp., Rotylenchus spp., Scutellonema spp., Subanguina spp., Trichodorus spp., for example Trichodorus obtusus, Trichodorus primitivus, Tylenchorhynchus spp., for example Tylenchorhynchus annulatus, Tylenchulus spp., for example Tylenchulus semipene trans, Xiphinema spp., for example Xiphinema index.
Furthermore, it is possible to control, from the subkingdom of the Protozoa, the order of the Coccidia, for example Eimeria spp. Nematodes
In the present context, the term "nematodes" comprises all species of the phylum Nematoda and here in particular species acting as parasites on plants or fungi (for example species of the order Aphelenchida, Meloidogyne, Tylenchida and others) or else on humans and animals (for example species of the orders Trichinellida, Tylenchida, Rhabditina and Spirurida) and causing damage in or on these living organisms, and also other parasitic helminths.
A nematicide in crop protection, as described herein, is capable of controlling nematodes.
The term "controlling nematodes" means killing the nematodes or preventing or impeding their development or their growth or preventing or impeding their penetration into or their sucking on plant tissue. Here, the efficacy of the compounds is determined by comparing mortalities, gall formation, cyst formation, nematode density per volume of soil, nematode density per root, number of nematode eggs per soil volume, mobility of the nematodes between a plant or plant part treated with the compound of the formula (I), (la), (lb) or (Ic) or the treated soil and an untreated plant or plant part or the untreated soil (100%). Preferably, the reduction achieved is 25-50% in comparison to an untreated plant, plant part or the untreated soil, particularly preferably 51 - 79% and very particularly preferably the complete kill or the complete prevention of development and growth of the nematodes by a reduction of 80 to 100%. The control of nematodes as described herein also comprises the control of proliferation of the nematodes (development of cysts and/or eggs). Compounds of the formula (I), (la), (lb) or (Ic) can also be used to keep the plants or animals healthy, and they can be employed curatively, preventatively or systemically for the control of nematodes.
The person skilled in the art knows methods for determining mortalities, gall formation, cyst formation, nematode density per volume of soil, nematode density per root, number of nematode eggs per volume of soil, mobility of the nematodes. The use of a compound of the formula (I), (la), (lb) or (Ic) may keep the plant healthy and also comprises a reduction of the damage caused by nematodes and an increase of the harvest yield.
In the present context, the term "nematodes" refers to plant nematodes which comprise all nematodes which damage plants. Plant nematodes comprise phytoparasitic nematodes and soil-borne nematodes. The phytoparasitic nematodes include ectoparasites such as Xiphinema spp., Longidorus spp. and Trichodorus spp.; semiparasites such as Tylenchulus spp.; migratory endoparasites such as Pratylenchus spp., Radopholus spp. and Scutellonema spp.; non-migratory parasites such as Heterodera spp., Globodera spp. and Meloidogyne spp., and also stem and leaf endoparasites such as Ditylenchus spp., Aphelenchoides spp. and Hirschmaniella spp. Particularly damaging root-parasitic soil nematodes are, for example, cyst-forming nematodes of the genera Heterodera or Globodera, and/or root gall nematodes of the genus Meloidogyne. Damaging species of these genera are, for example, Meloidogyne incognita, Heterodera glycines (soya bean cyst nematode), Globodera pallida and Globodera rostochiensis (yellow potato cyst nematode), these species being controlled effectively by the compounds described in the present text. However, the use of the compounds described in the present text is by no means restricted to these genera or species, but also extends in the same manner to other nematodes.
The plant nematodes include, for example, Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Aphelenchoides fragaria, and the stem and leaf endoparasites Aphelenchoides spp., Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Bursaphelenchus cocophilus, Bursaphelenchus eremus, Bursaphelenchus xylophilus und Bursaphelenchus spp., Cacopaurus pestis, Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella xenoplax (= Mesocriconema xenoplax) and Criconemella spp.,
Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum and Criconemoides spp., Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and also the stem and leaf endoparasites Ditylenchus spp., Dolichodorus heterocephalus, Globodera pallida (=Heterodera pallida), Globodera rostochiensis (yellow potato cyst nematode), Globodera solanacearum, Globodera tabacum, Globodera Virginia and the non-migratory cyst-forming parasites Globodera spp., Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus erythrine, Helicotylenchus multicinctus, Helicotylenchus nannus, Helicotylenchus pseudorobustus and Helicotylenchus spp., Hemicriconemoides, Hemicycliophora arenaria, Hemicycliophora nudata, Hemicycliophora parvana, Heterodera avenae, Heterodera cruciferae, Heterodera glycines (soya bean cyst nematode), Heterodera oryzae, Heterodera schachtii, Heterodera zeae and the non-migratory cyst-forming parasites Heterodera spp., Hirschmaniella gracilis, Hirschmaniella oryzae, Hirschmaniella spinicaudata and the stem and leaf endoparasites Hirschmaniella spp., Hoplolaimus aegyptii, Hoplolaimus californicus, Hoplolaimus columbus, Hoplolaimus galeatus, Hoplolaimus indicus, Hoplolaimus magnistylus, Hoplolaimus pararobustus, Longidorus africanus, Longidorus breviannulatus, Longidorus elongatus, Longidorus laevicapitatus, Longidorus vineacola and the ectoparasites Longidorus spp., Meloidogyne acronea, Meloidogyne africana, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne artiella, Meloidogyne chitwoodi, Meloidogyne coffeicola, Meloidogyne ethiopica, Meloidogyne exigua, Meloidogyne fallax, Meloidogyne graminicola, Meloidogyne graminis, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne kikuyensis, Meloidogyne minor, Meloidogyne naasi, Meloidogyne paranaensis, Meloidogyne thamesi and the non- migratory parasites Meloidogyne spp., Meloinema spp., Nacobbus aberrans, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Paratrichodorus allius, Paratrichodorus lobatus, Paratrichodorus minor, Paratrichodorus nanus, Paratrichodorus porosus, Paratrichodorus teres and Paratrichodorus spp., Paratylenchus hamatus, Paratylenchus minutus, Paratylenchus projectus and Paratylenchus spp., Pratylenchus agilis, Pratylenchus alleni, Pratylenchus andinus, Pratylenchus brachyurus, Pratylenchus cerealis, Pratylenchus coffeae, Pratylenchus crenatus, Pratylenchus delattrei, Pratylenchus giibbicaudatus, Pratylenchus goodeyi, Pratylenchus hamatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae and the migratory endoparasites Pratylenchus spp., Pseudohalenchus minutus, Psilenchus magnidens, Psilenchus tumidus, Punctodera chalcoensis, Quinisulcius acutus, Radopholus citrophilus, Radopholus similis, the migratory endoparasites Radopholus spp., Rotylenchulus borealis, Rotylenchulus parvus, Rotylenchulus reniformis and Rotylenchulus spp., Rotylenchus laurentinus, Rotylenchus macrodoratus, Rotylenchus robustus, Rotylenchus uniformis and Rotylenchus spp., Scutellonema brachyurum, Scutellonema bradys, Scutellonema clathricaudatum and the migratory endoparasites Scutellonema spp., Subanguina radiciola, Tetylenchus nicotianae, Trichodorus cylindricus, Trichodorus minor, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus and the ectoparasites Trichodorus spp., Tylenchorhynchus agri, Tylenchorhynchus brassicae, Tylenchorhynchus clarus, Tylenchorhynchus claytoni, Tylenchorhynchus digitatus, Tylenchorhynchus ebriensis, Tylenchorhynchus maximus, Tylenchorhynchus nudus, Tylenchorhynchus vulgaris and Tylenchorhynchus spp., Tylenchulus semipenetrans and the semiparasites Tylenchulus spp., Xiphinema americanum, Xiphinema brevicolle, Xiphinema dimorphicaudatum, Xiphinema index and the ectoparasites Xiphinema spp.
Nematodes for the control of which a compound of the formula (I), (la), (lb) or (Ic) may be used include nematodes of the genus Meloidogyne such as the Southern root-knot nematode (Meloidogyne incognita), the Javanese root-knot nematode (Meloidogyne javanica), the Northern root-knot nematode (Meloidogyne hapla) and the peanut root-knot nematode (Meloidogyne arenaria); nematodes of the genus Ditylenchus such as the potato rot nematode (Ditylenchus destructor) and stem and bulb eelworm (Ditylenchus dipsaci); nematodes of the genus Pratylenchus such as the cob root-lesion nematode (Pratylenchus penetrans), the chrysanthemum root-lesion nematode (Pratylenchus fallax), the coffee root nematode (Pratylenchus coffeae), the tea root nematode (Pratylenchus loosi) and the walnut root-lesion nematode (Pratylenchus vulnus); nematodes of the genus Globodera such as the yellow potato cyst nematode (Globodera rostochiensis) and the white potato cyst nematode (Globodera pallida); nematodes of the genus Heterodera such as the soya bean cyst nematode (Heterodera glycines) and beet cyst eelworm (Heterodera schachtii); nematodes of the genus Aphelenchoides such as the rice white -tip nematode (Aphelenchoides besseyi), the chrysanthemum nematode (Aphelenchoides ritzemabosi) and the strawberry nematode (Aphelenchoides fragariae); nematodes of the genus Aphelenchus such as the fungivorous nematode (Aphelenchus avenae); nematodes of the genus Radopholus, such as the burrowing nematode (Radopholus similis); nematodes of the genus Tylenchulus such as the citrus root nematode (Tylenchulus semipene trans); nematodes of the genus Rotylenchulus such as the reniform nematode (Rotylenchulus reniformis); tree -dwelling nematodes such as the pine wood nematode (Bursaphelenchus xylophilus) and the red ring nematode (Bursaphelenchus cocophilus) and the like.
Plants for the protection of which a compound of the formula (I), (la), (lb) or (Ic) can be used include plants such as cereals (for example rice, barley, wheat, rye, oats, maize and the like), beans (soya bean, aduki bean, bean, broadbean, peas, peanuts and the like), fruit trees/fruits (apples, citrus species, pears, grapevines, peaches, Japanese apricots, cherries, walnuts, almonds, bananas, strawberries and the like), vegetable species (cabbage, tomato, spinach, broccoli, lettuce, onions, spring onion, pepper and the like), root crops (carrot, potato, sweet potato, radish, lotus root, turnip and the like), plant for industrial raw materials (cotton, hemp, paper mulberry, mitsumata, rape, beet, hops, sugar cane, sugar beet, olive, rubber, palm trees, coffee, tobacco, tea and the like), cucurbits (pumpkin, cucumber, water melon, melon and the like), meadow plants (cocksfoot, sorghum, timothy-grass, clover, alfalfa and the like), lawn grasses (mascarene grass, bentgrass and the like), spice plants etc. (lavender, rosemary, thyme, parsley, pepper, ginger and the like) and flowers (chrysanthemums, rose, orchid and the like). The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling coffee nematodes, in particular Pratylenchus brachyurus, Pratylenchus coffeae, Meloidogyne exigua, Meloidogyne incognita, Meloidogyne coffeicola, Helicotylenchus spp. and also Meloidogyne paranaensis, Rotylenchus spp., Xiphinema spp., Tylenchorhynchus spp. and Scutellonema spp..
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling potato nematodes, in particular Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci and of Pratylenchus alleni, Pratylenchus andinus, Pratylenchus cerealis, Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Pratylenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Belonolaimus longicaudatus, Trichodorus cylindricus, Trichodorus primitivus, Trichodorus proximus, Trichodorus similis, Trichodorus sparsus, Paratrichodorus minor, Paratrichodorus allius, Paratrichodorus nanus, Paratrichodorus teres, Meloidogyne arenaria, Meloidogyne fallax, Meloidogyne hapla, Meloidogyne thamesi, Meloidogyne incognita, Meloidogyne chitwoodi, Meloidogyne javanica, Nacobbus aberrans, Globodera rostochiensis, Globodera pallida, Ditylenchus destructor, Radopholus similis, Rotylenchulus reniformis, Neotylenchus vigissi, Paraphelenchus pseudoparietinus, Aphelenchoides fragariae and Meloinema spp. The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling tomato nematodes, in particular Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Pratylenchus penetrans and also Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus vulnus, Paratrichodorus minor, Meloidogyne exigua, Nacobbus aberrans, Globodera solanacearum, Dolichodorus heterocephalus and Rotylenchulus reniformis.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling cucumber plant nematodes, in particular Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Rotylenchulus reniformis and Pratylenchus thornei.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling cotton nematodes, in particular Belonolaimus longicaudatus, Meloidogyne incognita, Hoplolaimus columbus, Hoplolaimus galeatus and Rotylenchulus reniformis.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling maize nematodes, in particular Belonolaimus longicaudatus, Paratrichodorus minor and also Pratylenchus brachyurus, Pratylenchus delattrei, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus zeae, (Belonolaimus gracilis), Belonolaimus nortoni, Longidorus breviannulatus, Meloidogyne arenaria, Meloidogyne arenaria thamesi, Meloidogyne graminis, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Meloidogyne naasi, Heterodera avenae, Heterodera oryzae, Heterodera zeae, Punctodera chalcoensis, Ditylenchus dipsaci, Hoplolaimus aegyptii, Hoplolaimus magnistylus, Hoplolaimus galeatus, Hoplolaimus indicus, Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus pseudorobustus, Xiphinema americanum, Dolichodorus heterocephalus, Criconemella ornata, Criconemella onoensis, Radopholus similis, Rotylenchulus borealis, Rotylenchulus parvus, Tylenchorhynchus agri, Tylenchorhynchus clarus, Tylenchorhynchus claytoni, Tylenchorhynchus maximus, Tylenchorhynchus nudus, Tylenchorhynchus vulgaris, Quinisulcius acutus, Paratylenchus minutus, Hemicycliophora parvana, Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Scutellonema brachyurum and Subanguina radiciola.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling soya bean nematodes, in particular Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus penetrans, Pratylenchus scribneri, Belonolaimus longicaudatus, Heterodera glycines, Hoplolaimus columbus and also Pratylenchus coffeae, Pratylenchus hexincisus, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus alleni, Pratylenchus agilis, Pratylenchus zeae, Pratylenchus vulnus, (Belonolaimus gracilis), Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne hapla, Hoplolaimus columbus, Hoplolaimus galeatus and Rotylenchulus reniformis.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling tobacco nematodes, in particular Meloidogyne incognita, Meloidogyne javanica and also Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus neglectus, Pratylenchus crenatus, Pratylenchus thornei, Pratylenchus vulnus, Pratylenchus zeae, Longidorus elongatu, Paratrichodorus lobatus, Trichodorus spp., Meloidogyne arenaria, Meloidogyne hapla, Globodera tabacum, Globodera solanacearum, Globodera virginiae, Ditylenchus dipsaci, Rotylenchus spp., Helicotylenchus spp., Xiphinema americanum, Criconemella spp., Rotylenchulus reniformis, Tylenchorhynchus claytoni, Paratylenchus spp. and Tetylenchus nicotianae.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling citrus nematodes, in particular Pratylenchus coffeae and also Pratylenchus brachyurus, Pratylenchus vulnus, Belonolaimus longicaudatus, Paratrichodorus minor, Paratrichodorus porosus, Trichodorus , Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, Rotylenchus macrodoratus, Xiphinema americanum, Xiphinema brevicolle, Xiphinema index, Criconemella spp., Hemicriconemoides, Radopholus similis and Radopholus citrophilus, Hemicycliophora arenaria, Hemicycliophora nudata and Tylenchulus semipenetrans.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling banana nematodes, in particular Pratylenchus coffeae, Radopholus similis and also Pratylenchus giibbicaudatus, Pratylenchus loosi, Meloidogyne spp., Helicotylenchus multicinctus, Helicotylenchus dihystera and Rotylenchulus spp..
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling pineapple nematodes, in particular Pratylenchus zeae, Pratylenchus pratensis, Pratylenchus brachyurus, Pratylenchus goodeyi., Meloidogyne spp., Rotylenchulus reniformis and also Longidorus elongatus, Longidorus laevicapitatus, Trichodorus primitivus, Trichodorus minor, Heterodera spp., Ditylenchus myceliophagus, Hoplolaimus californicus, Hoplolaimus pararobustus, Hoplolaimus indicus, Helicotylenchus dihystera, Helicotylenchus nannus, Helicotylenchus multicinctus, Helicotylenchus erythrine, Xiphinema dimorphicaudatum, Radopholus similis, Tylenchorhynchus digitatus, Tylenchorhynchus ebriensis, Paratylenchus minutus, Scutellonema clathricaudatum, Scutellonema bradys, Psilenchus tumidus, Psilenchus magnidens, Pseudohalenchus minutus, Criconemoides ferniae, Criconemoides onoense and Criconemoides ornatum.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling grapevine nematodes, in particular Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Xiphinema americanum, Xiphinema index and also Pratylenchus pratensis, Pratylenchus scribneri, Pratylenchus neglectus, Pratylenchus brachyurus, Pratylenchus thornei and Tylenchulus semipenetrans.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling nematodes in tree crops - pome fruit, in particular Pratylenchus penetrans and also Pratylenchus vulnus, Longidorus elongatus, Meloidogyne incognita and Meloidogyne hapla. The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling nematodes in tree crops - stone fruit, in particular Pratylenchus penetrans, Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Criconemella xenoplax and of Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus scribneri, Pratylenchus zeae, Belonolaimus longicaudatus, Helicotylenchus dihystera, Xiphinema americanum, Criconemella curvata, Tylenchorhynchus claytoni, Paratylenchus hamatus, Paratylenchus projectus, Scutellonema brachyurum and Hoplolaimus galeatus.
The compounds of the formula (I), (la), (lb) or (Ic) are particularly suitable for controlling nematodes in tree crops, sugar cane and rice, in particular Trichodorus spp., Criconemella spp. and also Pratylenchus spp., Paratrichodorus spp., Meloidogyne spp., Helicotylenchus spp., Tylenchorhynchus spp., Aphelenchoides spp., Heterodera spp, Xiphinema spp. and Cacopaurus pestis.
In the present context, the term "nematodes" also refers to nematodes damaging humans or animals.
Specific nematode species harmful to humans or to animals are:
Trichinellida, for example: Trichuris spp., Capillaria spp., Paracapillaria spp., Eucoleus spp., Trichomosoides spp., Trichinella spp.; from the order of the Tylenchida, for example: Micronema spp., Strongyloides spp.; from the order of the Rhabditida, for example: Strongylus spp., Triodontophorus spp., Oesophagodontus spp., Trichonema spp., Gyalocephalus spp., Cylindropharynx spp., Poteriostomum spp., Cyclococercus spp., Cylicostephanus spp., Oesophagostomum spp., Chabertia spp., Stephanurus spp., Ancylostoma spp., Uncinaria spp., Necator spp., Bunostomum spp., Globocephalus spp., Syngamus spp., Cyathostoma spp., Metastrongylus spp., Dictyocaulus spp., Muellerius spp., Protostrongylus spp., Neostrongylus spp., Cystocaulus spp., Pneumostrongylus spp., Spicocaulus spp., Elaphostrongylus spp., Parelaphostrongylus spp., Crenosoma spp., Paracrenosoma spp., Oslerus spp., Angiostrongylus spp., Aelurostrongylus spp., Filaroides spp., Parafilaroides spp., Trichostrongylus spp., Haemonchus spp., Ostertagia spp., Teladorsagia spp., Marshallagia spp., Cooperia spp., Nippostrongylus spp., Heligmosomoides spp., Nematodirus spp., Hyostrongylus spp., Obeliscoides spp., Amidostomum spp., Ollulanus spp.; from the order of the Spirurida, for example: Oxyuris spp., Enterobius spp., Passalurus spp., Syphacia spp., Aspiculuris spp., Heterakis spp.; Ascaris spp., Toxascaris spp., Toxocara spp., Baylisascaris spp., Parascaris spp., Anisakis spp., Ascaridia spp.; Gnathostoma spp., Physaloptera spp., Thelazia spp., Gongylonema spp., Habronema spp., Parabronema spp.;
Draschia spp., Dracunculus spp.; Stephanoiilaria spp., Parafilaria spp., Setaria spp., Loa spp., Dirofilaria spp., Litomosoides spp., Brugia spp., Wuchereria spp., Onchocerca spp., Spirocerca spp.. Many known nematicides also act against other parasitic helminths and are therefore used for controlling worms - not necessarily belonging to the group Nematoda - which are parasites in humans and animals. The present invention also relates to the use of the compounds of the formula (I), (la), (lb) or (Ic) as anthelmintic medicaments. The pathogenic endoparasitic helminths include Platyhelminthes (e.g. Monogenea, cestodes and trematodes), Acanthocephala and Pentastoma. The following helminths may be mentioned as being preferred:
Monogenea: e.g.: Gyrodactylus spp., Dactylogyrus spp., Polystoma spp.;
Cestodes: from the order of the Pseudophyllidea, for example: Diphyllobothrium spp., Spirometra spp., Schistocephalus spp., Ligula spp., Bothridium spp., Diplogonoporus spp.; from the order of the Cyclophyllida, for example: Mesocestoides spp., Anoplocephala spp., Paranoplocephala spp., Moniezia spp., Thysanosoma spp., Thysaniezia spp., Avitellina spp., Stilesia spp., Cittotaenia spp., Andyra spp., Bertiella spp., Taenia spp., Echinococcus spp., Hydatigera spp., Davainea spp., Raillietina spp., Hymenolepis spp., Echinolepis spp., Echinocotyle spp., Diorchis spp., Dipylidium spp., Joyeuxiella spp., Diplopylidium spp.; Trematodes: from the class of the Digenea, for example: Diplostomum spp., Posthodiplostomum spp., Schistosoma spp., Trichobilharzia spp., Ornithobilharzia spp., Austrobilharzia spp., Gigantobilharzia spp., Leucochloridium spp., Brachylaima spp., Echinostoma spp., Echinoparyphium spp., Echinochasmus spp., Hypoderaeum spp., Fasciola spp., Fasciolides spp., Fasciolopsis spp., Cyclocoelum spp., Typhlocoelum spp., Paramphistomum spp., Calicophoron spp., Cotylophoron spp., Gigantocotyle spp., Fischoederius spp., Gastrothylacus spp., Notocotylus spp., Catatropis spp., Plagiorchis spp., Prosthogonimus spp., Dicrocoelium spp., Eurytrema spp., Troglotrema spp., Paragonimus spp., Collyriclum spp., Nanophyetus spp., Opisthorchis spp., Clonorchis spp., Metorchis spp., Heterophyes spp., Metagonimus spp.;
Acanthocephala: from the order of the Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp.; from the order of the Polymorphida, for example: Filicollis spp.; from the order of the Moniliformida, for example: Moniliformis spp.; from the order of the Echinorhynchida, for example, Acanthocephalus spp., Echinorhynchus spp., Leptorhynchoides spp. ;
Pentastoma: from the order of the Porocephalida, for example, Linguatula spp.. In the veterinary field and in animal keeping, the administration of the compounds of the formula (I), (la), (lb) or (Ic) is carried out by methods generally known in the art, directly or enterally, parenterally, dermally or nasally in the form of suitable preparations. Administration can be carried out prophylactically or therapeutically. The compounds of the formula (I), (la), (lb) or (Ic) can optionally, at certain concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, as microbicides or gametocides, for example as fungicides, antimycotics, bactericides, viricides (including agents against viroids) or as agents against MLO (mycoplasma-like organisms) and RLO (rickettsia-like organisms). If appropriate, they can also be used as intermediates or precursors for the synthesis of other active compounds.
Formulations
The present invention further relates to formulations and use forms prepared therefrom as pesticides, for example drench, drip and spray liquors, comprising at least one compound of the formula (I), (la), (lb) or (Ic). In some cases, the use forms comprise further pesticides and/or adjuvants which improve action, such as penetrants, e.g. vegetable oils, for example rapeseed oil, sunflower oil, mineral oils, for example paraffin oils, alkyl esters of vegetable fatty acids, for example rapeseed oil methyl ester or soya oil methyl ester, or alkanol alkoxylates and/or spreaders, for example alkylsiloxanes and/or salts, for example organic or inorganic ammonium or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate and/or retention promoters, for example dioctyl sulphosuccinate or hydroxypropyl guar polymers and/or humectants, for example glycerol and/or fertilizers, for example ammonium-, potassium- or phosphorus-containing fertilizers.
Customary formulations are, for example, water-soluble liquids (SL), emulsion concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS); these and further possible formulation types are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576. The formulations, in addition to one or more compounds of the formula (I), (la), (lb) or (Ic), optionally comprise further agrochemically active compounds.
These are preferably formulations or use forms which comprise auxiliaries, for example extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, biocides, thickeners and/or further auxiliaries, for example adjuvants. An adjuvant in this context is a component which enhances the biological effect of the formulation, without the component itself having any biological effect. Examples of adjuvants are agents which promote retention, spreading, attachment to the leaf surface or penetration.
These formulations are prepared in a known way, for example by mixing the compounds of the formula (I), (la), (lb) or (Ic) with auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or other auxiliaries such as, for example, surfactants. The formulations are prepared either in suitable facilities or else before or during application. The auxiliaries used may be substances suitable for imparting special properties, such as certain physical, technical and/or biological properties, to the formulation of the compounds of the formula (I), (la), (lb) or (Ic), or to the use forms prepared from these formulations (for example ready-to-use pesticides such as spray liquors or seed dressing products). Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N- alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).
If the extender used is water, it is also possible to employ, for example, organic solvents as auxiliary solvents. Essentially, suitable liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
In principle, it is possible to use all suitable solvents. Examples of suitable solvents are aromatic hydrocarbons, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, such as chlorobenzene, chloroethylene or methylene chloride, aliphatic hydrocarbons, such as cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, such as methanol, ethanol, isopropanol, butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethyl sulphoxide, and also water. In principle, it is possible to use all suitable carriers. Useful carriers include especially: for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic materials such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and/or solid fertilizers. Mixtures of such carriers can likewise be used. Useful carriers for granules include: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stalks.
Liquefied gaseous extenders or solvents can also be used. Particularly suitable extenders or carriers are those which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellant gases, such as halohydrocarbons, and also butane, propane, nitrogen and carbon dioxide. Examples of emulsifiers and/or foam-formers, dispersants or wetting agents with ionic or nonionic properties, or mixtures of these surfactants, are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, protein hydrolysates, lignosulphite waste liquors and methylcellulose. The presence of a surfactant is advantageous if one of the compounds of the formula (I), (la), (lb) or (Ic) and/or one of the inert carriers is insoluble in water and when the application takes place in water.
It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc as further auxiliaries in the formulations and the use forms derived therefrom.
Additional components may be stabilizers, such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability. Foam formers or antifoams may also be present.
Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids such as cephalins and lecithins and synthetic phospholipids may also be present as additional auxiliaries in the formulations and the use forms derived therefrom. Further possible auxiliaries are mineral and vegetable oils.
Optionally, further auxiliaries may be present in the formulations and the use forms derived therefrom. Examples of such additives include fragrances, protective colloids, binders, adhesives, thickeners, thixotropic agents, penetrants, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreaders. In general, the compounds of the formula (I), (la), (lb) or (Ic) can be combined with any solid or liquid additive commonly used for formulation purposes.
Useful retention promoters include all those substances which reduce the dynamic surface tension, for example dioctyl sulphosuccinate, or increase the viscoelasticity, for example hydroxypropylguar polymers.
Suitable penetrants in the present context are all those substances which are usually used for improving the penetration of agrochemical active compounds into plants. Penetrants are defined in this context by their ability to penetrate from the (generally aqueous) application liquor and/or from the spray coating into the cuticle of the plant and thereby increase the mobility of active compounds in the cuticle. The method described in the literature (Baur et al., 1997, Pesticide Science 51, 131-152) can be used to determine this property. Examples include alcohol alkoxylates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12), fatty acid esters, for example rapeseed oil methyl ester or soya oil methyl ester, fatty amine alkoxylates, for example tallowamine ethoxylate (15), or ammonium and/or phosphonium salts, for example ammonium sulphate or diammonium hydrogenphosphate.
The formulations preferably comprise between 0.00000001 and 98% by weight of the respective compound of the formula (I), (la), (lb) or (Ic) or, with particular preference, between 0.01% and 95% by weight of the respective compound of the formula (I), (la), (lb) or (Ic), more preferably between 0.5% and 90% by weight of the respective compound of the formula (I), (la), (lb) or (Ic), based on the weight of the formulation.
The content of the respective compound of the formula (I), (la), (lb) or (Ic) in the use forms prepared from the formulations (in particular pesticides) may vary within wide ranges. The concentration of the respective compound of the formula (I), (la), (lb) or (Ic) in the use forms is usually between 0.00000001 and 95% by weight, preferably between 0.00001 and 1% by weight, based on the weight of the use form. The compounds are employed in a customary manner appropriate for the use forms.
Mixtures
The compounds of the formula (I), (la), (lb) or (Ic) may also be employed as a mixture with one or more suitable fungicides, bactericides, acaricides, molluscicides, nematicides, insecticides, microbiologicals, beneficial species, herbicides, fertilizers, bird repellents, phytotonics, sterilants, safeners, semiochemicals and/or plant growth regulators, in order thus, for example, to broaden the spectrum of action, to prolong the duration of action, to increase the rate of action, to prevent repulsion or prevent evolution of resistance. In addition, such active compound combinations may improve plant growth and/or tolerance to abiotic factors, for example high or low temperatures, to drought or to elevated water content or soil salinity. It is also possible to improve flowering and fruiting performance, optimize germination capacity and root development, facilitate harvesting and improve yields, influence maturation, improve the quality and/or the nutritional value of the harvested products, prolong storage life and/or improve the processability of the harvested products.
Furthermore, the compounds of the formula (I), (la), (lb) or (Ic) can be present in a mixture with other active compounds or semiochemicals such as attractants and/or bird repellants and/or plant activators and/or growth regulators and/or fertilizers. Likewise, the compounds of the formula (I), (la), (lb) or (Ic) can be used to improve plant properties such as, for example, growth, yield and quality of the harvested material.
In a particular embodiment according to the invention, the compounds of the formula (I), (la), (lb) or (Ic) are present in formulations or the use forms prepared from these formulations in a mixture with further compounds, preferably those as described below. If one of the compounds mentioned below can occur in different tautomeric forms, these forms are also included even if not explicitly mentioned in each case.
Insecticides/acaricides/nematicides
The active compounds identified here by their common names are known and are described, for example, in the pesticide handbook ("The Pesticide Manual" 16th Ed., British Crop Protection Council 2012) or can be found on the Internet (e.g. http://www.alanwood.net/pesticides).
(1) Acetylcholinesterase (AChE) inhibitors, such as, for example, carbamates, for example alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb; or organophosphates, for example acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton- S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothiophosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos-methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon and vamidothion. (2) GABA-gated chloride channel antagonists, such as, for example, cyclodiene-organochlorines, for example chlordane and endosulfan or phenylpyrazoles (fiproles), for example ethiprole and fipronil.
