TWI573413B - Master station and method for hew communication using a transmission signaling structure for a hew signal field - Google Patents

Master station and method for hew communication using a transmission signaling structure for a hew signal field Download PDF

Info

Publication number
TWI573413B
TWI573413B TW104108807A TW104108807A TWI573413B TW I573413 B TWI573413 B TW I573413B TW 104108807 A TW104108807 A TW 104108807A TW 104108807 A TW104108807 A TW 104108807A TW I573413 B TWI573413 B TW I573413B
Authority
TW
Taiwan
Prior art keywords
ofdma
mhz
station
hew
channel
Prior art date
Application number
TW104108807A
Other languages
Chinese (zh)
Other versions
TW201541890A (en
Inventor
夏爾納茲 阿吉佶
湯瑪斯J 肯尼
李國昆
艾爾戴德 佩瑞希亞
羅伯特J 史戴西
Original Assignee
英特爾Ip公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/458,000 external-priority patent/US9544914B2/en
Priority claimed from PCT/US2014/065166 external-priority patent/WO2015077096A1/en
Application filed by 英特爾Ip公司 filed Critical 英特爾Ip公司
Publication of TW201541890A publication Critical patent/TW201541890A/en
Application granted granted Critical
Publication of TWI573413B publication Critical patent/TWI573413B/en

Links

Description

用於使用針對高效能無線區域網路(HEW)信號欄位之發射傳訊結構的 HEW通訊之主站及方法 Used to transmit transmit messaging structures for high performance wireless local area network (HEW) signal fields HEW communication main station and method 優先權主張 Priority claim

本申請案主張2014年8月12日申請之美國專利申請案序列號第14/458,000號之優先權權益,該美國專利申請案主張以下美國臨時專利申請案之優先權權益:2013年11月19日申請之序列號第61/906,059號,2014年4月1日申請之序列號第61/973,376號,2014年4月8日申請之序列號第61/976,951號,2014年4月30日申請之序列號第61/986,256號,2014年4月30日申請之序列號第61/986,250號,2014年5月12日申請之序列號第61/991,730號,2014年6月18日申請之序列號第62/013,869號,2014年7月15日申請之序列號第62/024,813號,2014年5月08日申請之序列號第61/990,414號,2014年7月15日申請之序列號第62/024,801號,及2014年7月18日申請之序列號第62/026,277號,該等美國臨時專利申請案全部以引用方式整體併入本 文。 This application claims the benefit of priority to U.S. Patent Application Serial No. 14/458,000, filed on Aug. 12, 2014. Serial No. 61/906,059, filed on April 1, 2014, Serial No. 61/973,376, filed on April 1, 2014, Serial No. 61/976,951, filed on April 8, 2014, filed on April 30, 2014 Serial No. 61/986,256, Serial No. 61/986,250, filed on Apr. 30, 2014, Serial No. 61/991,730, filed on May 12, 2014, No. 62/013,869, Serial No. 62/024,813, filed on July 15, 2014, Serial No. 61/990,414, filed on May 08, 2014, Serial No. Serial No. 62/026,277, filed on Jul. 18, 2014, the entire contents of Text.

發明領域 Field of invention

實施例係關於無線網路。一些實施例係關於無線區域網路(WLAN)、Wi-Fi網路及根據IEEE 802.11標準之一操作的網路,該等IEEE 802.11標準諸如IEEE 802.11ac標準或IEEE 802.11ax SIG(稱為DensiFi)。一些實施例係關於高效能無線通訊或高效能WLAN(HEW)通訊。 Embodiments relate to wireless networks. Some embodiments relate to wireless local area networks (WLANs), Wi-Fi networks, and networks operating in accordance with one of the IEEE 802.11 standards, such as the IEEE 802.11ac standard or the IEEE 802.11ax SIG (referred to as DensiFi). . Some embodiments relate to high performance wireless communication or high performance WLAN (HEW) communication.

發明背景 Background of the invention

被稱為高效能WLAN(HEW)的IEEE 802.11ax為IEEE 802.11ac標準之後續,且意欲提高無線區域網路(WLAN)之效能。HEW之目標在於提供IEEE 802.11ac標準之多達四倍或更大通量。HEW可在高密度熱點及蜂巢式卸載情形中為尤其適合的,其中競爭無線媒體的許多裝置可具有低至適度資料速率要求。Wi-Fi標準已自IEEE 802.11b演進至IEEE 802.11g/a,演進至IEEE 802.11n,演進至IEEE 802.11ac,且現演進至IEEE 802.11ax。在此等標準之每一演變中,存在用以提供與先前標準之共存的機構。對於HEW,與此等舊有標準共存的相同要求存在。HEW之一問題為頻寬之有效分配及使用。 IEEE 802.11ax, known as High Efficiency WLAN (HEW), is a successor to the IEEE 802.11ac standard and is intended to improve the performance of wireless local area networks (WLANs). The goal of HEW is to provide up to four times or more throughput of the IEEE 802.11ac standard. HEWs are particularly suitable in high density hotspots and cellular offload scenarios where many devices competing for wireless media can have low to moderate data rate requirements. The Wi-Fi standard has evolved from IEEE 802.11b to IEEE 802.11g/a, evolved to IEEE 802.11n, evolved to IEEE 802.11ac, and is now evolving to IEEE 802.11ax. In each of these standards, there are mechanisms for providing coexistence with previous standards. For HEW, the same requirements exist for coexistence with these old standards. One of the problems with HEW is the efficient allocation and use of bandwidth.

因此,存在對允許HEW裝置與舊有裝置共存的系統及方法之一般需求。亦存在對允許HEW裝置與舊有裝置共存且更有效地分配並使用可利用的頻寬的系統及方法之一般需求。 Therefore, there is a general need for systems and methods that allow HEW devices to coexist with legacy devices. There is also a general need for systems and methods that allow HEW devices to coexist with legacy devices and to more efficiently allocate and use available bandwidth.

依據本發明之一實施例,係特地提出一種通訊站,其經配置以作為一高效能WLAN(HEW)主站來操作,該通訊站包含硬體處理電路,該硬體處理電路經組配以進行下列動作:產生一封包,該封包包括一發射傳訊結構以組配排定HEW站,以用於根據一正交分頻多重存取(OFDMA)技術在通道資源上通訊,該等通道資源包含一20MHz通道內之一或多個OFDMA子通道,其中每一OFDMA子通道包含具有一預定頻寬之一或多個最小頻寬單元。 In accordance with an embodiment of the present invention, a communication station is specifically provided that is configured to operate as a high performance WLAN (HEW) primary station that includes a hardware processing circuit that is assembled Performing the following actions: generating a packet, the packet including a transmit messaging structure to group the scheduled HEW stations for communicating on channel resources according to an orthogonal frequency division multiple access (OFDMA) technique, the channel resources including One or more OFDMA sub-channels within a 20 MHz channel, wherein each OFDMA sub-channel includes one or more minimum bandwidth units having a predetermined bandwidth.

100‧‧‧HEW網路 100‧‧‧HEW Network

102‧‧‧主站(STA)/存取點 102‧‧‧Master Station (STA)/Access Point

104‧‧‧HEW站/排定HEW站/排定站 104‧‧‧HEW station/scheduled HEW station/schedule station

106‧‧‧舊有裝置/舊有站 106‧‧‧Old device/old station

200‧‧‧發射傳訊結構 200‧‧‧Transmission communication structure

202‧‧‧20MHz通道/舊有20MHz通道/通道 202‧‧20MHz channel/old 20MHz channel/channel

211‧‧‧習知VHT-SIG-A 211‧‧‧Knowledge VHT-SIG-A

212‧‧‧HEW信號欄位/HEW信號欄位(HEW-SIG-A)/HEW SIG 212‧‧‧HEW Signal Field/HEW Signal Field (HEW-SIG-A)/HEW SIG

214‧‧‧欄位/HEW短訓練欄位(HEW-STF) 214‧‧‧ Field/HEW Short Training Field (HEW-STF)

216‧‧‧欄位/資料欄位 216‧‧‧Field/data field

302‧‧‧OFDMA子通道/10MHz子通道/子通道 302‧‧‧OFDMA subchannel/10MHz subchannel/subchannel

312A~312F‧‧‧子通道組態 312A~312F‧‧‧Subchannel configuration

500‧‧‧HEW裝置 500‧‧‧HEW device

502‧‧‧實體層(PHY)電路/PHY 502‧‧‧Physical Layer (PHY) Circuit/PHY

504‧‧‧媒體存取控制層電路(MAC) 504‧‧‧Media Access Control Layer Circuit (MAC)

506‧‧‧其他處理電路 506‧‧‧Other processing circuits

508‧‧‧記憶體 508‧‧‧ memory

600‧‧‧程序 600‧‧‧Program

602~606‧‧‧操作 602~606‧‧‧ operation

圖1例示根據一些實施例之HEW網路;圖2A例示舊有封包結構;圖2B例示根據一些實施例之HEW封包結構;圖3例示根據一些實施例之用於20MHz通道之OFDMA子通道組態;圖4例示根據一些實施例之用於20MHz通道之簡化OFDMA子通道組態;圖5為根據一些實施例之HEW裝置之功能方塊圖;以及圖6為根據一些實施例之用於藉由主站的HEW通訊之程序。 1 illustrates an HEW network in accordance with some embodiments; FIG. 2A illustrates an old packet structure; FIG. 2B illustrates an HEW packet structure in accordance with some embodiments; and FIG. 3 illustrates an OFDMA subchannel configuration for a 20 MHz channel in accordance with some embodiments. FIG. 4 illustrates a simplified OFDMA subchannel configuration for a 20 MHz channel in accordance with some embodiments; FIG. 5 is a functional block diagram of a HEW device in accordance with some embodiments; and FIG. 6 is for use by a host in accordance with some embodiments Station's HEW communication program.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

以下描述及圖式充分地例示特定實施例以允許 熟習此項技術者實踐該等實施例。其他實施例可併入結構、邏輯、電氣、過程及其他變化。一些實施例之部分及特徵可包括於其他實施例之該等部分及特徵中,或由其他實施例之該等部分及特徵替代。申請專利範圍中所闡述之實施例涵蓋該等請求項之所有可利用的等效物。 The following description and drawings fully illustrate specific embodiments to allow Those skilled in the art practice these embodiments. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those portions and features of other embodiments. The embodiments set forth in the scope of the patent application cover all available equivalents of the claims.

圖1例示根據一些實施例之HEW網路。HEW網路100可包括主站(STA)102、多個HEW站104(HEW裝置)及多個舊有裝置106(舊有站)。主站102可經配置以根據IEEE 802.11標準中一或多個與HEW站104及舊有裝置106通訊。根據一些HEW實施例,主站102及HEW站104可根據IEEE 802.11ax標準通訊。根據一些HEW實施例,存取點102可作為主站操作,該主站可經配置以爭用無線媒體(例如,在競爭週期期間)以便針對HEW控制週期(亦即,發射機會(TXOP))接收媒體之排斥控制。主站可在HEW控制週期開始時發射HEW主同步發射。在HEW控制週期期間,排定HEW站104可根據基於非競爭的多重存取技術與主站通訊。此不同於裝置根據基於競爭的通訊技術而非多重存取技術通訊的習知Wi-Fi通訊。在HEW控制週期期間,主站可使用一或多個HEW訊框與HEW站通訊。在HEW控制週期期間,舊有站避免通訊。在一些實施例中,主同步發射可被稱為HEW控制及排程發射。 FIG. 1 illustrates a HEW network in accordance with some embodiments. The HEW network 100 can include a primary station (STA) 102, a plurality of HEW stations 104 (HEW devices), and a plurality of legacy devices 106 (legacy stations). The primary station 102 can be configured to communicate with the HEW station 104 and the legacy device 106 in accordance with one or more of the IEEE 802.11 standards. According to some HEW embodiments, the primary station 102 and the HEW station 104 can communicate in accordance with the IEEE 802.11ax standard. According to some HEW embodiments, the access point 102 can operate as a primary station that can be configured to contend for wireless media (e.g., during a contention period) to control the period for the HEW (i.e., the transmitter (TXOP)) Receive media exclusion controls. The primary station can transmit HEW primary synchronous transmissions at the beginning of the HEW control period. During the HEW control period, the scheduled HEW station 104 can communicate with the primary station in accordance with a non-contention based multiple access technique. This is different from conventional Wi-Fi communication in which the device communicates based on contention-based communication technologies rather than multiple access technologies. During the HEW control period, the primary station can communicate with the HEW station using one or more HEW frames. Old stations avoid communication during the HEW control cycle. In some embodiments, the primary synchronization transmission may be referred to as HEW control and scheduled transmission.

