WO2015076644A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2015076644A1
WO2015076644A1 PCT/KR2014/011379 KR2014011379W WO2015076644A1 WO 2015076644 A1 WO2015076644 A1 WO 2015076644A1 KR 2014011379 W KR2014011379 W KR 2014011379W WO 2015076644 A1 WO2015076644 A1 WO 2015076644A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange element
heat
heat exchanger
defrost
Prior art date
Application number
PCT/KR2014/011379
Other languages
French (fr)
Korean (ko)
Inventor
나카가와노부히로
에구치히로아키
오가사와라데쓰야
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014222663A external-priority patent/JP6688555B2/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP14864749.8A priority Critical patent/EP3040635A4/en
Priority to US15/039,272 priority patent/US20170153050A1/en
Priority claimed from KR1020140165105A external-priority patent/KR102289373B1/en
Publication of WO2015076644A1 publication Critical patent/WO2015076644A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units

Definitions

  • the present invention is a defrost ( It relates to an air conditioner having a function.
  • a conventional air conditioner of this kind is configured to supply frost to the outdoor heat exchanger by discharging the hot gas refrigerant discharged from the compressor while continuing heating.
  • a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are provided, and a pipe connecting the discharge side pipe of the compressor to the pipe connecting the outdoor heat exchanger and the expansion valve is disclosed. Pass pipe is installed.
  • the defrosting function can be realized by supplying the hot gas refrigerant from the compressor to the outdoor heat exchanger heat exchanger tube through the bypass pipe when the frost is removed.
  • the larger the outdoor heat exchanger the longer the heat transfer tube is required, and the pressure loss due to the flow path resistance increases.
  • the heat pipe is divided into several parts, and a distributor is installed between the outdoor heat exchanger and the expansion valve, and the distributor and each heat pipe are connected to each other in the distribution pipe.
  • the main object of the present invention is to reliably remove frost without deteriorating the defrosting effect even in the case of a large outdoor heat exchanger.
  • the air conditioner according to the present invention is a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger annular ( Air purifier having a refrigerant circuit connected to the plurality of distribution pipes and one end connected to the plurality of heat transfer tubes of the outdoor heat exchanger having one end connected to the distributor and one end of the distributor installed between the outdoor heat exchanger and the expansion valve. It is characterized in that it further comprises a bypass pipe which is connected to the compressor and branched along the way, and each of the other ends is connected to or near the connection portion of the distribution pipe and the heat transfer pipe.
  • the hot gas refrigerant may be supplied to the heat transfer pipe without receiving the flow resistance of the distribution pipe.
  • frost can be reliably removed without deteriorating the defrosting effect without reducing the flow rate of the hot gas refrigerant.
  • auxiliary distributor connected to the plurality of heat transfer tubes, wherein one end of the distribution pipe is connected to the plurality of heat transfer tubes via the auxiliary distributor, and the other ends of the bypass pipe are connected to the auxiliary distributor.
  • a plurality of said outdoor heat exchangers are provided and the said distributor, the said distribution pipe, and the said bypass pipe were respectively provided corresponding to each said outdoor heat exchanger.
  • the outdoor heat exchanger further includes a defrost control unit having a plurality of heat exchange elements and defrosting the heat exchange elements individually to switch the heat exchange element from which frost is removed, and the defrost control unit starts defrosting one heat exchange element. It is preferable to start the defrosting of the other heat exchange element before it is finished.
  • the defrosting control unit since the defrosting control unit starts defrosting the other heat exchange element before starting and terminating the defrost of one heat exchange element, the water generated in the defrost heat exchange element is frozen in the other heat exchange element. This prevents and ensures that each heat exchange element is defrosted reliably while continuing heating operations.
  • the plurality of heat exchange elements are installed along the up and down direction, and the heat exchange element, from which the defrost control is defrosted, is sequentially switched from the top heat exchange element toward the bottom heat exchange element.
  • the outdoor heat exchanger has an upper heat exchange element, a central heat exchange element and a lower heat exchange element and the central heat exchange element volume is smaller than the upper heat exchange element volume and the lower heat exchange element volume.
  • the volume of the central heat exchange element is small, which makes the central heat exchange element high in temperature, and it is possible to more reliably prevent freezing of the water generated by the defrost of the upper heat exchange element from the central heat exchange element.
  • the volume of the central heat exchange element is small, the volume generated by the defrosting of the central heat exchange element is reduced, the frost is less likely to occur in the lower heat exchange element, and as a result, the defrost time of the lower heat exchange element can be shortened.
  • the defrost control unit simultaneously defrosts the upper heat exchange element and the central heat exchange element and converts the heat exchange element that is defrosted from the upper heat exchange element to the lower heat exchange element to simultaneously defrost the central heat exchange element and the lower heat exchange element. It is desirable to.