(3) Sodium channel modulators / voltage-gated sodium channel blockers such as, for example, pyrethroids, e.g. acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin s-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta- cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(lR)-trans-isomer], deltamethrin, empenthrin [(EZ)-(IR) -isomer], esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imiprothrin, kadethrin, permethrin, phenothrin [(lR)-trans- isomer], prallethrin, pyrethrins (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethrin, tetramethrin [(1R)- isomer)], tralomethrin and transfluthrin or DDT or methoxychlor.
(4) Nicotinergic acetylcholine receptor (nAChR) agonists, such as, for example, neonicotinoids, e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor. (5) Allosteric activators of the nicotinergic acetylcholine receptor (nAChR) such as, for example, spinosyns, e.g. spinetoram and spinosad.
(6) Chloride channel activators, such as, for example, avermectins/niilbemycins, for example abamectin, emamectin benzoate, lepimectin and milbemectin. (7) Juvenile hormone imitators such as, for example, juvenile hormone analogues, e.g. hydroprene, kinoprene and methoprene or fenoxycarb or pyriproxyfen.
(8) Active compounds with unknown or nonspecific mechanisms of action such as, for example, alkyl halides, e.g. methyl bromide and other alkyl halides; or chloropicrine or sulphuryl fluoride or borax or tartar emetic. (9) Selective antifeedants, for example pymetrozine or flonicamid.
(10) Mite growth inhibitors, for example clofentezine, hexythiazox and diflovidazin or etoxazole.
(11) Microbial disruptors of the insect gut membrane, for example Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT plant proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl.
(12) Oxidative phosphorylation inhibitors, ATP disruptors such as, for example, diafenthiuron or organotin compounds, for example azocyclotin, cyhexatin and fenbutatin oxide or propargite or tetradifon;
(13) Oxidative phosphorylation decouplers acting by interrupting the H proton gradient such as, for example, chlorfenapyr, DNOC and sulfluramid.
(14) Nicotinergic acetylcholine receptor antagonists such as, for example, bensultap, cartap hydrochloride, thiocylam, and thiosultap-sodium.
(15) Chitin biosynthesis inhibitors, type 0, such as, for example, bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
(16) Chitin biosynthesis inhibitors, type 1, for example buprofezin.
(17) Moulting inhibitors (in particular for Diptera, i.e. dipterans) such as, for example, cyromazine.
(18) Ecdysone receptor agonists such as, for example, chromafenozide, halofenozide, methoxyfenozide and tebufenozide. (19) Octopaminergic agonists such as, for example, amitraz.
(20) Complex-Ill electron transport inhibitors such as, for example, hydramethylnone or acequinocyl or fluacrypyrim.
(21) Complex-I electron transport inhibitors, for example from the group of the METI acaricides, e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad or rotenone (Derris).
(22) Voltage-gated sodium channel blockers, for example indoxacarb or metaflumizone.
(23) Inhibitors of acetyl-CoA carboxylase such as, for example, tetronic and tetramic acid derivatives, e.g. spirodiclofen, spiromesifen and spirotetramat.
(24) Complex-IV electron transport inhibitors such as, for example, phosphines, e.g. aluminium phosphide, calcium phosphide, phosphine and zinc phosphide or cyanide.
(25) Complex II electron transport inhibitors, such as, for example, cyenopyrafen and cyflumetofen.
(28) Ryanodine receptor effectors, such as, for example, diamides, e.g. chlorantraniliprole, cyantraniliprole and flubendiamide, further active compounds such as, for example, afidopyropen, azadirachtin, benclothiaz, benzoximate, bifenazate, bromopropylate, chinomethionat, cryolite, dicofol, diflovidazin, fluensulfone, flometoquin, flufenerim, flufenoxystrobin, flufiprole, fluopyram, flupyradifurone, fufenozide, heptafluthrin, imidaclothiz, iprodione, meperfluthrin, paichongding, pyflubumide, pyrifluquinazon, pyriminostrobin, tetramethylfluthrin and iodomethane; furthermore preparations based on Bacillus firmus (1-1582, BioNeem, Votivo), and also the following compounds: 3- bromo-N- { 2-bromo-4-chloro-6-[( 1 -cyclopropylethyl)carbamoyl]phenyl } - 1 -(3 -chloropyridin-2-yl)- 1 H- pyrazole-5-carboxamide (known from WO2005/077934) and l-{2-fluoro-4-methyl-5-[(2,2,2- trifluoroethyl)sulphinyl]phenyl}-3-(trifluoromethyl)-lH-l,2,4-triazole-5-amine (known from WO2006/043635), { l'-[(2E)-3-(4-chlorophenyl)prop-2-en-l-yl]-5-fluorospiro[indol-3,4'-piperidin]- l(2H)-yl}(2-chloropyridin-4-yl)methanone (known from WO2003/106457), 2-chloro-N-[2-{ l-[(2E)-3- (4-chlorophenyl)prop-2-en- 1 -yl]piperidin-4-yl } -4-(trifluoromethyl)phenyl]isonicotinamide (known from WO2006/003494), 3-(2,5-dimethylphenyl)-4-hydroxy-8-methoxy-l,8-diazaspiro[4.5]dec-3-en-2-one (known from WO2009/049851), 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-l,8-diazaspiro[4.5]dec-3-en- 4-yl-ethylcarbonate (known from WO2009/049851), 4-(but-2-yn-l-yloxy)-6-(3,5-dimethylpiperidin-l- yl)-5-fluoropyrimidine (known from WO2004/099160), 4-(but-2-yn-l-yloxy)-6-(3- chlorophenyl)pyrimidine (known from WO2003/076415), PF1364 (CAS Reg. No. 1204776-60-2), 4-[5- (3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-l,2-oxazol-3-yl]-2-methyl-N-{2-oxo-2-[(2,2,2- trifluoroethyl) amino] ethyl Jbenzamide (known from WO2005/085216), 4-{5-[3-chloro-5- (trifluoromethyl)phenyl] -5-(trifluoromethyl)-4,5-dihydro- 1 ,2-oxazol-3-yl } -N- { 2-oxo-2-[(2,2,2- trifluoroethyl)amino]ethyl}-l-naphthamide (known from WO2009/002809), methyl 2-[2-({ [3-bromo-l- (3-chloropyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)-5-chloro-3-methylbenzoyl]-2- methylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[2-({ [3-bromo-l-(3- chloropyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2- ethylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[2-({ [3-bromo-l-(3-chloropyridin- 2-yl)-lH-pyrazol-5-yl]carbonyl}amino)-5-cyano-3-methylbenzoyl]-2-methylhydrazinecarboxylate (known from WO2005/085216), methyl 2-[3,5-dibromo-2-({ [3-bromo-l-(3-chloropyridin-2-yl)-lH- pyrazol-5-yl]carbonyl}amino)benzoyl] -2 -ethylhydrazinecarboxylate (known from WO2005/085216), 1- (3-chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-3-{ [5-(trifluoromethyl)-2H- tetrazol-2-yl]methyl}-lH-pyrazole-5-carboxamide (known from WO2010/069502), N-[2-(5-amino- l,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-l-(3-chloropyridin-2-yl)-lH-pyrazole-5- carboxamide (known from CN102057925), 3-chloro-N-(2-cyanopropan-2-yl)-N-[4-(l, 1,1,2,3, 3,3- heptafluoropropan-2-yl)-2-methylphenyl]phthalamide (known from WO2012/034472), 8-chloro-N-[(2- chloro-5-methoxyphenyl)sulphonyl]-6-(trifluoromethyl)imidazo[l,2-a]pyridine-2-carboxamide (known from WO2010/129500), 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-l,2-oxazol-3-yl]-2- methyl-N-(l-oxidothietan-3-yl)benzamide (known from WO2009/080250), 4-[5-(3,5-dichlorophenyl)-5- (trifluoromethyl)-4,5-dihydro-l,2-oxazol-3-yl]-2-methyl-N-(l-oxidothietan-3-yl)benzamide (known from WO2012/029672), l-[(2-chloro-l,3-thiazol-5-yl)methyl]-4-oxo-3-phenyl-4H-pyrido[l,2- a]pyrimidin-l-ium-2-olate (known from WO2009/099929), l-[(6-chloropyridin-3-yl)methyl]-4-oxo-3- phenyl-4H-pyrido[l,2-a]pyrimidin-l-ium-2-olate (known from WO2009/099929), (5S,8R)-l-[(6- chloropyridin-3-yl)methyl]-9-nitro-2,3, 5,6,7, 8-hexahydro-lH-5,8-epoxyimidazo[l,2-a]azepine (known from WO2010/069266), (2E)-l-[(6-chloropyridin-3-yl)methyl]-N'-nitro-2- pentylidenehydrazinecarboximidamide (known from WO2010/060231), 4-(3-{2,6-dichloro-4-[(3,3- dichloroprop-2-en- 1 -yl)oxy ] phenoxy } propoxy) -2-methoxy-6 -(trifluoromethyl)pyrimidine (known from CN101337940), N-[2-(tert-butylcarbamoyl)-4-chloro-6-methylphenyl]-l-(3-chloropyridin-2-yl)-3- (fluoromethoxy)-lH-pyrazole-5-carboxamide (known from WO2008/134969).
Fungicides
The active compounds specified herein by their common name are known and described, for example, in "Pesticide Manual" or on the Internet (for example: http://www.alanwood.net/pesticides). (1) Inhibitors of ergosterol biosynthesis such as, for example, (1.1) aldimorph, (1.2) azaconazole, (1.3) bitertanol, (1.4) bromuconazole, (1.5) cyproconazole, (1.6) diclobutrazole, (1.7) difenoconazole, (1.8) diniconazole, (1.9) diniconazole-M, (1.10) dodemorph, (1.11) dodemorph acetate, (1.12) epoxiconazole, (1.13) etaconazole, (1.14) fenarimol, (1.15) fenbuconazole, (1.16) fenhexamid, (1.17) fenpropidin, (1.18) fenpropimorph, (1.19) fluquinconazole, (1.20) flurprimidol, (1.21) flusilazole, (1.22) flutriafole, (1.23) furconazole, (1.24) furconazole-cis, (1.25) hexaconazole, (1.26) imazalil, (1.27) imazalil sulphate, (1.28) imibenconazole, (1.29) ipconazole, (1.30) metconazole, (1.31) myclobutanil, (1.32) naftifin, (1.33) nuarimol, (1.34) oxpoconazole, (1.35) paclobutrazole, (1.36) pefurazoate, (1.37) penconazole, (1.38) piperalin, (1.39) prochloraz, (1.40) propiconazole, (1.41) prothioconazole, (1.42) pyributicarb, (1.43) pyrifenox, (1.44) quinconazole, (1.45) simeconazole, (1.46) spiroxamine, (1.47) tebuconazole, (1.48) terbinafin, (1.49) tetraconazole, (1.50) triadimefon, (1.51) triadimenol, (1.52) tridemorph, (1.53) triflumizole, (1.54) triforine, (1.55) triticonazole, (1.56) uniconazole, (1.57) uniconazole-P, (1.58) viniconazole, (1.59) voriconazole, (1.60) l-(4-chlorophenyl)-2-(lH-l,2,4-triazol-l-yl)cycloheptanol, (1.61) methyl l-(2,2-dimethyl-2,3-dihydro-lH-inden-l-yl)-lH-imidazole-5-carboxylate, (1.62) N'-{5- (difluoromethyl)-2-methyl-4-[3-(trimethylsilyl)propoxy]phenyl}-N-ethyl-N-methylimidoformamide, (1.63) N-ethyl-N-methyl-N'-{2-methyl-5-(trifluoromethyl)-4-[3- (trimethylsilyl)propoxy] phenyl Jimidoformamide and (1.64) 0-[l-(4-methoxyphenoxy)-3,3- dimethylbutan-2-yl] - 1 H-imidazole- 1 -carbothioate, ( 1.65) pyrisoxazole.
(2) Respiration inhibitors (respiratory chain inhibitors) such as, for example, (2.1) bixafen, (2.2) boscalid, (2.3) carboxin, (2.4) diflumetorim, (2.5) fenfuram, (2.6) fluopyram, (2.7) flutolanil, (2.8) fluxapyroxad, (2.9) furametpyr, (2.10) furmecyclox, (2.11) isopyrazam mixture of the syn-epimeric racemate 1RS,4SR,9RS and the anti-empimeric racemate 1RS,4SR,9SR, (2.12) isopyrazam (anti-epimeric racemate ), (2.13) isopyrazam (anti-epimeric enantiomer 1R,4S,9S), (2.14) isopyrazam (anti-epimeric enantiomer 1S,4R,9R), (2.15) isopyrazam (syn-epimeric racemate 1RS,4SR,9RS), (2.16) isopyrazam (syn-epimeric enantiomer 1R,4S,9R), (2.17) isopyrazam (syn-epimeric enantiomer 1S,4R,9S), (2.18) mepronil, (2.19) oxycarboxin, (2.20) penflufen, (2.21) penthiopyrad, (2.22) sedaxane, (2.23) thifluzamide, (2.24) l-methyl-N-[2-(l,l,2,2-tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-lH-pyrazole-
4- carboxamide, (2.25) 3-(difluoromethyl)-l -methyl-N-[2-(l , 1 ,2,2-tetrafluoroethoxy)phenyl]-lH- pyrazole-4-carboxamide, (2.26) 3-(difluoromethyl)-N-[4-fluoro-2-(l, 1,2,3, 3,3- hexafluoropropoxy)phenyl]- 1 -methyl- lH-pyrazole-4-carboxamide, (2.27) N-[ 1 -(2,4-dichlorophenyl)- 1 - methoxypropan-2-yl]-3-(difluoromethyl)-l-methyl-lH-pyrazole-4-carboxamide, (2.28) 5,8-difluoro-N- [2-(2-fluoro-4-{ [4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazoline-4-amine, (2.29) benzovindiflupyr, (2.30) N-[(lS,4R)-9-(dichloromethylene)-l,2,3,4-tetrahydro-l,4-methanonaphthalen-
5- yl]-3-(difluoromethyl)-l-methyl-lH-pyrazole-4-carboxamide and (2.31) N-[(lR,4S)-9- (dichloromethylene)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5 -yl] -3-(difluoromethyl)- 1 -methyl- 1 H- pyrazole-4-carboxamide, (2.32) 3-(difluoromethyl)-l-methyl-N-(l,l,3-trimethyl-2,3-dihydro-lH-inden- 4-yl)-lH-pyrazole-4-carboxamide, (2.33) l,3,5-trimethyl-N-(l,l,3-trimethyl-2,3-dihydro-lH-inden-4- yl)-lH-pyrazole-4-carboxamide, (2.34) l-methyl-3-(trifluoromethyl)-N-(l,l,3-trimethyl-2,3-dihydro- lH-inden-4-yl)-lH-pyrazole-4-carboxamide, (2.35) l-methyl-3-(trifluoromethyl)-N-[(3R)-l,l,3- trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazole-4-carboxamide, (2.36) l-methyl-3-(trifluoromethyl)- N-[(3S)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazole-4-carboxamide, (2.37) 3- (difluoromethyl)-l-methyl-N-[(3S)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazole-4- carboxamide, (2.38) 3-(difluoromethyl)-l-methyl-N-[(3R)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]- lH-pyrazole-4-carboxamide, (2.39) l,3,5-trimethyl-N-[(3R)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4- yl] - 1 H-pyrazole-4-carboxamide, (2.40) 1 ,3 ,5-trimethyl-N- [(3S)- 1 , 1 ,3-trimethyl-2,3 -dihydro- 1 H-inden- 4-yl]-lH-pyrazole-4-carboxamide, (2.41) benodanil, (2.42) 2-chloro-N-(l,l,3-trimethyl-2,3-dihydro-lH- inden-4-yl)pyridine-3-carboxamide, (2.43) isofetamid
(3) Respiration inhibitors (respiratory chain inhibitors) acting on complex III of the respiratory chain such as, for example, (3.1) ametoctradin, (3.2) amisulbrom, (3.3) azoxystrobin, (3.4) cyazofamid, (3.5) coumethoxystrobin, (3.6) coumoxystrobin, (3.5) dimoxystrobin, (3.8) enestroburin, (3.9) famoxadone,
(3.10) fenamidone, (3.11) flufenoxystrobin, (3.12) fluoxastrobin, (3.13) kresoxim-methyl, (3.14) metominostrobin, (3.15) orysastrobin, (3.16) picoxystrobin, (3.17) pyraclostrobin, (3.18) pyrametostrobin, (3.19) pyraoxystrobin, (3.20) pyribencarb, (3.21) triclopyricarb, (3.22) trifloxystrobin, (3.23) (2E)-2-(2-{ [6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl]oxy}phenyl)-2- (methoxyimino)-N-methylethanamide, (3.24) (2E)-2-(methoxyimino)-N-methyl-2-(2-{ [({(lE)-l-[3- (trifluoromethyl)phenyl] ethylidene } amino)oxy ] methyl } phenyl)ethanamide , (3.25) (2E) -2-
(methoxyimino)-N-methyl-2-{2-[(E)-({ l-[3-
(trifluoromethyl)phenyl]ethoxy}imino)methyl]phenyl}ethanamide, (3.26) (2E)-2-{2-[({ [(1Ε)-1-(3- { [(E)-l-fluoro-2^henylethenyl]oxy}phenyl)ethylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)- N-methylethanamide, (3.27) (2E)-2-{2-[({ [(2E,3E)-4-(2,6-dichlorophenyl)but-3-en-2- ylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide, (3.28) 2-chloro-N-( 1,1,3 - trimethyl-2,3-dihydro-lH-inden-4-yl)pyridine-3-carboxamide, (3.29) 5-methoxy-2-methyl-4-(2- { [({(lE)-l-[3-(trifluoromethyl)phenyl]ethylidene}aniino)oxy]methyl}phenyl)-2,4-dihydro-3H-l,2,4- triazol-3-one, (3.30) methyl (2E)-2-{2-[({cyclopropyl[(4- methoxyphenyl)imino]methyl}sulphanyl)methyl]phenyl}-3-methoxyprop-2-enoate, (3.31) N-(3-ethyl- 3,5,5-trimethylcyclohexyl)-3-(formylamino)-2-hydroxybenzamide, (3.32) 2-{2-[(2,5- dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide, (4) inhibitors of mitosis and cell division such as, for example, (4.1) benomyl, (4.2) carbendazim, (4.3) chlorfenazole, (4.4) diethofencarb, (4.5) ethaboxam, (4.6) fluopicolid, (4.7) fuberidazole, (4.8) pencycuron, (4.9) thiabendazole, (4.10) thiophanate-methyl, (4.11) thiophanate, (4.12) zoxamide, (4.13) 5-chloro-7-(4-methylpiperidin-l-yl)-6- (2,4,6-trifluorophenyl)[l,2,4]triazolo[l,5-a]pyrimidine and (4.14) 3-chloro-5-(6-chloropyridin-3-yl)-6- methyl-4-(2,4,6-trifluorophenyl)pyridazine.
(5) Compounds having multisite activity such as, for example, (5.1) Bordeaux mixture, (5.2) captafol, (5.3) captan, (5.4) chlorothalonil, (5.5) copper preparations such as copper hydroxide, (5.6) copper naphthenate, (5.7) copper oxide, (5.8) copper oxychloride, (5.9) copper sulphate, (5.10) dichlofluanid,
(5.11) dithianon, (5.12) dodine, (5.13) dodine free base, (5.14) ferbam, (5.15) fluorfolpet, (5.16) folpet, (5.17) guazatine, (5.18) guazatine acetate, (5.19) iminoctadine, (5.20) iminoctadine albesilate, (5.21) iminoctadine triacetate, (5.22) mancopper, (5.23) mancozeb, (5.24) maneb, (5.25) metiram, (5.26) zinc metiram, (5.27) copper-oxine, (5.28) propamidine, (5.29) propineb, (5.30) sulphur and sulphur preparations such as, for example calcium polysulphide, (5.31) thiram, (5.32) tolylfluanid, (5.33) zineb, (5.34) ziram and (5.35) anilazine. (6) Resistance inducers such as, for example, (6.1) acibenzolar-S-methyl, (6.2) isotianil, (6.3) probenazole, (6.4) tiadinil and (6.5) laminarin.
(7) Inhibitors of amino acid and protein biosynthesis such as, for example, (7.1) , (7.2) blasticidin-S, (7.3) cyprodinil, (7.4) kasugamycin, (7.5) kasugamycin hydrochloride hydrate, (7.6) mepanipyrim, (7.7) pyrimethanil, (7.8) 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-l-yl)quinoline and (7.9) oxytetracycline and (7.10) streptomycin.
(8) ATP production inhibitors such as, for example, (8.1) fentin acetate, (8.2) fentin chloride, (8.3) fentin hydroxide and (8.4) silthiofam.
(9) Inhibitors of cell wall synthesis such as, for example, (9.1) benthiavalicarb, (9.2) dimethomorph, (9.3) flumorph, (9.4) iprovalicarb, (9.5) mandipropamid, (9.6) polyoxins, (9.7) polyoxorim, (9.8) validamycin A, (9.9) valifenalate and (9.10) polyoxin B.
(10) Inhibitors of lipid and membrane synthesis such as, for example, (10.1) biphenyl, (10.2) chlorneb,
(10.3) dicloran, (10.4) edifenphos, (10.5) etridiazole, (10.6) iodocarb, (10.7) iprobenfos, (10.8) isoprothiolane, (10.9) propamocarb, (10.10) propamocarb hydrochloride, (10.11) prothiocarb,, (10.12) pyrazophos, (10.13) quintozene, (10.14) tecnazene and (10.15) tolclofos-methyl.
(11) Melanin biosynthesis inhibitors, for example (11.1) carpropamid, (11.2) diclocymet, (11.3) fenoxanil, (11.4) fthalide, (11.5) pyroquilon, (11.6) tricyclazole and (11.7) 2,2,2-trifluoroethyl {3- methyl-l-[(4-methylbenzoyl)amino]butan-2-yl} carbamate.
(12) Inhibitors of nucleic acid synthesis such as, for example, (12.1) benalaxyl, (12.2) benalaxyl-M (kiralaxyl), (12.3) bupirimate, (12.4) clozylacon, (12.5) dimethirimol, (12.6) ethirimol, (12.7) furalaxyl,
(12.8) hymexazole, (12.9) metalaxyl, (12.10) metalaxyl-M (mefenoxam), (12.11) ofurace, (12.12) oxadixyl, (12.13) oxolinic acid and (12.14) octhilinone.
(13) Signal transduction inhibitors such as, for example, (13.1) chlozolinate, (13.2) fenpiclonil, (13.3) fludioxonil, (13.4) iprodione, (13.5) procymidone, (13.6) quinoxyfen, (13.7) vinclozolin and (13.8) proquinazid.
(14) Decouplers such as, for example, (14.1) binapacryl, (14.2) dinocap, (14.3) ferimzone, (14.4) fluazinam and (14.5) meptyldinocap.
(15) Further compounds such as, for example, (15.1) benthiazole, (15.2) bethoxazine, (15.3) capsimycin,
(15.4) carvone, (15.5) chinomethionat, (15.6) pyriofenone (chlazafenone), (15.7) cufraneb, (15.8) cyflufenamid, (15.9) cymoxanil, (15.10) cyprosulfamide, (15.11) dazomet, (15.12) debacarb, (15.13) dichlorophen, (15.14) diclomezine, (15.15) difenzoquat, (15.16) difenzoquat methylsulphate, (15.17) diphenylaniine, (15.18) EcoMate, (15.19) fenpyrazamine, (15.20) flumetover, (15.21) fluorimid, (15.22) flusulfamide, (15.23) flutianil, (15.24) fosetyl-aluminium, (15.25) fosetyl-calcium, (15.26) fosetyl- sodium, (15.27) hexachlorobenzene, (15.28) irumamycin, (15.29) methasulfocarb, (15.30) methyl isothiocyanate, (15.31) metrafenone, (15.32) mildiomycin, (15.33) natamycin, (15.34) nickel dimethyldithiocarbamate, (15.35) nitrothal-isopropyl, (15.36) octhilinone, (15.37) oxamocarb, (15.38) oxyfenthiin, (15.39) pentachlorophenol and its salts, (15.40) phenothrin, (15.41) phosphoric acid and its salts, (15.42) propamocarb-fosetylate, (15.43) propanosine-sodium, (15.44) pyrimorph, (15.45) (2E)-3- (4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-l-(morpholin-4-yl)prop-2-en-l-one, (15.46) (2Z)-3-(4-tert- butylphenyl)-3-(2-chloropyridin-4-yl)-l-(morpholin-4-yl)prop-2-en-l-one, (15.47) pyrrolnitrin, (15.48) tebufloquin, (15.49) tecloftalam, (15.50) tolnifanide, (15.51) triazoxide, (15.52) trichlamide, (15.53) zarilamid, (15.54) (3S,6S,7R,8R)-8-benzyl-3-[({3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2- yl}carbonyl)amino]-6-methyl-4,9-dioxo-l,5-dioxonan-7-yl 2-methylpropanoate, (15.55) l-(4-{4-[(5R)- 5-(2,6-difluorophenyl)-4,5-dihydro-l,2-oxazol-3-yl]-l,3-thiazol-2-yl}piperidin-l-yl)-2-[5-methyl-3- (trifluoromethyl)-lH-pyrazol-l-yl]ethanone, (15.56) l-(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro- 1 ,2-oxazol-3 -yl] - 1 ,3 -thiazol-2-yl Jpiperidin- 1 -yl)-2-[5-methyl-3 -(trilluoromethyl)- 1 H-pyrazol- 1 - yljethanone, (15.57) 1 -(4- { 4- [5 -(2,6-dilluorophenyl)-4,5 -dihydro- 1 ,2-oxazol-3 -yl] - 1 ,3 -thiazol-2- yl}piperidin-l-yl)-2-[5-methyl-3-(trilluoromethyl)-lH-pyrazol-l-yl]ethanone, (15.58) l-(4- methoxyphenoxy)-3,3-dimethylbutan-2-yl lH-imidazole-l-carboxylate, (15.59) 2,3,5,6-tetrachloro-4- (methylsulphonyl)pyridine, (15.60) 2,3-dibutyl-6-chlorothieno[2,3-d]pyrimidin-4(3H)-one, (15.61) 2,6- dimethyl-lH,5H-[l,4]dithiino[2,3-c:5,6-c']dipyrrole-l,3,5,7(2H,6H)-tetrone, (15.62) 2-[5-methyl-3- ( trilluoromethyl)- 1 H-pyrazol- 1 -yl] - 1 -(4- { 4-[(5R)-5-phenyl-4,5 -dihydro- 1 ,2-oxazol-3 -yl] - 1 ,3 -thiazol-2- yl Jpiperidin- l-yl)ethanone, (15.63) 2-[5-methyl-3-(trilluoromethyl)-lH-pyrazol-l-yl]-l-(4-{4-[(5S)-5- phenyl-4,5-dihydro-l,2-oxazol-3-yl]-l,3-thiazol-2-yl}piperidin-l-yl)ethanone, (15.64) 2-[5-methyl-3- ( trilluoromethyl)- 1 H-pyrazol- 1 -yl] - 1 - { 4- [4-(5-phenyl-4,5-dihydro- 1 ,2-oxazol-3 -yl)- 1 ,3 -thiazol-2- yl]piperidin-l -yljethanone, (15.65) 2-butoxy-6-iodo-3-propyl-4H-chromen-4-one, (15.66) 2-chloro-5- [2-chloro- 1 -(2,6-difluoro-4-methoxyphenyl)-4-methyl- 1 H-imidazol-5 -yljpyridine, (15.67) 2- phenylphenol and salts, (15.68) 3-(4,4,5-trilluoro-3,3-dimethyl-3,4-dihydroisoquinolin-l-yl)quinoline, (15.69) 3,4,5-trichloropyridine-2,6-dicarbonitrile, (15.70) 3-chloro-5-(4-chlorophenyl)-4-(2,6- dilluorophenyl)-6-methylpyridazine, (15.71) 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)-3,6- dimethylpyridazine, (15.72) 5-amino-l,3,4-thiadiazole-2-thiol, (15.73) 5-chloro-N'-phenyl-N'-(prop-2- yn-l-yl)thiophene-2-sulphonohydrazide, (15.74) 5-iluoro-2-[(4-fluorobenzyl)oxy]pyrimidine-4-amine, (15.75) 5-fluoro-2-[(4-methylbenzyl)oxy]pyrimidine-4-amine, (15.76) 5-methyl-6- octyl[l,2,4]triazolo[l,5-a]pyrimidine-7-amine, (15.77) ethyl (2Z)-3-amino-2-cyano-3-phenylacrylate, (15.78) N'-(4-{ [3-(4-chlorobenzyl)-l,2,4-thiadiazol-5-yl]oxy}-2,5-dimethylphenyl)-N-ethyl-N- methylimidoformamide, ( 15.79) N-(4-chlorobenzyl)-3 - [3 -methoxy-4-(prop-2-yn- 1 - yloxy)phenyl]propanamide, (15.80) N-[(4-chlorophenyl)(cyano)methyl]-3-[3-methoxy-4-(prop-2-yn-l- yloxy)phenyl]propanamide, (15.81) N-[(5-bromo-3-chloropyridin-2-yl)methyl]-2,4- dichloronicotinamide, (15.82) N- [ 1 -(5 -bromo-3 -chloropyridin-2-yl)ethyl] -2,4-dichloronicotinamide, (15.83) N-[l-(5-bromo-3-chloropyridin-2-yl)ethyl]-2-lluoro-4-iodonicotinamide, (15.84) N-{(E)- [(cyclopropylmethoxy)imino][6-(diiluoromethoxy)-2,3-diiluorophenyl]methyl}-2-phenylacetamide, (15.85) N- { (Z)- [(cyclopropylmethoxy)irnino] [6-(difluoromethoxy)-2,3 -difluorophenyl] methyl } -2- phenylacetamide, (15.86) N'- { 4-[(3-tert-butyl-4-cyano- 1 ,2-thiazol-5-yl)oxy] -2-chloro-5-methylphenyl } - N-ethyl-N-methylimidoformamide, (15.87) N-methyl-2-(l-{ [5-methyl-3-(trifluoromethyl)-lH-pyrazol- 1 -yl] acetyl }piperidin-4-yl)-N-( 1 ,2,3 ,4-tetrahydronaphthalen- 1 -yl)- 1 ,3 -thiazole-4-carboxamide, (15.88) N-methyl-2-(l-{ [5-methyl-3-(trilluoromethyl)-lH-pyrazol-l-yl]acetyl}piperidin-4-yl)-N-[(lR)-l,2,3,4- tetrahydronaphthalen-l-yl]-l,3-thiazole-4-carboxamide, (15.89) N-methyl-2-(l-{ [5-methyl-3- (trilluoromethyl)- 1 H-pyrazol- 1 -yl] acetyl }piperidin-4-yl)-N-[( 1 S)- 1 ,2,3 ,4-tetrahydronaphthalen- 1 -yl] - l,3-thiazole-4-carboxamide, (15.90) pentyl {6-[({ [(l-methyl-lH-tetrazol-5- yl)(phenyl)methylene] amino } oxy)methyl]pyridin-2-yl } carbamate, (15.91) phenazine- 1 -carboxylic acid, (15.92) quinolin-8-ol, (15.93) quinolin-8-ol sulphate (2: 1), (15.94) tert-butyl { 6- [({ [(1 -methyl- 1H- tetrazol-5 -yl)(phenyl)methylene] amino } oxy)methyl]pyridin-2-yl } carbamate, (15.95) 1 -methyl-3- (trifluoromethyl)-N-[2'-(trifluoromethyl)biphenyl-2-yl]-lH-pyrazole-4-carboxamide, (15.96) N-(4'- chlorobiphenyl-2-yl)-3-(dilluoromethyl)-l-methyl-lH-pyrazole-4-carboxamide, (15.97) N-(2',4'- dichlorobiphenyl-2-yl)-3-(difluoromethyl)-l-methyl-lH-pyrazole-4-carboxamide, (15.98) 3- (difluoromethyl)- 1 -methyl-N-[4'-(trilluoromethyl)biphenyl-2-yl] - 1 H-pyrazole-4-carboxamide, ( 15.99) N-(2\5'-difluorobiphenyl-2-yl)-l-methyl-3-(trifluoromethyl)-lH-pyrazole-4-carboxamide, (15.100) 3- (dilluoromethyl)- 1 -methyl-N-[4'-(prop- 1 -yn- 1 -yl)biphenyl-2-yl] - 1 H-pyrazole-4-carboxamide, (15.101) 5-lluoro- 1 ,3 -dimethyl-N- [4'-(prop- 1 -yn- 1 -yl)biphenyl-2-yl] - 1 H-pyrazole-4-carboxamide, (15.102) 2- chloro-N- [4'-(prop- 1 -yn- 1 -yl)biphenyl-2-yl] nicotinamide, ( 15.103) 3-(difluoromethyl)-N- [4'-(3 ,3- dimethylbut-l-yn-l-yl)biphenyl-2-yl]-l-methyl-lH-pyrazole-4-carboxamide, (15.104) N-[4'-(3,3- dimethylbut- 1 -yn- 1 -yl)biphenyl-2-yl] -5 -fluoro- 1 ,3 -dimethyl- 1 H-pyrazole-4-carboxamide, (15.105) 3- (dilluoromethyl)-N-(4'-ethynylbiphenyl-2-yl)- 1 -methyl- 1 H-pyrazole-4-carboxamide, (15.106) N-(4'- ethynylbiphenyl-2-yl)-5-lluoro-l,3-dimethyl-lH-pyrazole-4-carboxamide, (15.107) 2-chloro-N-(4'- ethynylbiphenyl-2-yl)nicotinamide, (15.108) 2-chloro-N- [4'-(3 ,3 -dimethylbut- 1 -yn- 1 -yl)biphenyl-2- yl] nicotinamide, (15.109) 4-(difluoromethyl)-2-methyl-N-[4'-(trilluoromethyl)biphenyl-2-yl] -1,3- thiazole-5-carboxamide, (15.110) 5-iluoro-N-[4'-(3 -hydroxy-3 -methylbut- 1 -yn- 1 -yl)biphenyl-2-yl] -1,3- dimethyl-lH-pyrazole-4-carboxamide, (15.111) 2-chloro-N-[4'-(3-hydroxy-3-methylbut-l-yn-l- yl)biphenyl-2-yl] nicotinamide, (15.112) 3-(difluoromethyl)-N-[4'-(3-methoxy-3-methylbut-l-yn-l- yl)biphenyl-2-yl] - 1 -methyl- 1 H-pyrazole-4-carboxamide, (15.113) 5-fluoro-N-[4'-(3 -methoxy-3 - methylbut-l-yn-l-yl)biphenyl-2-yl]-l,3-dimethyl-lH-pyrazole-4-carboxamide, (15.114) 2-chloro-N- [4'- (3-methoxy-3-methylbut-l-yn-l-yl)biphenyl-2-yl]nicotinamide, (15.115) (5-bromo-2-methoxy-4- methylpyridin-3-yl)(2,3,4-trimethoxy-6-methylphenyl)methanone, (15.116) N-[2-(4-{ [3-(4- chlorophenyl)prop-2-yn- 1 -yl] oxy } -3 -methoxyphenyl)ethyl] -N2-(methylsulphonyl) valinamide, (15.117) 4-oxo-4-[(2-phenylethyl)amino]butanoic acid, (15.118) but-3-yn-l-yl {6-[({ [(Z)-(l-methyl-lH-tetrazol- 5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate, (15.119) 4-amino-5- fluoropyrimidin-2-ol (tautomeric form: 4-amino-5-fluoropyrimidin-2(lH)-one), (15.120) propyl 3,4,5- trihydroxybenzoate, (15.121) l,3-dimethyl-N-(l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)-lH-pyrazole- 4-carboxamide, (15.122) l,3-dimethyl-N-[(3R)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH- pyrazole-4-carboxamide, (15.123) l,3-dimethyl-N-[(3S)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]- lH-pyrazole-4-carboxamide, (15.124) [3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-l,2-oxazol- 4-yl](pyridin-3-yl)methanol, (15.125) (S)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-dilluorophenyl)-l,2- oxazol-4-yl](pyridin-3-yl)methanol, (15.126) (R)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-dilluorophenyl)- 1 ,2-oxazol-4-yl] (pyridin-3-yl)methanol, (15.127) 2- { [3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran- 2-yl] methyl } -2,4-dihydro-3H- 1 ,2,4-triazole-3 -thione, (15.128) 1 - { [3-(2-chlorophenyl)-2-(2,4- dilluorophenyl)oxiran-2-yl]methyl}-lH-l,2,4-triazol-5-yl thiocyanate, (15.129) 5-(allylsulfanyl)-l-{ [3- (2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl] methyl } - 1 H- 1 ,2,4-triazole, (15.130) 2- [ 1 -(2,4- dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazole-3-thione, (15.131) 2-{ [rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-l,2,4- triazole-3-thione, (15.132) 2-{ [rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2- yl]methyl}-2,4-dihydro-3H-l,2,4-triazole-3-thione, (15.133) l-{ [rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4- dilluorophenyl)oxiran-2-yl] methyl } - 1 H- 1 ,2,4-triazol-5-yl thiocyanate, (15.134) l-{ [rel(2R,3R)-3 -(2- chlorophenyl)-2-(2,4-dilluorophenyl)oxiran-2-yl] methyl } - 1 H- 1 ,2,4-triazol-5 -yl thiocyanate, (15.135) 5- (allylsulphanyl)- 1 - { [rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl] methyl } - 1 H-
1,2,4-triazole, (15.136) 5-(allylsulphanyl)-l-{ [rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4- dilluorophenyl)oxiran-2-yl]methyl}-lH-l,2,4-triazole, (15.137) 2-[(2S,4S,5S)-l-(2,4-dichlorophenyl)-5- hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazole-3-thione, (15.138) 2-[(2R,4S,5S)-l- (2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazole-3-thione, (15.139) 2-[(2R,4R,5R)-l-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H- l,2,4-triazole-3-thione, (15.140) 2-[(2S,4R,5R)-l-(2,4-dichlorophenyl)-5-hydroxy-2,6,6- trimethylheptan-4-yl] -2,4-dihydro-3H- 1 ,2,4-triazole-3 -thione, (15.141) 2-[(2S ,4S ,5R)- 1 -(2,4- dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazole-3-thione, (15.142) 2-[(2R,4S,5R)-l-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4- triazole-3-thione, (15.143) 2-[(2R,4R,5S)-l-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4- yl]-2,4-dihydro-3H-l,2,4-triazole-3-thione, (15.144) 2-[(2S,4R,5S)-l-(2,4-dichlorophenyl)-5-hydroxy- 2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazole-3-thione, (15.145) 2-lluoro-6-
(triiluoromethyl)-N-(l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)benzamide, (15.146) 2-(6- benzylpyridin-2-yl)quinazoline, (15.147) 2-[6-(3-lluoro-4-methoxyphenyl)-5-methylpyridin-2- yl]quinazoline, (15.148) 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-l-yl)quinoline, (15.149) abscisic acid, (15.150) 3-(dilluoromethyl)-N-methoxy-l-methyl-N-[l-(2,4,6-trichlorophenyl)propan-2- yl] - 1 H-pyrazole-4-carboxamide, (15.151) N'-[5 -bromo-6-(2,3-dihydro- 1 H-inden-2-yloxy)-2- methylpyridin-3 -yl] -N-ethyl-N-methylimidoformamide, (15.152) N'-{ 5 -bromo-6- [ 1 -(3 ,5 - dilluorophenyl)ethoxy] -2-methylpyridin-3 -yl } -N-ethyl-N-methylimidoformamide, (15.153) N'-{5- bromo-6-[(lR)-l-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (15.154) N-{5-bromo-6-[(lS)-l-(3,5-dilluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N- methylimidoformamide, (15.155) N'-{5-bromo-6-[(cis-4-isopropylcyclohexyl)oxy]-2-methylpyridin-3- yl} -N-ethyl-N-methylimidoformamide, (15.156) N'-{ 5-bromo-6-[(trans-4-isopropylcyclohexyl)oxy]-2- methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (15.157) N-cyclopropyl-3-(difluoromethyl)-5- fluoro-N-(2-isopropylbenzyl)-l-methyl-lH-pyrazole -4-carboxamide, (15.158) N-cyclopropyl-N-(2- cyclopropylbenzyl)-3-(difluoromethyl)-5-fluoro-l-methyl-lH-pyrazole-4-carboxarnide, (15.159) N-(2- tert-butylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-l-methyl-lH-pyrazole-4-carboxarnide, (15.160) N-(5-chloro-2-ethylbenzyl)-N-cyclopropyl-3-(diiluoromethyl)-5-fluoro-l-methyl-lH-pyrazole-
4- carboxamide, (15.161) N-(5-chloro-2-isopropylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-lluoro-l- methyl-lH-pyrazole -4-carboxamide, (15.162) N-cyclopropyl-3-(difluoromethyl)-N-(2-ethyl-5- fluorobenzyl)-5-lluoro- 1 -methyl- 1 H-pyrazole-4-carboxamide, (15.163) N-cyclopropyl-3 - (difluoromethyl)-5-fluoro-N-(5-fluoro-2-isopropylbenzyl)-l-methyl-lH-pyrazole-4-carboxamide, (15.164) N-cyclopropyl-N-(2-cyclopropyl-5 -fluorobenzyl)-3 -(difluoromethyl)-5-fluoro- 1 -methyl- 1 H- pyrazole -4-carboxamide, (15.165) N-(2-cyclopentyl-5-fluorobenzyl)-N-cyclopropyl-3-(difluoromethyl)-
5- lluoro-l-methyl-lH-pyrazole-4-carboxamide, (15.166) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N- (2-fluoro-6 -isopropylbenzyl) - 1 -methyl- 1 H-pyrazole -4-carboxamide , (15.167) N-cyclopropyl-3 - (difluoromethyl)-N-(2-ethyl-5-methylbenzyl)-5-fluoro-l-methyl-lH-pyrazole -4-carboxamide, (15.168) N-cyclopropyl-3-(difluoromethyl)-5-lluoro-N-(2-isopropyl-5-methylbenzyl)-l-methyl-lH-pyrazole-4- carboxamide, (15.169) N-cyclopropyl-N-(2-cyclopropyl-5-methylbenzyl)-3-(diiluoromethyl)-5-fluoro- 1 -methyl- 1 H-pyrazole -4-carboxamide, (15.170) N-(2-tert-butyl-5-methylbenzyl)-N-cyclopropyl-3- (diiluoromethyl)-5-fluoro-l-methyl-lH-pyrazole -4-carboxamide, (15.171) N-[5-chloro-2-
(trifluoromethyl)benzyl] -N-cyclopropyl-3 -(difluoromethyl)-5-fluoro- 1 -methyl- 1 H-pyrazole -4- carboxamide, (15.172) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-l-methyl-N-[5-methyl-2- (trilluoromethyl)benzyl]-lH-pyrazole-4-carboxamide, (15.173) N-[2-chloro-6-(trifluoromethyl)benzyl]- N-cyclopropyl-3-(difluoromethyl)-5-fluoro-l -methyl- lH-pyrazole -4-carboxamide, (15.174) N-[3- chloro-2-lluoro-6-(triiluoromethyl)benzyl] -N-cyclopropyl-3 -(dilluoromethyl)-5 -fluoro- 1 -methyl- 1 H- pyrazole -4-carboxamide, (15.175) N-cyclopropyl-3-(dilluoromethyl)-N-(2-ethyl-4,5-dimethylbenzyl)-5- fluoro- 1 -methyl- lH-pyrazole-4-carboxamide, (15.176) N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N- (2-isopropylbenzyl)-l-methyl-lH-pyrazol-4-carbothioamide, (15.177) 3-(difluoromethyl)-N-(7-fluoro- l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl)-l-methyl-lH-pyrazole-4-carboxamide, (15.178) 3- (difluoromethyl)-N-[(3R)-7-lluoro-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-l-methyl-lH-pyrazole- 4-carboxamide, (15.179) 3-(dilluoromethyl)-N-[(3S)-7-fluoro-l , 1 ,3-trimethyl-2,3-dihydro-lH-inden-4- yl] - 1 -methyl- 1 H-pyrazole-4-carboxamide, (15.180) N'-(2,5-dimethyl-4-phenoxyphenyl)-N-ethyl-N- methylimidoformamide, (15.181) N'-{4-[(4,5-dichloro-l,3-thiazol-2-yl)oxy]-2,5-dimethylphenyl}-N- ethyl-N-methylimidoformamide, (15.182) N-(4-chloro-2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)- l,3-dimethyl-lH-pyrazole-5-amine. All mixing components mentioned in classes (1) to (15) can, if they are capable on the basis of their functional groups, optionally form salts with suitable bases or acids. Biological pesticides as mixing components
The compounds of the formula (I), (la), (lb) or (Ic) can be combined with biological pesticides. Biological pesticides comprise in particular bacteria, fungi, yeasts, plant extracts and products formed by microorganisms, including proteins and secondary metabolites.
Biological pesticides comprise bacteria such as spore-forming bacteria, root-colonising bacteria and bacteria which act as biological insecticides, fungicides or nematicides. Examples of such bacteria which are employed or can be used as biological pesticides are:
Bacillus amyloliquefaciens, strain FZB42 (DSM 231179), or Bacillus cereus, in particular B. cereus strain CNCM 1-1562 or Bacillus firmus, strain 1-1582 (Accession number CNCM 1-1582) or Bacillus pumilus, in particular strain GB34 (Accession No. ATCC 700814) and strain QST2808 (Accession No.
NRRL B-30087), or Bacillus subtilis, in particular strain GB03 (Accession No. ATCC SD-1397), or Bacillus subtilis strain QST713 (Accession No. NRRL B -21661) or Bacillus subtilis strain OST 30002
(Accession No. NRRL B-50421) Bacillus thuringiensis, in particular B. thuringiensis subspecies israelensis (serotype H-14), strain AM65-52 (Accession No. ATCC 1276), or B. thuringiensis subsp. aizawai, in particular strain ABTS-1857 (SD-1372), or B. thuringiensis subsp. kurstaki strain HD-1, or B. thuringiensis subsp. tenebrionis strain NB 176 (SD-5428), Pasteuria penetrans, Pasteuria spp. (Rotylenchulus reniformis nematode)-PR3 (Accession Number ATCC SD-5834), Streptomyces microflavus strain AQ6121 (= QRD 31.013, NRRL B-50550), Streptomyces galbus strain AQ 6047
