WO2015076656A1 - A recombinant mycobacterium bovis bcg strain lacking the bcg1419c gene, with enhanced biofilm-formation capacity - Google Patents

A recombinant mycobacterium bovis bcg strain lacking the bcg1419c gene, with enhanced biofilm-formation capacity Download PDF

Info

Publication number
WO2015076656A1
WO2015076656A1 PCT/MX2014/000168 MX2014000168W WO2015076656A1 WO 2015076656 A1 WO2015076656 A1 WO 2015076656A1 MX 2014000168 W MX2014000168 W MX 2014000168W WO 2015076656 A1 WO2015076656 A1 WO 2015076656A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
bcg
mycobacterium
gene
tuberculosis
Prior art date
Application number
PCT/MX2014/000168
Other languages
Spanish (es)
French (fr)
Inventor
Mario Alberto FLORES VALDEZ
Rogelio HERNÁNDEZ PANDO
César PEDROZA ROLDÁN
Michel de Jesús ACEVES SÁNCHEZ
Original Assignee
Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C.
Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C., Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán filed Critical Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C.
Publication of WO2015076656A1 publication Critical patent/WO2015076656A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/04Phosphoric diester hydrolases (3.1.4)
    • C12Y301/040353',5'-Cyclic-GMP phosphodiesterase (3.1.4.35)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/32Mycobacterium

Definitions

  • the present invention belongs to the field of biotechnology and refers to the Mycobacterium bovis BCG strain, to which nucleotides 222 to 924 were removed from the open reading frame (ORF, by its name and acronym in English)] of 924 total base pairs that code for the phosphodiesterase activity protein of the second messenger di-GMPc, in addition to 47 base pairs downstream of the stop codon of the BCG1419c gene, which forms in vitro biofilms in greater proportion than the unmodified strain, and its use in the treatment, prevention or delay of chronic or latent tuberculosis.
  • tuberculosis is a major public health problem (Comas & Gagneux, 2009, WHO, 2009). It is the disease of bacterial origin with the highest morbidity and mortality rate (1.8 million people die annually from tuberculosis) worldwide (WHO, 2009).
  • WHO World Health Organization
  • BCG Mycobacterium bovis Bacillus Calmette-Guérin
  • BCG is a safe vaccine, side effects are well tolerated and only contraindicated for immunocompromised individuals, such as people with AIDS, in whom it can cause serious disseminated disease and even death (WHO, 2009, Tullius et al, 2008). However, its effectiveness is still a controversial issue.
  • this vaccine does not prevent primary infection and, more importantly, does not prevent the reactivation of latent pulmonary infection, the main source of bacillary dissemination in the community (WHO, 2009).
  • the period of immunity conferred by BCG after neonatal vaccination gradually decreases, extending to no more than 10 to 20 years (Doherty & Andersen, 2005), so it has a small effect on TB rate in adults and which is also not effective in populations previously sensitized by mycobacterial antigens (Trunz et al., 2006).
  • the present invention relates in particular to a strain of Mycobacterium bovis BCG lacking the BCG1419c gene (or its genetic counterparts in other mycobacteria), which has accession number PTA-120572, capable of forming 3-15% more biofilms in vitro compared with unmodified BCG, and able to stop the weight loss of animals vaccinated with it, at levels comparable with BCG but applied in lower doses.
  • the BCGABCG1419c strain mimics combined aspects of a chronic infection, such as increased persistence in the host, and changes in the expression of proteins that are necessary to respond to nitrooxidative stress. Consequently, strain BCGABCG1419c could serve as a vaccine against latent tuberculosis.
  • the present invention provides a modified Mycobacterium bovis BCG strain, where the BCG1419c gene has been removed, so that the protein with phosphodiesterase activity of the second cyclic diguanilate messenger (cyclic diguanosine monophosphate messenger) cannot be expressed therein , di-GMPc, c-di-GMP-by its acronym in English-).
  • the second cyclic diguanilate messenger cyclic diguanosine monophosphate messenger
  • a modified Mycobacterium bovis BCG strain where nucleotides 222 through 924 were removed from the open reading frame (ORF) of 924 pairs of total bases encoding the phosphodiesterase activity protein of the second messenger di-GMPc, strain BCGABCG1419c) in addition to 47 base pairs downstream of the stop codon of the gene.
  • BCGABCG1419c strain being able, in theory, to produce a peptide that includes only amino acids 1 to 73 (of a total of 307 that has the complete protein), and that lacks amino acid residues 89, 90 and 91 (EAL , glutamic acid, alanine, leucine) necessary for the enzymatic degradation activity of di-cGMP.
  • EAL amino acid residues 89, 90 and 91
  • the BCG1419c gene and its counterparts from other bacteria of the Mycobacterium tuberculosis complex code for a protein with predicted EAL domain.
  • Di-cGMP has been implicated in the regulation of the expression of microbial virulence factors and biofilm production in various microorganisms (Hengge, 2009), and recently it was reported that a homologous mutant (with elimination of the Rvl357c gene, in M. tuberculosis strain H37Rv), was less able to multiply in lungs and spleens of immunocompetent mice (Hong et al, 2013), findings opposite to what we obtained.
  • the BCGABCG1419c strain increases in vitro biofilm production from 3 to 15%, modifies the expression of at least 9 proteins during biofilm formation, increases persistence in lungs and spleen of 3 to 6 times immunocompetent BALB / c mice, and similarly stops the weight loss of vaccinated mice and then infected with Mycobacterium tuberculosis H37Rv, despite being administered at a lower dose.
  • the modified BCG strain of the present invention or all, some or some of the proteins whose expression is regulated differentially during biofilm formation by the elimination of the BCG1419c gene or its homologs in other mycobacterial species, is administered to a mammalian host, an immune response will be induced towards some, some, or all of the proteins, or different components (carbohydrates, lipids, or combinations of these two, or combinations with proteins of one of the two or both) that are expressed in a manner different from unmodified BCG.
  • the mycobacterium that then infects this immunized mammal will be unable to establish a latent infection in the host;
  • proteins, carbohydrates, lipids or combinations thereof, required to establish a latent infection are expressed they will be recognized by the immune system and consequently the mycobacterium will be destroyed.
  • individuals where the latent infection is already established the ability of mycobacteria to reactivate and cause an active infection will be attenuated.
  • the latent mycobacterium may be eradicated by the immune system, or it may be unable to emerge from the latent (chronic, persistent) state and confined to a state of inactivity (dormancy). In any case, the active and contagious infection is prevented and with it the transmission to other people.
  • FIG. 1 Amplification of the Rvl356c and Rvl358c genes of the Mycobacterium tuberculosis H37Rv strain. An aliquot of the PCR reaction was subjected to 1% agarose gel electrophoresis. Lane 1 molecular weight marker 1 Kb plus (Invitrogen), lane 2 PCR Rvl356c (65.4 bp), lane 3 PCR Rvl358c (549 bp).
  • FIG. 1 Quadruple digestion gel (Xba I, Kpn I, Hind III and Bgl II) for pMarl357c, where it contains the fragments, of pYUB854, Rvl356C, Rvl358c.
  • Figure 4 Alignment of the sequence obtained from clone 3 with oligonucleotide Rvl358-R to the Mycobacterium genome. tuberculosis H37Rv.
  • Figure 5. From the pMar construction ARvl357c the allelic exchange substrate was extracted using the restriction enzymes Xbal and Nhel generating two bands of 3.1 and 1.9 kb. The 3.1 band corresponding to the sequence with the deletion was cut from the gel and purified to be subsequently transformed into the recombination strain.
  • Figure 9 Possible results of homologous recombination events after double recombination and elimination of plasmid pJV53 and its characterization with oligonucleotides for polymerase chain reaction (PCR).
  • Figure 10 Amplification of the outward ends of the hygromycin cassette. The image confirms with this new combination of oligonucleotides that two of the mutant candidates (C5 and CIO) are illegitimate recombinants and that all strains are resistant to hygromycin (hyg) by the presence of the hyg gene on the chromosome.
  • Figure 11 Possible results of homologous recombination events after double recombination and elimination of plasmid pJV53, verifiable with the indicated oligonucleotides to determine presence or absence of transcript covering the open reading frame of the BCG1419c gene.
  • Figure 12 Amplification of the open reading frame of the BCG1419c gene, with oligonucleotides RV1357c-ORF-F and Rvl357c-ORF-R. In cases where gene expression was analyzed by RT-PCR, (-) indicates reaction without reverse transcriptase and (+) with reverse transcriptase, as a control of amplification by transcript and not by contaminating genomic DNA.
  • Figure 13 Amplification of the constituent gene rrs. In cases where the expression of the gene was analyzed by RT-PCR, (-) indicates reaction without reverse transcriptase and (+) with reverse transcriptase, as a control of amplification by transcript and not by contaminating genomic DNA.
  • Figure 14 Prediction of domains present in the protein encoded by the BCG1419c gene. The EAL domain (amino acids 89, 90 and 91] has c-di-GMP phosphodiesterase activity in vitro.
  • FIG. 1 Photographs of biofilms formed by strains of Mycobacterium bovis BCG.
  • Figure 16. Quantification of the formation of biofilms formed in vitro by BCG Wild Pasteur (Wt) and BCGABCG1419c (Delta). Here it is observed that the BCGABCG1419c strain produces more biofilm than the wild BCG strain.
  • Wt BCG Wild Pasteur
  • BCGABCG1419c BCGABCG1419c
  • Figure 17 Comparison of the protein profile of the soluble fraction differentially expressed by Mycobacterium bovis BCG strains in biofilms. On the right, the number of proteins that differed in presence or quantity between strains is indicated, after comparison and statistical analysis performed with the Quantity One software (BioRad Laboratories), as well as the relationship between the BCGABCG1419c strain and the wild strain (WT) .
  • FIG. 20 Survival of strains of Mycobacterium bovis BCG Pasteur in lungs of female BALB / c mice aged 9-10 weeks infected intravenously
  • FIG. 21 Survival of strains of Mycobacterium bovis BCG Pasteur in spleens of female BALB / c mice aged 9-10 weeks infected intravenously
  • Figure 22 Average weights of groups of mice vaccinated with wild BCG (WT), BCGABCG1419c (Delta) or control (SS), in grams, with respect to week 2 post-infection with M. tuberculosis H37Rv.
  • the present invention provides a strain of Mycobacterium bovis BCG (BCGABCG1419c), lacking the BCG1419c gene, characterized in that it has the accession number PTA-120572, where the BCG1419c gene was exchanged for a hygromycin resistance gene by recombination homologue
  • BCGABCG1419c strain described here increases in vitro biofilm production from 3 to 15%, modifies the expression of at least 9 proteins during biofilm formation, increases persistence in lungs 3 to 6 times and spleen of immunocompetent BALB / c mice, and stops at the level Similar weight loss of vaccinated mice and then infected with M. tuberculosis H37Rv, despite being administered in smaller doses.
  • the modified BCG strain object of the present invention or all, some or some of the proteins whose expression is regulated differentially during the formation of biofilms by the elimination of the BCG1419c gene or its homologs in other mycobacterial species, administered to a mammalian host, an immune response will be induced towards some, some, or all proteins, or different components (carbohydrates, lipids, combinations of these two, or combinations with proteins of one of the two or both) that are expressed differently from unmodified BCG.
  • the latent mycobacterium may be eradicated by the immune system, or it may be unable to emerge from the latent (chronic, persistent) state and confined to a state of inactivity (dormancy). In any case, the active and contagious infection is prevented and with it the transmission to other people.
  • An example sequence of nucleotides comprising the BCG1419c gene (SEQ ID NO: 1) and an example sequence of amino acids encoded by such a nucleotide sequence (SEQ ID NO: 2) are included. These sequences represent BCG1419c, of the genome of BCG Pasteur 1173P2, available at the BCGList network site of the Pasteur Institute.
  • BCGABCG1419c or "BCG lacking the BCG1419c gene” or “BCG Delta BCG1419c” refers to the BCG strain where the region from nucleotide 221 was removed from the beginning of translation and up to 38 nucleotides downstream of the translation stop codon of the BCG1419c gene ( Figure 7) to originate a truncated sequence protein without the phosphodiesterase domain of di-cGMP ( Figure 8).
  • BCG1419c also we It allows to cover different variants, analogs and derivatives of the aforementioned strain if they have an equivalent or similar activity so as not to be able to produce a phosphodiesterase of the second messenger di-GMPc.
  • Another case covered by the present invention is the variants of BCG or other mycobacteria that can be isolated from nature or generated in the laboratory, which contain insertions or removals (deletions) of nucleotides that result in non-production, protein production truncated or non-functional in its enzymatic activity of phosphodiesterease from di-cGMP. All the variants described will share with the sequence present in our invention the null or decreased ability to degrade the second messenger di-cGMP produced by mycobacterial strains used as vaccines or candidates for vaccines against tuberculosis. Methods for determining or predicting the loss of phosphodiesterase activity of di-GMPC are known.
  • variants with null, low or decreased activity of di-cGMP phosphodiesterase can be evaluated in bacterial growth in biofilms or as isolated (planktonic) cells.
  • all variants of BCG1419c would, with respect to the activity of the wild protein, show a decrease in the ability to degrade in vitro or in vivo the second messenger di-cGMP in a range of about 20-30%, or 30 -50%, or preferably 50-70%) or better yet 70-90% and in optimal cases 90-100%.
  • the inactivation or decrease of the phosphodiesterase activity of the second di-cGMP messenger can be performed transiently, contrary to the stable form object of the present invention, if expression control sequences are placed to respond to environmental stimuli.
  • the decrease in phosphodiesterase activity of the second di-cGMP messenger can occur if proteins that negatively regulate the activity of BCG1419c are expressed, placing the coding region for such negative regulators under the control of inducible macrophage promoters [resulting in selective induction of genes within the macrophage phagosome, (Schnappinger et al, 2003)] or tetracycline inducible (Blokpoel et al, 2005), among others.
  • promoters of other species could be used, examples of which we have included in, but not limited to, several viral promoters, after similar strategies to "gene therapy" (eg cococulation of mycobacteria and a virus modified by genetic engineering), the antigens expressed by the mycobacterium where the phosphodiesterase activity of the second messenger di-GMPc was reduced or eliminated, are expressed in selected tissues as a result of inactivation achieved by the co-administered virus.
  • gene therapy eg cococulation of mycobacteria and a virus modified by genetic engineering
  • nucleic acid sequences within a host mycobacterium there are different alternatives to introduce and exchange for recombination or insertion, nucleic acid sequences within a host mycobacterium, to achieve the decrease or loss of di-cGMP phosphodiesterase activity.
  • the sequences can be included within vectors that are then introduced into the mycobacterium.
  • vectors that serve these purposes, which include but are not limited to several extrachromosomal elements such as plasmids, eg those that share the origin of replication pAL500, or other plasmids that have or will have different origins of replication, or extrachromosomal elements that do not replicate or integrate into the mycobacterial genome.
  • extrachromosomal elements such as plasmids, eg those that share the origin of replication pAL500, or other plasmids that have or will have different origins of replication, or extrachromosomal elements that do not replicate or integrate into the mycobacterial genome.
  • the introduction of such sequences to achieve the decrease or elimination of phosphodiesterase activity of the second di-cGMP messenger can be accomplished by means of several methods developed for exchange or inactivation vectors, including but not limited to mycobacteriophage-mediated electroporation and transduction.
  • vectors can be used to enter the mycobacteria, so that the resulting strain reduces or eliminates the phosphodiesterase activity of di-cGMP in vitro and / or in vivo.
  • the vector is a nucleotide sequence that is introduced by electroporation.
  • the decrease or loss of di-cGMP phosphodiesterase activity can be achieved by means of extrachromosomal elements.
  • vectors can be introduced that code for negative transcription regulators of the BCG1419c gene, which are able to increase constitutively or inducibly before a specific stimulus, the production of such a negative regulator to "turn off" the gene that produces the enzyme with activity degradative di-cGMP.
  • Another option would be for such a vector to produce proteins with RNAse enzymatic activity that preferentially degrades the BCG1419c transcript, constitutively or inducibly before a specific stimulus, or even with an antisense sequence that hybridizes with the BCG1419c messenger RNA and prevents its translation. (Antisense RNA).
  • bovis TMC 1011 [BCG Pasteur]
  • bovis TMC 1108 [BCG Pasteur SM-R]
  • the recombinant mycobacterial strain of the invention can be a modified BCG, including but not limited to: BCG expressing perfringolysin (Sun et al, 2009], BCG expressing listeriolysin (Grbde et al, 2005, Desel et al, 2011) , BCG expressing DosR (Flores Valdez & Schoolnik, 2010), among others.
  • BCG expressing perfringolysin (Sun et al, 2009]
  • BCG expressing listeriolysin (Grbde et al, 2005, Desel et al, 2011)
  • BCG expressing DosR Flores Valdez & Schoolnik, 2010
  • recombinant mycobacteria should not necessarily be confined to BCG strains.
  • M. tuberculosis strain CDC1551 Feischmann et ai, 2002
  • M. tuberculosis strain Beijing van Soolingen et al, 1995
  • M. tuberculosis strain H37Rv Coldé et al, 1998)
  • M. tuberculosis strain CDC1551 Feischmann et ai, 2002
  • M. tuberculosis strain Beijing van Soolingen et al, 1995
  • M. tuberculosis strain H37Rv Coldé et al, 1998)
  • tuberculosis auxotrophic strain for pantothenate (Sambandamurthy et al., 2006) or other attenuated strains or re combinations derived from M. tuberculosis.
  • Other candidate bacteria include members of the M. tuberculosis complex, other mycobacteria (eg M. africanum or members of the M. aviurri complex) or other species of mycobacteria.
  • Any mycobacterium containing a homologue of the BCG1419c gene can be used in the practice of the invention.
  • the Recombinant bacterium where di-GMPc phosphodiesterase activity was eliminated or reduced is a BCG mycobacterium, and in particular M.
  • bovis BCG Pasteur 1173P2 bovis BCG Pasteur 1173P2
  • any BCG can be used as listed as examples in Table 1, without being limiting of these BCG strains.
  • the recombinant mycobacteria of the present invention should be evaluated following methods well known to those skilled in the art. For example, toxicity, safety, etc. tests should be carried out in animal models such as mice, guinea pigs, etc., some of which must be immunocompromised and others not.
  • the ability of vaccine preparations to induce an immune response on a regular basis is analyzed in animal models, eg mice, non-human primates, etc. Also, vaccination, booster and challenge experiments with virulent M.
  • tuberculosis can be carried out using animal models that include mice, rabbits, guinea pigs, nonhuman primates.
  • the present invention provides a strain to induce an immune response to one or more antigens that are differentially expressed during biofilm production, between the wild BCG Pasteur 1173P2 strain and its isogenic derivative BCGABCG1419c, among which are proteins present in the fraction soluble ( Figure 17).
  • the administration of the vaccine of the present invention promotes the synthesis of specific antibodies (in titers in the range of 1 to 10 3 , or 3 3 , or better in the range of lxlO 3 to lxlO 6 , and optimally greater than lxlO 6 ) and / or measured cell proliferation, eg by means of cell assays in which IFN- ⁇ production is evaluated, by incorporation of thymidine H 3 , etc.
  • the immune response is a protective response, that is, it protects the vaccinated individual from future infection with virulent M. tuberculosis.
  • the recombinant strain BCGABCG1419c may have modified content of carbohydrates, lipids or proteins, or combinations of 2 or more molecules thereof, soluble or insoluble, with respect to the current BCG vaccine.
  • differentially expressed antigens induce a strong IFN- ⁇ response
  • this would include bacterial components accessible to cells of the immune system that induce the release of IFN- ⁇ with an effect on anti-inflammatory molecules that is not able to stop the response necessary for protection but which can be beneficial in regulating possible damage from exacerbated inflammation.
  • the allelic exchange vector was first constructed, where in the plasmid pYUB854 the segments of DNA obtained by polymerase chain reaction (PCR) were cloned next to the hygromycin resistance gene.
  • PCR polymerase chain reaction
  • This domain is associated with the degradation activity (phosphodiesterase) of the second c-di-GMP messenger (cyclic diguanosine monophosphate, cyclic diguanylate), which was recently demonstrated for the protein encoded by the Rvl357c gene.
  • the c-di-GMP has been implicated in the regulation of the expression of microbial virulence factors and biofilm production in various microorganisms, without reports of the association of this gene with biofilms and virulence in bacteria of the Mycobacterium complex today. tuberculosis.
  • the available scientific literature indicates that regularly, the inactivation of genes encoding proteins with c-di-GMP phosphodiesterase enzymatic activity results in cells with greater capacity to form biofilms in vitro.
  • BALB / c shows differences or not in the weight loss of animals and in the replication of Mycobacterium tuberculosis H37Rv in lungs of vaccinated and then infected mice, during the chronic phase (26 weeks) of the disease, compared to the current vaccine without modification.
  • the protein profile was compared by double-dimension electrophoresis of the wild BCG and BCGABCG1419c strains, during in vitro biofilm growth, in order to determine if it was modified as a result of the BCG1419c gene elimination, and if this could in turn impact the presentation of antigens of a protein nature to animals immunized with both strains.
  • Figure 17 after two-dimensional analysis and Coomasie blue staining, 9 proteins were found in the soluble fraction that differed significantly before the removal of the BCG1419c gene, which indicates that, in effect, there are differences in the production of potential antigens that modify the humoral and cellular immune responses to immunization.
  • mice approximately 5 x 10 3 Colony Forming Units (CFU) of the strain BCGABCG1419c (Delta) and approximately 15x10 3 CFU of the wild BCG strain (WT), via caudal vein, groups of female and male mice, 9-10 weeks of age, immunocompetent BALB / c strain, or sterile saline (SS) as a control, to leave mice at rest for 8 weeks, at which time approximately 2xl0 5 CFU of Mycobacterium tuberculosis H37Rv was administered intratracheally , and after 2 weeks post-infection and every 2 weeks, until week 26, check the weights and signs of disease of the animals, then sacrifice them at the time of 26 weeks and determine CFU in the lungs of the 3 groups of mice.
  • CFU Colony Forming Units
  • WT wild BCG strain
  • Figure 22 shows the course of the average weight loss of the group, relative to week 2 post-infection, of the control group and immunized groups. It is appreciated that from the chronic phase of the infection (week 16) differences begin to be detected, which become significant in both vaccinated groups with respect to the control (SS), which remains until the time of 26 weeks, despite having used an approximately 3 times lower dose of the BCGABCG1419c vaccine compared to the unmodified wild BCG vaccine.
  • POSSIBILITIES OF USE / APPLICATIONS 1. Specific vaccine against chronic or latent pulmonary tuberculosis.
  • Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity. Tuberculosis.

