WO2015077049A1 - Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit - Google Patents

Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit Download PDF

Info

Publication number
WO2015077049A1
WO2015077049A1 PCT/US2014/064509 US2014064509W WO2015077049A1 WO 2015077049 A1 WO2015077049 A1 WO 2015077049A1 US 2014064509 W US2014064509 W US 2014064509W WO 2015077049 A1 WO2015077049 A1 WO 2015077049A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
subcarriers
ofdma
mhz
master station
Prior art date
Application number
PCT/US2014/064509
Other languages
French (fr)
Inventor
Shahrnaz Azizi
Eldad Perahia
Thomas J. Kenney
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Priority to CN201480072813.XA priority Critical patent/CN105900511B/en
Priority to EP14864636.7A priority patent/EP3072347A4/en
Priority to TW104106272A priority patent/TWI572173B/en
Publication of WO2015077049A1 publication Critical patent/WO2015077049A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2615Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid frequency-time division multiple access [FDMA-TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3461Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel
    • H04L27/3483Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel using a modulation of the constellation points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments pertain to wireless networks. Some embodiments relate to wireless local area networks (WLANs), Wi-Fi networks and networks operating in accordance with one of the IEEE 802.11 standards, such as the IEEE 802.1 l ac standard or the IEEE 802.11 ax SIG (named DensiFi). Some embodiments relate to high-efficiency wireless or high-efficiency WLAN (HEW) communications.
  • WLANs wireless local area networks
  • IEEE 802.11 standards such as the IEEE 802.1 l ac standard or the IEEE 802.11 ax SIG (named DensiFi).
  • HEW high-efficiency wireless or high-efficiency WLAN (HEW) communications.
  • Wi-Fi communications has been evolving toward ever increasing data rates (e.g., from IEEE 802.1 la/g to IEEE 802.1 In to IEEE 802.1 lac).
  • the upcoming IEEE 802.1 lax Task Group for HEW is the next evolution of these standards.
  • HEW is intended to provide an increase in data capacity while maintaining compatibility with legacy systems.
  • FIG. 1 illustrates an HEW network in accordance with some embodiments
  • FIG. 2 illustrates a subcarrier configuration of a 20 MHz channel configured with 5 MHz subchannels
  • FIG. 3 illustrates a subcarrier configuration for 20 MHz, 40 MHz,
  • FIG. 4 illustrates a 20 MHz channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments
  • FIG. 5 illustrates a wideband channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments.
  • FIG. 6 illustrates an HEW communication device in accordance with some embodiments.
  • FIG. 1 illustrates an HEW network in accordance with some embodiments.
  • HEW network 100 may include a master station (STA) 102, a plurality of HEW stations 104 (i.e., HEW devices) and a plurality of legacy stations 106 (legacy devices).
  • the master station 102 may be arranged to communicate with the HEW stations 104 and the legacy stations 106 in accordance with one or more of the IEEE 802.11 standards.
  • STA master station
  • HEW stations 104 i.e., HEW devices
  • legacy stations 106 legacy stations
  • the master station 102 may be arranged to communicate with the HEW stations 104 in accordance with an IEEE 802.1 lax standard for HEW.
  • the master station 102 may be an access point (AP), although the scope of the embodiments is not limited in this respect.
  • the master station 102 may include physical layer (PHY) and medium-access control layer (MAC) circuitry which may be arranged to contend for a wireless medium (e.g., during a contention period) to receive exclusive control of the medium for an HEW control period (i.e., a transmission opportunity (TXOP)).
  • the master station 102 may transmit an HEW master-sync transmission at the beginning of the HEW control period.
  • the HEW stations 104 may communicate with the master station 102 in accordance with a non-contention based scheduled multiple-access technique.
  • the master-sync transmission may be referred to as an HEW control and schedule transmission.
  • the master-sync transmission may include a multi-device HEW preamble arranged to signal and identify data fields for a plurality of scheduled HEW stations 104.
  • the master station 102 may further be arranged to transmit (in the downlink direction) and/or receive (in the uplink direction) one or more of the data fields to/from the scheduled HEW stations 104 during the HEW control period.
  • the master station 102 may include training fields in the multi-device HEW preamble to allow each of the scheduled HEW stations 104 to perform synchronization and an initial channel estimation.
  • an HEW station 104 may be a Wi-Fi or IEEE 802.11 configured station (STA) that is further configured for HEW operation (e.g., in accordance with IEEE 802.1 lax).
  • An HEW station 104 may be configured to communicate with a master station 102 in accordance with a non-contention-based multiple access technique, such as a scheduled orthogonal frequency division multiple access (OFDMA) technique, during the HEW control period and may be configured to receive and decode the multi- device HEW preamble of an HEW frame.
  • An HEW station 104 may also be configured to decode an indicated data field received by the master station 102 during the HEW control period.
  • a non-contention-based multiple access technique such as a scheduled orthogonal frequency division multiple access (OFDMA) technique
  • the master station 102 may be configured to communicate with scheduled stations 104 within a bandwidth comprising one or more channels using a plurality of minimum
  • each minimum OFDMA bandwidth unit comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel.
  • the guard subcarriers are provided at the band edges of the bandwidth and the guard subcarriers are in addition to the subcarriers of each of the minimum OFDMA bandwidth units. In these embodiments, no guard subcarriers need to be provided between the minimum OFDMA bandwidth units of a channel.
  • the embodiments disclosed herein provide an OFDMA design for HEW that is backward compatible and can coexist with legacy Wi-Fi. These embodiments use to as large of an extent as possible the legacy channelization. These embodiments provide a minimum OFDMA bandwidth unit that aligns well with the legacy OFDM structure. Aside from the new novel OFDMA allocation that is discussed in more detail below, embodiments disclosed herein further afford coexistence with the legacy IEEE 802.11 standards including the legacy IEEE 802.1 lac standard.
  • the High Efficiency WLAN Study Group (HEW SG) (now IEEE 802.11 ax Task Group) has been starting to evolve Wi-Fi from the 802.1 lac/ah proposed standards.
  • This study group has, as one of the target use cases, high density deployment scenarios such as stadiums, hotspots and also cellular offloading.
  • a main use case in this new group is for dense deployments and cellular offloading.
  • the minimum OFDMA bandwidth unit allocation disclosed herein provides symmetrical sub -channelization and may improve the overall system spectrum utilization, thereby improving the overall system efficiency, particularly in these target use case scenarios.
  • the minimum OFDMA bandwidth unit is configured to allow an efficient and extendable OFDMA configuration.
  • a minimum bandwidth size of 4.375 MHz is provided.
  • the allocation of bandwidth may be done in a manner that also allows it to be backwards compatible with legacy devices in that the waveform for the disclosed sub-channels will allow the CCA detection in the middle of the OFDMA transmissions for legacy devices (e.g., symbol times may be aligned).
  • a protection mechanism is provided, making this approach far more attractive that other approaches.
  • Embodiments that define a minimum OFDMA bandwidth unit for subchannelization disclosed herein are more efficient and provide a symmetrical allocation of spectrum, as well as provide for alignment with l ln/ac channelization and backward compatibility with legacy systems.
  • FIG. 2 illustrates a subcarrier configuration of a 20 MHz channel configured with 5 MHz subchannels.
  • the total number of subcarriers is 56 of which 52 are data subcarriers and 4 are pilots.
  • the pilot subcarriers may be located at positions -21 , -7, 7, and 21 with respect to the DC subcarrier at the center of the band.
  • These guard bands are used for legacy communications to limit the interference level to adjacent channels and to provide enough margin to account for power-amplifier backoff and filtering.
  • dividing the 20 MHz channel into 5 MHz bandwidth allocations 202 causes asymmetry because the usable bandwidth at either edge is smaller than the middle bands (i.e., not all subcarriers of each 5 MHz allocation can used).
  • FIG. 3 illustrates a subcarrier configuration for 20 MHz, 40 MHz,
  • 80 MHz and 160 MHz channels As illustrated in FIG. 3, there may be a similar asymmetry in 40, 80 and 160 MHz channels as described with respect to the 5 MHz allocations of FIG. 2.
  • the guard bands are may be wider (e.g., with 6 and 5 subcarrier allocation on each edge).
  • FIG. 4 illustrates a 20 MHz channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments.
  • the same FFT size may be used and hence the symbol duration and guard interval will allow the CCA detection during any part of the OFDMA transmissions for legacy devices 106 (FIG. 1). This allows legacy devices 106, if they wake-up during the OFDMA transmission to perform guard interval detection and defer transmission using the same mechanism as outlined in the legacy specification. Thus, legacy devices 106 would correctly defer achieving legacy coexistence.
  • Table 1 in below summarizes the number of OFDMA subchannels and subcarriers design in each 20, 40, 80 and 160 MHz operational mode in accordance with some embodiments.
  • the number of OFDMA sub-channels in increased to 17 and 36 for 80 MHz and 160 MHz, respectively (in contrast with 16 and 32 (respectively for 80 and 160 MHz) for an asymmetrical sub-channel allocation when 5 MHz is used as the smallest OFDMA unit).
  • embodiments disclosed herein provide a symmetrical OFDMA structure with a minimum OFDMA unit that allows simultaneous access for more users and hence better utilization of the spectrum.
  • mapping of a modulation and coding scheme (MCS) in each OFDMA sub-channel is simplified since the OFDMA bandwidth units disclosed here are symmetrical.
  • the asymmetrical structure as shown for example in FIGs 2 and 3 may require different MCS mapping in sub-channels on either edge vs. the sub-channels in the middle of the band because they would utilize different number of subcarriers.
  • the master station 102 may be configured to communicate with scheduled stations 104 within a bandwidth 401 comprising one or more channels using a plurality of minimum OFDMA bandwidth units 402 during the OFDMA control period during which the master station 102 has exclusive control of a wireless medium.
  • Each minimum OFDMA bandwidth unit 402 may comprise a predetermined number of subcarriers that do not include guard subcarriers of the channel.
  • the guard subcarriers are provided at band edges 404 of the bandwidth 401.
  • the guard subcarriers may be in addition to the subcarriers of each of the minimum
  • OFDMA bandwidth units 402 OFDMA bandwidth units 402 and no guard subcarriers need to be provided between the minimum OFDMA bandwidth units 402 of a channel.
  • the extra null subcarriers identified in Table 1 may be used as guard subcarriers and may be provided in between the minimum OFDMA bandwidth unit, although the scope of the embodiments is not limited in this respect. These embodiments would relax the requirement on frequency accuracy of each user that is assigned to a minimum OFDMA bandwidth unit as frequency inaccuracy can cause inter-carrier interference. ICI).
  • the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit 402 is fourteen (14) with a subcarrier spacing of 312.5 KHz, and each minimum OFDMA bandwidth unit 402 occupies a bandwidth of 4.375 MHz.
  • the master station 102 may communicate with scheduled stations 104 using a plurality of 4.375 MHz subchannels, wherein each 4.375 MHz subchannel corresponds to a minimum OFDMA bandwidth unit 402.
  • a subcarrier spacing that is consistent with legacy IEEE 802.11 systems may be used.
  • the use of fourteen data subcarriers for a minimum OFDMA bandwidth unit 402 provides a symmetric bandwidth allocation since no guard subcarriers are included. This is unlike the 5 MHz bandwidth allocations 202 illustrated in FIG. 2 which are asymmetric allocations since the 5 MHz bandwidth allocations 202A and 202D at the band edges 204 would need to include guard subcarriers (which would not be used).
  • the 5 MHz bandwidth allocations 202A and 202D would utilize fewer subcarriers than the 5 MHz bandwidth allocations 202B and 202C near the center of the channel.
  • the 5 MHz bandwidth allocations202A and 202D at the band edges 204 may have a lower data handling capacity (as well as a lower MCS) than the 5 MHz bandwidth allocations 202B and 202C near the center of the channel.
  • This asymmetry may result in increased implementation complexity, among other disadvantages.
  • symmetry is provided by the minimum OFDMA bandwidth units 402 since they use the same predetermined number of subcarriers and none of the subcarriers are guard subcarriers.
  • FIG. 5 illustrates a wideband channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments.
  • the master station 102 (FIG. 1) may be configured to communicate with scheduled stations 104 within a bandwidth 501 comprising one or more channels using a plurality of minimum OFDMA bandwidth units 402 during an OFDMA control period during which the master station 102 has exclusive control of a wireless medium.
  • Each minimum OFDMA bandwidth unit 402 comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel.
  • each channel of the wideband channel may be a 20 MHz channel, and when the channel is a wideband channel 501 and comprises two or more adjacent 20 MHz channels, no guard subcarriers are provided between at least some of the adjacent minimum OFDMA bandwidth units 402 of the two or more adjacent 20 MHz channels although the scope of the embodiments is not limited in this respect.
  • guard subcarriers may be provided between each adjacent 20 MHz channel at the band edges 404 (FIG. 4).
  • Some alternate embodiments may use different FFT sizes and may provide smaller minimum OFDMA bandwidth units.
  • the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit 402 may be fourteen.
  • each minimum OFDMA bandwidth unit may occupy a bandwidth of 1.09375 MHz.
  • sixteen minimum OFDMA bandwidth units may occupy a 20 MHz channel rather than the four illustrated in FIG. 4.
  • larger minimum OFDMA bandwidth units may be provided.
  • the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit is twenty-eight (28) with a subcarrier spacing of 312.5 KHz.
  • each minimum OFDMA bandwidth unit may occupy a bandwidth of 8.75 MHz.
  • two minimum OFDMA bandwidth units may occupy a 20 MHz channel rather than the four illustrated in FIG. 4.
  • the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit may be twenty-eight (28) with a subcarrier spacing of 156.25 KHz.
  • each minimum OFDMA bandwidth unit may occupy a bandwidth of 4.375 MHz.
  • four minimum OFDMA bandwidth units of 28 subcarriers each may occupy a 20 MHz channel.
  • each channel may be a 20 MHz channel comprising four minimum OFDMA bandwidth units 402 and the channel utilized by the master station 102 for communicating with the scheduled stations 104 during the OFDMA control period comprises one or more adjacent 20 MHz channels.
  • the single 20 MHz channel may provide four minimum OFDMA bandwidth units 402 for a total of 56 data subcarriers, in addition to a DC subcarrier and 7 guard subcarriers at the band edges 404 (see table 1).
  • one band edge may have three guard subcarriers while the other band edge may have four guard subcarriers.
  • no guard subcarriers are provided between the minimum OFDMA bandwidth units 402 of a channel.
  • the master station 102 may allocate the minimum OFDMA bandwidth units 402 of the two or more adjacent 20 MHz channels without guard subcarriers therebetween although the scope of the embodiments is not limited in this respect as guard subcarriers may be provided between each 20 MHz channel at the band edges 404.
  • no guard subcarriers may need to be provided between the minimum OFDMA bandwidth units 402 of the two or more adjacent 20 MHz channels due the spectral alignment inherent in OFDMA communications (i.e., the OFDMA signals may be aligned in power, frequency and time). This is unlike legacy IEEE 802.11 communications within each 20 MHz channel.
  • the subcarriers of adjacent channels that were previously guard subcarriers may be used for communicating data.
  • the master station 102 may allocate up to eight minimum OFDMA bandwidth units 402 of fourteen (14) subcarriers each for a total of 112 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504 (see table 1). These embodiments may use a 64-point FFT. When 256-point FFT is used, number of allocations may at least scale up with a ratio of 256/64. In the example illustrated in FIG. 5, one band edge of the wideband bandwidth 501 may have three guard subcarriers while the other band edge may have four guard subcarriers. In these 40 MHz
  • the extra or null subcarriers may be used as guard subcarriers in between minimum OFDMA bandwidth units to relax hardware implementations such as local oscillator accuracy in each user device.
  • extra null subcarrier may be added to the guard subcarriers at both band edges of 40MHz, assigned between the two 20MHz sub-channels, assigned between minimum OFDMA units, and/or assigned around DC (e.g., to ease requirement on DC offset).
  • the master station 102 may allocate up to seventeen (17) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 238 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504 (see table 1). These embodiments may use a 64-point FFT. When 256- point FFT is used, number of allocations may at least scale up with a ratio of 256/64.
  • the extra or null subcarriers may be used as guard subcarriers in between minimum OFDMA bandwidth units.
  • an additional minimum OFDMA bandwidth unit can be allocated (i.e., 17 minimum OFDMA bandwidth units of 14 subcarriers each instead of 16).
  • the master station 102 may allocate up to thirty-six (36) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 504 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504. These embodiments may use a 64-point FFT. When a 256- point FFT is used, number of allocations may at least scale up with a ratio of 256/64.
  • guard subcarriers In these 160 MHz embodiments, most or all of the guard subcarriers would conventionally have been provided in-between the adjacent 20 MHz channels can be used for communications. In these 160 MHz embodiments, by eliminating the guard subcarriers between the adjacent 20 MHz channels, several (e.g., up to four) additional minimum OFDMA bandwidth unit can be allocated (i.e., up to 36 minimum OFDMA bandwidth units of 14 subcarriers each instead of 32.)
  • the master station 102 may be configured for communicating with scheduled stations 104 during the OFDMA control period using a wideband channel comprising two non-contiguous 80 MHz wideband channels (i.e., an 80+80 MHz channel) for a bandwidth of 160 MHz. For each 80 MHz wideband channel of the 80+80 MHz channel, the master station 102 may allocate up to seventeen (17) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 238 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504.
  • each 80 MHz channel may comprise four contiguous 20 MHz channels.
  • null subcarriers may be assigned on band edges of each 80 MHz channel. Therefore less than the 36 allocations of the 160 MHz contiguous bandwidth channel can be allocated. For example, the subcarriers of at least one of the 36 allocations may be spared for guard bands and null subcarriers.
  • the master station may allocate bandwidth to the scheduled stations 104 based on the minimum OFDMA bandwidth unit 402 for communication with the master station during the control period.
  • the scheduled stations 104 may be high-efficiency wireless (HEW) stations 104 (i.e., IEEE 802.11 ax) and the master station 102 may be an access point configured for HEW communications with the HEW stations 104 and configured for legacy communications with legacy stations 106 (e.g., IEEE 802.1 lac).
  • HEW high-efficiency wireless
  • the master station 102 may communicate with the scheduled HEW stations 104 in accordance with a non- contention-based multiple access technique, such as a scheduled OFDMA and/or spatial-division multiple access (SDMA) techniques, using the minimum OFDMA bandwidth units.
  • a non- contention-based multiple access technique such as a scheduled OFDMA and/or spatial-division multiple access (SDMA) techniques, using the minimum OFDMA bandwidth units.
  • SDMA spatial-division multiple access
  • the master station may be configured to communicate with stations, including legacy stations 106, in accordance with a contention based communication technique (conventional IEEE 802.11, CSMA/CA).
  • packets 402 are configurable to be time and frequency multiplexed within the control period.
  • packets may be received from the scheduled stations 104 in accordance with an uplink SDMA technique using OFDMA, or packets may be transmitted to the scheduled stations 104 in accordance with a downlink multiplexing technique using OFDMA.
  • packets may be received from the scheduled stations 104 in accordance with an uplink SDMA technique using OFDMA, although the scope of the embodiments is not limited in this respect.
  • the master station 102 may transmit, during an initial portion of the control period, a master-sync transmission that includes a multi-device preamble arranged to signal and identify data fields for the plurality of scheduled stations 104.
  • the master-sync transmission may identify parameters of the minimum OFDMA bandwidth units 402 for use by the scheduled stations 104 for communicating with the master station 102 during the control period. Communications during the control period use the minimum OFDMA bandwidth unit 402.
  • scheduled stations 104 may be allocated more than one minimum OFDMA bandwidth unit 402, as the minimum OFDMA bandwidth unit 402 is the minimum amount of bandwidth that may be allocated.
  • a little extra power-amplifier (PA) back-off and filtering may help define the guard band consistently across all bandwidths to be 1250KHz (4 null subcarriers on the left and 3 on the right) on band edges 404 (FIG. 4) and 504 (FIG. 5).
  • extra null subcarriers may be allocated to provide extra guard band to be similar to the legacy allocation shown in FIG. 3.
  • Some embodiments may use only 16 out of the 17 possible (or 35 out of 36) sub-channels for a 80 MHz channel or only 35 of the 36 possible sub-channels for a 160 MHz channel, to free up one OFDMA unit for use as 14 extra null subcarriers.
  • extra null subcarriers in 40, 80 and 160 MHz wideband channels can provide flexibility in the design.
  • the extra null subcarriers may either be allocated as guard or can be allocated around DC to relax requirements on DC offset cancellation.
  • the extra null subcarriers may also be allocated in between OFDMA units to relax requirements on oscillator accuracy.
  • FIG. 6 illustrates an HEW communication device in accordance with some embodiments.
  • HEW device 600 may be an HEW compliant device that may be arranged to communicate with one or more other HEW devices, such as HEW stations 104 (FIG. 1) or master station 102 (FIG. 1), as well as communicate with legacy devices.
  • HEW device 600 may be suitable for operating as master station 102 (FIG. 1) or an HEW station 104 (FIG. 1).
  • HEW device 600 may include, among other things, hardware processing circuitry that may include physical layer (PHY) circuitry 602 and medium-access control layer circuitry (MAC) 604.
  • PHY physical layer
  • MAC medium-access control layer circuitry
  • PHY 602 and MAC 604 may be HEW compliant layers and may also be compliant with one or more legacy IEEE 802.11 standards.
  • PHY 602 may be arranged to transmit HEW frames, such as HEW frame (FIG. 4).
  • HEW device 600 may also include other processing circuitry 606 and memory 608 configured to perform the various operations described herein.
  • the MAC 604 may be arranged to contend for a wireless medium during a contention period to receive control of the medium for the HEW control period and configure an HEW frame.
  • the PHY 602 may be arranged to transmit the HEW frame as discussed above.
  • the PHY 602 may also be arranged to receive an HEW frame from HEW stations.
  • MAC 604 may also be arranged to perform transmitting and receiving operations through the PHY 602.
  • the PHY 602 may include circuitry for modulation/demodulation, upconversion/downconversion, filtering,
  • the processing circuitry 606 may include one or more processors. In some embodiments, two or more antennas may be coupled to the physical layer circuitry arranged for sending and receiving signals including transmission of the HEW frame.
  • the memory 608 may be store information for configuring the processing circuitry 606 to perform operations for configuring and transmitting HEW frames and performing the various operations described herein.
  • the HEW device 600 may be configured to communicate using OFDM communication signals over a multicarrier communication channel.
  • HEW device 600 may be configured to receive signals in accordance with specific communication standards, such as the Institute of Electrical and Electronics Engineers (IEEE) standards including IEEE 802.11-2012, 802.11n-2009 and/or 802.11 ac-2013 standards and/or proposed specifications for WLANs including proposed HEW standards, although the scope of the invention is not limited in this respect as they may also be suitable to transmit and/or receive communications in accordance with other techniques and standards.
  • IEEE Institute of Electrical and Electronics Engineers
  • HEW device 600 may be configured to receive signals that were transmitted using one or more other modulation techniques such as spread spectrum modulation (e.g., direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)), time- division multiplexing (TDM) modulation, and/or frequency-division multiplexing (FDM) modulation, although the scope of the embodiments is not limited in this respect.
  • spread spectrum modulation e.g., direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)
  • TDM time- division multiplexing
  • FDM frequency-division multiplexing
  • HEW device 600 may be part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capability, a web tablet, a wireless telephone or smartphone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly.
  • PDA personal digital assistant
  • HEW device 600 may include one or more of a keyboard, a display, a non- volatile memory port, multiple antennas, a graphics processor, an application processor, speakers, and other mobile device elements.
  • the display may be an LCD screen including a touch screen.
  • the antennas of HEW device 600 may comprise one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals.
  • the antennas may be effectively separated to take advantage of spatial diversity and the different channel characteristics that may result between each of antennas and the antennas of a transmitting station.
  • HEW device 600 is illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements.
  • DSPs digital signal processors
  • some elements may comprise one or more microprocessors, DSPs, field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), radio-frequency integrated circuits (RFICs) and combinations of various hardware and logic circuitry for performing at least the functions described herein.
  • the functional elements of HEW device 600 may refer to one or more processes operating on one or more processing elements.
  • Embodiments may be implemented in one or a combination of hardware, firmware and software. Embodiments may also be implemented as instructions stored on a computer-readable storage device, which may be read and executed by at least one processor to perform the operations described herein.
  • a computer-readable storage device may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer).
  • a computer-readable storage device may include read- only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and other storage devices and media.
  • Some embodiments may include one or more processors and may be configured with instructions stored on a computer-readable storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Embodiments of a master station and method for communicating in a Wi-Fi network in accordance with a high-efficiency Wi-Fi (HEW) technique are generally described herein. In some embodiments, the master station is configured to communicate with scheduled stations using the antennas within a bandwidth comprising one or more 20 MHz Wi-Fi channels using a plurality of minimum orthogonal frequency division multiple access (OFDMA) bandwidth units during an OFDMA control period during which the master station has exclusive control of a wireless medium. Each minimum OFDMA bandwidth unit may comprise a predetermined number of subcarriers that do not include guard subcarriers of the channel wherein the guard subcarriers are provided at band edges of the bandwidth, the guard subcarriers being in addition to the subcarriers of each of the minimum OFDMA bandwidth units. In some embodiments, no guard subcarriers are provided between the minimum OFDMA bandwidth units within a 20 MHz channel.