(Acession Number NRRL 30232).
Examples of fungi and yeasts which are employed or can be used as biological pesticides are:
Beauveria bassiana, in particular strain ATCC 74040, Coniothyrium minitans, in particular strain CON/M/91-8 (Accession No. DSM-9660), Lecanicillium spp., in particular strain HRO LEC 12, Lecanicillium lecanii, (formerly known as Verticillium lecanii), in particular strain KV01, Metarhizium anisopliae, in particular strain F52 (DSM3884/ ATCC 90448), Metschnikowia fructicola, in particular strain NRRL Y-30752, Paecilomyces fumosoroseus (now: Isaria fumosorosea) , in particular strain IFPC 200613, or strain Apopka 97 (Accesion No. ATCC 20874), Paecilomyces lilacinus, in particular P. lilacinus strain 251 (AGAL 89/030550), Talaromyces flavus, in particular strain VI 17b, Trichoderma atroviride, in particular strain SCI (Accession Number CBS 122089), Trichoderma harzianum, in particular T. harzianum rifai T39. (Accession Number CNCM 1-952).
Examples of viruses which are employed or can be used as biological pesticides are:
Adoxophyes orana (summer fruit tortrix) granulosis virus (GV), Cydia pomonella (codling moth) granulosis virus (GV), Helicoverpa armigera (cotton bollworm) nuclear polyhedrosis virus (NPV), Spodoptera exigua (beet armyworm) mNPV, Spodoptera frugiperda (fall armyworm) mNPV, Spodoptera littoralis (African cotton leafworm) NPV. Also included are bacteria and fungi which are added as 'inoculant' to plants or plant parts or plant organs and which, by virtue of their particular properties, promote plant growth and plant health. Examples which may be mentioned are:
Agrobacterium spp. , Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., in particular Burkholderia cepacia (formerly known as Pseudomonas cepacia), Gigaspora spp., or Gigaspora monosporum, Glomus spp., Laccaria spp., Lactobacillus buchneri, Paraglomus spp., Pisolithus tinctorus, Pseudomonas spp., Rhizobium spp., in particular Rhizobium trifolii, Rhizopogon spp., Scleroderma spp., Suillus spp., Streptomyces spp.
Examples of plant extracts and products formed by microorganisms including proteins and secondary metabolites which are employed or can be used as biological pesticides are:
Allium sativum, Artemisia absinthium, azadirachtin, Biokeeper WP, Cassia nigricans, Celastrus angulatus, Chenopodium anthelminticum, chitin, Armour-Zen, Dryopteris filix-mas, Equisetum arvense, Fortune Aza, Fungastop, Heads Up (Chenopodium quinoa saponin extract), Pyrethrum/Pyrethrins, Quassia amara, Quercus, Quillaja, Regalia, "Requiem ™ Insecticide", rotenone, ryania/ryanodine, Symphytum officinale, Tanacetum vulgare, thymol, Triact 70, TriCon, Tropaeulum majus, Urtica dioica, Veratrin, Viscum album, Brassicaceae extract, in particular oilseed rape powder or mustard powder.
Safener as mixing components
The compounds of the formula (I), (la), (lb) or (Ic) can be combined with safeners such as, for example, benoxacor, cloquintocet (-mexyl), cyometrinil, cyprosulfamide, dichlormid, fenchlorazole (-ethyl), fenclorim, flurazole, fluxofenim, furilazole, isoxadifen (-ethyl), mefenpyr (-diethyl), naphthalic anhydride, oxabetrinil, 2-methoxy-N-({4-[(methylcarbamoyl)amino]phenyl}sulphonyl)benzamide (CAS 129531-12-0), 4-(dichloroacetyl)-l-oxa-4-azaspiro[4.5]decane (CAS 71526-07-3), 2,2,5-trimethyl-3- (dichloroacetyl)-l,3-oxazolidine (CAS 52836-31-4).
Plants and plant parts
All plants and plant parts can be treated in accordance with the invention. Here, plants are to be understood to mean all plants and plant parts such as wanted and unwanted wild plants or crop plants (including naturally occurring crop plants), for example cereals (wheat, rice, triticale, barley, rye, oats), maize, soya bean, potato, sugar beet, sugar cane, tomatoes, peas and other vegetable species, cotton, tobacco, oilseed rape, and also fruit plants (with the fruits apples, pears, citrus fruits and grapevines). Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or cannot be protected by varietal property rights. Plant parts should be understood to mean all parts and organs of the plants above and below ground, such as shoot, leaf, flower and root, examples given being leaves, needles, stalks, stems, flowers, fruit bodies, fruits and seeds, and also tubers, roots and rhizomes. Parts of plants also include harvested plants and vegetative and generative propagation material, for example seedlings, tubers, rhizomes, cuttings and seeds. Treatment according to the invention of the plants and plant parts with the compounds of the formula (I), (la), (lb) or (Ic) is carried out directly or by allowing the compounds to act on the surroundings, environment or storage space by the customary treatment methods, for example by immersion, spraying, evaporation, fogging, scattering, painting on, injection and, in the case of propagation material, in particular in the case of seeds, also by applying one or more coats. As already mentioned above, it is possible to treat all plants and their parts according to the invention. In a preferred embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and also parts thereof, are treated. In a further preferred embodiment, transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and parts thereof are treated. The term "parts" or "parts of plants" or "plant parts" has been explained above. The invention is used with particular preference to treat plants of the respective commercially customary cultivars or those that are in use. Plant cultivars are to be understood as meaning plants having new properties ("traits") and which have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes. Transgenic plant, seed treatment and integration events
The transgenic plants or plant cultivars (those obtained by genetic engineering) which are to be treated with preference in accordance with the invention include all plants which, through the genetic modification, received genetic material which imparts particular advantageous useful properties ("traits") to these plants. Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to levels of water or soil salinity, enhanced flowering performance, easier harvesting, accelerated ripening, higher yields, higher quality and/or a higher nutritional value of the harvested products, better storage life and/or processability of the harvested products. Further and particularly emphasized examples of such properties are increased resistance of the plants against animal and microbial pests, such as against insects, arachnids, nematodes, mites, slugs and snails owing, for example, to toxins formed in the plants, in particular those formed in the plants by the genetic material from Bacillus thuringiensis (for example by the genes CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF and also combinations thereof), furthermore increased resistance of the plants against phytopathogenic fungi, bacteria and/or viruses owing, for example, to systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and also resistance genes and correspondingly expressed proteins and toxins, and also increased tolerance of the plants to certain herbicidally active compounds, for example imidazolinones, sulphonylureas, glyphosate or phosphinothricin (for example the "PAT" gene). The genes which impart the desired traits in question may also be present in combinations with one another in the transgenic plants. Examples of transgenic plants which may be mentioned are the important crop plants, such as cereals (wheat, rice, triticale, barley, rye, oats), maize, soya beans, potatoes, sugar beet, sugar cane, tomatoes, peas and other types of vegetable, cotton, tobacco, oilseed rape and also fruit plants (with the fruits apples, pears, citrus fruits and grapes), with particular emphasis being given to maize, soya beans, wheat, rice, potatoes, cotton, sugar cane, tobacco and oilseed rape. Traits which are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and slugs and snails.
Crop protection - types of treatment
The treatment of the plants and plant parts with the compounds of the formula (I), (la), (lb) or (Ic) is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, injecting, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seed, furthermore as a powder for dry seed treatment, a solution for liquid seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more coats, etc. It is furthermore possible to apply the compounds of the formula (I), (la), (lb) or (Ic) by the ultra-low volume method or to inject the application form or the compound of the formula (I), (la), (lb) or (Ic) itself into the soil.
A preferred direct treatment of the plants is foliar application, i.e. the compounds of the formula (I), (la), (lb) or (Ic) are applied to the foliage, where treatment frequency and the application rate should be adjusted according to the level of infestation with the pest in question.
In the case of systemically active compounds, the compounds of the formula (I), (la), (lb) or (Ic) also access the plants via the root system. The plants are then treated by the action of the compounds of the formula (I), (la), (lb) or (Ic) on the habitat of the plant. This may be done, for example, by drenching, or by mixing into the soil or the nutrient solution, i.e. the locus of the plant (e.g. soil or hydroponic systems) is impregnated with a liquid form of the compounds of the formula (I), (la), (lb) or (Ic), or by soil application, i.e. the compounds of the formula (I), (la), (lb) or (Ic) according to the invention are introduced in solid form (e.g. in the form of granules) into the locus of the plants. In the case of paddy rice crops, this can also be done by metering the compound of the formula (I), (la), (lb) or (Ic) in a solid application form (for example as granules) into a flooded paddy field.
Treatment of seed
The control of animal pests by treating the seed of plants has been known for a long time and is the subject of continuous improvements. However, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with, or at least reduce considerably, the additional application of pesticides during storage, after sowing or after emergence of the plants. It is furthermore desirable to optimize the amount of active compound employed in such a way as to provide optimum protection for the seed and the germinating plant from attack by animal pests, but without damaging the plant itself by the active compound employed. In particular, methods for the treatment of seed should also take into consideration the intrinsic insecticidal or nematicidal properties of pest-resistant or - tolerant transgenic plants in order to achieve optimum protection of the seed and also the germinating plant with a minimum of pesticides being employed.
The present invention therefore in particular also relates to a method for the protection of seed and germinating plants, from attack by pests, by treating the seed with one of the compounds of the formula (I), (la), (lb) or (Ic). The method according to the invention for protecting seed and germinating plants against attack by pests furthermore comprises a method where the seed is treated simultaneously in one operation or sequentially with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component. It also comprises a method where the seed is treated at different times with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component.
The invention likewise relates to the use of the compounds of the formula (I), (la), (lb) or (Ic) for the treatment of seed for protecting the seed and the resulting plant from animal pests.
Furthermore, the invention relates to seed which has been treated with a compound of the formula (I), (la), (lb) or (Ic) according to the invention so as to afford protection from animal pests. The invention also relates to seed which has been treated simultaneously with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component. The invention furthermore relates to seed which has been treated at different times with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component. In the case of seed which has been treated at different points in time with a compound of the formula (I), (la), (lb) or (Ic) and a mixing component, the individual substances may be present on the seed in different layers. Here, the layers comprising a compound of the formula (I), (la), (lb) or (Ic) and mixing components may optionally be separated by an intermediate layer. The invention also relates to seed where a compound of the formula (I), (la), (lb) or (Ic) and a mixing component have been applied as component of a coating or as a further layer or further layers in addition to a coating.
Furthermore, the invention relates to seed which, after the treatment with a compound of the formula (I), (la), (lb) or (Ic), is subjected to a film-coating process to prevent dust abrasion on the seed.
One of the advantages encountered with a systemically acting compound of the formula (I), (la), (lb) or (Ic) is the fact that, by treating the seed, not only the seed itself but also the plants resulting therefrom are, after emergence, protected against animal pests. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with. It has to be considered a further advantage that by treatment of the seed with a compound of the formula (I), (la), (lb) or (Ic), germination and emergence of the treated seed may be enhanced.
It is likewise to be considered advantageous that compounds of the formula (I), (la), (lb) or (Ic) can be used in particular also for transgenic seed.
Furthermore, compounds of the formula (I), (la), (lb) or (Ic) can be employed in combination with compositions or compounds of signalling technology, leading to better colonization by symbionts such as, for example, rhizobia, mycorrhizae and/or endophytic bacteria or fungi, and/or to optimized nitrogen fixation.
The compounds of the formula (I), (la), (lb) or (Ic) are suitable for protection of seed of any plant variety which is used in agriculture, in the greenhouse, in forests or in horticulture. In particular, this takes the form of seed of cereals (for example wheat, barley, rye, millet and oats), corn, cotton, soya beans, rice, potatoes, sunflowers, coffee, tobacco, canola, oilseed rape, beets (for example sugarbeets and fodder beets), peanuts, vegetables (for example tomatoes, cucumbers, bean, cruciferous vegetables, onions and lettuce), fruit plants, lawns and ornamental plants. The treatment of the seed of cereals (such as wheat, barley, rye and oats), maize, soya beans, cotton, canola, oilseed rape and rice is of particular importance.
As already mentioned above, the treatment of transgenic seed with a compound of the formula (I), (la), (lb) or (Ic) is also of particular importance. This takes the form of seed of plants which, as a rule, comprise at least one heterologous gene which governs the expression of a polypeptide with in particular insecticidal and/or nematicidal properties. The heterologous genes in transgenic seed can originate from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. The present invention is particularly suitable for the treatment of transgenic seed which comprises at least one heterologous gene originating from Bacillus sp. It is particularly preferably a heterologous gene derived from Bacillus thuringiensis. In the context of the present invention, the compound of the formula (I), (la), (lb) or (Ic) is applied to the seed. Preferably, the seed is treated in a state in which it is stable enough to avoid damage during treatment. In general, the seed may be treated at any point in time between harvest and sowing. The seed usually used has been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seed which has been harvested, cleaned and dried down to a moisture content which allows storage. Alternatively, it is also possible to use seed which, after drying, has been treated with, for example, water and then dried again, for example priming.
When treating the seed, care must generally be taken that the amount of the compound of the formula (I), (la), (lb) or (Ic) applied to the seed and/or the amount of further additives is chosen in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged. This must be ensured particularly in the case of active compounds which can exhibit phytotoxic effects at certain application rates.
In general, the compounds of the formula (I), (la), (lb) or (Ic) are applied to the seed in a suitable formulation. Suitable formulations and processes for seed treatment are known to the person skilled in the art.
The compounds of the formula (I), (la), (lb) or (Ic) can be converted to the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
These formulations are prepared in a known manner, by mixing the compounds of the formula (I), (la), (lb) or (Ic) with customary additives such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, adhesives, gibberellins and also water.
Colorants which may be present in the seed-dressing formulations which can be used in accordance with the invention are all colorants which are customary for such purposes. It is possible to use either pigments, which are sparingly soluble in water, or dyes, which are soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1.
Useful wetting agents which may be present in the seed dressing formulations usable in accordance with the invention are all substances which promote wetting and which are conventionally used for the formulation of agrochemically active compounds. Preference is given to using alkylnaphthalenesulphonates, such as diisopropyl- or diisobutylnaphthalenesulphonates.
Useful dispersants and/or emulsifiers which may be present in the seed dressing formulations usable in accordance with the invention are all nonionic, anionic and cationic dispersants conventionally used for the formulation of active agrochemical ingredients. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Suitable nonionic dispersants include in particular ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers, and the phosphated or sulphated derivatives thereof. Suitable anionic dispersants are in particular lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates. Antifoams which may be present in the seed dressing formulations usable in accordance with the invention are all foam-inhibiting substances conventionally used for the formulation of active agrochemical ingredients. Preference is given to using silicone antifoams and magnesium stearate.
Preservatives which may be present in the seed dressing formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal.
Secondary thickeners which may be present in the seed dressing formulations usable in accordance with the invention are all substances which can be used for such purposes in agrochemical compositions. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica are preferred. Adhesives which may be present in the seed dressing formulations usable in accordance with the invention are all customary binders usable in seed dressing products. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.
Gibberellins which can be present in the seed-dressing formulations which can be used in accordance with the invention are preferably the gibberellins Al, A3 (= gibberellic acid), A4 and A7; gibberellic acid is especially preferably used. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- and Schadlingsbekampfungsmittel", vol. 2, Springer Verlag, 1970, pp. 401-412).
The seed dressing formulations usable in accordance with the invention can be used to treat a wide variety of different kinds of seed either directly or after prior dilution with water. For instance, the concentrates or the preparations obtainable therefrom by dilution with water can be used to dress the seed of cereals, such as wheat, barley, rye, oats, and triticale, and also the seed of maize, rice, oilseed rape, peas, beans, cotton, sunflowers, soya beans and beets, or else a wide variety of different vegetable seed. The seed dressing formulations usable in accordance with the invention, or the dilute use forms thereof, can also be used to dress seed of transgenic plants.
For treatment of seed with the seed dressing formulations usable in accordance with the invention, or the use forms prepared therefrom by adding water, all mixing units usable customarily for the seed dressing are useful. Specifically, the procedure in the seed dressing is to place the seed into a mixer, operated batch-wise or continously, to add the particular desired amount of seed dressing formulations, either as such or after prior dilution with water, and to mix everything until the formulation is distributed homogeneously on the seed. If appropriate, this is followed by a drying operation. The application rate of the seed dressing formulations usable in accordance with the invention can be varied within a relatively wide range. It is guided by the particular content of the compounds of the formula (I), (la), (lb) or (Ic) in the formulations and by the seed. The application rates of the respective compound of the formula (I), (la), (lb) or (Ic) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
Animal health
In the animal health field, i.e. in the field of veterinary medicine, the compounds of the formula (I), (la), (lb) or (Ic) are active against animal parasites, in particular ectoparasites or endoparasites. The term endoparasites includes in particular helminths and protozoans, such as coccidia. Ectoparasites are typically and preferably arthropods, in particular insects and acarids.
In the field of veterinary medicine the compounds of the formula (I), (la), (lb) or (Ic) are suitable, with favourable homeotherm toxicity, for controlling parasites which occur in animal breeding and animal husbandry in livestock, breeding, zoo, laboratory, experimental and domestic animals. They are active against all or specific stages of development of the parasites. Agricultural livestock include, for example, mammals, such as sheep, goats, horses, donkeys, camels, buffaloes, rabbits, reindeers, fallow deers, and in particular cattle and pigs; or poultry such as turkeys, ducks, geese, and in particular chickens; fish and crustaceans, for example in aquaculture; and also insects such as bees.
Domestic animals include, for example, mammals, such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets and in particular dogs, cats, cage birds, reptiles, amphibians and aquarium fish.
According to a preferred embodiment, the compounds of the formula (I), (la), (lb) or (Ic) are administered to mammals.
According to another preferred embodiment, the compounds of the formula (I), (la), (lb) or (Ic) are administered to birds, namely cage birds and in particular poultry. By using the compounds of the formula (I), (la), (lb) or (Ic) to control animal parasites, it is intended to reduce or prevent illness, cases of deaths and performance reductions (in the case of meat, milk, wool, hides, eggs, honey and the like), so that more economical and simpler animal keeping is made possible and better animal well-being is achievable.
The term "control" or "controlling" as used herein with regard to the animal health field, means that the compounds of the formula (I), (la), (lb) or (Ic) are effective in reducing the incidence of the respective parasite in an animal infected with such parasites to innocuous levels. More specifically, "controlling", as used herein, means that the compound of the formula (I), (la), (lb) or (Ic) is effective in killing the respective parasite, inhibiting its growth, or inhibiting its proliferation. Arthropods include: from the order of the Anoplurida, for example Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.; from the order of the Mallophagida and the suborders Amblycerina and Ischnocerina, for example Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.; from the order of the Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Odagmia spp., Wilhelmia spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp., Rhinoestrus spp., Tipula spp.; from the order of the Siphonapterida, for example Pulex spp., Ctenocephalides spp., Tunga spp., Xenopsylla spp., Ceratophyllus spp.; from the order of the Heteropterida, for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.; as well as nuisance and hygiene pests from the order of the Blattarida.
Arthropods furthermore include: from the subclass of the Acari (Acarina) and the order of the Metastigmata, for example from the family of argasidae like Argas spp., Ornithodorus spp., Otobius spp., from the family of Ixodidae like Ixodes spp., Amblyomma spp., Rhipicephalus (Boophilus) spp Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp. (the original genus of multi-host ticks); from the order of mesostigmata like Dermanyssus spp., Ornithonyssus spp., Pneumonyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp., Acarapis spp.; from the order of the Actinedida (Prostigmata), for example Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Neotrombiculla spp., Listrophorus spp.; and from the order of the Acaridida (Astigmata), for example Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..
Parasitic Protozoa include:
Mastigophora (Flagellata) such as, for example, Trypanosomatidae, for example, Trypanosoma b. brucei, T.b. gambiense, T.b. rhodesiense, T. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica, such as, for example, Trichomonadidae, for example, Giardia lamblia, G. canis.;
Sarcomastigophora (Rhizopoda) such as Entamoebidae, for example, Entamoeba histolytica, Hartmanellidae, for example, Acanthamoeba sp., Harmanella sp.; Apicomplexa (Sporozoa) such as Eimeridae, for example, Eimeria acervulina, E. adenoides, E. alabamensis, E. anatis, E. anserina, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E. canis,
E. chinchillae, E. clupearum, E. columbae, E. contorta, E. crandalis, E. debliecki, E. dispersa, E. ellipsoidales, E. falciformis, E. faurei, E. flavescens, E. gallopavonis, E. hagani, E. intestinalis, E. iroquoina, E. irresidua, E. labbeana, E. leucarti, E. magna, E. maxima, E. media, E. meleagridis, E. meleagrimitis, E. mitis, E. necatrix, E. ninakohlyakimovae, E. ovis, E. parva, E. pavonis, E. perforans, E. phasani, E. piriformis, E. praecox, E. residua, E. scabra, E. spec, E. stiedai, E. suis, E. tenella, E. truncata, E. truttae, E. zuernii, Globidium spec, Isospora belli, I. canis, I. felis, I. ohioensis, I. rivolta, I. spec, I. suis, Cystisospora spec, Cryptosporidium spec, in particular C. parvum; such as Toxoplasmadidae, for example, Toxoplasma gondii, Hammondia heydornii, Neospora caninum,
Besnoitia besnoitii; such as Sarcocystidae, for example, Sarcocystis bovicanis, S. bovihominis, S. ovicanis, S. ovifelis, S. neurona, S. spec, S. suihominis, such as Leucozoidae, for example,
Leucozytozoon simondi, such as Plasmodiidae, for example, Plasmodium berghei, P. falciparum, P. malariae, P. ovale, P. vivax, P. spec, such as Piroplasmea, for example, Babesia argentina, B. bovis, B. canis, B. spec, Theileria parva, Theileria spec, such as Adeleina, for example, Hepatozoon canis, H. spec.
Pathogenic endoparasites, which are helminths, include Platyhelmintha (e.g. Monogenea, cestodes and trematodes), nematodes, Acanthocephala, and Pentastoma, including:
Monogenea: e.g.: Gyrodactylus spp., Dactylogyrus spp., Polystoma spp.; Cestodes: from the order of the Pseudophyllidea for example: Diphyllobothrium spp., Spirometra spp., Schistocephalus spp., Ligula spp., Bothridium spp., Diplogonoporus spp.; from the order of the Cyclophyllida for example: Mesocestoides spp., Anoplocephala spp., Paranoplocephala spp., Moniezia spp., Thysanosoma spp., Thysaniezia spp., Avitellina spp., Stilesia spp., Cittotaenia spp., Andyra spp., Bertiella spp., Taenia spp., Echinococcus spp., Hydatigera spp., Davainea spp., RaiUietina spp., Hymenolepis spp., Echinolepis spp., Echinocotyle spp., Diorchis spp., Dipylidium spp., Joyeuxiella spp., Diplopylidium spp.;
Trematodes: from the class of the Digenea for example: Diplostomum spp., Posthodiplostomum spp., Schistosoma spp., Trichobilharzia spp., Ornithobilharzia spp., Austrobilharzia spp., Gigantobilharzia spp., Leucochloridium spp., Brachylaima spp., Echinostoma spp., Echinoparyphium spp., Echinochasmus spp., Hypoderaeum spp., Fasciola spp., Fascioloides spp., Fasciolopsis spp., Cyclocoelum spp., Typhlocoelum spp., Paramphistomum spp., Calicophoron spp., Cotylophoron spp., Gigantocotyle spp., Fischoederius spp., Gastrothylacus spp., Notocotylus spp., Catatropis spp., Plagiorchis spp., Prosthogonimus spp., Dicrocoelium spp., Eurytrema spp., Troglotrema spp., Paragonimus spp., Collyriclum spp., Nanophyetus spp., Opisthorchis spp., Clonorchis spp. Metorchis spp., Heterophyes spp., Metagonimus spp.; Nematodes: Trichinellida zum Beispiel: Trichuris spp., CapiUaria spp., ParacapiUaria spp., Eucoleus spp., Trichomosoides spp., Trichinella spp.; from the order of the Tylenchida for example: Micronema spp., Strongyloides spp.; from the order of the Rhabditida for example: Strongylus spp., Triodontophorus spp., Oesophagodontus spp., Trichonema spp., Gyalocephalus spp., Cylindropharynx spp., Poteriostomum spp., Cyclococercus spp., Cylicostephanus spp., Oesophagostomum spp., Chabertia spp., Stephanurus spp., Ancylostoma spp., Uncinaria spp., Necator spp., Bunostomum spp., Globocephalus spp., Syngamus spp., Cyathostoma spp., Metastrongylus spp., Dictyocaulus spp., Muellerius spp., Protostrongylus spp., Neostrongylus spp., Cystocaulus spp., Pneumostrongylus spp., Spicocaulus spp., Elaphostrongylus spp. Parelaphostrongylus spp., Crenosoma spp., Paracrenosoma spp., Oslerus spp., Angiostrongylus spp., Aelurostrongylus spp., Filaroides spp., Parafilaroides spp., Trichostrongylus spp., Haemonchus spp., Ostertagia spp., Teladorsagia spp., Marshallagia spp., Cooperia spp., Nippostrongylus spp., Heligmosomoides spp., Nematodirus spp., Hyostrongylus spp., Obeliscoides spp., Amidostomum spp., Ollulanus spp.; from the order of the Spirurida, for example: Oxyuris spp., Enterobius spp., Passalurus spp., Syphacia spp., Aspiculuris spp., Heterakis spp.; Ascaris spp., Toxascaris spp., Toxocara spp., Baylisascaris spp., Parascaris spp., Anisakis spp., Ascaridia spp.; Gnathostoma spp., Physaloptera spp., Thelazia spp., Gongylonema spp., Habronema spp., Parabronema spp., Draschia spp., Dracunculus spp.; Stephanofilaria spp., Parafilaria spp., Setaria spp., Loa spp., Dirofilaria spp., Litomosoides spp., Brugia spp., Wuchereria spp., Onchocerca spp., Spirocerca spp.;
Acanthocephala: from the order of the Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp.; from the order of the Polymorphida, for example: Filicollis spp.; from the order of the Moniliformida, for example: Moniliformis spp.; from the order of the Echinorhynchida, for example, Acanthocephalus spp., Echinorhynchus spp., Leptorhynchoides spp. ;
Pentastoma: from the order of the Porocephalida, for example, Linguatula spp..
In the veterinary field and in animal keeping, administration of the compounds of the formula (I), (la), (lb) or (Ic) is carried out by methods generally known in the art, such as enterally, parenterally, dermally or nasally in the form of suitable preparations. Administration can be carried out prophylactically or therapeutically.
Thus, one embodiment of the present invention refers to the use of a compound of the formula (I), (la), (lb) or (Ic) as medicament. A further aspect refers to the use of a compound of the formula (I), (la), (lb) or (Ic) as an antiendoparasitic agent, in particular a helminthicidal agent or antiprotozoic agent. Compounds of the formula (I), (la), (lb) or (Ic) are suitable for use as an antiendoparasitic agent, in particular a helminthicidal agent or antiprotozoic agent, for example in animal husbandry, in animal breeding, in animal housing and in the hygiene sector.
A further aspect in turn relates to the use of a compound of the formula (I), (la), (lb) or (Ic) as an antiectoparasitic, in particular an arthropodicide such as an insecticide or an acaricide. A further aspect relates to the use of a compound of the formula (I), (la), (lb) or (Ic) as an antiectoparasitic, in particular an arthropodicide such as an insecticide or an acaricide, for example in animal husbandry, in animal breeding, in stables or in the hygiene sector.
Anthelmintic mixing components
The following anthelmintic mixing components may be mentioned by way of example:
Anthelmintically active compounds including trematicidally and cestocidally active compounds: from the class of the macrocyclic lactones, for example: abamectin, doramectin, emamectin, eprinomectin, ivermectin, milbemycin, moxidectin, nemadectin, selamectin; from the class of the benzimidazoles and probenzimidazoles, for example: albendazole, albendazole - sulphoxide, cambendazole, cyclobendazole, febantel, fenbendazole, flubendazole, mebendazole, netobimin, oxfendazole, oxibendazole, parbendazole, thiabendazole, thiophanate, triclabendazole; from the class of the cyclooctadepsipeptides, for example: emodepside, PF1022; from the class of the aminoacetonitrile derivatives, for example: monepantel; from the class of the tetrahydropyrimidines, for example: morantel, pyrantel, oxantel; from the class of the imidazothiazoles, for example: butamisole, levamisole, tetramisole; from the class of the salicylanilides, for example: bromoxanide, brotianide, clioxanide, closantel, niclosamide, oxyclozanide, rafoxanide, tribromsalan; from the class of the paraherquamides, for example: derquantel, paraherquamide; from the class of the aminophenylamidines, for example: amidantel, deacylated amidantel (dAMD), tribendimidine; from the class of the organophosphates, for example: coumaphos, crufomate, dichlorvos, haloxone, naphthalofos, trichlorfon; from the class of the substituted phenols, for example: bithionol, disophenol, hexachlorophene, niclofolan, meniclopholan, nitroxynil; from the class of the piperazinones, for example: praziquantel, epsiprantel; from various other classes, for example: amoscanate, bephenium, bunamidine, clonazepam, clorsulon, diamfenetid, dichlorophen, diethylcarbamazine, emetine, hetolin, hycanthone, lucanthone, Miracil, mirasan, niclosamide, niridazole, nitroxynil, nitroscanate, oltipraz, omphalotin, oxamniquin, paromomycin, piperazine, resorantel.
Vector control