Abstract

The present invention relates to a Mycobacterium bovis BCG strain lacking the BCG1419c gene, with registration number PTA- 120572, in which nucleotides 222 to 924 of the open reading frame (ORF) are eliminated from a total of 924 base pairs that encode the protein with second messenger c-di-GMP phosphodiesterase activity (strain BCGABCG1419c), in addition to 47 base pairs downstream of the stop codon of the gene. The BCGABCG1419c strain is capable of forming from 3 to 15% more biofilm in vitro as compared with unmodified BCG, and it is capable of halting weight loss in animals vaccinated therewith at levels similar to those achieved with unmodified BCG but by means of the use of lower doses. The BCGABCG1419c strain mimics combined aspects of a chronic infection and could therefore be used as a vaccine against latent tuberculosis.

Description

UNA CEPA DE Mycobacterium bovis BCG RECOMBINANTE CARENTE DEL GEN BCG1419C, CON CAPACIDAD INCREMENTADA DE FORMAR BIOPELÍCULAS  A strain of Mycobacterium bovis BCG RECOMBINANT CARENTE GENE BCG1419C, WITH INCREASED CAPACITY OF FORMING BIOPELLICLES
CAMPO TÉCNICO DE LA INVENCIÓN La presente invención pertenece al campo de la biotecnología y se refiere a la cepa de Mycobacterium bovis BCG, a la que se le eliminaron los nucleótidos 222 al 924 del marco de lectura abierto [(open reading frame) (ORF, por su nombre y siglas en inglés)] de 924 pares de bases totales que codifican para la proteína con actividad de fosfodiesterasa del segundo mensajero di-GMPc, además de 47 pares de bases corriente abajo del codón de paro del gen BCG1419c, misma que forma biopelículas in vitro en mayor proporción que la cepa sin modificar, y su uso en el tratamiento, prevención o retardo de la tuberculosis crónica o latente. TECHNICAL FIELD OF THE INVENTION The present invention belongs to the field of biotechnology and refers to the Mycobacterium bovis BCG strain, to which nucleotides 222 to 924 were removed from the open reading frame (ORF, by its name and acronym in English)] of 924 total base pairs that code for the phosphodiesterase activity protein of the second messenger di-GMPc, in addition to 47 base pairs downstream of the stop codon of the BCG1419c gene, which forms in vitro biofilms in greater proportion than the unmodified strain, and its use in the treatment, prevention or delay of chronic or latent tuberculosis.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En la actualidad la tuberculosis (TB) es un problema importante de salud pública (Comas & Gagneux, 2009, WHO, 2009). Es la enfermedad de origen bacteriano con mayor índice de morbilidad y mortalidad (1.8 millones de personas mueren al año por tuberculosis) a nivel mundial (WHO, 2009). La Organización Mundial de la Salud (OMS) estimó que durante 1990 se habían producido 8 millones de nuevos casos de tuberculosis y 3 millones de muertes a nivel mundial, de las cuales el 95% ocurrían en los países subdesarrollados (Raviglione, 2007). Esta situación obligó a que en 1993 la OMS declarara a la tuberculosis como una emergencia de salud pública global y a que planteara estrategias para su control. Currently, tuberculosis (TB) is a major public health problem (Comas & Gagneux, 2009, WHO, 2009). It is the disease of bacterial origin with the highest morbidity and mortality rate (1.8 million people die annually from tuberculosis) worldwide (WHO, 2009). The World Health Organization (WHO) estimated that during 1990 there were 8 million new cases of tuberculosis and 3 million deaths worldwide, of which 95% occurred in underdeveloped countries (Raviglione, 2007). This situation forced WHO in 1993 to declare tuberculosis as a global public health emergency and to propose strategies for its control.
Aunque muchos de los casos pueden ser tratados con fármaco-terapia, en años recientes se ha incrementado la aparición de cepas fármaco-resistentes en todas partes del mundo, con casos intratables en la India (Loewenberg, 2012, Shah et al, 2011, Donald & van Helden, 2009). La principal ruta de infección en la tuberculosis es la aérea, por la exposición al bacilo tuberculoso, normalmente al entrar en contacto con las secreciones respiratorias que despiden las personas con tuberculosis pulmonar, cuando tosen, hablan o estornudan. Se estima que de 1 a 3 bacterias es una dosis suficiente para provocar infección con M. tuberculosis en humanos (Van Rhijn et al, 2008). Although many of the cases can be treated with drug therapy, in recent years the appearance of drug-resistant strains has increased in all parts of the world, with intractable cases in India (Loewenberg, 2012, Shah et al, 2011, Donald & van Helden, 2009). The main route of infection in tuberculosis is the aerial route, due to exposure to the tubercle bacillus, usually when in contact with the respiratory secretions that people with pulmonary tuberculosis leave, when they cough, talk or sneeze. It is estimated that 1 to 3 bacteria is a sufficient dose to cause infection with M. tuberculosis in humans (Van Rhijn et al, 2008).
Se ha considerado que una tercera parte de la población está infectada en fase latente con Mycobacterium tuberculosis, agente causal de la tuberculosis (Dye et al, 1999). Mycobacterium bovis Bacillus Calmette-Guérin (BCG) es la única vacuna actualmente disponible y aprobada por la OMS para prevenir y reducir la incidencia de la enfermedad en humanos mediante una estrategia profiláctica de inmunización (WHO, 2009). BCG es una vacuna viva atenuada, originalmente derivada de 230 pasajes seriales in vitro de una cepa virulenta de Mycobacterium bovis, desarrollada por Albert Calmette y Camille Guérin entre los años 1908 y 1921. Durante la sub-cultivación se acumularon alteraciones genéticas, incluyendo deleciones (pérdida de genes] y duplicaciones, que resultaron en la pérdida de factores de virulencia, lo que produjo la atenuación. La cepa BCG ha sido utilizada como vacuna en humanos desde 1921, y a la fecha más de 3 mil millones de dosis han sido administradas con cerca de 115 millones de dosis adicionales aplicadas anualmente a alrededor del 80% de los niños en el mundo (Doherty & Andersen, 2005, Skeiky & Sadoff, 2006]. It has been considered that a third of the population is latent infected with Mycobacterium tuberculosis, the causative agent of tuberculosis (Dye et al, 1999). Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is the only vaccine currently available and approved by WHO to prevent and reduce the incidence of human disease through a prophylactic immunization strategy (WHO, 2009). BCG is a live attenuated vaccine, originally derived from 230 serial passages in vitro of a virulent strain of Mycobacterium bovis, developed by Albert Calmette and Camille Guérin between 1908 and 1921. During the under-cultivation genetic alterations accumulated, including deletions (loss of genes) and duplications, which resulted in the loss of virulence factors, which resulted in Attenuation The BCG strain has been used as a vaccine in humans since 1921, and to date more than 3 billion doses have been administered with about 115 million additional doses applied annually to about 80% of children in the world ( Doherty & Andersen, 2005, Skeiky & Sadoff, 2006].
BCG es una vacuna segura, los efectos secundarios son bien tolerados y sólo está contraindicada para individuos inmunocomprometidos, como personas con SIDA, en quienes puede causar una seria enfermedad diseminada e incluso la muerte (WHO, 2009, Tullius et al, 2008). Sin embargo, su efectividad aún es un tema controversial. Por una parte, reduce el riesgo para las formas diseminadas de TB en la infancia temprana, incluyendo la enfermedad miliar y la tuberculosis meníngea, proporcionando una eficacia mayor al 80% contra estas formas severas de la enfermedad (WHO, 2009, Colditz et al, 1995, Rodrigues et al, 1993, Trunz et al, 2006, McShane & Williams, 2011, Meena & Rajni, 2010, McShane, 2011). No obstante, la eficacia de la protección contra la TB pulmonar, la forma predominante en adultos, es variable, se estima de estudios clínicos aleatorizados en un rango de 0 a 80% (Brewer, 2000). Además, esta vacuna no previene la infección primaria y, más importante, no previene la reactivación de la infección pulmonar latente, la principal fuente de diseminación bacilar en la comunidad (WHO, 2009). Por otra parte, se debe considerar que el periodo de inmunidad conferido por la BCG después de la vacunación neonatal disminuye gradualmente, extendiéndose a no más de 10 a 20 años (Doherty & Andersen, 2005), por lo que tiene un pequeño efecto en la tasa de TB en adultos y que además no es efectiva en poblaciones sensibilizadas previamente por antígenos micobacterianos (Trunz et al., 2006). Así mismo, distintas cepas vacunales poseen mutaciones en reguladores transcripcionales, como PhoP y Crp (Brosch et al, 2007), que controlan la expresión de múltiples genes y por ende, su capacidad de multiplicación en el hospedero, grado de virulencia y presentación de antígenos varía, con consecuentes cambios en eficacia de protección en modelos experimentales (Castillo- Rodal et al, 2006) y en población humana (Mahomed et al, 2006). Actualmente el uso de la bacteria Mycobacterium bovis Bacillus Calmette-Guérin (BCG) es para inmunizar personas sanas que nunca han estado en contacto con Mycobacterium tuberculosis. En el desarrollo de nuevas vacunas, la mayoría de las estrategias se enfocan en prevenir la enfermedad activa o progresiva, mediante el uso de variantes atenuadas de Mycobacterium tuberculosis. Como ejemplos podemos citar auxótrofos para aminoácidos (Sampson et l, 2004), para metabolismo de nucleótidos (Sambandamurthy et al, 2006, Sambandamurthy et al, 2005, Brown et al, 2005), carentes de reguladores transcripcionales, como PhoP (Martin et al, 2006)o incapaces de producir algunos lípidos, como la mutante en fadD26 (Infante et al, 2005). BCG is a safe vaccine, side effects are well tolerated and only contraindicated for immunocompromised individuals, such as people with AIDS, in whom it can cause serious disseminated disease and even death (WHO, 2009, Tullius et al, 2008). However, its effectiveness is still a controversial issue. On the one hand, it reduces the risk for disseminated forms of TB in early childhood, including miliary disease and meningeal tuberculosis, providing greater than 80% efficacy against these severe forms of the disease (WHO, 2009, Colditz et al, 1995, Rodrigues et al, 1993, Trunz et al, 2006, McShane & Williams, 2011, Meena & Rajni, 2010, McShane, 2011). However, the efficacy of protection against pulmonary TB, the predominant form in adults, is variable, it is estimated from randomized clinical studies in a range of 0 to 80% (Brewer, 2000). In addition, this vaccine does not prevent primary infection and, more importantly, does not prevent the reactivation of latent pulmonary infection, the main source of bacillary dissemination in the community (WHO, 2009). On the other hand, it should be considered that the period of immunity conferred by BCG after neonatal vaccination gradually decreases, extending to no more than 10 to 20 years (Doherty & Andersen, 2005), so it has a small effect on TB rate in adults and which is also not effective in populations previously sensitized by mycobacterial antigens (Trunz et al., 2006). Likewise, different vaccine strains have mutations in transcriptional regulators, such as PhoP and Crp (Brosch et al, 2007), which control the expression of multiple genes and therefore, their capacity for multiplication in the host, degree of virulence and presentation of antigens varies, with consequent changes in protection efficacy in experimental models (Castillo-Rodal et al, 2006) and in human population (Mahomed et al, 2006). Currently the use of the bacterium Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is to immunize healthy people who have never been in contact with Mycobacterium tuberculosis. In the development of new vaccines, most strategies focus on preventing active or progressive disease, through the use of attenuated variants of Mycobacterium tuberculosis. As examples we can cite auxotrophs for amino acids (Sampson et l, 2004), for nucleotide metabolism (Sambandamurthy et al, 2006, Sambandamurthy et al, 2005, Brown et al, 2005), lacking transcriptional regulators, such as PhoP (Martin et al, 2006) or unable to produce some lipids, such as the mutant in fadD26 (Infante et al, 2005).
Otros intentos se han basado en la producción de cepas BCG recombinantes que expresan antígenos de Mycobacterium tuberculosis, como los antígenos Ag85A y Ag85C, ESAT-6, Ag 38KDa, Ag 19KDa; o incluso aquellas que producen citocinas como IL-18 y TGF-β (Hernández- Pando et al, 2007). Cabe resaltar que salvo dos casos recientes, por un lado una vacuna subunitaria basada en la mezcla de una proteína expresada durante la infección aguda, y otra implicada en infección crónica en ratones (Aagaard et al, 2011), y por otro una cepa BCG modificada para sobreexpresar antígenos del reguión DosR (Flores Valdez & Schoolnik, 2010), son escasos los esfuerzos comunicados a la fecha para conseguir una vacuna contra tuberculosis latente. En la patente US 7,935,354B2, se construyó una cepa BCG modificada, capaz de expresar al regulador transcripcional DosR, de manera constitutiva, e inducir así la transcripción de la mayor parte de los 40 genes que integran el reguión DosR, entre cuyos antígenos se encuentran proteínas reconocidas preferentemente por personas con tuberculosis latente. Variantes basadas en el mismo DosR o miembros de su reguión se han comunicado en las solicitudes de patente AU20110203012 y US20070945680 20071127. Other attempts have been based on the production of recombinant BCG strains expressing Mycobacterium tuberculosis antigens, such as Ag85A and Ag85C, ESAT-6, Ag 38KDa, Ag 19KDa; or even those that produce cytokines such as IL-18 and TGF-β (Hernández-Pando et al, 2007). It should be noted that except for two recent cases, on the one hand a subunit vaccine based on the mixture of a protein expressed during acute infection, and another implicated in chronic infection in mice (Aagaard et al, 2011), and on the other a modified BCG strain To overexpress antigens of the DosR region (Flores Valdez & Schoolnik, 2010), the efforts reported to date to obtain a latent tuberculosis vaccine are scarce. In US Patent 7,935,354B2, a modified BCG strain was constructed, capable of constitutively expressing the DosR transcriptional regulator, and thus inducing the transcription of most of the 40 genes that make up the DosR region, whose antigens are found proteins preferentially recognized by people with latent tuberculosis. Variants based on DosR itself or members of its region have been notified in patent applications AU20110203012 and US20070945680 20071127.
Otra opción para vacunas contra tuberculosis latente la constituye la reportada en la patente MX2011011186 (A), basada en buscar respuesta contra antígenos expresados de manera constitutiva, entre ellos ESAT6, CFP10 y otros antígenos miembros del sistema de secreción ESX- 1 y que no tiene ninguna relación con el cambio que efectuamos en nuestra cepa BCG carente del gen BCG1419c. Another option for vaccines against latent tuberculosis is that reported in patent MX2011011186 (A), based on seeking response against constitutively expressed antigens, including ESAT6, CFP10 and other member antigens of the ESX-1 secretion system and that does not have no relation to the change we made in our BCG strain lacking the BCG1419c gene.
Por último, se puede citar también la patente MX2012008790(A), que mediante el uso de polipéptidos de Rv3616c modificados o de los polinucleótidos que los codifican, en el campo de las infecciones micobacterianas latentes, nuevamente, donde no se cita uso de componentes particulares asociados al cambio por la eliminación del gen BCG1419c que nosotros realizamos. Finally, it can also be mentioned the patent MX2012008790 (A), which through the use of modified Rv3616c polypeptides or the polynucleotides that encode them, in the field of latent mycobacterial infections, again, where no use of particular components is cited associated to the change by the elimination of the BCG1419c gene that we carry out.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención se refiere en lo particular a una cepa de Mycobacterium bovis BCG carente del gen BCG1419c (o sus homólogos genéticos en otras micobacterias), que cuenta con número de acceso PTA-120572, capaz de formar de 3-15% más biopelículas in vitro comparada con BCG sin modificar, y capaz de detener la pérdida de peso de animales vacunados con la misma, a niveles comparables con BCG pero aplicada en dosis menor. The present invention relates in particular to a strain of Mycobacterium bovis BCG lacking the BCG1419c gene (or its genetic counterparts in other mycobacteria), which has accession number PTA-120572, capable of forming 3-15% more biofilms in vitro compared with unmodified BCG, and able to stop the weight loss of animals vaccinated with it, at levels comparable with BCG but applied in lower doses.
En la presente invención se ha encontrado que la eliminación del gen BCG1419c le confiere a Mycobacterium bovis BCG (cepa BCGABCG1419c) una capacidad incrementada de formar biopelículas in vitro, fenómeno que se asocia a mejor replicación in vivo en pulmones y bazo de animales inmunocompetentes. In the present invention it has been found that the elimination of the BCG1419c gene gives Mycobacterium bovis BCG (strain BCGABCG1419c) an increased ability to form in vitro biofilms, a phenomenon that is associated with better replication in vivo in the lungs and spleen of immunocompetent animals.