Description

MASTER STATION AND METHOD FOR HIGH-EFFICIENCY WI-FI (HEW) COMMUNICATION WITH A MINIMUM OFDMA BANDWIDTH
UNIT
PRIORITY CLAIMS
[0001] This application claims the benefit of priority to U.S. Patent Application Serial No. 14/447,254, filed July 30, 2014, which claims the benefit of priority to the following U.S. Patent Applications:
Serial No. 61/906,059, filed November 19, 2013,
Serial No. 61/973,376, filed April 1 , 2014,
Serial No. 61/976,951, filed April 8, 2014,
Serial No. 61/986,256, filed April 30, 2014,
Serial No. 61/986,250, filed April 30, 2014,
Serial No. 61/991 ,730, filed May 12, 2014,
Serial No. 62/013,869, filed June 18, 2014, and
Serial No. 62/024,801, filed July 15, 2014
which are all incorporated herein by reference in their entireties.
TECHNICAL FIELD
[0002] Embodiments pertain to wireless networks. Some embodiments relate to wireless local area networks (WLANs), Wi-Fi networks and networks operating in accordance with one of the IEEE 802.11 standards, such as the IEEE 802.1 l ac standard or the IEEE 802.11 ax SIG (named DensiFi). Some embodiments relate to high-efficiency wireless or high-efficiency WLAN (HEW) communications. BACKGROUND
[0003] Wi-Fi communications has been evolving toward ever increasing data rates (e.g., from IEEE 802.1 la/g to IEEE 802.1 In to IEEE 802.1 lac). The upcoming IEEE 802.1 lax Task Group for HEW is the next evolution of these standards. HEW is intended to provide an increase in data capacity while maintaining compatibility with legacy systems. There are general needs for achieving an increase in data capacity while maintaining compatibility with legacy systems.
BRIEF DESCRIPTION OF THE DRAWINGS
[0004] FIG. 1 illustrates an HEW network in accordance with some embodiments;
[0005] FIG. 2 illustrates a subcarrier configuration of a 20 MHz channel configured with 5 MHz subchannels;
[0006] FIG. 3 illustrates a subcarrier configuration for 20 MHz, 40 MHz,
80 MHz and 160 MHz channels;
[0007] FIG. 4 illustrates a 20 MHz channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments;
[0008] FIG. 5 illustrates a wideband channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments; and
[0009] FIG. 6 illustrates an HEW communication device in accordance with some embodiments.
DETAILED DESCRIPTION
[0010] The following description and the drawings sufficiently illustrate specific embodiments to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments. Embodiments set forth in the claims encompass all available equivalents of those claims.
[0011] FIG. 1 illustrates an HEW network in accordance with some embodiments. HEW network 100 may include a master station (STA) 102, a plurality of HEW stations 104 (i.e., HEW devices) and a plurality of legacy stations 106 (legacy devices). The master station 102 may be arranged to communicate with the HEW stations 104 and the legacy stations 106 in accordance with one or more of the IEEE 802.11 standards. In some
embodiments, the master station 102 may be arranged to communicate with the HEW stations 104 in accordance with an IEEE 802.1 lax standard for HEW. In some embodiments, the master station 102 may be an access point (AP), although the scope of the embodiments is not limited in this respect.
[0012] In accordance with embodiments, the master station 102 may include physical layer (PHY) and medium-access control layer (MAC) circuitry which may be arranged to contend for a wireless medium (e.g., during a contention period) to receive exclusive control of the medium for an HEW control period (i.e., a transmission opportunity (TXOP)). The master station 102 may transmit an HEW master-sync transmission at the beginning of the HEW control period. During the HEW control period, the HEW stations 104 may communicate with the master station 102 in accordance with a non-contention based scheduled multiple-access technique. This is unlike conventional Wi-Fi communications in which devices communicate in accordance with a contention- based communication technique, rather than a non-contention multiple-access technique. During the HEW control period, legacy stations 106 refrain from communicating. In some embodiments, the master-sync transmission may be referred to as an HEW control and schedule transmission.
[0013] In accordance with embodiments, the master-sync transmission may include a multi-device HEW preamble arranged to signal and identify data fields for a plurality of scheduled HEW stations 104. The master station 102 may further be arranged to transmit (in the downlink direction) and/or receive (in the uplink direction) one or more of the data fields to/from the scheduled HEW stations 104 during the HEW control period. In these embodiments, the master station 102 may include training fields in the multi-device HEW preamble to allow each of the scheduled HEW stations 104 to perform synchronization and an initial channel estimation.
[0014] In accordance with some embodiments, an HEW station 104 may be a Wi-Fi or IEEE 802.11 configured station (STA) that is further configured for HEW operation (e.g., in accordance with IEEE 802.1 lax). An HEW station 104 may be configured to communicate with a master station 102 in accordance with a non-contention-based multiple access technique, such as a scheduled orthogonal frequency division multiple access (OFDMA) technique, during the HEW control period and may be configured to receive and decode the multi- device HEW preamble of an HEW frame. An HEW station 104 may also be configured to decode an indicated data field received by the master station 102 during the HEW control period.
[0015] In accordance with some embodiments, the master station 102 may be configured to communicate with scheduled stations 104 within a bandwidth comprising one or more channels using a plurality of minimum
OFDMA bandwidth units during an OFDMA control period during which the master station 102 has exclusive control of a wireless medium. In these embodiments, each minimum OFDMA bandwidth unit comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel. In these embodiments, the guard subcarriers are provided at the band edges of the bandwidth and the guard subcarriers are in addition to the subcarriers of each of the minimum OFDMA bandwidth units. In these embodiments, no guard subcarriers need to be provided between the minimum OFDMA bandwidth units of a channel. These embodiments are discussed in more detail below.
[0016] The embodiments disclosed herein provide an OFDMA design for HEW that is backward compatible and can coexist with legacy Wi-Fi. These embodiments use to as large of an extent as possible the legacy channelization. These embodiments provide a minimum OFDMA bandwidth unit that aligns well with the legacy OFDM structure. Aside from the new novel OFDMA allocation that is discussed in more detail below, embodiments disclosed herein further afford coexistence with the legacy IEEE 802.11 standards including the legacy IEEE 802.1 lac standard. The High Efficiency WLAN Study Group (HEW SG) (now IEEE 802.11 ax Task Group) has been starting to evolve Wi-Fi from the 802.1 lac/ah proposed standards. This study group has, as one of the target use cases, high density deployment scenarios such as stadiums, hotspots and also cellular offloading. A main use case in this new group is for dense deployments and cellular offloading. The minimum OFDMA bandwidth unit allocation disclosed herein provides symmetrical sub -channelization and may improve the overall system spectrum utilization, thereby improving the overall system efficiency, particularly in these target use case scenarios.
[0017] Since one main use case in HEW is dense deployments with many devices trying to access the medium with moderate data rates, methods which allow more simultaneous access may be needed. The current IEEE 802.1 lac specification allows for up to 160 MHz of bandwidth with eight simultaneous MIMO streams. The focus for HEW is to use that fat pipe (wide bandwidth) to provide access to many devices using OFDMA. In accordance with some embodiments, a minimum ODFMA bandwidth unit is defined that aligns with legacy channelization. Previous to 802.11 HEW, OFDMA was not used as an access mechanism in Wi-Fi. Embodiments disclosed herein attempt to reuse as much as possible the basic physical layer blocks utilized for implementing the previous releases of the IEEE 802.11 Wi-Fi standards.
[0018] In accordance with embodiments, the minimum OFDMA bandwidth unit is configured to allow an efficient and extendable OFDMA configuration. In some embodiments, a minimum bandwidth size of 4.375 MHz is provided. In these embodiments, the allocation of bandwidth may be done in a manner that also allows it to be backwards compatible with legacy devices in that the waveform for the disclosed sub-channels will allow the CCA detection in the middle of the OFDMA transmissions for legacy devices (e.g., symbol times may be aligned). Thus a protection mechanism is provided, making this approach far more attractive that other approaches.
[0019] As of this date, these other approaches do not address asymmetry in the band edge where guard tones are provided to avoid adjacent interference and to limit spectral mask. Embodiments that define a minimum OFDMA bandwidth unit for subchannelization disclosed herein are more efficient and provide a symmetrical allocation of spectrum, as well as provide for alignment with l ln/ac channelization and backward compatibility with legacy systems.
[0020] FIG. 2 illustrates a subcarrier configuration of a 20 MHz channel configured with 5 MHz subchannels. As illustrated in FIG. 2, the total number of subcarriers is 56 of which 52 are data subcarriers and 4 are pilots. For a 20 MHz channel, the pilot subcarriers may be located at positions -21 , -7, 7, and 21 with respect to the DC subcarrier at the center of the band. As shown, there is a null at the four guard subcarriers 204 (on the left) and a null at the three guard subcarriers 204 (on the right) to provide guard bands. These guard bands are used for legacy communications to limit the interference level to adjacent channels and to provide enough margin to account for power-amplifier backoff and filtering. As depicted in FIG. 2, dividing the 20 MHz channel into 5 MHz bandwidth allocations 202 causes asymmetry because the usable bandwidth at either edge is smaller than the middle bands (i.e., not all subcarriers of each 5 MHz allocation can used).
[0021] FIG. 3 illustrates a subcarrier configuration for 20 MHz, 40 MHz,
80 MHz and 160 MHz channels. As illustrated in FIG. 3, there may be a similar asymmetry in 40, 80 and 160 MHz channels as described with respect to the 5 MHz allocations of FIG. 2. For the 40 MHz, 80 MHz and 160 MHz channels, the guard bands are may be wider (e.g., with 6 and 5 subcarrier allocation on each edge).
[0022] FIG. 4 illustrates a 20 MHz channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments. To avoid the asymmetry described with respect to FIGs. 2 and 3, embodiments disclosed herein define an OFDMA bandwidth unit 402 based on the number of subcarriers in each unit. In some embodiments, the minimum OFDMA bandwidth unit may be 14 subcarriers which, in some embodiments, may equal to 14 x 312.5 KHz = 4.375 MHz, using the same FFT size as defined in a legacy system. In particular, to enable legacy coexistence, the same FFT size may be used and hence the symbol duration and guard interval will allow the CCA detection during any part of the OFDMA transmissions for legacy devices 106 (FIG. 1). This allows legacy devices 106, if they wake-up during the OFDMA transmission to perform guard interval detection and defer transmission using the same mechanism as outlined in the legacy specification. Thus, legacy devices 106 would correctly defer achieving legacy coexistence.
[0023] In some embodiments, if it is decided to increase FFT size and thereby a change in symbol duration and guard interval (e.g., to support outdoor channels) the number of subcarriers of an OFDMA bandwidth unit may be increased with the same ratio as the FFT size is increased while the minimum bandwidth allocation of 4.375 MHZ may remain constant. For example, if the FFT size is increased to an 128-point FFT from the legacy 64-point FFT for 20 MHz operation, there may be 14 x 128/64 = 28 subcarriers with a reduced subcarrier spacing of 20 MHz/128 = 156.25 KHz resulting with the a minimum OFDMA unit of 28 x subcarrier spacing = 4.375 MHz.
[0024] Table 1 in below summarizes the number of OFDMA subchannels and subcarriers design in each 20, 40, 80 and 160 MHz operational mode in accordance with some embodiments. As described in more detail below, the number of OFDMA sub-channels in increased to 17 and 36 for 80 MHz and 160 MHz, respectively (in contrast with 16 and 32 (respectively for 80 and 160 MHz) for an asymmetrical sub-channel allocation when 5 MHz is used as the smallest OFDMA unit). Thus, embodiments disclosed herein provide a symmetrical OFDMA structure with a minimum OFDMA unit that allows simultaneous access for more users and hence better utilization of the spectrum.
[0025] Table 1
Figure imgf000008_0001
[0026] In accordance with embodiments, mapping of a modulation and coding scheme (MCS) in each OFDMA sub-channel is simplified since the OFDMA bandwidth units disclosed here are symmetrical. The asymmetrical structure as shown for example in FIGs 2 and 3 may require different MCS mapping in sub-channels on either edge vs. the sub-channels in the middle of the band because they would utilize different number of subcarriers.
[0027] In accordance with embodiments, the master station 102 may be configured to communicate with scheduled stations 104 within a bandwidth 401 comprising one or more channels using a plurality of minimum OFDMA bandwidth units 402 during the OFDMA control period during which the master station 102 has exclusive control of a wireless medium. Each minimum OFDMA bandwidth unit 402 may comprise a predetermined number of subcarriers that do not include guard subcarriers of the channel. In these embodiments, the guard subcarriers are provided at band edges 404 of the bandwidth 401. The guard subcarriers may be in addition to the subcarriers of each of the minimum
OFDMA bandwidth units 402, and no guard subcarriers need to be provided between the minimum OFDMA bandwidth units 402 of a channel.
[0028] In some embodiments, the extra null subcarriers identified in Table 1 may be used as guard subcarriers and may be provided in between the minimum OFDMA bandwidth unit, although the scope of the embodiments is not limited in this respect. These embodiments would relax the requirement on frequency accuracy of each user that is assigned to a minimum OFDMA bandwidth unit as frequency inaccuracy can cause inter-carrier interference. ICI).
[0029] In some embodiments, for processing signals of a 20 MHz channel with a 64-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit 402 is fourteen (14) with a subcarrier spacing of 312.5 KHz, and each minimum OFDMA bandwidth unit 402 occupies a bandwidth of 4.375 MHz. In these embodiments, the master station 102 may communicate with scheduled stations 104 using a plurality of 4.375 MHz subchannels, wherein each 4.375 MHz subchannel corresponds to a minimum OFDMA bandwidth unit 402.
[0030] In these embodiments, a subcarrier spacing that is consistent with legacy IEEE 802.11 systems (e.g., 312.5 KHz) may be used. The use of fourteen data subcarriers for a minimum OFDMA bandwidth unit 402 provides a symmetric bandwidth allocation since no guard subcarriers are included. This is unlike the 5 MHz bandwidth allocations 202 illustrated in FIG. 2 which are asymmetric allocations since the 5 MHz bandwidth allocations 202A and 202D at the band edges 204 would need to include guard subcarriers (which would not be used). As a result, the 5 MHz bandwidth allocations 202A and 202D would utilize fewer subcarriers than the 5 MHz bandwidth allocations 202B and 202C near the center of the channel. Thus the 5 MHz bandwidth allocations202A and 202D at the band edges 204 may have a lower data handling capacity (as well as a lower MCS) than the 5 MHz bandwidth allocations 202B and 202C near the center of the channel. This asymmetry may result in increased implementation complexity, among other disadvantages. In accordance with these embodiments, symmetry is provided by the minimum OFDMA bandwidth units 402 since they use the same predetermined number of subcarriers and none of the subcarriers are guard subcarriers.
[0031] FIG. 5 illustrates a wideband channel configured with OFDMA minimum bandwidth unit subchannels in accordance with some embodiments. In these embodiments, the master station 102 (FIG. 1) may be configured to communicate with scheduled stations 104 within a bandwidth 501 comprising one or more channels using a plurality of minimum OFDMA bandwidth units 402 during an OFDMA control period during which the master station 102 has exclusive control of a wireless medium. Each minimum OFDMA bandwidth unit 402 comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel. In these embodiments, each channel of the wideband channel may be a 20 MHz channel, and when the channel is a wideband channel 501 and comprises two or more adjacent 20 MHz channels, no guard subcarriers are provided between at least some of the adjacent minimum OFDMA bandwidth units 402 of the two or more adjacent 20 MHz channels although the scope of the embodiments is not limited in this respect. In some other embodiments, guard subcarriers may be provided between each adjacent 20 MHz channel at the band edges 404 (FIG. 4).