在一些實施例中,在HEW控制週期期間使用之多存重取技術可為排定正交分頻多重存取(OFDMA)技術,然而此並非必要條件。在一些實施例中,多重存取技術可 為分時多重存取(TDMA)技術或分頻多重存取(FDMA)技術。在一些實施例中,多重存取技術可為分空間多重存取(SDMA)技術。在控制週期期間的通訊可為上行鏈路通訊或下行鏈路通訊。 In some embodiments, the multiple access re-acquisition technique used during the HEW control period may be an Orthogonal Frequency Division Multiple Access (OFDMA) technique, however this is not a requirement. In some embodiments, multiple access techniques may It is a time division multiple access (TDMA) technology or a frequency division multiple access (FDMA) technology. In some embodiments, the multiple access technology may be a sub-space multiple access (SDMA) technique. The communication during the control period can be uplink communication or downlink communication.

主站102亦可根據舊有IEEE 802.11通訊技術與舊有站106通訊。在一些實施例中,主站102亦可為可組配的,以根據舊有IEEE 802.11通訊技術在HEW控制週期之外與HEW站104通訊,然而此並非必要條件。 The primary station 102 can also communicate with the legacy station 106 in accordance with the legacy IEEE 802.11 communication technology. In some embodiments, the primary station 102 can also be configurable to communicate with the HEW station 104 outside of the HEW control period in accordance with the legacy IEEE 802.11 communication technology, although this is not a requirement.

在一些實施例中,HEW訊框之資料欄位可經組配成具有相同頻寬,且頻寬可為20MHz、40MHz或80MHz相連頻寬或80+80MHz(160MHz)非相連頻寬之一。在一些實施例中,可使用320MHz相連頻寬。在此等實施例中,HEW訊框之每一資料欄位可經組配以用於發射若干空間串流。在一些實施例中,HEW訊框之資料欄位可在OFDMA子通道內通訊,該等OFDMA子通道具有一或多個最小頻寬單元。以下更詳細地論述此等實施例。 In some embodiments, the data fields of the HEW frame can be grouped to have the same bandwidth, and the bandwidth can be one of a 20 MHz, 40 MHz, or 80 MHz connected bandwidth or a 80+80 MHz (160 MHz) non-contiguous bandwidth. In some embodiments, a 320 MHz connected bandwidth can be used. In these embodiments, each data field of the HEW frame can be assembled for transmitting a number of spatial streams. In some embodiments, the data field of the HEW frame can be communicated within an OFDMA subchannel having one or more minimum bandwidth units. These embodiments are discussed in more detail below.

在一些實施例中,發射傳訊結構用來攜帶封包資訊(例如,HEW訊框)以組配裝置(例如,HEW站104)以便解調封包之一特定部分且/或以組配裝置以便使用特定OFDMA及MU-MIMO資源發射或接收。在一些實施例中,封包之該特定部分可包含一或多個20MHz頻寬結構(例如,通道)之一或多個最小頻寬單元。每一20MHz頻寬結構可包含若干最小頻寬單元以允許每一20MHz片段具有相較於20MHz之較小粒度。本文所揭示之一些實施例可提供傳 訊設計以在諸如高效能WLAN(HEW)的下一代Wi-Fi標準(亦即,IEEE 802.11ax任務組)中組配OFDMA接收器,然而實施例之範疇在此方面不受限制。 In some embodiments, the transmit messaging structure is configured to carry packet information (eg, HEW frame) to assemble devices (eg, HEW station 104) to demodulate a particular portion of the packet and/or to assemble the device for use with a particular OFDMA and MU-MIMO resources are transmitted or received. In some embodiments, the particular portion of the packet can include one or more of the minimum bandwidth units of one or more 20 MHz bandwidth structures (eg, channels). Each 20 MHz bandwidth structure may include several minimum bandwidth units to allow each 20 MHz segment to have a smaller granularity than 20 MHz. Some embodiments disclosed herein may provide The design is to assemble an OFDMA receiver in a next-generation Wi-Fi standard such as High Efficiency WLAN (HEW) (ie, the IEEE 802.11ax task group), although the scope of the embodiments is not limited in this respect.

因為HEW之一主要使用狀況為許多裝置試圖以適度資料速率存取媒體的密集佈署,所以需要允許較多同時存取裝置的技術。當前IEEE 802.11ac規格允許具有八個同時多輸入多輸出(MIMO)串流的高達160MHz頻寬。HEW之焦點在於使用該寬頻寬來提供對許多裝置之存取。本文所揭示之一些實施例定義發射傳訊結構,該發射傳訊結構攜帶封包資訊以組配OFDMA接收器且/或以組配藉由接收端處之裝置的即將出現的OFDMA發射。 Since one of the primary use cases of HEW is that many devices attempt to access dense deployment of media at moderate data rates, there is a need for techniques that allow for more simultaneous access devices. The current IEEE 802.11ac specification allows for up to 160 MHz bandwidth with eight simultaneous multiple input multiple output (MIMO) streams. The focus of the HEW is to use this wide bandwidth to provide access to many devices. Some embodiments disclosed herein define a transmit messaging structure that carries packet information to assemble an OFDMA receiver and/or to assemble an upcoming OFDMA transmission by a device at the receiving end.

本文所揭示之一些實施例定義有效的、可擴展的且可由在20MHz模式中操作之裝置解碼的發射傳訊結構,迄今在DensiFi或IEEE中之其他建議未提供該發射傳訊結構。根據一些實施例,發射結構經組配來攜帶封包資訊以組配OFDMA接收器,使得接收器可解調封包之一特定部分(例如,特定OFDMA資源及/或MU-MIMO串流),且/或以組配接收器來使用特定OFDMA及MU-MIMO資源發射。本發明結構可使用20MHz頻寬之最小值,且該結構為模組化的且可擴展至較高頻寬,該等較高頻寬為20MHz之倍數(例如,舊有Wi-Fi操作頻寬40MHz、80MHz及160MHz)。每一20MHz結構可繼而組配一或多個最小頻寬單元之OFDMA子通道。此等實施例允許組配HEW站104將針對上行鏈路方向上之OFDMA通訊且針對下行鏈路方向上之 OFDMA通訊獲組配。 Some embodiments disclosed herein define transmit transmit structures that are efficient, scalable, and decodable by devices operating in the 20 MHz mode, and other proposals in DensiFi or IEEE to date have not provided the transmit transmit structure. In accordance with some embodiments, the transmit structure is configured to carry packet information to assemble an OFDMA receiver such that the receiver can demodulate a particular portion of the packet (eg, a particular OFDMA resource and/or MU-MIMO stream), and / Or use a specific OFDMA and MU-MIMO resource transmission in combination with the receiver. The structure of the present invention can use a minimum of 20 MHz bandwidth, and the structure is modular and can be extended to a higher bandwidth, which is a multiple of 20 MHz (for example, the old Wi-Fi operating bandwidth is 40 MHz, 80 MHz, and 160MHz). Each 20 MHz structure can then be combined with one or more OFDMA subchannels of the smallest bandwidth unit. These embodiments allow the grouping of HEW stations 104 to be for OFDMA communication in the uplink direction and for the downlink direction OFDMA communication was assembled.

HEW之一設計目標在於採用方法來改良Wi-Fi之效能,且具體而言改良密集佈署之效能。基於HEW之此目標,提出用以改良實體層(PHY)效能之技術,諸如OFDMA技術。本文所揭示之實施例提供可使用以便組配OFDMA接收器的新封包結構。 One of the goals of HEW is to adopt methods to improve the performance of Wi-Fi and, in particular, to improve the performance of dense deployment. Based on this goal of HEW, techniques for improving the performance of physical layer (PHY), such as OFDMA technology, are proposed. Embodiments disclosed herein provide a new packet structure that can be used to assemble an OFDMA receiver.

圖2A例示舊有封包結構。在圖2A中可看出,在IEEE 802.11ac中,VHT-SIG-A在每一20MHz通道202中經複製。另外,VHT-SIG-A發射使用含有僅48個資料副載波的IEEE 802.11a相容波形。 Fig. 2A illustrates an old packet structure. As can be seen in Figure 2A, in IEEE 802.11ac, VHT-SIG-A is replicated in each 20 MHz channel 202. In addition, the VHT-SIG-A transmission uses IEEE 802.11a compatible waveforms containing only 48 data subcarriers.

圖2B例示根據一些實施例之HEW封包結構。本文所揭示之實施例並未在每一片段中複製信號欄位,且替代地在每一20MHz通道202中發射組配接收者站的獨立信號欄位(例如,HEW信號欄位212)。一些實施例可使用五十二(52)個資料副載波(例如,而非48個),從而提供更多副載波以攜帶傳訊資訊。如圖2B中所示,發射傳訊結構200可包含用於多個20MHz通道202中每一者之個別的HEW信號欄位(HEW-SIG-A)212。每一HEW信號欄位212可組配排定HEW站104中一或多者,以用於根據OFDMA技術在20MHz通道202中之一相關聯20MHz通道之一或多個OFDMA子通道上通訊。每一20MHz通道202可為可組配以包括繼HEW信號欄位212之後的一或多個欄位214、216。在一些實施例中,HEW短訓練欄位(HEW-STF)214及資料欄位216可亦包括於發射傳訊結構200中。以下更詳細地描述此等實施例。 2B illustrates an HEW packet structure in accordance with some embodiments. Embodiments disclosed herein do not duplicate signal fields in each segment, and instead transmit separate signal fields (e.g., HEW signal field 212) that assemble receiver stations in each 20 MHz channel 202. Some embodiments may use fifty-two (52) data subcarriers (eg, instead of 48) to provide more subcarriers to carry messaging information. As shown in FIG. 2B, transmit messaging structure 200 can include individual HEW signal fields (HEW-SIG-A) 212 for each of a plurality of 20 MHz channels 202. Each HEW signal field 212 can be grouped with one or more of the scheduled HEW stations 104 for communicating on one or more OFDMA sub-channels in one of the 20 MHz channels 202 in accordance with OFDMA techniques. Each 20 MHz channel 202 can be configurable to include one or more fields 214, 216 following the HEW signal field 212. In some embodiments, the HEW Short Training Field (HEW-STF) 214 and the Data Field 216 may also be included in the transmit messaging structure 200. These embodiments are described in more detail below.

根據實施例,主站102可經組配以產生封包,該封包包括發射傳訊結構200以組配排定HEW站104,以用於根據OFDMA技術在通道資源上通訊。通道資源可包含舊有20MHz通道202內之一或多個OFDMA子通道。每一OFDMA子通道可包含具有預定頻寬之一或多個最小頻寬單元。 According to an embodiment, the primary station 102 can be assembled to generate a packet that includes a transmit messaging structure 200 to assemble the scheduled HEW station 104 for communicating over channel resources in accordance with OFDMA techniques. The channel resources may include one or more OFDMA subchannels within the old 20 MHz channel 202. Each OFDMA subchannel may include one or more minimum bandwidth units having a predetermined bandwidth.