La cepa BCGABCG1419c, mimetiza aspectos combinados de una infección crónica, como la persistencia incrementada en el hospedero, y cambios en la expresión de proteínas que son necesarias para responder a estrés nitrooxidativo. En consecuencia, la cepa BCGABCG1419c podría servir como vacuna contra tuberculosis latente. The BCGABCG1419c strain mimics combined aspects of a chronic infection, such as increased persistence in the host, and changes in the expression of proteins that are necessary to respond to nitrooxidative stress. Consequently, strain BCGABCG1419c could serve as a vaccine against latent tuberculosis.
En su aspecto más amplio, la presente invención proporciona una cepa de Mycobacterium bovis BCG modificada, donde se ha eliminado al gen BCG1419c, de modo que no se pueda expresar en ella la proteína con actividad de fosfodiesterasa del segundo mensajero diguanilato cíclico (diguanosín monofosfato cíclico, di-GMPc, c-di-GMP -por sus siglas en inglés-). In its broadest aspect, the present invention provides a modified Mycobacterium bovis BCG strain, where the BCG1419c gene has been removed, so that the protein with phosphodiesterase activity of the second cyclic diguanilate messenger (cyclic diguanosine monophosphate messenger) cannot be expressed therein , di-GMPc, c-di-GMP-by its acronym in English-).
En un aspecto de la invención, se proporciona una cepa de Mycobacterium bovis BCG modificada, donde se eliminaron los nucleótidos 222 al 924 del marco de lectura abierto (open reading frame, (ORF, por su nombre y siglas en inglés) de 924 pares de bases totales que codifican para la proteína con actividad de fosfodiesterasa del segundo mensajero di-GMPc, cepa BCGABCG1419c) además de 47 pares de bases corriente abajo del codón de paro del gen. Esto lleva a que la cepa BCGABCG1419c pueda, en teoría, producir un péptido que incluye únicamente los aminoácidos 1 a 73 (de un total de 307 que tiene la proteína completa), y que carece de los residuos aminoacídicos 89, 90 y 91 (EAL, ácido glutámico, alanina, leucina) necesarios para la actividad enzimática de degradación de di-GMPc. El gen BCG1419c y sus homólogos de otras bacterias del complejo Mycobacterium tuberculosis, codifican para una proteína con dominio predicho EAL. Este dominio se asocia con la actividad de degradación (fosfodiesterasa) del segundo mensajero di-GMPc, misma actividad que se demostró para la proteína codificada por el gen Rvl357c (Gupta et al., 2010). El di-GMPc se ha implicado en la regulación de la expresión de factores de virulencia microbianos y producción de biopelículas en diversos microorganismos (Hengge, 2009), y recientemente se reportó que una mutante homologa (con eliminación del gen Rvl357c, en M. tuberculosis cepa H37Rv), resultaba menos capaz de multiplicarse en pulmones y bazos de ratones inmunocompetentes (Hong et al, 2013), hallazgos opuestos a lo que nosotros obtuvimos. In one aspect of the invention, a modified Mycobacterium bovis BCG strain is provided, where nucleotides 222 through 924 were removed from the open reading frame (ORF) of 924 pairs of total bases encoding the phosphodiesterase activity protein of the second messenger di-GMPc, strain BCGABCG1419c) in addition to 47 base pairs downstream of the stop codon of the gene. This leads to the BCGABCG1419c strain being able, in theory, to produce a peptide that includes only amino acids 1 to 73 (of a total of 307 that has the complete protein), and that lacks amino acid residues 89, 90 and 91 (EAL , glutamic acid, alanine, leucine) necessary for the enzymatic degradation activity of di-cGMP. The BCG1419c gene and its counterparts from other bacteria of the Mycobacterium tuberculosis complex, code for a protein with predicted EAL domain. This domain is associated with the degradation activity (phosphodiesterase) of the second di-cGMP messenger, same activity that was demonstrated for the protein encoded by the Rvl357c gene (Gupta et al., 2010). Di-cGMP has been implicated in the regulation of the expression of microbial virulence factors and biofilm production in various microorganisms (Hengge, 2009), and recently it was reported that a homologous mutant (with elimination of the Rvl357c gene, in M. tuberculosis strain H37Rv), was less able to multiply in lungs and spleens of immunocompetent mice (Hong et al, 2013), findings opposite to what we obtained.
Con respecto a BCG sin modificar, la cepa BCGABCG1419c incrementa de 3 a 15% la producción de biopelícula in vitro, modifica la expresión de al menos 9 proteínas durante la formación de biopelículas, incrementa de 3 a 6 veces la persistencia en pulmones y bazo de ratones BALB/c inmunocompetentes, y detiene a nivel similar la pérdida de peso de ratones vacunados y luego infectados con Mycobacterium tuberculosis H37Rv, a pesar de administrarse en dosis menor. Entonces, cuando la cepa BCG modificada de la presente invención, o bien todas, algunas o alguna de las proteínas cuya expresión se ve regulada diferencialmente durante la formación de biopelículas por la eliminación del gen BCG1419c o sus homólogos en otras especies micobacterianas, se administre a un hospedero mamífero, se inducirá una respuesta inmune hacia alguna, algunas, o todas las proteínas, o componentes distintos (carbohidratos, lípidos, o combinaciones de estos dos, o combinaciones con proteínas de uno de los dos o ambos) que se expresan de manera diferente respecto a BCG sin modificar. Por lo tanto la micobacteria que luego infecte a este mamífero inmunizado será incapaz de establecer una infección latente en el hospedero; cuando las proteínas, carbohidratos, lípidos o combinaciones de estos, requeridos para establecer una infección latente, se expresen serán reconocidos por el sistema inmune y en consecuencia la micobacteria será destruida. De manera alterna, o adicional, los individuos en donde la infección latente ya se encuentre establecida, la habilidad de la micobacteria para reactivarse y provocar una infección activa, estará atenuada. En este escenario, la micobacteria latente puede ser erradicada por el sistema inmune, o puede ser incapaz de emerger del estado latente (crónico, persistente) y confinada a un estado de inactividad (dormancia). En cualquier caso, la infección activa y contagiosa, se previene y con ello la transmisión a otras personas. With respect to unmodified BCG, the BCGABCG1419c strain increases in vitro biofilm production from 3 to 15%, modifies the expression of at least 9 proteins during biofilm formation, increases persistence in lungs and spleen of 3 to 6 times immunocompetent BALB / c mice, and similarly stops the weight loss of vaccinated mice and then infected with Mycobacterium tuberculosis H37Rv, despite being administered at a lower dose. Then, when the modified BCG strain of the present invention, or all, some or some of the proteins whose expression is regulated differentially during biofilm formation by the elimination of the BCG1419c gene or its homologs in other mycobacterial species, is administered to a mammalian host, an immune response will be induced towards some, some, or all of the proteins, or different components (carbohydrates, lipids, or combinations of these two, or combinations with proteins of one of the two or both) that are expressed in a manner different from unmodified BCG. Therefore the mycobacterium that then infects this immunized mammal will be unable to establish a latent infection in the host; When proteins, carbohydrates, lipids or combinations thereof, required to establish a latent infection, are expressed they will be recognized by the immune system and consequently the mycobacterium will be destroyed. Alternatively, or additionally, individuals where the latent infection is already established, the ability of mycobacteria to reactivate and cause an active infection will be attenuated. In this scenario, the latent mycobacterium may be eradicated by the immune system, or it may be unable to emerge from the latent (chronic, persistent) state and confined to a state of inactivity (dormancy). In any case, the active and contagious infection is prevented and with it the transmission to other people.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Amplificación de los genes Rvl356c y Rvl358c de la cepa de Mycobacterium tuberculosis H37Rv. Una alícuota de la reacción de PCR se sometió a electroforesis en gel de agarosa al 1%. Carril 1 marcador de peso molecular 1 Kb plus (Invitrogen), carril 2 PCR Rvl356c (65.4 pb), carril 3 PCR Rvl358c (549 pb). Figure 1. Amplification of the Rvl356c and Rvl358c genes of the Mycobacterium tuberculosis H37Rv strain. An aliquot of the PCR reaction was subjected to 1% agarose gel electrophoresis. Lane 1 molecular weight marker 1 Kb plus (Invitrogen), lane 2 PCR Rvl356c (65.4 bp), lane 3 PCR Rvl358c (549 bp).
Figura 2. Gel de digestiones cuádruples (Xba I, Kpn I, Hind III y Bgl II) para pMarl357c, donde contiene los fragmentos, de pYUB854, Rvl356C, Rvl358c. En el carril 1. Marcador 1 Kb plus, 2. vacío, 3. pYUB854, 4.pYUB854-Rvl356c, 5.pYUB854-Rvl358c, 6.pYUB854-Rvl356c + Rvl358c el, 7. pYUB854-Rvl356c + Rvl358c c2, 8. pYUB854-Rvl356c + Rvl358c c3, 9pYUB854- Rvl356c + Rvl358c c4 , 10 pYUB854-Rvl356c + Rvl358c c5, 11. pYUB854-Rvl356c + Rvl358c c6, 12. pYUB854-Rvl356c + Rvl358c c7, 13. pYUB854-Rvl356c + Rvl358c c8, 14. pYUB854- Rvl356c + Rvl358c c9, 15. pYUB854-Rvl356c + Rvl358c clO. Las clonas positivas a ambos insertos se secuenciaron y la clona 3 se seleccionó y nombró pMarRvl357c. Figura 3 Alineamiento de la secuencia obtenida de la clona 3 con oligonucléotido Rvl356c-F al genoma de Mycobacterium. tuberculosis H37Rv. Figure 2. Quadruple digestion gel (Xba I, Kpn I, Hind III and Bgl II) for pMarl357c, where it contains the fragments, of pYUB854, Rvl356C, Rvl358c. In lane 1. Marker 1 Kb plus, 2. empty, 3. pYUB854, 4.pYUB854-Rvl356c, 5.pYUB854-Rvl358c, 6.pYUB854-Rvl356c + Rvl358c el, 7. pYUB854-Rvl356c + Rvl358c c2, 8. pYUB854-Rvl356c + Rvl358c c3, 9pYUB854- Rvl356c + Rvl358c c4, 10 pYUB854-Rvl356c + Rvl358c c5, 11. pYUB854-Rvl356c + Rvl358c c6, 12. pvUB355 pYUB854- Rvl356c + Rvl358c c9, 15. pYUB854-Rvl356c + Rvl358c clO. Positive clones to both inserts were sequenced and clone 3 was selected and named pMarRvl357c. Figure 3 Alignment of the sequence obtained from clone 3 with oligonucleotide Rvl356c-F to the Mycobacterium genome. tuberculosis H37Rv.
Figura 4. Alineamiento de la secuencia obtenida de la clona 3 con oligonucléotido Rvl358-R al genoma de Mycobacterium. tuberculosis H37Rv. Figura 5. A partir de la construcción pMar ARvl357c se extrajo el sustrato de intercambio alélico utilizando las enzimas de restricción Xbal y Nhel generando dos bandas de 3.1 y 1.9 kb. La banda de 3.1 correspondiente a la secuencia con la deleción fue cortada del gel y purificada para posteriormente ser transformada en la cepa de recombinería. Figura 6. Representación gráfica del plásmido pJV53, que contiene al gen de recombinasa viral Che9c-60-61 bajo el control del promotor inducible por acetamida (Tomado de Van Kessel, Marinelli y Hatfull, Nature Reviews Microbiology, 2008], Figure 4. Alignment of the sequence obtained from clone 3 with oligonucleotide Rvl358-R to the Mycobacterium genome. tuberculosis H37Rv. Figure 5. From the pMar construction ARvl357c the allelic exchange substrate was extracted using the restriction enzymes Xbal and Nhel generating two bands of 3.1 and 1.9 kb. The 3.1 band corresponding to the sequence with the deletion was cut from the gel and purified to be subsequently transformed into the recombination strain. Figure 6. Graphical representation of plasmid pJV53, which contains the viral recombinase gene Che9c-60-61 under the control of the acetamide-inducible promoter (Taken from Van Kessel, Marinelli and Hatfull, Nature Reviews Microbiology, 2008],
Figura 7. Resultado esperado de los eventos de recombinación homologa doble tras la eliminación del plásmido pJV53, para generar la cepa BCGABCG1419c, a nivel genómico Figura 8. Resultado esperado de los eventos de recombinación homologa doble tras la eliminación del plásmido pJV53, para generar la cepa BCGABCG1419c a nivel de la secuencia predicha de aminoácidos. Figure 7. Expected result of double homologous recombination events after the elimination of plasmid pJV53, to generate strain BCGABCG1419c, at genomic level Figure 8. Expected result of double homologous recombination events after plasmid pJV53 removal, to generate BCGABCG1419c strain at the level of the predicted amino acid sequence.
Figura 9. Posibles resultados de los eventos de recombinación homologa tras la doble recombinación y eliminación del plásmido pJV53 y su caracterización con oligonucleótidos para reacción en cadena de la polimerasa (PCR por sus siglas en inglés). Figure 9. Possible results of homologous recombination events after double recombination and elimination of plasmid pJV53 and its characterization with oligonucleotides for polymerase chain reaction (PCR).
Figura 10. Amplificación de los extremos hacia afuera del cassette de higromicina. En la imagen se confirma con esta nueva combinación de oligonucleótidos que dos de las candidatas a mutantes (C5 y CIO) son recombinantes ilegítimas y que todas las cepas son resistentes a higromicina (hyg) por la presencia del gen hyg en el cromosoma. Figura 11. Posibles resultados de los eventos de recombinación homologa tras la doble recombinación y eliminación del plásmido pJV53, verificables con los oligonucleótidos señalados para determinar presencia o ausencia de transcrito que abarque al marco de lectura abierto del gen BCG1419c. Figure 10. Amplification of the outward ends of the hygromycin cassette. The image confirms with this new combination of oligonucleotides that two of the mutant candidates (C5 and CIO) are illegitimate recombinants and that all strains are resistant to hygromycin (hyg) by the presence of the hyg gene on the chromosome. Figure 11. Possible results of homologous recombination events after double recombination and elimination of plasmid pJV53, verifiable with the indicated oligonucleotides to determine presence or absence of transcript covering the open reading frame of the BCG1419c gene.
Figura 12. Amplificación del marco abierto de lectura del gen BCG1419c, con oligonucleótidos RV1357c-ORF-F y Rvl357c-ORF-R. En los casos donde se analizó la expresión del gen por RT- PCR, (-) indica reacción sin transcriptasa reversa y (+) con transcriptasa reversa, como control de amplificación por transcrito y no por DNA genómico contaminante. Figure 12. Amplification of the open reading frame of the BCG1419c gene, with oligonucleotides RV1357c-ORF-F and Rvl357c-ORF-R. In cases where gene expression was analyzed by RT-PCR, (-) indicates reaction without reverse transcriptase and (+) with reverse transcriptase, as a control of amplification by transcript and not by contaminating genomic DNA.
Figura 13. Amplificación del gen constitutivo rrs. En los casos donde se analizó la expresión del gen por RT-PCR, (-) indica reacción sin transcriptasa reversa y (+) con transcriptasa reversa, como control de amplificación por transcrito y no por DNA genómico contaminante. Figura 14. Predicción de dominios presentes en la proteína codificada por el gen BCG1419c. El dominio EAL (aminoácidos 89, 90 y 91] presenta actividad de fosfodiesterasa de c-di-GMP in vitro. Figure 13. Amplification of the constituent gene rrs. In cases where the expression of the gene was analyzed by RT-PCR, (-) indicates reaction without reverse transcriptase and (+) with reverse transcriptase, as a control of amplification by transcript and not by contaminating genomic DNA. Figure 14. Prediction of domains present in the protein encoded by the BCG1419c gene. The EAL domain (amino acids 89, 90 and 91] has c-di-GMP phosphodiesterase activity in vitro.
Figura 15. Fotografías de biopelículas formadas por cepas de Mycobacterium bovis BCG. Figura 16. Cuantificación de la formación de biopelículas formadas in vitro por BCG Pasteur silvestre (Wt) y BCGABCG1419c (Delta). Aquí se observa que la cepa BCGABCG1419c produce más biopelícula que la cepa BCG silvestre. Figure 15. Photographs of biofilms formed by strains of Mycobacterium bovis BCG. Figure 16. Quantification of the formation of biofilms formed in vitro by BCG Wild Pasteur (Wt) and BCGABCG1419c (Delta). Here it is observed that the BCGABCG1419c strain produces more biofilm than the wild BCG strain.
Figura 17. Comparación del perfil de proteínas de la fracción soluble diferencialmente expresadas por cepas de Mycobacterium bovis BCG en biopelículas. A la derecha se indica el número de proteínas que difirieron en presencia o cantidad entre cepas, tras la comparación y análisis estadístico realizado con el software Quantity One (BioRad Laboratories), así como la relación entre la cepa BCGABCG1419c y la cepa silvestre (WT). Figure 17. Comparison of the protein profile of the soluble fraction differentially expressed by Mycobacterium bovis BCG strains in biofilms. On the right, the number of proteins that differed in presence or quantity between strains is indicated, after comparison and statistical analysis performed with the Quantity One software (BioRad Laboratories), as well as the relationship between the BCGABCG1419c strain and the wild strain (WT) .