The compounds of the formula (I), (la), (lb) or (Ic) can also be used in vector control. For the purpose of the present invention, a vector is an arthropod, in particular an insect or arachnid, capable of transmitting pathogens such as, for example, viruses, worms, single -cell organisms and bacteria from a reservoir (plant, animal, human, etc.) to a host. The pathogens can be transmitted either mechanically (for example trachoma by non-stinging flies) to a host, or by injection (for example malaria parasites by mosquitoes) into a host. Examples of vectors and the diseases or pathogens they transmit are:
1) Mosquitoes
- Anopheles: malaria, filariasis;
- Culex: Japanese encephalitis, filariasis, other viral diseases, transmission of worms;
- Aedes: yellow fever, dengue fever, filariasis, other viral diseases; - Simuliidae: transmission of worms, in particular Onchocerca volvulus;
2) Lice: skin infections, epidemic typhus;
3) Fleas: plague, endemic typhus;
4) Flies: sleeping sickness (trypanosomiasis); cholera, other bacterial diseases;
5) Mites: acariosis, epidemic typhus, rickettsialpox, tularaemia, Saint Louis encephalitis, tick-borne encephalitis (TBE), Crimean-Congo haemorrhagic fever, borreliosis;
6) Ticks: borellioses such as Borrelia duttoni, tick-borne encephalitis, Q fever (Coxiella burnetii), babesioses (Babesia canis canis). Examples of vectors in the sense of the present invention are insects, for example aphids, flies, leafhoppers or thrips, which are capable of transmitting plant viruses to plants. Other vectors capable of transmitting plant viruses are spider mites, lice, beetles and nematodes.
Further examples of vectors in the sence of the present invention are insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, for example A. gambiae, A. arabiensis, A. funestus, A. dims (malaria) and Culex, lice, fleas, flies, mites and ticks capable of transmitting pathogens to animals and/or humans.
Vector control is also possible if the compounds of the formula (I), (la), (lb) or (Ic) are resistance- breaking. Compounds of the formula (I), (la), (lb) or (Ic) are suitable for use in the prevention of diseases and/or pathogens transmitted by vectors. Thus, a further aspect of the present invention is the use of compounds of the formula (I), (la), (lb) or (Ic) for vector control, for example in agriculture, in horticulture, in gardens and in leisure facilities, and also in the protection of materials and stored products.
Protection of industrial materials The compounds of the formula (I), (la), (lb) or (Ic) are suitable for protecting industrial materials against attack or destruction by insects, for example from the orders Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma.
Industrial materials in the present context are understood to mean inanimate materials, such as preferably plastics, adhesives, sizes, papers and cards, leather, wood, processed wood products and coating compositions. The use of the invention for protecting wood is particularly preferred.
In a further embodiment, the compounds of the formula (I), (la), (lb) or (Ic) are used together with at least one further insecticide and/or at least one fungicide.
In a further embodiment, the compounds of the formula (I), (la), (lb) or (Ic) are present as a ready-to-use pesticide, i.e. they can be applied to the material in question without further modifications. Suitable further insecticides or fungicides are in particular those mentioned above.
Surprisingly, it has also been found that the compounds of the formula (I), (la), (lb) or (Ic) can be employed for protecting objects which come into contact with saltwater or brackish water, in particular hulls, screens, nets, buildings, moorings and signalling systems, against fouling. Likewise, the compounds of the formula (I), (la), (lb) or (Ic), alone or in combinations with other active compounds, can be used as antifouling agents. Control of animal pests in the hygiene sector
The compounds of the formula (I), (la), (lb) or (Ic) are suitable for controlling animal pests in the hygiene sector. In particular, the invention can be applied in the domestic sector, in the hygiene sector and in the protection of stored products, especially for controlling insects, arachnids and mites encountered in enclosed spaces such as dwellings, factory halls, offices, vehicle cabins. For controlling animal pests, the compounds of the formula (I), (la), (lb) or (Ic) are used alone or in combination with other active compounds and/or auxiliaries. They are preferably used in domestic insecticide products. The compounds of the formula (I), (la), (lb) or (Ic) are effective against sensitive and resistant species, and against all developmental stages. These pests include, for example, pests from the class Arachnida, from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda. They are used, for example, in aerosols, pressure -free spray products, for example pump and atomizer sprays, automatic fogging systems, foggers, foams, gels, evaporator products with evaporator tablets made of cellulose or plastic, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-free, or passive, evaporation systems, moth papers, moth bags and moth gels, as granules or dusts, in baits for spreading or in bait stations. The various aspects of the invention will now be illustrated with reference to the following production and use examples in a non-limiting manner.
Preparation examples
!H-NMR data
Method Ml : ^-NMR-data were determined with a Bruker Avance 400 equipped with a flow cell (60 μΐ volume) or with a Bruker AVIII 400 equipped with 1.7 mm cryo CPTCI probe head or with a Bruker AVII 600 (600.13 MHz) equipped with a 5 mm cryo TCI probe head or with a Bruker AVIII 600 (601.6 MHz) equipped with a 5 mm cryo CPMNP probe head with tetramethylsilane as reference (0.0) and the solvents CD3CN, CDC13 or D6-DMSO.
Method M2: Alternatively ^-NMR-data were determined with a Bruker DMX300 ΟΗ-NMR: 300 MHz) using tetramethylsilane as reference standard.
NMR-data of selected examples are listed in classic format (chemical shift δ, multiplicity, number of hydrogen atoms) or as NMR-peak-lists.
Preparation example 1
Synthesis of N- { 2- [2-chloro-4-(5-chloropyridin-3 -yl)phenyl] ethyl } -2-(trifluoromethyl)benzamide (corresponds to product expl. 1-45) Step 1: Synthesis of N-[2-(4-bromo-2-chlorophenyl)ethyl]-2-(trifluoromethyl)benzamide
Figure imgf000126_0001
5.6 g (55.3 mmol) of triethylamine were added to a solution of 6 g (22.1 mmol) of 2-(4-bromo-2- chlorophenyl)ethanamine hydrochlorid in 25 mL dichloromethane at room temperature. 4.6 g (22.1 mmol) of 2-(trifluoromethyl)benzoyl chloride in 25 mL dichloromethane were slowly added to the reaction mixture at room temperature. After completion of reaction, the reaction mixture was diluted with dichloromethane and washed with water. The combined organic layers were evaporated under reduced pressure to yield 9.07 g (quantitative yield). The product has been used in step 2 without prior purification.
LCMS (M+H): 405.8, 407.8 ¾-NMR (400 MHz, d6-DMSO, Method Ml); δ 8.61 (t, 1H, NH), 7.77 - 7. 62 (m, 3 H), 7.53 - 7.51 (dd, 1H), 7.46 (d, 1H), 7.35 (d, 1H), 3.50 - 3.45 (qu, 2H), 2.91 (t, 2H).
Step 2: Synthesis of N-{2-[2-chloro-4-(5-chloropyridin-3-yl)phenyl]ethyl}-2-(trifluoromethyl)benz- amide (corresponds to product expl. 1-45)
Figure imgf000127_0001
110.9 mg (0.27 mmol) of N-[2-(4-bromo-2-chlorophenyl)ethyl]-2-(trifluoromethyl)benzamide (from step 1) and 47.2 mg (0.30 mmol) of (5-chloropyridin-3-yl)boronic acid were dissolved in 3 mL dioxane. Thereafter, 22 mg (0.03 mmol) of l,l '-bis-(diphenylphosphino)-ferrocen)-palladium-dichloromethane complex and 286.2 mg (2.7 mmol) of sodium carbonate in 2 mL water were added and treated in a sealed microwave vial in a Biotage microwave oven (Initiator) at 100 °C for 20 minutes. The reaction mixture was filtered over a silica gel - sodium sulfate cartridge, the solvents were evaporated and the crude product was purified by preparative HPLC to afford 60.6 mg (46 ) of the title compound as off- white solid. !H-NMR (400 MHz, d6-DMSO, Merthod Ml); δ 8.91 (s, 1H), 8.68 (t, 1H, NH), 8.64 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.83 - 7.46 (m, 6H), 3.55 - 3.50 (qu, 2H), 3.00 (t, 2H).
Preparation example 2
Synthesis of N- [2- [2-chloro-4-[4-(trifluoromethyl)pyrazol- 1 -yl]phenyl] -2,2-difluoro-ethyl] -2- (trifluoromethyl)benzamide (corresponds to product expl. 1-69)
Step 1: Synthesis of 2-(4-bromo-2-chloro-phenyl)-2,2-difluoro-ethanamine
Figure imgf000127_0002
Synthesis of 2-(4-bromo-2-chloro-phenyl)-2,2-difluoro-ethanamine was performed in analogy to WO 2013/064460 Al (referred as intermediates IIa-14 and IIa-15).
!H-NMR (400 MHz, d6-DMSO, Method Ml); δ 7.91 (s, 1H), 7.74 (d, 1H), 7.57 (d, 1H), 4.68 (bs, 2H, NH2), 3.46 (t, 2H).
Step 2: Synthesis of N-[2-(4-bromo-2-chloro-phenyl)-2,2-difluoro-ethyl]-2-(trifluoromethyl)benzamide
Figure imgf000127_0003
1.395 g (13.7 mmol) of triethylamine were added to a solution of 1.49 g (5.51 mmol) of 2-(4-bromo-2- chloro-phenyl)-2,2-difluoro-ethanamine (from step 1) in 30 mL dichloromethane at room temperature. 1.15 g (5.51 mmol) of 2-(trifluoromethyl)benzoyl chloride in 10 mL dichloromethane were slowly added to the reaction mixture at room temperature. After completion of reaction, the reaction mixture was diluted with dichloromethane and washed with water. The combined organic layers were evaporated under reduced pressure. The remaining residue was purified by flash silica gel chromatography resulting in 1.08 g as white solid (yield: 43.8 ).
^-NMR (400 MHz, d6-DMSO, Method Ml); δ 8.98 (t, 1H, NH), 7.91 (s, 1H), 7.77 - 7.56 (m, 5H), 7.36 (d, 1H), 4.17 (dt, 2H). Step 3: Synthesis of N-[2-[2-chloro-4-[4-(trifluoromethyl)pyrazol-l-yl]phenyl]-2,2-difluoro-ethyl]-2- (trifluoromethyl)benzamide (corresponds to product expl. 1-69)
Figure imgf000128_0001
149.7 mg (0.33 mmol) of N-[2-(4-bromo-2-chloro-phenyl)-2,2-difluoro-ethyl]-2-(trifluoromethyl) benzamide (from step 3) were dissolved in 4.4 mL acetonitrile. Subsequently, 55.2 mg (0.4 mmol) of 4- trifluoropyrazole, 4.8 mg (0.03 mmol) of copper(I) oxide, 9.3 mg (0.06 mmol) of salicylaldoxime and 165.3 mg (0.5 mmol) of cesium carbonate werde added at room temperature. The reaction mixture was kept and stirred in a a sealed vial at 100 °C for 18 hours. The reaction mixture was allowed to cool to ambient temperature and was diluted with ethyl acetate followed by filtration. The filtrate was evaporated under reduced pressure and the remaining residue was purified by flash silica gel chromatography resulting in 39 mg as white solid (yield: 21.3 ).
^-NMR (400 MHz, d6-DMSO, Method Ml); δ 9.38 (s, 1H), 9.03 (t, 1H, NH), 8.31 (s, 1H), 8.20 (d, 1H), 8.06 (dd, 1H), 7.83 - 7.49 (m, 4H), 7.39 (d, 1H), 4.22 (dt, 2H).
Preparation example 3
Synthesis of N- [2- [2-chloro-4-(6-fluoro-3 -pyridyl)phenyl] -2,2-difluoro-ethyl] -2-(trifluoromethyl)benz- amide (corresponds to product expl. 1-93)
Figure imgf000128_0002
138.7 mg (0.31 mmol) N N-[2-(4-bromo-2-chloro-phenyl)-2,2-difluoro-ethyl]-2-(trifluoromethyl) benzamide (from prepration example 2, step 2) and 44.2 mg (0.31 mmol) (6-fluoro-3-pyridyl)boronic acid were dissolved in 5 mL dioxane. Thereafter, 23.1 mg (0.03 mmol) dichloro- bis(tricyclohexylphosphine) palladium(II) and 204.2 mg (0.63 mmol) cesium carbonate in 0.61 mL water were added and treated in a sealed microwave vial in a Biotage microwave oven (Initiator) at 100 °C for 30 minutes. The reaction mixture was filtered over a silica gel - sodium sulfate cartridge, the solvents were evaporated and the crude product was purified by preparative HPLC to afford 120 mg (84.3 ) of the title compound as off-white solid.
^-NMR (400 MHz, d6-DMSO, Method Ml); δ 9.03 (t, 1H, NH), 8.67 (s, 1H), 8.42 - 8.38 (dt, 1H), 8.02 (s, 1H), 7.88 (d, 1H), 7.77 - 7.62 (m, 4H), 7.39 - 7.32 (d+d, 2H), 4.26 - 4.18 (dt, 1H).
Preparation Example 4:
Synthesis of N-{2-[2-chloro-4-(6-chloropyridin-3-yl)phenyl]-2-fluoroethyl}-2-(trifluoromethyl) benzamide (corresponds to product expl. 1-73)
Step 1: Synthesis of 2-(4-bromo-2-chlorophenyl)-2-trimethylsilyloxyacetonitrile
Figure imgf000129_0001
e3
To vacuum dried potassium cyanide (22.2 g, 342 mmol) in acetonitrile (150 mL), 4-bromo-2- chlorobenzaldehyde (25 g, 114 mmol) and zinc iodide were added. Then trimethylsilylchloride (20 g, 182 mmol) was added dropwise and the mixture was refluxed for 40 hours. The reaction mixture was filtered and concentrated in vacuo to afford the title compound as a brown oil which was used in the next step without additional purification.
Step 2: Synthesis of 2-(4-bromo-2-chlorophenyl)-2-fluoroacetonitrile
Figure imgf000129_0002
To a solution of 2-(4-bromo-2-chlorophenyl)-2-trimethylsilyloxyacetonitrile (36.3 g, 114 mmol) in dichloromethane (150 mL), DAST (22.2 g, 125 mmol) was added dropwise maintaining the temperature between -3 and 0°C. Then the reaction mixture was allowed to warm to room temperature and stirred over weekend. The reaction mixture was quenched with a saturated aqueous solution of sodium bicarbonate solution. The phases were separated. The organic layer was washed with a saturated sodium bicarbonate solution and some water. The organic layer was dried with sodium sulfate. The solvent was removed in vacuo to afford the title compound as a yellow oil which was used in the next step without additional purification.
Step 3: Synthesis of 2-(4-bromo-2-chlorophenyl)-2-fluoroethylamine hydrochloride
Figure imgf000130_0001
To a solution of 2-(4-bromo-2-chlorophenyl)-2-fluoroacetonitrile (27.7 g, 111 mmol) in tetrahydrofurane (300 mL), diborane in tetrahydrofurane (444 mmol) was added dropwise maintaining the temperature between -10°C and -5°C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with methanol (100 mL), acidified with a dry solution of HCl/ether and evaporated to dryness. Recrystallization of the residue from isopropyl alcohol-ether afforded the title compound as a white solid (19.4 g).
Ή-NMR (400 MHz, de-DMSO Method Ml); δ 8.60 (sb, 3H), 7.87 (s, 1H), 7.73 (dd, 1H), 7.56 (d, 1H), 6.22 (m, 1H), 3.44 - 3.21 (m, 2H).
LCMS (M-HC1+H)+: 252.0, 254.0 Step 4: Synthesis of N-[2-(4-bromo-2-chlorophenyl)-2-fluoroethyl]-2-(trifluoromethyl)benzamide
Figure imgf000130_0002
To a solution of 2-(4-bromo-2-chlorophenyl)-2-fluoroethylamine hydrochloride (5g, 17.3 mmol) in 75 mL of dichloromethane was added at 0°C triethylamine (7.235 mL, 51.9 mmol) and dropwise 2- (trifluoromethyl)benzoyl chloride (4.3 g, 20.8 mmol). The reaction mixture was stirred at room temperature overnight. Then 30mL of dichloromethane were added. The reaction mixture was washed with a solution of IN HC1 and then a saturated solution of NaHC03. Evaporation led to a residue wish was purified by flash chromatography affording 5.5g of the title compound.
Ή-NMR (400 MHz, d6-DMSO Method Ml); δ 8.91 (t, 1H), 7.82-7.63 (m, 5H), 7.54-7.45 (m, 2H), 6.00 (dt, 1H), 3.81 - 3.69 (m, 2H) Step 5: Synthesis of N-{2-[2-chloro-4-(6-chloropyridin-3-yl)phenyl]-2-fluoroethyl}-2-(trifluoromethyl) benzamide (corresponds to product expl. 1-73)
Figure imgf000131_0001
To a solution of 200 mg of N-[2-(4-bromo-2-chlorophenyl)-2-fluoroethyl]-2-(trifluoromethyl)benzamide ( 0.47 mmol) in degased dioxane (5mL) was added under argon (6-chloropyridin-3-yl)boronic acid (82 mg, 0.52 mmol), l,l,-bis-(diphenylphosphino)-(ferrocen)-palladium(II)-dichlormethane (19 mg, 0.024 mmol) and 0.283 mL of an aqueous solution of sodium carbonate (60 mg, 0.57 mmol). The reaction was stirred at 80°C for 2 hours. The reaction mixture was cooled down and some water and ethyl acetate were added. The two phases were separated and the organic phase was dried and evaporated. The residue obtained was purified by flash chromatography. This afforded 93 mg of the title compound.
Ή-ΝΜϋ: see NMR peak list in the table, example 1-73 LCMS (M+H)+: 257.0, 459.0
Preparation example 5:
Synthesis of N- { 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl] -2-fluoropropyl } -2-(trifluoromethyl) benzamide (corresponds to product Example 1-101)
Step 1: Synthesis of 4-bromo-2-chloro-N-methoxy-N-methylbenzamide
Figure imgf000131_0002
To a solution of 4-bromo-2-chlorobenzoic acid (15 g, 63.69 mmol) in N-,N-dimethylformamide (150 mL) was added diisopropylethylamine (17.3 g, 133.7 mmol) followed by HBTU (26.6 g, 70.06 mmol) followed by MeNHOMe.HCl (6.2 g, 63.69 mmol). The reaction mixture was stirred at 70°C for 10 hours, and then extracted with ethyl acetate ethyl acetate (2x50 mL). The organic layer was washed with water (50 mL), IN HC1 (50 mL), a saturated aqueous solution of sodium hyrogenocarbonate (50 mL), brine, was dried with sodium sulfate and filtrated. The organic phase was then concentrated in vacuo leading to a residue, which was purified by flash column chromatography (PE : EA = 5 : 1). This afforded the title compound (13.3 g) as oil.
LCMS (M+H): 278.0, 280.0 Step 2: Synthesis of l-(4-bromo-2-chlorophenyl)ethanone
Figure imgf000132_0001
To a solution of 4-bromo-2-chloro-N-methoxy-N-methylbenzamide (13.3 g, 47.76 mmol) in tetrahydrofurane (100 mL) was added methylmagnesiumbromide (71.63 mmol) at -60°C under nitrogen. The reaction mixture was stirred at -60 °C for 1 hour, then stirred at 25 °C for 3 hours. A saturated aqueous solution of ammonium chloride was added. The reaction mixture was extracted with ethylacetate (100 mL) twice. The organic layer was washed by brine, dried with sodium sulfate and concentrated in vacuo. This afforded the title compound (9.7 g) as brown solid.
LCMS (M+H)+: 233.1, 234.9
Step 3: Synthesis of l-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]ethanone
Figure imgf000132_0002
To a solution of l-(4-bromo-2-chlorophenyl)ethanone (9.7 g, 41.54 mmol) in toluene/dioxane/water (60 mL/20mL/2mL) was added (5-fluoropyridin-3-yl)boronic acid (7.6 g, 54.00 mmol), cesium carbonate (27 g, 83.08 mmol) and Pd(PPli3)4 (4.8 g, 4.154 mmol) under nitrogen. The reaction mixture was heated at 100°C for 8 hours, filtrated. The reaction mixture was tehn extracted with EtOAc (50 mL) twice, washed with brine and dried with sodium sulfate and concentrated under vacuo. After purification by flash column chromatography (PE : EA = 10 : 1) this afforded the title compound (2.5 g) as white solid.
^-NMR (400 MHz, d6-DMSO, Method Ml); δ 8.90 (s, 1 H), 8.65 (d, 1 H), 8.22 (d, 1 H), 8.02 (d, 1 H), 7.82 - 7.93 (m, 2 H), 2.63 (s, 3 H)
LCMS (M+H)+: 250.0 Step 4: Synthesis of 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-hydroxypropanenitrile
Figure imgf000132_0003
Anhydrous zinc diodide (2.88 mg, 0.009 mmol) was placed in a three-necked round-bottomed flask fitted with an addition funnel under argon atmosphere. A solution of l-[2-chloro-4-(5-fluoropyridin-3- yl)phenyl]ethanone (1.5g, 6.01 mmol) in anhydrous dichloromethane (5 mL) was added and the contents were stirred at room temperature. The mixture was cooled to 0°C and trimethylsilylcyanide (596.04 mL, 6.01m mol) was added dropwise to the vigorously stirred reaction mixture. After addition, the reaction mixture returned to room temperature and was allowed to stir at that temperature overnight. Then the reaction was cooled down to 0°C and additional dichloromethane (5 mL), anhydrous zinc diodide (2.88 mg, 0.009 mmol) and trimethylsilylcyanide (596.04 mL, 6.01 mmol) were added. After stirring an additional night at room temperature, another addition of dichloromethane (5 mL), anhydrous zinc diodide (2.88 mg, 0.009 mmol) and trimethylsilylcyanide (596.04 mL, 6.01 mmol) was performed at 0°C and reaction mixture was stirred a third night at room temperature. 7.4 mL of dichloromethane as well as a solution of Diethylaminosulfur trifluoride (DAST) in dichloromethane (1.07g, 6.61 mmol in 3.1 ml of dichloromethane) were added at 0°C. After overnight stirring at room temperature, 35 ml of cold water were added. The reaction mixture was extracted with dichloromethane. The phases were separated. The organic phase was washed with an aqueous solution of HC1 (0.5N), then water, then a saturated solution of NaHC03 and again water. After drying with sodium sulfate and evaporation, the residue obtained was purified by flash chromatography. This afforded 883 mg of the title compound.
!H-NMR (400 MHz, de-DMSO, Method Ml); δ 8.87 (s, 1 H), 8.64 (d, 1 H), 8.18 (m, 1 H), 8.01 (d, 1 H), 8.85 (m, 2 H), 7.66 (s, 1H), 1.90 (s, 3 H)
LCMS (M+H)+: 277.1 Step 4: Synthesis of 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-fluoropropanenitrile
Figure imgf000133_0001
To a solution of 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-hydroxypropanenitrile in dichloromethane was added dropwise at 0°C, DAST in dichloromethane (463.5 mg, 2.88 mmol in 3.1 ml of dichloromethane). The reaction mixture was stirred overnight at room temperature. 35 mL of cold water were then added. The reaction mixture was extracted with dichloromethane. The phases were separated. The organic phase was washed with an aqueous solution of HC1 (0.5N), then water, then a saturated solution of NaHC03 and again water. After drying with sodium sulfate and evaporation, the residue obtained was purified by flash chromatography. This afforded 484 mg of the title compound.
^-NMR (400 MHz, CD3CN, Method Ml); δ 8.75 (t, 1 H), 8.54 (d, 1 H), 7.92 (d, 1 H), 7.87 (m, 1 H), 7.77 (d, 2 H), 2.26 (d, 3 H) LCMS (M+H)+: 279.1
Step 5: Synthesis of 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-fluoropropan-l-amine hydrochloride
Figure imgf000134_0001
To a solution of 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-fluoropropanenitrile (437 mg, 1.54 mmol) in dry tetrahydrofurane (20 mL) was added dropwise at 0°C a solution of BH3.THF (1M, 4.610 mmol). The reaction mixture was brought to room temperature and stirred overnight at room temperature. Some ethanol was added. Some 1M HCL in diethylether was added and the reaction mixture was evaporated. To the residue obtained, was added 10 mL of acetone and MtBE. The solid obtained was separated by decantation leading to the title compound (562 mg). ^-NMR (400 MHz, d6-DMSO, Method Ml); δ 8.89 (s, 1 H), 8.66 (d, 1 H), 8.33 (s, 2 H), 8.22 (dd, 1 H), 8.04 (m, 1 H), 7.93 (dd, 1H), 7.73 (d, 1H), 4.2 (bs, 2H), 1.97 (d, 3H)
LCMS (M+H-HC1)+: 283.0
Step 6: Synthesis of N-{2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-fluoropropyl}-2- (trifluoromethyl)benzamide (corresponds to product expl. 1-101)
Figure imgf000134_0002
To a solution 2-[2-chloro-4-(5-fluoropyridin-3-yl)phenyl]-2-fluoropropan-l-amine hydrochloride (90 mg, 0.262 mmol) and triethyalmine (0.110 mL, 0.787 mmol) in dichloromethane (5 mL) was added dropwise 2-(trifluoromethyl)benzoyl chloride (0.046 mL, 0.315 mmol). The reaction was stirred at room temperature. After control by thin layer chromatography some water was added. The reaction mixture was extracted with ethyl acetate. The organic phase was washed with brine and dried with sodium sulfate. Evaporation led to a residue which was purified by flash chromatography. This afforded 68 mg of the title compound.
H-NMR: see NMR peak list in the table, example 1-101.
LCMS (M+H)+: 455.0 Preparation example 6:
Synthesis of N- { 2- [2-chloro-4-(6-fluoropyridin-3-yl)phenyl] -2-fluoropropyl } -2-(trifluoromethyl) benzamide (corresponds to product expl. 1-130)
Step 1: Synthesis of 2-(2,4-dichlorophenyl)-2-fluoropropanenitrile
Figure imgf000135_0001
Trimethylsilylcyanide (5.3 mL, 39.7 mmol) was added dropwise to a stirred suspension of ZnL (19.036 mg, 0.06 mmol), l-(2,4-dichlorophenyl)ethanone (7.516 g, 39.7 mmol) and dichloromethane (3.8 ml) under nitrogen atmosphere at 0°C. The reaction mixture was stirred at room temperature overnight. It was then diluted with dry dichloromethane (49 mL), cooled again to 0°C, and a solution of DAST (5.78 mL, 43.7 mmol) in dichloromethane (20.4 mL) was added dropwise. The reaction mixture was stirred overnight at room temperature. The reaction mixture is poured in 61 mL of iced water and extracted with dichloromethane. The organic layer was washed sequentially with a 0.5N aqueous HC1 solution, water, a saturated aqueous solution of NaHC03, and water again. The organic layer was dried over sodium sulfate, filtered, and concentrated. The residue obtained was further purified by flash chromatography on silicagel (eluent: cyclohexane/ethylacetate). This afforded 8.576 g of the title compound.
!H-NMR (400 MHz, CD3CN, Method Ml); δ, 7.63 (m, 2H), 7.50 (dd, 1H), 2.20 (d, 3H); Step 2: Synthesis of 2-(2,4-dichlorophenyl)-2-fluoropropan-l -amine hydrochloride
Figure imgf000135_0002
9.79g of 2-(2,4-dichlorophenyl)-2-fluoropropanenitrile (44.8mmol) in anhydrous tetrahydrofurane (614 mL) were cooled to 0°C. 1 M borane-THF (134.6 mL, 134 mmol) was added dropwise. The reaction mixture returned to room temperature and was stirred at room temperature for 4 hours. It was then quenched with ethanol and was acidified with 1M HCI in diethyl ether and concentrated in vacuo. The residue was triturated with acetone and filtrated. This led to the 5.176 g of the title compound. ^-NMR (400 MHz, d6-DMSO, Method Ml); δ, 8.10 (s, 3H), 7.73 (s, 1H), 7.59 (m, 2H), 3.67 -3.50 (m, 2H), 1.87 (d, 3H);
LCMS (M+H-HC1)+: 220.0 Step 3: Synthesis N-[2-(2,4-dichlorophenyl)-2-fluoropropyl]-2-(trifluoromethyl)benzamide
Figure imgf000136_0001
155 mg of 2-(2,4-dichlorophenyl)-2-fluoropropan-l-amine hydrochloride (0.56 mmol) were placed in dichloromethane (5 mL). Triethylamine (0.236 mL, 1.69 mmol) and 2-(trifluoromethyl)benzoyl chloride (141 mg, 0.67 mmol) were added. The reaction mixture was left under stirring at room temperature overnight. Some ethyl acetate was added. The organic phase was washed with brine, dried over sodium sulfate and concentrated in vacuo. The residue obtained was purified by flash chromatography on silicagel (eluent: cyclohexane/ethylacetate). This afforded 174 mg (78%) of the title compound.
!H-NMR (400 MHz, CDC13, Method Ml); δ, 7.69 (m, 1H), 7.57-7.50 (m, 3H), 7.44 (d, 1H), 7.33 (m, 2H), 5.92 (s, 1H), 4.28-4.16 (m, 2H), 1.91 (d, 3H);
LC-MS: (M+H)+: 395.0
Step 3: Synthesis of N-{2-[2-chloro-4-(6-fluoropyridin-3-yl)phenyl]-2-fluoropropyl}-2- (trifluoromethyl)benzamide (corresponds to product expl. 1-130)
Figure imgf000136_0002
To a solution of N-[2-(2,4-dichlorophenyl)-2-fluoropropyl]-2-(trifluoromethyl)benzamide (141 mg, 0.358 mmol) in degassed toluene (2.4 mL) was added under argon (6-fluoropyridin-3-yl)boronic acid (50 mg, 0.358 mmol), palladium acetate (12.0 mg, 0.054 mmol), an aqueous solution of potassium phosphate (276.4 mg, 1.302 mmol in 2.4 mL of water) and dicyclohexyl(2-6-dimethoxy-2-yl)phosphine (39.6 mg, 0.097 mmol). The reaction mixture was heated 30 minutes at reflux. The reaction mixture was cooled down and some methyl tertiary butyl ether was added. After filtration on celite, the reaction mixture was dried with sodium sulfate. After evaporation, the residue obtained was purified by flash chromatography on silicagel (eluent: cyclohexane/ethylacetate). This afforded 10.6 mg of the title compound.
^-NMR: see NMR peak list in the table, example 1-130. LC-MS: (M+H)+: 455.1 Preparation of Intermediates
Figure imgf000137_0001
A mixture of 2-(4-bromo-2-chlorophenyl)-2,2-difluoro-l-ethanamine (preparation example 2, step 1) (35.2 g, 0.13 mol), 6-fluoropyridin-3-ylboronic acid (23 g, 0.163 mol) and potassium carbonate (19.8 g, 0.143 mol) in toluene (360 ml) and ethanol (125 ml) was degassed with nitrogen. Tetrakis(triphenylphosphine)palladium(0) (15 g, 13 mmol) and a solution of potassium fluoride (22.6 g, 0.39 mol) in water (57 ml) were added and the mixture was degassed with nitrogen. Then the mixture was stirred at 70°C for 19 hours and at r.t. for 40 hours.
The reaction mixture was diluted with water (300 ml) and the organic layer was separated. The water layer was extracted with diethyl ether (2*100 ml). The combined organic layers were mixed with 10% hydrochloric acid (500 ml) and the mixture was filtered. The filtercake was washed with ether and toluene. The filtrate was separated.
The water layer was combined with the solid material and the mixture was neutralized with sodium hydrogencarbonate then with sodium carbonate. Crude amine was extracted with ether (3 x 150 ml). The extract was washed with water (150 ml), brine (150 ml), dried
Figure imgf000137_0002
and treated with an ether- hydrogenchlorid solution.
The crude 2-[2-chloro-4-(6-fluoro-3-pyridyl)phenyl]-2,2-difluoro-l-ethanamine hydrochloride (32 g, 76% yield) was filtered off, washed with ether and dried in vacuo.
H-NMR (400.0 MHz, DMSO, Method Ml): δ = 8.79 (bs, 3H, NH3 +), 8.69 (d, 1H), 8.45 - 8.40 (dt, 1H), 8.08 (s, 1H), 7.93 - 7.91 (d, 1H), 7.80 - 7.78 (d, 1H), 7.38 - 7.35 (dd, 1H), 3.92 - 3.81 (bt, 2H).
According to the methods described above, the following compounds of general formula (I) and intermediates (INT) have been prepared.
Table 1
Compounds of formula (I-l)
Figure imgf000138_0001
R1, R2, Q, X, n, A are as defined by each individual structure.
Figure imgf000138_0002
Figure imgf000139_0001
Figure imgf000140_0001
Figure imgf000141_0001
Figure imgf000142_0001
Figure imgf000143_0001
Figure imgf000144_0001
Figure imgf000145_0001
Figure imgf000146_0001
Figure imgf000147_0001
Figure imgf000148_0001
Figure imgf000149_0001
Table 2
Compounds of formula (INT)
Figure imgf000149_0002
R1, R2, Q, X, n are as defined by each individual structure and might occur as salts like hydrochlorides.
Figure imgf000149_0003
NMR peak lists
^-NMR data of selected examples are written in form of ^-NMR-peak lists. The δ-value in ppm and the signal intensity are listed to each signal peak in round brackets. Between the δ-value - signal intensity pairs are semicolons as delimiters. The peak list of an example has therefore the form: δι (intensityi); 82 (intensitV2); ; ¾ (intensity,); ; δη (intensity,,)
Intensity of sharp signals correlates with the height of the signals in a printed example of a NMR spectrum in cm and shows the real relations of signal intensities. From broad signals several peaks or the middle of the signal and their relative intensity in comparison to the most intensive signal in the spectrum can be shown.
Tetramethylsilane and/or the chemical shift of the used solvent, especially in the case of spectra measured in DMSO, have been used for calibrating. Therefore, tetramethylsilane peak can occur but not necessarily in NMR peak lists. The ^-NMR peak lists are similar to classical ^-NMR prints and contain therefore usually all peaks, which are listed at classical NMR-interpretation.
Additionally they can show like classical ^-NMR prints signals of solvents, stereoisomers of the target compounds, which are also object of the invention, and/or peaks of impurities.
The usual peaks of solvents, for example peaks of DMSO in DMSO-D6 and the peak of water, are given in the ^-NMR peak lists to show compound signals in the delta-range of solvents and/or water. They have usually on average a high intensity.
The peaks of stereoisomers of the target compounds and/or peaks of impurities have usually on average a lower intensity than the peaks of target compounds (for example with a purity >90 ).
Such stereoisomers and/or impurities can be typical for the specific preparation process. Therefore, their peaks can help to recognize the reproduction of our preparation process via "side-products-fingerprints".
An expert, who calculates the peaks of the target compounds with known methods (MestreC, ACD- simulation, but also with empirically evaluated expectation values) can isolate the peaks of the target compounds as needed optionally using additional intensity filters. This isolation would be similar to relevant peak picking at classical ^-NMR interpretation. Further details of NMR-data description with peak lists you find in the publication„Citation of NMR Peaklist Data within Patent Applications" of the Research Disclosure Database Number 564025. Table 3: NMR Peaklists (Method Ml)
[Example 1- 1 : 1H-NMR(400.0 MHz, DMSO):
δ= 8.622(2 1); 8.609(4.3); 8.595(2.1); 8.544(0.4); 8.539(0.4); 8.520(8.1); 8.519(8.4): 8.514(8.6); 8.513(8.1)
8.160(0.3) 8.153(0.4); 8.136(6.6); 8.129(6.3); 8.114(6.8) 8.108(6.7) 7.769(4.1); 7.751(5.7); 7.747(5.1)
7.676(1.5) 7.660(4.4); 7.658(4.2); 7.643(5.2); 7.639(6.2) 7.635(4.6) 7.618(4.0); 7.616(4.0); 7.599(1.4)
7.577(8.4) 7.551(3.1); 7.548(3.9); 7.544(2.5); 7.531(4.2) 7.528(5.0) 7.450(0.4); 7.442(4.8); 7.431(0.8)
7.423(9.1) 7.412(0.5); 7.404(4.7); 7.388(5.0); 7.371(4.3) 7.327(0.4) 7.320(0.4); 7.294(5.2); 7.284(0.9)
7.275(4.0) 7.178(0.4); 7.157(0.4); 7.095(8.9); 7.094(8.6); 7.074(8.6); 7.072(8.3); 5.080(4.5); 5.058(14.8)
(5.035(15.7) ; 5.012(5.4); 3.558(2.7); 3.541(5.9); 3.526(5.8); 3.508(2.9); 3.325(81.2): 2.919(5.0); 2.901(8.8)
2.883(4.4); 2.676(0.5); 2.671(0.7); 2.666(0.5); 2.524(2.2); 2.520(3.4); 2.511(40.2); 2.507(81.1); 2.502(107.9)
2.497(77.7) 2.493(36.1); 2.333(0.5); 2.329(0.7); 2.324(0.5); 1.989(0.8); 1.398(16.0) ; 1.175(0.4); 1.121(0.5)
10.982(0.5); 0.000(3.0)
(Example 1-2: 1H-NMR(400.0 MHz, DMSO):
5= 8.903(3.6); 8.899(3.4); 8.635(1.0); 8.622(1.9); 8.608(1.1); 8.581(2.5); 8.578(2.6); 8.569(2.7); 8.566(2.5)
8.095(1.6) 8.091(1.9) 8.090(2.0) 8.085(1.5); 8.075(1.8) 8.071(2.1) 8.070(2.2) 8.065(1.5); 7.771(1.9) 7.753(2.5) 7.749(2.3) 7.670(0.7) 7.654(2.1); 7.638(4.3) 7.632(5.0) 7.626(4.7) 7.622(4.0); 7.595(2.4) 7.576(2.5) 7.503(1.8) 7.501(1.9) 7.491(2.0); 7.489(2.0) 7.483(2.0) 7.481(2.1) 7.473(2.7); 7.472(2.7) 7.455(3.9) 7.436(2.0) 7.393(2.1) 7.390(2.3); 7.374(2.0) 7.337(2.6) 7.318(2.0) 3.571(1.3); 3.554(3.1) 3.538(3.2) 3.521(1.5); 3.338(5.8); 2.938(2.5); 2.921(4.6); 2.903(2.3); 2.508(9.4); 2.503(11.8); 2.499(8.8) 2.495(4.6) 2.087(16.0)
(Example 1-3: 1H-NMR(400.0 MHz, DMSO):
5= 8.938(0.4); 8.817(7.4); 8.813(13.3); 8.809(7.6); 8.682(0.4); 8.676(0.4); 8.628(2.8); 8.614(5.5); 8.601 (2.9) 8.580(12.1); 8.573(12.4); 8.092(3.9); 8.086(5.3); 8.081(3.9); 8.066(4.0); 8.061(5.1); 8.059(5.2); 8.055(3.9) 7.770(5.5); 7.752(7.4); 7.749(7.0); 7.693(11.8); 7.676(2.3); 7.659(11.7); 7.639(16.0); 7.619(5.7); 7.601(1.8) 7.482(5.5); 7.463(11.5); 7.444(6.5); 7.392(6.9); 7.375(6.1); 7.363(7.8); 7.344(5.5); 7.260(1.7); 4.056(0.7) 4.038(2.2); 4.020(2.3); 4.002(0.8); 3.572(3.8); 3.555(8.9); 3.539(9.0); 3.522(4.3); 3.324(82.7); 2.935(7.4) 2.917(13.4); 2.899(6.7); 2.675(0.9); 2.671(1.3); 2.666(0.9); 2.524(4.1); 2.506(139.6); 2.502(181.3); 2.497(135.1) 2.333(0.9); 2.329(1.2); 2.324(0.9); 1.989(9.6); 1.397(0.6); 1.279(0.6); 1.262(0.6); 1.192(2.6); 1.175(5.1) 1.157(2.5); 1.138(0.3); 1.120(0.6); 0.982(0.6); 0.879(1.1); 0.870(3.0); 0.858(0.3); 0.000(1.3)
(Example 1-4: 1H-NMR(400.0 MHz, DMSO):
5= 8.598(0.6); 8.585(1.2); 8.571(0.6); 8.466(1.8); 8.461(1.9); 8.453(1.8); 8.449(1.8); 7.767(1.3); 7.749(1.8)