如先前所論述,HEW OFDMA結構可具有相較於20MHz之較小粒度。因此,用於下行鏈路(DL)或上行鏈路(UL)OFDMA排程之每一HEW信號欄位212可在每一20MHz片段內組配OFDMA結構。以下更詳細地論述此等實施例。 As previously discussed, the HEW OFDMA structure can have a smaller granularity than 20 MHz. Thus, each HEW signal field 212 for a downlink (DL) or uplink (UL) OFDMA schedule can be combined with an OFDMA structure within each 20 MHz segment. These embodiments are discussed in more detail below.

圖3例示根據一些實施例之用於20MHz通道之OFDMA子通道組態。圖3例示子通道組態312A、312B、312C、312D、312E及312F。 FIG. 3 illustrates an OFDMA subchannel configuration for a 20 MHz channel in accordance with some embodiments. FIG. 3 illustrates subchannel configurations 312A, 312B, 312C, 312D, 312E, and 312F.

圖4例示根據一些實施例之用於20MHz通道之簡化OFDMA子通道組態。圖4例示子通道組態312A、312E及312F。 4 illustrates a simplified OFDMA subchannel configuration for a 20 MHz channel in accordance with some embodiments. FIG. 4 illustrates subchannel configurations 312A, 312E, and 312F.

參考圖3及圖4,根據一些實施例,發射傳訊結構20(圖2)可組配排定HEW站104(圖1)以用於根據OFDMA技術在通道資源上通訊,且通道資源可包含20MHz通道202內之一或多個OFDMA子通道302。如圖3及圖4中所示,每一OFDMA子通道302可包含具有預定頻寬之一或多個最小頻寬單元。在此等實施例中,發射傳訊結構可包含用於每一20MHz通道之獨立信號欄位(例如,HEW信號欄位212(圖 2)),以以針對在OFDMA控制週期期間的OFDMA通訊(亦即,下行鏈路通訊或上行鏈路通訊)組配HEW站104。 Referring to Figures 3 and 4, in accordance with some embodiments, a transmit messaging structure 20 (Fig. 2) can be configured to schedule a HEW station 104 (Fig. 1) for communicating over channel resources in accordance with OFDMA techniques, and the channel resources can include 20 MHz. One or more OFDMA sub-channels 302 within channel 202. As shown in FIGS. 3 and 4, each OFDMA subchannel 302 can include one or more minimum bandwidth units having a predetermined bandwidth. In such embodiments, the transmit messaging structure may include separate signal fields for each 20 MHz channel (eg, HEW signal field 212 (Fig. 2)) to group the HEW stations 104 for OFDMA communications (i.e., downlink communications or uplink communications) during the OFDMA control period.

在一些實施例中,每一最小頻寬單元可為例如4.75MHz,且每一OFDMA子通道302可包含多達四個最小頻寬單元,然而實施例之範疇在此方面不受限制。在一些實施例中,每一20MHz通道202可包含多達四個OFDMA子通道302,然而實施例之範疇在此方面不受限制。在此等實施例中,最小頻寬單元之大小固定,而此狀況允許OFDMA子通道302之大小基於最小頻寬單元之數目而變化。 In some embodiments, each minimum bandwidth unit can be, for example, 4.75 MHz, and each OFDMA sub-channel 302 can include up to four minimum bandwidth units, although the scope of the embodiments is not limited in this respect. In some embodiments, each 20 MHz channel 202 can include up to four OFDMA sub-channels 302, although the scope of the embodiments is not limited in this respect. In such embodiments, the size of the minimum bandwidth unit is fixed, and this condition allows the size of the OFDMA subchannel 302 to vary based on the number of minimum bandwidth units.

如以上所提及,可提供用於多個20MHz通道中每一者之個別的HEW信號欄位212(例如,HEW-SIG-A),且每一HEW信號欄位212可組配排定HEW站104中一或多者,以用於根據OFDMA技術在20MHz通道202中之一相關聯20MHz通道之一或多個OFDMA子通道302上通訊。在此等實施例中,每一20MHz通道202上之個別的且可能不同的HEW信號欄位212允許用於每一20MHz通道之OFDMA結構將被單獨組配(例如,不同數目之子通道302、不同通訊參數諸如MCS等)。以下更詳細地論述此等實施例。在一些實施例中,發射傳訊結構200可為前文,然而實施例之範疇在此方面不受限制。 As mentioned above, individual HEW signal fields 212 (eg, HEW-SIG-A) for each of a plurality of 20 MHz channels may be provided, and each HEW signal field 212 may be configured to schedule HEWs One or more of the stations 104 are for communicating on one or more of the OFDMA sub-channels 302 in one of the 20 MHz channels 202 in accordance with OFDMA techniques. In such embodiments, the individual and possibly different HEW signal fields 212 on each 20 MHz channel 202 allow the OFDMA structures for each 20 MHz channel to be individually grouped (eg, a different number of subchannels 302, different Communication parameters such as MCS, etc.). These embodiments are discussed in more detail below. In some embodiments, the transmit messaging structure 200 can be prior, although the scope of the embodiments is not limited in this respect.

在一些實施例中,每一HEW信號欄位212可為20MHz通道202中之一相關聯20MHz通道上的20MHz發射,且個別的HEW信號欄位212中每一者可經組配以在20MHz通道202中之一相關聯20MHz通道上並行發射。因此,不 同HEW信號欄位212可在每一20MHz通道上並行發射。 In some embodiments, each HEW signal field 212 can be a 20 MHz transmission on one of the 20 MHz channels 202 associated with the 20 MHz channel, and each of the individual HEW signal fields 212 can be configured to be in the 20 MHz channel One of the 202 transmits in parallel on the associated 20 MHz channel. Therefore, no The same HEW signal field 212 can be transmitted in parallel on each 20 MHz channel.

在一些實施例中,每一HEW信號欄位212經配置以組配排定HEW站104,以用於在20MHz通道202中每一20MHz通道內的OFDMA子通道302中多達四個上通訊。在此等示例性實施例中,每一20MHz通道202可分為最多四個最小頻寬單元,每一最小頻寬單元與OFDMA子通道302相關聯。 In some embodiments, each HEW signal field 212 is configured to assemble a scheduled HEW station 104 for up to four up communications in the OFDMA subchannel 302 within each 20 MHz channel in the 20 MHz channel 202. In these exemplary embodiments, each 20 MHz channel 202 can be divided into up to four minimum bandwidth units, each associated with the OFDMA subchannel 302.

在一些實施例中,每一OFDMA子通道302可包含每一20MHz通道內之預定頻寬之介於一個與四個之間的最小頻寬單元。在此等實施例中,因為最小頻寬單元具有預定頻寬,所以20MHz通道內之最小頻寬單元之數目將亦固定。然而,20MHz通道202內之OFDMA子通道302之數目可變化,因為每一OFDMA子通道302可組配為具有若干最小頻寬單元(例如,介於一個與四個之間)。 In some embodiments, each OFDMA subchannel 302 can include a minimum bandwidth unit between one and four of a predetermined bandwidth within each 20 MHz channel. In such embodiments, since the minimum bandwidth unit has a predetermined bandwidth, the number of minimum bandwidth units within the 20 MHz channel will also be fixed. However, the number of OFDMA sub-channels 302 within the 20 MHz channel 202 can vary, as each OFDMA sub-channel 302 can be configured to have a number of minimum bandwidth units (eg, between one and four).

在一些實施例中,最小頻寬單元之預定頻寬為4.375MHz。在一些實施例中,預定頻寬由副載波之預定數目及預定副載波間隔定義。在一些實施例中,副載波之預定數目為十四(14),且預定副載波間隔為312.5KHz以提供4.375之預定頻寬。在此等實施例中,可使用64點FFT。 In some embodiments, the predetermined bandwidth of the minimum bandwidth unit is 4.375 MHz. In some embodiments, the predetermined bandwidth is defined by a predetermined number of subcarriers and a predetermined subcarrier spacing. In some embodiments, the predetermined number of subcarriers is fourteen (14) and the predetermined subcarrier spacing is 312.5 KHz to provide a predetermined bandwidth of 4.375. In these embodiments, a 64 point FFT can be used.

在一些其他實施例中,可使用256點FFT。在使用256點FFT的此等其他實施例中,例如,最小頻寬單元之副載波之預定數目可為14x4=56,且預定副載波間隔可為312.5/4=78.125kHz。 In some other embodiments, a 256 point FFT can be used. In such other embodiments using a 256 point FFT, for example, the predetermined number of subcarriers of the minimum bandwidth unit may be 14x4 = 56, and the predetermined subcarrier spacing may be 312.5 / 4 = 78.125 kHz.

在其他實施例(未分開例示)中,每一HEW信號欄 位212可組配排定HEW站104(例如,攜帶用於排定HEW站104之組態),以用於在20MHz通道202中每一20MHz通道內的OFDMA子通道中多達八個或更多個上通訊。在此等其他實施例中,例如,每一20MHz通道202可分為多達八個或更多個最小頻寬單元,且每一最小頻寬單元可小於4.375MHz。 In other embodiments (not separately illustrated), each HEW signal bar Bit 212 may be arranged to schedule HEW station 104 (e.g., carry configuration for scheduling HEW station 104) for up to eight or more of OFDMA subchannels within each 20 MHz channel in 20 MHz channel 202 Multiple communication. In these other embodiments, for example, each 20 MHz channel 202 can be divided into up to eight or more minimum bandwidth units, and each minimum bandwidth unit can be less than 4.375 MHz.

在一些實施例中,每一20MHz通道之HEW信號欄位212可經產生以包括用以指示相關聯20MHz通道之子通道組態的指示符。子通道組態可包括最小頻寬單元之至少一數目。子通道組態可亦包括用於在OFDMA控制週期期間於OFDMA子通道302內通訊的資訊(例如,通訊參數),該資訊包括例如調變及編碼方案(MCS)指示符以及最小頻寬單元之長度指示符。因此,不同通訊參數(例如,MCS)可用於每一20MHz通道202,且在一些實施例中,可用於每一OFDMA子通道302。 In some embodiments, the HEW signal field 212 of each 20 MHz channel can be generated to include an indicator to indicate the subchannel configuration of the associated 20 MHz channel. The subchannel configuration can include at least a number of minimum bandwidth units. The sub-channel configuration may also include information (e.g., communication parameters) for communicating within the OFDMA sub-channel 302 during the OFDMA control period, including, for example, a modulation and coding scheme (MCS) indicator and a minimum bandwidth unit. Length indicator. Thus, different communication parameters (e.g., MCS) are available for each 20 MHz channel 202, and in some embodiments, for each OFDMA sub-channel 302.

在一些實施例中,HEW信號欄位212中用以指示每一20MHz通道之子通道組態的指示符可指示多個子通道組態(例如,子通道組態312A、312B、312C、312D、312E及213F)之一。在圖3及圖4中所例示之實例中,子通道組態312A可包含四個OFDMA子通道302,其中每一OFDMA子通道302包含單個最小頻寬單元。子通道組態312B/C/D可包含三個OFDMA子通道302,其中OFDMA子通道302中兩者包含單個最小頻寬單元且OFDMA子通道302中一者包含兩個鄰接最小頻寬單元。子通道組態312E可包含兩個OFDMA子 通道302,其中每一OFDMA子通道302包含兩個鄰接最小頻寬單元。子通道組態312F可包含單個OFDMA子通道302,該單個OFDMA子通道包含四個鄰接最小頻寬單元。 In some embodiments, an indicator in the HEW signal field 212 to indicate a subchannel configuration for each 20 MHz channel may indicate a plurality of subchannel configurations (eg, subchannel configurations 312A, 312B, 312C, 312D, 312E and One of 213F). In the example illustrated in Figures 3 and 4, subchannel configuration 312A can include four OFDMA subchannels 302, with each OFDMA subchannel 302 containing a single minimum bandwidth unit. The sub-channel configuration 312B/C/D may include three OFDMA sub-channels 302, where both of the OFDMA sub-channels 302 comprise a single minimum bandwidth unit and one of the OFDMA sub-channels 302 comprises two contiguous minimum bandwidth units. Subchannel configuration 312E can include two OFDMA sub- Channel 302, wherein each OFDMA subchannel 302 includes two contiguous minimum bandwidth units. Subchannel configuration 312F may include a single OFDMA subchannel 302 that includes four contiguous minimum bandwidth units.