Figura 18. Sobrevivencia de cepas de Mycobacterium bovis BCG Pasteur en pulmones de ratones BALB/c machos de 9-10 semanas de edad infectados vía intravenosa Figura 19. Sobrevivencia de cepas de Mycobacterium bovis BCG Pasteur en bazos de ratones BALB/c machos de 9-10 semanas de edad infectados vía intravenosa Figure 18. Survival of strains of Mycobacterium bovis BCG Pasteur in lungs of male BALB / c mice aged 9-10 weeks infected intravenously Figure 19. Survival of strains of Mycobacterium bovis BCG Pasteur in spleens of male BALB / c mice of 9 -10 weeks old infected intravenously
Figura 20. Sobrevivencia de cepas de Mycobacterium bovis BCG Pasteur en pulmones de ratones BALB/c hembras de 9-10 semanas de edad infectados vía intravenosa Figure 20. Survival of strains of Mycobacterium bovis BCG Pasteur in lungs of female BALB / c mice aged 9-10 weeks infected intravenously
Figura 21. Sobrevivencia de cepas de Mycobacterium bovis BCG Pasteur en bazos de ratones BALB/c hembras de 9-10 semanas de edad infectados vía intravenosa Figure 21. Survival of strains of Mycobacterium bovis BCG Pasteur in spleens of female BALB / c mice aged 9-10 weeks infected intravenously
Figura 22. Pesos promedios de grupos de ratones vacunados con BCG silvestre (WT), BCGABCG1419c (Delta) o control (SS), en gramos, respecto a la semana 2 post-infección con M. tuberculosis H37Rv. Figure 22. Average weights of groups of mice vaccinated with wild BCG (WT), BCGABCG1419c (Delta) or control (SS), in grams, with respect to week 2 post-infection with M. tuberculosis H37Rv.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La presente invención proporciona una cepa de Mycobacterium bovis BCG (BCGABCG1419c), carente del gen BCG1419c, caracterizada porque tiene el número de acceso PTA-120572, donde el gen BCG1419c se intercambió por un gen de resistencia a higromicina mediante recombinación homologa. Con respecto a BCG sin modificar, la cepa BCGABCG1419c descrita aquí, incrementa de 3 a 15% la producción de biopelícula in vitro, modifica la expresión de al menos 9 proteínas durante la formación de biopelículas, incrementa de 3 a 6 veces la persistencia en pulmones y bazo de ratones BALB/c inmunocompetentes, y detiene a nivel similar la pérdida de peso de ratones vacunados y luego infectados con M. tuberculosis H37Rv, a pesar de administrarse en dosis menor. DETAILED DESCRIPTION OF THE INVENTION The present invention provides a strain of Mycobacterium bovis BCG (BCGABCG1419c), lacking the BCG1419c gene, characterized in that it has the accession number PTA-120572, where the BCG1419c gene was exchanged for a hygromycin resistance gene by recombination homologue With respect to unmodified BCG, the BCGABCG1419c strain described here, increases in vitro biofilm production from 3 to 15%, modifies the expression of at least 9 proteins during biofilm formation, increases persistence in lungs 3 to 6 times and spleen of immunocompetent BALB / c mice, and stops at the level Similar weight loss of vaccinated mice and then infected with M. tuberculosis H37Rv, despite being administered in smaller doses.
La literatura científica disponible indica que regularmente, la inactivación de genes que codifican para proteínas con actividad enzimática de fosfodiesterasa de di-GMPc, resulta en células con mayor capacidad de formar biopelículas in vitro. Si bien no hay evidencia formal hoy en día de que se formen biopelículas de M. tuberculosis in vivo similares en apariencia física a los formados in vitro, contrario a lo que ocurre con otros microorganismos, durante la infección en modelos animales con M. tuberculosis se encuentran microcolonias que se hipotetiza pudieran ser una especie de biopelícula (Lenaerts et al, 2007]. Cuando la cepa BCG modificada objeto de la presente invención, o bien todas, algunas o alguna de las proteínas cuya expresión se ve regulada diferencialmente durante la formación de biopelículas por la eliminación del gen BCG1419c o sus homólogos en otras especies micobacterianas, se administre a un hospedero mamífero, se inducirá una respuesta inmune hacia alguna, algunas, o todas las proteínas, o componentes distintos (carbohidratos, lípidos, combinaciones de estos dos, o combinaciones con proteínas de uno de los dos o ambos) que se expresan de manera diferente respecto a BCG sin modificar. Esto da pie a pensar que la micobacteria que luego infecte a este mamífero inmunizado será incapaz de establecer una infección latente en el hospedero; cuando las proteínas, carbohidratos, lípidos o combinaciones de estos, requeridos para establecer una infección latente, se expresen serán reconocidos por el sistema inmune y en consecuencia la micobacteria será destruida. The available scientific literature indicates that regularly, inactivation of genes encoding proteins with di-cGMP phosphodiesterase enzymatic activity results in cells with greater capacity to form biofilms in vitro. Although there is no formal evidence today that biofilms of M. tuberculosis in vivo similar in physical appearance to those formed in vitro are formed, contrary to what occurs with other microorganisms, during infection in animal models with M. tuberculosis, they find microcolonies that are hypothesized to be a kind of biofilm (Lenaerts et al, 2007). When the modified BCG strain object of the present invention, or all, some or some of the proteins whose expression is regulated differentially during the formation of biofilms by the elimination of the BCG1419c gene or its homologs in other mycobacterial species, administered to a mammalian host, an immune response will be induced towards some, some, or all proteins, or different components (carbohydrates, lipids, combinations of these two, or combinations with proteins of one of the two or both) that are expressed differently from unmodified BCG. or leads us to think that the mycobacterium that then infects this immunized mammal will be unable to establish a latent infection in the host; When proteins, carbohydrates, lipids or combinations thereof, required to establish a latent infection, are expressed they will be recognized by the immune system and consequently the mycobacterium will be destroyed.
De manera alterna, o adicional, los individuos en donde la infección latente ya se encuentre establecida, la habilidad de la micobacteria para reactivarse y provocar una infección activa, estará atenuada. En este escenario, la micobacteria latente puede ser erradicada por el sistema inmune, o puede ser incapaz de emerger del estado latente (crónico, persistente) y confinada a un estado de inactividad (dormancia). En cualquier caso, la infección activa y contagiosa, se previene y con ello la transmisión a otras personas. Alternatively, or additionally, individuals where the latent infection is already established, the ability of mycobacteria to reactivate and cause an active infection will be attenuated. In this scenario, the latent mycobacterium may be eradicated by the immune system, or it may be unable to emerge from the latent (chronic, persistent) state and confined to a state of inactivity (dormancy). In any case, the active and contagious infection is prevented and with it the transmission to other people.
Se incluye una secuencia ejemplo de los nucleótidos que comprende el gen BCG1419c (SEQ ID NO: 1) y una secuencia ejemplo de los aminoácidos codificados por tal secuencia nucleotídica (SEQ ID NO: 2). Estas secuencias representan a BCG1419c, del genoma de BCG Pasteur 1173P2, disponible en el sitio de la red BCGList del Instituto Pasteur. En general, para los propósitos de la presente invención "BCGABCG1419c" o "BCG carente del gen BCG1419c" o "BCG Delta BCG1419c" se refiere a la cepa BCG donde se eliminó la región desde el nucleótido 221 respecto al inicio de la traducción y hasta 38 nucleótidos corriente abajo del codón de paro de la traducción del gen BCG1419c (Figura 7) para originar una proteína de secuencia truncada sin el dominio de actividad fosfodiesterasa de di-GMPc (Figura 8). Sin embargo, "BCGABCG1419c" también nos permite abarcar distintas variantes, análogos y derivados de la citada cepa si las mismas poseen una actividad equivalente o similar para no ser capaces de producir una fosfodiesterasa del segundo mensajero di-GMPc. An example sequence of nucleotides comprising the BCG1419c gene (SEQ ID NO: 1) and an example sequence of amino acids encoded by such a nucleotide sequence (SEQ ID NO: 2) are included. These sequences represent BCG1419c, of the genome of BCG Pasteur 1173P2, available at the BCGList network site of the Pasteur Institute. In general, for the purposes of the present invention "BCGABCG1419c" or "BCG lacking the BCG1419c gene" or "BCG Delta BCG1419c" refers to the BCG strain where the region from nucleotide 221 was removed from the beginning of translation and up to 38 nucleotides downstream of the translation stop codon of the BCG1419c gene (Figure 7) to originate a truncated sequence protein without the phosphodiesterase domain of di-cGMP (Figure 8). However, "BCGABCG1419c" also we It allows to cover different variants, analogs and derivatives of the aforementioned strain if they have an equivalent or similar activity so as not to be able to produce a phosphodiesterase of the second messenger di-GMPc.
Todas estas variantes están consideradas dentro de las aplicaciones de la presente invención. Por ejemplo, aquellos con experiencia y dominio de la técnica reconocerán que se pueden hacer muchos cambios en la secuencia del gen BCG1419c, como cambios no conservativos de aminoácidos en el dominio EAL responsable de la actividad enzimática de degradación del segundo mensajero di-GMPc, o bien remoción dirigida del dominio EAL únicamente, o cambios en otras regiones que afecten la conformación de la proteína volviéndola no funcional, o cambios en la región que regula la transcripción o traducción para eliminar ambas y no dar origen a ninguna proteína, o substituciones del gen BCG1419c por otros genes distintos al de resistencia a antibiótico (higromicina) empleado en la presente invención, o incluso sin ningún mareaje de antibiótico u otro que facilite la identificación del cambio que conduce a la inactivación o disminución de la actividad de fosfodiesterasa de di-GMPc. Otro caso que se abarca por la presente invención lo constituyen las variantes de BCG u otras micobacterias que se puedan aislar de la naturaleza o generar en el laboratorio, que contengan inserciones o remociones (deleciones) de nucleótidos que resulten en no producción, producción de proteína truncada o no funcional en su actividad enzimática de fosfodiestereasa de di-GMPc. Todas las variantes descritas compartirán con la secuencia presente en nuestra invención la capacidad nula o disminuida de degradar al segundo mensajero di-GMPc producido por cepas micobacterianas usadas como vacunas o candidatos a vacunas contra tuberculosis. Son conocidos los métodos para determinar o predecir la pérdida de actividad de fosfodiesterasa de di-GMPC. Así mismo, se tiene conocimiento de procedimientos necesarios para medir la actividad enzimática de proteínas, y para determinar los niveles aceptables de baja de actividad de degradación del segundo mensajero di-GMPc. Por citar ejemplos, las variantes con actividad nula, baja o disminuida de fosfodiesterasa de di-GMPc pueden evaluarse en crecimiento de las bacterias en biopelículas o como células aisladas (planctónicas). En general, todas las variantes de BCG1419c presentarían, respecto a la actividad de la proteína silvestre, una disminución en la capacidad de degradar in vitro o in vivo al segundo mensajero di-GMPc en un rango alrededor de 20-30%, o de 30-50%, o preferentemente 50-70%) o mejor aún 70-90% y en casos óptimos 90- 100%. All these variants are considered within the applications of the present invention. For example, those with experience and mastery of the art will recognize that many changes can be made in the BCG1419c gene sequence, such as non-conservative amino acid changes in the EAL domain responsible for the degradation enzymatic activity of the second messenger di-GMPc, or either directed removal of the EAL domain only, or changes in other regions that affect the conformation of the protein making it non-functional, or changes in the region that regulates transcription or translation to eliminate both and not give rise to any protein, or gene substitutions BCG1419c by genes other than antibiotic resistance (hygromycin) used in the present invention, or even without any antibiotic or other screening that facilitates the identification of the change that leads to the inactivation or decrease of di-GMPc phosphodiesterase activity . Another case covered by the present invention is the variants of BCG or other mycobacteria that can be isolated from nature or generated in the laboratory, which contain insertions or removals (deletions) of nucleotides that result in non-production, protein production truncated or non-functional in its enzymatic activity of phosphodiesterease from di-cGMP. All the variants described will share with the sequence present in our invention the null or decreased ability to degrade the second messenger di-cGMP produced by mycobacterial strains used as vaccines or candidates for vaccines against tuberculosis. Methods for determining or predicting the loss of phosphodiesterase activity of di-GMPC are known. Likewise, there is knowledge of procedures necessary to measure the enzymatic activity of proteins, and to determine the acceptable levels of low degradation activity of the second messenger di-GMPc. To cite examples, variants with null, low or decreased activity of di-cGMP phosphodiesterase can be evaluated in bacterial growth in biofilms or as isolated (planktonic) cells. In general, all variants of BCG1419c would, with respect to the activity of the wild protein, show a decrease in the ability to degrade in vitro or in vivo the second messenger di-cGMP in a range of about 20-30%, or 30 -50%, or preferably 50-70%) or better yet 70-90% and in optimal cases 90-100%.
De manera alterna, la inactivación o disminución de la actividad de fosfodiesterasa del segundo mensajero di-GMPc puede realizarse de manera transitoria, contrario a la forma estable objeto de la presente invención, si se colocan secuencias de control de la expresión para que respondan a estímulos ambientales. En estos casos, por ejemplo, la baja en la actividad de fosfodiesterasa del segundo mensajero di-GMPc puede ocurrir si se expresan de manera inducible proteínas que regulan negativamente la actividad de BCG1419c, colocando la región que codifica para tales reguladores negativos bajo el control de promotores inducibles en macrófagos [que resultan en la inducción selectiva de genes dentro del fagosoma del macrófago, (Schnappinger et al, 2003)] o inducibles por tetraciclina (Blokpoel et al, 2005), entre otros. Además, se podrían utilizar promotores de otras especies, ejemplos de los cuales los tenemos incluidos en, pero no limitados a, varios promotores virales, después de que estrategias similares a "terapia génica" (p.ej. la coinoculación de micobacterias y un virus modificado por ingeniería genética), los antígenos expresados por la micobacteria donde se redujo o eliminó la actividad de fosfodiesterasa del segundo mensajero di-GMPc, se expresen en tejidos selectos como producto de la inactivación lograda por el virus co-administrado. Alternatively, the inactivation or decrease of the phosphodiesterase activity of the second di-cGMP messenger can be performed transiently, contrary to the stable form object of the present invention, if expression control sequences are placed to respond to environmental stimuli. In these cases, for example, the decrease in phosphodiesterase activity of the second di-cGMP messenger can occur if proteins that negatively regulate the activity of BCG1419c are expressed, placing the coding region for such negative regulators under the control of inducible macrophage promoters [resulting in selective induction of genes within the macrophage phagosome, (Schnappinger et al, 2003)] or tetracycline inducible (Blokpoel et al, 2005), among others. In addition, promoters of other species could be used, examples of which we have included in, but not limited to, several viral promoters, after similar strategies to "gene therapy" (eg cococulation of mycobacteria and a virus modified by genetic engineering), the antigens expressed by the mycobacterium where the phosphodiesterase activity of the second messenger di-GMPc was reduced or eliminated, are expressed in selected tissues as a result of inactivation achieved by the co-administered virus.
Existen diferentes alternativas para introducir e intercambiar por recombinación o inserción, secuencias de ácidos nucleicos dentro de una micobacteria hospedera, para lograr la disminución o pérdida de actividad de fosfodiesterasa de di-GMPc. Por ejemplo, las secuencias pueden incluirse dentro de vectores que son luego introducidos en la micobacteria. There are different alternatives to introduce and exchange for recombination or insertion, nucleic acid sequences within a host mycobacterium, to achieve the decrease or loss of di-cGMP phosphodiesterase activity. For example, the sequences can be included within vectors that are then introduced into the mycobacterium.