7.745(1.6) 7.677(0.5) 7.661(1.4) 7.659(1.3); 7.644(1.7) 7.640(1.9) 7.636(1.5) 7.619(1.3); 7.617(1.3) 7.611(1.8) 7.606(1.8) 7.600(0.6) 7.591(2.0); 7.587(1.9) 7.436(1.0) 7.417(2.5) 7.398(1.7); 7.376(1.6) 7.359(1.3) 7.311(2.9) 7.297(2.0) 7.292(2.5); 7.278(2.7) 7.274(2.9) 7.267(2.2) 7.264(1.9); 7.248(1.1) 7.245(1.4) 4.038(0.6); 4.020(0.6); 3.544(0.9); 3.527(2.0); 3.512(2.0); 3.494(1.0); 3.326(14.7); 2.908(1.7) 2.890(3.1) 2.872(1.5); 2.524(0.6); 2.511(10.5); 2.506(20.7); 2.502(26.8); 2.497(19.2); 2.493(9.0); 2.427(16.0) 1.989(2.4) 1.192(0.7); 1.175(1.3); 1.157(0.7); 0.000(4.3)
(Example 1-5: 1H-NMR(400.0 MHz, DMSO):
5= 8.595(0.7); 8.582(1.3); 8.568(0.7); 7.766(1.4); 7.748(1.8); 7.700(0.3); 7.692(3.5); 7.671(5.1) 7.653(1.4)
7.650(1.2); 7.638(1.4); 7.620(1.4); 7.603(0.5) 7.473(0.4) 7.445(1.0); 7.425(4.2); 7.404(3.0); 7.378(1.7) 7.360(1.4); 7.329(1.7); 7.310(1.3); 7.287(2.8) 7.276(1.7) 7.273(2.0); 7.257(1.1); 7.254(1.3); 4.055(0.4) (4.038(1.1); 4.020(1.1); 4.002(0.4); 3.542(0.9) 3.525(2.0) 3.510(2.0); 3.492(1.0); 3.471(0.4); 3.457(0.4) 3.323(56.8); 2.905(1.6); 2.887(3.0); 2.869(1.5); 2.821(0.5); 2.675(0.6); 2.670(0.7) 2.666(0.6); 2.524(2.2)
2.519(3.5); 2.510(40.4); 2.506(80.9); 2.501(106.2); 2.497(76.5); 2.492(36.2); 2.408(16.0); 2.333(0.5); 2.328(0.7) 2.324(0.5); 2.086(0.4); 1.989(4.8); 1.249(0.4); 1.192(1.3); 1.174(2.7); 1.157(1.3); 0.008(0.5); 0.000(16.4); (0.009(0.5)
(Example 1-6: 1H-NMR(400.0 MHz, DMSO):
5= 10.565(2.3); 8.625(0.8); 8.612(1.5); 8.598(0.8); 8.386(2.2); 8.365(2.8); 8.352(2.9); 7.765(1.4); 7.747(1.9)
7.744(1.8) 7.671(0.5); 7.654(1.5) 7.637(2.2); 7.633(2.4); 7.613(1.4); 7.591(3.2); 7.572(1.4): 7.553(2.0) 7.498(1.5) 7.479(2.8); 7.460(1.4) 7.408(2.1); 7.404(2.2); 7.395(3.8); 7.391(5.1); 7.372(2.5): 3.545(0.9) 3.528(2.1) 3.512(2.2); 3.495(1.0); 3.323(36.4); 2.936(1.8); 2.918(3.2); 2.900(1.6) 2.675(0.4): 2.671(0.6) 2.666(0.4) 2.510(34.7); 2.506(65.6); 2.501(84.2); 2.497(61.4); 2.493(30.4); 2.333(0.4); 2.328(0.6); 2.324(0.4)
2.121(16.0); 1.069(1.2); 0.000(0.6)
(Example 1-7: 1H-NMR(400.0 MHz, DMSO):
5= 8.641(13.9); 8.638(9.5); 8.630(11.1); 8.626(16.0); 8.614(4.5); 8.600(2.2); 7.769(4.3); 7.751(5.7); 7.747(5.3) 7.724(15.3); 7.720(9.9); 7.713(10.0); 7.709(15.1); 7.698(9.5); 7.670(6.1); 7.651(9.6); 7.638(8.7); 7.633(8.3) 7.617(4.2); 7.598(1.3); 7.493(4.2); 7.474(9.0); 7.454(5.0); 7.384(11.1); 7.366(8.1); 3.564(3.0); 3.547(7.1) 3.532(7.1); 3.514(3.3); 3.327(24.0); 2.940(5.9); 2.922(10.6); 2.905(5.2); 2.675(0.4); 2.671(0.5); 2.666(0.4): 2.540(0.4); 2.506(59.5); 2.502(75.8); 2.497(55.6); 2.333(0.4); 2.329(0.5); 2.324(0.4); 0.000(0.6)
[Example 1-8: 1H-NMR(400.0 MHz, DMSO):
δ= 9.149(0.6); 8.882(14.8); 8.878(14.8); 8.626(16.0); 8.621(15.5); 8.612(5.8); 8.599(2.8); 8.261(9.5); 8.256(15.9)
8.250(8.9) 7.771(5.5); 7.753(7.5); 7.749(6.8); 7.693(11.7) 7.681(2.3); 7.678(2.3); 7.659(11.1); 7.639(15.0) 7.621(5.3) 7.602(1.7); 7.489(0.4); 7.479(5.8); 7.470(0.7) 7.460(12.1); 7.441(6.7); 7.392(6.8); 7.375(6.0) 7.363(7.7) 7.344(5.3); 4.038(0.4); 4.020(0.4); 3.573(3.8) 3.556(8.7); 3.541(8.7); 3.523(4.1); 3.326(44.9) 2.934(7.2) 2.916(13.1); 2.898(6.4); 2.695(0.6); 2.676(0.6); 2.671(0.8); 2.667(0.6); 2.525(2.9); 2.511(43.4)
2.507(84.7); 2.502(109.9); 2.498(79.0); 2.493(37.6); 2.334(0.5); 2.329(0.7); 2.324(0.5); 1.989(1.6); 1.337(0.5) 1.259(0.3); 1.249(0.6); 1.193(0.5); 1.175(0.9); 1.157(0.4); 0.008(1.3); 0.000(32.9); -0.009(1.1)
[Example 1-9: 1H-NMR(400.0 MHz, DMSO):
5= 8.745(4.1); 8.740(4.2); 8.628(1.1); 8.614(2.1); 8.600(1.1); 8.185(2.6); 8.179(2.5); 8.164(2.8); 8.158(2.8)
8.142(2.4) 7.954(2.3); 7.770(2.2): 7.752(2.9) 7.683(0.8) 7.666(2.4) 7.642(6.8) 7.621(6.4); 7.600(5.2) 7.587(2.8) 7.476(2.0); 7.457(4.0): 7.438(2.2) 7.392(2.7) 7.374(2.3) 7.351(2.9) 7.332(2.1); 3.756(0.4) 3.744(0.4) 3.732(0.4); 3.564(1.5): 3.547(3.3) 3.531(3.4) 3.514(1.6) 3.329(1.8) 3.088(0.5); 3.079(0.7) 3.062(0.7) 3.025(0.5); 3.011(0.8); 2.997(0.6); 2.930(2.7); 2.912(4.9); 2.891(16.0); 2.732(12.5); 2.547(1.3)
2.507(31.5); 2.503(39.4); 2.498(29.2); 2.409(0.3); 2.087(0.5); 1.646(0.5); 1.633(0.4); 1.255(0.9); 1.239(0.9) 1.188(0.4); 1.170(0.8); 1.152(0.4); 0.000(9.0); -0.008(0.4)
[Example 1-10: ¾-NMR(400.0 MHz, DMSO):
5= 9.245(0.7); 9.103(12.8); 8.636(3.8); 8.623(7.0); 8.609(3.7); 8.568(0.6); 8.550(0.6); 8.391(6.5) 8.371 (7.1) 8.366(6.8); 8.316(1.1); 8.154(0.3); 8.117(0.8); 8.096(0.7); 8.003(12.8); 7.983(11.5); 7.807(0.4); 7.769(7.6) 7.750(10.1); 7.723(14.7); 7.692(7.6); 7.673(9.7); 7.666(9.6); 7.647(8.4); 7.642(8.9); 7.620(7.3); 7.601(2.6)
7.578(0.4) 7.564(0.4); 7.520(6.1); 7.501(12.7); 7.482(7.2); 7.454(0.4); 7.444(0.4); 7.404(11.1); 7.401(11.2) 7.382(9.6) 5.757(1.9); 3.649(0.3); 3.632(0.4); 3.578(4.7); 3.561(11.1); 3.546(11.2); 3.528(5.2) 3.511(0.6) 3.499(0.4) 3.480(0.4); 3.437(0.4); 3.323(347.0); 3.258(0.6); 3.228(0.5); 3.215(0.4); 3.179(0.4): 3.113(0.3) 3.091(0.7) 3.074(0.4); 3.043(0.4); 3.033(0.3); 2.990(0.4); 2.975(0.6); 2.952(9.0); 2.934(16.0): 2.916(8.2) 2.891(0.9) 2.792(0.3): 2.773(0.5); 2.756(0.5); 2.746(0.4); 2.732(0.8); 2.714(0.5); 2.671(5.0); 2.633(1.0) 2.616(1.0) 2.613(1.0); 2.506(593.5); 2.502(697.3); 2.497(502.8); 2.406(1.2); 2.390(0.8); 2.368(0.6) ; 2.357(0.6) 2.328(4.8) 2.294(0.4); 2.249(0.4); 2.238(0.4); 1.803(1.2); 1.785(1.9); 1.750(1.9); 1.680(0.5); 1.665(1.0) 1.398(0.7) 1.322(0.5); 1.300(1.0); 1.273(1.5); 1.242(2.0); 1.215(2.0); 1.167(0.6); 1.149(0.7); 1.121(0.6) 1.102(0.4) 0.981(0.4); 0.146(0.6); 0.043(0.3); 0.034(0.5); 0.008(7.3); 0.000(116.6); -0.150(0.6)
[Example 1-11 : 1H-NMR(601.6 MHz, DMSO):
5= 8.632(1.9); 8.623(3.7); 8.614(1.9); 8.497(5.5); 8.489(5.7); 7.777(4.2); 7.764(16.0); 7.754(4.2); 7.751 (12.6) 7.718(1.8); 7.707(4.4); 7.694(2.9); 7.646(2.7); 7.633(4.1); 7.614(6.3); 7.529(3.4); 7.527(3.3); 7.521(3.4) 7.518(3.2); 7.443(4.5); 7.431(4.2); 7.417(10.9); 7.403(10.2); 3.517(2.6); 3.506(5.0); 3.496(5.0); 3.483(2.9) 3.327(19.1); 2.898(4.6); 2.885(7.9); 2.873(4.4); 2.617(0.4); 2.613(0.6); 2.610(0.4); 2.541(26.0); 2.535(42.3) 2.523(1.3); 2.520(1.3); 2.517(1.1); 2.508(28.8); 2.505(64.7); 2.502(91.5); 2.499(65.6); 2.496(30.9); 2.389(0.4) 2.386(0.6); 2.383(0.4); 1.234(0.4); 0.000(1.8)
[Example 1-12: 1H-NMR(601.6 MHz, DMSO):
5= 9.099(7.5); 9.096(7.5); 8.644(2.4); 8.635(4.8); 8.625(2.4); 8.372(3.8); 8.369(3.9); 8.359(4.3); 8.355(4.3)
7.984(8.2); 7.970(7.8); 7.799(14.1); 7.785(16.0); 7.780(6.0); 7.766(6.4); 7.722(2.4); 7.710(5.6); 7.697(3.6)
7.648(3.5); 7.636(5.1); 7.623(2.2); 7.456(13.9); 7.453(8.8); 7.443(13.6); 3.528(3.1); 3.516(6.2); 3.507(6.3)
3.494(3.6); 3.331(420.6); 2.997(0.5); 2.915(5.8); 2.902(9.9); 2.890(5.5); 2.615(0.6); 2.542(37.2); 2.524(1.0)
2.521(1.2); 2.518(1.1); 2.509(33.1); 2.506(72.4); 2.503(101.6); 2.500(73.3); 2.497(34.5); 2.387(0.6); 1.234(0.4) [0.000(1.6)
[Example 1-13: 1H-NMR(400.0 MHz, DMSO):
5= 8.894(4.7); 8.889(4.6); 8.647(1.6); 8.634(3.1); 8.620(1.6); 8.566(3.2); 8.562(3.4); 8.554(3.3); 8.551(3.2)
8.081(2.3) 8.076(3.0); 8.071(2.3); 8.061(2.5); 8.056(3.3); 8.052(2.3); 7.783(3.4); 7.763(4.5); 7.729(1.5) 7.710(4.1) 7.699(9.3); 7.694(5.6); 7.678(10.5); 7.652(2.7); 7.633(3.5); 7.614(1.4); 7.492(3.0); 7.481(3.0) 7.473(3.0) 7.460(5.9); 7.439(3.6); 7.412(9.5); 7.391(8.2); 3.529(2.1); 3.512(4.5); 3.497(4.4); 3.479(2.3) 3.333(9.2) 2.903(4.0); 2.884(6.7); 2.866(3.6); 2.525(0.5); 2.512(8.2); 2.508(15.9); 2.503(20.5); 2.499(14.8) 2.494(7.1) 2.087(16.0); 1.990(0.4); 0.000(1.9)
[Example 1-14: 1H-NMR(400.0 MHz, DMSO):
5= 8.811(1.3); 8.807(2.4); 8.802(1.3); 8.646(0.5); 8.632(1.0); 8.618(0.5); 8.562(2.2); 8.555(2.3); 8.080(0.7)
8.075(0.9) 8.069(0.7) 8.054(0.7) 8.049(0.9) 8.043(0.7) 7.782(1.1) 7.767(3.6) 7.747(3.5); 7.729(0.5) 7.711(1.2) 7.692(0.9) 7.653(0.9) 7.634(1.1) 7.615(0.4) 7.453(1.3) 7.434(1.2) 7.422(3.1); 7.402(2.7) 3.932(2.5) 3.528(0.7) 3.511(1.4) 3.496(1.4) 3.478(0.7) 3.328(6.7) 2.907(1.3) 2.888(2.2); 2.870(1.1)
2.512(4.4); 2.508(8.9); 2.503(11.9); 2.498(8.6); 2.494(4.2); 1.160(0.5); 1.071(16.0); 0.000(6.6) Example 1-15: 1H-NMR(400.0 MHz, DMSO):
5= 9.099(1.0); 8.737(8.1); 8.731(7.7); 8.637(2.8); 8.624(4.5); 8.610(2.1); 8.375(0.6); 8.356(0.6); 8.316(1.4); 8.169(5.1); 8.163(4.8); 8.148(5.3); 8.142(5.0); 7.986(1.0); 7.966(0.9); 7.802(1.8); 7.781(7.0); 7.761(6.8); 7.726(3.2); 7.713(14.6); 7.692(16.0); 7.651(4.4); 7.632(5.4); 7.606(8.5); 7.585(7.5); 7.450(6.4); 7.432(5.9); 7.414(12.4); 7.394(10.4); 3.519(3.7); 3.502(7.0); 3.487(6.6); 3.469(2.9); 3.322(42.8); 2.919(1.0); 2.897(6.3); 2.879(9.5); 2.861(4.6); 2.675(0.9); 2.671(1.1); 2.667(0.8); 2.506(140.5); 2.502(166.6); 2.498(119.4); 2.333(0.9); 2.329(1.1); 2.324(0.8); 1.989(1.2); 1.398(1.0); 1.193(0.3); 1.175(0.6); 1.157(0.3); 0.146(0.6); 0.000(112.1); - 0.150(0.5)
Example 1 -16: 1H-NMR(400.0 MHz, DMSO):
5= 8.876(1 0.3); 8.872(10.2); 8.811(2.3); 8.796(8.3); 8.784(7.0); 8.612(9.6); 8.607(9.8); 8.250(6.4); 8.244(10.7); 8.239(5.9) 7.931(4.2); 7.914(5.5); 7.790(4.7); 7.778(5.5); 7.770(16.0); 7.758(4.8); 7.749(14.0); 7.426(12.9); 7.405(11.3 ); 3.548(2.8); 3.531(6.3); 3.516(6.3); 3.498(3.2); 3.460(0.3); 3.402(0.6); 3.392(0.7); 3.377(1.3); 3.372(1.5) 3.341(835.2); 3.294(0.8); 3.285(0.5); 2.907(5.3); 2.889(9.5); 2.871(4.8); 2.676(1.1); 2.672(1.6); 2.667(1.2) 2.564(0.4); 2.542(71.1); 2.512(99.0); 2.507(195.3); 2.503(251.6); 2.498(179.2); 2.334(1.1); 2.330(1.6) 2.325(1.1); 1.258(0.4); 1.234(1.2); 0.008(0.5); 0.000(14.3)
Example 1 -17: 1H-NMR(400.0 MHz, DMSO):
5= 8.789(1 .9); 8.782(1.6); 8.449(2.0); 8.443(2.0); 7.981(1.4); 7.975(1.3); 7.960(1.4); 7.953(1.4); 7.932(1.0); 7.914(1.3) 7.787(1.1); 7.775(1.1); 7.767(0.9); 7.756(0.9); 7.610(2.9); 7.590(3.5); 7.362(3.1); 7.341(2.7); 6.827(2.0) 6.806(2.0); 5.314(0.4); 5.298(1.1); 5.283(1.5); 5.267(1.1); 5.252(0.4); 3.530(0.7); 3.513(1.5); 3.497(1.5) 3.480(0.8); 3.375(0.8); 3.342(269.1); 2.875(1.3); 2.857(2.2); 2.839(1.1); 2.676(0.4); 2.672(0.5); 2.667(0.4) 2.542(3.1); 2.512(30.9); 2.507(61.9); 2.503(80.6); 2.498(58.2); 2.494(28.1); 2.334(0.4); 2.329(0.5); 2.325(0.3) 1.320(16.0); 1.304(15.9); 0.000(6.5)
Example 1 -18: 1H-NMR(400.0 MHz, DMSO):
5= 8.805(2 .9); 8.792(10.5); 8.780(7.3); 8.511(9.3); 8.505(9.4); 8.123(6.3); 8.116(5.8); 8.101(6.5); 8.095(6.3); 7.933(4.8) 7.916(6.1); 7.788(5.1); 7.776(5.1); 7.768(4.2); 7.756(4.0); 7.653(13.6); 7.633(16.0); 7.386(14.5); 7.366(12.3 ); 7.089(9.4); 7.068(9.1); 5.075(4.7); 5.053(15.2); 5.030(15.8); 5.007(5.4); 3.537(3.0); 3.520(6.8); 3.504(6.8) 3.486(3.3); 3.468(0.5); 3.457(0.5); 3.438(0.4); 3.425(0.7); 3.403(1.2); 3.386(2.4); 3.350(1189.1); 3.291(1.0) 3.284(0.9); 3.269(0.8); 3.256(0.6); 3.217(0.4); 2.886(5.7); 2.868(10.0); 2.850(5.1); 2.677(1.3); 2.672(1.7) 2.668(1.2); 2.543(35.9); 2.512(110.6); 2.508(215.7); 2.503(275.5); 2.499(194.3); 2.494(90.6); 2.441(0.4) 2.334(1.3); 2.330(1.6); 2.326(1.2); 1.235(1.1); 0.000(4.9)
Example 1-19: 1H-NMR(400.0 MHz, DMSO):
5= 9.241(0.4); 9.101(8.0); 9.096(7.9); 8.816(2.4); 8.803(5.2); 8.793(6.9); 8.785(6.4); 8.378(3.9); 8.372(4.0); 8.357(4.3); 8.352(4.4); 8.120(0.5); 8.099(0.4); 7.991(8.6); 7.970(7.8); 7.936(4.6); 7.919(5.8); 7.805(13.6); 7.789(10.2); 7.785(16.0); 7.778(6.9); 7.770(4.2); 7.758(4.0); 7.466(13.9); 7.445(12.2); 3.560(2.9); 3.542(6.6); 3.527(6.7); 3.509(3.2); 3.337(402.3); 3.305(0.7); 2.997(0.7); 2.923(5.6); 2.905(10.1); 2.887(5.1); 2.676(1.0); 2.672(1.3); 2.668(1.0); 2.558(0.4); 2.542(56.5); 2.525(3.8); 2.512(81.2); 2.507(163.7); 2.503(212.9); 2.498(152.6); 2.494(73.1); 2.334(1.0); 2.329(1.3); 2.325(0.9); 1.807(0.4); 1.785(0.6); 1.755(0.5); 1.299(0.4); 1.267(0.5); 1.259(0.5); 1.234(1.3); 1.214(0.6); 1.192(0.4); 0.008(1.3); 0.000(36.3); -0.009(1.4)
Example 1-20: 1H-NMR(400.0 MHz, DMSO):
5= 20.011(0.4); 15.549(0.4); 14.283(0.4); 8.804(2.7); 8.791(9.8); 8.779(7.3); 8.739(9.1); 8.732(9.4); 8.171(6.1); 8.164(6.0); 8.150(6.8); 8.143(6.4); 7.931(4.8); 7.911(5.8); 7.787(5.2); 7.775(5.1); 7.768(4.2); 7.756(4.1); 7.716(13.9); 7.695(16.0); 7.610(9.8); 7.589(9.1); 7.420(14.4); 7.400(12.6); 3.722(0.5); 3.700(0.4); 3.672(0.4); 3.639(0.5); 3.603(0.4); 3.542(3.3); 3.525(7.1); 3.509(7.0); 3.491(3.8); 3.446(1.0); 3.433(1.1); 3.419(1.2); 3.406(1.6); 3.392(1.7); 3.337(2062.5); 3.289(1.8); 3.277(1.1); 3.094(0.4); 3.058(0.4); 2.996(0.5); 2.899(5.8); 2.881(10.4); 2.863(5.1); 2.712(0.5); 2.676(4.3); 2.671(5.8); 2.667(4.4); 2.636(0.5); 2.602(0.6); 2.578(0.8); 2.542(49.2); 2.525(14.1); 2.511(354.2); 2.507(724.5); 2.502(947.1); 2.498(672.4); 2.493(317.1); 2.464(1.5); 2.334(4.4); 2.329(5.9); 2.324(4.2); 2.289(0.4); 1.297(0.6); 1.258(0.8); 1.235(3.6); 0.853(0.5); 0.008(1.9); 0.000(68.1); -0.009(2.1); -1.700(0.5); -3.167(0.4)
Example 1 -21 : 1H-NMR(400.0 MHz, DMSO):
5= 8.811(7 .8); 8.807(11.5); 8.803(7.4); 8.796(8.7); 8.783(7.1); 8.566(9.1); 8.559(9.2); 8.084(2.8); 8.079(4.0); 8.073(2.6) 8.058(2.9); 8.053(4.0); 8.047(2.6); 7.931(4.2); 7.914(5.5); 7.789(4.6); 7.777(5.6); 7.770(16.0); 7.757(5.1) 7.749(14.0); 7.427(12.8); 7.407(11.3); 3.549(2.8); 3.532(6.4); 3.516(6.4); 3.499(3.1); 3.390(0.5); 3.372(1.2) 3.336(511.2); 2.907(5.4); 2.889(9.6); 2.871(4.8); 2.712(0.4); 2.676(1.2); 2.672(1.5); 2.667(1.2); 2.542(86.1 ); 2.507(187.1); 2.503(241.3); 2.498(171.9); 2.368(0.3); 2.334(1.0); 2.329(1.5); 2.325(1.0); 1.259(0.3); 1.235(1.1) 0.008(1.5); 0.000(40.4); -0.009(1.4)
Example 1-22: ¾-NMR(400.0 MHz, DMSO):
5= 8.809(0.7); 8.793(2.9); 8.780(2.3); 8.473(1.4); 8.469(1.6); 8.461(1.5); 8.457(1.5); 7.927(1.4); 7.910(1.8); 7.786(1.6); 7.775(1.6); 7.767(1.3); 7.755(1.2); 7.625(0.9); 7.605(1.0); 7.388(1.3); 7.367(8.4); 7.359(8.9); 7.338(2.1); 7.325(0.9); 7.319(0.9); 7.305(0.8); 3.568(1.0); 3.551(2.2); 3.535(2.2); 3.518(1.1); 3.498(0.4):
3.491(0.4); 3.466(0.5); 3.445(0.6); 3.430(0.8); 3.410(0.9); 3.341(851.2); 3.283(1.3); 3.260(0.5); 3.243(0.3):
2.909(1.9); 2.890(3.2); 2.872(1.8); 2.712(0.5); 2.676(1.6); 2.672(2.2); 2.667(1.6); 2.542(116.9); 2.525(5.4):
2.520(7.8); 2.512(126.1); 2.507(263.0); 2.503(348.3); 2.498(247.5); 2.494(116.0); 2.468(0.7); 2.464(0.7):
2.444(16.0); 2.367(0.4); 2.338(0.7); 2.334(1.5); 2.329(2.1); 2.325(1.5); 2.290(0.5); 1.258(0.5); 1.235(1.4): 0.008(0.6); 0.000(21.5); -0.009(0.7)
Example 1-23: 1H-NMR(400.0 MHz, DMSO):
5= 8.894(8.3); 8.889(8.0); 8.811(2.3); 8.795(8.9); 8.782(7.2); 8.568(6.0); 8.564(6.3); 8.556(6.2); 8.552(6.1):
8.089(3.2); 8.083(4.2); 8.079(3.2); 8.069(3.5); 8.063(4.6); 8.059(3.2); 7.935(4.5); 7.918(5.8); 7.789(5.0):
7.777(4.9); 7.770(4.0); 7.758(3.8); 7.702(13.6); 7.682(16.0); 7.500(4.4); 7.488(4.3); 7.480(4.2); 7.469(3.9):
7.416(14.2); 7.396(12.2); 3.571(0.4); 3.548(3.2); 3.530(6.7); 3.515(6.8); 3.497(3.7); 3.474(0.5); 3.460(0.6):
3.444(1.0); 3.417(1.3); 3.378(4.6); 3.345(1223.4); 3.292(1.8); 3.262(0.8); 3.239(0.8); 3.225(0.5); 3.162(0.4):
3.015(0.6); 2.901(5.8); 2.883(10.1); 2.865(5.2); 2.753(0.5); 2.712(0.9); 2.677(1.9); 2.672(2.7); 2.667(2.0): 2.577(0.3); 2.542(220.5); 2.525(6.4); 2.512(163.1); 2.507(330.0); 2.503(430.1); 2.498(306.5); 2.494(144.3):
2.419(0.4); 2.415(0.4); 2.368(0.9); 2.334(2.0); 2.330(2.7); 2.325(2.0); 2.291(0.6); 1.298(0.4); 1.258(0.7): 1.234(1.9); 0.854(0.3); 0.000(9.9); -0.009(0.3)
Example 1-24: 1H-NMR(400.0 MHz, DMSO):
5= 8.787(4.8); 8.776(4.8); 8.748(1.9); 8.734(3.6); 8.720(1.9); 7.910(4.1); 7.891(5.3); 7.785(4.6); 7.773(4.6): 7.765(3.6); 7.753(3.4); 7.509(13.6); 7.488(16.0); 7.245(14.1); 7.224(12.1); 3.494(3.2); 3.476(7.4); 3.461(7.3): 3.444(3.4); 3.406(0.6); 3.398(0.5); 3.391(1.0); 3.338(825.0); 3.307(1.0); 3.293(0.6); 3.281(0.4); 2.811(5.9): 2.793(11.1); 2.775(5.3); 2.675(1.4); 2.672(1.9); 2.667(1.4); 2.542(22.5); 2.525(5.0); 2.511(114.0); 2.507(230.2): 2.502(300.7); 2.498(215.0); 2.494(102.6); 2.333(1.3); 2.329(1.8); 2.325(1.3); 2.320(0.6); 1.258(0.4); 1.236(1.2): 0.000(14.7); -0.009(0.4)
Example 1-25: ¾-NMR(400.0 MHz, DMSO):
5= 8.790(2.1); 8.778(2.3); 8.761(0.6); 7.930(1.2); 7.913(1.6); 7.785(1.4); 7.773(1.4); 7.765(1.1); 7.754(1.1): 7.564(3.0); 7.560(3.0); 7.401(3.0); 7.381(4.9); 7.316(4.5); 7.296(2.8); 6.688(2.9); 6.683(2.9); 3.520(0.8): 3.503(1.8); 3.487(1.8); 3.469(1.0); 3.366(0.9); 3.340(197.6); 3.307(0.3); 2.853(1.6); 2.835(2.7); 2.816(1.5): 2.676(0.3); 2.672(0.4); 2.542(9.3); 2.525(1.1); 2.511(26.5); 2.507(53.2); 2.503(68.9); 2.498(48.8); 2.494(23.0): 2.422(16.0); 2.334(0.3); 2.329(0.4); 1.236(0.4); 0.008(0.5); 0.000(14.6); -0.009(0.5)
Example 1-26: ¾-NMR(400.0 MHz, DMSO):
5= 8.789(6.3); 8.780(7.2); 8.778(7.0); 8.770(4.8); 8.755(2.3); 8.155(11.1); 7.921(4.6); 7.904(6.0); 7.902(5.9): 7.783(5.1); 7.771(5.1); 7.764(4.2); 7.752(4.0); 7.731(7.8); 7.727(12.9); 7.723(7.5); 7.567(13.6); 7.547(16.0): 7.288(14.4); 7.267(12.4); 6.949(9.2); 6.947(10.0); 6.945(9.9); 6.943(8.7); 3.571(0.4); 3.536(0.5); 3.512(3.5): 3.495(7.5); 3.479(7.3); 3.462(4.2); 3.380(1085.1); 3.312(1.2); 3.300(1.1); 3.289(1.0); 3.270(0.6); 3.259(0.4): 3.248(0.4); 3.232(0.4); 2.840(6.0); 2.822(10.2); 2.804(5.3); 2.679(0.7); 2.674(0.9); 2.670(0.7); 2.544(40.0): 2.527(2.3); 2.514(52.0); 2.510(103.6); 2.505(133.7); 2.501(95.3); 2.496(45.0); 2.336(0.6); 2.332(0.8); 2.327(0.6): 1.234(0.8); 0.008(1.2); 0.000(29.7); -0.009(1.0)
Example 1-27: 1H-NMR(400.0 MHz, DMSO):
5= 8.805(2.7); 8.792(10.7); 8.780(8.0); 8.461(9.8); 8.447(10.3); 7.926(4.9); 7.908(6.4); 7.895(0.6); 7.857(11.5): 7.854(12.1); 7.840(14.5); 7.819(16.0); 7.787(5.6); 7.775(6.0); 7.769(10.5); 7.766(9.5); 7.756(11.2); 7.752(7.5): 7.509(0.8); 7.488(0.9); 7.443(14.6); 7.423(13.1); 7.245(0.9); 7.224(0.7); 3.551(3.2); 3.534(7.3); 3.519(7.4): 3.501(3.5); 3.476(0.6); 3.462(0.6); 3.444(0.4); 3.439(0.4); 3.414(0.4); 3.406(0.5); 3.377(1.6); 3.340(941.1): 3.307(1.5); 3.281(0.6); 3.258(0.5); 3.251(0.4); 2.914(6.1); 2.896(11.1); 2.878(5.5); 2.812(0.4); 2.793(0.7): 2.774(0.4); 2.676(1.4); 2.672(1.9); 2.668(1.4); 2.542(46.6); 2.525(5.0); 2.512(117.2); 2.507(236.9); 2.503(309.7): 2.498(223.4); 2.494(108.4); 2.419(0.4); 2.334(1.4); 2.330(2.0); 2.325(1.4); 1.298(0.3); 1.258(0.5); 1.234(1.3): 0.008(1.4); 0.000(35.7); -0.008(1.3)
Example 1-28: 1H-NMR(400.0 MHz, DMSO):
5= 8.807(2.5); 8.792(10.1); 8.780(7.8); 8.297(9.3); 8.284(9.8); 7.927(4.9); 7.910(6.3); 7.847(14.3); 7.827(16.0): 7.787(5.3); 7.775(5.2); 7.768(4.3); 7.756(4.1); 7.720(3.6); 7.716(5.6); 7.712(3.9); 7.707(3.8); 7.703(5.4): 7.699(3.4); 7.533(11.6); 7.448(14.6); 7.428(13.2); 3.555(3.2); 3.537(7.4); 3.522(7.4); 3.504(3.5); 3.375(0.9): 3.339(418.0); 3.300(0.3); 2.917(6.2); 2.899(11.2); 2.882(5.6); 2.676(0.8); 2.672(1.1); 2.668(0.8); 2.542(11.0): 2.525(2.6); 2.512(65.9); 2.508(131.5); 2.503(170.5); 2.499(121.4); 2.494(57.5); 2.334(0.7); 2.330(1.0) 2.325(0.8); 1.234(0.8); 0.008(1.2); 0.000(33.1); -0.009(1.1)
Example 1-29: 1H-NMR(400.0 MHz, DMSO):
5= 8.805(2.6); 8.791(10.2); 8.778(7.7); 8.033(14.8); 8.012(16.0); 7.998(4.7); 7.996(5.1); 7.978(11.5); 7.976(10.1): 7.955(9.3); 7.936(16.0); 7.917(9.9); 7.788(5.2); 7.776(5.3); 7.769(4.3); 7.757(4.0); 7.465(9.0); 7.463(8.7): 7.446(8.4); 7.444(8.1); 7.424(14.5); 7.403(13.4); 3.628(0.4); 3.614(0.4); 3.596(0.4); 3.551(3.3); 3.534(7.2): 3.518(7.5); 3.501(3.7); 3.462(0.7); 3.438(1.0); 3.414(1.5); 3.401(1.8); 3.396(2.1); 3.386(2.9); 3.343(1848.6): 3.314(3.3); 3.294(1.5); 3.279(0.9); 3.264(0.7); 3.253(0.4); 3.241(0.5); 3.218(0.5); 2.910(6.0); 2.892(10.8); 2.874(5.4); 2.676(2.8); 2.672(3.6); 2.667(2.8); 2.582(0.4); 2.542(24.0); 2.525(10.1); 2.512(227.9); 2.507(455.1); 2.503(586.9); 2.498(414.0); 2.494(191.7); 2.452(0.6); 2.443(0.3); 2.334(2.4); 2.330(3.4); 2.325(2.5); 2.291(0.4); 1.297(0.4); 1.258(0.6); 1.234(1.6); 0.008(1.5); 0.000(37.6); -0.009(1.2)
Example 1-30: 1H-NMR(400.0 MHz, DMSO):
5= 8.804(0.9); 8.791(3.2); 8.780(2.3); 7.943(16.0); 7.922(1.4); 7.900(5.9); 7.879(4.4); 7.787(1.7); 7.774(1.6); 7.767(1.3); 7.755(1.2); 7.462(0.4); 7.447(4.2); 7.427(3.9); 7.250(0.3); 3.708(0.4); 3.649(0.3); 3.639(0.4); 3.570(0.4); 3.552(1.2); 3.533(2.4); 3.517(2.4); 3.501(1.2); 3.485(0.8); 3.474(0.6); 3.454(0.7); 3.432(1.3); 3.408(1.3); 3.399(1.4); 3.391(1.9); 3.384(2.5); 3.339(2092.8); 3.309(3.3); 3.303(2.4); 3.293(1.2); 3.283(1.1); 3.275(0.7); 3.269(0.5); 3.258(0.8); 3.233(0.4); 3.211(0.3); 3.199(0.3); 3.160(0.3); 2.918(1.9); 2.900(3.3); 2.882(1.6); 2.676(3.3); 2.672(4.4); 2.667(3.1); 2.598(0.6); 2.542(21.9); 2.511(266.6); 2.507(531.5); 2.502(689.2); 2.498(488.3); 2.494(229.2); 2.465(1.3); 2.456(0.8); 2.334(3.0); 2.329(4.2); 2.325(3.1); 2.290(0.5); 1.298(0.5); 1.258(0.7); 1.254(0.3); 1.233(1.3); 0.146(0.4); 0.008(3.0); 0.000(76.3); -0.009(2.6); -0.149(0.3)
Example 1 -31 : 1H-NMR(400.0 MHz, DMSO):
δ= 8.700(1 .9); 8.686(3.9); 8.672(1.9); 8.600(16.0); 8.570(9.0); 8.556(9.4); 7.787(4.0); 7.767(5.4); 7.732(1.7); 7.714(4.5) 7.701(9.5); 7.687(8.7); 7.658(3.3); 7.639(4.2); 7.627(8.9); 7.623(10.2); 7.532(4.9); 7.512(9.2); 7.480(5.1) 7.471(6.6); 7.467(6.7); 7.462(4.8); 7.452(3.6); 7.447(3.4); 3.574(2.2); 3.557(5.3); 3.541(5.4); 3.524(2.6) 3.384(0.6); 3.331(847.6); 3.274(0.5); 3.042(4.7); 3.023(8.2); 3.006(4.2); 2.995(2.0); 2.711(0.5); 2.675(1.7) 2.671(2.4); 2.667(1.7); 2.541(102.6); 2.506(274.3); 2.502(356.9); 2.497(258.9); 2.367(0.5); 2.333(1.7) 2.329(2.3); 2.324(1.7); 2.075(0.4); 1.298(0.4); 1.258(0.6); 1.235(2.5); 0.008(0.5); 0.000(11.4)
Example 1-32: 1H-NMR(400.0 MHz, DMSO):
5= 8.678(2.6); 8.664(5.4); 8.650(2.6); 8.565(9.3); 8.559(9.5); 8.179(6.1); 8.173(5.8); 8.157(6.3); 8.151(6.2); 8.142(0.4); 7.809(11.6); 7.804(12.0); 7.785(5.3); 7.766(6.9); 7.736(2.3); 7.717(5.8); 7.699(4.2); 7.665(5.6); 7.660(7.4); 7.645(7.1); 7.640(10.0); 7.619(2.1); 7.485(14.1); 7.465(12.7); 7.119(0.4); 7.099(9.9); 7.077(9.4); 5.083(4.8); 5.061(15.3); 5.038(16.0); 5.015(5.4); 3.541(2.8); 3.524(6.6); 3.508(6.7); 3.491(3.2); 3.331(423.8); 3.007(5.9); 2.989(10.1); 2.971(5.1); 2.712(0.5); 2.676(1.0); 2.671(1.4); 2.667(1.0); 2.663(0.5); 2.542(125.6); 2.525(4.0); 2.511(80.9); 2.507(161.8); 2.502(211.6); 2.498(151.9); 2.493(73.2); 2.368(0.5); 2.334(1.0); 2.329(1.4); 2.325(1.0); 1.235(1.4); 0.000(7.6)
Example 1 -33: 1H-NMR(400.0 MHz, DMSO):
5= 8.931(1 1.5); 8.925(11.3); 8.684(3.2); 8.670(6.5); 8.656(3.2); 8.598(7.6); 8.594(8.1); 8.586(7.9); 8.582(8.0); 8.139(4.3) 8.134(6.0); 8.129(4.4); 8.119(4.7); 8.114(6.4); 8.109(4.5); 7.852(14.3); 7.848(15.1); 7.785(7.1); 7.766(9.3) 7.737(3.2); 7.718(8.3); 7.712(8.3); 7.707(7.2); 7.700(6.4); 7.692(8.8); 7.688(8.2); 7.657(5.6); 7.638(7.3) 7.619(2.7); 7.516(13.4); 7.510(7.3); 7.497(16.0); 7.489(8.9); 7.484(9.4); 7.480(8.3); 7.465(7.2); 3.553(4.0) 3.536(9.5); 3.520(9.6); 3.503(4.5); 3.407(0.3); 3.333(561.6); 3.022(8.3); 3.004(14.4); 2.986(7.2); 2.711(0.7) 2.676(1.2); 2.671(1.6); 2.667(1.2); 2.542(152.0); 2.507(189.6); 2.502(245.8); 2.498(180.4); 2.368(0.7) 2.333(1.1); 2.329(1.5); 2.325(1.1); 1.258(0.4); 1.234(1.6); 0.000(6.1)
Example 1 -34: ¾-NMR(400.0 MHz, DMSO):
5= 8.680(3 .1); 8.666(6.1); 8.652(3.1); 8.319(11.2); 8.305(11.7); 8.005(13.9); 8.000(14.2); 7.849(6.7); 7.844(6.4); 7.829(7.7) 7.824(7.4); 7.783(6.8); 7.764(13.2); 7.756(7.2); 7.752(4.4); 7.734(2.9); 7.716(7.2); 7.698(5.2); 7.656(5.2) 7.637(6.8); 7.616(16.0); 7.550(12.1); 7.530(10.6); 7.475(7.7); 7.457(6.6); 3.559(3.9); 3.541(9.1); 3.526(9.3) 3.509(4.5); 3.477(0.5); 3.457(0.5); 3.448(0.5); 3.429(0.7); 3.419(0.9); 3.408(1.0); 3.392(1.8); 3.333(181: 5.8); 3.282(0.7); 3.265(0.5); 3.035(7.6); 3.017(13.7); 2.999(6.7); 2.676(3.4); 2.671(4.6); 2.667(3.4); 2.541(56.3 ); 2.524(13.2); 2.511(271.9); 2.507(541.2); 2.502(706.5); 2.498(508.5); 2.493(244.9); 2.440(0.4); 2.333(3.3) 2.329(4.4); 2.324(3.3); 2.289(0.5); 2.075(0.5); 1.298(0.7); 1.258(1.1); 1.235(4.9); 0.853(0.5); 0.008(0.6) 0.000(16.8); -0.008(0.6)
Example 1-35: 1H-NMR(400.0 MHz, DMSO):
5= 8.652(2.9); 8.638(5.8); 8.624(2.9); 8.271(13.6); 7.782(6.3); 7.763(8.5); 7.752(8.8); 7.748(14.8); 7.744(8.8); 7.732(15.9); 7.728(16.0); 7.712(7.0); 7.694(5.0); 7.653(4.9); 7.634(6.3); 7.616(2.4); 7.572(6.3); 7.568(5.9); 7.552(7.6); 7.548(7.4); 7.470(7.4); 7.451(6.4); 7.388(11.8); 7.368(9.7); 7.025(11.9); 7.022(11.7); 3.518(3.6); 3.501(8.4); 3.485(8.5); 3.468(4.1); 3.393(0.4); 3.333(492.1); 3.287(0.4); 2.996(0.9); 2.963(7.3); 2.945(12.7); 2.927(6.4); 2.711(0.5); 2.676(1.1); 2.671(1.5); 2.667(1.1); 2.541(131.2); 2.524(4.0); 2.511(90.8); 2.507(179.2); 2.502(232.5); 2.498(168.1); 2.494(81.9); 2.368(0.6); 2.333(1.1); 2.329(1.5); 2.324(1.1); 1.258(0.4); 1.235(1.5); 0.000(6.2)
Example 1 -36: ¾-NMR(400.0 MHz, DMSO):
5= 8.680(1 .6); 8.666(3.3); 8.653(10.6); 8.649(6.9); 8.641(6.2); 8.637(9.7); 7.923(7.2); 7.918(7.5); 7.787(5.0); 7.783(6.7) 7.767(16.0); 7.763(14.1); 7.756(6.4); 7.752(9.7); 7.735(1.6); 7.716(3.8); 7.698(2.6); 7.656(2.6); 7.637(3.4) 7.618(1.3); 7.539(6.5); 7.519(5.6); 7.479(4.0); 7.460(3.4); 3.557(2.0); 3.540(4.6); 3.525(4.6); 3.507(2.2) 3.365(0.6); 3.334(254.1); 3.030(4.0); 3.012(7.1); 2.994(3.5); 2.676(0.6); 2.672(0.8); 2.667(0.6); 2.542(21.0); 2.525(2.1); 2.511(47.6); 2.507(96.0); 2.503(125.7); 2.498(90.0); 2.494(42.8); 2.334(0.6); 2.329(0.8); 2.325(0.6); 1.234(1.6); 0.000(4.2)
Example 1-37: 1H-NMR(400.0 MHz, DMSO):
5= 8.849(14.5); 8.685(3.8); 8.671(7.4); 8.657(3.7); 8.602(13.1); 8.595(13.2); 8.167(4.7); 8.162(6.6); 8.157(4.3): 8.141(4.8); 8.136(6.7); 8.131(4.2); 7.938(15.9); 7.933(15.9); 7.820(0.4); 7.785(9.2); 7.781(9.9); 7.776(8.5): 7.766(11.9); 7.761(11.1); 7.756(8.9); 7.737(3.6); 7.719(8.8); 7.700(6.3); 7.658(6.3); 7.639(8.1); 7.620(3.2): 7.576(0.4); 7.527(13.6); 7.507(11.9); 7.482(9.5); 7.463(8.1); 7.436(0.5); 3.554(4.5); 3.537(10.7); 3.521(11.0): 3.504(5.1); 3.475(0.5); 3.457(0.4); 3.333(476.2); 3.027(9.1); 3.009(16.0); 2.991(8.1); 2.948(0.4); 2.712(0.9): 2.676(1.7); 2.671(2.2); 2.542(181.3); 2.507(273.2); 2.503(339.2); 2.498(249.8); 2.368(0.9); 2.333(1.6): 2.329(2.1); 2.325(1.5); 2.075(0.4); 2.031(0.4); 1.867(0.4); 1.298(0.4); 1.258(0.6); 1.235(2.1); 0.000(8.7)
Example 1-38: 1H-NMR(400.0 MHz, DMSO):
5= 9.140(12.2); 9.136(12.2); 8.690(3.9); 8.676(7.5); 8.663(3.7); 8.438(6.2); 8.433(6.2); 8.417(6.6); 8.413(6.7): 8.316(0.4); 8.006(12.7); 7.986(12.4); 7.977(15.7); 7.972(15.8); 7.831(0.3); 7.810(7.5); 7.806(7.1); 7.786(16.0): 7.767(10.5); 7.737(3.6); 7.718(8.7); 7.700(6.3); 7.659(6.1); 7.639(8.0); 7.620(3.0); 7.565(13.1); 7.545(11.2): 7.484(9.4); 7.466(7.9); 3.687(0.3); 3.631(0.4); 3.596(0.4); 3.563(4.5); 3.546(10.7); 3.530(11.0); 3.513(5.1): 3.459(0.7); 3.437(1.0); 3.398(1.9); 3.330(2223.4); 3.254(0.5); 3.230(0.4); 3.041(8.8); 3.023(15.6); 3.005(7.7): 2.995(4.3); 2.859(0.4); 2.712(0.7); 2.675(6.8); 2.671(8.9); 2.667(6.8); 2.602(0.5); 2.541(114.6); 2.506(1101.2): 2.502(1388.2); 2.498(1042.5); 2.420(0.9); 2.368(0.7); 2.333(6.8); 2.329(8.8); 2.325(6.8); 2.288(0.8); 2.282(0.6): 2.263(0.5); 2.075(0.9); 1.518(0.4); 1.502(0.3); 1.496(0.3); 1.298(1.6); 1.258(2.4); 1.235(9.6); 0.889(0.3): 0.871(0.4); 0.854(1.0); 0.837(0.5); 0.000(42.0)
Example 1-39: ¾-NMR(400.0 MHz, DMSO):
□ = 8.622(2.2); 8.608(4.2); 8.594(2.1); 7.777(5.2); 7.758(6.8); 7.732(2.3); 7.717(13.8); 7.712(16.0); 7.695(4.0): 7.653(4.0); 7.634(5.2); 7.615(2.0); 7.534(5.4); 7.529(5.2); 7.513(6.6); 7.508(6.4); 7.454(6.0); 7.435(5.2): 7.346(10.6); 7.325(8.6); 3.502(3.3); 3.485(8.2); 3.469(8.3); 3.452(3.8); 3.426(0.5); 3.341(328.7); 3.336(427.1): 2.932(6.5); 2.914(12.4); 2.897(5.7); 2.676(0.9); 2.671(1.3); 2.667(0.9); 2.542(70.7); 2.525(3.2); 2.51 1(72.6): 2.507(146.7); 2.502(193.3); 2.498(139.9); 2.494(68.0); 2.334(0.9); 2.329(1.2); 2.325(0.9); 1.235(1.2); 0.000(4.4)
Example 1-40: ¾-NMR(400.0 MHz, DMSO):
5= 8.661(0.7); 8.647(1.3); 8.633(0.7); 7.783(1.5); 7.763(1.9); 7.731(0.6); 7.713(1.6); 7.695(1.2); 7.655(1.2):
7.635(1.5); 7.616(0.6); 7.588(3.1); 7.583(3.1); 7.499(2.9); 7.496(2.9); 7.476(1.7); 7.457(1.5); 7.425(0.8):
7.405(4.1); 7.398(3.0); 7.394(2.6); 7.378(0.6); 7.374(0.6); 6.762(2.9); 6.757(2.9); 3.526(0.9); 3.509(1.9):
3.493(1.9); 3.476(1.0); 3.331(246.2); 2.995(0.5); 2.977(1.7); 2.959(2.8); 2.941(1.5); 2.675(0.6); 2.671(0.8):
2.666(0.6); 2.541(43.5); 2.524(2.2); 2.511(47.2); 2.506(96.2); 2.502(126.7); 2.497(91.6); 2.493(44.3); 2.468(0.5): 2.436(16.0); 2.333(0.6); 2.329(0.8); 2.324(0.6); 1.235(0.6); 0.000(4.3)
Example 1-41 : 1H-NMR(400.0 MHz, DMSO):
5= 8.678(2.2); 8.664(4.5); 8.650(2.1); 8.133(9.7); 8.128(10.1); 8.078(6.1); 8.059(8.7); 8.028(5.0); 8.023(4.6): 8.008(5.3); 8.003(4.9); 7.987(6.2); 7.967(10.3); 7.948(4.8); 7.809(0.6); 7.805(0.7); 7.783(4.8); 7.763(6.2): 7.737(2.2); 7.718(5.3); 7.699(3.8); 7.680(0.4); 7.655(4.0); 7.636(4.9); 7.617(1.9); 7.537(8.2); 7.517(16.0): 7.498(7.9); 7.481(5.7); 7.463(4.8); 3.560(2.6); 3.543(6.3); 3.527(6.6); 3.510(3.4); 3.480(0.3); 3.470(0.3): 3.458(0.4); 3.424(0.6); 3.340(726.6); 3.336(727.4); 3.030(5.1); 3.013(9.3); 2.995(6.2); 2.971(0.4); 2.712(0.4): 2.676(1.6); 2.671(2.1); 2.667(1.5); 2.663(0.7); 2.542(85.1); 2.525(5.2); 2.511(127.2); 2.507(255.3); 2.502(333.6): 2.498(238.4); 2.493(113.1); 2.368(0.4); 2.338(0.8); 2.334(1.6); 2.329(2.1); 2.325(1.6); 1.258(0.4); 1.234(2.1): 0.000(9.2)
Example 1-42: 1H-NMR(400.0 MHz, DMSO):
5= 8.665(1.7); 8.481(1.9); 8.473(2.0); 7.785(1.8); 7.764(2.5); 7.731(0.9); 7.712(2.1); 7.694(1.6);
7.636(3.6); 7.617(2.8); 7.498(3.8); 7.494(3.9); 7.481(3.3); 7.462(4.1); 7.364(2.3); 7.345(1.8);
7.314(1.8); 7.295(1.4); 3.572(1.1); 3.555(2.6); 3.539(2.8); 3.523(1.3); 3.330(758.3); 3.027(2.3);
2.995(2.5); 2.711(0.4); 2.671(3.3); 2.541(51.4); 2.502(511.1); 2.440(16.0); 2.367(0.4); 2.329(3.1);
1.298(0.5); 1.258(0.8); 1.235(3.1); 0.854(0.3); 0.000(8.7)
Example 1-43: 1H-NMR(400.0 MHz, DMSO):
5= 8.674(0.7); 8.660(1.4); 8.646(0.7); 8.500(2.4); 8.493(2.4); 8.035(1.4); 8.029(1.3); 8.014(1.4); 8.007(1.4);
7.785(1.5); 7.765(2.0); 7.755(2.9); 7.750(2.9); 7.735(0.6); 7.717(1.6); 7.698(1.1); 7.656(1.2); 7.637(1.5);
7.622(1.6); 7.618(1.7); 7.602(1.6); 7.598(1.5); 7.480(1.7); 7.461(3.8); 7.441(1.9); 6.835(2.4); 6.814(2.3);
5.322(0.4); 5.307(1.1); 5.291(1.5); 5.276(1.2); 5.261(0.5); 3.535(0.8); 3.518(1.8); 3.502(1.9); 3.485(0.9); 3.333(259.8); 2.997(1.7); 2.979(2.7); 2.961(1.3); 2.671(0.7); 2.542(24.4); 2.507(85.8); 2.502(107.2); 2.498(79.5); 2.333(0.5); 2.329(0.7); 1.322(16.0); 1.306(15.9); 1.235(0.8); 0.000(2.1)
Example 1-44: 1H-NMR(400.0 MHz, DMSO):
5= 20.005(0.5); 8.680(3.4); 8.666(7.1); 8.652(3.6); 8.603(10.8); 8.597(11.3); 8.364(3.5); 8.358(3.5); 8.344(6.5); 8.337(6.3); 8.323(4.0); 8.317(4.0); 7.858(15.0); 7.854(15.9); 7.785(7.5); 7.765(10.1); 7.736(3.3); 7.717(8.5): 7.697(12.7); 7.682(8.9); 7.677(8.6); 7.657(6.2); 7.637(8.0); 7.618(3.2); 7.510(13.6); 7.490(11.9); 7.481(9.6): 7.462(8.1); 7.309(6.8); 7.302(6.8); 7.288(6.8); 7.281(6.6); 3.546(4.4); 3.530(10.3); 3.514(10.5); 3.496(4.9): 3.333(1943.2); 3.017(9.0); 2.998(16.0); 2.981(7.9); 2.711(1.6); 2.671(5.6); 2.541(321.8); 2.506(675.4): 2.502(850.6); 2.498(620.0); 2.368(1.5); 2.329(5.4); 2.289(0.4); 2.075(0.6); 1.298(0.8); 1.258(1.1); 1.235(4.3): 0.855(0.5); 0.000(20.4)
Example 1-45: 1H-NMR(400.0 MHz, DMSO):
δ= 9.016(0.3); 8.916(15.8); 8.911(14.9); 8.711(0.4); 8.684(4.0); 8.671(7.5); 8.657(4.2); 8.644(14.3); 8.639(13.8):
8.332(9.9); 8.327(15.5); 8.322(8.5); 7.946(16.0); 7.941(15.3); 7.830(0.4); 7.786(9.1); 7.780(9.5); 7.775(8.5):
7.767(11.9); 7.760(10.5); 7.756(8.6); 7.738(3.6); 7.719(8.9); 7.700(6.3); 7.658(6.2); 7.639(8.0); 7.620(3.1):
7.523(12.8); 7.503(11.1); 7.481(9.3); 7.463(7.9); 3.551(4.5); 3.534(10.9); 3.519(11.3); 3.502(5.2); 3.472(0.5):
3.449(0.6); 3.430(0.7); 3.406(0.9); 3.332(1259.4); 3.265(1.0); 3.231(0.4); 3.025(9.0); 3.007(15.9); 2.995(6.5):
2.990(8.0); 2.711(0.7); 2.671(4.2); 2.541(157.2); 2.506(549.1); 2.502(657.8); 2.498(486.9); 2.400(0.4)
2.367(0.9); 2.329(4.2); 2.289(0.5); 2.282(0.3); 2.075(0.5); 1.298(0.7); 1.259(1.0); 1.235(4.3); 0.853(0.5): 0.000(15.0)
Example 1-46: 1H-NMR(400.0 MHz, DMSO):
5= 8.680(0.9); 8.666(1.7); 8.652(0.9); 8.083(3.5); 8.078(3.7); 8.021(16.0); 7.902(1.7); 7.897(1.6); 7.882(1.9): 7.877(1.8); 7.809(0.4); 7.805(0.4); 7.784(1.9); 7.765(2.5); 7.734(0.8); 7.716(2.1); 7.698(1.5); 7.657(1.6): 7.638(1.9); 7.619(0.7); 7.546(3.0); 7.525(2.7); 7.471(2.1); 7.453(1.8); 3.554(1.0); 3.537(2.3); 3.522(2.5): 3.505(1.2); 3.397(0.4); 3.334(534.8); 3.278(0.4); 3.034(1.9); 3.016(3.5); 2.998(1.8); 2.676(1.0); 2.671(1.4): 2.667(1.0); 2.541(14.4); 2.524(3.1); 2.511(78.2); 2.507(158.8); 2.502(210.2); 2.498(153.5); 2.493(75.5): 2.333(1.0); 2.329(1.3); 2.324(1.0); 1.258(0.4); 1.234(1.5); 0.000(5.3)
Example 1-47: ¾-NMR(400.0 MHz, DMSO):
5= 8.648(0.7); 8.634(1.4); 8.620(0.7); 8.202(4.6); 7.912(4.9); 7.781(1.5); 7.762(1.9); 7.729(0.6); 7.710(1.6): 7.692(1.2); 7.659(3.4); 7.654(4.2); 7.633(1.5); 7.615(0.6); 7.508(1.4); 7.504(1.4); 7.488(1.8); 7.484(1.8): 7.470(1.7); 7.451(1.5); 7.348(2.8); 7.328(2.2); 3.852(16.0); 3.505(0.8); 3.488(1.9); 3.472(1.9); 3.455(0.9): 3.332(115.8); 3.311(0.5); 2.995(0.4); 2.941(1.7); 2.923(2.9); 2.906(1.5); 2.671(0.4); 2.667(0.3); 2.541(39.4): 2.524(1.0); 2.511(26.1); 2.506(51.7); 2.502(67.0); 2.497(48.0); 2.493(23.1); 2.329(0.4); 1.235(0.5); 0.000(2.2)
Example 1-48: ¾-NMR(400.0 MHz, DMSO):
5= 8.697(2.9); 8.683(6.0); 8.669(2.9); 8.465(7.6); 8.460(8.2); 8.453(8.1); 8.448(7.9); 8.317(0.5); 7.924(7.7): 7.920(7.9); 7.905(8.9); 7.901(8.3); 7.787(6.2); 7.767(8.1); 7.730(2.7); 7.712(6.9); 7.693(5.2); 7.658(5.0): 7.639(6.2); 7.620(2.5); 7.601(13.6); 7.596(13.8); 7.556(8.4); 7.544(8.3); 7.537(7.8); 7.525(7.8); 7.514(7.7): 7.494(14.6); 7.476(7.4); 7.457(16.0); 7.453(12.3); 7.438(5.0); 7.433(4.9); 7.391(0.3); 4.852(0.4); 4.011(0.3): 3.626(0.4); 3.596(0.5); 3.569(3.7); 3.552(8.2); 3.536(8.4); 3.519(4.3); 3.489(0.6); 3.485(0.7); 3.478(0.7): 3.460(0.9); 3.437(0.9); 3.331(2964.6); 3.330(2877.3); 3.298(3.4); 3.264(0.7); 3.232(0.5); 3.035(7.3); 3.016(12.4): 2.999(6.5); 2.995(6.0); 2.711(0.9); 2.675(6.8); 2.671(9.2); 2.666(6.7); 2.662(3.2); 2.607(0.4); 2.541(197.1): 2.524(22.8); 2.511(533.8); 2.506(1080.9); 2.502(1420.4); 2.497(1020.4); 2.493(488.2); 2.420(0.6); 2.403(0.5): 2.380(0.4); 2.367(1.0); 2.333(6.5); 2.328(9.1); 2.324(6.5); 2.289(1.0); 2.282(0.7); 2.266(0.5); 2.180(0.3): 2.075(1.2); 1.298(1.8); 1.258(2.5); 1.235(9.9); 0.889(0.4); 0.870(0.4); 0.854(1.1); 0.836(0.5); 0.008(1.4): 0.000(45.5); -0.008(1.6)
Example 1-49: 1H-NMR(400.0 MHz, DMSO):
5= 20.013(1.8); 8.680(5.9); 7.991(8.9); 7.971(10.4); 7.785(5.9); 7.766(7.9); 7.729(2.5); 7.710(6.7); 7.695(13.6): 7.676(9.3); 7.657(5.2); 7.638(6.4); 7.619(14.4); 7.522(5.8); 7.502(11.1); 7.465(10.2); 3.548(8.3); 3.533(8.8): 3.334(5269.3); 3.032(7.5); 3.014(12.7); 2.995(8.3); 2.670(16.0); 2.541(153.4); 2.502(2412.8); 2.329(15.3): 2.074(1.2); 1.298(2.6); 1.258(3.4); 1.235(15.9); 0.854(1.5); 0.000(40.5)
Example 1-50: 1H-NMR(400.0 MHz, DMSO):
5= 8.657(0.6); 8.644(1.2); 8.629(0.6); 7.780(1.2); 7.760(1.6); 7.728(0.5); 7.710(1.3); 7.692(1.0); 7.654(1.0): 7.634(1.2); 7.615(0.5); 7.498(2.6); 7.493(2.8); 7.470(1.5); 7.464(2.0); 7.451(1.4); 7.444(2.9); 7.391(1.9): 7.387(1.7); 7.371(1.1); 7.367(1.1); 3.544(0.7); 3.527(1.7); 3.511(1.7); 3.494(0.8); 3.384(0.4); 3.341(182.0): 3.337(196.2); 2.995(1.7); 2.977(2.6); 2.959(1.3); 2.676(0.4); 2.671(0.5); 2.667(0.4); 2.624(14.1); 2.542(24.2): 2.525(1.2); 2.511(29.9); 2.507(61.8); 2.502(82.0); 2.498(59.1); 2.493(28.3); 2.380(16.0); 2.334(0.4); 2.329(0.5): 2.324(0.4); 1.235(0.5); 0.000(2.0)
Example 1-51 : 1H-NMR(400.0 MHz, DMSO):