[0032] Some alternate embodiments may use different FFT sizes and may provide smaller minimum OFDMA bandwidth units. For example, for processing with a 20 MHz channel with a 256-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit 402 may be fourteen. In these embodiments, each minimum OFDMA bandwidth unit may occupy a bandwidth of 1.09375 MHz. In these embodiments, sixteen minimum OFDMA bandwidth units may occupy a 20 MHz channel rather than the four illustrated in FIG. 4. In these embodiments that use larger FFT sizes (e.g., 128, 256 or 512 for a 20 MHz channel), the subcarriers may occupy a smaller bandwidth (i.e., the bandwidth may be scaled down by the ratio of FFT sizes (i.e., 128/64 for a 128-point FFT, 256/64 for a 256-point FFT and 512/64 for a 512-point FFT). For example, for a 256-point FFT, the subcarriers may occupy 4.375 / (256/64) = 1.09375 MHz. Different FFT sizes may also be used for wideband channels.
[0033] In some embodiments, larger minimum OFDMA bandwidth units may be provided. For example, for processing signals of a 20 MHz channel with a 64-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit is twenty-eight (28) with a subcarrier spacing of 312.5 KHz. In these embodiments, each minimum OFDMA bandwidth unit may occupy a bandwidth of 8.75 MHz. In these embodiments, two minimum OFDMA bandwidth units may occupy a 20 MHz channel rather than the four illustrated in FIG. 4.
[0034] In some embodiments, for processing signals of a 20 MHz channel with a 128-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit may be twenty-eight (28) with a subcarrier spacing of 156.25 KHz. In these embodiments, each minimum OFDMA bandwidth unit may occupy a bandwidth of 4.375 MHz. In these example embodiments, four minimum OFDMA bandwidth units of 28 subcarriers each may occupy a 20 MHz channel. These embodiments may, for example, be used to support outdoor channels, although the scope of the embodiments is not limited in this respect.
[0035] In some embodiments, each channel may be a 20 MHz channel comprising four minimum OFDMA bandwidth units 402 and the channel utilized by the master station 102 for communicating with the scheduled stations 104 during the OFDMA control period comprises one or more adjacent 20 MHz channels. In some embodiments, for communicating with scheduled stations 104 during the OFDMA control period using a channel comprising a single 20 MHz channel (i.e., having a 20 MHz bandwidth), the single 20 MHz channel may provide four minimum OFDMA bandwidth units 402 for a total of 56 data subcarriers, in addition to a DC subcarrier and 7 guard subcarriers at the band edges 404 (see table 1). In the example illustrated in FIG. 4, one band edge may have three guard subcarriers while the other band edge may have four guard subcarriers. In the example illustrated in FIG. 4, no guard subcarriers are provided between the minimum OFDMA bandwidth units 402 of a channel.
[0036] In some embodiments, for communicating with scheduled stations 104 during the OFDMA control period using a wideband channel comprising two or more adjacent 20 MHz channels (e.g., for bandwidths of 40 MHz, 80 MHz and, 160 MHz), the master station 102 may allocate the minimum OFDMA bandwidth units 402 of the two or more adjacent 20 MHz channels without guard subcarriers therebetween although the scope of the embodiments is not limited in this respect as guard subcarriers may be provided between each 20 MHz channel at the band edges 404. In some of these embodiments, no guard subcarriers may need to be provided between the minimum OFDMA bandwidth units 402 of the two or more adjacent 20 MHz channels due the spectral alignment inherent in OFDMA communications (i.e., the OFDMA signals may be aligned in power, frequency and time). This is unlike legacy IEEE 802.11 communications within each 20 MHz channel. In these embodiments, the subcarriers of adjacent channels that were previously guard subcarriers may be used for communicating data.
[0037] In some embodiments, for communicating with scheduled stations 104 during the OFDMA control period using a wideband bandwidth 501 (e.g., a wideband channel) comprising two contiguous or adjacent 20 MHz channels for a bandwidth of 40 MHz, the master station 102 may allocate up to eight minimum OFDMA bandwidth units 402 of fourteen (14) subcarriers each for a total of 112 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504 (see table 1). These embodiments may use a 64-point FFT. When 256-point FFT is used, number of allocations may at least scale up with a ratio of 256/64. In the example illustrated in FIG. 5, one band edge of the wideband bandwidth 501 may have three guard subcarriers while the other band edge may have four guard subcarriers. In these 40 MHz
embodiments, there may be several (e.g., eight) extra or null subcarriers that may go unused when no guard subcarriers are provided in-between the adjacent 20 MHz channels of the 40 MHz wideband channel. In some embodiments, the extra or null subcarriers may be used as guard subcarriers in between minimum OFDMA bandwidth units to relax hardware implementations such as local oscillator accuracy in each user device.
[0038] In some embodiments, extra null subcarrier may be added to the guard subcarriers at both band edges of 40MHz, assigned between the two 20MHz sub-channels, assigned between minimum OFDMA units, and/or assigned around DC (e.g., to ease requirement on DC offset).
[0039] In some embodiments, for communicating with scheduled stations 104 during the OFDMA control period using a wideband channel comprising four contiguous 20 MHz channels for a bandwidth of 80 MHz, the master station 102 may allocate up to seventeen (17) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 238 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504 (see table 1). These embodiments may use a 64-point FFT. When 256- point FFT is used, number of allocations may at least scale up with a ratio of 256/64. In these 80 MHz embodiments that provide up to 17 minimum OFDMA bandwidth units 502, there may be several (e.g., ten) extra or null subcarriers that may go unused when no guard subcarriers are provided in-between the adjacent 20 MHz channels of the 80 MHz wideband channel. In some embodiments, the extra or null subcarriers may be used as guard subcarriers in between minimum OFDMA bandwidth units. In these 80 MHz embodiments, by eliminating the guard subcarriers between the adjacent 20 MHz channels, an additional minimum OFDMA bandwidth unit can be allocated (i.e., 17 minimum OFDMA bandwidth units of 14 subcarriers each instead of 16). Note that eliminating 7 guard subcarriers between each 20MHz would result in 3x7 = 21 extra null subcarriers. An 80 MHz channel has 6 and 5 guards on each band edges instead of 4 and 3 for 20MHz, and has 3 nulls at & around DC. The change of the structure of these nulls may provide an additional minimum OFDMA unit plus the extra nulls as stated in Table 1.
[0040] In some embodiments, for communicating with scheduled stations 104 during the OFDMA control period using a wideband channel comprising a bandwidth of eight contiguous 20 MHz channels for a bandwidth of 160 MHz, the master station 102 may allocate up to thirty-six (36) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 504 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504. These embodiments may use a 64-point FFT. When a 256- point FFT is used, number of allocations may at least scale up with a ratio of 256/64. In these 160 MHz embodiments, most or all of the guard subcarriers would conventionally have been provided in-between the adjacent 20 MHz channels can be used for communications. In these 160 MHz embodiments, by eliminating the guard subcarriers between the adjacent 20 MHz channels, several (e.g., up to four) additional minimum OFDMA bandwidth unit can be allocated (i.e., up to 36 minimum OFDMA bandwidth units of 14 subcarriers each instead of 32.)
[0041] In some embodiments, the master station 102 may be configured for communicating with scheduled stations 104 during the OFDMA control period using a wideband channel comprising two non-contiguous 80 MHz wideband channels (i.e., an 80+80 MHz channel) for a bandwidth of 160 MHz. For each 80 MHz wideband channel of the 80+80 MHz channel, the master station 102 may allocate up to seventeen (17) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 238 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges 504. In these embodiments that use a wideband channel having a bandwidth of 160 MHz comprising two non-contiguous 80 MHz wideband channels (i.e., an 80+80 bandwidth channel) each 80 MHz channel may comprise four contiguous 20 MHz channels. In these embodiments, null subcarriers may be assigned on band edges of each 80 MHz channel. Therefore less than the 36 allocations of the 160 MHz contiguous bandwidth channel can be allocated. For example, the subcarriers of at least one of the 36 allocations may be spared for guard bands and null subcarriers. In some embodiments that utilize a 160 MHz bandwidth, thirty five (35) minimum OFDMA bandwidth units may be used and the extra null subcarriers (that could be used for another minimum OFDMA bandwidth unit) may be used for null subcarriers in between the minimum OFDMA bandwidth unit. [0042] In some embodiments, the master station may allocate bandwidth to the scheduled stations 104 based on the minimum OFDMA bandwidth unit 402 for communication with the master station during the control period. The scheduled stations 104 may be high-efficiency wireless (HEW) stations 104 (i.e., IEEE 802.11 ax) and the master station 102 may be an access point configured for HEW communications with the HEW stations 104 and configured for legacy communications with legacy stations 106 (e.g., IEEE 802.1 lac). In these embodiments, during the OFDMA control period, the master station 102 may communicate with the scheduled HEW stations 104 in accordance with a non- contention-based multiple access technique, such as a scheduled OFDMA and/or spatial-division multiple access (SDMA) techniques, using the minimum OFDMA bandwidth units. Outside the OFDMA control period, the master station may be configured to communicate with stations, including legacy stations 106, in accordance with a contention based communication technique (conventional IEEE 802.11, CSMA/CA).
[0043] In some embodiments, the minimum OFDMA bandwidth units
402 are configurable to be time and frequency multiplexed within the control period. During the control period, packets may be received from the scheduled stations 104 in accordance with an uplink SDMA technique using OFDMA, or packets may be transmitted to the scheduled stations 104 in accordance with a downlink multiplexing technique using OFDMA. In some embodiments, during the control period, packets may be received from the scheduled stations 104 in accordance with an uplink SDMA technique using OFDMA, although the scope of the embodiments is not limited in this respect.
[0044] In some embodiments, the master station 102 may transmit, during an initial portion of the control period, a master-sync transmission that includes a multi-device preamble arranged to signal and identify data fields for the plurality of scheduled stations 104. The master-sync transmission may identify parameters of the minimum OFDMA bandwidth units 402 for use by the scheduled stations 104 for communicating with the master station 102 during the control period. Communications during the control period use the minimum OFDMA bandwidth unit 402. In some embodiments, scheduled stations 104 may be allocated more than one minimum OFDMA bandwidth unit 402, as the minimum OFDMA bandwidth unit 402 is the minimum amount of bandwidth that may be allocated.
[0045] In some of these embodiments, a little extra power-amplifier (PA) back-off and filtering may help define the guard band consistently across all bandwidths to be 1250KHz (4 null subcarriers on the left and 3 on the right) on band edges 404 (FIG. 4) and 504 (FIG. 5). In some alternate embodiments, extra null subcarriers may be allocated to provide extra guard band to be similar to the legacy allocation shown in FIG. 3. Some embodiments may use only 16 out of the 17 possible (or 35 out of 36) sub-channels for a 80 MHz channel or only 35 of the 36 possible sub-channels for a 160 MHz channel, to free up one OFDMA unit for use as 14 extra null subcarriers. The availability of extra null subcarriers in 40, 80 and 160 MHz wideband channels can provide flexibility in the design. As mentioned earlier, the extra null subcarriers may either be allocated as guard or can be allocated around DC to relax requirements on DC offset cancellation. The extra null subcarriers may also be allocated in between OFDMA units to relax requirements on oscillator accuracy.
[0046] FIG. 6 illustrates an HEW communication device in accordance with some embodiments. HEW device 600 may be an HEW compliant device that may be arranged to communicate with one or more other HEW devices, such as HEW stations 104 (FIG. 1) or master station 102 (FIG. 1), as well as communicate with legacy devices. HEW device 600 may be suitable for operating as master station 102 (FIG. 1) or an HEW station 104 (FIG. 1). In accordance with embodiments, HEW device 600 may include, among other things, hardware processing circuitry that may include physical layer (PHY) circuitry 602 and medium-access control layer circuitry (MAC) 604. PHY 602 and MAC 604 may be HEW compliant layers and may also be compliant with one or more legacy IEEE 802.11 standards. PHY 602 may be arranged to transmit HEW frames, such as HEW frame (FIG. 4). HEW device 600 may also include other processing circuitry 606 and memory 608 configured to perform the various operations described herein.
[0047] In accordance with some embodiments, the MAC 604 may be arranged to contend for a wireless medium during a contention period to receive control of the medium for the HEW control period and configure an HEW frame. The PHY 602 may be arranged to transmit the HEW frame as discussed above. The PHY 602 may also be arranged to receive an HEW frame from HEW stations. MAC 604 may also be arranged to perform transmitting and receiving operations through the PHY 602. The PHY 602 may include circuitry for modulation/demodulation, upconversion/downconversion, filtering,
amplification, etc. In some embodiments, the processing circuitry 606 may include one or more processors. In some embodiments, two or more antennas may be coupled to the physical layer circuitry arranged for sending and receiving signals including transmission of the HEW frame. The memory 608 may be store information for configuring the processing circuitry 606 to perform operations for configuring and transmitting HEW frames and performing the various operations described herein.
[0048] In some embodiments, the HEW device 600 may be configured to communicate using OFDM communication signals over a multicarrier communication channel. In some embodiments, HEW device 600 may be configured to receive signals in accordance with specific communication standards, such as the Institute of Electrical and Electronics Engineers (IEEE) standards including IEEE 802.11-2012, 802.11n-2009 and/or 802.11 ac-2013 standards and/or proposed specifications for WLANs including proposed HEW standards, although the scope of the invention is not limited in this respect as they may also be suitable to transmit and/or receive communications in accordance with other techniques and standards. In some other embodiments, HEW device 600 may be configured to receive signals that were transmitted using one or more other modulation techniques such as spread spectrum modulation (e.g., direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)), time- division multiplexing (TDM) modulation, and/or frequency-division multiplexing (FDM) modulation, although the scope of the embodiments is not limited in this respect.
[0049] In some embodiments, HEW device 600 may be part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capability, a web tablet, a wireless telephone or smartphone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly. In some embodiments, HEW device 600 may include one or more of a keyboard, a display, a non- volatile memory port, multiple antennas, a graphics processor, an application processor, speakers, and other mobile device elements. The display may be an LCD screen including a touch screen.
[0050] The antennas of HEW device 600 may comprise one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals. In some multiple- input multiple-output (MIMO) embodiments, the antennas may be effectively separated to take advantage of spatial diversity and the different channel characteristics that may result between each of antennas and the antennas of a transmitting station.
[0051] Although HEW device 600 is illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements. For example, some elements may comprise one or more microprocessors, DSPs, field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), radio-frequency integrated circuits (RFICs) and combinations of various hardware and logic circuitry for performing at least the functions described herein. In some embodiments, the functional elements of HEW device 600 may refer to one or more processes operating on one or more processing elements.
[0052] Embodiments may be implemented in one or a combination of hardware, firmware and software. Embodiments may also be implemented as instructions stored on a computer-readable storage device, which may be read and executed by at least one processor to perform the operations described herein. A computer-readable storage device may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer). For example, a computer-readable storage device may include read- only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and other storage devices and media. Some embodiments may include one or more processors and may be configured with instructions stored on a computer-readable storage device.
[0053] The Abstract is provided to comply with 37 C.F.R. Section
1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.