例如,HEW信號欄位212可指示MCS #_1在子通道組態312E之10MHz子通道302中之使用。在一些實施例中,指示符可指示可定義通道202內之不同子通道302之位置及數目的特定子通道組態(亦即,子通道組態312B、子通道組態312C或子通道組態312D)。如圖3中所例示,例如,每一20MHz通道202可根據多個子通道組態中任一子通道組態(例如,子通道組態312A、子通道組態312B、子通道組態312C、子通道組態312D、子通道組態312E或子通道組態312F)加以組配。 For example, HEW signal field 212 may indicate the use of MCS #_1 in the 10 MHz sub-channel 302 of sub-channel configuration 312E. In some embodiments, the indicator may indicate a particular sub-channel configuration that may define the location and number of different sub-channels 302 within the channel 202 (ie, sub-channel configuration 312B, sub-channel configuration 312C, or sub-channel configuration) 312D). As illustrated in FIG. 3, for example, each 20 MHz channel 202 can be configured according to any of a plurality of subchannel configurations (eg, subchannel configuration 312A, subchannel configuration 312B, subchannel configuration 312C, sub Channel configuration 312D, subchannel configuration 312E or subchannel configuration 312F) are combined.

在一些實施例中,20MHz通道之多達52個副載波(亦即,而非習知VHT-SIG-A 211(圖2A)中之48個)可在OFDMA控制週期期間用於根據OFDMA技術的資料通訊。以下更詳細地論述此等實施例。 In some embodiments, up to 52 subcarriers of a 20 MHz channel (ie, instead of 48 of the conventional VHT-SIG-A 211 (FIG. 2A)) may be used during OFDMA control periods according to OFDMA techniques. Data communication. These embodiments are discussed in more detail below.

在一些實施例中,每一20MHz通道202可為可組配以包括繼HEW信號欄位212之後的一或多個欄位214、216。在一些實施例中,更多欄位214、216之一可為可組配以包括最少四個4.375MHz之最小頻寬單元,其等除了DC處之零副載波之外,以零副載波交插,且進一步經組配成包括在DC周圍及在頻帶邊緣處之一或多附加/額外零副載波,以覆蓋每一20MHz通道之20MHz頻寬。例如,對於資料欄位216,當最小頻寬單元之副載波之預定數目為十四且 預定副載波間隔為312.5KHz以供應4.375之預定頻寬時,最小頻寬單元之56個副載波可包括至少一引導副載波,從而允許用於資料之多達52個總副載波,然而實施例之範疇在此方面不受限制。另一方面,HEW-SIG 212將例如使用全部20MHz頻寬來發射,該20MHz頻寬使用例如52個資料單音及4個引導單音。 In some embodiments, each 20 MHz channel 202 can be configurable to include one or more fields 214, 216 following the HEW signal field 212. In some embodiments, one of the more fields 214, 216 can be a minimum bandwidth unit that can be combined to include a minimum of four 4.375 MHz, etc., with zero subcarriers other than the zero subcarrier at the DC. Inserted, and further assembled to include one or more additional/extra zero subcarriers around the DC and at the edge of the band to cover the 20 MHz bandwidth of each 20 MHz channel. For example, for data field 216, when the predetermined number of subcarriers of the minimum bandwidth unit is fourteen and When the predetermined subcarrier spacing is 312.5 kHz to supply a predetermined bandwidth of 4.375, the 56 subcarriers of the minimum bandwidth unit may include at least one pilot subcarrier, thereby allowing up to 52 total subcarriers for data, however, The scope is not limited in this respect. On the other hand, the HEW-SIG 212 will transmit, for example, using a full 20 MHz bandwidth using, for example, 52 data tones and 4 pilot tones.

在一些實施例中,發射傳訊結構200可包括HEW排程(SCH)欄位以指示用於每一排定站104之OFDMA子通道302之特定時間及頻率資源,以用於在OFDMA控制週期期間根據OFDMA技術與主站102通訊。在一些實施例中,HEW排定欄位可具有獨立編碼(亦即,可為個別的欄位),且可在HEW信號欄位212之後,然而此並非必要條件。在其他實施例中,HEW排定欄位可為HEW信號欄位212之部分。在一些實施例中,排程資訊可為HEW信號欄位212而非個別的HEW排定欄位之部分,然而實施例之範疇在此方面不受限制。在一些實施例中,排程資訊可嵌入資料欄位中,然而實施例之範疇在此方面不受限制。 In some embodiments, transmit messaging structure 200 can include a HEW Scheduling (SCH) field to indicate specific time and frequency resources for OFDMA subchannel 302 for each scheduled station 104 for use during an OFDMA control cycle Communication with the primary station 102 is in accordance with OFDMA techniques. In some embodiments, the HEW scheduling field may have an independent encoding (ie, may be an individual field) and may be after the HEW signal field 212, however this is not a requirement. In other embodiments, the HEW scheduling field can be part of the HEW signal field 212. In some embodiments, the schedule information may be part of the HEW signal field 212 rather than an individual HEW scheduled field, although the scope of the embodiments is not limited in this respect. In some embodiments, the schedule information can be embedded in the data field, although the scope of the embodiments is not limited in this respect.

在一些實施例中,主站102可基於用於在OFDMA控制週期期間與主站102通訊的最小頻寬單元來將頻寬分配給排定HEW站104,在該OFDMA控制週期期間,主站102具有無線媒體之專用控制(亦即,在TXOP期間)。在此等實施例中,最小頻寬單元可為可組配以在資料欄位216(圖2)期間經時間及頻率多工化,此舉可在OFDMA控制週期內發生。在控制週期期間,封包係使用OFDMA根據上行鏈路分 空間多重存取(SDMA)技術自排定HEW站104接收,或使用OFDMA根據下行鏈路多工技術發射至排定HEW站104(亦即,資料欄位216(圖2)期間的上行鏈路資料或下行鏈路資料可與排定HEW站通訊)。 In some embodiments, the primary station 102 can allocate bandwidth to the scheduled HEW station 104 based on a minimum bandwidth unit for communicating with the primary station 102 during an OFDMA control period during which the primary station 102 Has dedicated control of the wireless medium (ie, during the TXOP). In such embodiments, the minimum bandwidth unit can be configurable to time and frequency multiplex during data field 216 (FIG. 2), which can occur during the OFDMA control cycle. During the control period, the packet uses OFDMA according to the uplink. Spatial Multiple Access (SDMA) techniques are received from the scheduled HEW station 104, or transmitted to the scheduled HEW station 104 (i.e., during the data field 216 (Fig. 2) using OFDMA according to the downlink multiplex technique. Data or downlink data can be communicated with the scheduled HEW station).

在一些實施例中,資料欄位216可經組配以用於下行鏈路發射及上行鏈路發射兩者。在此等實施例中,HEW SIG 212或SCH欄位中之排程資訊可包括下行鏈路排程資訊及上行鏈路排程資訊。在此等實施例中,在資料欄位216中之藉由主站102的下行鏈路發射之後,主站102可在特定框間間隔(例如,SIFS)之後於資料欄位216內自排定站接收上行鏈路發射。 In some embodiments, the data field 216 can be configured for both downlink transmissions and uplink transmissions. In such embodiments, the scheduling information in the HEW SIG 212 or SCH field may include downlink scheduling information and uplink scheduling information. In such embodiments, after the downlink transmission by the primary station 102 in the data field 216, the primary station 102 may self-schedule within the data field 216 after a particular inter-frame interval (eg, SIFS). The station receives the uplink transmission.

在一些實施例中,HEW信號欄位212亦可包括組態參數,諸如用以指示是否使用時空區塊編碼(STBC)的STBC(1個位元)指示符、用以允許接收器判定資料酬載為單使用者(SU)或多使用者(MU)的群組ID(6個位元)指示符、用以指示時空串流之數目的時空串流數目(例如,3個位元)指示符、用於LDPC編碼之LDPC附加符號(例如,1個位元)指示符、含有用於酬載之MCS索引值的MCS欄位、用以指示何時將成束矩陣施加於發射的成束(例如,1個位元)指示符、用以允許HEW信號欄位212中之偵測錯誤的循環冗餘檢查(CRC)。此不同於需要頻寬指示符的習知VHT-SIG-A 211(圖2A)。在此等實施例中,HEW信號欄位212將不需要頻寬指示符,因為HEW信號欄位212並非如VHT-SIG-A 211一般在每一20MHz通道上複製,然而實施例之範疇在此方 面不受限制,因為可包括頻寬指示符以接收器實行變得容易。 In some embodiments, the HEW signal field 212 may also include configuration parameters, such as an STBC (1 bit) indicator to indicate whether Space Time Block Coding (STBC) is used, to allow the receiver to determine the data reward. A group ID (6 bit) indicator loaded as a single user (SU) or multiple users (MU), indicating a number of spatiotemporal streams (for example, 3 bits) indicating the number of spatiotemporal streams , an LDPC additional symbol (eg, 1 bit) indicator for LDPC encoding, an MCS field containing the MCS index value for the payload, and a bundle to indicate when the beaming matrix is applied to the transmission ( For example, a 1 bit) indicator, a Cyclic Redundancy Check (CRC) to allow detection errors in the HEW signal field 212. This is different from the conventional VHT-SIG-A 211 (Fig. 2A) which requires a bandwidth indicator. In such embodiments, the HEW signal field 212 will not require a bandwidth indicator because the HEW signal field 212 is not replicated on every 20 MHz channel as the VHT-SIG-A 211, however the scope of the embodiment is here square The face is not limited as the bandwidth indicator can be included to facilitate the implementation of the receiver.

在一些實施例中,此等組態參數可用於每一不同子通道組態312A至312F。此可導致與VHT-SIG-A 211相比的較長HEW信號欄位212(例如,6個OFDMA符號或8個OFDMA符號)。 In some embodiments, such configuration parameters are available for each of the different sub-channel configurations 312A through 312F. This may result in a longer HEW signal field 212 (eg, 6 OFDMA symbols or 8 OFDMA symbols) compared to VHT-SIG-A 211.

在一些替代實施例中,相同組態參數中一或多個可與所有組態(亦即,子通道組態312A至312F)(例如,相同STBC或LDPC之使用)交叉排程,以降低HEW信號欄位212之管理負擔。例如,若相同STBC將用於所有子通道組態,則STBC位元無需針對每一子通道組態重複,而是將針對所有最小頻寬單元發送僅一次(例如,在主同步發射中)。此可允許HEW信號欄位212與習知VHT-SIG-A 211相比為較短的。 In some alternative embodiments, one or more of the same configuration parameters may be cross-routed with all configurations (ie, sub-channel configurations 312A through 312F) (eg, the same STBC or LDPC use) to reduce HEW The management burden of the signal field 212. For example, if the same STBC will be used for all sub-channel configurations, the STBC bit does not need to be configured for each sub-channel, but will be sent only once for all minimum bandwidth units (eg, in the primary sync transmission). This may allow the HEW signal field 212 to be shorter compared to the conventional VHT-SIG-A 211.