5= 8.644(2.2); 8.631(4.2); 8.617(2.2); 8.296(7.2); 8.283(7.6); 7.846(11.2); 7.825(12.4); 7.781(4.7); 7.762(6.1): 7.726(2.5); 7.716(5.4); 7.708(8.1); 7.690(3.9); 7.652(3.7); 7.633(4.7); 7.614(1.8); 7.533(9.9); 7.443(16.0): 7.423(13.1); 3.531(2.7); 3.514(6.3); 3.499(6.3); 3.481(3.0); 3.374(0.3); 3.335(122.0); 2.998(0.9); 2.915(5.2): 2.897(9.3); 2.879(4.7); 2.672(0.5); 2.542(31.7); 2.507(55.2); 2.503(69.6); 2.499(52.5); 2.329(0.4); 0.000(1.1)
Example 1-52: 1H-NMR(400.0 MHz, DMSO): 5= 8.617(2.6); 8.604(4.9); 8.590(2.8); 8.179(0.3); 8.152(10.7); 8.137(1.3); 8.117(0.4); 7.783(5.1); 7.764(7.1): 7.753(1.3); 7.750(1.3); 7.747(1.3); 7.730(8.1); 7.726(14.0); 7.722(8.5); 7.708(6.8); 7.689(4.9); 7.653(4.3): 7.635(5.5); 7.616(2.5); 7.566(13.2); 7.546(16.0); 7.471(0.4); 7.442(6.0); 7.424(5.6); 7.285(13.9); 7.265(12.8): 6.976(0.4); 6.948(9.6); 6.945(9.5); 6.932(1.3); 3.876(0.3); 3.833(0.4); 3.818(0.5); 3.806(0.5); 3.792(0.5): 3.771(0.6); 3.763(0.6); 3.747(0.5); 3.737(0.5); 3.724(0.5); 3.707(0.7); 3.699(0.6); 3.662(0.8); 3.637(1.3): 3.627(1.2); 3.605(1.1); 3.589(1.6); 3.584(1.4); 3.561(2.2); 3.489(15.5); 3.411(3110.0); 3.392(392.5); 3.280(3.4): 3.249(2.0); 3.239(1.9); 3.224(2.0); 3.202(1.5); 3.176(1.0); 3.143(0.9); 3.122(0.8); 3.102(0.8); 3.084(0.7): 3.045(0.6); 3.023(0.5); 3.010(0.4); 2.998(3.6); 2.985(0.6); 2.914(0.4); 2.892(0.4); 2.839(6.4); 2.821(10.6): 2.803(6.5); 2.756(0.3); 2.718(0.6); 2.683(1.3); 2.678(1.7); 2.674(1.4); 2.623(0.4); 2.548(105.1); 2.531(19.0): 2.518(104.2); 2.514(187.9); 2.509(239.4); 2.505(178.8); 2.500(99.3); 2.418(0.4); 2.374(0.7); 2.361(0.3): 2.340(1.3); 2.336(1.6); 2.331(1.3); 2.312(0.4); 1.261(0.3); 1.237(0.8); 0.002(0.4)
Example 1-53: 1H-NMR(400.0 MHz, DMSO):
5= 8.875(8.9); 8.871(9.5); 8.645(2.2); 8.632(4.5); 8.610(8.4); 8.604(8.8); 8.243(9.1); 7.783(4.7); 7.766(16.0): 7.746(13.6); 7.730(2.6); 7.711(5.8); 7.692(4.2); 7.653(4.1); 7.634(5.3); 7.615(2.2); 7.505(0.5); 7.485(0.5): 7.450(5.8); 7.431(5.5); 7.420(13.0); 7.399(11.7); 7.239(0.6); 7.218(0.6); 3.523(2.9); 3.506(6.8); 3.491(6.9): 3.473(3.5); 3.339(1435.4); 2.995(3.2); 2.903(5.8); 2.885(10.0); 2.867(5.2); 2.789(0.6); 2.712(0.7); 2.671(2.8): 2.542(99.7); 2.502(401.4); 2.368(0.4); 2.329(2.5); 1.235(1.4); 0.000(1.4)
Example 1-54: 1H-NMR(400.0 MHz, DMSO):
5= 8.635(0.9); 8.622(1.7); 8.608(0.9); 8.449(2.7); 8.443(2.8); 7.982(1.5); 7.976(1.5); 7.960(1.5);
7.782(1.7); 7.762(2.2); 7.727(0.8); 7.708(1.9); 7.689(1.4); 7.651(1.4); 7.632(1.8); 7.608(4.0);
7.451(2.0); 7.433(1.8); 7.356(4.1); 7.336(3.6); 6.826(2.6); 6.805(2.5); 5.315(0.5); 5.299(1.2);
5.268(1.2); 5.253(0.5); 3.506(1.0); 3.490(2.3); 3.473(2.3); 3.456(1.1); 3.341(233.6); 2.872(1.9);
2.836(1.7); 2.672(0.5); 2.542(0.9); 2.503(66.4); 2.329(0.4); 1.320(16.0); 1.305(15.8)
Example 1-55: ¾-NMR(400.0 MHz, DMSO):
5= 8.641(2.4); 8.627(4.9); 8.613(2.5); 8.588(0.4); 8.573(0.6); 8.029(14.1); 8.008(16.0); 7.995(4.2); 7.993(5.5): 7.976(10.5); 7.974(11.1); 7.954(9.8); 7.945(0.6); 7.934(12.5); 7.915(5.3); 7.781(5.4); 7.761(7.0); 7.727(2.5): 7.709(6.3); 7.691(4.5); 7.651(4.6); 7.632(5.9); 7.614(2.2); 7.506(2.0); 7.490(0.7); 7.485(2.4); 7.479(0.4): 7.463(8.5); 7.461(9.7); 7.448(6.7); 7.444(10.1); 7.442(9.5); 7.430(6.0); 7.420(15.7); 7.399(14.3); 7.240(2.1): 7.219(1.9); 3.855(0.3); 3.839(0.3); 3.776(0.4); 3.711(0.5); 3.681(0.6); 3.665(0.7); 3.605(1.0); 3.589(1.1): 3.529(5.2); 3.512(9.3); 3.496(9.5); 3.478(7.5); 3.391(1226.2); 3.388(1172.8); 3.382(1096.2); 3.376(1340.9): 3.138(0.6); 3.098(0.5); 3.092(0.5); 3.049(0.5); 3.032(0.4); 2.996(8.1); 2.959(0.3); 2.907(6.1); 2.889(10.6): 2.871(5.5); 2.809(1.0); 2.790(1.7); 2.772(0.9); 2.714(2.0); 2.679(2.1); 2.674(2.8); 2.670(2.1); 2.665(1.0): 2.596(0.4); 2.592(0.5); 2.582(0.6); 2.579(0.6); 2.573(0.6); 2.564(1.6); 2.561(2.0); 2.544(540.2); 2.5342(2.9): 2.5335(2.8); 2.533(2.8); 2.532(2.8); 2.528(6.7); 2.523(10.7); 2.514(151.1); 2.510(305.9); 2.505(403.7): 2.500(291.2); 2.496(136.5); 2.442(0.5); 2.370(2.0); 2.341(1.0); 2.336(2.0); 2.332(2.7); 2.327(2.0); 2.323(1.0): 2.073(0.3); 1.234(0.9); 0.000(9.0)
Example 1-56: 1H-NMR(400.0 MHz, DMSO):
5= 20.012(0.9); 8.639(3.3); 8.435(3.7); 8.430(4.1); 8.423(4.1); 8.418(4.1); 7.880(3.6); 7.876(3.8);
7.857(4.3); 7.782(3.5); 7.763(4.6); 7.721(1.5); 7.702(3.9); 7.684(2.9); 7.652(2.9); 7.633(3.6);
7.540(4.1); 7.528(4.0); 7.521(4.0); 7.509(3.6); 7.455(6.4); 7.435(16.0); 7.420(4.2); 7.397(12.5);
3.541(2.4); 3.524(4.9); 3.509(4.8); 3.491(2.7); 3.338(4723.8); 2.995(1.7); 2.913(4.6); 2.894(7.5);
2.671(9.2); 2.541(23.6); 2.507(1043.0); 2.502(1330.7); 2.498(995.1); 2.329(8.5); 2.290(0.7);
1.236(7.9); 0.854(1.1); 0.000(6.6)
Example 1-57: 1H-NMR(400.0 MHz, DMSO):
5= 8.896(9.6); 8.892(9.3); 8.651(2.9); 8.637(5.6); 8.624(3.0); 8.568(6.8); 8.557(7.0); 8.083(5.2); 8.063(5.6): 7.789(6.3); 7.769(8.3); 7.735(2.7); 7.716(7.7); 7.704(15.4); 7.684(16.0); 7.658(5.1); 7.639(6.6); 7.620(2.6): 7.500(4.9); 7.488(5.2); 7.481(5.0); 7.468(5.4); 7.460(7.8); 7.441(6.6); 7.416(15.6); 7.396(13.4); 3.529(3.8): 3.512(8.8); 3.496(8.9); 3.479(4.2); 3.445(0.6); 3.350(782.1); 3.001(1.4); 2.904(7.1); 2.885(12.5); 2.867(6.4): 2.718(0.6); 2.677(1.5); 2.547(84.8); 2.511(202.3); 2.508(213.2); 2.374(0.5); 2.335(1.4); 1.240(0.6); 1.075(0.4)
Example 1-58: 1H-NMR(400.0 MHz, DMSO):
5= 8.639(2.2); 8.625(4.4); 8.611(2.2); 8.510(7.3); 8.504(7.5); 8.123(4.1); 8.117(4.0); 8.101(4.3); 8.095(4.3);
7.782(4.4); 7.762(5.8); 7.727(1.9); 7.709(4.9); 7.690(3.5); 7.651(13.5); 7.631(16.0); 7.614(1.9); 7.452(5.2);
7.433(4.6); 7.380(11.1); 7.360(9.8); 7.087(7.1); 7.065(7.0); 5.075(3.3); 5.052(10.3); 5.029(10.6); 5.007(3.7);
3.512(2.5); 3.495(5.7); 3.478(5.8); 3.462(2.8); 3.385(0.5); 3.334(412.2); 2.996(2.3); 2.882(4.8); 2.864(8.2); 2.846(4.4); 2.711(0.6); 2.671(1.1); 2.541(107.5); 2.502(163.0); 2.368(0.6); 2.329(1.1); 1.234(0.5); 0.000(2.3)
Example 1-59: 1H-NMR(400.0 MHz, DMSO):
5= 8.621(0.8); 8.608(1.5); 8.594(0.8); 7.780(1.6); 7.760(2.1); 7.723(0.7); 7.705(1.8); 7.687(1.3); 7.650(1.3);
7.631(1.7); 7.612(0.6); 7.562(3.1); 7.557(3.3); 7.446(1.9); 7.427(1.7); 7.399(3.2); 7.378(5.2); 7.310(4.8); 7.290(3.2); 6.687(3.2); 6.683(3.3); 3.496(1.1); 3.479(2.3); 3.461(2.3); 3.445(1.3); 3.429(0.5); 3.356(426.6); 3.352(221.4); 3.270(0.3); 2.995(1.0); 2.849(1.9); 2.830(3.2); 2.812(1.7); 2.672(0.5); 2.668(0.4); 2.542(46.5); 2.507(58.1); 2.503(74.9); 2.499(59.0); 2.422(16.0); 2.400(0.3); 2.330(0.5); 2.326(0.4); 0.000(0.4)
Example 1-60: 1H-NMR(400.0 MHz, DMSO):
5= 8.608(0.8); 8.595(1.5); 8.581(0.8); 8.093(4.8); 7.823(4.9); 7.779(1.7); 7.759(2.2); 7.722(0.7); 7.702(1.9): 7.684(1.4); 7.648(1.4); 7.629(1.7); 7.610(0.7); 7.504(3.9); 7.484(4.6); 7.441(2.0); 7.422(1.8); 7.243(4.3): 7.223(3.7); 3.852(16.0); 3.475(1.0); 3.458(2.3); 3.441(2.3); 3.424(1.2); 3.394(0.5); 3.339(362.8); 2.995(1.8): 2.814(1.9); 2.795(3.2); 2.777(1.7); 2.712(0.5); 2.671(0.7); 2.542(103.1); 2.506(80.0); 2.502(100.7); 2.498(78.5): 2.368(0.5); 2.329(0.7); 0.000(0.8)
Example 1-61 : 1H-NMR(400.0 MHz, DMSO):
5= 20.011(0.4); 8.622(1.5); 8.452(1.8); 8.445(1.8); 8.440(1.8); 7.780(1.5); 7.760(2.1); 7.720(0.7); 7.703(1.8):
7.686(1.2); 7.651(1.3); 7.632(1.7); 7.614(0.7); 7.592(1.7); 7.577(1.8); 7.573(1.9); 7.438(1.9); 7.419(1.6):
7.378(1.1); 7.357(8.3); 7.350(9.4); 7.329(1.4); 7.308(1.4); 7.298(1.5); 7.290(1.5); 7.278(1.3); 3.545(1.1):
3.527(2.3); 3.510(2.3); 3.494(1.2); 3.458(0.7); 3.337(2730.0); 2.995(1.2); 2.904(2.1); 2.886(3.5); 2.867(1.9): 2.671(5.6); 2.667(4.4); 2.541(25.2); 2.537(8.6); 2.506(638.8); 2.502(833.1); 2.498(660.0); 2.437(16.0): 2.329(5.4); 2.324(4.3); 2.290(0.5); 1.297(0.4); 1.235(2.3); 0.000(4.3)
Example 1-62: 1H-NMR(400.0 MHz, DMSO):
5= 8.647(2.6); 8.634(5.1); 8.620(2.7); 8.551(7.9); 8.547(8.0); 8.308(2.4); 8.302(2.4); 8.288(4.7); 8.282(4.5):
8.267(2.7); 8.261(2.5); 7.788(5.4); 7.769(7.2); 7.734(2.3); 7.716(6.2); 7.694(16.0); 7.674(14.8); 7.659(4.8):
7.639(5.7); 7.620(2.2); 7.457(6.4); 7.439(5.7); 7.410(14.0); 7.390(12.2); 7.296(4.7); 7.289(4.8); 7.275(4.6):
7.268(4.5); 3.524(3.2); 3.507(7.5); 3.491(7.7); 3.474(3.7); 3.414(1.1); 3.346(1160.7); 3.270(1.0); 3.201(0.3): 3.001(1.9); 2.899(6.2); 2.881(10.9); 2.863(5.6); 2.718(0.5); 2.677(2.3); 2.547(84.3); 2.512(298.0); 2.508(351.2):
2.374(0.5); 2.335(2.3); 1.813(2.3); 1.793(3.9); 1.760(3.5); 1.669(1.6); 1.304(1.6); 1.275(3.0); 1.245(3.8): 1.221(3.7); 1.198(2.1); 0.005(0.6)
Example 1-63: 1H-NMR(400.0 MHz, DMSO):
5= 8.618(0.7); 8.605(1.5); 8.591(0.8); 7.776(1.6); 7.757(2.1); 7.718(0.7); 7.700(1.8); 7.682(1.3);
7.629(1.6); 7.611(0.7); 7.434(1.9); 7.415(1.7); 7.396(2.2); 7.375(5.9); 7.351(5.6); 7.330(2.4);
3.495(2.2); 3.479(2.3); 3.462(1.1); 3.335(442.3); 2.995(2.0); 2.870(1.9); 2.852(3.3); 2.834(1.7);
2.612(14.6); 2.541(39.3); 2.502(166.3); 2.371(16.0); 2.329(1.1); 1.235(0.5); 0.000(1.8)
Example 1-64: 1H-NMR(400.0 MHz, DMSO):
5= 8.795(0.6); 8.782(0.6); 8.640(2.9); 8.627(5.1); 8.613(2.7); 8.583(0.7); 8.569(1.2); 8.555(1.0); 8.489(0.8): 8.458(8.9); 8.445(9.3); 8.345(0.9); 8.253(0.5); 8.238(0.5); 7.979(0.9); 7.969(0.4); 7.959(1.0); 7.854(12.5):
7.837(13.1); 7.817(14.5); 7.780(6.1); 7.764(10.2); 7.757(10.1); 7.726(2.9); 7.707(7.1); 7.688(5.1); 7.650(5.0):
7.632(6.5); 7.613(2.5); 7.505(2.3); 7.485(2.7); 7.470(1.1); 7.437(16.0); 7.417(13.7); 7.238(2.6); 7.217(2.3):
3.526(3.7); 3.509(8.0); 3.494(7.8); 3.476(3.7); 3.453(1.7); 3.437(1.7); 3.420(0.9); 3.330(716.8); 3.254(0.4):
2.995(0.4); 2.933(0.6); 2.911(6.6); 2.892(11.2); 2.875(5.5); 2.807(1.2); 2.789(2.2); 2.771(1.1); 2.671(2.7): 2.541(26.7); 2.502(405.0); 2.328(2.6); 1.299(0.3); 1.258(0.5); 1.235(1.4); 0.000(6.1)
Example 1-65: 1H-NMR(400.0 MHz, DMSO):
5= 8.724(0.3); 8.679(3.5); 8.665(6.9); 8.651(3.4); 8.618(0.4); 8.605(0.4); 8.480(13.0); 8.467(13.6); 8.317(1.0): 8.055(0.4); 8.051(0.5); 8.004(15.5); 7.999(16.0); 7.936(15.2); 7.933(15.6); 7.882(0.3); 7.842(7.5); 7.838(7.1): 7.820(14.6); 7.817(14.6); 7.807(9.4); 7.803(8.8); 7.783(7.5); 7.764(9.7); 7.734(3.2); 7.716(8.2); 7.697(5.8): 7.656(5.8); 7.637(7.5); 7.618(3.0); 7.590(0.4); 7.570(0.4); 7.543(13.1); 7.523(11.6); 7.475(8.5); 7.457(7.4): 6.896(0.4); 5.757(15.7); 3.556(4.1); 3.539(9.9); 3.524(10.2); 3.507(4.6); 3.326(311.2); 3.285(0.4); 3.032(8.3): 3.014(14.9); 2.997(7.2); 2.676(1.7); 2.671(2.3); 2.667(1.7); 2.524(7.0); 2.511(127.9); 2.507(249.7); 2.502(325.9): 2.498(238.1); 2.493(116.4); 2.333(1.5); 2.329(2.1); 2.325(1.5); 1.989(0.4); 1.422(1.3); 1.414(1.6); 1.407(1.9): 1.398(0.6); 1.351(3.4); 1.336(2.0); 1.313(0.4); 1.298(2.0); 1.259(3.2); 1.250(3.6); 1.234(7.7); 1.193(0.6): 1.187(0.7); 1.175(0.7); 1.157(0.5); 1.105(0.4); 0.868(0.8); 0.853(1.4); 0.834(1.0); 0.812(0.7); 0.755(0.3): 0.008(1.9); 0.000(48.0); -0.008(1.7)
Example 1-66: 1H-NMR(400.0 MHz, DMSO):
5= 8.785(12.6); 8.779(12.9); 8.681(3.5); 8.667(7.1); 8.653(3.5); 8.313(0.6); 8.226(8.4); 8.219(8.1); 8.205(9.0); 8.198(8.9); 7.882(15.5); 7.877(16.0); 7.784(7.3); 7.765(9.7); 7.735(3.3); 7.723(8.6); 7.718(14.1); 7.703(10.4); 7.698(14.2); 7.658(5.8); 7.638(7.6); 7.624(14.5); 7.603(12.5); 7.521(13.5); 7.501(11.3); 7.480(8.6); 7.462(7.4); 5.754(2.7); 3.549(4.5); 3.532(10.0); 3.516(10.1); 3.499(5.0); 3.468(0.9); 3.451(1.1); 3.357(1210.0); 3.269(0.8); 3.259(0.6); 3.021(8.3); 3.003(14.4); 2.985(7.2); 2.944(0.3); 2.678(1.0); 2.674(1.3); 2.669(0.9); 2.527(4.2); 2.513(72.8); 2.509(140.2); 2.505(181.5); 2.500(132.9); 2.496(65.3); 2.336(0.9); 2.331(1.2); 2.327(0.8); 1.352(0.6); 1.299(0.4); 1.259(0.7); 1.250(0.5); 1.233(1.9); 0.008(0.9); 0.000(21.0); -0.008(0.8)
Example 1-67: 1H-NMR(400.0 MHz, DMSO):
5= 9.208(2.6); 9.192(5.7); 9.177(2.6); 8.844(9.6); 8.838(9.6); 8.795(5.5); 8.783(5.4); 8.317(3.1); 8.289(6.5); 8.283(6.3); 8.268(6.9); 8.262(7.0); 8.058(9.2); 8.054(10.1); 7.902(4.3); 7.898(4.2); 7.881(5.9); 7.877(6.2); 7.871(4.5); 7.868(4.6); 7.851(6.4); 7.848(6.5); 7.786(6.0); 7.774(16.0); 7.766(4.5); 7.754(11.2); 7.673(10.3); 7.652(9.7); 4.288(2.2); 4.272(2.3); 4.252(5.1); 4.236(5.0); 4.215(2.6); 4.200(2.5); 4.038(0.9); 4.020(0.9); 3.374(0.4); 3.327(896.8); 3.304(2.4); 3.290(0.6); 2.680(1.2); 2.676(2.7); 2.671(3.8); 2.667(2.8); 2.525(7.6); 2.520(11.6 ); 2.511(197.0); 2.507(417.4); 2.502(564.0); 2.498(413.1); 2.493(201.7); 2.333(2.6); 2.329(3.7); 2.324(2.8); 2.320(1.3); 1.989(3.8); 1.259(0.4); 1.234(0.7); 1.193(1.1); 1.175(2.1); 1.157(1.0); 0.000(2.4)
Example 1 68: 1H-NMR(400.0 MHz, DMSO):
δ= 9.045(2 7); 9.029(6.0); 9.014(2.8); 8.842(10.2); 8.836(10.2); 8.317(0.4); 8.287(6.9); 8.280(6.7); 8.266(7.4); 8.259(7.5); 8.049(10.0); 8.045(10.8); 7.900(4.5); 7.896(4.5); 7.879(6.3); 7.875(6.4); 7.771(16.0); 7.750(15.6); 7.726(2.4); 7.709(6.2); 7.690(4.6); 7.668(10.9); 7.657(5.0); 7.647(10.7); 7.638(5.8); 7.619(2.0); 7.388(6.5); 7.370(5.9); 4.264(2.4); 4.248(2.5); 4.228(5.5); 4.212(5.3); 4.192(2.8); 4.176(2.6); 4.056(0.4); 4.038(1.2); 4.020(1.2); 4.003(0.4); 3.330(170.1); 2.676(0.6); 2.672(0.8); 2.668(0.6); 2.525(1.9); 2.520(2.9); 2.512(43.4); 2.507(89.9 ); 2.503(119.7); 2.498(87.4); 2.494(42.5); 2.334(0.5); 2.330(0.7); 2.325(0.6); 1.990(5.4); 1.397(3.7); 1.234(1.0); 1.193(1.5); 1.175(2.9); 1.158(1.4); 0.000(0.6)
Example 1 69: 1H-NMR(400.0 MHz, DMSO):
δ= 9.381(1 3.2); 9.039(3.0); 9.024(6.1); 9.008(2.9); 8.316(1.3); 8.306(16.0); 8.207(9.7); 8.203(10.2); 8.059(4.9); 8.054(4.6); 8.037(5.9); 8.032(5.6); 7.832(10.0); 7.810(8.4); 7.764(5.9); 7.745(8.0); 7.722(2.6); 7.703(6.7); 7.685(4.9); 7.653(5.0); 7.634(5.9); 7.616(2.1); 7.598(0.4); 7.582(0.4); 7.578(0.4); 7.488(0.5); 7.389(6.9); 7.370(6.1); 7.016(0.5); 6.995(0.5); 6.919(0.5); 5.757(1.5); 4.255(2.6); 4.240(2.8); 4.220(5.8); 4.204(5.6); 4.184(3.0); 4.169(2.7); 3.329(217.7); 2.676(1.0); 2.672(1.4); 2.507(152.3); 2.503(195.0); 2.499(147.9); 2.329(1.2); 1.989(0.5); 1.234(0.5); 0.000(15.4)
Example 1-70: 1H-NMR (400.0 MHz, CD3CN): □ = 9.027 (8.8); 9.022 (8.9); 8.263 (4.8); 8.258 (4.9); 8.243 (5.3); 8.238 (5.5); 7.895 (10.5); 7.875 (9.6); 7.861 (12.4); 7.790 (4.5); 7.786 (3.9); 7.770 (10.2); 7.766 (13.5); 7.744 (8.3); 7.736 (16.0); 7.716 (7.1); 7.692 (2.4); 7.674 (6.7); 7.656 (5.4); 7.630 (5.0); 7.612 (6.0); 7.593 (2.3); 7.487 (7.3); 7.468 (6.0); 7.211 (2.9); 6.146 (2.5); 6.138 (2.7); 6.129 (2.8); 6.121 (2.6); 6.029 (2.5); 6.021 (2.7); 6.012 (2.9); 6.004 (2.6); 5.447 (0.3); 4.031 (1.2); 4.022 (1.3); 4.015 (1.3); 4.007 (1.3); 3.994 (2.0); 3.986 (2.1); 3.979 (2.0); 3.971 (2.0); 3.962 (1.4); 3.954 (1.2); 3.947 (1.4); 3.938 (1.3); 3.925 (2.1); 3.917 (2.1); 3.910 (2.2); 3.902 (2.0); 3.885 (1.9); 3.869 (2.9); 3.851 (2.3); 3.830 (3.5); 3.814 (4.0); 3.796 (2.2); 3.777 (1.8); 3.760 (1.2); 2.473 (0.5); 2.468 (1.0); 2.463 (1.3); 2.458 (1.0); 2.453 (0.5); 2.156 (318.6); 2.120 (1.6); 2.114 (1.9); 2.107 (2.4); 2.101 (1.6); 2.095 (0.9); 1.964 (10.5); 1.958 (26.6); 1.952 (141.2); 1.946 (254.9); 1.940 (341.3); 1.934 (238.2); 1.928 (125.4); 1.781 (0.9); 1.775 (1.5); 1.768 (2.0); 1.762 (1.4); 1.756 (0.8); 1.437 (0.5); 1.372 (0.4); 1.340 (0.6); 1.285 (1.0); 1.270 (3.0); 0.900 (0.4); 0.881 (0.6); 0.858 (0.5); 0.842 (0.4); 0.146 (2.7); 0.008 (22.3); 0.000 (585.7); -0.009 (27.3); -0.150 (2.7)
Example 1-76: 1H-NMR (400.0 MHz, d6-DMSO): □ = 10.327 (0.5); 9.028 (0.4); 9.011 (0.5); 8.505 (0.4); 8.488 (0.4); 4.056 (1.3); 4.038 (3.7); 4.020 (3.8); 4.002 (1.3); 3.888 (0.3); 3.869 (0.4); 3.851 (0.4); 3.531 (0.3); 3.503 (0.3); 3.449 (0.3); 3.432 (0.3); 3.173 (0.5); 2.515 (5.2); 2.511 (10.7); 2.506 (14.5); 2.502 (11.1); 2.498 (5.7); 1.989 (16.0); 1.910 (7.9); 1.212 (0.6); 1.200 (0.4); 1.193 (4.9); 1.183 (0.7); 1.175 (8.9); 1.165 (0.4); 1.158 (4.3); 1.073 (0.3); 1.056 (0.7); 1.038 (0.3); 0.000 (5.8)
Example 1 71 : 1H-NMR (400.0 MHz, CD3CN): □ = 9.029 ( 10.1); 9.024 (10.2); 8.759 (7.1); 8.747 (7.2); 8.279 (0.5); 8.265 (5.6); 8.260 (5.7); 8.244 (6.2); 8.240 (6.1); 7.897 (11.5); 7.876 (13.6); 7.868 (12.1); 7.864 (14.5); 7.854 (8.8); 7.793 (5.2); 7.789 (4.7); 7.773 (9.8); 7.769 (9.4) ; 7.730 (16.0); 7.710 (8.2); 7.673 (6.5); 7.662 (6.6); 7.654 (5.7); 7.642 (5.4); 7.589 (0.7); 7.492 (0.4); 7.480 (0.4) ; 7.461 (0.3); 7.331 (3.4); 6.149 (2.7); 6.140 (3.1); 6.131 (3.1); 6.123 (3.0); 6.032 (2.8); 6.023 (3.0); 6.014 (3.1) ; 6.006 (2.9); 5.823 (1.0); 5.706 (1.0); 5.417 (0.4); 4.067 (0.4); 4.049 (1.6); 4.041 (1.4); 4.034 (1.5); 4.025 (1.4) ; 4.012 (2.2); 4.004 (2.3); 3.997 (2.4); 3.989 (2.2); 3.980 (1.4); 3.972 (1.4); 3.965 (1.5); 3.957 (1.4); 3.943 (2.3) ; 3.935 (2.4); 3.928 (2.4); 3.920 (2.2); 3.897 (5.2); 3.881 (3.3); 3.865 (2.4); 3.843 (3.4); 3.826 (4.0); 3.809 (2.3) ; 3.789 (2.0); 3.772 (1.3); 3.361 (0.9); 3.170 (1.9); 2.711 (0.8); 2.693 (1.3); 2.675 (0.9); 2.467 (3.1); 2.463 (4.2) ; 2.458 (3.1); 2.158 (746.2); 2.120 (3.2); 2.114 (4.4); 2.107 (5.5); 2.101 (4.0); 2.095 (2.3); 2.071 (0.6); 2.049 (0.4) ; 1.964 (24.7); 1.958 (63.7); 1.952 (335.0); 1.946 (611.8); 1.940 (827.6); 1.934 (583.6); 1.928 (310.5); 1.806 (0.4) ; 1.781 (2.1); 1.775 (3.5); 1.768 (4.9); 1.762 (3.5); 1.756 (2.0); 1.705 (0.4); 1.687 (0.4); 1.669 (0.5); 1.652 (0.8) ; 1.634 (0.7); 1.615 (0.4); 1.559 (0.4); 1.539 (0.4); 1.372 (0.6); 1.359 (0.6); 1.339 (0.7); 1.277 (11.9); 1.229 (0.3) ; 1.222 (0.5); 1.204 (0.8); 1.186 (0.5); 0.899 (1.0); 0.882 (2.8); 0.864 (1.4); 0.841 (0.4); 0.146 (5.8); 0.008 (45.5 ); 0.000 (1261.0); -0.008 (66.5); -0.083 (0.4); -0.112 (0.3); -0.150 (5.9)
Example 1-72: 1H-NMR (400.0 MHz, CD3CN): □ = 9.014 (6.8); 9.010 (6.8); 8.840 (16.0); 8.838 (15.9); 8.831 (4.0); 8.252 (3.7); 8.247 (3.7); 8.231 (4.1); 8.227 (4.1); 7.927 (2.3); 7.894 (7.8); 7.873 (6.9); 7.854 (9.3); 7.759 (2.6); 7.755 (2.2); 7.739 (7.7); 7.735 (7.5); 7.719 (11.9); 7.699 (3.7); 6.172 (1.8); 6.164 (2.0); 6.154 (2.1); 6.146 (1.9); 6.055 (1.9); 6.047 (2.0); 6.037 (2.1); 6.028 (1.9); 5.448 (1.4); 4.084 (0.9); 4.075 (0.9); 4.068 (1.0); 4.060 (1.0); 4.047 (1.5); 4.039 (1.5); 4.032 (1.5); 4.023 (1.4); 4.014 (0.9); 4.006 (0.9); 3.999 (0.9); 3.990 (0.9); 3.977 (1.5); 3.969 (1.5); 3.962 (1.6); 3.954 (1.4); 3.938 (1.4); 3.921 (2.0); 3.904 (1.8); 3.886 (2.6); 3.868 (2.8); 3.851 (1.8); 3.832 (1.3); 3.815 (0.8); 2.469 (0.6); 2.464 (0.9); 2.459 (0.7); 2.455 (0.4); 2.159 (498.2); 2.120 (1.2); 2.114 (1.5); 2.108 (1.8); 2.102 (1.2); 2.095 (0.7); 1.964 (8.6); 1.958 (22.7); 1.953 (104.3); 1.947 (185.7); 1.940 (245.6); 1.934 (171.7); 1.928 (90.2); 1.781 (0.6); 1.775 (1.1); 1.769 (1.5); 1.763 (1.1); 1.756 (0.6); 1.673 (0.3); 1.437 (1.4); 1.299 (0.3); 1.271 (1.7); 1.204 (0.3); 0.881 (0.5); 0.146 (1.6); 0.000 (346.7); -0.008 (18.6); -0.150 (1.7)
[Example 1-75: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.007 (3.5); 8.992 (7.0); 8.978 (3.5); 8.489 (7.2); 8.485 (7.9); 8.478 (7.8); 8.473 (7.8); 8.316 (0.3); 7.955 (7.2) 7.951 (7.6); 7.936 (8.2); 7.932 (8.1); 7.797 (7.1); 7.778 (9.4); 7.748 (3.1); 7.730 (8.2); 7.719 (10.5); 7.712 (6.8) 7.699 (14.2); 7.688 (14.7); 7.675 (6.2); 7.656 (7.2); 7.637 (2.7); 7.610 (8.5); 7.606 (8.1); 7.590 (6.2); 7.586 (6.2) 7.576 (7.8); 7.564 (7.6); 7.557 (7.4); 7.545 (6.9); 7.497 (8.4); 7.478 (7.2); 6.097 (2.2); 6.087 (2.5); 6.079 (2.9) 6.069 (2.3); 5.979 (2.3); 5.963 (3.4); 5.951 (2.3); 5.756 (8.9); 4.056 (1.3); 4.038 (3.8); 4.020 (3.9); 4.003 (1.3) 3.886 (0.4); 3.875 (0.7); 3.862 (0.7); 3.850 (2.2); 3.836 (4.2); 3.827 (2.7); 3.819 (3.4); 3.802 (2.3); 3.782 (4.8) 3.767 (6.3); 3.751 (2.5); 3.730 (0.4); 3.568 (2.5); 3.324 (66.3); 2.675 (0.6); 2.671 (0.8); 2.506 (103.6); 2.502| (135.1); 2.498 (104.9); 2.329 (0.9); 2.325 (0.7); 1.989 (16.0); 1.397 (4.4); 1.299 (0.6); 1.259 (1.0); 1.235 (4.0); 1.193 (4.4); 1.175 (8.5); 1.158 (4.3); 0.868 (0.3); 0.853 (0.6); 0.836 (0.4); 0.000 (33.9)
[Example 1-74: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 9.920 (0.5); 8.985 (3.8); 8.971 (7.9); 8.957 (4.0); 8.646 (11.1); 8.640 (11.8); 8.406 (3.8); 8.400 (3.8); 8.386 (6.5); 8.379 (6.4); 8.365 (4.1); 8.359 (4.0); 8.316 (0.5); 7.943 (15.3); 7.848 (6.8); 7.844 (6.5); 7.828 (9.1); 7.824
(9.0) ; 7.795 (7.9); 7.776 (10.5); 7.753 (3.5); 7.734 (8.8); 7.709 (16.0); 7.689 (11.7); 7.674 (6.6); 7.654 (8.0); 7.635
(3.1) ; 7.502 (9.3); 7.483 (8.1); 7.336 (7.0); 7.329 (7.2); 7.315 (7.0); 7.308 (6.9); 6.082 (2.5); 6.073 (2.8); 6.064|
(3.2) ; 6.055 (2.7); 5.964 (2.5); 5.953 (2.9); 5.948 (3.6); 5.937 (2.6); 4.038 (0.7); 4.020 (0.8); 3.868 (0.6); 3.858 (0.8); 3.855 (0.8); 3.844 (0.9); 3.832 (2.3); 3.819 (3.1); 3.811 (3.4); 3.796 (3.4); 3.778 (2.7); 3.760 (4.4); 3.752| (4.7); 3.744 (5.8); 3.728 (2.5); 3.708 (0.6); 3.692 (0.5); 3.325 (125.0); 2.676 (0.9); 2.672 (1.2); 2.667 (0.9); 2.507 (147.4); 2.502 (193.9); 2.498 (148.1); 2.334 (0.9); 2.329 (1.3); 2.325 (1.0); 1.989 (3.2); 1.398 (2.3); 1.234 (0.9); 1.193 (0.9); 1.175 (1.7); 1.157 (0.8); 0.008 (1.9); 0.000 (47.2)
[Example 1-73: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 10.221 (0.4); 8.985 (1.7); 8.971 (3.5); 8.956 (1.7); 8.824 (6.0); 8.818 (6.1); 8.267 (4.0); 8.261 (3.9); 8.246 (4.3); 8.240 (4.4); 7.968 (6.6); 7.923 (0.4); 7.917 (0.4); 7.869 (3.1); 7.865 (2.9); 7.849 (4.0); 7.845 (3.9); 7.820 (0.3); 7.795 (3.4); 7.775 (4.5); 7.751 (1.5); 7.734 (3.8); 7.717 (8.9); 7.696 (5.3); 7.673 (2.8); 7.654 (9.7); 7.633
(7.1) ; 7.535 (0.3); 7.514 (0.4); 7.500 (4.0); 7.481 (3.5); 7.287 (0.5); 7.250 (0.4); 7.242 (0.4); 6.083 (1.1); 6.074
(1.2) ; 6.065 (1.4); 6.056 (1.1); 5.965 (1.1); 5.955 (1.2); 5.949 (1.5); 5.938 (1.1); 4.056 (1.2); 4.038 (3.6); 4.020 (3.6); 4.003 (1.2); 3.858 (0.4); 3.855 (0.4); 3.845 (0.4); 3.832 (1.0); 3.822 (1.3); 3.810 (1.6); 3.795 (1.5); 3.777
(1.3) ; 3.764 (1.5); 3.758 (2.0); 3.754 (2.0); 3.742 (2.5); 3.727 (1.0); 3.707 (0.4); 3.569 (1.8); 3.326 (42.7); 2.676| (0.4); 2.672 (0.6); 2.667 (0.5); 2.525 (1.5); 2.511 (33.5); 2.507 (69.2); 2.503 (92.7); 2.498 (69.3); 2.494 (35.3); 2.334 (0.4); 2.329 (0.6); 2.325 (0.5); 1.989 (16.0); 1.397 (0.4); 1.234 (0.8); 1.193 (4.3); 1.175 (8.5); 1.158 (4.2); 10.008 (1.1); 0.000 (33.3); -0.008 (1.4)
[Example 1-77: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 10.453 (1.6); 8.990 (2.9); 8.975 (5.8); 8.961 (3.0); 8.948 (13.8); 8.943 (14.0); 8.797 (0.7); 8.794 (0.8); 8.678 (12.8); 8.672 (13.3); 8.637 (0.6); 8.631 (0.6); 8.548 (2.0); 8.377 (8.8); 8.371 (15.2); 8.366 (8.5); 8.316 (0.7); 8.141 (0.4); 8.138 (0.4); 8.135 (0.4); 8.131 (0.4); 8.102 (0.9); 8.096 (0.9); 8.072 (0.9); 8.067 (0.9); 8.027 (11.3); 7.922 (5.6); 7.918 (5.2); 7.902 (6.8); 7.897 (6.6); 7.795 (5.8); 7.776 (7.7); 7.753 (2.5); 7.735 (6.5); 7.717 (16.0); 7.697
(9.8) ; 7.674 (4.6); 7.655 (5.8); 7.636 (2.2); 7.501 (6.9); 7.483 (5.9); 7.333 (1.0); 7.270 (0.7); 7.264 (1.1); 7.258 (0.6); 6.529 (0.5); 6.087 (1.9); 6.078 (2.1); 6.069 (2.4); 6.060 (1.9); 5.969 (1.9); 5.958 (2.1); 5.953 (2.6); 5.942
(1.9) ; 5.756 (5.9); 3.872 (0.5); 3.862 (0.6); 3.858 (0.6); 3.848 (0.6); 3.836 (1.8); 3.826 (2.2); 3.822 (2.1); 3.814 (2.5); 3.799 (2.4); 3.781 (2.0); 3.768 (2.5); 3.762 (3.2); 3.757 (3.2); 3.746 (4.3); 3.731 (1.8); 3.710 (0.4); 3.324 (116.6); 2.680 (0.4); 2.676 (0.9); 2.671 (1.3); 2.667 (1.0); 2.662 (0.5); 2.525 (3.0); 2.520 (4.8); 2.511 (71.5); 2.507 (148.6); 2.502 (199.1); 2.498 (144.4); 2.493 (69.6); 2.338 (0.4); 2.334 (0.9); 2.329 (1.3); 2.325 (0.9); 1.989 (0.5); 1.259 (0.4); 1.234 (0.8); 0.857 (0.5); 0.839 (0.8); 0.000 (0.7)
[Example 1-78: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 8.984 (2.4); 8.969 (4.8); 8.955 (2.4); 8.350 (8.5); 8.336 (9.1); 8.316 (0.5); 8.074 (9.4); 7.982 (4.7); 7.977 (4.4) 7.961 (5.5); 7.957 (5.4); 7.930 (1.8); 7.915 (1.8); 7.803 (3.4); 7.798 (6.2); 7.794 (7.9); 7.791 (7.0); 7.786 (5.8) 7.781 (3.8); 7.773 (6.7); 7.750 (2.4); 7.742 (9.8); 7.733 (5.9); 7.722 (8.7); 7.714 (4.3); 7.672 (4.0); 7.654 (14.8) 7.634 (1.9); 7.495 (5.8); 7.477 (5.0); 6.733 (0.6); 6.728 (1.0); 6.724 (0.7); 6.718 (0.6); 6.714 (1.0); 6.709 (0.6) 6.405 (1.7); 6.400 (1.8); 6.094 (1.6); 6.085 (1.7); 6.077 (2.0); 6.067 (1.6); 5.976 (1.6); 5.966 (1.8); 5.960 (2.2) 5.949 (1.6); 5.756 (16.0); 4.331 (0.8); 4.038 (0.4); 4.020 (0.4); 3.877 (0.4); 3.868 (0.5); 3.864 (0.5); 3.854 (0.5) 3.841 (1.5); 3.831 (2.0); 3.828 (1.9); 3.821 (2.2); 3.805 (2.2); 3.788 (1.7); 3.774 (2.0); 3.768 (2.8); 3.764 (2.7) 3.752 (3.8); 3.737 (1.5); 3.716 (0.4); 3.701 (0.3); 3.325 (66.2); 2.676 (0.7); 2.672 (0.9); 2.667 (0.7); 2.525 (2.0) 2.520 (3.2); 2.511 (51.4); 2.507 (106.9); 2.503 (143.7); 2.498 (105.5); 2.494 (52.0); 2.334 (0.7); 2.329 (0.9); 2.325 (0.7); 1.989 (1.6); 1.398 (0.5); 1.259 (0.5); 1.234 (1.3); 1.193 (0.5); 1.175 (0.9); 1.158 (0.5); 0.000 (0.4) (Example 1-80: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.180 (2.7); 9.165 (5.5); 9.151 (2.7); 8.813 (5.9); 8.803 (5.7); 8.801 (5.9); 8.491 (7.1); 8.486 (7.7); 8.479 (7.6) 8.474 (7.7); 8.316 (0.9); 7.973 (5.3); 7.955 (13.1); 7.950 (9.9); 7.936 (8.3); 7.931 (7.9); 7.806 (5.5); 7.795 (5.4) 7.787 (4.7); 7.775 (4.5); 7.721 (8.5); 7.701 (12.6); 7.696 (8.8); 7.693 (11.7); 7.612 (7.3); 7.608 (6.8); 7.592 (5.3) 7.588 (5.3); 7.578 (8.0); 7.566 (7.6); 7.559 (7.4); 7.547 (7.3); 6.097 (1.8); 6.089 (2.0); 6.079 (2.2); 6.070 (1.9) 5.979 (1.9); 5.970 (2.0); 5.962 (2.4); 5.952 (1.9); 5.756 (16.0); 4.056 (0.6); 4.038 (1.7); 4.020 (1.7); 4.002 (0.6) 3.923 (0.5); 3.915 (0.7); 3.910 (0.7); 3.900 (0.7); 3.887 (1.5); 3.878 (1.8); 3.874 (1.7); 3.865 (1.5); 3.855 (1.6) 3.839 (2.5); 3.830 (1.0); 3.817 (2.5); 3.803 (4.1); 3.793 (2.1); 3.786 (3.1); 3.769 (1.6); 3.750 (0.6); 3.733 (0.4) 3.323 (108.6); 2.680 (0.8); 2.676 (1.7); 2.671 (2.4); 2.667 (1.8); 2.662 (0.9); 2.525 (6.4); 2.520 (9.8); 2.511 (133.9); 2.507 (274.4); 2.502 (363.5); 2.498 (266.6); 2.493 (131.8); 2.338 (0.7); 2.333 (1.6); 2.329 (2.3); 2.324| (1.7); 2.086 (0.5); 1.989 (7.6); 1.398 (0.4); 1.298 (1.0); 1.259 (1.6); 1.235 (3.0); 1.193 (2.1); 1.175 (4.1); 1.157 (2.0); 0.854 (0.4); 0.146 (1.6); 0.008 (11.9); 0.000 (369.5); -0.008 (14.2); -0.150 (1.6)
[Example 1-79: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 9.353 (3.6); 9.339 (7.3); 9.324 (3.6); 9.044 (11.7); 9.038 (14.4); 8.986 (14.4); 8.980 (12.3); 8.491 (9.4); 8.486| (10.2); 8.479 (10.2); 8.474 (10.2); 8.316 (0.6); 7.952 (9.1); 7.947 (9.7); 7.933 (10.7); 7.928 (10.3); 7.728 (11.6); |7.708 (15.7); 7.695 (15.2); 7.599 (9.5); 7.595 (9.0); 7.578 (16.0); 7.566 (10.2); 7.559 (9.7); 7.547 (9.5); 7.524 (0.5); 6.109 (2.5); 6.101 (2.8); 6.089 (3.0); 6.081 (2.6); 5.990 (2.5); 5.981 (2.7); 5.971 (3.2); 5.962 (2.6); 4.056 (0.6); 4.038 (1.8); 4.020 (1.9); 4.003 (0.6); 3.965 (0.9); 3.956 (1.0); 3.950 (1.0); 3.942 (1.1); 3.928 (2.0); 3.920
(2.3) ; 3.915 (2.2); 3.906 (2.0); 3.890 (0.9); 3.883 (2.3); 3.876 (1.2); 3.868 (3.0); 3.854 (2.9); 3.847 (4.1); 3.840
(3.4) ; 3.832 (3.9); 3.819 (3.2); 3.800 (2.4); 3.783 (0.8); 3.780 (0.8); 3.764 (0.7); 3.324 (103.0); 2.681 (0.6); 2.676 (1.2); 2.672 (1.7); 2.667 (1.2); 2.525 (4.6); 2.520 (7.1); 2.512 (93.7); 2.507 (191.6); 2.503 (254.7); 2.498 (188.2); 2.494 (94.5); 2.339 (0.5); 2.334 (1.2); 2.329 (1.6); 2.325 (1.2); 1.989 (8.0); 1.398 (1.4); 1.299 (0.9); 1.259 (1.4); 1.235 (2.4); 1.193 (2.2); 1.175 (4.3); 1.158 (2.2); 0.854 (0.4); 0.146 (1.3); 0.008 (9.8); 0.000 (287.4); -0.008 (12.6); -0.150 (1.3)
[Example 1-88: 1H-NMR (400.0 MHz, CD3CN)
□ = 8.758 (4.3); 8.748 (4.3); 8.746 (4.3); 8.499 (5.5); 8.492 (5.8); 8.195 (2.9); 8.188 (2.8); 8.174 (3.9); 8.168 (3.7) 8.167 (3.8); 8.154 (3.0); 8.147 (2.9); 7.873 (3.9); 7.871 (4.1); 7.854 (4.8); 7.852 (4.8); 7.773 (9.0); 7.708 (1.5) |7.704 (1.1); 7.687 (10.2); 7.683 (12.0); 7.680 (16.0); 7.673 (4.9); 7.661 (6.0); 7.653 (3.9); 7.641 (3.7); 7.301 (1.8) 7.151 (4.4); 7.144 (4.4); 7.130 (4.3); 7.123 (4.3); 6.131 (2.1); 6.123 (2.3); 6.113 (2.3); 6.105 (2.2); 6.014 (2.1) |6.006 (2.3); 5.996 (2.4); 5.988 (2.2); 5.448 (3.0); 4.038 (1.1); 4.029 (1.1); 4.022 (1.1); 4.014 (1.1); 4.001 (1.7) 3.993 (1.7); 3.986 (1.6); 3.978 (1.7); 3.969 (1.1); 3.960 (1.0); 3.953 (1.1); 3.945 (1.0); 3.932 (1.7); 3.924 (1.6) 3.917 (1.7); 3.908 (1.6); 3.882 (1.6); 3.866 (2.0); 3.864 (2.0); 3.849 (1.7); 3.845 (1.3); 3.827 (2.8); 3.812 (3.0) 3.794 (1.7); 3.790 (1.3); 3.775 (1.3); 3.773 (1.3); 3.757 (1.0); 2.467 (0.3); 2.462 (0.5); 2.458 (0.3); 2.153 (127.6) 2.120 (0.8); 2.114 (1.0); 2.108 (1.2); 2.102 (0.9); 2.096 (0.5); 1.972 (1.1); 1.965 (4.6); 1.959 (11.9); 1.953 (71.9) 1.947 (131.0); 1.940 (176.9); 1.934 (120.6); 1.928 (62.2); 1.915 (1.3); 1.781 (0.5); 1.775 (0.8); 1.769 (1.1); 1.763 (0.8); 1.756 (0.4); 1.340 (0.5); 1.285 (0.9); 1.269 (1.8); 1.222 (0.3); 1.204 (0.6); 1.186 (0.3); 0.881 (0.4); 0.000| (8.1)
[Example 1-87: 1H-NMR (400.0 MHz, CD3CN):
□ = 8.846 (2.4); 8.837 (11.1); 8.830 (2.4); 8.485 (3.9); 8.480 (4.0); 8.183 (1.7); 8.176 (1.6); 8.162 (2.7); 8.156| (2.5); 8.142 (1.8); 8.136 (1.7); 7.926 (1.3); 7.764 (6.1); 7.683 (0.7); 7.663 (16.0); 7.640 (0.5); 7.148 (2.9); 7.141 (2.9); 7.126 (2.8); 7.119 (2.8); 6.155 (1.4); 6.147 (1.4); 6.136 (1.5); 6.128 (1.4); 6.037 (1.4); 6.029 (1.4); 6.019 (1.5); 6.011 (1.4); 5.448 (1.4); 4.071 (0.7); 4.063 (0.6); 4.055 (0.6); 4.048 (0.8); 4.034 (1.0); 4.026 (1.0); 4.019 (0.9); 4.011 (1.0); 4.001 (0.6); 3.993 (0.6); 3.986 (0.6); 3.977 (0.6); 3.964 (1.0); 3.956 (1.0); 3.949 (1.0); 3.941 (0.9); 3.923 (0.9); 3.905 (1.3); 3.888 (1.2); 3.870 (1.6); 3.853 (1.8); 3.836 (1.2); 3.817 (0.8); 3.800 (0.5); 2.469 (0.3); 2.465 (0.5); 2.460 (0.3); 2.167 (252.6); 2.121 (0.6); 2.114 (0.7); 2.108 (0.8); 2.102 (0.6); 2.096 (0.4); 1.972 (2.0); 1.965 (3.1); 1.959 (7.9); 1.953 (45.2); 1.947 (81.9); 1.941 (110.9); 1.935 (76.2); 1.929 (39.5); 1.776 (0.5); 1.769 (0.7); 1.763 (0.5); 1.340 (0.3); 1.285 (0.8); 1.270 (2.7); 1.222 (0.6); 1.204 (1.0); 1.186 (0.5); 0.881 (0.5); 10.858 (0.5); 0.000 (8.0)
[Example 1-86: 1H-NMR (400.0 MHz, CD3CN)
□ = 8.757 (5.0); 8.747 (5.0); 8.745 (5.0); 8.678 (8.5); 8.672 (8.7); 8.050 (6.7); 8.043 (6.6); 8.029 (7.2); 8.022 (7.1) 7.870 (4.6); 7.867 (4.7); 7.850 (5.6); 7.848 (5.6); 7.786 (10.6); 7.721 (2.5); 7.717 (1.9); 7.700 (10.1); 7.696 (10.2) [7.688 (16.0); 7.671 (5.5); 7.660 (5.1); 7.652 (4.4); 7.640 (4.1); 7.521 (10.1); 7.500 (9.3); 7.306 (2.2); 6.130 (2.3)
6.122 (2.4); 6.113 (2.5); 6.105 (2.3); 6.013 (2.3); 6.005 (2.4); 5.996 (2.5) 5.988 (2.3); 5.448 (1.3) 4.068 (0.9) 4.050 (0.9); 4.036 (1.2); 4.028 (1.2); 4.021 (1.2); 4.013 (1.2); 4.000 (1.8) 3.992 (1.9); 3.985 (1.8) 3.976 (1.8) 3.968 (1.2); 3.960 (1.1); 3.952 (1.2); 3.944 (1.1); 3.931 (1.9); 3.923 (1.8) 3.916 (1.9); 3.908 (1.8) 3.882 (1.7) 3.866 (2.3); 3.849 (1.9); 3.845 (1.4); 3.827 (2.9); 3.811 (3.2); 3.793 (1.8) 3.790 (1.4); 3.774 (1.5): 3.757 (1.1) 2.467 (0.5); 2.462 (0.7); 2.458 (0.5); 2.157 (163.6); 2.120 (0.7); 2.114 (1.0); 2.108 (1.2); 2.102 (0.9); 2.096 (0.5) 1.972 (4.4); 1.965 (5.7); 1.959 (14.2); 1.953 (80.4); 1.947 (145.3); 1.941 (194.9); 1.934 (132.8); 1.928 (67.6) 1.781 (0.5); 1.775 (0.8); 1.769 (1.1); 1.763 (0.8); 1.757 (0.4); 1.285 (0.5); 1.270 (0.9); 1.222 (1.1); 1.204 (2.1) 1.186 (1.1); 0.000 (8.5) (Example 1-85: 1H-NMR (400.0 MHz, CD3CN):
□ = 8.844 (2.2); 8.836 (12.7); 8.829 (2.1); 8.665 (4.6); 8.659 (4.7); 8.038 (3.9); 8.031 (3.8); 8.017 (4.2); 8.010|
(4.1) ; 7.897 (1.2); 7.779 (5.8); 7.776 (6.1); 7.674 (16.0); 7.671 (15.1); 7.517 (5.4); 7.516 (5.3); 7.497 (5.0); 7.495 (4.9); 6.154 (1.5); 6.146 (1.6); 6.136 (1.7); 6.128 (1.5); 6.037 (1.5); 6.029 (1.6); 6.019 (1.7); 6.011 (1.5); 5.447 (0.5); 4.072 (0.7); 4.064 (0.7); 4.056 (0.7); 4.048 (0.7); 4.035 (1.0); 4.027 (1.1); 4.020 (1.0); 4.012 (1.0); 4.002 (0.7); 3.994 (0.6); 3.987 (0.6); 3.978 (0.6); 3.966 (1.1); 3.957 (1.0); 3.950 (1.1); 3.942 (1.0); 3.922 (1.0); 3.906 (1.3); 3.904 (1.2); 3.888 (1.2); 3.870 (1.8); 3.852 (1.8); 3.836 (1.2); 3.816 (0.8); 3.799 (0.6); 2.591 (0.4); 2.138 (150.4); 2.120 (1.0); 2.114 (1.5); 2.108 (1.9); 2.101 (1.3); 2.095 (0.7); 1.964 (8.8); 1.958 (22.0); 1.952 (123.8); 1.946 (224.6); 1.940 (301.7); 1.934 (206.4); 1.928 (106.4); 1.915 (1.5); 1.781 (0.7); 1.775 (1.3); 1.769 (1.8); 1.762|
(1.2) ; 1.756 (0.6); 1.269 (0.6); 0.008 (0.4); 0.000 (14.0); -0.009 (0.5)
[Example 1-84: 1H-NMR (400.0 MHz, CD3CN):
□ = 8.844 (3.6); 8.837 (15.9); 8.835 (16.0); 8.828 (2.9); 8.661 (6.5); 8.647 (6.4); 7.898 (1.8); 7.856 (0.9); 7.838
(7.7) ; 7.816 (0.7); 7.811 (0.8); 7.799 (0.6); 7.789 (0.6); 7.771 (0.7); 7.767 (0.7); 7.757 (2.7); 7.737 (4.8); 7.733 (4.6); 7.691 (9.7); 7.671 (5.5); 7.629 (8.2); 7.614 (7.9); 7.599 (0.9); 7.584 (1.4); 7.580 (1.3); 7.562 (1.4); 7.552 (1.1); 7.529 (1.3); 7.521 (1.3); 7.511 (1.3); 7.502 (1.4); 7.481 (1.5); 7.461 (1.9); 7.450 (1.9); 7.436 (0.4); 7.417 (0.8); 7.398 (0.8); 7.392 (0.7); 7.380 (0.4); 7.373 (0.3); 6.293 (0.3); 6.288 (0.3); 6.226 (0.4); 6.160 (1.7); 6.152
(1.8) ; 6.142 (1.8); 6.134 (1.7); 6.043 (1.7); 6.035 (1.7); 6.025 (1.8); 6.017 (1.7); 4.086 (0.7); 4.077 (1.0); 4.068 (2.8); 4.061 (1.0); 4.050 (2.3); 4.040 (1.4); 4.032 (2.2); 4.025 (1.4); 4.016 (1.4); 4.007 (0.9); 3.999 (0.9); 3.992 (0.9); 3.984 (0.9); 3.971 (1.5); 3.963 (1.4); 3.955 (1.4); 3.947 (1.3); 3.927 (1.4); 3.911 (1.8); 3.893 (1.7); 3.874 (2.5); 3.856 (2.6); 3.840 (1.6); 3.821 (1.2); 3.804 (1.0); 3.051 (0.4); 2.138 (349.8); 2.120 (3.8); 2.114 (3.9); 2.108 (4.4); 2.101 (3.0); 2.095 (1.7); 1.972 (10.1); 1.964 (16.6); 1.958 (44.1); 1.952 (247.5); 1.946 (451.2); 1.940| (606.9); 1.934 (417.4); 1.928 (215.6); 1.869 (0.8); 1.844 (0.6); 1.809 (0.6); 1.781 (1.8); 1.775 (3.0); 1.769 (4.0) 1.762 (3.0); 1.756 (1.9); 1.733 (0.4); 1.707 (0.4); 1.655 (0.4); 1.619 (0.6); 1.597 (0.6); 1.564 (0.4); 1.469 (1.1) 1.386 (0.9); 1.372 (0.5); 1.348 (1.0); 1.340 (2.9); 1.285 (4.2); 1.270 (5.6); 1.222 (2.9); 1.204 (5.3); 1.186 (2.7) 10.882 (1.2); 0.857 (1.0); 0.841 (0.7); 0.008 (0.8); 0.000 (25.7); -0.008 (1.0)
[Example 1-83: 1H-NMR (400.0 MHz, CD3CN)
□ = 8.801 (12.1); 8.796 (12.4); 8.759 (5.9); 8.747 (5.9); 8.605 (11.6); 8.599 (12.0); 8.103 (7.9); 8.097 (14.2) 8.092 (7.8); 7.868 (5.5); 7.848 (6.6); 7.819 (12.2); 7.749 (4.2); 7.744 (3.6); 7.728 (9.6); 7.724 (9.3); 7.710 (0.6) 7.698 (16.0); 7.678 (7.8); 7.662 (5.9); 7.655 (5.1); 7.643 (4.9); 7.584 (0.5); 7.395 (0.3); 7.277 (2.8); 6.135 (2.5) 6.127 (2.7); 6.118 (2.8); 6.110 (2.6); 6.018 (2.6); 6.010 (2.7); 6.001 (2.8); 5.993 (2.6); 4.086 (0.4); 4.068 (1.2) 4.050 (1.3); 4.041 (1.3); 4.033 (1.6); 4.026 (1.3); 4.018 (1.4); 4.005 (2.1); 3.997 (2.2); 3.989 (2.0); 3.981 (2.0) 3.973 (1.4); 3.965 (1.3); 3.957 (1.4); 3.949 (1.3); 3.936 (2.2); 3.928 (2.0); 3.921 (2.2); 3.913 (2.0); 3.886 (2.0) 3.870 (2.8); 3.853 (2.2); 3.832 (3.3); 3.816 (3.7); 3.798 (2.1); 3.795 (1.7); 3.778 (1.7); 3.761 (1.3); 2.140 (257.9) 2.120 (1.8); 2.114 (2.3); 2.108 (2.7); 2.101 (2.0); 2.095 (1.1); 1.972 (6.5); 1.964 (12.0); 1.958 (30.0); 1.952 (168.1); 1.946 (304.3); 1.940 (408.7); 1.934 (279.9); 1.928 (143.7); 1.781 (0.9); 1.775 (1.7); 1.769 (2.4); 1.762 (1.6); 1.756 (0.8); 1.437 (1.3); 1.340 (0.7); 1.285 (1.2); 1.269 (2.0); 1.222 (1.5); 1.204 (2.9); 1.186 (1.5); 0.881 (0.4); 0.858 (0.3); 0.008 (0.6); 0.000 (17.7); -0.009 (0.6)
[Example 1-82: 1H-NMR (400.0 MHz, CD3CN):