Claims

CLAIMS What is claimed is:
1. A master station comprising hardware processing circuitry including physical-layer circuitry and medium-access control layer circuitry and configured to communicate in a Wi-Fi network, the hardware processing circuitry configured to:
communicate with scheduled stations within a bandwidth comprising one or more channels using a plurality of minimum orthogonal frequency division multiple access (OFDMA) bandwidth units during an OFDMA control period during which the master station has exclusive control of a wireless medium, wherein each minimum OFDMA bandwidth unit comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel.
2. The master station of claim 1 wherein the guard subcarriers are provided at band edges of the bandwidth, the guard subcarriers being in addition to the subcarriers of each of the minimum OFDMA bandwidth units, and
wherein no guard subcarriers are provided between the minimum OFDMA bandwidth units of a channel.
3. The master station of claim 1 wherein each channel is a 20 MHz channel, and
wherein when the channel is a wideband channel and comprises two or more adjacent 20 MHz channels, no guard subcarriers are provided between adjacent minimum OFDMA bandwidth units of the two or more adjacent 20 MHz channels.
4. The master station of claim 3 wherein for processing signals of a 20 MHz channel with a 64-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit is fourteen (14) with a subcarrier spacing of 312.5 KHz, and wherein each minimum OFDMA bandwidth unit occupies a bandwidth of 4.375 MHz.
5. The master station of claim 3, wherein for processing with a 20 MHz channel with a 256-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit is fourteen (14), and wherein each minimum OFDMA bandwidth unit occupies a bandwidth of 1.09375 MHz.
6. The master station of claim 4 wherein each channel is a 20 MHz channel comprising four minimum OFDMA bandwidth units,
wherein the channel utilized by the master station for communicating with the scheduled stations during the OFDMA control period comprises one or more adjacent 20 MHz channels,
wherein for communicating with scheduled stations during the OFDMA control period using a channel comprising a single 20 MHz channel, the single 20 MHz channel is configured to provide four minimum OFDMA bandwidth units for a total of 56 data subcarriers, in addition to a DC subcarrier and seven (7) guard subcarriers at the band edges.
7. The master station of claim 6 wherein for communicating with scheduled stations during the OFDMA control period using a wideband channel comprising two or more adjacent 20 MHz channels, the master station is configured to allocate the minimum OFDMA bandwidth units of the two or more adjacent 20 MHz channels without guard subcarriers therebetween.
8. The master station of claim 7 wherein for communicating with scheduled stations during the OFDMA control period using a wideband bandwidth comprising two contiguous 20 MHz channels for a bandwidth of 40 MHz, the master station is configured to allocate up to eight minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of 112 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges.
9. The master station of claim 8 wherein for communicating with scheduled stations during the OFDMA control period using a wideband channel comprising four contiguous 20 MHz channels for a bandwidth of 80 MHz, the master station is configured to allocate up to seventeen (17) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 238 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges.
10. The master station of claim 9 wherein for communicating with scheduled stations during the OFDMA control period using a wideband channel comprising a bandwidth of eight contiguous 20 MHz channels for a bandwidth of 160 MHz, the master station is configured to allocate up to thirty-six (36) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges.
11. The master station of claim 9 wherein for communicating with scheduled stations during the OFDMA control period using a wideband channel comprising two non-contiguous 80 MHz wideband channels for a bandwidth of 160 MHz,
wherein for each 80 MHz wideband channel, the master station is configured to allocate up to seventeen (17) minimum OFDMA bandwidth units of fourteen (14) subcarriers each for a total of up to 238 data and pilot subcarriers, a DC subcarrier and seven (7) guard subcarriers at the band edges.
12. The master station of claim 2 wherein the master station is configured to allocate bandwidth to the scheduled stations based on the minimum OFDMA bandwidth unit for communication with the master station during the control period,
wherein the scheduled stations are high-efficiency wireless (HEW) stations and the master station is an access point configured for HEW communications with the HEW stations and configured for legacy
communications with legacy stations, wherein the minimum OFDMA bandwidth units are configurable to be time and frequency multiplexed within the control period, and
wherein during the control period:
packets are received from the scheduled stations in accordance with an uplink SDMA technique using OFDMA, or
packets are transmitted to the scheduled stations in accordance with downlink multiplexing technique using OFDMA,
wherein the master station is further configured to:
transmit, during an initial portion of the control period, a master-sync transmission that includes a multi-device preamble arranged to signal and identify data fields for the plurality of scheduled stations,
wherein the master-sync transmission identifies parameters of the minimum OFDMA bandwidth units for use by the scheduled stations for communicating with the master station during the control period, and
wherein communications during the control period use the minimum
OFDMA bandwidth unit.
13. The master station of claim 1 wherein the guard subcarriers are provided at band edges of the bandwidth, the guard subcarriers being in addition to the subcarriers of each of the minimum OFDMA bandwidth units, and
wherein extra subcarriers are provided between the minimum OFDMA bandwidth units of a channel.
14. A method for communicating in a Wi-Fi network performed by a master station, the method comprising:
communicating with scheduled stations within a bandwidth comprising one or more channels using a plurality of minimum orthogonal frequency division multiple access (OFDMA) bandwidth units during an OFDMA control period during which the master station has exclusive control of a wireless medium,
wherein each minimum OFDMA bandwidth unit comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel.
15. The method of claim 14 wherein the guard subcarriers are provided at band edges of the bandwidth, the guard subcarriers being in addition to the subcarriers of each of the minimum OFDMA bandwidth units, and
wherein no guard subcarriers are provided between the minimum OFDMA bandwidth units of a channel.
16. The method of claim 14 wherein each channel is a 20 MHz channel, and
wherein when the channel is a wideband channel and comprises two or more adjacent 20 MHz channels, no guard subcarriers are provided between adjacent minimum OFDMA bandwidth units of the two or more adjacent 20 MHz channels.
17. The method of claim 16 wherein for processing signals of a 20 MHz channel with a 64-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit is fourteen (14) with a subcarrier spacing of 312.5 KHz, and
wherein each minimum OFDMA bandwidth unit occupies a bandwidth of 4.375 MHz.
18. A non-transitory computer-readable storage medium that stores instructions for execution by one or more processors to perform operations for communicating in a Wi-Fi network performed by a master station, the operations to configure the master station to:
communicate with scheduled stations within a bandwidth comprising one or more channels using a plurality of minimum orthogonal frequency division multiple access (OFDMA) bandwidth units during an OFDMA control period during which the master station has exclusive control of a wireless medium, wherein each minimum OFDMA bandwidth unit comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel.
19. The non- transitory computer-readable storage medium of claim 18 wherein the guard subcarriers are provided at band edges of the bandwidth, the guard subcarriers being in addition to the subcarriers of each of the minimum OFDMA bandwidth units, and
wherein no guard subcarriers are provided between the minimum
OFDMA bandwidth units within a 20 MHz channel.
20. The non-transitory computer-readable storage medium of claim 19 wherein for processing signals of a 20 MHz channel with a 64-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit is fourteen (14) with a subcarrier spacing of 312.5 KHz, and wherein each minimum OFDMA bandwidth unit occupies a bandwidth of 4.375 MHz.
21. A master station comprising:
one or more radios;
a memory;
physical-layer circuitry and medium-access control layer circuitry and configured for communicating in a Wi-Fi network in accordance with a high- efficiency Wi-Fi (FEW) technique, the circuitry configured to:
communicate with scheduled stations using the antennas within a bandwidth comprising one or more 20 MHz Wi-Fi channels using a plurality of minimum orthogonal frequency division multiple access (OFDMA) bandwidth units during an OFDMA control period during which the master station has exclusive control of a wireless medium,
wherein each minimum OFDMA bandwidth unit comprises a predetermined number of subcarriers that do not include guard subcarriers of the channel wherein the guard subcarriers are provided at band edges of the bandwidth, the guard subcarriers being in addition to the subcarriers of each of the minimum OFDMA bandwidth units,
wherein no guard subcarriers are provided between the minimum OFDMA bandwidth units within a 20 MHz channel,
wherein for processing signals of each 20 MHz channel with a 64-point
FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit is fourteen (14) with a subcarrier spacing of 312.5 KHz, and
wherein each minimum OFDMA bandwidth unit occupies a bandwidth of 4.375 MHz.
22. The master station of claim 21 wherein for communicating with scheduled stations during the OFDMA control period using a wideband channel comprising two or more adjacent 20 MHz channels, the master station is configured to allocate the minimum OFDMA bandwidth units of the two or more adjacent 20 MHz channels without guard subcarriers therebetween.
23. The master station of claim 22 further comprising one or more antennas coupled to the one or more radios.
PCT/US2014/064509 2013-11-19 2014-11-07 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit WO2015077049A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480072813.XA CN105900511B (en) 2013-11-19 2014-11-07 The main website and method of efficient Wi-Fi (HEW) communication are carried out using minimum OFDMA bandwidth unit
EP14864636.7A EP3072347A4 (en) 2013-11-19 2014-11-07 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
TW104106272A TWI572173B (en) 2014-04-01 2015-02-26 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US201361906059P 2013-11-19 2013-11-19
US61/906,059 2013-11-19
US201461973376P 2014-04-01 2014-04-01
US61/973,376 2014-04-01
US201461976951P 2014-04-08 2014-04-08
US61/976,951 2014-04-08
US201461986250P 2014-04-30 2014-04-30
US201461986256P 2014-04-30 2014-04-30
US61/986,250 2014-04-30
US61/986,256 2014-04-30
US201461991730P 2014-05-12 2014-05-12
US61/991,730 2014-05-12
US201462013869P 2014-06-18 2014-06-18
US62/013,869 2014-06-18
US201462024801P 2014-07-15 2014-07-15
US62/024,801 2014-07-15
US14/447,254 US20150139118A1 (en) 2013-11-19 2014-07-30 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
US14/447,254 2014-07-30

Publications (1)

Publication Number Publication Date
WO2015077049A1 true WO2015077049A1 (en) 2015-05-28

Family

ID=53173244

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/US2014/056819 WO2015076923A1 (en) 2013-11-19 2014-09-22 Communication station and method for communicating using minimum bandwidth units of various tone allocations for ofdma hew
PCT/US2014/057751 WO2015076932A1 (en) 2013-11-19 2014-09-26 Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations
PCT/US2014/064350 WO2015077042A1 (en) 2013-11-19 2014-11-06 High-efficiency wlan (hew) master station and methods to increase information bits for hew communication
PCT/US2014/064340 WO2015077040A1 (en) 2013-11-19 2014-11-06 Hew master station and method for communicating in accordance with a scheduled ofdma technique on secondary channels
PCT/US2014/064509 WO2015077049A1 (en) 2013-11-19 2014-11-07 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/US2014/056819 WO2015076923A1 (en) 2013-11-19 2014-09-22 Communication station and method for communicating using minimum bandwidth units of various tone allocations for ofdma hew
PCT/US2014/057751 WO2015076932A1 (en) 2013-11-19 2014-09-26 Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations
PCT/US2014/064350 WO2015077042A1 (en) 2013-11-19 2014-11-06 High-efficiency wlan (hew) master station and methods to increase information bits for hew communication
PCT/US2014/064340 WO2015077040A1 (en) 2013-11-19 2014-11-06 Hew master station and method for communicating in accordance with a scheduled ofdma technique on secondary channels

Country Status (4)