Existen muchos vectores que sirven para estos propósitos, que incluyen pero no están limitados a varios elementos extracromosómicos tales como plásmidos, p.ej. aquellos que comparten el origen de replicación pAL500, u otros plásmidos que tienen o tendrán diferentes orígenes de replicación, o bien elementos extracromosómicos que no se replican ni integran dentro del genoma micobacteriano. La introducción de tales secuencias para lograr la disminución o eliminación de actividad de fosfodiesterasa del segundo mensajero di-GMPc puede realizarse por medio de varios métodos desarrollados para los vectores de intercambio o inactivación, incluyendo pero no limitados a la electroporación y transducción mediada por micobacteriófagos. Muchos vectores pueden utilizarse para introducirse en las micobacterias, de -modo tal que la cepa resultante reduzca o elimine la actividad de fosfodiesterasa de di-GMPc in vitro y/o in vivo. En su presentación preferida, el vector es una secuencia de nucleótidos que se introduce por electroporación. En otras presentaciones de la invención, la disminución o pérdida de la actividad de fosfodiesterasa de di-GMPc puede conseguirse por medio de elementos extracromosómicos. There are many vectors that serve these purposes, which include but are not limited to several extrachromosomal elements such as plasmids, eg those that share the origin of replication pAL500, or other plasmids that have or will have different origins of replication, or extrachromosomal elements that do not replicate or integrate into the mycobacterial genome. The introduction of such sequences to achieve the decrease or elimination of phosphodiesterase activity of the second di-cGMP messenger can be accomplished by means of several methods developed for exchange or inactivation vectors, including but not limited to mycobacteriophage-mediated electroporation and transduction. Many vectors can be used to enter the mycobacteria, so that the resulting strain reduces or eliminates the phosphodiesterase activity of di-cGMP in vitro and / or in vivo. In its preferred presentation, the vector is a nucleotide sequence that is introduced by electroporation. In other presentations of the invention, the decrease or loss of di-cGMP phosphodiesterase activity can be achieved by means of extrachromosomal elements.
Existen diversas estrategias de biología molecular para generar una cepa de micobacteria con esta propiedad. Por ejemplo, se pueden introducir vectores que codifiquen para reguladores negativos de la transcripción del gen BCG1419c, que consigan aumentar de manera constitutiva o inducible ante estímulo específico, la producción de tal regulador negativo para "apagar" la del gen que produce la enzima con actividad degradativa de di-GMPc. Otra opción sería que tal vector produjera proteínas con actividad enzimática de RNAsa que degradara preferencialmente el transcrito de BCG1419c, de manera constitutiva o inducible ante un estímulo específico, o incluso con una secuencia antisentido que se hibridizara con el RNA mensajero de BCG1419c e impidiera su traducción (RNA antisentido). Un ejemplo más sería que tales vectores condujeran a la producción de una molécula con actividad de bloqueo del sitio activo EAL responsable de la actividad fosfodiesterasa de di-GMPc, o una proteasa que degradara específicamente a la enzima de interés. Expertos en la materia reconocerán que existen varias cepas BCG que pueden ser útiles en la práctica de la invención, pero no limitados a los mostrados en la tabla 1. There are several molecular biology strategies to generate a mycobacterial strain with this property. For example, vectors can be introduced that code for negative transcription regulators of the BCG1419c gene, which are able to increase constitutively or inducibly before a specific stimulus, the production of such a negative regulator to "turn off" the gene that produces the enzyme with activity degradative di-cGMP. Another option would be for such a vector to produce proteins with RNAse enzymatic activity that preferentially degrades the BCG1419c transcript, constitutively or inducibly before a specific stimulus, or even with an antisense sequence that hybridizes with the BCG1419c messenger RNA and prevents its translation. (Antisense RNA). A further example would be that such vectors lead to the production of a molecule with EAL active site blocking activity responsible for the phosphodiesterase activity of di-cGMP, or a protease that specifically degrades the enzyme of interest. Those skilled in the art will recognize that there are several BCG strains that may be useful in the practice of the invention, but not limited to those shown in Table 1.
Número ATCC Descripción Designación Cepa  ATCC Number Description Designation Strain
19274 M. bovis depositada como cepa 50 [BCG]  19274 M. bovis deposited as strain 50 [BCG]
27289 Mycobacterium bovis BCG, Chicago 1 [B, BCGT, Tice]  27289 Mycobacterium bovis BCG, Chicago 1 [B, BCGT, Tice]
35731 M. bovis TMC1002 [BCG Birkhaug]  35731 M. bovis TMC1002 [BCG Birkhaug]
35732 M. bovis TMC 1009 [BCG Swedish]  35732 M. bovis TMC 1009 [BCG Swedish]
35733 M. bovis TMC1010 [BCG Danish]  35733 M. bovis TMC1010 [BCG Danish]
35734 M. bovis TMC 1011 [BCG Pasteur]  35734 M. bovis TMC 1011 [BCG Pasteur]
35735 M. bovis TMC 1012 [BCG Montreal, CIP 105920] 35735 M. bovis TMC 1012 [BCG Montreal, CIP 105920]
35736 M. bovis TMC 1013 [BCG Brazilian] 35736 M. bovis TMC 1013 [BCG Brazilian]
35737 M. bovis TMC 1019 [BCG Japanese]  35737 M. bovis TMC 1019 [BCG Japanese]
35738 M. bovis TMC 1020 [BCG Mexican]  35738 M. bovis TMC 1020 [BCG Mexican]
35739 M. bovis TMC 1021 [BCG Australian]  35739 M. bovis TMC 1021 [BCG Australian]
35740 M. bovis TMC 1022 [BCG ussian]  35740 M. bovis TMC 1022 [BCG ussian]
35741 M. bovis TMC1024 [BCG Glaxo]  35741 M. bovis TMC1024 [BCG Glaxo]
35742 M. bovis TMC 1025 [BCG Prague]  35742 M. bovis TMC 1025 [BCG Prague]
35743 M. bovis TMC 1028 [BCG Tice]  35743 M. bovis TMC 1028 [BCG Tice]
35744 M. bovis TMC 1029 [BCG Phipps]  35744 M. bovis TMC 1029 [BCG Phipps]
35745 M. bovis TMC 1030 [BCG Connaught]  35745 M. bovis TMC 1030 [BCG Connaught]
35746 M. bovis TMC 1101 [BCG Montreal, SM-R]  35746 M. bovis TMC 1101 [BCG Montreal, SM-R]
35747 M. bovis TMC 1103 [BCG Montreal, 1NH-R, CIP 105919]  35747 M. bovis TMC 1103 [BCG Montreal, 1NH-R, CIP 105919]
35748 M. bovis TMC 1108 [BCG Pasteur SM-R]  35748 M. bovis TMC 1108 [BCG Pasteur SM-R]
27290 M. bovis BCG, Copenhagen [H], etc.  27290 M. bovis BCG, Copenhagen [H], etc.
Tabla 1  Table 1
Además, la cepa micobacteriana recombinante de la invención puede ser una BCG modificada, incluyendo pero no limitados a: BCG que expresa perfringolisina (Sun et al, 2009], BCG que expresa listeriolisina (Grbde et al, 2005, Desel et al, 2011), BCG que expresa DosR (Flores Valdez & Schoolnik, 2010), entre otras. Además, la micobacteria recombinante no necesariamente debe estar confinada a las cepas BCG. Expertos medios en la materia reconocerán que otras cepas de Mycobacterium podrían también ser empleadas para eliminar o disminuir la actividad fosfodiesterasa del segundo mensajero di-GMPc mediante la manipulación de sus genes homólogos al BCG1419c de BCG Pasteur 1173P2, las cuales incluyen pero no se limitan a: M. tuberculosis cepa CDC1551 (Fleischmann et ai, 2002), M. tuberculosis cepa Beijing (van Soolingen et al, 1995), M. tuberculosis cepa H37Rv (Colé et al, 1998), M. tuberculosis cepa auxotrófica para pantotenato (Sambandamurthy et al., 2006) u otras cepas atenuadas o recombinantes derivadas de M. tuberculosis. Otras bacterias candidatas incluyen a miembros del complejo M. tuberculosis, otras micobacterias (p.ej. M. africanum o miembros del complejo M. aviurri) u otras especies de micobacterias. Cualquier micobacteria que contenga un homólogo del gen BCG1419c puede ser usada en la práctica de la invención. En su presentación preferida, la bacteria recombinante donde se eliminó o redujo la actividad de fosfodiesterasa de di-GMPc, es una micobacteria BCG, y en particular M. bovis BCG Pasteur 1173P2, si bien puede emplearse cualquier BCG como las listadas como ejemplos en la tabla 1, sin ser limitativos de estas cepas BCG. Previo a que la cepa de la invención pueda ser administrada como vacuna a seres humanos, las micobacterias recombinantes de la presente invención deben evaluarse siguiendo métodos bien conocidos a aquellos expertos en la materia. Por ejemplo, deben realizarse pruebas de toxicidad, seguridad, etc., a llevarse a cabo en modelos animales como ratones, conejillos de Indias, etc., algunos de los cuales deben ser inmunocomprometidos y otros no. La capacidad de las preparaciones de vacuna para inducir una respuesta inmune de manera regular se analiza en modelos animales, p.ej. ratones, primates no humanos, etc. También, experimentos de vacunación, refuerzo y reto con M. tuberculosis virulenta pueden llevarse a cabo usando modelos animales que incluyan ratones, conejos, conejillos de Indias, primates no humanos. Finalmente, los expertos medios en la técnica tendrán conocimientos para llevar a cabo estudios clínicos en seres humanos que consientan a ello, a fin de probar la eficacia de la vacuna. In addition, the recombinant mycobacterial strain of the invention can be a modified BCG, including but not limited to: BCG expressing perfringolysin (Sun et al, 2009], BCG expressing listeriolysin (Grbde et al, 2005, Desel et al, 2011) , BCG expressing DosR (Flores Valdez & Schoolnik, 2010), among others.In addition, recombinant mycobacteria should not necessarily be confined to BCG strains. Media experts will recognize that other strains of Mycobacterium could also be used to eliminate or decrease the phosphodiesterase activity of the second di-cGMP messenger by manipulating its BCG1419c homologous genes from BCG Pasteur 1173P2, which include but are not limited to: M. tuberculosis strain CDC1551 (Fleischmann et ai, 2002), M. tuberculosis strain Beijing (van Soolingen et al, 1995), M. tuberculosis strain H37Rv (Colé et al, 1998), M. tuberculosis auxotrophic strain for pantothenate (Sambandamurthy et al., 2006) or other attenuated strains or re combinations derived from M. tuberculosis. Other candidate bacteria include members of the M. tuberculosis complex, other mycobacteria (eg M. africanum or members of the M. aviurri complex) or other species of mycobacteria. Any mycobacterium containing a homologue of the BCG1419c gene can be used in the practice of the invention. In his preferred presentation, the Recombinant bacterium where di-GMPc phosphodiesterase activity was eliminated or reduced, is a BCG mycobacterium, and in particular M. bovis BCG Pasteur 1173P2, although any BCG can be used as listed as examples in Table 1, without being limiting of these BCG strains. Before the strain of the invention can be administered as a vaccine to humans, the recombinant mycobacteria of the present invention should be evaluated following methods well known to those skilled in the art. For example, toxicity, safety, etc. tests should be carried out in animal models such as mice, guinea pigs, etc., some of which must be immunocompromised and others not. The ability of vaccine preparations to induce an immune response on a regular basis is analyzed in animal models, eg mice, non-human primates, etc. Also, vaccination, booster and challenge experiments with virulent M. tuberculosis can be carried out using animal models that include mice, rabbits, guinea pigs, nonhuman primates. Finally, those skilled in the art will have knowledge to carry out clinical studies in human beings who consent to this, in order to prove the efficacy of the vaccine.
La presente invención provee de una cepa para inducir una respuesta inmune a uno o más antígenos que se expresan diferencialmente durante la producción de biopelículas, entre la cepa BCG Pasteur 1173P2 silvestre y su derivada isogénica BCGABCG1419c, entre los que se encuentran proteínas presentes en la fracción soluble (Figura 17). Al referirnos a "inducir una respuesta inmune a uno o más antígenos" hacemos alusión a que la administración de la vacuna de la presente invención promueve la síntesis de anticuerpos específicos (en títulos en rango de 1 a lxlO3, o bien de lxlO3, o mejor en el rango de lxlO3 a lxlO6, y de manera óptima mayor que lxlO6) y/o proliferación celular medida, p.ej. por medio de ensayos celulares en los cuales se evalúe la producción de IFN-γ, por incorporación de timidina H3, etc. En su presentación preferida, la respuesta inmune es una respuesta protectora, es decir, protege al individuo vacunado de la futura infección con M. tuberculosis virulenta. The present invention provides a strain to induce an immune response to one or more antigens that are differentially expressed during biofilm production, between the wild BCG Pasteur 1173P2 strain and its isogenic derivative BCGABCG1419c, among which are proteins present in the fraction soluble (Figure 17). Referring to "inducing an immune response to one or more antigens" we refer to the fact that the administration of the vaccine of the present invention promotes the synthesis of specific antibodies (in titers in the range of 1 to 10 3 , or 3 3 , or better in the range of lxlO 3 to lxlO 6 , and optimally greater than lxlO 6 ) and / or measured cell proliferation, eg by means of cell assays in which IFN-γ production is evaluated, by incorporation of thymidine H 3 , etc. In its preferred presentation, the immune response is a protective response, that is, it protects the vaccinated individual from future infection with virulent M. tuberculosis.
Adicionalmente, la cepa recombinante BCGABCG1419c puede tener contenido modificado de carbohidratos, lípidos o proteínas, o combinaciones de 2 o más moléculas de éstas, solubles o insolubles, respecto a la vacuna BCG actual. En la presentación preferida de la invención, los antígenos que se expresan diferencialmente inducen una fuerte respuesta de IFN-γ, son inmunógenos potentes para células B o T, y poseen alta identidad en la secuencia con sus homólogos de M. tuberculosis. En lo particular, esto incluiría componentes bacterianos accesibles a las células del sistema inmune que inducen la liberación de IFN-γ con un efecto sobre moléculas anti-inflamatorias que no es capaz de detener la respuesta necesaria para la protección pero que puede ser benéfico en regular el posible daño por inflamación exacerbada. EJEMPLO Additionally, the recombinant strain BCGABCG1419c may have modified content of carbohydrates, lipids or proteins, or combinations of 2 or more molecules thereof, soluble or insoluble, with respect to the current BCG vaccine. In the preferred presentation of the invention, differentially expressed antigens induce a strong IFN-γ response, are potent immunogens for B or T cells, and possess high sequence identity with their M. tuberculosis counterparts. In particular, this would include bacterial components accessible to cells of the immune system that induce the release of IFN-γ with an effect on anti-inflammatory molecules that is not able to stop the response necessary for protection but which can be beneficial in regulating possible damage from exacerbated inflammation. EXAMPLE
Construcción de una cepa BCG carente del gen BCG1419c (BCGABCG1419c), caracterización en formación de biopelículas y como vacuna contra tuberculosis crónica en modelo murino Construction of a BCG strain lacking the BCG1419c gene (BCGABCG1419c), characterization in biofilm formation and as a vaccine against chronic tuberculosis in murine model