如以上所論述,在一些實施例中,HEW發射傳訊結構200之更多欄位之一可為可組配以包括與零副載波(亦即,除DC處之零副載波之外)交插的若干最小頻寬單元,且可包括在DC周圍及在頻帶邊緣處之一或多個附加/額外零副載波,以覆蓋每一20MHz通道之20MHz頻寬。在一些實施例中,零副載波之添加可緩和對同步化、DC取消、功率放大器及濾波之實行要求。 As discussed above, in some embodiments, one of the more fields of the HEW transmit messaging structure 200 can be configurable to include interleaving with zero subcarriers (ie, other than the zero subcarriers at the DC). A number of minimum bandwidth units, and may include one or more additional/extra zero subcarriers around the DC and at the edge of the band to cover the 20 MHz bandwidth of each 20 MHz channel. In some embodiments, the addition of zero subcarriers can alleviate the implementation requirements for synchronization, DC cancellation, power amplifiers, and filtering.

在一些實施例中,20MHz通道202可經組配為具有兩個較寬子通道,且每一子通道包含2x4.375MHz最小頻寬單元之頻寬。在此等實施例中,在每一2x4.375MHz頻寬 中發射的波形可與在每一單個4.375MHz最小頻寬單元中發射的所發射兩個波形不同。 In some embodiments, the 20 MHz channel 202 can be configured to have two wider subchannels, and each subchannel includes a bandwidth of 2x 4.375 MHz minimum bandwidth unit. In these embodiments, at each 2x4.375MHz bandwidth The waveform transmitted in the middle can be different from the two transmitted waveforms transmitted in each single 4.375 MHz minimum bandwidth unit.

一些實施例可藉由僅允許OFDMA組態之子集(例如,圖4之子通道組態,而非圖3之子通道組態)來簡化設計。此簡化減少組配接收器所需要的資訊,且藉此減少傳訊管理負擔且因此改良整體系統效能。 Some embodiments may simplify the design by allowing only a subset of the OFDMA configuration (eg, the subchannel configuration of Figure 4, rather than the subchannel configuration of Figure 3). This simplification reduces the information required to assemble the receiver and thereby reduces the burden of communication management and thus improves overall system performance.

一些實施例可限制在每一最小頻寬單元中所指派(例如,指派給四個多使用者MIMO(MU-MIMO)使用者)的排定HEW站104之數目。此等實施例可允許空間串流之數目減少至每使用者達三個串流。使MU-MIMO使用者之數目限制於四可使用將要攜帶的僅兩個資訊位元,且使空間串流之數目限制於達三個使用另外兩個資訊位元。此等限制可進一步減少HEW信號欄位212中之傳訊管理負擔,然而實施例之範疇在此方面不受限制。 Some embodiments may limit the number of scheduled HEW stations 104 assigned (e.g., assigned to four multi-user MIMO (MU-MIMO) users) in each minimum bandwidth unit. These embodiments may allow the number of spatial streams to be reduced to three streams per user. Limiting the number of MU-MIMO users to four can use only two information bits to be carried, and the number of spatial streams is limited to three using the other two information bits. These limitations may further reduce the communication management burden in the HEW signal field 212, although the scope of the embodiments is not limited in this respect.

本文所揭示之一些實施例模組化及可擴展OFDMA結構。基本結構例如可組配四個最小頻寬單元或最小頻寬單元(例如,4.375MHz及2x4.375MHz)之若干組合。 Some embodiments disclosed herein modularize and extend the OFDMA structure. The basic structure can, for example, be combined with several combinations of four minimum bandwidth units or minimum bandwidth units (eg, 4.375 MHz and 2 x 4.375 MHz).

圖5為根據一些實施例之HEW裝置的功能方塊圖。HEW裝置500可為HEW順應裝置,該HEW順應裝置可經配置以與例如HEW站104(圖1)或主站102(圖1)的一或多個其他HEW裝置通訊,並且與舊有裝置通訊。HEW裝置500可適合於作為主站102(圖1)或HEW站104(圖1)操作。根據實施例,HEW裝置500可尤其包括實體層(PHY)電路502及媒體存取控制層電路(MAC)504。PHY 502及MAC 504可為 HEW順應層且可亦符合一或多個舊有IEEE 802.11標準。PHY 502及MAC 504可經配置以根據本文所揭示之結構及技術來發射HEW訊框。HEW裝置500可亦包括其他處理電路506及記憶體508,該其他處理電路及記憶體經組配來進行本文所描述之各種操作。 FIG. 5 is a functional block diagram of a HEW device in accordance with some embodiments. The HEW device 500 can be an HEW compliant device that can be configured to communicate with one or more other HEW devices, such as the HEW station 104 (FIG. 1) or the primary station 102 (FIG. 1), and to communicate with legacy devices. . HEW device 500 may be adapted to operate as primary station 102 (FIG. 1) or HEW station 104 (FIG. 1). According to an embodiment, HEW device 500 may include, in particular, physical layer (PHY) circuitry 502 and medium access control layer circuitry (MAC) 504. PHY 502 and MAC 504 can be The HEW conforms to the layer and may also conform to one or more of the legacy IEEE 802.11 standards. PHY 502 and MAC 504 can be configured to transmit HEW frames in accordance with the structures and techniques disclosed herein. The HEW device 500 can also include other processing circuits 506 and memory 508 that are assembled to perform the various operations described herein.

根據一些HEW實施例,MAC 504可經配置以在競爭週期期間爭用無線媒體以針對HEW控制週期接收媒體之控制且組配HEW訊框。PHY 502可經配置以如以上所論述在在HEW訊框內發射發射傳訊結構。PHY 502可亦經配置以根據OFDMA技術與HEW站104通訊。MAC 504可亦經配置以藉由PHY 502進行發射及接收操作。PHY 502可包括用於調變/解調、增頻轉換/降頻轉換、濾波、放大等的電路。在一些實施例中,處理電路506可包括一或多個處理器。在一些實施例中,二或更多個天線可耦接至實體層電路,該實體層電路經配置以用於發送及接收包括HEW訊框之發射的信號。記憶體508可儲存用於組配處理電路506以進行用於HEW通訊之操作及進行本文所描述之各種操作的資訊。在一些實施例中,HEW裝置500可包含用於與不同類型的網絡通訊之一或多個無線電(例如,WLAN無線電及蜂巢式/LTE無線電)。 According to some HEW embodiments, the MAC 504 may be configured to contend for wireless media during a contention period to receive control of the media for the HEW control period and to group HEW frames. The PHY 502 can be configured to transmit a transmit messaging structure within the HEW frame as discussed above. PHY 502 can also be configured to communicate with HEW station 104 in accordance with OFDMA techniques. The MAC 504 can also be configured to transmit and receive operations by the PHY 502. PHY 502 may include circuitry for modulation/demodulation, upconversion/downconversion, filtering, amplification, and the like. In some embodiments, processing circuit 506 can include one or more processors. In some embodiments, two or more antennas can be coupled to a physical layer circuit configured to transmit and receive signals including the transmission of the HEW frame. Memory 508 can store information for assembling processing circuitry 506 for performing operations for HEW communications and performing various operations described herein. In some embodiments, HEW device 500 can include one or more radios (eg, WLAN radio and cellular/LTE radio) for communicating with different types of networks.

在一些實施例中,HEW裝置500可經組配以使用OFDM通訊信號經由多載波通訊通道進行通訊。在一些實施例中,HEW裝置500可經組配以根據特定通訊標準接收信號,該等特定通訊標準例如美國電機電子工程師學會(IEEE) 標準包括IEEE 802.11-2012、802.11n-2009及/或802.11ac-2013標準,及/或用於WLAN之建議規範包括建議HEW標準,然而本發明之範疇在此方面不受限制,因為本發明可亦適合於根據其他技術及標準來發射及/或接收。在一些其他實施例中,HEW裝置500可經組配以接收使用一或多個其他調變技術發射的信號,該一或多個其他調變技術諸如展頻譜調變(例如,直接序列分碼多重存取(DS-CDMA)及/或跳頻分碼多重存取(FH-CDMA))、分時分工(TDM)調變及/或分頻多工(FDM)調變,然而實施例之範疇在此方面不受限制。 In some embodiments, HEW device 500 can be configured to communicate via a multi-carrier communication channel using OFDM communication signals. In some embodiments, HEW device 500 can be configured to receive signals in accordance with a particular communication standard, such as the Institute of Electrical and Electronics Engineers (IEEE). The standards include the IEEE 802.11-2012, 802.11n-2009 and/or 802.11ac-2013 standards, and/or the recommended specifications for WLAN include the proposed HEW standard, although the scope of the invention is not limited in this respect, as the invention may It is also suitable for transmitting and/or receiving according to other technologies and standards. In some other embodiments, HEW device 500 can be configured to receive signals transmitted using one or more other modulation techniques, such as spread spectrum modulation (eg, direct sequence code division) Multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA), time division division (TDM) modulation and/or frequency division multiplexing (FDM) modulation, however, The scope is not limited in this respect.

在一些實施例中,HEW裝置500可為可攜式無線通訊裝置之部分,該可攜式無線通訊裝置諸如個人數位助理(PDA)、具有無線通訊能力之膝上型或可攜帶式電腦、網路平板電腦(web tablet)、無線電話或智慧型電話、無線耳機、呼叫器、即時訊息裝置、數位相機、存取點、電視、醫療器材(例如,心率監視器、血壓監視器等)或可無線地接收及/或發射資訊的其他裝置。在一些實施例中,HEW裝置500可包括鍵盤、顯示器、非依電性記憶體埠、多個天線、圖形處理器、應用處理器、揚聲器及其他行動裝置元件。顯示器可為包括觸控螢幕的LCD螢幕。 In some embodiments, the HEW device 500 can be part of a portable wireless communication device such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capabilities, a network A tablet (web tablet), a wireless or smart phone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (eg, a heart rate monitor, a blood pressure monitor, etc.) or Other devices that receive and/or transmit information wirelessly. In some embodiments, HEW device 500 can include a keyboard, a display, a non-electric memory cartridge, a plurality of antennas, a graphics processor, an application processor, a speaker, and other mobile device components. The display can be an LCD screen that includes a touch screen.

HEW裝置500之天線可包含一或多個定向天線或全向天線,包括例如雙極天線、單極天線、貼片天線(patch antenna)、環形天線、微帶天線或適合於RF信號之發射的其他類型的天線。在一些多輸入多輸出(MIMO)實施例中,天 線可經有效分離以利用空間分集及可在天線中每一者與發射站之天線之間發生的不同通道特性。 The antenna of the HEW device 500 may include one or more directional antennas or omnidirectional antennas including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas, or transmissions suitable for RF signals. Other types of antennas. In some multiple input multiple output (MIMO) embodiments, days The lines can be effectively separated to take advantage of spatial diversity and different channel characteristics that can occur between each of the antennas and the antenna of the transmitting station.

雖然HEW裝置500經例示為具有若干個別的功能元件,但是該等功能元件中一或多個可經組合且可藉由軟體組配元件(諸如處理元件,包括數位信號處理器(DSP))及/或其他硬體元件之組合實行。例如,一些元件可包含一或多個微處理器、DSP、現場可規劃閘陣列(FPGA)、特定應用積體電路(ASIC)、射頻積體電路(RFIC)及用於進行至少本文所描述之功能的各種硬體及邏輯電路之組合。在一些實施例中,HEW裝置500之功能元件可涉及在一或多個處理元件上操作的一或多個過程。 Although the HEW device 500 is illustrated as having a number of individual functional elements, one or more of the functional elements may be combined and may be coupled by software components, such as processing elements, including digital signal processors (DSPs), and / or a combination of other hardware components. For example, some components may include one or more microprocessors, DSPs, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), radio frequency integrated circuits (RFICs), and for performing at least the description herein. A combination of various hardware and logic circuits of functionality. In some embodiments, the functional elements of HEW device 500 may relate to one or more processes operating on one or more processing elements.