Country Link
US (8) US9325463B2 (en)
EP (6) EP3072255A4 (en)
CN (7) CN105706407B (en)
WO (5) WO2015076923A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325463B2 (en) 2013-11-19 2016-04-26 Intel IP Corporation High-efficiency WLAN (HEW) master station and methods to increase information bits for HEW communication
US9462504B2 (en) 2013-11-19 2016-10-04 Intel IP Corporation Transmit time offset in uplink multi-user multiple input-multiple output system
US9544914B2 (en) 2013-11-19 2017-01-10 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9680603B2 (en) 2014-04-08 2017-06-13 Intel IP Corporation High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US9900906B2 (en) 2013-11-19 2018-02-20 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9961678B2 (en) 2013-11-19 2018-05-01 Intel IP Corporation Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148962A1 (en) * 2013-03-22 2014-09-25 Telefonaktiebolaget L M Ericsson (Publ) Methods, mobile devices and nodes for use in a mobile communication network
CN105474593B (en) * 2013-12-27 2019-10-15 华为技术有限公司 The method and apparatus for transmitting signal
HUE059474T2 (en) 2014-01-28 2022-11-28 Huawei Tech Co Ltd Data transmission method and communications device
CN106063323B (en) * 2014-02-24 2020-04-21 华为技术有限公司 Method and device for receiving and sending information
KR102262183B1 (en) * 2014-04-04 2021-06-07 뉴라컴 인코포레이티드 Acknowledgement method and multi user transmission method
KR101941280B1 (en) * 2014-04-15 2019-01-22 엘지전자 주식회사 Method and apparatus for transmitting data block
US11855818B1 (en) * 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
CN110958716B (en) * 2014-05-13 2023-07-28 韦勒斯标准与技术协会公司 Wireless communication method for clear channel assessment and wireless communication terminal using the same
WO2015198139A1 (en) 2014-06-27 2015-12-30 Techflux, Ltd. Method and device for transmitting data unit
US9780926B2 (en) 2014-07-08 2017-10-03 Mediatek Inc. Burst OFDMA supporting MU-MIMO
EP3152854A4 (en) * 2014-07-08 2017-12-20 MediaTek Inc. Methods for providing concurrent communications among multiple wireless communications devices
US10009922B2 (en) * 2014-07-15 2018-06-26 Marvell World Trade Ltd. Channel frame structures for high efficiency wireless LAN (HEW)
US10616020B2 (en) * 2014-07-28 2020-04-07 Lg Electronics Inc. Transmitting and receiving device and method in wireless communication system
US10085262B2 (en) 2014-08-14 2018-09-25 Lg Electronics Inc. Method and apparatus for allocating wireless resource in order to prevent interference in wireless LAN
US9844028B2 (en) * 2014-08-15 2017-12-12 Qualcomm Incorporated Systems and methods for improved communication efficiency in wireless networks
EP3185637A4 (en) 2014-08-18 2018-04-04 Wilus Institute of Standards and Technology Inc. Wireless communication method for simultaneous data communication, and wireless communication terminal using same
US10340964B2 (en) 2014-08-18 2019-07-02 Huawei Technologies Co., Ltd. System and method for orthogonal frequency division multiple access (OFDMA) transmission
US10371783B2 (en) 2014-08-18 2019-08-06 Mediatek Inc. Direction finding antenna format
US9871644B2 (en) * 2014-08-19 2018-01-16 Intel IP Corporation Wireless device, method, and computer-readable media for transmitting and receiving high-efficiency signal fields
JP6827412B2 (en) * 2014-09-12 2021-02-10 インターデイジタル パテント ホールディングス インコーポレイテッド Preamble selection for simultaneous transmission in wireless local area network (WLAN) systems
US10128917B2 (en) * 2014-09-16 2018-11-13 Qualcomm Incorporated Systems and methods for tone plans for wireless communication networks
US9838513B2 (en) * 2014-09-19 2017-12-05 Qualcomm Incorporated Methods and apparatus for packet acquisition in mixed-rate wireless communication networks
EP3512109B1 (en) 2014-09-25 2021-03-03 Huawei Technologies Co., Ltd. Data communication method and related apparatus
KR102144936B1 (en) * 2014-09-30 2020-08-14 한국전자통신연구원 Wireless communication method and apparatus for wireless local area network system
WO2016056808A1 (en) * 2014-10-05 2016-04-14 엘지전자 주식회사 Method and apparatus for allocating wireless resources based on single resource unit in wlan
WO2016068413A1 (en) * 2014-10-27 2016-05-06 엘지전자 주식회사 Method for transmitting frame in wireless lan system
CN112637967B (en) 2014-12-02 2024-03-22 韦勒斯标准与技术协会公司 Wireless communication terminal and wireless communication method for idle channel allocation
US10390328B2 (en) 2014-12-05 2019-08-20 Marvell World Trade Ltd. Beamforming training in orthogonal frequency division multiple access (OFDMA) communication systems
WO2016090372A1 (en) 2014-12-05 2016-06-09 Marvell Semiconductor, Inc. Trigger frame format for orthogonal frequency division multiple access (ofdma) communication
US9998185B2 (en) 2015-03-27 2018-06-12 Newracom, Inc. Aggregation methods and systems for multi-user MIMO or OFDMA operation
US20160285599A1 (en) * 2015-03-27 2016-09-29 Full Spectrum Inc. Devices, systems, and methods for ip based broadband wireless communication systems
US11050503B2 (en) * 2015-03-31 2021-06-29 Huawei Technologies Co., Ltd. System and method of waveform design for operation bandwidth extension
WO2016164912A1 (en) * 2015-04-09 2016-10-13 Marvell World Trade Ltd. Contention-based orthogonal frequency division multiple access (ofdma) communication
WO2016178474A1 (en) * 2015-05-06 2016-11-10 엘지전자 주식회사 Method for transmitting wireless frame including multiple signaling fields, and device therefor
US20160330055A1 (en) * 2015-05-07 2016-11-10 Samsung Electronics Co., Ltd. Apparatus for and method of an interleaver and a tone mapper
US20160353435A1 (en) * 2015-05-28 2016-12-01 Chittabrata Ghosh Random access with multiple time slots in a high efficiency wireless local-area network
EP3308587B1 (en) * 2015-06-11 2019-08-07 Telefonaktiebolaget LM Ericsson (publ) Enabling time-overlapping communication using csma/ca and ofdma
WO2016198105A1 (en) * 2015-06-11 2016-12-15 Telefonaktiebolaget Lm Ericsson (Publ) Alternation between communication using csma/ca and ofdma
CN112491518B (en) 2015-06-29 2023-10-31 韦勒斯标准与技术协会公司 Wireless communication method coexisting with conventional wireless communication terminal and wireless communication terminal
US20170013603A1 (en) * 2015-07-07 2017-01-12 Qualcomm Incorporated Techniques for transmitting/receiving wireless local area network information
US10405312B2 (en) * 2015-07-22 2019-09-03 Futurewei Technologies, Inc. System and method for transmissions with frequency diversity
US10334568B2 (en) 2015-07-28 2019-06-25 Lg Electronics Inc. Wireless frame transmission method on basis of signaling field sorting of each band and device for same
KR102615560B1 (en) * 2015-07-30 2023-12-20 주식회사 윌러스표준기술연구소 Wireless communication method and wireless communication terminal using signaling field
WO2017023006A1 (en) * 2015-07-31 2017-02-09 엘지전자 주식회사 Channel bonding based signal transmission method and device therefor
US10264580B2 (en) 2015-09-07 2019-04-16 Mediatek Inc. HE SIG B common field formats and indication
EP3148276B1 (en) 2015-09-28 2018-09-05 MediaTek Inc. Structured resource allocation signaling
US10187124B2 (en) * 2015-10-01 2019-01-22 Mediatek Inc Beam-change indication for channel estimation enhancement
US10211948B2 (en) 2015-10-12 2019-02-19 Mediatek Inc. LDPC tone mapping schemes for dual-sub-carrier modulation in WLAN
US10686641B2 (en) 2015-11-05 2020-06-16 Mediatek Inc. Signaling and feedback schemes of time-vary channels in high-efficiency WLAN
US10567555B2 (en) * 2015-11-06 2020-02-18 Qualcomm Incorporated Methods and apparatus for early detection of high efficiency wireless packets in wireless communication
US10742285B1 (en) 2015-11-13 2020-08-11 Marvell International Ltd. Explicit multiuser beamforming training in a wireless local area network
US11019559B2 (en) 2015-12-09 2021-05-25 Mediatek Inc. VHT operation information subfield design in WLAN
US10200228B2 (en) * 2015-12-17 2019-02-05 Mediatek Inc. Interleaver design for dual sub-carrier modulation in WLAN
US20170181167A1 (en) * 2015-12-22 2017-06-22 Intel IP Corporation Long range low power transmitter operations
KR102266149B1 (en) * 2015-12-24 2021-06-18 주식회사 윌러스표준기술연구소 Wireless communication method and wireless communication terminal using discontinuous channels
CN108449728B (en) 2016-01-07 2019-07-09 华为技术有限公司 WLAN information transferring method and device
WO2017131407A1 (en) * 2016-01-25 2017-08-03 엘지전자 주식회사 Method and apparatus for constructing signal field comprising allocation information for resource unit
US10225122B2 (en) 2016-02-04 2019-03-05 Mediatek Inc. Low PAPR dual sub-carrier modulation scheme for BPSK in WLAN
US10009840B2 (en) 2016-03-09 2018-06-26 Intel IP Corporation Access point (AP), Station (STA) and method for subcarrier scaling
JP6583535B2 (en) * 2016-03-11 2019-10-02 日本電気株式会社 Wireless LAN system, wireless LAN base station, wireless LAN terminal, communication method
KR101687194B1 (en) * 2016-06-09 2016-12-16 고승천 Wireless communication terminal and method for controlling thereof
WO2018048498A1 (en) * 2016-09-09 2018-03-15 Intel Corporation Signal spectra for wireless networks
WO2018048493A1 (en) * 2016-09-09 2018-03-15 Intel Corporation Symbol blocking and guard intervals for wireless networks
CN107872847B (en) * 2016-09-28 2024-01-19 华为技术有限公司 Method for transmitting data, network device and terminal device
TWI628926B (en) * 2016-09-30 2018-07-01 聯發科技股份有限公司 Channel estimation enhancement method and wireless device
WO2018079572A1 (en) * 2016-10-28 2018-05-03 株式会社Nttドコモ User terminal and wireless communication method
CN109644519B (en) * 2016-11-04 2022-02-22 松下电器(美国)知识产权公司 Communication apparatus and communication method
US10425826B2 (en) * 2016-12-21 2019-09-24 Qualcomm Incorporated Autonomous uplink (UL)/downlink (DL) transmission in new radio-spectrum sharing (NR-SS)
US10595217B2 (en) * 2017-02-13 2020-03-17 Qualcomm Incorporated Flexible interleaving for wireless communications
CN113395776B (en) * 2017-03-28 2023-09-08 Lg 电子株式会社 Method for transmitting and receiving signal in wireless LAN system and apparatus therefor
EP3613250A1 (en) 2017-04-21 2020-02-26 C/o Canon Kabushiki Kaisha Resource units for unassociated stations and grouped multi-user transmissions in 802.11ax networks
GB2567481A (en) * 2017-10-13 2019-04-17 Canon Kk Improved acknowledgment of grouped multi-user downlink transmissions in an 802.11ax network
WO2019005027A1 (en) * 2017-06-28 2019-01-03 Intel Corporation Methods of resource allocation for coordinated multi-ap channel bonding in ieee 802.11 wlans
CN109996343B (en) * 2017-12-29 2022-04-29 华为技术有限公司 Multi-channel hybrid transmission method and device in wireless local area network
US10742374B2 (en) * 2018-01-12 2020-08-11 Samsung Electronics Co., Ltd. Systems and methods for providing high data throughput in 6 GHz Wi-Fi network
WO2019202888A1 (en) * 2018-04-19 2019-10-24 村田機械株式会社 Exclusive control system and exclusive control method
WO2020022707A1 (en) * 2018-07-25 2020-01-30 엘지전자 주식회사 Method and device for transmitting ppdu in wireless lan system
US11057888B2 (en) * 2018-09-10 2021-07-06 Intel Corporation Physical layer signaling in next generation vehicle
SG10201808652UA (en) * 2018-10-01 2020-05-28 Panasonic Ip Corp America Communication Apparatus and Communication Method for Channel Estimation
CN111148243B (en) * 2018-11-06 2023-04-18 华为技术有限公司 Data transmission method and communication device
WO2020122523A1 (en) * 2018-12-13 2020-06-18 엘지전자 주식회사 Method and apparatus for transmitting eht ppdu in wireless lan system
US11394492B2 (en) * 2019-04-02 2022-07-19 Newracom, Inc. Binary convolutional coding (BCC) interleaver, dual sub-carrier modulation (DCM) constellation mapper, and low-density parity-check (LDPC) tone mapper design
KR102475871B1 (en) * 2019-11-14 2022-12-09 한국전자통신연구원 Method of communicating and apparatuses performing the same
US11057315B1 (en) 2020-01-06 2021-07-06 International Business Machines Corporation Generating a scaling plan for external systems during cloud tenant onboarding/offboarding
US20240056238A1 (en) * 2022-08-09 2024-02-15 Qualcomm Incorporated Physical (phy) layer communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147226A1 (en) * 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
US20080240275A1 (en) * 2007-03-23 2008-10-02 Sean Cai Scalable OFDM and OFDMA bandwidth allocation in communication systems
US20110032850A1 (en) * 2009-05-29 2011-02-10 Sean Cai Signal transmission with fixed subcarrier spacing within ofdma communication systems
KR20110044938A (en) * 2009-10-25 2011-05-03 엘지전자 주식회사 A method for transmitting a SAR preamble, a base station, a method for receiving the SAR preamble, and a user equipment