□ = 8.846 (3.3); 8.838 (16.0); 8.831 (2.8); 8.787 (8.2); 8.782 (8.0); 8.602 (7.7); 8.596 (7.7); 8.088 (5.4); 8.083 (9.5); 8.077 (5.0); 7.913 (1.3); 7.900 (1.7); 7.809 (8.1); 7.717 (1.5); 7.713 (1.1); 7.696 (8.7); 7.692 (9.7); 7.688 (12.8); 7.668 (1.7); 6.159 (1.8); 6.151 (1.9); 6.141 (2.0); 6.133 (1.8); 6.042 (1.8); 6.034 (1.9); 6.024 (2.0); 6.016 (1.8); 5.447 (1.8); 4.076 (0.9); 4.068 (1.1); 4.061 (0.9); 4.053 (0.9); 4.040 (1.4); 4.032 (1.5); 4.024 (1.4); 4.016 (1.4); 4.007 (0.9); 3.998 (0.8); 3.991 (0.9); 3.983 (0.8); 3.970 (1.5); 3.962 (1.4); 3.954 (1.4); 3.946 (1.3); 3.926 (1.3); 3.908 (1.7); 3.891 (1.6); 3.873 (2.3); 3.855 (2.4); 3.839 (1.6); 3.820 (1.1); 3.803 (0.8); 2.136 (141.1); 2.120 (1.3); 2.114 (1.6); 2.107 (1.9); 2.101 (1.4); 2.095 (0.7); 1.972 (1.8); 1.964 (8.8); 1.958 (22.4); 1.952 (123.3); 1.946 (223.2); 1.940 (299.6); 1.934 (203.7); 1.928 (104.4); 1.781 (0.7); 1.775 (1.3); 1.769 (1.7); 1.762 (1.2); 1.756 (0.6); 1.340 (0.5); 1.285 (0.8); 1.270 (2.2); 1.222 (0.3); 1.204 (0.5); 0.881 (0.4); 0.008 (0.4); 0.000 (12.8); -0.008 (0.4)
[Example 1-81 : 1H-NMR (400.0 MHz, CD3CN):
□ = 8.759 (5.1); 8.757 (5.4); 8.747 (5.4); 8.745 (5.4); 8.296 (9.7); 8.282 (10.1); 7.872 (7.6); 7.869 (16.0); 7.865 (13.0); 7.848 (6.2); 7.845 (6.1); 7.804 (5.3); 7.799 (4.7); 7.784 (8.2); 7.779 (7.7); 7.714 (13.2); 7.694 (8.4); 7.672| (5.7); 7.660 (5.7); 7.653 (4.8); 7.641 (4.6); 7.593 (4.3); 7.588 (6.9); 7.584 (5.0); 7.580 (4.5); 7.575 (6.7); 7.571 (4.4); 7.340 (12.4); 7.268 (2.5); 6.138 (2.3); 6.130 (2.5); 6.121 (2.6); 6.113 (2.4); 6.021 (2.4); 6.013 (2.5); 6.004| (2.6); 5.996 (2.4); 5.447 (1.2); 4.068 (0.4); 4.050 (0.5); 4.044 (1.3); 4.036 (1.4); 4.029 (1.4); 4.021 (1.4); 4.008 (2.1); 4.000 (2.1); 3.992 (2.1); 3.984 (2.1); 3.976 (1.4); 3.968 (1.3); 3.961 (1.4); 3.953 (1.3); 3.940 (2.2); 3.932 (2.1); 3.924 (2.2); 3.916 (2.0); 3.890 (2.0); 3.874 (2.8); 3.857 (2.2); 3.853 (1.5); 3.834 (2.5); 3.818 (3.2); 3.800 (2.1); 3.797 (1.5); 3.781 (1.8); 3.764 (1.2); 2.141 (385.5); 2.120 (1.7); 2.114 (2.1); 2.108 (2.6); 2.101 (1.8); 2.095 (1.0); 1.972 (2.8); 1.964 (10.7); 1.958 (27.0); 1.953 (154.1); 1.946 (279.6); 1.940 (375.2); 1.934 (256.8); 1.928 (131.5); 1.915 (1.9); 1.781 (0.8); 1.775 (1.6); 1.769 (2.2); 1.763 (1.5); 1.756 (0.8); 1.285 (0.5); 1.269 (0.9); 1.222| (0.5); 1.204 (1.1); 1.186 (0.6); 0.008 (0.4); 0.000 (15.2); -0.009 (0.4)
Example 1-98: 1H-NMR (400.0 MHz, CD3CN): □ = 8.741 (5.2); 8.707 (3.0); 8.696 (2.9); 8.509 (4.4); 8.502 (4.6); 7.930 (1.2); 7.909 (1.3); 7.855 (1.9); 7.849 (2.5) 7.844 (1.9); 7.830 (1.9); 7.824 (2.8); 7.812 (5.6); 7.776 (3.7); 7.755 (7.2); 7.717 (4.6); 7.712 (4.4); 7.696 (2.6) 7.691 (2.9); 7.668 (3.6); 7.650 (3.7); 7.602 (3.1); 7.591 (3.1); 7.583 (2.1); 7.571 (1.8); 7.553 (0.9); 7.535 (1.4) 7.515 (0.9); 7.451 (0.9); 7.432 (1.3); 7.413 (0.6); 7.061 (1.5); 4.338 (1.0); 4.322 (1.0); 4.302 (1.5); 4.285 (1.4) 4.267 (1.0); 4.250 (1.0); 4.230 (1.5); 4.214 (1.5); 4.146 (1.5); 4.131 (1.6); 4.110 (1.1); 4.093 (2.2); 4.078 (1.6) 4.068 (0.6); 4.056 (1.1); 4.050 (0.7); 4.041 (1.1); 2.769 (0.3); 2.143 (45.2); 2.114 (2.4); 2.108 (2.1); 2.101 (1.5) 1.972 (2.8); 1.964 (5.7); 1.958 (15.1); 1.952 (67.2); 1.946 (119.9); 1.940 (170.7); 1.934 (111.8); 1.928 (58.8) 1.879 (16.0); 1.781 (0.5); 1.775 (0.8); 1.769 (0.9); 1.762 (0.7); 1.756 (0.4); 1.285 (0.4); 1.269 (0.8); 1.222 (0.6) 1.204 (1.1); 1.186 (0.6); 0.000 (25.5)
[Example 1-99: 1H-NMR (400.0 MHz, CD3CN)
□ = 8.740 (2.9); 8.736 (5.0); 8.732 (2.8); 8.506 (4.6); 8.499 (4.6); 7.851 (1.7); 7.846 (2.2); 7.845 (2.1); 7.840 (1.8) 7.833 (0.4); 7.826 (1.8); 7.821 (2.2); 7.820 (2.2); 7.815 (2.1); 7.810 (3.7); 7.806 (4.3); 7.781 (4.1); 7.760 (6.8) |7.703 (4.2); 7.698 (3.8); 7.683 (2.4); 7.678 (2.3); 7.504 (0.4); 7.400 (0.4); 7.394 (1.0); 7.381 (5.6); 7.376 (5.3) 7.366 (3.4); 7.361 (3.3); 7.346 (0.8); 7.341 (1.1); 7.324 (1.6); 7.318 (1.2); 7.308 (0.9); 7.305 (3.0); 7.300 (2.6) 7.289 (2.0); 7.284 (1.9); 7.272 (3.2); 7.270 (3.9); 7.267 (2.9); 7.253 (1.6); 7.249 (1.3); 6.963 (1.0); 5.448 (0.9) 4.349 (1.0); 4.332 (1.0); 4.313 (1.4); 4.296 (1.3); 4.278 (1.0); 4.261 (1.0); 4.241 (1.4); 4.224 (1.4); 4.129 (1.6) 4.115 (1.6); 4.093 (1.2); 4.078 (1.6); 4.076 (1.9); 4.061 (1.6); 4.039 (1.1); 4.025 (1.1); 2.468 (0.4); 2.463 (0.5) 2.458 (0.3); 2.152 (116.7); 2.120 (1.3); 2.114 (1.4); 2.108 (1.5); 2.102 (1.1); 2.095 (0.7); 1.965 (5.1); 1.958 (13.6) 1.953 (78.7); 1.946 (134.6); 1.940 (178.2); 1.934 (122.4); 1.928 (63.4); 1.890 (16.0); 1.858 (0.5); 1.781 (0.6) 1.775 (0.8); 1.769 (1.1); 1.763 (0.8); 1.757 (0.4); 1.437 (1.7); 1.270 (1.1); 0.008 (1.1); 0.000 (36.3); -0.009 (1.3)
[Example 1-100: 1H-NMR (400.0 MHz, CD3CN)
□ = 8.731 (4.7); 8.503 (4.1); 8.496 (4.1); 7.848 (1.9); 7.843 (2.4); 7.842 (2.5); 7.837 (2.0); 7.823 (2.0); 7.818 (2.5) 7.816 (2.5); 7.812 (2.2); 7.802 (5.3); 7.783 (4.5); 7.763 (6.8); 7.711 (0.6); 7.702 (4.4); 7.697 (4.2); 7.681 (2.7) 7.677 (2.6); 7.568 (3.1); 7.566 (3.3); 7.548 (3.6); 7.546 (3.8); 7.445 (0.4); 7.442 (0.4); 7.426 (0.6); 7.423 (0.5) 7.420 (0.5); 7.407 (0.4); 7.401 (0.4); 7.365 (1.3); 7.362 (1.4); 7.346 (3.6); 7.343 (3.8); 7.328 (2.9); 7.325 (2.8) 7.298 (2.2); 7.293 (2.8); 7.278 (2.7); 7.274 (3.1); 7.259 (1.3); 7.255 (1.3); 7.220 (3.5); 7.216 (3.3); 7.201 (2.6) 7.197 (2.5); 6.924 (1.2); 4.356 (1.1); 4.339 (1.1); 4.320 (1.5); 4.303 (1.4); 4.284 (1.1); 4.267 (1.0); 4.248 (1.5) 4.231 (1.4); 4.114 (1.5); 4.099 (1.5); 4.077 (1.2); 4.067 (0.9); 4.061 (2.1); 4.049 (1.1); 4.046 (1.7); 4.024 (1.2) 4.010 (1.1); 2.251 (0.4); 2.153 (4.6); 2.114 (1.8); 2.108 (1.6); 2.102 (1.2); 2.054 (0.4); 1.972 (3.4); 1.965 (2.0) 1.953 (29.2); 1.947 (41.5); 1.940 (55.2); 1.934 (38.5); 1.928 (20.2); 1.916 (1.0); 1.895 (16.0); 1.858 (0.5); 1.775 (0.4); 1.769 (0.4); 1.436 (5.7); 1.285 (0.3); 1.268 (1.2); 1.221 (0.9); 1.204 (1.7); 1.186 (0.9); 0.000 (8.8); -0.009| (0.4)
[Example 1-101 : 1H-NMR (400.0 MHz, CD3CN)
□ = 8.742 (3.8); 8.509 (3.3); 8.502 (3.3); 7.855 (1.7); 7.850 (2.0); 7.848 (2.1); 7.843 (1.7); 7.829 (1.8); 7.825 (2.1) 7.823 (2.2); 7.818 (2.0); 7.814 (3.4); 7.810 (4.2); 7.807 (3.8); 7.785 (4.0); 7.764 (7.1); 7.717 (5.3); 7.712 (6.0) 7.696 (4.9); 7.691 (4.7); 7.621 (0.8); 7.604 (2.1); 7.602 (2.2); 7.587 (2.7); 7.582 (3.1); 7.563 (1.9); 7.561 (1.9) 7.544 (0.6); 7.291 (2.4); 7.274 (2.1); 7.003 (1.0); 5.448 (2.1); 4.296 (0.9); 4.279 (0.9); 4.259 (1.5); 4.243 (1.4) 4.226 (0.8); 4.210 (0.8); 4.190 (1.5); 4.173 (1.5); 4.156 (1.7); 4.141 (1.7); 4.119 (1.1); 4.104 (1.2); 4.101 (1.9) 4.086 (1.7); 4.065 (1.0); 4.049 (1.0); 2.469 (0.5); 2.464 (0.8); 2.459 (0.5); 2.164 (179.3); 2.120 (0.5); 2.114 (0.8) 2.108 (1.0); 2.102 (0.7); 2.096 (0.4); 1.965 (4.4); 1.959 (11.2); 1.953 (65.2); 1.947 (118.6); 1.941 (162.5); 1.934| (111.1); 1.928 (56.6); 1.916 (1.1); 1.878 (16.0); 1.781 (0.5); 1.775 (0.9); 1.769 (1.0); 1.763 (0.7); 1.757 (0.4); 1.285 (0.4); 1.269 (1.1); 0.008 (0.7); 0.000 (25.0); -0.009 (0.8)
[Example 1-102: 1H-NMR (400.0 MHz, CD3CN):
□ = 8.798 (1.1); 8.792 (16.0); 8.785 (0.9); 8.730 (2.3); 8.725 (4.2); 8.721 (2.3); 8.505 (4.0); 8.498 (4.0); 7.840|
(1.5) ; 7.835 (1.8); 7.834 (1.8); 7.829 (1.4); 7.815 (4.4); 7.811 (5.0); 7.804 (1.6); 7.758 (3.5); 7.737 (5.9); 7.683
(3.6) ; 7.678 (3.3); 7.662 (2.2); 7.657 (2.1); 7.619 (0.8); 5.448 (1.0); 4.306 (0.4); 4.290 (0.4); 4.269 (2.0); 4.254| (3.1); 4.247 (0.6); 4.239 (1.7); 4.231 (0.5); 4.218 (0.4); 4.211 (1.9); 4.202 (0.4); 4.194 (2.1); 4.191 (1.9); 4.175 (1.6); 4.154 (0.4); 4.138 (0.4); 4.068 (0.3); 4.050 (0.4); 3.078 (0.4); 2.815 (0.4); 2.469 (0.4); 2.465 (0.6); 2.460| (0.5); 2.166 (181.5); 2.121 (0.5); 2.114 (0.7); 2.108 (0.8); 2.102 (0.6); 2.096 (0.3); 1.972 (1.9); 1.965 (3.6); 1.959 (9.1); 1.953 (51.1); 1.947 (92.3); 1.941 (123.9); 1.935 (90.1); 1.928 (44.9); 1.916 (0.7); 1.872 (13.5); 1.775 (0.5); 1.769 (0.8); 1.763 (0.5); 1.437 (1.0); 1.270 (1.1); 1.222 (0.4); 1.204 (0.8); 1.186 (0.4); 0.008 (0.8); 0.000 (24.1); - [0.009 (0.8)
[Example 1-103: 1H-NMR (400.0 MHz, CD3CN)
□ = 8.745 (2.7); 8.741 (4.8); 8.736 (2.8); 8.508 (4.5); 8.501 (4.6); 7.855 (1.7); 7.850 (2.0); 7.848 (2.1); 7.843 (1.8) 7.830 (1.8); 7.825 (2.1); 7.823 (2.1); 7.818 (1.9); 7.809 (4.1); 7.763 (3.6); 7.742 (6.9); 7.702 (4.4); 7.697 (4.2) 7.681 (2.2); 7.676 (2.2); 7.587 (0.4); 7.459 (0.7); 7.443 (1.5); 7.438 (1.4); 7.426 (0.8); 7.421 (2.9); 7.417 (1.1) 7.405 (1.4); 7.400 (1.6); 7.384 (0.8); 7.167 (1.0); 7.017 (0.7); 7.014 (0.8); 7.007 (4.7); 6.996 (0.7); 6.993 (0.9) 6.987 (6.0); 6.978 (0.7); 6.967 (4.0); 6.959 (0.7); 6.957 (0.5); 5.448 (1.8); 4.264 (0.5); 4.248 (0.5); 4.228 (2.1) 4.212 (2.4); 4.209 (2.3); 4.193 (1.9); 4.169 (2.1); 4.153 (2.1); 4.143 (1.8); 4.128 (1.8); 4.107 (0.5); 4.092 (0.5) 3.169 (1.0); 2.471 (0.4); 2.466 (0.5); 2.461 (0.4); 2.160 (749.4); 2.121 (1.9); 2.114 (2.5); 2.108 (3.0); 2.102 (2.2) 2.096 (1.2); 1.965 (12.4); 1.959 (30.8); 1.953 (180.0); 1.947 (326.7); 1.941 (441.8); 1.934 (304.0); 1.928 (171.5); 1.868 (16.0); 1.781 (1.2); 1.775 (2.0); 1.769 (2.7); 1.763 (1.8); 1.757 (0.9); 1.270 (1.5); 0.008 (1.6); 0.000 (55.9); - 10.009 (1.8)
[Example 1-130: 1H-NMR (400.0 MHz, CDC13)
□ = 8.425 (4.3); 8.420 (4.4); 7.990 (1.6); 7.984 (1.6); 7.970 (2.6); 7.964 (2.5); 7.950 (1.7); 7.944 (1.7); 7.749 (5.2) 7.729 (6.2); 7.682 (2.5); 7.665 (3.1); 7.660 (3.1); 7.599 (5.9); 7.562 (0.9); 7.544 (3.1); 7.531 (6.2); 7.515 (2.9) 7.503 (4.1); 7.499 (4.3); 7.483 (3.3); 7.478 (3.1); 7.361 (2.9); 7.356 (3.1); 7.340 (2.6); 7.264 (98.3); 7.056 (2.9) 7.049 (2.9); 7.035 (2.7); 7.027 (2.7); 6.999 (0.6); 5.983 (2.0); 5.970 (1.2); 5.302 (9.7); 4.342 (4.7); 4.326 (4.5) 4.279 (4.9); 4.264 (4.7); 3.683 (0.5); 1.973 (15.9); 1.913 (16.0); 1.754 (0.3); 1.588 (127.4); 1.427 (0.7); 1.333 (1.0); 1.284 (1.6); 1.254 (6.9); 1.220 (0.6); 0.895 (0.5); 0.880 (1.0); 0.869 (0.7); 0.853 (0.9); 0.844 (0.8); 0.835 (0.8); 0.146 (0.4); 0.000 (89.5); -0.150 (0.5)
[Example 1-129: 1H-NMR (400.0 MHz, CDC13)
□ = 8.750 (3.4); 8.739 (3.4); 8.427 (4.5); 8.421 (4.7); 7.991 (1.7); 7.985 (1.7); 7.970 (2.8); 7.964 (2.6); 7.951 (1.8) 7.945 (1.7); 7.746 (7.4); 7.726 (9.5); 7.607 (6.0); 7.532 (3.1); 7.521 (4.1); 7.511 (5.7); 7.506 (4.3); 7.490 (3.3) 7.486 (3.2); 7.263 (194.9); 7.060 (2.9); 7.053 (3.0); 7.039 (2.8); 7.032 (2.8); 6.999 (1.1); 6.000 (2.0); 5.302 (7.6) 4.422 (0.7); 4.407 (0.8); 4.386 (1.7); 4.371 (1.7); 4.354 (0.7); 4.336 (2.1); 4.319 (3.0); 4.302 (2.0); 4.281 (2.2) 4.265 (1.9); 4.244 (0.7); 4.228 (0.7); 4.131 (0.4); 4.112 (0.4); 2.582 (0.3); 2.086 (0.8); 2.047 (1.9); 1.978 (15.9) 1.917 (16.0); 1.586 (239.3); 1.332 (0.4); 1.278 (1.0); 1.254 (3.2); 1.243 (1.0); 1.218 (0.4); 0.880 (0.5); 0.852 (0.5) 10.840 (0.5); 0.146 (0.9); 0.000 (178.7); -0.150 (0.9)
[Example 1-89: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 9.385 (11.9); 9.204 (2.5); 9.188 (5.5); 9.172 (2.6); 8.795 (5.1); 8.792 (5.6); 8.783 (5.4); 8.781 (5.5); 8.313 (16.0); 8.218 (8.7); 8.212 (9.5); 8.064 (4.5); 8.058 (4.3); 8.042 (5.6); 8.036 (5.4); 7.873 (4.1); 7.871 (4.5); 7.854| (6.5); 7.851 (6.5); 7.836 (10.1); 7.815 (8.5); 7.782 (5.8); 7.771 (5.6); 7.763 (4.0); 7.751 (3.9); 4.283 (2.2); 4.267 (2.3); 4.247 (5.1); 4.231 (4.9); 4.211 (2.6); 4.195 (2.4); 3.330 (217.0); 2.712 (1.3); 2.681 (0.4); 2.677 (0.7); 2.672| (1.0); 2.668 (0.8); 2.663 (0.4); 2.542 (342.1); 2.526 (2.3); 2.521 (3.2); 2.512 (55.7); 2.508 (117.7); 2.503 (158.5); 2.498 (114.8); 2.494 (55.0); 2.368 (1.3); 2.339 (0.3); 2.334 (0.7); 2.330 (1.0); 2.325 (0.7); 0.008 (0.9); 0.000| (31.5); -0.009 (1.0)
[Example 1-90: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.041 (0.5); 9.026 (1.2); 9.010 (0.6); 8.606 (2.0); 8.600 (2.0); 8.145 (1.3); 8.139 (1.3); 8.124 (1.3); 8.117 (1.3) 7.939 (2.2); 7.823 (0.9); 7.819 (0.8); 7.803 (1.3); 7.799 (1.3); 7.777 (1.2); 7.758 (1.7); 7.729 (2.5); 7.716 (1.5) 7.708 (1.9); 7.697 (1.1); 7.664 (1.0); 7.645 (1.2); 7.626 (0.4); 7.393 (1.3); 7.374 (1.3); 6.963 (2.1); 6.942 (2.0) 4.260 (0.5); 4.244 (0.5); 4.224 (1.1); 4.208 (1.1); 4.188 (0.6); 4.172 (0.6); 3.917 (16.0); 3.904 (0.4); 3.885 (0.6) 3.351 (397.5); 2.683 (0.4); 2.679 (0.5); 2.674 (0.4); 2.549 (57.3); 2.532 (1.2); 2.518 (32.2); 2.514 (66.3); 2.510| (88.4); 2.505 (64.7); 2.501 (32.0); 2.341 (0.4); 2.336 (0.6); 2.332 (0.4)
[Example 1-91 : 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.041 (0.5); 9.026 (1.1); 9.010 (0.5); 8.579 (1.9); 8.574 (2.0); 8.110 (1.3); 8.103 (1.3); 8.088 (1.4); 8.081 (1.3) 7.929 (1.9); 7.926 (2.1); 7.813 (0.8); 7.809 (0.8); 7.792 (1.3); 7.788 (1.3); 7.777 (1.1); 7.757 (1.4); 7.733 (0.5) 7.721 (2.4); 7.700 (1.8); 7.663 (0.9); 7.644 (1.1); 7.625 (0.4); 7.391 (1.2); 7.372 (1.1); 6.873 (2.0); 6.852 (2.0) 5.343 (0.4); 5.327 (1.1); 5.312 (1.5); 5.296 (1.1); 5.281 (0.4); 4.258 (0.5); 4.242 (0.5); 4.221 (1.0); 4.206 (1.0) 4.185 (0.5); 4.170 (0.5); 3.350 (277.8); 3.301 (0.3); 2.679 (0.4); 2.549 (44.0); 2.532 (0.9); 2.527 (1.3); 2.519| (23.8); 2.514 (50.4); 2.510 (67.8); 2.505 (49.3); 2.501 (23.8); 2.336 (0.4); 1.333 (16.0); 1.317 (15.9)
[Example 1-96: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 9.053 (2.9); 9.037 (6.3); 9.021 (3.0); 8.901 (7.4); 8.897 (13.8); 8.893 (7.5); 8.659 (13.5); 8.652 (13.9); 8.241 (4.2); 8.236 (5.1); 8.234 (5.3); 8.229 (4.1); 8.215 (4.3); 8.210 (5.4); 8.209 (5.1); 8.204 (4.0); 8.099 (10.8); 8.095 (11.8); 7.955 (5.3); 7.951 (5.3); 7.934 (6.6); 7.930 (6.6); 7.776 (14.7); 7.755 (16.0); 7.730 (2.7); 7.712 (6.8); 7.694| (4.9); 7.659 (5.0); 7.640 (6.1); 7.621 (2.2); 7.390 (7.1); 7.371 (6.4); 4.270 (2.6); 4.254 (2.7); 4.234 (6.1); 4.218 (5.9); 4.198 (3.1); 4.182 (2.9); 3.341 (545.8); 3.307 (0.9); 3.288 (0.4); 3.282 (0.4); 2.712 (1.9); 2.681 (0.3); 2.677| (0.7); 2.672 (1.0); 2.668 (0.7); 2.663 (0.4); 2.572 (0.4); 2.543 (467.7); 2.526 (2.6); 2.521 (3.2); 2.512 (54.3); 2.508 (115.3); 2.503 (155.6); 2.499 (112.8); 2.494 (54.5); 2.369 (2.0); 2.339 (0.4); 2.335 (0.8); 2.330 (1.0); 2.325 (0.8); 1.785 (0.6); 1.755 (0.5); 1.752 (0.5); 1.739 (0.4); 1.298 (0.3); 1.268 (0.4); 1.259 (0.5); 1.234 (0.8); 1.214 (0.5);
[0.000 (0.6)
[Example 1-97: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.051 (1.0); 9.035 (2.2); 9.019 (1.1); 8.964 (4.9); 8.959 (5.1); 8.699 (4.7); 8.693 (4.9); 8.403 (3.0); 8.398 (5.3) 8.392 (3.0); 8.110 (3.9); 8.107 (4.3); 7.954 (1.9); 7.950 (1.9); 7.934 (2.4); 7.930 (2.4); 7.770 (6.2); 7.750 (5.8) 7.729 (1.0); 7.711 (2.5); 7.693 (1.8); 7.658 (1.8); 7.639 (2.2); 7.620 (0.8); 7.390 (2.6); 7.371 (2.3); 4.268 (1.0) 4.252 (1.0); 4.232 (2.2); 4.216 (2.1); 4.195 (1.1); 4.179 (1.0); 3.326 (32.6); 2.676 (0.4); 2.671 (0.5); 2.667 (0.4) 2.525 (1.2); 2.511 (28.6); 2.507 (59.2); 2.502 (79.1); 2.498 (58.2); 2.493 (28.7); 2.333 (0.4); 2.329 (0.5); 2.325 (0.4); 1.989 (1.4); 1.398 (16.0); 1.193 (0.4); 1.175 (0.7); 1.157 (0.4); 0.000 (5.0) (Example 1-92: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 9.052 (0.7); 9.036 (1.5); 9.020 (0.8); 8.220 (2.8); 8.075 (16.0); 8.050 (1.4); 8.034 (1.5); 8.030 (1.6); 7.907 (0.3); 7.787 (2.7); 7.766 (3.0); 7.751 (2.3); 7.725 (0.9); 7.708 (1.9); 7.690 (1.4); 7.658 (1.4); 7.639 (1.7); 7.620 (0.6); 7.585 (0.5); 7.565 (0.4); 7.381 (1.7); 7.363 (1.8); 4.265 (0.6); 4.250 (0.6); 4.230 (1.5); 4.214 (1.5); 4.194 (0.8); 4.178 (0.8); 3.334 (1643.1); 2.711 (0.7); 2.676 (2.7); 2.671 (3.8); 2.667 (2.8); 2.541 (180.1); 2.524 (8.6); 2.520 (13.1); 2.511 (209.8); 2.507 (435.9); 2.502 (582.2); 2.497 (418.5); 2.493 (199.4); 2.368 (0.7); 2.333 (2.6); 2.329 (3.7); 2.324 (2.6); 1.298 (0.5); 1.258 (0.7); 1.235 (1.1); 0.000 (3.5)
[Example 1-95: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 10.656 (2.1); 9.035 (0.7); 9.019 (1.5); 9.003 (0.7); 8.420 (2.6); 8.407 (3.1); 8.398 (2.1); 7.912 (3.2); 7.811
(7.2) ; 7.766 (1.4); 7.747 (1.9); 7.725 (0.6); 7.708 (1.6); 7.690 (1.2); 7.654 (1.2); 7.635 (1.4); 7.617 (0.5); 7.486| (1.9); 7.482 (1.8); 7.473 (1.8); 7.468 (1.9); 7.384 (1.7); 7.365 (1.5); 4.266 (0.6); 4.251 (0.6); 4.230 (1.3); 4.215
(1.3) ; 4.195 (0.7); 4.179 (0.6); 3.337 (126.0); 2.712 (0.6); 2.542 (149.0); 2.526 (0.7); 2.521 (1.1); 2.512 (16.8); 2.507 (35.8); 2.503 (48.4); 2.498 (35.2); 2.494 (17.0); 2.368 (0.6); 2.127 (16.0); 0.000 (0.4)
[Example 1-93: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 9.046 (4.0); 9.030 (8.2); 9.015 (4.0); 8.984 (0.9); 8.969 (0.5); 8.669 (12.2); 8.663 (11.8); 8.429 (3.9); 8.422| (3.8); 8.409 (6.8); 8.402 (6.5); 8.388 (4.1); 8.382 (3.7); 8.317 (0.4); 8.026 (15.0); 8.024 (15.0); 7.912 (1.6); 7.881 (6.6); 7.861 (9.2); 7.858 (8.6); 7.818 (0.5); 7.796 (0.6); 7.771 (10.0); 7.763 (16.0); 7.752 (13.0); 7.743 (11.5) |7.728 (4.6); 7.710 (10.4); 7.692 (7.3); 7.658 (7.4); 7.639 (8.9); 7.620 (3.2); 7.587 (1.6); 7.565 (1.2); 7.389 (9.4) 7.370 (9.1); 7.353 (7.8); 7.346 (8.0); 7.331 (7.3); 7.324 (7.1); 4.264 (3.6); 4.248 (3.8); 4.228 (8.1); 4.212 (8.2) 4.192 (4.5); 4.176 (4.7); 4.160 (1.2); 4.141 (0.6); 4.124 (0.5); 3.520 (0.4); 3.504 (0.3); 3.492 (0.3); 3.471 (0.5) 3.458 (0.5); 3.335 (1503.3); 3.277 (1.1); 3.247 (0.4); 2.996 (0.4); 2.712 (3.5); 2.672 (3.3); 2.667 (2.5); 2.608 (0.6) 2.593 (1.0); 2.542 (741.1); 2.525 (17.8); 2.507 (414.3); 2.503 (507.8); 2.499 (372.9); 2.404 (0.4); 2.368 (3.6) 2.329 (3.2); 1.299 (0.4); 1.258 (0.6); 1.235 (1.2); 0.000 (2.3)
[Example 1-94: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.211 (0.4); 9.183 (12.5); 9.178 (12.6); 9.057 (4.0); 9.042 (8.6); 9.026 (4.1); 9.000 (0.3); 8.983 (0.6); 8.886 (0.6); 8.873 (0.7); 8.495 (6.3); 8.490 (6.2); 8.474 (6.9); 8.469 (7.0); 8.316 (0.9); 8.240 (0.8); 8.162 (0.5); 8.134 (14.2); 8.131 (15.2); 8.072 (0.4); 8.068 (0.5); 8.050 (14.1); 8.030 (12.6); 7.978 (6.7); 7.974 (6.6); 7.957 (8.6) 7.953 (8.6); 7.912 (1.0); 7.908 (1.1); 7.894 (0.3); 7.815 (16.0); 7.794 (12.8); 7.771 (8.5); 7.752 (11.6); 7.728 (3.9) 7.710 (9.4); 7.692 (6.8); 7.659 (7.2); 7.640 (8.8); 7.621 (3.1); 7.586 (1.2); 7.565 (1.0); 7.394 (9.6); 7.376 (8.6) 7.347 (0.7); 4.278 (3.5); 4.263 (3.7); 4.242 (8.0); 4.227 (7.8); 4.206 (4.2); 4.191 (3.9); 4.176 (0.9); 4.159 (0.7) 4.140 (0.4); 4.124 (0.4); 3.483 (0.3); 3.455 (0.5); 3.441 (0.5); 3.428 (0.6); 3.338 (1455.9); 3.299 (1.0); 3.282 (0.4) 3.274 (0.4); 2.996 (0.5); 2.712 (3.7); 2.681 (1.0); 2.676 (2.0); 2.672 (2.9); 2.667 (2.2); 2.663 (1.2); 2.617 (0.4) 2.589 (0.6); 2.573 (1.1); 2.542 (905.4); 2.525 (6.7); 2.520 (9.1); 2.512 (158.0); 2.507 (333.2); 2.503 (449.2); 2.498 (326.9); 2.494 (158.7); 2.445 (0.4); 2.368 (3.7); 2.338 (0.9); 2.334 (2.0); 2.329 (2.8); 2.325 (2.1); 1.298 (0.4); 1.258 (0.6); 1.234 (1.0); 0.000 (2.1)
[Example 1-104: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.215 (3.0); 9.200 (6.5); 9.184 (3.1); 8.798 (6.5); 8.789 (6.3); 8.786 (6.5); 8.673 (8.8); 8.667 (9.3); 8.432 (3.2) 8.425 (3.2); 8.411 (5.1); 8.405 (5.0); 8.391 (3.4); 8.384 (3.3); 8.035 (10.9); 8.032 (11.7); 7.884 (5.1); 7.880 (5.5) 7.875 (5.7); 7.872 (5.8); 7.864 (7.6); 7.859 (8.8); 7.856 (9.3); 7.790 (6.7); 7.778 (6.9); 7.769 (16.0); 7.758 (5.0) 7.748 (8.9); 7.356 (5.7); 7.349 (5.8); 7.334 (5.6); 7.327 (5.6); 4.293 (2.7); 4.277 (2.8); 4.256 (6.1); 4.240 (5.9) 4.220 (3.1); 4.204 (2.9); 3.334 (39.3); 2.678 (0.4); 2.673 (0.5); 2.669 (0.4); 2.527 (1.8); 2.513 (30.2); 2.509 (60.8) 2.505 (80.1); 2.500 (59.1); 2.496 (29.3); 2.336 (0.3); 2.331 (0.5); 2.327 (0.3); 1.991 (1.1); 1.260 (0.4); 1.232 (0.7) 1.194 (0.4); 1.176 (0.6); 1.158 (0.3); 0.146 (0.6); 0.008 (4.8); 0.000 (122.4); -0.009 (4.8); -0.150 (0.5)
[Example 1-136: 1H-NMR (400.0 MHz, d6-DMSO)
□ = 9.087 (1.7); 9.072 (3.5); 9.056 (1.7); 8.610 (4.9); 8.605 (5.2); 8.366 (1.7); 8.359 (1.7); 8.345 (3.0); 8.339 (3.0)
8.325 (1.8) 8.318 (1.9); 7.787 (3.4); 7.767 (4.6); 7.740 (1.6); 7.720 (8.4); 7.704 (3.4); 7.671 (5.3); 7.649 (3.6) 7.630 (1.4) 7.610 (6.3); 7.589 (4.1); 7.389 (4.0); 7.370 (3.6); 7.330 (3.1); 7.323 (3.2); 7.309 (3.1); 7.302 (3.1) 4.109 (1.5) 4.093 (1.6); 4.071 (3.4); 4.056 (3.4); 4.033 (1.8); 4.018 (1.7); 3.334 (154.4); 2.676 (0.5); 2.672 (0.7) 2.668 (0.5) 2.569 (16.0); 2.507 (82.7); 2.503 (107.7); 2.499 (82.1); 2.334 (0.6); 2.330 (0.7); 2.325 (0.6); 1.9891
(0.7); 1.397 (7.2); 1.175 (0.4); 0.008 (0.6); 0.000 (12.6)
[Example 1-141 : 1H-NMR (400.0 MHz, d6-DMSO)
□ = 8.897 (0.9); 8.881 (1.8); 8.866 (0.9); 8.654 (2.7); 8.649 (2.8); 8.406 (0.8); 8.400 (0.8); 8.386 (1.5); 8.379 (1.5)
8.366 (0.9) 8.359 (0.8); 7.757 (1.8); 7.737 (2.4); 7.706 (0.8); 7.688 (2.0); 7.669 (1.5); 7.639 (1.5); 7.620 (1.8) 7.601 (0.7) 7.581 (2.3); 7.561 (2.9); 7.473 (3.6); 7.412 (2.1); 7.392 (1.7); 7.340 (1.6); 7.334 (1.7); 7.318 (3.5) 7.299 (1.9) 4.205 (0.8); 4.190 (0.9); 4.169 (1.8); 4.153 (1.7); 4.132 (0.9); 4.117 (0.9); 3.979 (16.0); 3.335 (76.2) 2.672 (0.4) 2.507 (45.7); 2.503 (56.3); 2.329 (0.4); 1.990 (0.4); 0.000 (7.0)
[Example 1-135: 1H-NMR (400.0 MHz, d6-DMSO):
□ = 9.167 (3.5); 9.152 (7.4); 9.136 (3.5); 8.726 (10.8); 8.720 (11.3); 8.471 (3.7); 8.465 (3.7); 8.450 (5.9); 8.445 (5.6); 8.431 (3.9); 8.424 (3.8); 8.317 (0.8); 7.774 (16.0); 7.760 (11.4); 7.746 (15.1); 7.735 (10.6); 7.716 (5.9); 7.671 (6.0); 7.652 (7.5); 7.633 (2.8); 7.581 (0.4); 7.416 (8.8); 7.398 (7.9); 7.369 (6.7); 7.362 (6.9); 7.347 (6.7); 7.340 (6.6); 4.162 (3.1); 4.146 (3.3); 4.127 (7.1); 4.111 (6.9); 4.092 (3.7); 4.076 (3.4); 4.038 (0.4); 4.020 (0.4); 3.331 (351.1); 2.676 (1.5); 2.672 (2.1); 2.667 (1.6); 2.525 (5.6); 2.512 (119.4); 2.507 (241.2); 2.503 (318.2); 2.498 (236.1); 2.494 (119.3); 2.334 (1.5); 2.330 (2.1); 2.325 (1.5); 1.989 (1.5); 1.398 (9.2); 1.193 (0.4); 1.175 (0.8); 1.157 (0.4); 0.008 (1.0); 0.000 (28.8); -0.008 (1.3)
Table 4: LC-MS and NMR spectra of selected compounds
LC-MS Methods
Method LI: MS instrument type: Agilent Technologies 6130 Quadrupole LC-MS; HPLC instrument type: Agilent Technologies 1260 Infinity; column: Waters XSelect (C18, 50x2.1mm, 3.5μ); flow: 0.8 mL/min; column temp: 35°C; eluent A: 0.1% formic acid in acetonitrile; eluent B: 0.1% formic acid in water; lin. gradient: t=0 min 5% A, t=3.5min 98% A, t=6 min 98% A; detection: DAD (220-320 nm); detection: MSD (ESI pos/neg) mass range: 100 - 800; detection: ELSD (PL-ELS 2100): gas flow 1.2 mL/min, gas temp: 70°C, neb: 50°C.
Method L2:
MS instrument type: Agilent Technologies LC/MSD SL; HPLC instrument type: Agilent Technologies 1100 Series; column: Waters XSelect (C18, 50x2.1mm, 3.5μ; flow: 0.8 mL/min; column temp: 25°C; eluent A: 95% acetonitrile + 5% ammoniumbicarbonate in water; eluent B: lOmmM ammoniumbicarbonate in water pH=9.0; lin. gradient: t=0 min 5% A, t=3.5min 98% A, t=6 min 98% A; detection: DAD (220-320 nm); detection: MSD (ESI pos/neg) mass range: 100-800.
NMR spektra (Method M2)
^-instrument type: Bruker DMX300 OH-NMR: 300 MHz); internal standard: tetramethylsilane; chemical shifts (δ) are displayed in parts per million [ppm]; the following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad; coupling constants are displayed in Hertz [Hz].
Example no. LC-MS NMR (Method M2)
1H NMR (300 MHz, DMSO-d6) δ 9.20 - 9.15 (m, 1H), 9.05 (t, J = 6.2 Hz, 1H), 8.50 - 8.43 (m,
(Method L2): Rt = 3.92
1-105 1H), 8.04 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 12.5 min; m z = 493 (M+H)+
Hz, 1H), 7.87 - 7.59 (m, 5H), 7.39 (d, J = 7.0 Hz, 1H), 4.20 - 4.07 (m, 2H).
1H NMR (300 MHz, DMSO-d6) δ 9.04 (t, J =
(Method L2): Rt = 3.27 6.3 Hz, 1H), 8.67 (d, J = 2.2 Hz, 1H), 8.45 - 8.31
1-106
min; m z = 443 (M+H)+ (m, 1H), 7.90 - 7.54 (m, 6H), 7.42 - 7.29 (m,
2H), 4.20 - 4.02 (m, 2H).
Figure imgf000168_0001
IH NMR (300 MHz, DMS0-d6) δ 9.35 (d, J =
2.2 Hz, IH), 9.18 - 9.06 (m, 2H), 8.70 (t, J = 2.1
(Method LI): Rt = 3.49
-119 Hz, IH), 8.35 (d, J = 10.5 Hz, 2H), 7.95 (d, J = min; m/z = 551 (M-H)"
8.2 Hz, IH), 7.81 - 7.62 (m, 3H), 7.46 (d, J = 7.0 Hz, IH), 4.21 - 4.04 (m, 2H), 3.42 (s, 3H).
IH NMR (300 MHz, DMS0-d6) δ 9.09 (t, J = 6.2 Hz, IH), 8.97 (d, J = 1.9 Hz, IH), 8.70 (d, J
(Method LI): Rt = 3.50 = 2.2 Hz, IH), 8.47 - 8.41 (m, IH), 8.26 (d, J =-120
min; m/z = 509 (M+H)+ 7.4 Hz, 2H), 7.88 (d, J = 8.7 Hz, IH), 7.79 - 7.59
(m, 3H), 7.43 (d, J = 7.0 Hz, IH), 4.20 - 3.96 (m, 2H).
IH NMR (300 MHz, DMSO-d6) δ 9.11 (t, J = 6.2 Hz, IH), 8.59 (d, J = 1.8 Hz, IH), 8.38 (d, J
(Method LI): Rt = 3.22 = 2.7 Hz, IH), 8.24 (d, J = 6.7 Hz, 2H), 7.89 (d,-121
min; m/z = 505 (M+H)+ J = 8.9 Hz, IH), 7.81 - 7.61 (m, 4H), 7.45 (d, J =
7.4 Hz, IH), 4.11 (td, J = 14.6, 6.3 Hz, 2H), 3.94 (s, 3H).
IH NMR (300 MHz, DMSO-d6) δ 9.11 (t, J =
6.1 Hz, IH), 8.71 (d, J = 2.5 Hz, IH), 8.51 - 8.41
(Method LI): Rt = 3.37 (m, IH), 8.21 (d, J = 4.8 Hz, 2H), 7.89 (d, J =-122
min; m/z = 493 (M+H)+ 8.8 Hz, IH), 7.81 - 7.61 (m, 3H), 7.45 (d, J = 7.0
Hz, IH), 7.36 (d, J = 8.6, 2.9 Hz, IH), 4.19 -
4.02 (m, 2H).
IH NMR (300 MHz, DMSO-d6) δ 10.70 (s, IH), 9.10 (t, J = 6.2 Hz, IH), 8.78 (d, J = 1.5 Hz,
(Method LI): Rt = 3.18
-123 IH), 8.29 - 8.13 (m, 4H), 7.86 (d, J = 9.0 Hz, min; m/z = 532 (M+H)+
IH), 7.81 - 7.60 (m, 3H), 7.45 (d, J = 7.2 Hz, IH), 4.19 - 3.99 (m, 2H), 2.13 (s, 3H).
IH NMR (300 MHz, DMSO-d6) δ 9.22 (s, IH), 9.12 (t, J = 6.2 Hz, IH), 8.53 (d, J = 8.2, 2.1 Hz,
(Method Ll): Rt = 3.61 IH), 8.31 (d, J = 6.7 Hz, 2H), 8.06 (d, J = 8.2-124
min; m/z = 543 (M+H)+ Hz, IH), 7.94 (d, J = 8.9 Hz, IH), 7.81 - 7.61
(m, 3H), 7.46 (d, J = 7.4 Hz, IH), 4.22 - 4.01 (m, 2H).
IH NMR (300 MHz, DMSO-d6) δ 9.08 (t, J = 6.1 Hz, IH), 8.57 (d, J = 2.6 Hz, IH), 8.07 (d, J
(Method LI): Rt = 2.68 = 10.9 Hz, 2H), 7.98 (dd, J = 8.8, 2.3 Hz, IH),-125
min; m/z = 518 (M+H)+ 7.82 - 7.61 (m, 4H), 7.44 (d, J = 7.7 Hz, IH),
6.76 (d, J = 9.0 Hz, IH), 4.15 - 3.99 (m, 2H), 3.09 (s, 6H).
IH NMR (300 MHz, DMSO-d6) δ 9.08 (t, J = 6.3 Hz, IH), 8.86 (d, J = 2.2 Hz, IH), 8.30 (dd, J
(Method LI): Rt = 3.55
-126 = 8.4, 2.7 Hz, IH), 8.21 (d, J = 5.0 Hz, 2H), 7.88 min; m/z = 509 (M+H)+
(d, J = 8.8 Hz, IH), 7.78 - 7.59 (m, 4H), 7.43 (d, J = 7.6 Hz, IH), 4.17 - 3.98 (m, 2H).
IH NMR (300 MHz, DMSO-d6) δ 9.10 (t, J = 6.1 Hz, IH), 8.64 (d, J = 2.2 Hz, IH), 8.21 - 8.11
(Method LI): Rt = 3.55
-127 (m, 3H), 7.85 (d, J = 8.1 Hz, IH), 7.81 - 7.61 (m, min; m/z = 505 (M+H)+
3H), 7.45 (d, J = 7.4 Hz, IH), 6.97 (d, J = 8.6 Hz, IH), 4.17 - 4.01 (m, 2H), 3.92 (s, 3H).
IH NMR (300 MHz, DMSO-d6) δ 9.11 (t, J =
6.1 Hz, IH), 8.71 (d, J = 2.5 Hz, IH), 8.51 - 8.41
(Method LI): Rt = 3.44 (m, IH), 8.21 (d, J = 4.8 Hz, 2H), 7.89 (d, J =-128
min; m/z = 493 (M+H)+ 8.8 Hz, IH), 7.81 - 7.61 (m, 3H), 7.45 (d, J = 7.0
Hz, IH), 7.36 (d, J = 8.6, 2.9 Hz, IH), 4.19 -
4.02 (m, 2H).
Figure imgf000170_0001
Figure imgf000171_0001
Biological Examples
Haemonchus contortus (HAEMCO) - Assay
Solvent: dimethyl sulfoxide
To produce a suitable preparation of active compound, 10 mg of active compound are dissolved in 0.5 ml solvent, and the concentrate is diluted with "Ringer's solution" to the desired concentration.
Approximately 40 larvae of the red stomach worm {Haemonchus contortus) are transferred into a test tube containing compound solution.
After 5 days percentage of larval mortality are recorded. 100 % efficacy means all larvae are killed, 0% efficacy means no larvae are killed. In this test for example, the following compounds from the preparation examples showed good activity of 100% at an application rate of 20ppm: 1-33, 1-35, 1-37, 1-38, 1-39, 1-40, 1-42, 1-43, 1-44, 1-45, 1-47, 1-48, 1-53, 1-62, 1-66, 1-68, 1-69, 1-72, 1-73, 1-74, 1-75, 1-77, 1-78, 1-79, 1-80, 1-81, 1-82, 1-83, 1-84, 1-85, 1-86, 1-87, 1-88, 1-89, 1-90, 1-92, 1-93, 1-94, 1-96, 1-97, 1-98, 1-99, 1-100, 1-101, 1-102, 1-103, 1-106, 1-107, 1-111, 1-120, 1-122, 1-126, 1-127, 1-128. In this test for example, the following compounds from the preparation examples showed good activity of 90% at an application rate of 20ppm: 1-3, 1-5, 1-12, 1-14, 1-32, 1-41, 1-49, 1-67, 1-70, 1-71, 1-104, 1-110.
In this test for example, the following compounds from the preparation examples showed good activity of 80% at an application rate of 20ppm: 1-1, 1-11, 1-16, 1-20, 1-27, 1-28, 1-56, 1-57, 1-58, 1-60, 1-64, 1-114, 1-121.
In this test for example, the following compounds from the preparation examples showed good activity of 90% at an application rate of 4ppm: 1-15, 1-124.
Cooperia curticei (COOPCU)- Assay
Solvent: dimethyl sulfoxide To produce a suitable preparation of active compound, 10 mg of active compound are dissolved in 0.5 ml solvent, and the concentrate is diluted with "Ringer's solution" to the desired concentration.
Approximately 40 nematode larvae {Cooperia curticei) are transferred into a test tube containing the compound solution.
After 5 days percentage of larval mortality is recorded. 100 % efficacy means all larvae are killed; 0% efficacy means no larvae are killed. In this test for example, the following compounds from the preparation examples showed good activity of 100% at an application rate of 20ppm: 1-9, 1-12, 1-14, 1-15, 1-16, 1-18, 1-19, 1-20, 1-21, 1-31, 1-32, 1-33, 1-34, 1-35, 1-37, 1-38, 1-39, 1-40, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1-51, 1-52, 1-53, 1-55, 1-57, 1-58, 1-59, 1-60, 1-62, 1-64, 1-66, 1-68, 1-69, 1-70, 1-71, 1-72, 1-73, 1-74, 1-75, 1-77, 1-78, 1-79, 1-80, 1-81, 1-82, 1-83, 1-84, 1-85, 1-86, 1-87, 1-88, 1-89, 1-90, 1-91, 1-92, 1-93, 1-94, 1-96, 1-97, 1-98, 1-99, 1-100, 1-101, 1-102, 1-106, 1-146, 1-107, 1-110, 1-111, 1-114, 1-120, 1-122, 1-126, 1- 127, 1-128.
In this test for example, the following compounds from the preparation examples showed good activity of 90% at an application rate of 20ppm: 1-24, 1-26, 1-50, 1-65, 1-105, 1-124. In this test for example, the following compounds from the preparation examples showed good activity of 80% at an application rate of 20ppm: 1-1, 1-13, 1-23, 1-27, 1-28, 1-36, 1-56, 1-121, 1-125.
In this test for example, the following compounds from the preparation examples showed good activity of 100% at an application rate of 4ppm: 1-104.
In this test for example, the following compounds from the preparation examples showed good activity of 90% at an application rate of 4ppm: 1-67, 1-149
Nippostrongylus brasiliensis (NIPOBR) - Assay
Adult Nippostrongylus brasiliensis were washed with saline buffer containing 100 U/ml penicillin, 0.1 mg/ml streptomycin and 2.5 g/ml amphotericin B. Test compounds were dissolved in DMSO and worms were incubated in medium in a final concentration of 10 g/ml (10 ppm). An aliquot of the medium was used to determine the acetylcholine esterase activity in comparison to a negative control. The principle of measuring acetylcholine esterase as readout for anthelmintic activity was described in Rapson et al (1986) and Rapson et al (1987).
For the following examples, activity (reduction of AChE compared to negative control) was 60% or higher at 10 ppm: 1-1 ; 1-9; 1-33; 1-37; 1-44; 1-45; 1-48; 1-49; 1-53; 1-68; 1-69; 1-70; 1-73; 1-74; 1-75; 1-77; 1-78; 1-82; 1-87; 1-88; 1-89; 1-90; 1-92; 1-93; 1-96; 1-97; 1-98; 1-99; 1-100; 1-101 ; 1-106; 1-107; 1-111
For the following examples, activity (reduction of AChE compared to negative control) was higher than 80% at 10 ppm: 1-1, 1-33, 1-37, 1-45, 1-53, 1-68, 1-69, 1-70, 1-73, 1-74, 1-77, 1-82, 1-93, 1-96, 1-97, 1- 99, 1-100, 1-106, 1-107, 1-111. Meloidogyne incognita (MELGIN) - Assay
Solvent: 125.0 parts by weight of acetone
To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, and the concentrate is diluted with water to the desired concentration. Vessels are filled with sand, a solution of the active ingredient, a suspension containing eggs and larvae of the southern root-knot nematode {Meloidogyne incognita) and salad seeds. The salad seeds germinate and the seedlings grow. Galls develop in the roots.
After 14 days the nematicidal activity is determined on the basis of the percentage of gall formation. 100% means no galls were found and 0% means the number of galls found on the roots of the treated plants was equal to that in untreated control plants.
In this test, for example, the following compounds from the preparation examples showed good activity of 100% at an application rate of 20ppm: 1-39, 1-47, 1-69, 1-70, 1-73, 1-81, 1-82, 1-85, 1-86, 1-87, 1-88, 1-89, 1-93, 1-94, 1-104, 1-120, 1-128, 1-129, 1-130.
In this test, for example, the following compounds from the preparation examples showed good activity of 90% at an application rate of 20ppm: 1-16, 1-19, 1-20, 1-24, 1-37, 1-42, 1-44, 1-48, 1-66, 1-68, 1-74, 1-80, 1-106, 1-126, 1-136, 1-140.
In vivo Efficacy Test
Haemonchus contortus I Trichostrongylus colubriformis I gerbil
Gerbils, experimentally infected with Haemonchus and / or Trichostrongylus, were treated once during late prepatency. Test compounds were formulated as solutions or suspensions and applied intraperitoneally or subcutaneously.
Efficacy was determined per group as reduction of worm count in stomach and small intestine, respectively, after necropsy compared to worm count in an infected and placebo-treated control group.
The following examples were tested and had an activity of 90% or higher after intraperitoneal treatment at the given dosage:
Treatment Haemonchus Trichostrongylus
20 mg/kg 1-69; 1-78; 1-96 1-69
intraperitoneally
20 mg/kg 1-93 1-93
subcutaneously In vitro Efficacy Test
In vitro assay targeting Dirofilaria immitis microfilariae
> 250 Dirofilaria immitis microfilariae, which were freshly purified from blood, were added to wells of a microtitre plate containing a nutrient medium and the test compound in DMSO. Compounds were tested in a five point concentration-response assay in duplicate. Larvae exposed to DMSO and no test compounds were used as negative controls. Larvae were evaluated after 72 h of incubation with the compound. Efficacy was determined as the reduction of motility in comparison to the negative control. Based on the evaluation of five concentrations, concentration-response curves as well as ECso-values were calculated. For the following examples, the EC50 was <5ppm: 1-70; 1-73; 1-74; 1-77; 1-78; 1-89; 1-93; 1-99; 1- 100; 1-101
For the following examples, the EC50 was < 2.5ppm: 1-93
Comparative examples
Haemonchus contortus - Test (HAEMCO) Solvent: dimethyl sulfoxide
To produce a suitable preparation of active compound, 10 mg of active compound are dissolved in 0.5 ml solvent, and the concentrate is diluted with "Ringer's solution" to the desired concentration.
Approximately 40 larvae of the red stomach worm (Haemonchus contortus) are transferred into a test tube containing compound solution. After 5 days percentage of larval mortality are recorded. 100 % efficacy means all larvae are killed, 0% efficacy means no larvae are killed.
In this test, for example, the following compounds from the preparation examples show a superior level of activity compared to the prior state of the art: see following table 4.
Table 4:
Substance Structure Object Concentration %
Efficacy dat
Ex.-No. 1-49 HAEMCO 20 ppm 80 5dat Known from 4 ppm 60 5dat WO2012/118139 0.8 ppm 60 5dat Ex.-No. 1-37 HAEMCO 20 ppm 100 5dat According to the 4 ppm 100 5dat invention 0.8 ppm 100 5dat
Ex.-No. 1-38 HAEMCO 20 ppm 100 5dat According to the 4 ppm 100 5dat invention 0.8 ppm 100 5dat
Ex.-No. 1-43 HAEMCO 20 ppm 100 5dat According to the 4 ppm 100 5dat invention 0.8 ppm 100 5dat
Ex.-No. 1-44 HAEMCO 20 ppm 100 5dat According to the 4 ppm 100 5dat invention 0.8 ppm 100 5dat
Ex.-No. 1-45 HAEMCO 20 ppm 100 5dat According to the 4 ppm 100 5dat invention 0.8 ppm 100 5dat
Ex.-No. 1-47 HAEMCO 20 ppm 100 5dat According to the 4 ppm 100 5dat invention 0.8 ppm 80 5dat
Ex.-No. 1-48 HAEMCO 20 ppm 100 5dat According to the 4 ppm 100 5dat invention 0.8 ppm 80 5dat
Figure imgf000176_0001
Ex.-No. 1-35 HAEMCO 20 ppm 100 5dat According to the 4 ppm 90 5dat invention 0.8 ppm 80 5dat
Figure imgf000177_0001