在一些實施例中,HEW裝置之硬體處理電路在作為HEW站104操作時可經組配以經由多個20MHz通道之一自主站102接收HEW信號欄位(HEW-SIG-A)。HEW信號欄位組配HEW站104,以用於根據OFDMA技術在20MHz通道中之一相關聯20MHz通道之一或多個OFDMA子通道上通訊。通道資源可包含20MHz通道內之一或多個OFDMA子通道。HEW站104可亦經組配以基於在HEW信號欄位中所接收的組態資訊在所指示OFDMA子通道上與主站102通訊資料。每一OFDMA子通道可包含具有預定頻寬之一或多個最小頻寬單元。在此等實施例中,所接收HEW信號欄位可包括用以指示相關聯20MHz通道之子通道組態的指示符。子通道組態可包括最小頻寬單元之至少一數目。所接收HEW信號欄位可亦包括用於在OFDMA控制週期期間於子 通道內通訊的資訊,該資訊包括調變及編碼方案(MCS)指示符以及最小頻寬單元之長度指示符。 In some embodiments, the hardware processing circuitry of the HEW device, when operating as HEW station 104, can be assembled to receive the HEW signal field (HEW-SIG-A) via one of a plurality of 20 MHz channels. The HEW signal field is grouped with HEW station 104 for communicating on one or more OFDMA sub-channels of one of the 20 MHz channels in a 20 MHz channel according to OFDMA techniques. The channel resources may include one or more OFDMA subchannels within a 20 MHz channel. The HEW station 104 can also be configured to communicate data with the primary station 102 on the indicated OFDMA subchannel based on configuration information received in the HEW signal field. Each OFDMA subchannel may include one or more minimum bandwidth units having a predetermined bandwidth. In such embodiments, the received HEW signal field may include an indicator to indicate the subchannel configuration of the associated 20 MHz channel. The subchannel configuration can include at least a number of minimum bandwidth units. The received HEW signal field may also be included for use in the OFDMA control period. Information about communication within the channel, including information on the modulation and coding scheme (MCS) indicator and the length indicator of the minimum bandwidth unit.

實施例可實行於硬體、韌體及軟體之一或之組合中。實施例可亦實行為儲存於電腦可讀取儲存裝置上的指令,該等指令可由至少一處理器讀取且執行以進行本文所描述之操作。電腦可讀取儲存裝置可包括用於以機器(例如,電腦)可讀取的形式儲存資訊的任何非暫時性機構。例如,電腦可讀取儲存裝置可包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置以及其他儲存裝置及媒體。一些實施例可包括一或多個處理器,且可以儲存於電腦可讀取儲存裝置上的指令來組配。 Embodiments can be implemented in one or a combination of hardware, firmware, and software. Embodiments can also be implemented as instructions stored on a computer readable storage device, which can be read by at least one processor and executed to perform the operations described herein. The computer readable storage device can include any non-transitory mechanism for storing information in a form readable by a machine (eg, a computer). For example, computer readable storage devices may include read only memory (ROM), random access memory (RAM), disk storage media, optical storage media, flash memory devices, and other storage devices and media. Some embodiments may include one or more processors and may be assembled by instructions stored on a computer readable storage device.

圖6為根據一些實施例之用於藉由主站的HEW通訊之程序。程序600可由作為主站102操作以用於與多個HEW站104通訊的主站102的存取點來進行。 6 is a process for HEW communication by a primary station in accordance with some embodiments. The program 600 can be performed by an access point of the primary station 102 that operates as a primary station 102 for communicating with a plurality of HEW stations 104.

在操作602中,主站102可產生封包,該封包包括發射傳訊結構以組配排定HEW站104以用於根據OFDMA技術在通道資源上通訊。通道資源可包含20MHz通道內之一或多個OFDMA子通道,且每一OFDMA子通道可包含具有預定頻寬之一或多個最小頻寬單元。 In operation 602, the primary station 102 can generate a packet that includes a transmit messaging structure to assemble the scheduled HEW station 104 for communicating over channel resources in accordance with OFDMA techniques. The channel resources may include one or more OFDMA subchannels within a 20 MHz channel, and each OFDMA subchannel may include one or more minimum bandwidth units having a predetermined bandwidth.

在操作604中,發射傳訊結構可經組配以包括用於多個20MHz通道中每一者之個別的HEW信號欄位(例如,HEW-SIG-A),且每一HEW信號欄位可經配置以組配排定HEW站104中一或多者,以用於根據OFDMA技術在20 MHz通道中之一相關聯20MHz通道之一或多個OFDMA子通道上通訊。每一HEW信號欄位可為在20MHz通道中之一相關聯20MHz通道上的20MHz發射,且個別的HEW信號欄位中每一者可經組配以在20MHz通道中之一相關聯20MHz通道上並行發射。 In operation 604, the transmit messaging structure can be assembled to include individual HEW signal fields (eg, HEW-SIG-A) for each of the plurality of 20 MHz channels, and each HEW signal field can be Configuring to schedule one or more of the HEW stations 104 for use in accordance with OFDMA techniques at 20 One of the MHz channels is associated with one of the 20 MHz channels or is communicated over multiple OFDMA subchannels. Each HEW signal field can be a 20 MHz transmission on one of the 20 MHz channels in an associated 20 MHz channel, and each of the individual HEW signal fields can be configured to be associated with one of the 20 MHz channels in the 20 MHz channel. Parallel transmission.

在操作606中,用於每一20MHz通道之HEW信號欄位可經組配以包括用以指示相關聯20MHz通道之子通道組態的指示符。子通道組態可包括最小頻寬單元之至少一數目。用於每一20MHz通道之HEW信號欄位可經組配以包括用於在OFDMA控制週期期間於子通道內通訊的資訊,該資訊包括MCS指示符及最小頻寬單元之長度指示符。 In operation 606, the HEW signal field for each 20 MHz channel can be assembled to include an indicator to indicate the subchannel configuration of the associated 20 MHz channel. The subchannel configuration can include at least a number of minimum bandwidth units. The HEW signal field for each 20 MHz channel can be configured to include information for communicating within the sub-channel during the OFDMA control period, the information including the MCS indicator and the length indicator of the minimum bandwidth unit.

在HEW信號欄位在操作606中產生之後,主站102將包括HEW信號欄位212及任何其他欄位(例如,欄位214(圖2))的封包發射至排定站104,以用於資料欄位216中之下行鏈路資料及/或上行鏈路資料之後續通訊,如以上所論述。 After the HEW signal field is generated in operation 606, the primary station 102 transmits a packet including the HEW signal field 212 and any other fields (eg, field 214 (FIG. 2)) to the scheduling station 104 for use in Subsequent communications of downlink data and/or uplink data in data field 216 are as discussed above.

提供摘要以遵守需要將允許讀者確定技術揭示之性質及要旨的摘要的37C.F.R第1.72(b)款。在理解摘要將不用來限制或解釋申請專利範圍之範疇或意義的情況下提交摘要。以下申請專利範圍由此併入詳細描述中,其中每一請求項堅持該項自己作為一個別的實施例。 The Abstract is provided to comply with 37C.F.R Section 1.72(b), which will allow the reader to determine the nature and gist of the technical disclosure. The abstract is submitted with the understanding that the abstract will not be used to limit or explain the scope or meaning of the scope of the patent application. The scope of the following patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety herein

200‧‧‧發射傳訊結構 200‧‧‧Transmission communication structure

202‧‧‧20MHz通道/舊有20MHz通道/通道 202‧‧20MHz channel/old 20MHz channel/channel

212‧‧‧HEW信號欄位/HEW信號欄位(HEW-SIG-A)/HEW SIG 212‧‧‧HEW Signal Field/HEW Signal Field (HEW-SIG-A)/HEW SIG

214‧‧‧欄位/HEW短訓練欄位(HEW-STF) 214‧‧‧ Field/HEW Short Training Field (HEW-STF)

216‧‧‧欄位/資料欄位 216‧‧‧Field/data field

Claims (25)