Para llevar a cabo la recombinación homologa, primero se construyó el vector de intercambio alélico, donde en el plásmido pYUB854 se clónaron, aledaños al gen de resistencia a higromicina, los segmentos de DNA obtenidos por reacción en cadena de la polimerasa (PCR por sus siglas en inglés) de 654 pares de bases del gen Rvl356c (obtenido con los oligonucléotidos Rvl356cF 5'- CCAAGCTTTAGAACAGTATGCCC-3', sitio Hind III subrayado; y Rvl356c-R 5'- TGGCGTCGAGATCTAAGGTACACT-3', sitio Bgl II subrayado) y 54 9 pares de bases del gen Rvl358 (obtenido con los oligonucléotidos Rvl358-F 5 '-GCATCTAGACGAGGAAGAATTCACC-3 ', sitio Xba I subrayado y Rvl358-R 5'-TGGGTACCTCAGATGCGGG-3' sitio Kpn I subrayado), amplificados a partir de DNA genómico de Mycobacterium tuberculosis H37Rv (Figura 1), para originar el plásmido pMarl357c. Los plásmidos donde se clonaron estos fragmentos se caracterizaron por digestión enzimática cuádruple con las endonucleasas Xba I, Kpn I, Hind III y Bgl II (Figura 2). La identidad y fidelidad de las secuencias clonadas se verificó por secuenciación (Figuras 3 y 4). Después, mediante digestión enzimática con los endonucleasas Xba I y Nhe I de pMarl357c, se separaron mediante electroforesis en gel de agarosa los fragmentos de 3.1 kilobases (kb) y 1.9 kb derivados de este plásmido (Figura 5), y se purificó el fragmento de 3.1 kb para servir como sustrato de intercambio alélico para por electroporación transformar éste dentro de la cepa Mycobacterium bovis BCG Pasteur 1173P2 que contenía al plásmido pJV53 (poseedor de un gen que codifica para una recombinasa viral, bajo el control del promotor inducible de acetamidasa, Figura 6). El intercambio del gen BCG1419c (homólogo en BCG Pasteur 1173P2 del gen Rvl357c de Mycobacterium tuberculosis H37Rv y de genes con otros nombres en otras cepas del complejo Mycobacterium tuberculosis, por ejemplo MT1400 en CDC1551, y Mbl392c en M. bovis AF2122/97, por citar algunos ejemplos) por el gen de resistencia a higromicina se verificó por PCR, para confirmar si después de eliminado el plásmido pJV53 se consiguió el intercambio o se regresó a la versión original (silvestre) del gen (Figuras 7-9). El análisis por PCR con los oligonucléotidos Rvl357c-3R (5'-CGGGGTAATCGAATGGATCA-3') y Hyg-cH3 (5'- CCCCAGGTGGCTAAAATGTATCC-3') mostró que la mayoría de las cepas seleccionadas sí tuvo un doble evento de recombinación homologa con reemplazo del gen BCG1419c por el de higromicina (Figuras 8 y 9), generándose así varias cepas candidatas que podrían tener o no el reemplazo del gen BCG1419c por el de higromicina (Figuras 10 y 11), hasta obtener la cepa BCGABCG1419c. La incapacidad de la cepa obtenida de producir transcrito se verificó por RT-PCR utilizando hexámeros aleatorios para la transcripción reversa y los oligonucléotidos Rvl357c-ORF5 (5'- CAAAGCTTGGATGGATCGTTGT-3'. sitio Hind III subrayado) y Rvl357c-ORF3 (5'- CCATCGATCTACACCCACGC-3 sitio Cía subrayado) para la PCR (Figura 12). La ausencia de transcrito en las cepas BCGABCG1419c se confirmó y no ser consecuencia de degradación del RNA, ya que el transcrito control del gen rrs sí se amplificó, así como que el producto de PCR observado en cada caso de reacción de transcripción reversa (carriles con signo +) procede de RNA y no DNA genómico contaminante, ya que sin el tratamiento de transcripción reversa (carriles con signo -) no se observó producto de PCR (Figura 13). To carry out the homologous recombination, the allelic exchange vector was first constructed, where in the plasmid pYUB854 the segments of DNA obtained by polymerase chain reaction (PCR) were cloned next to the hygromycin resistance gene. in English) of 654 base pairs of the Rvl356c gene (obtained with oligonucleotides Rvl356cF 5'- CCAAGCTTTAGAACAGTATGCCC-3 ' , Hind III site underlined; and Rvl356c-R 5'- TGGCGTCGAGATCTAAGGTACACT-3', site Bgl II underline) and site Bgl II underlined base pairs of the Rvl358 gene (obtained with oligonucleotides Rvl358-F 5 ' -GCATCTAGACGAGGAAGAATTCACC-3', Xba I site underlined and Rvl358-R 5'-TGGGTACCTCAGATGCGGG-3 ' Kpn I site underlined from DNA genomic amplified to DNA Mycobacterium tuberculosis H37Rv (Figure 1), to originate plasmid pMarl357c. The plasmids where these fragments were cloned were characterized by quadruple enzymatic digestion with the endonucleases Xba I, Kpn I, Hind III and Bgl II (Figure 2). The identity and fidelity of the cloned sequences was verified by sequencing (Figures 3 and 4). Then, by enzymatic digestion with the Xba I and Nhe I endonucleases of pMarl357c, the 3.1 kilobase (kb) and 1.9 kb fragments derived from this plasmid were separated by agarose gel electrophoresis (Figure 5), and the fragment was purified from 3.1 kb to serve as an allelic exchange substrate for electroporation to transform it into the Mycobacterium bovis BCG Pasteur 1173P2 strain containing plasmid pJV53 (holder of a gene encoding a viral recombinase, under the control of the inducible acetamidase promoter, Figure 6). The exchange of the BCG1419c gene (homologue in BCG Pasteur 1173P2 of the Rvl357c gene of Mycobacterium tuberculosis H37Rv and of genes with other names in other strains of the Mycobacterium tuberculosis complex, for example MT1400 in CDC1551, and Mbl392c in M. bovis AF2122 / 97, to cite some examples) by the hygromycin resistance gene was verified by PCR, to confirm whether after the plasmid pJV53 was removed the exchange was achieved or returned to the original (wild) version of the gene (Figures 7-9). PCR analysis with oligonucleotides Rvl357c-3R (5'-CGGGGTAATCGAATGGATCA-3 ') and Hyg-cH3 (5 ' - CCCCAGGTGGCTAAAATGTATCC-3 ') showed that most of the selected strains did have a double homologous event with replacement of the BCG1419c gene by that of hygromycin (Figures 8 and 9), thus generating several candidate strains that may or may not have the replacement of the BCG1419c gene by that of hygromycin (Figures 10 and 11), until obtaining the BCGABCG1419c strain. The inability of the strain obtained to produce transcript was verified by RT-PCR using random hexamers for reverse transcription and oligonucleotides Rvl357c-ORF5 (5 ' - CAAAGCTTGGATGGATCGTTGT-3'. Hind III site underlined) and Rvl357c-ORF3 (5 ' - 5 ' CCATCGATCTACACCCACGC-3 Cía site underlined) for PCR (Figure 12). The absence of transcript in the BCGABCG1419c strains was confirmed and was not a consequence of RNA degradation, since the rrs gene control transcript was amplified, as well as the PCR product observed in each case of reverse transcription reaction (lanes with + sign) comes from RNA and not contaminating genomic DNA, since without the reverse transcription treatment (lanes with sign -) no PCR product was observed (Figure 13).
El gen BCG1419c y sus homólogos de otras bacterias del complejo Mycobacteríum tuberculosis, dan origen a una proteína con dominio predicho EAL (Figura 14). Este dominio se asocia con la actividad de degradación (fosfodiesterasa) del segundo mensajero c-di-GMP (diguanosín monofosfato cíclico, diguanilato cíclico), misma que recientemente se demostró para la proteína codificada por el gen Rvl357c. El c-di-GMP se ha implicado en la regulación de la expresión de factores de virulencia microbianos y producción de biopelículas en diversos microorganismos, sin que haya reportes hoy en día de la asociación de este gen con biopelículas y virulencia en bacterias del complejo Mycobacteríum tuberculosis. La literatura científica disponible indica que regularmente, la inactivación de genes que codifican para proteínas con actividad enzimática de fosfodiesterasa de c-di-GMP, resulta en células con mayor capacidad de formar biopelículas in vitro. The BCG1419c gene and its counterparts from other bacteria of the Mycobacterium tuberculosis complex, give rise to a protein with predicted EAL domain (Figure 14). This domain is associated with the degradation activity (phosphodiesterase) of the second c-di-GMP messenger (cyclic diguanosine monophosphate, cyclic diguanylate), which was recently demonstrated for the protein encoded by the Rvl357c gene. The c-di-GMP has been implicated in the regulation of the expression of microbial virulence factors and biofilm production in various microorganisms, without reports of the association of this gene with biofilms and virulence in bacteria of the Mycobacterium complex today. tuberculosis. The available scientific literature indicates that regularly, the inactivation of genes encoding proteins with c-di-GMP phosphodiesterase enzymatic activity results in cells with greater capacity to form biofilms in vitro.
Basados en evidencias publicadas entre 2008 y 2012 que demuestran que bacterias del complejo Mycobacteríum tuberculosis forman biopelículas in vitro, encontramos características comunes entre las biopelículas e infecciones producidas por diversos microorganismos, como: (1) in vitro, las bacterias en biopelículas son más tolerantes a antibióticos comparadas con las bacterias presentes en cultivo líquido como células individuales (planctónicas), y (2) in vivo, las bacterias en biopelículas se asocian a infecciones crónicas. Cabe señalar dos temas relevantes: (1) en la enfermedad (tuberculosis) existen dos cuadros: enfermedad activa e infección crónica, latente - asintomática-, de esta última, la Organización Mundial de lá Salud estima que un tercio de la población mundial se encuentra en este estado; y (2) si bien no hay evidencia formal de que se formen biopelículas de Mycobacteríum tuberculosis in vivo similares en apariencia física a los formados in vitro como ocurre con otros microorganismos, durante la infección en modelos animales con Mycobacteríum tuberculosis se encuentran microcolonias que se hipotetiza pudieran ser una especie de biopelícula. Así, sumando el conocimiento de que la inactivación de genes codificantes de enzimas con actividad fosfodiesterasa de c-di-GMP incrementa la capacidad de formar biopelículas in vitro, donde las biopelículas incrementan la tolerancia a antibióticos y la cronicidad de las infecciones, ambos aspectos comunes durante la tuberculosis, evaluamos si la cepa de Mycobacteríum bovis BCGABCG1419c: Based on evidence published between 2008 and 2012 that demonstrate that bacteria of the Mycobacterium tuberculosis complex form biofilms in vitro, we find common characteristics among biofilms and infections caused by various microorganisms, such as: (1) in vitro, bacteria in biofilms are more tolerant to Antibiotics compared to bacteria present in liquid culture as individual (planktonic) cells, and (2) in vivo, bacteria in biofilms are associated with chronic infections. Two relevant issues should be noted: (1) in the disease (tuberculosis) there are two cases: active disease and chronic, latent - asymptomatic - infection, of the latter, the World Health Organization estimates that one third of the world's population is in this state; and (2) although there is no formal evidence that biofilms of Mycobacterium tuberculosis are formed in vivo similar in physical appearance to those formed in vitro as with other microorganisms, microcolonies are found to be hypothetized during infection in animal models with Mycobacterium tuberculosis. They could be a kind of biofilm. Thus, adding the knowledge that the inactivation of genes encoding enzymes with phosphodiesterase activity of c-di-GMP increases the ability to form biofilms in vitro, where biofilms increase antibiotic tolerance and chronicity of infections, both common aspects During tuberculosis, we assess whether the Mycobacterium bovis strain BCGABCG1419c:
1. Produce o no biopelículas diferentes a la cepa vacunal actual BCG silvestre; 2. Difiere en su contenido antigénico respecto a la cepa silvestre 1. Produces or not biofilms other than the current wild BCG vaccine strain; 2. It differs in its antigenic content with respect to the wild strain
3. Persiste más tiempo en pulmones y bazo de ratones inmunocompetentes y 3. More time persists in the lungs and spleen of immunocompetent mice and
4. Si utilizada como vacuna en ratones inmunocompetentes BALB/c presenta diferencias o no en la pérdida de peso de los animales y en la replicación de Mycobacterium tuberculosis H37Rv en pulmones de ratones vacunados y luego infectados, durante la fase crónica (26 semanas) de la enfermedad, comparada con la vacuna actual sin modificación. 4. If used as a vaccine in immunocompetent mice BALB / c shows differences or not in the weight loss of animals and in the replication of Mycobacterium tuberculosis H37Rv in lungs of vaccinated and then infected mice, during the chronic phase (26 weeks) of the disease, compared to the current vaccine without modification.
Respecto a la capacidad de formar biopelículas, se encontró que la cepa BCGABCG1419c produce éstas in vitro con una apariencia más rugosa que aquellas producidas por la cepa BCG silvestre Regarding the ability to form biofilms, it was found that the BCGABCG1419c strain produces these in vitro with a more rugged appearance than those produced by the wild BCG strain
/ /
(Figura 15), efecto que se revierte una vez que se reintroduce el gen Rvl357c en la cepa carente del gen BCG1419c (complementada), lo que confirma que es un efecto específico del gen y no debido a una mutación con efecto polar. Adicionalmente, al momento de cuantificar la biopelícula formada por las cepas silvestre y BCGABCG1419c, se encontró que la segunda forma en promedio entre 3 a 15% más biopelícula que la primera (Figura 16). Esto confirma que la eliminación del gen BCG1419c resulta en una bacteria con capacidad incrementada de formar biopelículas in vitro. (Figure 15), an effect that is reversed once the Rvl357c gene is reintroduced into the strain lacking the BCG1419c gene (supplemented), confirming that it is a specific effect of the gene and not due to a polar effect mutation. Additionally, at the time of quantifying the biofilm formed by the wild and BCGABCG1419c strains, the second form was found on average between 3 to 15% more biofilm than the first (Figure 16). This confirms that the elimination of the BCG1419c gene results in a bacterium with increased ability to form biofilms in vitro.
Enseguida, se comparó el perfil de proteínas por electroforesis de doble dimensión de las cepas BCG silvestre y BCGABCG1419c, durante el crecimiento en biopelículas in vitro, con el fin de determinar si éste se modificaba a consecuencia de la eliminación del gen BCG1419c, y si esto podía a su vez impactar en la presentación de antígenos de naturaleza proteica a animales inmunizados con ambas cepas. Como se observa en la figura 17, después del análisis bidimensional y tinción con azul de Coomasie, se detectaron 9 proteínas presentes en la fracción soluble que difirieron de manera significativa ante la remoción del gen BCG1419c, lo cual señala que, en efecto, existen diferencias en la producción de antígenos potenciales que modifiquen las respuestas inmunes humoral y celular ante la inmunización. Adicionalmente, después de infectar por vía intravenosa ratones inmunocompetentes BALB/c, encontramos que recuperábamos entre 3-6 veces más Unidades Formadoras de Colonia de la cepa BCGABCG1419c, dependiendo del tiempo evaluado, y sin importar el sexo del animal modelo utilizado (Figuras 19-21). Next, the protein profile was compared by double-dimension electrophoresis of the wild BCG and BCGABCG1419c strains, during in vitro biofilm growth, in order to determine if it was modified as a result of the BCG1419c gene elimination, and if this could in turn impact the presentation of antigens of a protein nature to animals immunized with both strains. As can be seen in Figure 17, after two-dimensional analysis and Coomasie blue staining, 9 proteins were found in the soluble fraction that differed significantly before the removal of the BCG1419c gene, which indicates that, in effect, there are differences in the production of potential antigens that modify the humoral and cellular immune responses to immunization. Additionally, after intravenously infecting BALB / c immunocompetent mice, we found that we recovered between 3-6 times more Colony Forming Units of strain BCGABCG1419c, depending on the time evaluated, and regardless of the sex of the model animal used (Figures 19- twenty-one).
Más adelante, se procedió a inmunizar con aproximadamente 5xl03 Unidades Formadoras de Colonia (UFC) de la cepa BCGABCG1419c (Delta) y aproximadamente 15x103 UFC de la cepa BCG silvestre (WT), vía vena caudal, grupos de ratones hembras y machos, de 9-10 semanas de edad, cepa BALB/c inmunocompetentes, o solución salina estéril (SS) como control, para dejar a los ratones en reposo durante 8 semanas, tiempo al cual se administraron aproximadamente 2xl05 UFC de Mycobacterium tuberculosis H37Rv vía intratraqueal, y a partir de las 2 semanas postinfección y cada 2 semanas, hasta la semana 26, revisar los pesos y signos de enfermedad de los animales, para luego sacrificarlos al tiempo de 26 semanas y determinar UFC en pulmones de los 3 grupos de ratones. En la figura 22 se puede observar el curso de la pérdida de peso promedio del grupo, relativa a la semana 2 post-infección, del grupo control y grupos inmunizados. Se aprecia que a partir de la fase crónica de la infección (semana 16] empiezan a detectarse diferencias, que se vuelven significativas en ambos grupos vacunados respecto al control (SS), lo cual se mantiene hasta el tiempo de 26 semanas, a pesar de haber utilizado una dosis aproximadamente 3 veces menor de la vacuna BCGABCG1419c respecto a la vacuna BCG silvestre sin modificar. Later, we proceeded to immunize with approximately 5 x 10 3 Colony Forming Units (CFU) of the strain BCGABCG1419c (Delta) and approximately 15x10 3 CFU of the wild BCG strain (WT), via caudal vein, groups of female and male mice, 9-10 weeks of age, immunocompetent BALB / c strain, or sterile saline (SS) as a control, to leave mice at rest for 8 weeks, at which time approximately 2xl0 5 CFU of Mycobacterium tuberculosis H37Rv was administered intratracheally , and after 2 weeks post-infection and every 2 weeks, until week 26, check the weights and signs of disease of the animals, then sacrifice them at the time of 26 weeks and determine CFU in the lungs of the 3 groups of mice. Figure 22 shows the course of the average weight loss of the group, relative to week 2 post-infection, of the control group and immunized groups. It is appreciated that from the chronic phase of the infection (week 16) differences begin to be detected, which become significant in both vaccinated groups with respect to the control (SS), which remains until the time of 26 weeks, despite having used an approximately 3 times lower dose of the BCGABCG1419c vaccine compared to the unmodified wild BCG vaccine.
Este ejemplo demuestra que la cepa recombinante BCGABCG1419c presenta propiedades de mayor producción de biopelícula que la vacuna actual, producción diferencial de proteínas respecto a la vacuna actual, mayor persistencia en ratones inmunocompetentes y de protección contra la pérdida de peso en ratones inmunizados y luego retados con M. tuberculosis, comparable a la cepa BCG vacunal actual a pesar de administrarse en dosis menor. This example demonstrates that the recombinant strain BCGABCG1419c has properties of greater biofilm production than the current vaccine, differential protein production compared to the current vaccine, greater persistence in immunocompetent mice and protection against weight loss in immunized mice and then challenged with M. tuberculosis, comparable to the current BCG vaccine strain despite being administered in a lower dose.