Family Cites Families (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852717A (en) 1996-11-20 1998-12-22 Shiva Corporation Performance optimizations for computer networks utilizing HTTP
US7274707B2 (en) 2002-03-07 2007-09-25 Koninklijke Philips Electronics N. V. Coexistence of stations capable of different modulation schemes in a wireless local area network
AU2002319335B2 (en) 2002-08-13 2008-12-04 Nokia Corporation Symbol interleaving
US8254346B2 (en) * 2002-09-17 2012-08-28 Broadcom Corporation Communication system and method for discovering end-points that utilize a link layer connection in a wired/wireless local area network
US7366159B1 (en) 2002-11-14 2008-04-29 At&T Corp. Mix protocol multi-media provider system incorporating a session initiation protocol based media server adapted to form preliminary communication with calling communication devices
US7236535B2 (en) * 2002-11-19 2007-06-26 Qualcomm Incorporated Reduced complexity channel estimation for wireless communication systems
KR100571806B1 (en) 2003-02-11 2006-04-17 삼성전자주식회사 Method for reducing feedback channel state information within adaptive OFDMA system and OFDMA system using the same
CN1830171B (en) * 2003-06-27 2010-05-05 诺基亚公司 Method and apparatus for packet aggregation in a wireless communication network
US7394858B2 (en) * 2003-08-08 2008-07-01 Intel Corporation Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system
KR100929094B1 (en) * 2003-09-20 2009-11-30 삼성전자주식회사 System and method for dynamic resource allocation in a communication system using orthogonal frequency division multiple access scheme
US7809020B2 (en) 2003-10-31 2010-10-05 Cisco Technology, Inc. Start of packet detection for multiple receiver combining and multiple input multiple output radio receivers
KR100600672B1 (en) 2003-11-28 2006-07-13 삼성전자주식회사 Pilot carrier allocation method and receiving method, receiving apparatus and, sending method, sending apparatus in ofdm system
EP1542488A1 (en) 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US8699508B2 (en) 2003-12-18 2014-04-15 Intel Corporation Response scheduling for multiple receivers
US7649833B2 (en) 2003-12-29 2010-01-19 Intel Corporation Multichannel orthogonal frequency division multiplexed receivers with antenna selection and maximum-ratio combining and associated methods
WO2005074305A1 (en) 2004-01-29 2005-08-11 Neocific, Inc. Methods and apparatus for multi-carrier, multi-cell wireless communication networks
US7684507B2 (en) 2004-04-13 2010-03-23 Intel Corporation Method and apparatus to select coding mode
EP3734867B1 (en) 2004-05-01 2023-12-13 Callahan Cellular LLC Methods and apparatus for multi-carrier communications with variable channel bandwidth
TWI255105B (en) 2004-05-20 2006-05-11 Ind Tech Res Inst Method and apparatus for papr reduction of an ofdm signal
EP1759496A1 (en) 2004-06-09 2007-03-07 Philips Intellectual Property & Standards GmbH Wireless communication system, wireless communication device for use as a station in a wireless communication system, a method of communication within a wireless communication system
US8619907B2 (en) * 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
GB2415863A (en) * 2004-07-01 2006-01-04 British Sky Broadcasting Ltd Wireless network system and devices with redundancy between orthogonally polarised beams
US7742388B2 (en) * 2004-07-20 2010-06-22 Daniel Shearer Packet generation systems and methods
US20070081484A1 (en) * 2004-07-29 2007-04-12 Wang Michael M Methods and apparatus for transmitting a frame structure in a wireless communication system
KR100895184B1 (en) * 2004-08-04 2009-04-24 삼성전자주식회사 Method and System for handoff between Base station Supporting Multi-Profile Operation in Broadband Wireless Access System
US7477633B2 (en) 2004-09-09 2009-01-13 Agere Systems Inc. Method and apparatus for varying the number of pilot tones in a multiple antenna communication system
US20060105764A1 (en) * 2004-11-16 2006-05-18 Dilip Krishnaswamy Adaptive wireless networks and methods for communicating multimedia in a proactive enterprise
JP5313506B2 (en) 2005-02-09 2013-10-09 アギア システムズ インコーポレーテッド Method and apparatus for preamble training with shortened long training field in multi-antenna communication system
EP1720369B1 (en) * 2005-05-02 2008-08-27 Nokia Siemens Networks Gmbh & Co. Kg OFDMA and IFDMA radio communication
US8532060B2 (en) 2005-05-12 2013-09-10 Koninklijke Philips N.V. Distributed learning method for wireless mesh networks
US7466964B2 (en) * 2005-06-29 2008-12-16 Intel Corporation Wireless communication device and method for coordinated channel access with reduced latency in a wireless network
CN101248697B (en) * 2005-07-14 2012-01-25 三洋电机株式会社 Radio apparatus
JP2007028602A (en) 2005-07-15 2007-02-01 Sanyo Electric Co Ltd Wireless device
US7907971B2 (en) * 2005-08-22 2011-03-15 Airgain, Inc. Optimized directional antenna system
JP2007074689A (en) 2005-09-06 2007-03-22 Tokyo Institute Of Technology Ofdm transmitter/receiver employing high-efficiency pilot signal
WO2007050869A2 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated A method and apparatus for multiple input multiple output multiple codeword (mimo mcw) transmission
US7729447B2 (en) 2005-12-22 2010-06-01 Samsung Electronics Co., Ltd. Interleaver design with multiple encoders for more than two transmit antennas in high throughput WLAN communication systems
US20070153760A1 (en) 2005-12-29 2007-07-05 Nir Shapira Method, apparatus and system of spatial division multiple access communication in a wireless local area network
EP1804452B1 (en) 2006-01-03 2011-05-11 Alcatel Lucent Scheduling of control channels in multicarrier transmission systems
CN101005344B (en) * 2006-01-19 2010-08-18 中兴通讯股份有限公司 Signal transmission method between base station and mobile station
KR100957410B1 (en) 2006-02-15 2010-05-11 삼성전자주식회사 Method for reporting channel state in mobile communication system
US8451808B2 (en) 2006-02-18 2013-05-28 Intel Corporation Techniques for 40 megahertz (MHz) channel switching
WO2007100774A1 (en) 2006-02-28 2007-09-07 Atc Technologies, Llc Systems, methods and transceivers for wireless communications over discontiguous spectrum segments
KR101274346B1 (en) 2006-04-25 2013-06-13 인터디지탈 테크날러지 코포레이션 High-throughput channel operation in a mesh wireless local area network
KR100785853B1 (en) 2006-06-05 2007-12-14 한국전자통신연구원 Resource allocation method for Orthogonal Frequency Division Multiplexing Access System
JP4697068B2 (en) * 2006-06-27 2011-06-08 ソニー株式会社 Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
EP1895703A1 (en) * 2006-07-05 2008-03-05 Koninklijke Philips Electronics N.V. Bandwidth asymmetric communication system based on OFDM and TDMA
US8509323B2 (en) 2006-08-22 2013-08-13 Motorola Mobility Llc Resource allocation including a DC sub-carrier in a wireless communication system
US8374192B2 (en) 2006-10-19 2013-02-12 Qualcomm Incorporated Power save enhancements for wireless communication
CN101018104B (en) * 2006-11-01 2010-06-09 北京创毅视通科技有限公司 Mobile digital multimedia broadcast signal transmission system and channel bandwidth change method
CN101202611A (en) * 2006-12-11 2008-06-18 中国科学院上海微系统与信息技术研究所 Method for transmitting of OFDMA downward pilot frequency structure supporting agile time domain resource allocation
KR100961744B1 (en) 2007-02-05 2010-06-07 삼성전자주식회사 Apparatus and method for uplink scheduling in broadband wireless communication system
US8249030B2 (en) 2007-03-23 2012-08-21 Intel Corporation Adapting TXOP requests for multi-radio platforms
US7746822B2 (en) 2007-03-29 2010-06-29 Intel Corporation Dynamic multi-access relaying for wireless networks
US8036702B2 (en) 2007-05-14 2011-10-11 Intel Corporation Method and apparatus for multicarrier communication in wireless systems
CN101374127B (en) * 2007-08-24 2011-11-30 中兴通讯股份有限公司 Receiving method and apparatus for multi-input multi-output OFDM system
US7995662B2 (en) 2007-09-14 2011-08-09 Intel Corporation CQI reporting techniques for OFDMA wireless networks
US11159909B2 (en) * 2008-02-05 2021-10-26 Victor Thomas Anderson Wireless location establishing device
WO2009102181A1 (en) 2008-02-17 2009-08-20 Lg Electronics Inc. Method of communication using frame
US8126403B2 (en) 2008-04-23 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Estimating and limiting inter-cell interference
CN101572683A (en) * 2008-04-30 2009-11-04 华为技术有限公司 Method, devices and system for orthogonal frequency division multiplexing
US8503283B2 (en) 2008-06-12 2013-08-06 Nokia Corporation Channel access protocol for wireless communication
KR101452504B1 (en) 2008-06-18 2014-10-23 엘지전자 주식회사 Channel access mechanism for Very High Throughput (VHT) wireless local access network system and station supporting the channel access mechanism
US8331310B2 (en) 2008-08-22 2012-12-11 Qualcomm Incorporated Systems and methods employing multiple input multiple output (MIMO) techniques
US8160166B2 (en) 2008-10-01 2012-04-17 Harris Corporation Orthogonal frequency division multiplexing (OFDM) communications device and method that incorporates low PAPR preamble with circuit for measuring frequency response of the communications channel
KR101230780B1 (en) * 2008-10-10 2013-02-06 엘지전자 주식회사 Method for transmitting control signal in wireless communication system
JP4631956B2 (en) 2008-10-14 2011-02-16 ソニー株式会社 Wireless communication apparatus and wireless communication method
JP4661938B2 (en) 2008-10-28 2011-03-30 ソニー株式会社 Wireless communication apparatus, wireless communication method, and computer program
TWI366346B (en) 2008-11-04 2012-06-11 Ralink Technology Corp Method for reading and writing a block interleaver and the reading circuit thereof
KR101289944B1 (en) 2008-12-12 2013-07-26 엘지전자 주식회사 Method for channel estimation in very high throughput wireless local area network system and apparatus for the same
US8831541B2 (en) 2008-12-18 2014-09-09 Qualcomm Incorporated Multiple antenna wireless telecommunication method and system
JP5359254B2 (en) 2008-12-19 2013-12-04 富士通株式会社 Transmission power control information setting method
WO2010082754A2 (en) * 2009-01-14 2010-07-22 Lg Electronics, Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
US8989106B2 (en) 2009-02-27 2015-03-24 Qualcomm Incorporated Methods and apparatuses for scheduling uplink request spatial division multiple access (RSDMA) messages in an SDMA capable wireless LAN
US8976741B2 (en) 2009-02-27 2015-03-10 Qualcomm Incorporated Piggybacking information in transmit opportunities
FR2943882A1 (en) 2009-03-27 2010-10-01 Thomson Licensing TRANSMITTING METHOD FOR WIRELESS NETWORK AND CORRESPONDING RECEPTION METHOD
US8472304B2 (en) 2009-03-31 2013-06-25 Mitsubishi Electric Research Laboratories, Inc. Carrier allocation and time sharing for OFDMA/TDMA networks
WO2010118383A1 (en) 2009-04-10 2010-10-14 Marvell World Trade Ltd. Signaling for multi-dimension wireless resource allocation
EP2420023B1 (en) 2009-04-13 2014-08-27 Marvell World Trade Ltd. Physical layer frame format for WLAN
US8948064B2 (en) 2009-04-20 2015-02-03 Full Spectrum Inc. Method and apparatus for long range private broadband wireless communication system
US8638745B2 (en) 2009-05-15 2014-01-28 Telefonaktiebolaget L M Ericsson (Publ) Reference symbol distribution method and apparatus
CN102461251A (en) 2009-05-25 2012-05-16 Lg电子株式会社 Method and apparatus for adjusting a parameter of a terminal in a wireless communication system
US8526351B2 (en) 2009-06-05 2013-09-03 Broadcom Corporation Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications
US8184566B2 (en) 2009-06-05 2012-05-22 Mediatek Inc. Systems for wireless local area network (WLAN) transmission and for coexistence of WLAN and another type of wireless transmission and methods thereof
US9197298B2 (en) 2009-06-05 2015-11-24 Broadcom Corporation Group identification and definition within multiple user, multiple access, and/or MIMO wireless communications
US9137815B2 (en) 2009-06-17 2015-09-15 Qualcomm Incorporated Multi-user multiple input multiple output wireless communications
KR101087286B1 (en) 2009-07-15 2011-11-29 서울대학교산학협력단 Virtualization system of WLAN
US8917784B2 (en) 2009-07-17 2014-12-23 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US8385443B2 (en) 2009-07-17 2013-02-26 Qualcomm Incorporated Constructing very high throughput long training field sequences
EP2460298A2 (en) 2009-07-29 2012-06-06 Marvell World Trade Ltd. Methods and apparatus for wlan transmission
US8599804B2 (en) 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
US20110038441A1 (en) 2009-08-12 2011-02-17 Cambridge Silicon Radio Limited Transmission mode detection
KR101711653B1 (en) * 2009-08-24 2017-03-13 한국전자통신연구원 Communicating apparatus and method in a high rate wireless communication system
US9344312B2 (en) 2009-08-26 2016-05-17 Lg Electronics Inc. Method and apparatus for multiple frame transmission for supporting MU-MIMO
CN101635619B (en) * 2009-08-28 2012-09-05 华为技术有限公司 Method, base station and system for transmitting subcarriers
KR20110027533A (en) 2009-09-09 2011-03-16 엘지전자 주식회사 Method and apparatus for transmitting control information in multiple antenna system
US8755363B2 (en) 2009-09-15 2014-06-17 Qualcomm Incorporated Physical layer signaling of control parameters
US8457079B2 (en) 2009-10-05 2013-06-04 Motorola Mobility Llc Method and apparatus for mitigating downlink control channel interference
US9055576B2 (en) 2009-10-08 2015-06-09 Qualcomm Incorporated Uplink resource allocation for LTE advanced
KR101721671B1 (en) 2009-10-26 2017-03-30 한국전자통신연구원 A Packet Mode Auto-detection for Multi-mode Wireless Transmission System, Signal Field Transmission for the Packet Mode Auto-detection and Gain Control based on the Packet Mode
US8325644B2 (en) * 2009-11-06 2012-12-04 Qualcomm Incorporated Mixed mode preamble design for signaling number of streams per client
EP2499872B1 (en) 2009-11-13 2015-01-14 Marvell World Trade Ltd. Multi-channel wireless communications
AU2010327466B2 (en) 2009-12-03 2014-08-21 Lg Electronics Inc. Method and apparatus for transmitting a frame in a wireless RAN system
US8817920B2 (en) * 2009-12-18 2014-08-26 Electronics And Telecommunications Research Institute Apparatus and method for detecting signal in wireless communication system
US8238316B2 (en) 2009-12-22 2012-08-07 Intel Corporation 802.11 very high throughput preamble signaling field with legacy compatibility
US8675575B2 (en) 2009-12-23 2014-03-18 Intel Corporation Scheduling mechanisms for media access control protection and channel sounding
CN102714869B (en) 2010-01-08 2016-04-06 夏普株式会社 For the method for mobile communication of sounding reference signal transmission enhancement and system and base station, subscriber equipment and integrated circuit wherein
HUE032245T2 (en) 2010-01-29 2017-09-28 Lg Electronics Inc Method and apparatus of transmitting a spatial stream for mu - mimo in a wireless local area network system
KR101758909B1 (en) 2010-02-18 2017-07-18 엘지전자 주식회사 Method and apparatus of transmitting reception acknowledgement in wireless local area network
KR101478040B1 (en) 2010-02-23 2015-01-06 한국전자통신연구원 Method and apparatus for transmitting/receiving data
GB2478140A (en) * 2010-02-25 2011-08-31 Sony Corp Selective local data insertion using hierarchical modulation symbols on OFDM sub-carriers in DVB-NGH system
US9794032B2 (en) 2010-03-05 2017-10-17 Lg Electronics Inc. PPDU receiving method and apparatus based on the MIMO technique in a WLAN system