一種通訊站,其經配置以作為在一無線區域網路(WLAN)中之一高效能(HE)主站來操作,該通訊站包含:收發器電路系統;及處理電路,該處理電路用以組配該收發器電路系統以進行下列動作:產生一封包,該封包包括一發射傳訊結構以組配排定HE站,以用於根據一正交分頻多重存取(OFDMA)技術在通道資源上通訊,該等通道資源包含於一20MHz通道內之一或多個OEDMA資源單元,其中,該等排定HE站之各者被分配該等OFDMA資源單元之一者;發送包括該發射傳訊結構之該封包;其中該等一或多個OFDMA資源單元針對此20MHz頻寬包含不同的OFDMA資源單元大小的一混合。 A communication station configured to operate as a high performance (HE) primary station in a wireless local area network (WLAN), the communication station comprising: a transceiver circuitry; and processing circuitry for The transceiver circuitry is configured to perform the following actions: generating a packet, the packet including a transmit messaging structure to assemble a scheduled HE station for use in a channel resource according to an orthogonal frequency division multiple access (OFDMA) technique Upcoming communication, the channel resources are included in one or more OEDMA resource units in a 20 MHz channel, wherein each of the scheduled HE stations is allocated one of the OFDMA resource units; the transmitting includes the transmitting communication structure The packet; wherein the one or more OFDMA resource units comprise a mixture of different OFDMA resource unit sizes for the 20 MHz bandwidth. 如請求項1之通訊站,其中該發射傳訊結構包含用於多個20MHz通道中每一者之一個別的HE信號欄位,該等個別的HE信號欄位之各者用以組配該等排定HE站中之一或多者,以用於根據該OFDMA技術在該等20MHz通道中之一相關聯者的該一或多個OFDMA資源單元上通訊。 The communication station of claim 1, wherein the transmit communication structure includes an individual HE signal field for each of the plurality of 20 MHz channels, each of the individual HE signal fields being used to assemble the One or more of the HE stations are scheduled for communication on the one or more OFDMA resource units of one of the 20 MHz channels in accordance with the OFDMA technique. 如請求項2之通訊站,其中該等個別的HE信號欄位之各者為該等20MHz通道中之一相關聯者上的一20MHz發射,且 其中該等個別的HE信號欄位中之各者在該等20MHz通道中之一相關聯者上並行地被發射。 The communication station of claim 2, wherein each of the individual HE signal fields is a 20 MHz transmission on one of the 20 MHz channels, and Each of the individual HE signal fields is transmitted in parallel on one of the 20 MHz channels. 如請求項3之通訊站,其中該等個別的HE信號欄位之各者經配置以組配該等排定HE站,以用於在該等20MHz通道中的每一20MHz通道內之該等一或多個OFDMA資源單元中多達四個上通訊。 The communication station of claim 3, wherein each of the individual HE signal fields is configured to assemble the scheduled HE stations for use in each of the 20 MHz channels of the 20 MHz channels Up to four uplinks in one or more OFDMA resource units. 如請求項4之通訊站,其中該等一或多個OFDMA資源單元之各者包含在每一20MHz通道內之介於一個與四個之間的該預定頻寬之該最小頻寬單元。 The communication station of claim 4, wherein each of the one or more OFDMA resource units comprises the minimum bandwidth unit of the predetermined bandwidth between one and four within each 20 MHz channel. 如請求項5之通訊站,其中該預定頻寬為4.375MHz,其中副載波之預定數目為十四個且預定副載波間隔為312.5KHz。 The communication station of claim 5, wherein the predetermined bandwidth is 4.375 MHz, wherein the predetermined number of subcarriers is fourteen and the predetermined subcarrier spacing is 312.5 kHz. 如請求項5之通訊站,其中該預定頻寬係由副載波之一預定數目及預定副載波間隔所定義。 The communication station of claim 5, wherein the predetermined bandwidth is defined by a predetermined number of subcarriers and a predetermined subcarrier spacing. 如請求項4之通訊站,其中用於每一20MHz通道之該等個別的HE信號欄位之各者係經產生以包括:用以指示該相關聯20MHz通道之一資源單元組態的一指示符,該資源單元組態針對此20MHz頻寬包含不同的OFDMA資源單元大小的一混合;以及用於在一OFDMA控制週期期間於該等一或多個OFDMA資源單元內通訊的資訊,該資訊包括一調變及編碼方案(MCS)指示符以及用於該資源單元之長度指示符。 The communication station of claim 4, wherein each of the individual HE signal fields for each 20 MHz channel is generated to include an indication to indicate a resource unit configuration of the associated 20 MHz channel The resource unit configuration includes a mixture of different OFDMA resource unit sizes for the 20 MHz bandwidth; and information for communicating within the one or more OFDMA resource units during an OFDMA control period, the information including A modulation and coding scheme (MCS) indicator and a length indicator for the resource unit. 如請求項8之通訊站,其中於該等個別的HE信號欄位之 各者中用以指示該資源單元組態的該指示符指示以下各者之一:包含四個OFDMA子通道之一子通道組態,其中該等四個OFDMA子通道之各者包含一單個之該最小頻寬單元;包含兩個OFDMA子通道之一子通道組態,其中該等兩個OFDMA子通道之各者包含兩個鄰接之該最小頻寬單元;以及包含一單個OFDMA子通道之一子通道組態,該單個OFDMA子通道包含四個鄰接之該最小頻寬單元。 The communication station of claim 8 wherein the individual HE signal fields are The indicator in each of the indicators indicating the configuration of the resource unit indicates one of: one of the four OFDMA sub-channels, wherein each of the four OFDMA sub-channels comprises a single The minimum bandwidth unit; comprising one subchannel configuration of two OFDMA subchannels, wherein each of the two OFDMA subchannels comprises two adjacent minimum bandwidth units; and one of a single OFDMA subchannel Subchannel configuration, the single OFDMA subchannel containing four adjacent minimum bandwidth units. 如請求項5之通訊站,其中一20MHz通道之多達五十二個副載波係用於在一OFDMA控制週期期間根據該OFDMA技術來資料通訊。 A communication station as claimed in claim 5, wherein up to fifty-two subcarriers of a 20 MHz channel are used for data communication according to the OFDMA technique during an OFDMA control period. 如請求項10之通訊站,其中每一20MHz通道係可組配以包括繼該個別的HE信號欄位之後的一或多個欄位,該等一或多個欄位可組配以包括最少四個該預定頻寬之最小頻寬單元,其等除了在DC處之一零副載波以外,以零副載波交插,且進一步經組配以包括在DC周圍及在頻帶邊緣處之一或多個零副載波,以覆蓋每一20MHz通道之一20MHz頻寬。 The communication station of claim 10, wherein each 20 MHz channel is configurable to include one or more fields subsequent to the individual HE signal field, the one or more fields being configurable to include a minimum Four minimum bandwidth units of the predetermined bandwidth, which are interleaved with zero subcarriers except one of the zero subcarriers at DC, and further assembled to include one around DC and at the edge of the band or Multiple zero subcarriers to cover one 20MHz bandwidth of each 20MHz channel. 如請求項4之通訊站,其中該發射傳訊結構係進一步經組配以包括一HE排程(SCH)欄位以指示用於該等排定HE站之各者之該等一或多個OFDMA資源單元之特定時間及頻率資源,以用於在一OFDMA控制週期期間根 據該OFDMA技術與該主站通訊。 The communication station of claim 4, wherein the transmit messaging structure is further configured to include an HE Scheduling (SCH) field to indicate the one or more OFDMAs for each of the scheduled HE stations Specific time and frequency resources of the resource unit for rooting during an OFDMA control cycle The OFDMA communication is with the primary station. 如請求項5之通訊站,其中該主站係經組配以基於用於在一OFDMA控制週期期間與該主站通訊的該最小頻寬單元來將頻寬分配給該等排定HE站,在該OFDMA控制週期期間該主站具有一無線媒體之專用控制,其中該等最小頻寬單元係可組配以在該OFDMA控制週期內被時間及頻率多工化,且其中在該OFDMA控制週期期間,封包係使用OFDMA根據一上行鏈路分空間多重存取(SDMA)技術自該等排定HE站接收,或使用OFDMA根據下行鏈路多工技術被發射至該等排定HE站。 A communication station as claimed in claim 5, wherein the primary station is configured to allocate a bandwidth to the scheduled HE stations based on the minimum bandwidth unit for communicating with the primary station during an OFDMA control period, The primary station has dedicated control of a wireless medium during the OFDMA control period, wherein the minimum bandwidth units are configurable to be time and frequency multiplexed during the OFDMA control period, and wherein during the OFDMA control period During the period, the packets are received from the scheduled HE stations using OFDMA according to an uplink sub-space multiple access (SDMA) technique, or are transmitted to the scheduled HE stations according to downlink multiplexing techniques using OFDMA. 如請求項1之通訊站,其進一步包含:一或多個天線;一或多個無線電,其耦接至該一或多個天線以用於與該等排定HE站通訊;以及一或多個記憶體。 The communication station of claim 1, further comprising: one or more antennas; one or more radios coupled to the one or more antennas for communicating with the scheduled HE stations; and one or more Memory. 一種用於由一通訊站所進行的通訊之方法,該通訊站經配置以作為一高效能(HE)主站來操作,該方法包含:產生一封包,該封包包括一發射傳訊結構以組配排定HE站,以用於根據一正交分頻多重存取(OFDMA)技術在通道資源上通訊,該等通道資源包含於一20MHz通道內之一或多個OFDMA資源單元,其中該等一或多個OFDMA資源單元針對此20MHz頻寬包含不同的OFDMA資源單元大小的一混合。 A method for communication by a communication station configured to operate as a high performance (HE) primary station, the method comprising: generating a packet, the packet including a transmit messaging structure to assemble Arranging HE stations for communicating on channel resources according to an orthogonal frequency division multiple access (OFDMA) technique, the channel resources being included in one or more OFDMA resource units in a 20 MHz channel, wherein the ones Or a plurality of OFDMA resource units include a mixture of different OFDMA resource unit sizes for this 20 MHz bandwidth. 如請求項15之方法,其進一步包含產生該發射傳訊結構以包括用於多個20MHz通道中每一者之一個別的HE信號欄位(HE-SIG-A),該等個別的HE信號欄位之各者用以組配該等排定HE站中之一或多者,以用於根據該OFDMA技術在該等20MHz通道中之一相關聯者的該等一或多個OFDMA資源單元上通訊,其中該等個別的HE信號欄位之各者為該等20MHz通道中之一相關聯者上的一20MHz發射,且其中該等個別的HEW信號欄位中之各者經組配以在該等20MHz通道中之一相關聯者上並行地被發射。 The method of claim 15, further comprising generating the transmit messaging structure to include an individual HE signal field (HE-SIG-A) for each of the plurality of 20 MHz channels, the individual HE signal fields Each of the bits is configured to assemble one or more of the scheduled HE stations for use in the one or more OFDMA resource elements of one of the 20 MHz channels in accordance with the OFDMA technique Communication, wherein each of the individual HE signal fields is a 20 MHz transmission on one of the 20 MHz channels, and wherein each of the individual HEW signal fields is configured to One of the 20 MHz channels is transmitted in parallel on the associated ones. 如請求項16之方法,其中該等個別的HE信號欄位之各者經配置以組配該等排定HE站,以用於在該等20MHz通道中的每一20MHz通道內之該等一或多個OFDMA資源單元中多達四個上通訊。 The method of claim 16, wherein each of the individual HE signal fields is configured to assemble the scheduled HE stations for use in each of the 20 MHz channels of the 20 MHz channels Up to four uplinks in one or more OFDMA resource units. 如請求項16之方法,其中用於每一20MHz通道之該等個別的HE信號欄位之各者係經產生以包括:用以指示該相關聯20MHz通道之一資源單元組態的一指示符,該資源單元組態針對此20MHz頻寬包含不同的OFDMA資源單元大小的一混合;以及用於在一OFDMA控制週期期間於該等一或多個OFDMA資源單元內通訊的資訊,該資訊包括一調變及編碼方案(MCS)指示符以及用於該等資源單元之長度指示符。 The method of claim 16, wherein each of the individual HE signal fields for each 20 MHz channel is generated to include an indicator to indicate resource element configuration of one of the associated 20 MHz channels ???the resource unit configuration includes a mixture of different OFDMA resource unit sizes for the 20 MHz bandwidth; and information for communicating in the one or more OFDMA resource units during an OFDMA control period, the information including A modulation and coding scheme (MCS) indicator and a length indicator for the resource elements. 如請求項18之方法,其中該等個別的HE信號欄位之各 者中用以指示該資源單元組態的該指示符指示以下各者之一:包含四個OFDMA子通道之一子通道組態,其中該等四個OFDMA子通道之各者包含一單個之該最小頻寬單元;包含兩個OFDMA子通道之一子通道組態,其中該等兩個OFDMA子通道之各者包含兩個鄰接之該最小頻寬單元;以及包含一單個OFDMA子通道之一子通道組態,該單個OFDMA子通道包含四個鄰接之該最小頻寬單元。 The method of claim 18, wherein each of the individual HE signal fields The indicator used to indicate the configuration of the resource unit indicates one of: one of the four OFDMA subchannels, the subchannel configuration, wherein each of the four OFDMA subchannels comprises a single one a minimum bandwidth unit; comprising one subchannel configuration of two OFDMA subchannels, wherein each of the two OFDMA subchannels comprises two adjacent minimum bandwidth units; and includes one of a single OFDMA subchannel Channel configuration, the single OFDMA subchannel containing four adjacent minimum bandwidth units. 如請求項17之方法,其中該發射傳訊結構係進一步經組配以包括一HE排程(SCH)欄位以指示用於該等排定HE站之各者之該等一或多個OFDMA資源單元之特定時間及頻率資源,以用於在該OFDMA控制週期期間根據該OFDMA技術與該主站通訊。 The method of claim 17, wherein the transmit messaging structure is further configured to include an HE Scheduling (SCH) field to indicate the one or more OFDMA resources for each of the scheduled HE stations A specific time and frequency resource of the unit for communicating with the primary station in accordance with the OFDMA technique during the OFDMA control period. 一種非暫時性電腦可讀取儲存媒體,其儲存指令,該等指令用於由一或多個處理器執行以進行用於藉由於一無線區域網路(WLAN)中之一主站的高效能(HE)通訊之操作,該等操作用以組配該主站以進行下列動作:產生一封包,該封包包括一發射傳訊結構以組配排定HE站,以用於根據一正交分頻多重存取(OFDMA)技術在通道資源上通訊,該等通道資源包含於一20MHz通道內之一或多個OFDMA資源單元,其中該等一或多個OFDMA資源單元針對此20MHz 頻寬包含不同的OFDMA資源單元大小的一混合。 A non-transitory computer readable storage medium storing instructions for execution by one or more processors for enabling high performance by a primary station in a wireless local area network (WLAN) (HE) operation of the communication, the operations for assembling the primary station to perform the following actions: generating a packet, the packet including a transmit messaging structure to assemble the scheduled HE station for use according to an orthogonal frequency division Multiple Access (OFDMA) technology communicates over channel resources, the channel resources being included in one or more OFDMA resource elements in a 20 MHz channel, wherein the one or more OFDMA resource elements are directed to the 20 MHz The bandwidth contains a mix of different OFDMA resource unit sizes. 如請求項21之非暫時性電腦可讀取儲存媒體,其中該等操作進一步組配該主站以產生該發射傳訊結構以包括用於多個20MHz通道中每一者之一個別的HE信號欄位(HE-SIG-A),該等個別的HE信號欄位之各者用以組配該等排定HE站中之一或多者,以用於根據該OFDMA技術在該等20MHz通道中之一相關聯者的該一或多個OFDMA資源單元上通訊,其中該等個別的HE信號欄位之各者為該等20MHz通道中之一相關聯者上的一20MHz發射,且其中該等個別的HE信號欄位中之各者在該等20MHz通道中之一相關聯者上並行地被發射。 The non-transitory computer readable storage medium of claim 21, wherein the operations further assemble the primary station to generate the transmit messaging structure to include an individual HE signal field for each of the plurality of 20 MHz channels Bits (HE-SIG-A), each of the individual HE signal fields being used to assemble one or more of the scheduled HE stations for use in the 20 MHz channels in accordance with the OFDMA technique Communicating on the one or more OFDMA resource elements of one of the associated ones, wherein each of the individual HE signal fields is a 20 MHz transmission on one of the 20 MHz channels, and wherein Each of the individual HE signal fields is transmitted in parallel on one of the 20 MHz channels. 一種高效能(HE)站,其包含:記憶體;及耦接至該記憶體之處理電路系統,該處理電路系統經組配以進行下列動作:在多個20MHz通道之一者上接收來自一主站之一HE信號欄位(HE-SIG-A),該HE信號欄位用以組配該HE站,以用於根據一正交分頻多重存取(OFDMA)技術在該等20MHz通道中之一相關聯20MHz通道之通道資源上通訊,該等通道資源包含於該等20MHz通道中之該相關聯20MHz通道內之一或多個OFDMA資源單元;以及基於在該HE信號欄位中所接收的組態資訊而在一經指示之該OFDMA資源單元上與該主站通訊資料,其中該等一或多個OFDMA資源單元針對此20MHz 頻寬包含不同的OFDMA資源單元大小的一混合。 A high performance (HE) station comprising: a memory; and processing circuitry coupled to the memory, the processing circuitry being configured to perform the following actions: receiving one from a plurality of 20 MHz channels One of the primary stations HE signal field (HE-SIG-A), which is used to assemble the HE station for use in the 20 MHz channel according to an orthogonal frequency division multiple access (OFDMA) technique One of the channel resources associated with the 20 MHz channel, the channel resources being included in one or more OFDMA resource units in the associated 20 MHz channel in the 20 MHz channel; and based on the HE signal field Receiving configuration information and communicating with the primary station on the indicated OFDMA resource unit, wherein the one or more OFDMA resource units are directed to the 20 MHz The bandwidth contains a mix of different OFDMA resource unit sizes. 如請求項23之HE站,其經組配以進行下列動作:在經指示之該OFDMA資源單元上接收來自該主站之下行鏈路資料;以及基於在該HE信號欄位中所接收的該組態資訊來解調所接收之該下行鏈路資料;基於在該HE信號欄位中所接收的該組態資訊來組配上行鏈路資料;以及在經指示之該OFDMA資源單元上將經組配之該上行鏈路資料發射至該主站。 The HE station of claim 23, which is configured to perform the following actions: receiving downlink data from the primary station on the indicated OFDMA resource unit; and based on the received in the HE signal field Configuring information to demodulate the received downlink data; assembling uplink data based on the configuration information received in the HE signal field; and passing the indicated OFDMA resource unit The uplink data is assembled to be transmitted to the primary station. 如請求項23之HE站,其中所接收之該HE信號欄位包括:用以指示該相關聯20MHz通道之一資源單元組態的一指示符,該資源單元組態針對此20MHz頻寬包含不同的OFDMA資源單元大小的一混合;以及用於在一OFDMA控制週期期間於該等OFDMA資源單元內通訊的資訊,該資訊包括一調變及編碼方案(MCS)指示符以及用於該資源單元之長度指示符。 The HE station of claim 23, wherein the HE signal field received comprises: an indicator to indicate a resource unit configuration of the associated 20 MHz channel, the resource unit configuration comprising different for the 20 MHz bandwidth a mix of OFDMA resource unit sizes; and information for communicating within the OFDMA resource units during an OFDMA control period, the information including a modulation and coding scheme (MCS) indicator and for the resource unit Length indicator.
TW104108807A 2014-04-01 2015-03-19 Master station and method for hew communication using a transmission signaling structure for a hew signal field TWI573413B (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201461973376P 2014-04-01 2014-04-01
US201461976951P 2014-04-08 2014-04-08
US201461986256P 2014-04-30 2014-04-30
US201461986250P 2014-04-30 2014-04-30
US201461990414P 2014-05-08 2014-05-08
US201461991730P 2014-05-12 2014-05-12
US201462013869P 2014-06-18 2014-06-18
US201462024801P 2014-07-15 2014-07-15
US201462024813P 2014-07-15 2014-07-15
US201462026277P 2014-07-18 2014-07-18
US14/458,000 US9544914B2 (en) 2013-11-19 2014-08-12 Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
PCT/US2014/065166 WO2015077096A1 (en) 2013-11-19 2014-11-12 Master station and method for hew communication using a transmission signaling structure for a hew signal field