, POSIBILIDADES DE USO/APLICACIONES: 1. Vacuna específica contra tuberculosis pulmonar crónica o latente. , POSSIBILITIES OF USE / APPLICATIONS: 1. Specific vaccine against chronic or latent pulmonary tuberculosis.
2. Modelo para probar fármacos contra micobacterias con capacidad incrementada de formar biopelículas y en consecuencia, tolerantes a antibióticos en concentraciones mayores que las células en formar individual o planctónica. 2. Model for testing drugs against mycobacteria with increased ability to form biofilms and, consequently, tolerant to antibiotics in concentrations greater than cells in individual or planktonic forms.
BIBLIOGRAFIA BIBLIOGRAPHY
Aagaard, C, T. Hoang, J. Dietrich, P. J. Cardona, A. Izzo, G. Dolganov, G. . Schoolnik, J. P. Cassidy, R. Billeskov & P. Andersen, (2011] A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17: 189-194. Aagaard, C, T. Hoang, J. Dietrich, P. J. Cardona, A. Izzo, G. Dolganov, G.. Schoolnik, J. P. Cassidy, R. Billeskov & P. Andersen, (2011] A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17: 189-194.
Blokpoel, M. C, H. N. Murphy, R. O'Toole, S. Wiles, E. S. Runn, G. R. Stewart, D. B. Young & B. D. Blokpoel, M. C, H. N. Murphy, R. O'Toole, S. Wiles, E. S. Runn, G. R. Stewart, D. B. Young & B. D.
Robertson, (2005) Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids i?es 33: e22.  Robertson, (2005) Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids i? Is 33: e22.
Brewer, T. F., (2000) Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta- analysis of the literature. Clin Infect Dis 31 Suppl 3: S64-67.  Brewer, T. F., (2000) Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta-analysis of the literature. Clin Infect Dis 31 Suppl 3: S64-67.
Brosch, R., S. V. Gordon, T. Garnier, K. Eiglmeier, W. Frigui, P. Valenti, S. Dos Santos, S. Duthoy, C. Brosch, R., S. V. Gordon, T. Garnier, K. Eiglmeier, W. Frigui, P. Valenti, S. Dos Santos, S. Duthoy, C.
Lacroix, C. Garcia-Pelayo, J. . Inwald, P. Golby, J. N. García, R. G. Hewinson, M. A. Behr, M. A. Quail, C. Churcher, B. G. Barrell, J. Parkhill & S. T. Colé, (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Nati Acad Sci U SA 104: 5596-5601.  Lacroix, C. Garcia-Pelayo, J.. Inwald, P. Golby, J. N. García, R. G. Hewinson, M. A. Behr, M. A. Quail, C. Churcher, B. G. Barrell, J. Parkhill & S. T. Colé, (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Nati Acad Sci U SA 104: 5596-5601.
Brown, N., M. Jacobs, S. K. Parida, T. Botha, A. Santos, L. Fick, B. Gicquel, M. Jackson, V. Quesniaux & B. Ryffel, (2005) Reduced local growth and spread but preserved pathogenicity of a DeltapurC Mycobacterium tuberculosis auxotrophic mutant in gamma interferon receptor-deficient mice after aerosol infection. Infect Immun 73: 666-670. Brown, N., M. Jacobs, SK Parida, T. Botha, A. Santos, L. Fick, B. Gicquel, M. Jackson, V. Quesniaux & B. Ryffel, (2005) Reduced local growth and spread but preserved pathogenicity of a DeltapurC Mycobacterium tuberculosis auxotrophic mutant in gamma interferon receptor-deficient mice after aerosol infection. Infect Immun 73: 666-670.
Castillo-Rodal, A. I., M. Castanon-Arreola, R. Hernandez-Pando, J. J. Calva, E. Sada-Diaz & Y.  Castillo-Rodal, A. I., M. Castanon-Arreola, R. Hernandez-Pando, J. J. Calva, E. Sada-Diaz & Y.
Lopez-Vidal, (2006) Mycobacterium bovis BCG substrains confer different levéis of protection against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary tuberculosis. Infect Immun 74: 1718-1724.  Lopez-Vidal, (2006) Mycobacterium bovis BCG substrains confer different levéis of protection against Mycobacterium tuberculosis infection in a BALB / c model of progressive pulmonary tuberculosis. Infect Immun 74: 1718-1724.
Colditz, G. A., C. S. Berkey, F. Mosteller, T. F. Brewer, M. E. Wilson, E. Burdick & H. V. Fineberg, (1995) The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 96: 29-35. Colditz, GA, CS Berkey, F. Mosteller, TF Brewer, ME Wilson, E. Burdick & HV Fineberg, (1995) The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyzes of the published literature. Pediatrics 96: 29-35.
Colé, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, . Eiglmeier, S.  Colé, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon,. Eiglmeier, S.
Gas, C. E. Barry, 3rd, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Gas, CE Barry, 3rd, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin , S. Holroyd, T. Hornsby, K.
Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M. A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead & B. G. Barrell, (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537-544. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, MA Quail, MA Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, JE Sulston, K. Taylor, S. Whitehead & BG Barrell, (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537-544.
Comas, I. & S. Gagneux, (2009) The past and future of tuberculosis research. PLoS Pathog 5: Comas, I. & S. Gagneux, (2009) The past and future of tuberculosis research. PLoS Pathog 5:
el000600.  el000600.
Desel, C, A. Dorhoi, S. Bandermann, L. Grode, B. Eisele & S. H. Kaufmann, (2011) Recombinant BCG DeltaureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. / Infecí Dis 204: 1573- 1584.  Desel, C, A. Dorhoi, S. Bandermann, L. Grode, B. Eisele & S. H. Kaufmann, (2011) Recombinant BCG DeltaureC hly + induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. / I infected Dis 204: 1573-1584.
Doherty, T. M. & P. Andersen, (2005) Vaccines for tuberculosis: novel concepts and recent progress. Clin Microbiol Rev 18: 687-702.  Doherty, T. M. & P. Andersen, (2005) Vaccines for tuberculosis: novel concepts and recent progress. Clin Microbiol Rev 18: 687-702.
Donald, P. R. & P. D. van Helden, (2009) The global burden of tuberculosis-combating drug resistance in difficult times. N Engl } Med 360: 2393-2395. Donald, P. R. & P. D. van Helden, (2009) The global burden of tuberculosis-combating drug resistance in difficult times. N Engl} Med 360: 2393-2395.
Dye, C, S. Scheele, P. Dolin, V. Pathania & M. C. Raviglione, (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHODye, C, S. Scheele, P. Dolin, V. Pathania & M. C. Raviglione, (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. QUIEN
Global Surveillance and Monitoring Project.//4 l 282: 677-686. Global Surveillance and Monitoring Project.//4 l 282: 677-686.
Fleischmann, R. D., D. Alland, J. A. Eisen, L. Carpenter, O. White, J. Peterson, R. DeBoy, R. Dodson,Fleischmann, R. D., D. Alland, J. A. Eisen, L. Carpenter, O. White, J. Peterson, R. DeBoy, R. Dodson,
M. Gwinn, D. Haft, E. Hickey, J. F. Kolonay, W. C. Nelson, L. A. Umayam, M. Ermolaeva, S. L. Salzberg, A. Delcher, T. Utterback, J. Weidman, H. Khouri, J. Gilí, A. Mikula, W. Bishai, W. R.M. Gwinn, D. Haft, E. Hickey, JF Kolonay, WC Nelson, LA Umayam, M. Ermolaeva, SL Salzberg, A. Delcher, T. Utterback, J. Weidman, H. Khouri, J. Gilí, A. Mikula, W. Bishai, WR
Jacobs Jr, Jr., J. C. Venter & C. M. Fraser, (2002) Whole-genome comparison ofJacobs Jr, Jr., J. C. Venter & C. M. Fraser, (2002) Whole-genome comparison of
Mycobacterium tuberculosis clinical and laboratory strains. ] Bacterio] 184: 5479-5490. Flores Valdez, M. A. & G. K. Schoolnik, (2010) DosR-regulon genes induction in Mycobacterium bovis BCG under aerobic conditions. Tuberculosis (Edinb) 90: 197-200. Mycobacterium tuberculosis clinical and laboratory strains. ] Bacterium] 184: 5479-5490. Flores Valdez, M. A. & G. K. Schoolnik, (2010) DosR-regulon genes induction in Mycobacterium bovis BCG under aerobic conditions. Tuberculosis (Edinb) 90: 197-200.
Grode, L., P. Seiler, S. Baumann, J. Hess, V. Brinkmann, A. Nasser Eddine, P. Mann, C. Goosmann, S. Grode, L., P. Seiler, S. Baumann, J. Hess, V. Brinkmann, A. Nasser Eddine, P. Mann, C. Goosmann, S.
Bandermann, D. Smith, G. J. Bancroft, J. M. Reyrat, D. van Soolingen, B. Raupach & S. H. Bandermann, D. Smith, G. J. Bancroft, J. M. Reyrat, D. van Soolingen, B. Raupach & S. H.
Kaufmann, (2005) Increased vaccine efficacy against tuberculosis of recombinantKaufmann, (2005) Increased vaccine efficacy against tuberculosis of recombinant
Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. ] ClinMycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. ] Clin
Invest 115: 2472-2479. Invest 115: 2472-2479.
Gupta, K., P. Kumar & D. Chatterji, (2010) Identification, activity and disulfide connectivity of C- di-GMP regulating proteins in Mycobacterium tuberculosis. PLoS ONE 5: el5072. Gupta, K., P. Kumar & D. Chatterji, (2010) Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis. PLoS ONE 5: el5072.
Hengge, R., (2009) Principies of c-di-GMP signalling in bacteria. Nature reviews. Microbiology 7: Hengge, R., (2009) Principles of c-di-GMP signalling in bacteria. Nature reviews Microbiology 7:
263-273.  263-273.
Hernandez-Pando, R., M. Castanon, C. Espitia & Y. López- Vidal, (2007) Recombinant BCG vaccine candidates. Curr Mol Med í: 365-372.  Hernandez-Pando, R., M. Castanon, C. Espitia & Y. López-Vidal, (2007) Recombinant BCG vaccine candidates. Curr Mol Med í: 365-372.
Hong, Y., X. Zhou, H. Fang, D. Yu, C. Li & B. Sun, (2013) Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity. Tuberculosis.  Hong, Y., X. Zhou, H. Fang, D. Yu, C. Li & B. Sun, (2013) Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity. Tuberculosis.
Infante, E., L. D. Aguilar, B. Gicquel & R. H. Pando, (2005) Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant. Clin Exp Immunol 141: 21-28. Infante, E., L. D. Aguilar, B. Gicquel & R. H. Pando, (2005) Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant. Clin Exp Immunol 141: 21-28.
Lenaerts, A. J., D. Hoff, S. Aly, S. Ehlers, K. Andries, L. Cantarero, I. M. Orme & R. J. Basaraba,Lenaerts, A. J., D. Hoff, S. Aly, S. Ehlers, K. Andries, L. Cantarero, I. M. Orme & R. J. Basaraba,
(2007) Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51: 3338-3345. (2007) Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51: 3338-3345.
Loewenberg, S., (2012) India reports cases of totally drug-resistant tuberculosis. Lancet 379: Loewenberg, S., (2012) India reports cases of totally drug-resistant tuberculosis. Lancet 379:
205.  205.
Mahomed, H., M. Kibel, T. Hawkridge, H. S. Schaaf, W. A. Hanekom, K. Iloni, D. Michaels, L. Mahomed, H., M. Kibel, T. Hawkridge, H. S. Schaaf, W. A. Hanekom, K. Iloni, D. Michaels, L.
Workman, S. Verver, L. Geiter & G. D. Hussey, (2006) The impact of a change in bacille Calmette-Guerin vaccine policy on tuberculosis incidence in children in Cape Town, South Africa. Pediatr Infecí Dis J 25: 1167-1172.  Workman, S. Verver, L. Geiter & G. D. Hussey, (2006) The impact of a change in bacille Calmette-Guerin vaccine policy on tuberculosis incidence in children in Cape Town, South Africa. Pediatr Infected Dis J 25: 1167-1172.
Martin, C, A. Williams, R. Hernandez-Pando, P. J. Cardona, E. Gormley, Y. Bordat, C. Y. Soto, S. O. Martin, C, A. Williams, R. Hernandez-Pando, P. J. Cardona, E. Gormley, Y. Bordat, C. Y. Soto, S. O.
Clark, G. J. Hatch, D. Aguilar, V. Ausina & B. Gicquel, (2006) The Uve Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 24: 3408-3419. Clark, GJ Hatch, D. Aguilar, V. Ausina & B. Gicquel, (2006) The Uve Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 24: 3408-3419.
McShane, H., (2011] Tuberculosis vaccines: beyond bacille Calmette-Guerin. Philos Trans R Soc Lond B Biol Sci 366: 2782-2789. McShane, H., (2011] Tuberculosis vaccines: beyond bacille Calmette-Guerin. Philos Trans R Soc Lond B Biol Sci 366: 2782-2789.
McShane, H. & A. Williams, (2011) Tuberculosis vaccine promises sterilizing immunity. Nat Med McShane, H. & A. Williams, (2011) Tuberculosis vaccine promises sterilizing immunity. Nat med
17: 1185-1186.  17: 1185-1186.
Meena, L. S. & Rajni, (2010) Survival mechanisms of pathogenic Mycobacterium tuberculosis Meena, L. S. & Rajni, (2010) Survival mechanisms of pathogenic Mycobacterium tuberculosis
H37Rv. FEBSJ 277: 2416-2427. H37Rv. FEBSJ 277: 2416-2427.
Raviglione, M. C, (2007) The new Stop TB Strategy and the Global Plan to Stop TB, 2006-2015. Raviglione, M. C, (2007) The new Stop TB Strategy and the Global Plan to Stop TB, 2006-2015.
Bull World Health Organ 85: 327.  Bull World Health Organ 85: 327.
Rodrigues, L. C., V. . Diwan & J. G. Wheeler, (1993) Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: a meta-analysis. Int J Epidemiol 22: 1154-1158. Sambandamurthy, V. K., S. C. Derrick, T. Hsu, B. Chen, M. H. Larsen, K. V. Jalapathy, M. Chen, J.  Rodrigues, L. C., V.. Diwan & J. G. Wheeler, (1993) Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: a meta-analysis. Int J Epidemiol 22: 1154-1158. Sambandamurthy, V. K., S. C. Derrick, T. Hsu, B. Chen, M. H. Larsen, K. V. Jalapathy, M. Chen, J.
Kim, S. A. Porcelli, J. Chan, S. L. Morris & W. R. Jacobs, Jr., (2006) Mycobacterium tuberculosis DeltaRDl DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine 24: 6309-6320.  Kim, S. A. Porcelli, J. Chan, S. L. Morris & W. R. Jacobs, Jr., (2006) Mycobacterium tuberculosis DeltaRDl DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine 24: 6309-6320.
Sambandamurthy, V. K., S. C. Derrick, K. V. Jalapathy, B. Chen, R. G. Russell, S. L. Morris & W. R. Sambandamurthy, V. K., S. C. Derrick, K. V. Jalapathy, B. Chen, R. G. Russell, S. L. Morris & W. R.
Jacobs, Jr., (2005) Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect Immun 73: 1196-1203.  Jacobs, Jr., (2005) Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect Immun 73: 1196-1203.
Sampson, S. L., C. C. Dascher, V. K. Sambandamurthy, R. G. Russell, W. R. Jacobs, Jr., B. R. Bloom &Sampson, S. L., C. C. Dascher, V. K. Sambandamurthy, R. G. Russell, W. R. Jacobs, Jr., B. R. Bloom &
M. K. Hondalus, (2004) Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun 72: 3031-3037. Schnappinger, D., S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan, I. M. Monahan, G. Dolganov, B. Efron,M. K. Hondalus, (2004) Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun 72: 3031-3037. Schnappinger, D., S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan, I. M. Monahan, G. Dolganov, B. Efron,
P. D. Butcher, C. Nathan & G. K. Schoolnik, (2003) Transcriptional Adaptation ofP. D. Butcher, C. Nathan & G. K. Schoolnik, (2003) Transcriptional Adaptation of
Mycobacterium tuberculosis within Macrophages: Insights into the PhagosomalMycobacterium tuberculosis within Macrophages: Insights into the Phagosomal
Environment./ Exp Med 198: 693-704. Environment./ Exp Med 198: 693-704.
Shah, N. S., J. Richardson, P. Moodley, S. Moodley, P. Babaria, M. Ramtahal, S. K. Heysell, X. Li, A. P. Shah, N. S., J. Richardson, P. Moodley, S. Moodley, P. Babaria, M. Ramtahal, S. K. Heysell, X. Li, A. P.
Molí, G. Friedland, A. W. Sturm & N. R. Gandhi, (2011) Increasing drug resistance in extensively drug-resistant tuberculosis, South Africa. Emerg Infect Dis 17: 510-513.  Molí, G. Friedland, A. W. Sturm & N. R. Gandhi, (2011) Increasing drug resistance in extensively drug-resistant tuberculosis, South Africa. Emerg Infect Dis 17: 510-513.
Skeiky, Y. A. & J. C. Sadoff, (2006) Advances in tuberculosis vaccine strategies. Nat Rev Microbiol Skeiky, Y. A. & J. C. Sadoff, (2006) Advances in tuberculosis vaccine strategies. Nat Rev Microbiol
4: 469-476.  4: 469-476.
Sun, R., Y. A. Skeiky, A. Izzo, V. Dheenadhayalan, Z. Imam, E. Penn, K. Stagliano, S. Haddock, S.  Sun, R., Y. A. Skeiky, A. Izzo, V. Dheenadhayalan, Z. Imam, E. Penn, K. Stagliano, S. Haddock, S.
Mueller, J. Fulkerson, C. Scanga, A. Grover, S. C. Derrick, S. Morris, D. M. Hone, M. A. Mueller, J. Fulkerson, C. Scanga, A. Grover, S. C. Derrick, S. Morris, D. M. Hone, M. A.
Horwitz, S. H. Kaufmann & J. C. Sadoff, (2009) Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine 27: 4412-4423. Horwitz, S. H. Kaufmann & J. C. Sadoff, (2009) Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine 27: 4412-4423.
Trunz, B. B., P. Fine & C. Dye, (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost- effectiveness. Lancet 367: 1173-1180. Trunz, B. B., P. Fine & C. Dye, (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367: 1173-1180.
Tullius, M. V., G. Harth, S. Maslesa-Galic, B. J. Dillon & M. A. Horwitz, (2008) A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG.Tullius, M. V., G. Harth, S. Maslesa-Galic, B. J. Dillon & M. A. Horwitz, (2008) A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG.
Infect Immun 76: 5200-5214. Infect Immun 76: 5200-5214.
Van Rhijn, I., J. Godfroid, A. Michel & V. Rutten, (2008) Bovine tuberculosis as a model for human tuberculosis: advantages over small animal models. Microbes Infect 10: 711-715. Van Rhijn, I., J. Godfroid, A. Michel & V. Rutten, (2008) Bovine tuberculosis as a model for human tuberculosis: advantages over small animal models. Infect Microbes 10: 711-715.
van Soolingen, D., L. Qian, P. E. de Haas, J. T. Douglas, H. Traore, F. Portaels, H. Z. Qing, D. van Soolingen, D., L. Qian, P. E. de Haas, J. T. Douglas, H. Traore, F. Portaels, H. Z. Qing, D.
Enkhsaikan, P. Nymadawa & J. D. van Embden, (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. / Clin Microbiol 33: 3234-3238.  Enkhsaikan, P. Nymadawa & J. D. van Embden, (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. / Clin Microbiol 33: 3234-3238.
WHO, (2009) WHO report 2009: Global tuberculosis control - epidemiology, strategy, financing. WHO, (2009) WHO report 2009: Global tuberculosis control - epidemiology, strategy, financing.
WHO/HTM/TB/2009.411. la, pp. WHO / HTM / TB / 2009.411. the, pp.