US8559323B2 (en) * 2010-03-10 2013-10-15 Cisco Technology, Inc. Downlink OFDMA for service sets with mixed client types
US8982758B2 (en) 2010-03-29 2015-03-17 Intel Corporation Techniques for efficient acknowledgement for UL MU MIMO and uplink OFDMA in wireless networks
US8873582B2 (en) 2010-04-08 2014-10-28 Lg Electronics Inc. Method for transmitting PPDU in wireless local area network and apparatus for the same
TWI586202B (en) 2010-04-13 2017-06-01 內數位專利控股公司 Access point (ap) to perform multi-user (mu) multiple-input-mutiple-output (mimo) channel sounding and the method thereof
US20110261769A1 (en) 2010-04-26 2011-10-27 Samsung Electronics Co. Ltd. Method and apparatus for controlling inter-cell interference of control channels in ofdm-based hierarchical cellular system
US8306010B2 (en) 2010-04-28 2012-11-06 Intel Corporation Systems and methods for uplink multi-user multiple input multiple output (MU MIMO) medium access and error recovery
EP2579477B1 (en) 2010-05-26 2017-04-19 LG Electronics Inc. Method and apparatus for transceiving data in a wireless lan system
US8867574B2 (en) 2010-06-02 2014-10-21 Qualcomm Incorporated Format of VHT-SIG-B and service fields in IEEE 802.11AC
SG188377A1 (en) 2010-06-04 2013-04-30 Univ Texas Methods and apparatuses for relaying data in a wireless communications system
US8718169B2 (en) 2010-06-15 2014-05-06 Qualcomm Incorporated Using a field format on a communication device
RU2536858C2 (en) 2010-06-29 2014-12-27 ЭлДжи ЭЛЕКТРОНИКС ИНК. Method and apparatus for transmitting data frame in wlan system
EP3094036B1 (en) 2010-07-01 2018-06-27 Marvell World Trade Ltd. Modulation of signal field in a wlan frame header
WO2012033877A1 (en) 2010-09-08 2012-03-15 Mediatek Singapore Pte. Ltd. Psmp-based downlink multi-user mimo communications
US8989213B2 (en) * 2010-09-15 2015-03-24 Qualcomm Incorporated Physical layer header with access point identifier
US9119110B2 (en) * 2010-09-22 2015-08-25 Qualcomm, Incorporated Request to send (RTS) and clear to send (CTS) for multichannel operations
US9173110B2 (en) 2010-10-28 2015-10-27 Lg Electronics Inc. Method and apparatus for measuring a channel status between terminals in a wireless access system that supports cooperative communication
KR101099345B1 (en) 2010-12-01 2011-12-26 엘지전자 주식회사 Method for channel sounding in wireless local area network and apparatus for the same
US8761136B2 (en) * 2010-12-21 2014-06-24 Mediatek Inc. Method for eliminating interference in a receiver, and associated apparatus
US9300511B2 (en) 2011-01-05 2016-03-29 Qualcomm Incorporated Method and apparatus for improving throughput of 5 MHZ WLAN transmissions
US9130727B2 (en) 2011-02-04 2015-09-08 Marvell World Trade Ltd. Control mode PHY for WLAN
EP2674002B1 (en) 2011-02-08 2018-06-06 Marvell World Trade Ltd. Wlan channel allocation
CN102638671A (en) 2011-02-15 2012-08-15 华为终端有限公司 Method and device for processing conference information in video conference
US9160503B2 (en) 2011-03-04 2015-10-13 Qualcomm Incorporated Method and apparatus supporting improved wide bandwidth transmissions
US8848639B2 (en) 2011-04-18 2014-09-30 Broadcom Corporation Frequency selective transmission within single user, multiple user, multiple access, and/or MIMO wireless communications
US9184969B2 (en) 2011-04-24 2015-11-10 Broadcom Corporation Preamble for use within single user, multiple user, multiple access, and/or MIMO wireless communications
US9113490B2 (en) 2011-04-24 2015-08-18 Broadcom Corporation Short training field (STF) for use within single user, multiple user, multiple access, and/or MIMO wireless communications
EP2702737A4 (en) 2011-04-26 2015-03-04 Intel Corp Methods and arrangements for low power wireless networks
CN102201891B (en) * 2011-05-03 2015-07-22 中兴通讯股份有限公司 Wireless frame transmission method and device
US9385911B2 (en) 2011-05-13 2016-07-05 Sameer Vermani Systems and methods for wireless communication of packets having a plurality of formats
WO2012173975A2 (en) 2011-06-15 2012-12-20 Marvell World Trade Ltd. Low bandwidth phy for wlan
KR101933738B1 (en) 2011-06-24 2018-12-28 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for supporting wideband and multiple bandwidth transmission protocols
US8897253B2 (en) 2011-08-12 2014-11-25 Interdigital Patent Holdings, Inc. Flexible bandwidth operation in wireless systems
US20130215993A1 (en) * 2011-08-24 2013-08-22 Qualcomm Incorporated Systems and methods for detecting transmissions based on 32-point and 64-point fast fourier transforms
CN102281247B (en) 2011-08-26 2017-12-29 中兴通讯股份有限公司 A kind of control channel resource allocation method and system
CN103002448B (en) * 2011-09-19 2018-04-17 工业和信息化部电信传输研究所 A kind of wireless lan channel collocation method and device
KR102195872B1 (en) 2011-10-13 2020-12-28 한국전자통신연구원 Apparatus and method for transmitting/receiving data in communication system
KR20140084171A (en) 2011-10-14 2014-07-04 엘지전자 주식회사 Method and device for processing uplink signal in wlan system
KR101973746B1 (en) 2011-10-17 2019-09-02 엘지전자 주식회사 Method and apparatus for transmitting a frame in a wireless lan system
CN103858508B (en) 2011-11-23 2017-11-14 Lg电子株式会社 Method based on service window scheduling transceiving data in Wireless LAN system and the equipment for supporting this method
KR20130059686A (en) * 2011-11-29 2013-06-07 한국전자통신연구원 Method for transmitting and receiving wireless signal in wireless communication and apparatus for the same
CN102420794B (en) * 2011-11-29 2014-02-26 中国空间技术研究院 4M transmission method of OFDM structure of satellite CMMB system
WO2013089404A1 (en) 2011-12-11 2013-06-20 엘지전자 주식회사 Method and device for transmitting and receiving frame using short guard interval
US8861470B2 (en) 2011-12-20 2014-10-14 Electronics And Telecommunications Research Institute Apparatus and method for allocating resource in communication system
US9088504B2 (en) 2012-01-06 2015-07-21 Qualcomm Incorporated Systems and methods for wireless communication of long data units
EP4447609A2 (en) 2012-03-01 2024-10-16 InterDigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
MY165673A (en) 2012-03-02 2018-04-18 Interdigital Patent Holdings Inc Methods and system for performing handover in a wireless communication system
SG11201405541WA (en) 2012-03-06 2014-10-30 Interdigital Patent Holdings Supporting a large number of devices in wireless communications
WO2013141672A1 (en) 2012-03-23 2013-09-26 엘지전자 주식회사 Uplink signal transmission method and station device, and uplink signal receiving method and access point device
US9100984B2 (en) 2012-04-04 2015-08-04 Qualcomm Incorporated Wireless channelization
EP2845342A1 (en) 2012-04-30 2015-03-11 Interdigital Patent Holdings, Inc. Method and apparatus for supporting coordinated orthogonal block-based resource allocation (cobra) operations
EP3367586A1 (en) 2012-05-09 2018-08-29 Interdigital Patent Holdings, Inc. Multi-user multiple input multiple output communications in wireless local area networks and wireless transmit and receive units
US20130301563A1 (en) 2012-05-11 2013-11-14 Samsung Electronics Co., Ltd Pilot design for millimeter wave broadband
CN104380770B (en) 2012-06-19 2019-04-02 瑞典爱立信有限公司 Method and apparatus for D2D discovery
US20140003415A1 (en) 2012-07-02 2014-01-02 Qualcomm Incorporated Systems and methods for enhanced wireless communication frames
CN102833057B (en) * 2012-08-10 2015-06-17 宁波大学 Multi-user OFDM (orthogonal frequency division multiplexing) resource allocation method
WO2014035085A1 (en) 2012-08-28 2014-03-06 엘지전자 주식회사 Method for detecting downlink control channel in wireless communication system and apparatus for same
KR20150079803A (en) 2012-10-26 2015-07-08 인터디지탈 패튼 홀딩스, 인크 Uniform wlan multi-ap physical layer methods
CN103796250B (en) 2012-10-31 2018-06-12 中兴通讯股份有限公司 Determine the method and system of WLAN business QOS in return network
US20140211775A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Larger delay spread support for wifi bands
US9419752B2 (en) 2013-03-15 2016-08-16 Samsung Electronics Co., Ltd. Transmission opportunity operation of uplink multi-user multiple-input-multiple-output communication in wireless networks
US9344238B2 (en) 2013-04-15 2016-05-17 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US9729285B2 (en) 2013-06-13 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd Flexible OFDMA packet structure for wireless communications
US9439161B2 (en) 2013-07-17 2016-09-06 Qualcomm Incorporated Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
US9648620B2 (en) 2013-08-28 2017-05-09 Qualcomm Incorporated Tone allocation for multiple access wireless networks
US9467379B2 (en) 2013-08-28 2016-10-11 Qualcomm Incorporated Methods and apparatus for multiple user uplink
US20150117428A1 (en) * 2013-10-28 2015-04-30 Electronics And Telecommunications Research Institute Multi-mode wireless transmission method and apparatus
US10230497B2 (en) 2013-11-01 2019-03-12 Qualcomm Incorporated Protocols for multiple user frame exchanges
US9467259B2 (en) 2013-11-01 2016-10-11 Qualcomm Incorporated Methods and apparatus for wireless communication using a mixed format
WO2015070230A1 (en) 2013-11-11 2015-05-14 Marvell World Trade Ltd. Medium access control for multi-channel ofdm in a wireless local area network
WO2015073437A1 (en) * 2013-11-12 2015-05-21 Huawei Technologies Co., Ltd. System and method for high efficiency wireless local area network communications
WO2015077068A1 (en) 2013-11-19 2015-05-28 Intel IP Corporation Transmit time offset in uplink multi-user multiple input-multiple output system
CN108494538B (en) 2013-11-19 2021-11-16 英特尔公司 Method, apparatus, and computer readable medium for multi-user scheduling in wireless local area networks
CN106464652B (en) 2013-11-19 2019-12-13 英特尔Ip公司 Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
US9271241B2 (en) 2013-11-19 2016-02-23 Intel IP Corporation Access point and methods for distinguishing HEW physical layer packets with backwards compatibility
US9544914B2 (en) 2013-11-19 2017-01-10 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9325463B2 (en) 2013-11-19 2016-04-26 Intel IP Corporation High-efficiency WLAN (HEW) master station and methods to increase information bits for HEW communication
WO2015081288A1 (en) 2013-11-27 2015-06-04 Marvell Semiconductor, Inc. Medium access protection and bandwidth negotiation in a wireless local area network
US9680563B2 (en) 2014-01-17 2017-06-13 Apple Inc. System and method for partial bandwidth communication
WO2015127777A1 (en) 2014-02-25 2015-09-03 Intel IP Corporation Access point assisted spatial reuse
WO2015130341A1 (en) 2014-02-25 2015-09-03 Intel IP Corporation Systems and methods for frequency multiplexing mu-mimo
EP3111710B1 (en) 2014-02-25 2023-06-21 SOLiD, INC. Uplink or downlink mu-mimo apparatus and method
TWI615055B (en) 2014-02-25 2018-02-11 英特爾Ip公司 Access point assisted spatial reuse
TWI572160B (en) 2014-02-25 2017-02-21 英特爾Ip公司 Uplink or downlink mu-mimo apparatus and method
TWI573413B (en) 2014-04-01 2017-03-01 英特爾Ip公司 Master station and method for hew communication using a transmission signaling structure for a hew signal field
TWI578838B (en) 2014-04-01 2017-04-11 英特爾Ip公司 Wireless apparatus for high-efficiency (he) communication with additional subcarriers
US9680603B2 (en) 2014-04-08 2017-06-13 Intel IP Corporation High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US9344221B2 (en) * 2014-04-29 2016-05-17 Newracom, Inc. Interleaving and deinterleaving method
TWI566562B (en) 2014-04-30 2017-01-11 英特爾Ip公司 Hew communication station and method for communicating longer duration ofdm symbols using minimum bandwidth units having tone allocations
US9900199B2 (en) * 2014-05-06 2018-02-20 Qualcomm Incorporated Systems and methods for improvements to training field design for increased symbol durations
US9667429B2 (en) * 2014-05-06 2017-05-30 Linear Technology Corporation PSE controller in PoE system detects different PDs on data pairs and spare pairs
US20150327121A1 (en) 2014-05-08 2015-11-12 Guoqing C. Li Method, apparatus, and computer readable media for acknowledgement in wireless networks
WO2015195460A1 (en) 2014-06-18 2015-12-23 Intel IP Corporation High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations
TWI632820B (en) 2014-07-15 2018-08-11 英特爾Ip公司 Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9705643B2 (en) 2014-07-15 2017-07-11 Intel IP Corporation High-efficiency wireless local-area network devices and methods for acknowledgements during scheduled transmission opportunities
TWI626839B (en) 2014-07-15 2018-06-11 英特爾Ip公司 High-efficiency (he) communication station and method for communicating longer duration ofdm symbols within 40 mhz and 80 mhz bandwidth allocations
WO2016010578A1 (en) 2014-07-18 2016-01-21 Intel IP Corporation Method, apparatus, and computer readable medium for transmitting pilots in wireless local area networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147226A1 (en) * 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
US20080240275A1 (en) * 2007-03-23 2008-10-02 Sean Cai Scalable OFDM and OFDMA bandwidth allocation in communication systems
US20110032850A1 (en) * 2009-05-29 2011-02-10 Sean Cai Signal transmission with fixed subcarrier spacing within ofdma communication systems
KR20110044938A (en) * 2009-10-25 2011-05-03 엘지전자 주식회사 A method for transmitting a SAR preamble, a base station, a method for receiving the SAR preamble, and a user equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HTC: "GUARD INTERVAL ESTIMATION CONSIDERING SWITCH TIME AND PROPAGATION DELAY", R1-134362, 3GPP TSG RAN WG1 MEETING #74BIS, 7 October 2013 (2013-10-07), pages 1 - 4, XP050717504, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg-ran/WG1_RL1/TSGR1_74b/Docs/R1-134362.zip> *
See also references of EP3072347A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867210B2 (en) 2013-11-19 2018-01-09 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9462504B2 (en) 2013-11-19 2016-10-04 Intel IP Corporation Transmit time offset in uplink multi-user multiple input-multiple output system
US9544914B2 (en) 2013-11-19 2017-01-10 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9615291B2 (en) 2013-11-19 2017-04-04 Intel IP Corporation High-efficiency station (STA) and method for decoding an HE-PPDU
US9853784B2 (en) 2013-11-19 2017-12-26 Intel IP Corporation HEW master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels
US9325463B2 (en) 2013-11-19 2016-04-26 Intel IP Corporation High-efficiency WLAN (HEW) master station and methods to increase information bits for HEW communication
US9882695B2 (en) 2013-11-19 2018-01-30 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9900906B2 (en) 2013-11-19 2018-02-20 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9961678B2 (en) 2013-11-19 2018-05-01 Intel IP Corporation Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
US10177888B2 (en) 2013-11-19 2019-01-08 Intel IP Corporation Wireless apparatus for high-efficiency (HE) communication with additional subcarriers
US10348469B2 (en) 2013-11-19 2019-07-09 Intel IP Corporation Hew master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels
US10368368B2 (en) 2013-11-19 2019-07-30 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9680603B2 (en) 2014-04-08 2017-06-13 Intel IP Corporation High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth

Also Published As

Publication number Publication date
US9325463B2 (en) 2016-04-26
CN107947850A (en) 2018-04-20
US10348469B2 (en) 2019-07-09
US20180109365A1 (en) 2018-04-19
CN105706407B (en) 2019-06-14
CN105900511A (en) 2016-08-24
EP3373501A1 (en) 2018-09-12
US20160211961A1 (en) 2016-07-21
US20150139206A1 (en) 2015-05-21
US20170135035A1 (en) 2017-05-11
US20160241366A1 (en) 2016-08-18
WO2015077042A1 (en) 2015-05-28
WO2015077040A1 (en) 2015-05-28
WO2015076932A1 (en) 2015-05-28
CN107947850B (en) 2020-07-14
CN105917611A (en) 2016-08-31
EP3072345B1 (en) 2021-02-24
EP3101833A1 (en) 2016-12-07
US10177888B2 (en) 2019-01-08
CN105917611B (en) 2019-06-11
US9450725B2 (en) 2016-09-20
US9838961B2 (en) 2017-12-05
CN105659656A (en) 2016-06-08
EP3072347A1 (en) 2016-09-28
EP3101833B1 (en) 2019-12-25
CN105900511B (en) 2019-10-15
EP3072347A4 (en) 2017-08-23
US20150139118A1 (en) 2015-05-21
US9853784B2 (en) 2017-12-26
EP3072324A1 (en) 2016-09-28
CN106100807B (en) 2019-10-08
US20150139091A1 (en) 2015-05-21
CN105637968A (en) 2016-06-01
EP3072255A1 (en) 2016-09-28
US20160211944A1 (en) 2016-07-21
EP3072324B1 (en) 2019-06-05
EP3072255A4 (en) 2017-08-16
EP3373501B1 (en) 2021-10-06
EP3072324A4 (en) 2017-08-30
EP3072345A1 (en) 2016-09-28
WO2015077040A8 (en) 2016-05-06
EP3072345A4 (en) 2017-05-31
CN106100807A (en) 2016-11-09
WO2015076923A1 (en) 2015-05-28
CN105706407A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
US20150139118A1 (en) Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
US10448384B2 (en) High-efficiency Wi-Fi (HEW) station and access point (AP) and method for signaling of channel resource allocations
US9882695B2 (en) Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9775147B2 (en) Master station and method for high-efficiency Wi-Fi (HEW) communication using a multiple access technique
US9699807B2 (en) High-efficiency Wi-Fi (HEW) station and access point (AP) and method for random access contention
TWI572173B (en) Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
CN106464652B (en) Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
CN107409407B (en) High efficiency WI-fi (hew) station, access point and method for random access contention
JP7560516B2 (en) Wireless device, wireless method, and storage medium
US9729284B2 (en) High-efficiency Wi-Fi (HEW) station and access point (AP) and method for resource allocation signaling
US10014994B2 (en) Wireless devices, computer-readable media, and methods for high-efficiency local-area network (HEW) distributed sub-carrier allocation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014864636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864636

Country of ref document: EP