Publications (2)

Publication Number Publication Date
TW201541890A TW201541890A (en) 2015-11-01
TWI573413B true TWI573413B (en) 2017-03-01

Family

ID=55220634

Family Applications (4)

Application Number Title Priority Date Filing Date
TW104108803A TWI586120B (en) 2014-04-01 2015-03-19 Master station and method for hew communication with signal field configuration for hew ofdma mu-mimo wideband channel operation
TW104108807A TWI573413B (en) 2014-04-01 2015-03-19 Master station and method for hew communication using a transmission signaling structure for a hew signal field
TW105139522A TWI642292B (en) 2014-04-01 2015-03-19 Apparatus of wireless device and high-efficiency station, method performed by apparatus and non-transitory computer-readable stoage medium
TW105139521A TWI642281B (en) 2014-04-01 2015-03-19 Transmission signaling structure for hew signal field

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104108803A TWI586120B (en) 2014-04-01 2015-03-19 Master station and method for hew communication with signal field configuration for hew ofdma mu-mimo wideband channel operation

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW105139522A TWI642292B (en) 2014-04-01 2015-03-19 Apparatus of wireless device and high-efficiency station, method performed by apparatus and non-transitory computer-readable stoage medium
TW105139521A TWI642281B (en) 2014-04-01 2015-03-19 Transmission signaling structure for hew signal field

Country Status (1)

Country Link
TW (4) TWI586120B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838961B2 (en) 2013-11-19 2017-12-05 Intel IP Corporation Communication station and method for communicating using minimum bandwidth units of various tone allocations for OFDMA HEW
US9867210B2 (en) 2013-11-19 2018-01-09 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9900906B2 (en) 2013-11-19 2018-02-20 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9961678B2 (en) 2013-11-19 2018-05-01 Intel IP Corporation Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
US9974095B2 (en) 2013-11-19 2018-05-15 Intel IP Corporation HEW station and method for UL MU-MIMO HEW with improved receiver performance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271241B2 (en) 2013-11-19 2016-02-23 Intel IP Corporation Access point and methods for distinguishing HEW physical layer packets with backwards compatibility
US9680603B2 (en) 2014-04-08 2017-06-13 Intel IP Corporation High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US9705643B2 (en) 2014-07-15 2017-07-11 Intel IP Corporation High-efficiency wireless local-area network devices and methods for acknowledgements during scheduled transmission opportunities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201141288A (en) * 2010-01-08 2011-11-16 Sharp Kk Mobile communication method and system for sounding reference signal transmission, and base station, user equipment and integrated circuit therein
US20120201213A1 (en) * 2011-02-08 2012-08-09 Raja Banerjea Wlan channel allocation
TW201322786A (en) * 2011-08-12 2013-06-01 Interdigital Patent Holdings Flexible bandwidth operation in wireless systems
TW201406107A (en) * 2012-07-02 2014-02-01 Qualcomm Inc Systems and methods for enhanced wireless communication frames

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136894B (en) * 2007-03-23 2012-11-28 中兴通讯股份有限公司 Extendable OFDM and ofdma bandwidth distributing method and system
US8526351B2 (en) * 2009-06-05 2013-09-03 Broadcom Corporation Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications
US8599804B2 (en) * 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
US9055576B2 (en) * 2009-10-08 2015-06-09 Qualcomm Incorporated Uplink resource allocation for LTE advanced
WO2011136518A2 (en) * 2010-04-26 2011-11-03 Samsung Electronics Co., Ltd. Method and apparatus for controlling inter-cell interference of control channels in ofdm-based hierarchical cellular system
US9385911B2 (en) * 2011-05-13 2016-07-05 Sameer Vermani Systems and methods for wireless communication of packets having a plurality of formats
TWI637648B (en) * 2012-04-30 2018-10-01 內數位專利控股公司 Institute of electrical and electronics engineers (ieee) 802.11 station (sta) and method for use in it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201141288A (en) * 2010-01-08 2011-11-16 Sharp Kk Mobile communication method and system for sounding reference signal transmission, and base station, user equipment and integrated circuit therein
US20120201213A1 (en) * 2011-02-08 2012-08-09 Raja Banerjea Wlan channel allocation
TW201322786A (en) * 2011-08-12 2013-06-01 Interdigital Patent Holdings Flexible bandwidth operation in wireless systems
TW201406107A (en) * 2012-07-02 2014-02-01 Qualcomm Inc Systems and methods for enhanced wireless communication frames

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
http://www.ieee802.org/11/Reports/hew_update.htm *
Jinsoo Choi (LG Electronics), "Discussion on OFDMA in HEW",IEEE, 11-13/1382r0, November 11, 2013 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838961B2 (en) 2013-11-19 2017-12-05 Intel IP Corporation Communication station and method for communicating using minimum bandwidth units of various tone allocations for OFDMA HEW
US9867210B2 (en) 2013-11-19 2018-01-09 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9882695B2 (en) 2013-11-19 2018-01-30 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9900906B2 (en) 2013-11-19 2018-02-20 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9961678B2 (en) 2013-11-19 2018-05-01 Intel IP Corporation Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
US9974095B2 (en) 2013-11-19 2018-05-15 Intel IP Corporation HEW station and method for UL MU-MIMO HEW with improved receiver performance
US10177888B2 (en) 2013-11-19 2019-01-08 Intel IP Corporation Wireless apparatus for high-efficiency (HE) communication with additional subcarriers
US10348469B2 (en) 2013-11-19 2019-07-09 Intel IP Corporation Hew master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels
US10368368B2 (en) 2013-11-19 2019-07-30 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks

Also Published As

Publication number Publication date
TW201728116A (en) 2017-08-01
TWI642281B (en) 2018-11-21
TWI642292B (en) 2018-11-21
TW201541890A (en) 2015-11-01
TW201728102A (en) 2017-08-01
TWI586120B (en) 2017-06-01
TW201541889A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
US9882695B2 (en) Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US10448384B2 (en) High-efficiency Wi-Fi (HEW) station and access point (AP) and method for signaling of channel resource allocations
EP3182635B1 (en) Master station and method for hew communication using a transmission signaling structure for a hew signal field
US10440740B2 (en) High-efficiency wi-fi (HEW) station and access point (AP) and method for random access contention
TWI573413B (en) Master station and method for hew communication using a transmission signaling structure for a hew signal field
US9668258B2 (en) Master station and method for high-efficiency WI-FI (hew) communication using multi-device hew preamble
US9838961B2 (en) Communication station and method for communicating using minimum bandwidth units of various tone allocations for OFDMA HEW
US9680603B2 (en) High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US9923679B2 (en) High-efficiency Wi-Fi (HEW) station, access point, and methods for random access contention
US9729284B2 (en) High-efficiency Wi-Fi (HEW) station and access point (AP) and method for resource allocation signaling