Claims

Patent Claims:
1. Use of a compound of formula (I)
Figure imgf000178_0001
wherein n is 0, 1, 2, 3 or 4, limited by the number of available positions in the ring to which a substituent X can be connected, each X is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF5, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, -CONH(OH), -OCONH2, (hydroxyimino)-Ci-C6-alkyl, Ci-C8-alkyl, Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, C2-C8-alkenyl, C2-C8-alkynyl, Ci-Cs-alkylamino, di-(Ci-C8-alkyl)amino,
Ci-Cs-alkoxy, Ci-C8-halogenoalkoxy having 1 to 5 halogen atoms, C2-C8-alkenyloxy, C2-C8-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C8-alkynyloxy, C3-C8- halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C8-cycloalkyl, C3-C8- halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C8-alkylcarbonyl, Ci-C8- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C8-alkyl), -CON(Ci-C8- alkyl)2, -CONH(OCi-C8-alkyl), -CON(OCi-C8-alkyl)(Ci-C8-alkyl), Ci-C8- alkoxycarbonyl, Ci-C8-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-C8- alkylcarbonyloxy, Ci-C8-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, Ci-C8- alkylcarbonylamino, Ci-C8-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, - OCONH(Ci-C8-alkyl), -OCON(Ci-C8-alkyl)2, -OCONH(OCi-C8-alkyl), -OCO(OCi-C8- alkyl), -S-Ci-C8-alkyl, -S-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci- C8-alkyl, -S(0)-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C8-alkyl, - S(0)2-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, (Ci-C6-alkoxyimino)-Ci-C6- alkyl, (C2-C6-alkenyloxyimino)-Ci-C6-alkyl, (C3-C6-alkynyloxyimino)-Ci-C6-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino,
Q represents an aromatic or partially saturated or saturated,
5- or 6-membered heterocyclic ring containing one to four heteroatoms chosen from N, S, and O bearing the substituent Ym with is 0, 1 , 2, 3 or 4, limited by the number of available positions in Q to which a substituent Y can be connected, and
Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, hydroxy, amino, -SH, -SF5, -CHO, -OCHO, -NHCHO, -COOH, -CONH2, - CONH(OH), -OCONH2, (hydroxyimino)-Ci-C6-alkyl, Ci-Cg-alkyl, Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, C2-C8-alkenyl, C2-C8-alkynyl, Ci-C8-alkylamino, di-(Ci- C8-alkyl)amino, Ci-C8-alkoxy, Ci-C8-halogenoalkoxy having 1 to 5 halogen atoms,, C2- Cs-alkenyloxy, C2-C8-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C8- alkynyloxy, C3-C8-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C8-cycloalkyl, C3-C8-halogenocycloalkyl having 1 to 5 halogen atoms, Ci-C8-alkylcarbonyl, Ci-C8- halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C8-alkyl), -CON(Ci-C8- alkyl)2, -CONH(OCi-C8-alkyl), -CON(OCi-C8-alkyl)(Ci-C8-alkyl), -NH(Ci-C8- alkylcarbonyl), Ci-C8-alkoxycarbonyl, Ci-C8-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-C8-alkylcarbonyloxy, Ci-C8-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, Ci-C8-alkylcarbonylamino, Ci-C8-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, -OCONH(Ci-Cs-alkyl), -OCON(Ci-C8-alkyl)2, -OCONH(OCi-C8- alkyl), -OCO(OCi-C8-alkyl), -S-Ci-C8-alkyl, -S-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C8-alkyl, -S(0)-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C8-alkyl, -S(0)2-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, - CH2-S-Ci-C8-alkyl, -CH2-S(0)-Ci-C8-alkyl, -CH2-S(0)2-Ci-C8-alkyl, (Ci-C6- alkoxyimino)-Ci-C6-alkyl, (C2-C6-alkenyloxyimino)-Ci-C6-alkyl, (C3-C6- alkynyloxyimino)-Ci-C6-alkyl, (benzyloxyimino)-Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino,
R2, R3 and R4 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, amino, -SH, -CHO, -OCHO, -NHCHO, -COOH, - CONH2, -CONH(OH), -OCONH2, a (hydroxyimino)-Ci-C6-alkyl group, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-alkylamino, di-(Ci-C6-alkyl)amino, Ci-C6-alkoxy, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C3-alkyl, Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C2-C6-alkenyloxy, C2-C6-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C6-alkynyloxy, C3-C6- halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6- halogenocycloalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl-Ci-C6-alkyl, C3-C6- halogenocycloalkyl-Ci-C6-alkyl having 1 to 5 halogen atoms, Ci-C6-alkylcarbonyl, Ci- C6-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C6-alkyl), - CON(Ci-C6-alkyl)2, -CONH(OCi-C6-alkyl), -CON(OCi-C6-alkyl)(Ci-C6-alkyl), Ci-Ce- alkoxycarbonyl, a Ci-C6-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, -OC(O)- Ci-Ce-alkyl, -OC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -NHC(0)-Ci- Ce-alkyl, -NHC(0)-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, -OCONH(Ci-C6- alkyl), -OCON(Ci-C6-alkyl)2, -OCONH(OCi-C6-alkyl), OCO(OCi-C6-alkyl), -S-Ci-Ce- alkyl, -S-C1-C6 -halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C6-alkyl, -S(0)-Ci- C6-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C6-alkyl, -S(0)2-Ci-C6- halogenoalkyl having 1 to 5 halogen atoms, benzyl, benzyloxy, -S-benzyl, -S(0)-benzyl, -S(0)2-benzyl, benzylamino, phenoxy, -S-phenyl, -S(0)-phenyl, -S(0)2-phenyl, phenylamino, phenylcarbonylamino, 2,
6-dichlorophenyl-carbonylamino, 2- chlorophenyl-carbonylamino and phenyl, with the proviso that R1 is fluorine and/or R2 is fluorine,
R5 is selected from the group consisting of hydrogen, cyano, -CHO, -OH, Ci-C6-alkyl, Ci- C6-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-alkoxy, Ci-C6-halogenoalkoxy having 1 to 5 halogen atoms, C3-C7-cycloalkyl, C3-C7-halogenocycloalkyl having 1 to 5 halogen atoms, C3-C7-cycloalkyl-Ci-C6-alkyl, -CONH(Ci-C6-alkyl), C2-C6-alkenyl, C2- C6-alkynyl, Ci-C6-alkoxy-Ci-C6-alkyl, C3-C7-cycloalkyl-Ci-C6-alkyl, cyano-Ci-C6-alkyl, amino-Ci-C6-alkyl, Ci-C6-alkylamino-Ci-C6-alkyl, di-(Ci-C6-alkyl)amino-Ci-C6-alkyl, Ci-C6-alkylcarbonyl, Ci-C6-halogenoalkylcarbonyl having 1 to 5 halogen atoms, C1-C6- alkoxycarbonyl, Ci-C6-benzyloxycarbonyl, Ci-C6-alkoxy-Ci-C6-alkylcarbonyl, -S-Ci- C6-alkyl, -S-C1-C6 -halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-C6-alkyl, and -S(0)2-Ci-C6-halogenoalkyl having 1 to 5 halogen atoms, represents a phenyl group of the formula (Al)
Figure imgf000180_0001
wherein o is 0, 1, 2, 3, 4 or 5, and each R is independently selected from the group consisting of halogen, nitro, -OH, N¾, SH, SF5, CHO, OCHO, NHCHO, COOH, cyano, Ci-Cg-alkyl, Ci-C8-halogenoalkyl having 1 to 9 halogen atoms, C2-Cs-alkenyl, C2-Cs-alkynyl, C3-C6-cycloalkyl, -S-Ci-Cs- alkyl, -S-Ci-Cs-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-alkoxy, Ci-Cs- halogenoalkoxy having 1 to 5 halogen atoms, Ci-C8-alkoxy-C2-C8-alkenyl, Ci-Cs- alkoxycarbonyl, Ci-Cs-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-Cs- alkylcarbonyloxy, Ci-Cs-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, -S(O)-
Ci-C8-alkyl, -S(0)-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2-Ci-Cs- alkyl, -S(0)2-Ci-C8-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-alkylsulfonamide, -NH(Ci-C8-alkyl), N(Ci-C8-alkyl)2, phenyl (optionally substituted by Ci-C6-alkoxy) and phenoxy, or two R bonded to adjacent carbon atoms together represent -0(CH2)P0-, wherein p represents 1 or 2, or
A represents a heterocycle of the formula (Het-1)
Figure imgf000181_0001
in which
R6 and R7 may be the same or different and are selected from the group consisting of hydrogen, halogen, amino, nitro, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R8 is selected from the group consisting of hydrogen, halogen, nitro, Ci-C4-alkyl and Ci- C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-2)
Figure imgf000181_0002
in which R9 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, and
R10 and R11 may be the same or different and are selected from the group consisting of hydrogen, halogen, amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), or A represents a heterocycle of the formula (Het-3)
Figure imgf000181_0003
in which R12 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R13 is selected from the group consisting of hydrogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-4)
Figure imgf000182_0001
in which
R14 and R may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S- Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, phenyl (optionally substituted by halogen or C1-C4- alkyl) and pyridyl (optionally substituted by halogen or Ci-C4-alkyl), and
R16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-5)
Figure imgf000182_0002
in which
R17 and R18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R19 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 atoms, or
A represents a heterocycle of the formula (Het-6) in which
R20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and Ci- C4-halogenoalkyl having 1 to 5 halogen atoms, and
R21 and R23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
R22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxyl-Ci-C4- alkyl, -S(0)2-Ci-C4-alkyl, -S(0)2-N(Ci-C4-alkyl)2, Ci-Ce-alkylcarbonyl, -S(0)2-phenyl (optionally substituted by halogen or Ci-C4-alkyl) and benzoyl (optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula
(Het-7)
Figure imgf000183_0001
in which
R24 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci-C4- alkyl, -S(0)2-Ci-C4-alkyl, -S(0)2-N(Ci-C4-alkyl)2, Ci-Ce-alkylcarbonyl, -S(0)2-phenyl (optionally substituted by halogen or Ci-C4-alkyl) and benzoyl (optionally substituted by halogen or a Ci-C4-alkyl), and
R25, R26 and R27 may be the same or different and are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenalkyl having 1 to 5 halogen atoms and Ci-C4-alkylcarbonyl, or
A represents a heterocycle of the formula
(Het-8) in which
R28 is selected from the group consisting of hydrogen and Ci-C4-alkyl, and
R29 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula
(Het-9)
Figure imgf000184_0001
in which
R30 is selected from the group consisting of hydrogen and Ci-C4-alkyl, and
R31 is selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or C1-C4- alkyl), or
A represents a heterocycle of the formula
(Het-10)
Figure imgf000184_0002
in which
R32 is selected from the group consisting of hydrogen, halogen, amino, cyano, C1-C4- alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy having 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci-C5- alkyl)-amino, or A represents a heterocycle of the formula
(Het-11)
Figure imgf000185_0001
in which
R34 is selected from the group consisting of hydrogen, halogen, amino, cyano, C1-C4- alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R35 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-12)
Figure imgf000185_0002
(Het-12) in which is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl-Ci-C4-alkyl, and is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S(0)-Ci-C4-alkyl, and -S(0)2-Ci-C4-alkyl, and is selected from the group consisting of hydrogen, phenyl, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C2-C6-alkenyl, C3-C6- cycloalkyl, Ci-C4-alkylthio-Ci-C4-alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C -alkyl- S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkylthio-Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and Ci-C4-halogenoalkoxy-Ci-C4-alkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula
(Het-13) in which
R39 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 atoms, aminocarbonyl and aminocarbonyl-Ci-C4-alkyl, and
R40 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms,-S-Ci-C4-alkylS(0)-Ci-C4- alkyl, and -S(0)2-Ci-C4-alkyl, and
R41 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C2-C6-alkenyl, C3-C6-cycloalkyl, Ci- C4-alkylthio-Ci-C4-alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl-S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkylthio-Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4- alkyl, Ci-C4-halogenoalkoxy-Ci-C4-alkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen, Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkyl or nitro), or
A represents a heterocycle of the formula
(Het-14)
Figure imgf000186_0001
in which
R42 is selected from the group consisting of hydrogen, halogen, cyano, nitro, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, aminocarbonyl and aminocarbonyl-Ci-C4-alkyl, and R43 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- alkoxy, -S-Ci-C4-alkyl, S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R44 is selected from the group consisting of hydrogen, phenyl, benzyl, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, hydroxy-Ci-C4-alkyl, C2-C6-alkenyl, C3-C6- cycloalkyl, Ci-C4-alkylthio-Ci-C4-alkyl, Ci-C4-alkyl-S(0)-Ci-C4-alkyl, Ci-C4-alkyl- S(0)2-Ci-C4-alkyl, Ci-C4-halogenoalkylthio-Ci-C4-alkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl and Ci-C4-halogenoalkoxy-Ci-C4-alkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula
(Het-15)
Figure imgf000187_0001
in which
R45 and R46 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula
(Het-16)
Figure imgf000187_0002
in which
R47 and R48 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl (optionally substituted by halogen or a Ci-C4-alkyl), and heterocyclyl like pyridyl, pyrimidinyl and thiadiazolyl (each optionally substituted by halogen or C1-C4- alkyl), or
A represents a heterocycle of the formula
(Het-17) in which
R49 and R may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula
(Het-18)
Figure imgf000188_0001
in which
R51 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula
(Het-19)
Figure imgf000188_0002
in which
R52 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R53 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or C1-C4- alkyl), or
A represents a heterocycle of the formula
(Het-20) in which
R is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-21)
Figure imgf000189_0001
in which
R55 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, S(O)- Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, with the proviso that for Het- 21, R55 ist not CF3, and
R56, R57 and R58, which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-22)
Figure imgf000189_0002
in which
R is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4 alkoxy, -S-Ci-Cs-alkyl, S(O)- Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci-C4-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R60, R61 and R62, which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, N-morpholine optionally substituted by halogen or Ci-C4-alkyl, and thienyl (optionally substituted by halogen or a Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-23)
Figure imgf000190_0001
in which
R63, R64, R65 and R66, which may be the same or different, are selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, - S(0)-Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-24)
Figure imgf000190_0002
in which
R67 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, and
R68 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C6-alkoxycarbonyl, benzyl (optionally substituted by 1 to 3 halogen atoms), benzyloxycarbonyl (optionally substituted by 1 to 3 halogen atoms), and heterocyclyl like pyridyl and pyrimidinyl (each optionally substituted by halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms), or
A represents a heterocycle of the formula (Het-25)
Figure imgf000191_0001
in which
R69 is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S-Ci- C4-halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, and
R70 is selected from the group consisting of hydrogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and benzyl, or
A represents a heterocycle of the formula (Het-26)
Figure imgf000191_0002
in which
X1 is selected from the group consisting of sulphur, -SO-, -SO2- and -CH2-, and
R71 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R72 and R73 may be the same or different and are selected from the group consisting of hydrogen and Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-27)
Figure imgf000191_0003
(Het-27) in which
R74 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-28)
Figure imgf000192_0001
in which
R75 is selected from the group consisting of Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-29)
Figure imgf000192_0002
R is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, for controlling nematodes and/or other helminths. 2. A use according to claim 1 , wherein X, n, R1, R2, R3, R4, R5 and A have the meanings as defined in claim 1 ;
Q represents an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-l to Q-64:
Figure imgf000193_0001
Q-36 Q-37 Q-38 Q-39 Q-40 Q-41 Q-42
Figure imgf000194_0001
Q-62 Q-63 Q-64 with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, halogen, nitro, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C2-C4-alkenyl, C2-C4- alkynyl, Ci-C4-alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, C2-C4-alkenyloxy, C2-C4-halogenoalkenyloxy having 1 to 5 halogen atoms, C3-C4-alkynyloxy, C3-C4-halogenoalkynyloxy having 1 to 5 halogen atoms, C3-C6-cycloalkyl, C3-C6-halogenocycloalkyl having 1 to 5 halogen atoms, C1-C4- alkylcarbonyl, Ci-C4-halogenoalkylcarbonyl having 1 to 5 halogen atoms, -CONH(Ci-C4- alkyl), -CON(Ci-C4-alkyl)2, -CONH(OCi-C4-alkyl), -CON(OCi-C4-alkyl)(Ci-C4-alkyl), - NH(Ci-C4-alkylcarbonyl), Ci-C4-alkoxycarbonyl, Ci-C4-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, Ci-C4-alkylcarbonyloxy, Ci-C4-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, Ci-C4-alkylcarbonylamino, Ci-C4-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, -OCONH(Ci-C4-alkyl), -OCON(Ci-C4-alkyl)2, -OCONH(OCi-C4- alkyl), -OCO(OCi-C4-alkyl), -S-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)-Ci-C4-alkyl, -S(0)-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S(0)2- Ci-C4-alkyl, -S(0)2-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -CH2-S-Ci-C4-alkyl, -CH2-S(0)-Ci-C4-alkyl, -CH2-S(0)2-Ci-C4-alkyl, (Ci-C4-alkoxyimino)-Ci-C4-alkyl, (C2-C6- alkenyloxyimino)-Ci-C4-alkyl, (C3-C6-alkynyloxyimino)-Ci-C4-alkyl, (benzyloxyimino)- Ci-C6-alkyl, benzyloxy, -S-benzyl, benzylamino, phenoxy, -S-phenyl and phenylamino.
A use according to claim 1 or 2, wherein n is 1 or 2, each X is selected from the group consisting of hydrogen, halogen, nitro, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms,
Q represents_an optionally mono- or polysubstituted heteroaromatic ring from the group consisting of Q-4, Q-l l, Q-21, Q-22, Q-25, Q-36, Q-37, Q-38, Q-40, Q-41, Q-42, Q-45, Q- 53, Q-58, Q-62, Q-63 and Q-64, with m is 0, 1 or 2, limited by the number of available positions in Q to which a substituent Y can be connected, and each Y is independently selected from the group consisting of hydrogen, -CF3, -CH2CF3, methyl, ethyl, fluorine, chlorine, bromine, iodine, cyano, -OCH3, -OCH2CH3, -OCH(CH3)2, - OCH2CF3, S(0)2-CH3, NHC(0)CH3, NHCH3 and N(CH3)2,
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, halogen, cyano, hydroxy, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-alkoxy, C3-C6- cycloalkyl-Ci-C3-alkyl, Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, -NHC(0)-Ci-C4-alkyl, and phenyl, with the proviso that R1 is fluorine and/or R2 is fluorine,
R3 and R4 are the same or different and are selected from the group consisting of hydrogen, - COOH, Ci-C4-alkyl, Ci-C4-halogenoalkyl Ci-C4-alkoxy, hydroxy-Ci-C4-alkyl, C1-C4- alkoxy-Ci-C3-alkyl, -CONH(Ci-C4-alkyl), Ci-C4-alkoxycarbonyl, -OC(0)-Ci-C4-alkyl, and phenyl, R5 is selected from the group consisting of hydrogen, Ci-C4-alkyl, C3-C6-cycloalkyl, C1-C4 alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkylcarbonyl, Ci-C4-alkoxycarbonyl,
A represents a phenyl group of formula (Al)
Figure imgf000196_0001
wherein o is 0, 1 or 2, and each R is independently selected from the group consisting of halogen, nitro, -OH, cyano, Ci- C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C3-C6-cycloalkyl, Ci-C4-alkoxy, CiCi-C4-alkoxycarbonyl, -NH(Ci-C4-alkyl), phenyl (optionally substituted by C1-C4- alkoxy) and phenoxy, or
A represents a heterocycle of the formula (Het-1)
Figure imgf000196_0002
in which
R6 and R7 may be the same or different and are selected from the group consisting of hydrogen, halogen, nitro, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and
R8 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-2)
Figure imgf000196_0003
in which
R9 is selected from the group consisting of hydrogen, halogen, Ci-CU-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, and R10 and R11 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, phenyl optionally substituted by halogen or Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-4)
Figure imgf000197_0001
in which
R14 and R may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, -S-Ci-C4-alkyl, - S(0)2-Ci-C4-alkyl, phenyl (optionally substituted by halogen or Ci-C4-alkyl) and pyridyl (optionally substituted by halogen or Ci-CU-alkyl), and
R16 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms and Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, or
A represents a heterocycle of the formula (Het-5)
Figure imgf000197_0002
in which
R17 and R18 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-CU-alkyl, Ci-C4-alkyloxy and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, and R19 is selected from the group consisting of hydrogen, halogen, Ci-CU-alkyl and C1-C4- halogenoalkyl having 1 to 5 atoms, or
A represents a heterocycle of the formula (Het-6) in which
R20 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms, and
R21 and R23 may be the same or different and are selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and Ci-C4-halogenoalky having 1 to 5 halogen atoms, and
R22 is selected from the group consisting of hydrogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-10)
Figure imgf000198_0001
in which
R32 is selected from the group consisting of hydrogen, halogen, amino, cyano, C1-C4- alkylamino, di-(Ci-C4-alkyl)amino, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R33 is selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-Cs-halogenoalkoxy comprising 1 to 9 halogen atoms, amino, substituted or unsubstituted Ci-Cs-alkylamino or substituted or unsubstituted di-(Ci- C5-alkyl)-amino, or
A represents a heterocycle of the formula (Het-21)
(Het-21) in which
R55 is selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, C1-C4- halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, -S(0)-Ci-C4- alkyl, -S(0)2-Ci-C4-alkyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms and Ci- C4-halogenoalkoxy having 1 to 5 halogen atoms, with the proviso that for Het-21, R55 ist
R56, R57 and R58, which may be the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C4-alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(O)- Ci-C4-alkyl and -S(0)2-Ci-C4-alkyl, or
A represents a heterocycle of the formula (Het-22)
Figure imgf000199_0001
in which
R is selected from the group consisting of hydrogen, halogen, hydroxy, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, C1-C4 alkoxy, -S-Ci-Cs-alkyl, -S(0)-Ci- C4-alkyl, -S(0)2-Ci-C4-alkyl, -S-C2-C5-alkenyl, -S-Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, phenyloxy (optionally substituted by halogen or Ci-CU-alkyl) and -S-phenyl (optionally substituted by halogen or Ci-C4-alkyl), and
R60, R61 and R62, which may the same or different, are selected from the group consisting of hydrogen, halogen, cyano, Ci-C4-alkyl, Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, -S-Ci-C -alkyl, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms, -S(O)- Ci-C4-alkyl, -S(0)2-Ci-C4-alkyl, N-morpholine (optionally substituted by halogen or C1-C4- alkyl) and thienyl (optionally substituted by halogen or a Ci-C4-alkyl), or
A represents a heterocycle of the formula (Het-29)
(Het-29) in which
R76 is selected from the group consisting of hydrogen, halogen, Ci-C4-alkyl and C1-C4- halogenoalkyl having 1 to 5 halogen atoms.
A use according to claims 1 to 3, wherein n is 1 or 2, each X is selected from the group consisting of hydrogen, halogen, nitro, cyano, Ci-C4-alkyl,
Ci-C4-halogenoalkyl having 1 to 5 halogen atoms, Ci-C4-alkoxy, Ci-C4-halogenoalkoxy having 1 to 5 halogen atoms,
Q is selected from:
Figure imgf000200_0001
R1 and R2 are the same or different and are selected from the group consisting of hydrogen, methyl, ethyl, methoxy, ethoxy or fluorine, with the proviso that R1 is fluorine and/or R2 is fluorine,
R3 and R4 are the same or different and are selected from the group consisting of hydrogen, methyl or ethyl,
R5 is hydrogen, and
A is selected from:
Figure imgf000201_0001
or
A is selected from:
Figure imgf000201_0002
2U1
WO 2015/078800 PCT/EP2014/075354
Figure imgf000202_0001
5. A use according to claims 1 to 4 in crop protection.
6. A use according to claim 1 to 4 in the animal health field.
7. A compound of formula (la)
Figure imgf000202_0002
wherein n, X, Q, R2, R3, R4, R5 and A are as defined in claim 1 or claim 2 or claim 3 or claim 4, and Rla is fluorine.
8. A compound of formula (lb)
Figure imgf000202_0003
(lb) wherein n, X, Q, R1, R3, R4, R5 and A are as defined in claim 1 or claim 2 or claim 3 or claim 4, and R2a is fluorine.
A compound of formula (Ic)
Figure imgf000203_0001
n, X, Q, R3, R4, R5 and A are as defined in claim 1 or claim 2 or claim 3 or claim 4, and both Rla and R2a are fluorine.
10. A formulation, particularly an agrocheniical formulation, comprising at least one compound of formula (I) as defined in claims 1 to 4. 11. A formulation, particularly an agrocheniical formulation, comprising at least one compound according to claims 7 to 9. 12. A formulation according to claim 10 or 11 which further comprises at least one extender and/or at least one surfactant. 13. A formulation according to claims 10 to 12, wherein the compound of the formula (I), (la), (lb) or (Ic) is present in a mixture with at least one other active compound. 14. A method for controlling an animal pest, wherein a compound of formula (I) as defined in claims 1 to 4 or a compound according to claims 7 to 9 or a formulation according to claims 10 to 13 is allowed to act on the animal pest and/or their habitat.
15. A method according to claim 14, wherein the animal pest comprises a nematode or is a nematode. 16. A method for protecting a seed and/or a germinating plant from attack by a pest, particularly a nematode, comprising the step of contacting the seed with a compound of formula (I) as defined in claims 1 to 4 or with a compound according to claims 7 to 9 or with a formulation according to claims 10 to 13.
A seed obtained by a method according to claim 16. 18. Use of a compound according to claims 7 to 9 or a formulation according to claims 10 to 13 for controlling an animal pest.
19. A use according to claim 18, wherein the animal pest comprises a nematode or is a nematode.
20. A use according to claim 18 or 19 in crop protection or in the animal health field.
21. A compound of formula (INT)
Figure imgf000204_0001
wherein R1, R2, Q, X and n are as defined in claim 1 or in claim 2 or in claim 3 or in claim 4.
PCT/EP2014/075354 2013-11-26 2014-11-24 New pesticidal compounds and uses WO2015078800A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016554909A JP2016540832A (en) 2013-11-26 2014-11-24 New pesticide compounds and uses
EP14802067.0A EP3073827A1 (en) 2013-11-26 2014-11-24 New pesticidal compounds and uses
RU2016125306A RU2016125306A (en) 2013-11-26 2014-11-24 NEW PESTICIDE COMPOUNDS AND APPLICATIONS
MX2016006841A MX2016006841A (en) 2013-11-26 2014-11-24 New pesticidal compounds and uses.
AU2014356673A AU2014356673B2 (en) 2013-11-26 2014-11-24 New pesticidal compounds and uses
US15/039,138 US20170044104A1 (en) 2013-11-26 2014-11-24 New pesticidal compounds and uses
CA2931265A CA2931265A1 (en) 2013-11-26 2014-11-24 New pesticidal compounds and uses
CN201480073760.3A CN106061255A (en) 2013-11-26 2014-11-24 New pesticidal compounds and uses
ZA2016/03549A ZA201603549B (en) 2013-11-26 2016-05-24 New pesticidal compounds and uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13194361 2013-11-26
EP13194361.5 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015078800A1 true WO2015078800A1 (en) 2015-06-04

Family

ID=49641647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/075354 WO2015078800A1 (en) 2013-11-26 2014-11-24 New pesticidal compounds and uses

Country Status (14)

Country Link
US (1) US20170044104A1 (en)
EP (1) EP3073827A1 (en)
JP (1) JP2016540832A (en)
CN (1) CN106061255A (en)
AR (1) AR098475A1 (en)
AU (1) AU2014356673B2 (en)
CA (1) CA2931265A1 (en)
CL (1) CL2016001241A1 (en)
MX (1) MX2016006841A (en)
RU (1) RU2016125306A (en)
TW (1) TW201609650A (en)
UY (1) UY35853A (en)
WO (1) WO2015078800A1 (en)
ZA (1) ZA201603549B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015133511A1 (en) * 2014-03-05 2017-04-06 国立大学法人 東京大学 Internal parasite control agent
WO2018087036A1 (en) * 2016-11-11 2018-05-17 Bayer Animal Health Gmbh New anthelmintic quinoline-3-carboxamide derivatives
WO2019025341A1 (en) * 2017-08-04 2019-02-07 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
WO2019115768A1 (en) * 2017-12-15 2019-06-20 Bayer Animal Health Gmbh Process for preparing antihelmintic 4-amino-quinoline-3-carboxamide derivatives
WO2019215182A1 (en) * 2018-05-09 2019-11-14 Bayer Animal Health Gmbh New quinoline derivatives
US10633384B2 (en) 2012-06-13 2020-04-28 Hoffmann-La Roche Inc. Diazaspirocycloalkane and azaspirocycloalkane
US10640472B2 (en) 2015-09-04 2020-05-05 Hoffman-La Roche Inc. Phenoxymethyl derivatives
US10647719B2 (en) 2015-09-24 2020-05-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10654857B2 (en) 2014-03-26 2020-05-19 Hoffman-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10669268B2 (en) 2012-09-25 2020-06-02 Hoffmann-La Roche Inc. Bicyclic derivatives
US10669285B2 (en) 2014-03-26 2020-06-02 Hoffmann-La Roche Inc. Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
WO2020109391A1 (en) 2018-11-28 2020-06-04 Bayer Aktiengesellschaft Pyridazine (thio)amides as fungicidal compounds
US10738053B2 (en) 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
WO2021239766A1 (en) 2020-05-27 2021-12-02 Bayer Aktiengesellschaft Active compound combinations
RU2772283C2 (en) * 2016-11-11 2022-05-18 Байер Энимэл Хельс ГмбХ New anthelmintic quinoline-3-carboxamide derivatives
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943886B (en) * 2020-08-07 2022-02-08 华中师范大学 Substituted pyridine compound and preparation method thereof
CN113265385B (en) * 2021-05-25 2022-05-20 西南大学 Broussonetia papyrifera antibacterial protein BpChiI, recombinant expression vector thereof and application of Broussonetia papyrifera antibacterial protein BpChiI in improving verticillium wilt resistance of plants
CN116947749B (en) * 2023-09-18 2023-12-01 帕潘纳(北京)科技有限公司 Amide compounds and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997800A1 (en) * 2006-03-20 2008-12-03 Nihon Nohyaku Co., Ltd. N-2-(hetero)arylethylcarboxamide derivative, and pest-controlling agent comprising the same
WO2012118139A1 (en) * 2011-03-02 2012-09-07 国立大学法人東京大学 Internal parasiticide
WO2014004064A1 (en) * 2012-06-29 2014-01-03 E. I. Du Pont De Nemours And Company Fungicidal heterocyclic carboxamides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997800A1 (en) * 2006-03-20 2008-12-03 Nihon Nohyaku Co., Ltd. N-2-(hetero)arylethylcarboxamide derivative, and pest-controlling agent comprising the same
WO2012118139A1 (en) * 2011-03-02 2012-09-07 国立大学法人東京大学 Internal parasiticide
WO2014004064A1 (en) * 2012-06-29 2014-01-03 E. I. Du Pont De Nemours And Company Fungicidal heterocyclic carboxamides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KERS INGER ET AL: "Phenethyl nicotinamides, a novel class of NaV1.7 channel blockers: Structure and activity relationship", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 22, no. 19, 2012, pages 6108 - 6115, XP028938918, ISSN: 0960-894X, DOI: 10.1016/J.BMCL.2012.08.031 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10633384B2 (en) 2012-06-13 2020-04-28 Hoffmann-La Roche Inc. Diazaspirocycloalkane and azaspirocycloalkane
US10669268B2 (en) 2012-09-25 2020-06-02 Hoffmann-La Roche Inc. Bicyclic derivatives
US10913745B2 (en) 2013-03-12 2021-02-09 Hoffmann-La Roche Inc. Octahydro-pyrrolo[3,4-c]-pyrrole derivatives and analogs thereof as autotaxin inhibitors
US10849881B2 (en) 2013-11-26 2020-12-01 Hoffmann-La Roche Inc. Octahydro-cyclobuta[1,2-c;3,4-c′]dipyrrol-2-yl
EP3115048A4 (en) * 2014-03-05 2017-10-11 The University of Tokyo Endoparasite control agent
JPWO2015133511A1 (en) * 2014-03-05 2017-04-06 国立大学法人 東京大学 Internal parasite control agent
AU2015224925B2 (en) * 2014-03-05 2019-05-23 Nihon Nohyaku Co., Ltd. Endoparasite control agent
US10702507B2 (en) 2014-03-05 2020-07-07 The University Of Tokyo Endoparasite control agent
US11098048B2 (en) 2014-03-26 2021-08-24 Hoffmann-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10669285B2 (en) 2014-03-26 2020-06-02 Hoffmann-La Roche Inc. Condensed [1,4] diazepine compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10654857B2 (en) 2014-03-26 2020-05-19 Hoffman-La Roche Inc. Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
US10640472B2 (en) 2015-09-04 2020-05-05 Hoffman-La Roche Inc. Phenoxymethyl derivatives
US11352330B2 (en) 2015-09-04 2022-06-07 Hoffmann-La Roche Inc. Phenoxymethyl derivatives
US10787459B2 (en) 2015-09-24 2020-09-29 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10738053B2 (en) 2015-09-24 2020-08-11 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10800786B2 (en) 2015-09-24 2020-10-13 Hoffman-La Roche Inc. Bicyclic compounds as ATX inhibitors
US10647719B2 (en) 2015-09-24 2020-05-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
US10889588B2 (en) 2015-09-24 2021-01-12 Hoffmann-La Roche Inc. Bicyclic compounds as dual ATX/CA inhibitors
WO2018087036A1 (en) * 2016-11-11 2018-05-17 Bayer Animal Health Gmbh New anthelmintic quinoline-3-carboxamide derivatives
KR20190076980A (en) * 2016-11-11 2019-07-02 바이엘 애니멀 헬스 게엠베하 The novel quinoline-3-carboxamide derivative
AU2017357503B2 (en) * 2016-11-11 2022-02-17 Bayer Animal Health Gmbh New anthelmintic quinoline-3-carboxamide derivatives
RU2772283C2 (en) * 2016-11-11 2022-05-18 Байер Энимэл Хельс ГмбХ New anthelmintic quinoline-3-carboxamide derivatives
US11505545B2 (en) 2016-11-11 2022-11-22 Bayer Animal Health Gmbh Anthelmintic quinoline-3-carboxamide derivatives
KR102595730B1 (en) 2016-11-11 2023-10-27 바이엘 애니멀 헬스 게엠베하 New anthelmintic quinoline-3-carboxamide derivatives
US10889573B2 (en) 2016-11-11 2021-01-12 Bayer Animal Health Gmbh Anthelmintic quinoline-3-carboxamide derivatives
US10882857B2 (en) 2017-03-16 2021-01-05 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
US11059794B2 (en) 2017-03-16 2021-07-13 Hoffmann-La Roche Inc. Heterocyclic compounds useful as dual ATX/CA inhibitors
US11673888B2 (en) 2017-03-16 2023-06-13 Hoffmann-La Roche Inc. Bicyclic compounds as ATX inhibitors
WO2019025341A1 (en) * 2017-08-04 2019-02-07 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
AU2018311019B2 (en) * 2017-08-04 2022-05-26 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
US11254661B2 (en) 2017-08-04 2022-02-22 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
IL272156B2 (en) * 2017-08-04 2023-09-01 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
IL272156B1 (en) * 2017-08-04 2023-05-01 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
CN111448192B (en) * 2017-12-15 2024-04-12 拜耳动物保健有限责任公司 Process for preparing anthelmintic 4-amino-quinoline-3-carboxamide derivatives
RU2804710C2 (en) * 2017-12-15 2023-10-04 Байер Энимэл Хельс ГмбХ Method of producing antihelminthic 4-amino-quinoline-3-carboxamide derivatives
US11505544B2 (en) 2017-12-15 2022-11-22 Bayer Animal Health Gmbh Process for preparing antihelmintic 4-amino-quinoline-3-carboxamide derivatives
WO2019115768A1 (en) * 2017-12-15 2019-06-20 Bayer Animal Health Gmbh Process for preparing antihelmintic 4-amino-quinoline-3-carboxamide derivatives
TWI809018B (en) * 2017-12-15 2023-07-21 德商拜耳動物保健有限公司 Process for preparing quinoline derivatives
CN111448192A (en) * 2017-12-15 2020-07-24 拜耳动物保健有限责任公司 Process for preparing anthelmintic 4-amino-quinoline-3-carboxamide derivatives
WO2019215182A1 (en) * 2018-05-09 2019-11-14 Bayer Animal Health Gmbh New quinoline derivatives
CN112074514A (en) * 2018-05-09 2020-12-11 拜耳动物保健有限责任公司 Novel quinoline derivatives
AU2019266511B2 (en) * 2018-05-09 2022-12-08 Bayer Animal Health Gmbh New quinoline derivatives
US11572357B2 (en) 2018-05-09 2023-02-07 Bayer Animal Health Gmbh Quinoline derivatives
RU2792933C2 (en) * 2018-05-09 2023-03-28 Байер Энимэл Хельс ГмбХ New quinoline derivatives
WO2020109391A1 (en) 2018-11-28 2020-06-04 Bayer Aktiengesellschaft Pyridazine (thio)amides as fungicidal compounds
RU2794894C2 (en) * 2018-12-18 2023-04-25 Еланко Тиргезундхайт Аг Bicyclic derivatives
RU2794895C2 (en) * 2018-12-18 2023-04-25 Еланко Тиргезундхайт Аг Bicyclic derivatives
RU2794894C9 (en) * 2018-12-18 2023-08-25 Еланко Тиргезундхайт Аг Bicyclic derivatives
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
WO2021239766A1 (en) 2020-05-27 2021-12-02 Bayer Aktiengesellschaft Active compound combinations
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds

Also Published As

Publication number Publication date
JP2016540832A (en) 2016-12-28
CL2016001241A1 (en) 2016-12-23
AR098475A1 (en) 2016-06-01
CN106061255A (en) 2016-10-26
UY35853A (en) 2015-06-30
US20170044104A1 (en) 2017-02-16
AU2014356673A1 (en) 2016-06-16
TW201609650A (en) 2016-03-16
MX2016006841A (en) 2016-12-07
EP3073827A1 (en) 2016-10-05
RU2016125306A (en) 2018-01-09
ZA201603549B (en) 2019-04-24
CA2931265A1 (en) 2015-06-04
AU2014356673B2 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
AU2014356673B2 (en) New pesticidal compounds and uses
US10087192B2 (en) 2-(het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
US10654845B2 (en) 2-(het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
US10745398B2 (en) 2-(het)aryl-substituted fused heterocycle derivatives as pesticides
US20230087882A1 (en) 2-(Het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
IL257124A (en) 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents
AU2016218054B2 (en) Substituted 2-thioimidazolyl-carboxamides as pest control agents
US10039282B2 (en) Six-membered C—N-bonded aryl sulphide and aryl sulphoxide derivatives as pesticides
US20180273534A1 (en) Pyrazolopyridine sulfonamides as nematicides
US9776967B2 (en) Carboxamide derivatives as pesticidal compounds
US10206398B2 (en) Five-membered C-N-attached aryl sulphide and aryl sulphoxide derivatives as pesticides
US9920017B2 (en) Heterocyclic compounds as pesticides
US9815792B2 (en) Method for producing carboxamides
US20170327471A1 (en) Aryl sulphide and aryl sulphoxide derivatives having C-C-attached uracils as pesticides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14802067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2931265

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016554909

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014802067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15039138

Country of ref document: US

Ref document number: MX/A/2016/006841

Country of ref document: MX

Ref document number: 2014802067

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014356673

Country of ref document: AU

Date of ref document: 20141124

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016125306

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016011837

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016011837

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160524