Claims

REIVINDICACIONES
1. Una cepa de Mycobacterium bovís BCG caracterizada porque tiene el número de acceso PTA-120572. 1. A strain of Mycobacterium bovís BCG characterized in that it has the accession number PTA-120572.
2. La cepa de Mycobacterium bovis . BCG de conformidad con la reivindicación 1, caracterizada porque comprende la eliminación de secuencias nucleotídicas que codifican para la proteína BCG1419c, con actividad de fosfodiesterasa del segundo mensajero di-GMPc, que resulta en la producción diferencial de proteínas en biopelículas en la citada micobacteria respecto a la vacuna BCG actual. 2. The strain of Mycobacterium bovis. BCG according to claim 1, characterized in that it comprises the elimination of nucleotide sequences encoding the BCG1419c protein, with phosphodiesterase activity of the second messenger di-GMPc, which results in the differential production of biofilm proteins in said mycobacterium with respect to the current BCG vaccine.
3. La cepa de Mycobacterium bovis BCG de conformidad con la reivindicación 1 y 2 caracterizada porque forma de 3 a 15% más biopelícula in vítro que la cepa sin esta modificación. 3. The Mycobacterium bovis BCG strain according to claim 1 and 2 characterized in that it forms 3 to 15% more biofilm in vitro than the strain without this modification.
4. La cepa de Mycobacterium bovis BCG de conformidad con la reivindicación 1, caracterizada porque la disminución o pérdida de la actividad de fosfodiesterasa de di- GMPc es producto de la inactivación del sitio catalítico EAL por cambio en la secuencia de aminoácidos de este dominio. 4. The strain of Mycobacterium bovis BCG according to claim 1, characterized in that the decrease or loss of phosphodiesterase activity of di-GMPc is a product of the inactivation of the EAL catalytic site by change in the amino acid sequence of this domain.
5. La cepa de Mycobacterium bovis BCG de conformidad con la reivindicación 1, caracterizada, porque la disminución o pérdida de la actividad de fosfodiesterasa de di- GMPc es producto de la inactivación del sitio catalítico EAL por cambio en la secuencia de aminoácidos en otros dominios distintos al EAL pero que afectan la unión y degradación del segundo mensajero. 5. The Mycobacterium bovis BCG strain according to claim 1, characterized in that the decrease or loss of di-GMPc phosphodiesterase activity is a product of the inactivation of the EAL catalytic site by change in the amino acid sequence in other domains different from the EAL but affecting the union and degradation of the second messenger.
6. La cepa de Mycobacterium bovis BCG de conformidad con la reivindicación 1, caracterizada porque la disminución o pérdida de la actividad de fosfodiesterasa de di- GMPc es producto de la inactivación del sitio catalítico EAL por cambio en la secuencia de nucleótidos por inserción o deleción de nucleótidos que alteran la citada secuencia EAL. 6. The strain of Mycobacterium bovis BCG according to claim 1, characterized in that the decrease or loss of phosphodiesterase activity of di-GMPc is a product of the inactivation of the EAL catalytic site by change in the nucleotide sequence by insertion or deletion of nucleotides that alter the aforementioned EAL sequence.
7. La cepa de Mycobacterium bovís BCG de conformidad con la reivindicación 1, caracterizada, porque la disminución o pérdida de la actividad de fosfodiesterasa de di- GMPc es producto de cambios en la región que regula la transcripción o traducción para eliminar ambas y no dar origen a ninguna proteína. 7. The strain of Mycobacterium bovís BCG according to claim 1, characterized in that the decrease or loss of phosphodiesterase activity of di-GMPc is the product of changes in the region that regulates transcription or translation to eliminate both and not give Origin to no protein.
8. La cepa de Mycobacterium bovis BCG de conformidad con la reivindicación 1, caracterizada porque la disminución o pérdida de la actividad de fosfodiesterasa de di- GMPc es producto de substituciones del gen BCG1419c por otros genes distintos al de resistencia a antibiótico (higromicina) empleado en la presente invención, o incluso sin ningún mareaje de antibiótico u otro que facilite la identificación del cambio que conduce a la inactivación o disminución de la actividad de fosfodiesterasa de di-GMPc. 8. The strain of Mycobacterium bovis BCG according to claim 1, characterized in that the decrease or loss of phosphodiesterase activity of di-GMPc is a product of substitutions of the BCG1419c gene by other genes than the antibiotic resistance (hygromycin) used in the present invention, or even without no antibiotic or other marking that facilitates the identification of the change that leads to the inactivation or decrease of the phosphodiesterase activity of di-cGMP.
9. La cepa de Mycobacteríum bovis BCG de conformidad con la reivindicación 1, caracterizada porque la disminución o pérdida de la actividad de fosfodiesterasa de di- GMPc es producto de la inactivación o disminución de la actividad enzimática de manera transitoria, contrario a la estable objeto de la presente invención, si se colocan secuencias de control de la expresión para que respondan a estímulos ambientales. 9. The strain of Mycobacteríum bovis BCG according to claim 1, characterized in that the decrease or loss of phosphodiesterase activity of di-GMPc is the product of the inactivation or decrease of enzymatic activity in a transient manner, contrary to the stable object of the present invention, if expression control sequences are placed to respond to environmental stimuli.
10. La cepa de Mycobacteríum bovis BCG de conformidad con la reivindicación \, caracterizada porque la disminución o pérdida de la actividad de fosfodiesterasa de di- GMPc es producto de la actividad de una fracción subunitaria (fracción de la célula, proteínas, lípidos, carbohidratos o combinaciones entre ellos] o de DNA, si por ejemplo sólo se busca la producción de proteína que inhiba parcial o totalmente la actividad de fosfodiesterasa de di-GMPc. 10. The strain of Mycobacteríum bovis BCG according to claim \, characterized in that the decrease or loss of phosphodiesterase activity of di-GMPc is the product of the activity of a subunit fraction (cell fraction, proteins, lipids, carbohydrates or combinations between them] or of DNA, if for example only the production of protein that partially or totally inhibits the phosphodiesterase activity of di-cGMP is sought.
11. La cepa de Mycobacteríum bovis BCG de conformidad con la reivindicación 1, caracterizada porque produce una infección que resulta de 3 - 6 veces más en número de11. The strain of Mycobacteríum bovis BCG according to claim 1, characterized in that it produces an infection that results in 3-6 times more in number of
Unidades Formadoras de Colonia en ratones inmunocompetentes, pudiendo servir como modelo para infecciones crónicas micobacterianas. Colony forming units in immunocompetent mice, being able to serve as a model for chronic mycobacterial infections.
12. La cepa de Mycobacteríum bovis BCG de conformidad con la reivindicación 1, caracterizada porque es empleada para el tratamiento de tuberculosis pulmonar crónica o latente. 12. The strain of Mycobacteríum bovis BCG according to claim 1, characterized in that it is used for the treatment of chronic or latent pulmonary tuberculosis.
PCT/MX2014/000168 2013-11-25 2014-10-28 A recombinant mycobacterium bovis bcg strain lacking the bcg1419c gene, with enhanced biofilm-formation capacity WO2015076656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2013013771A MX363576B (en) 2013-11-25 2013-11-25 A recombinant mycobacterium bovis bcg strain lacking the bcg1419c gene, with enhanced biofilm-formation capacity.
MXMX/A/2013/013771 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076656A1 true WO2015076656A1 (en) 2015-05-28

Family

ID=53179844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2014/000168 WO2015076656A1 (en) 2013-11-25 2014-10-28 A recombinant mycobacterium bovis bcg strain lacking the bcg1419c gene, with enhanced biofilm-formation capacity

Country Status (2)

Country Link
MX (1) MX363576B (en)
WO (1) WO2015076656A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192883A (en) * 2018-01-29 2018-06-22 中国农业科学院植物保护研究所 Phosphodiesterase EdpX1 for reducing Pathogenicity of Bacteria application

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BROSCH ROLAND ET AL.: "GENOME PLASTICITY OF BCG AND IMPACT ON VACCINE EFFICACY", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES , US, vol. 104, no. 13, 27 March 2007 (2007-03-27), pages 5596 - 5601, XP009085785, DOI: doi:10.1073/pnas.0700869104 *
CASTILLO-RODAL ANTONIA ISABEL ET AL.: "Mycobacterium bovis BCG substrains confer different levels of protection against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary tuberculosis", INFECTION AND IMMUNITY, vol. 74, no. 3, March 2006 (2006-03-01), pages 1718 - 1724 *
GUPTA KAJAL ET AL.: "Identification, Activity and Disulfide Connectivity of C-di-GMP Regulating Proteins Mycobacterium tuberculosis", PLOS ONE, vol. 5, no. 11, 30 November 2010 (2010-11-30) *
MCSHANE HELEN: "Tuberculosis vaccines: beyond bacille Calmette-Guerin", PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON B BIOLOGICAL SCIENCES, vol. 366, no. 1579, 12 October 2011 (2011-10-12), pages 2782 - 2789, XP055191669, DOI: doi:10.1098/rstb.2011.0097 *
RITZ NICOLE ET AL.: "Influence of BCG vaccine strain on the immune response and protection against tuberculosis", FEMS MICROBIOLOGY REVIEWS, vol. 32, no. 5, August 2008 (2008-08-01), pages 821 - 841 *
XIQUI M.L. ET AL.: "Nuevo sistema of señalización in bacterias mediado by the (3'5') guanosín-monofosfato-cíclico (di-GMPc", ELEMENTOS, vol. 80, 2010, pages 21 - 29, Retrieved from the Internet <URL:http://www.elementos.buap.mx/num80/pdf/21.pdf> [retrieved on 20150316] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192883A (en) * 2018-01-29 2018-06-22 中国农业科学院植物保护研究所 Phosphodiesterase EdpX1 for reducing Pathogenicity of Bacteria application

Also Published As

Publication number Publication date
MX2013013771A (en) 2015-05-25
MX363576B (en) 2019-03-13

Similar Documents

Publication Publication Date Title
Nieuwenhuizen et al. Next-generation vaccines based on Bacille Calmette–Guérin
Sun et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis
Ottenhoff et al. Vaccines against tuberculosis: where are we and where do we need to go?
Tran et al. BCG vaccines
US11717565B2 (en) Recombinant BCG overexpressing phoP-phoR
Billeskov et al. Comparing adjuvanted H28 and modified vaccinia virus ankara expressing H28 in a mouse and a non-human primate tuberculosis model
de Amorim et al. DNA vaccine encoding peptide P10 against experimental paracoccidioidomycosis induces long-term protection in presence of regulatory T cells
Carpenter et al. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis
Singh et al. Manipulation of BCG vaccine: a double-edged sword
Sable et al. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis
Yin et al. A promising listeria-vectored vaccine induces Th1-type immune responses and confers protection against tuberculosis
Aguilar et al. Immunogenicity and protection induced by Mycobacterium tuberculosis mce-2 and mce-3 mutants in a Balb/c mouse model of progressive pulmonary tuberculosis
Liang et al. The treatment of mice infected with multi-drug-resistant Mycobacterium tuberculosis using DNA vaccines or in combination with rifampin
Nadolinskaia et al. Vaccines against tuberculosis: Problems and prospects
JP6229080B2 (en) Vaccine composition against mycobacterial infections including a novel temperature sensitive mycobacterial strain
Peeridogaheh et al. Evaluation of immune responses to a DNA vaccine encoding Ag85a-Cfp10 antigen of Mycobacterium tuberculosis in an animal model
Yi et al. Recombinant M. smegmatis vaccine targeted delivering IL-12/GLS into macrophages can induce specific cellular immunity against M. tuberculosis in BALB/c mice
US7622107B2 (en) Recombinant intracellular pathogen immunogenic compositions and methods for use
Chandra et al. Immune response and protective efficacy of live attenuated Salmonella vaccine expressing antigens of Mycobacterium avium subsp. paratuberculosis against challenge in mice
ES2433518T3 (en) Tuberculosis vaccine
McLaughlin et al. A mutant in the Listeria monocytogenes Fur-regulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice
Ohara Current status of tuberculosis and recombinant bacillus Calmette-Guérin vaccines
JP2023153868A (en) Compositions for use as prophylactic agent to those at risk of infection of tuberculosis, or as secondary agents for treating infected tuberculosis patients
Yin et al. Protective immunity induced by a LLO‐deficient Listeria monocytogenes
WO2015076656A1 (en) A recombinant mycobacterium bovis bcg strain lacking the bcg1419c gene, with enhanced biofilm-formation capacity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864647

Country of ref document: EP

Kind code of ref document: A1