  • Heat storage of the compressor ( Heat storage tank ) Is further provided and is configured to heat the refrigerant with heat stored in the heat storage tank and to flow the refrigerant to the outdoor heat exchanger through the bypass pipe.
  • the refrigerant can be heated using heat radiated from the compressor, and the defrosting operation can be made highly efficient. Thereby, the fall of the heating capability at the time of defrosting operation can be reduced, and the comfort of a user is not impaired at the time of defrosting operation.
  • the refrigerant flowing out of the heat storage tank is preferably configured to flow into the outdoor heat exchanger through the bypass pipe after entering the compressor.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to a first embodiment.
  • FIG 3 is a schematic configuration diagram of an air conditioner in a modification of the first embodiment.
  • FIG. 4 is a schematic configuration diagram of an air conditioner according to a second embodiment.
  • FIG. 6 is a schematic configuration diagram of an air conditioner in a modification of the second embodiment.
  • FIG. 8 is a schematic configuration diagram illustrating a configuration of a bypass tube in a modification of the second embodiment.
  • FIG. 9 is a schematic configuration diagram of an air conditioner in a modification of the second embodiment.
  • the air conditioner 100 is configured to allow refrigerant to be distributed to the indoor unit 10 and the outdoor unit 20, and the indoor unit 10 and the outdoor unit 20.
  • a heat pump cycle 200 is shown in FIG. 1, the air conditioner 100 according to the present embodiment.
  • the indoor unit 10 is provided with pressure reducing means 11A and 11B connected in parallel with each other, indoor heat exchangers 12A and 12B and indoor blowers 13A and 13B connected in series with the pressure reducing means 11A and 11B, respectively.
  • the outdoor unit 20 is provided with a four-way valve 21, an accumulator 22, a compressor 23, an outdoor heat exchanger 24, a distributor 25, an expansion valve 26, and an outdoor blower 27.
  • the heat pump cycle 200 includes the pressure reducing means 11A and 11B, the indoor heat exchangers 12A and 12B, the four-way valve 21, the outdoor heat exchanger 24, the distributor 25 and the expansion valve 26.
  • the main circuit 201, the accumulator 22, and the compressor 23 are connected in order, and the compression circuit 202 is connected to the four-way valve 21 in order.
  • the heat pump cycle 200 is configured to reverse the refrigerant flow in the main circuit 201 and to switch the cooling operation and the heating operation by controlling the opening and closing of the four ports in the four-way valve 21.
  • the four-way valve 21 introduces the hot gas refrigerant discharged from the compressor 23 into the outdoor heat exchanger 24 when the cooling operation is performed, and the hot gas discharged from the compressor 23 when the heating operation is performed.
  • the refrigerant is configured to be introduced into the indoor heat exchangers 12A and 12B.
  • auxiliary distributors 251 and a plurality of distribution pipes 252 are provided between the outdoor heat exchanger 24 and the distributor 25.
  • the auxiliary distributor 251 is disposed near the outdoor heat exchanger 24, and a plurality of heat transfer tubes 241 included in the outdoor heat exchanger 24 are connected.
  • 1 shows a configuration in which three auxiliary distributors 251 are installed and three heat transfer tubes 241 are connected to each auxiliary distributor 251, but the number of auxiliary distributors 251 or the heat transfer tubes connected to each auxiliary distributor 251 is shown.
  • the number of 241 is not limited to said number.
  • the distribution pipe 252 connects the distributor 25 and the outdoor heat exchanger 24, and simultaneously distributes the refrigerant flowing from the distributor 25 to the outdoor heat exchanger 24, and supplies the refrigerant to the heat transfer tubes 241. More specifically, one end of the distribution pipe 252 is connected to the distributor 25 and the other end of the distribution pipe 252 is connected to the heat transfer pipe 241 through the auxiliary distributor 251.
  • the distribution pipe 252 and the heat transfer pipe 241 are connected through the auxiliary distributor 251 interposed therebetween.
  • one end of the air conditioner 100 according to the present embodiment is connected to the discharge side pipe 231 of the compressor 23 and branched along the way.
  • the bypass tube 30 connected to or near the connection portion 252 with the heat transfer tube 241 is provided.
  • an auxiliary distributor 251 is interposed between the distribution pipe 252 and the heat transfer pipe 241 (the connecting portion), and each other end of the bypass pipe 30 is connected to the auxiliary distributor 251. It is connected.
  • the bypass pipe 30 is a main pipe connected to the discharge side pipe 231 of the compressor 23 ( ; 31) and a plurality of branch pipes branching from the starting point P installed in the main pipe 31 ( ; 32).
  • the number of the branch pipes 32 is equal to the number of the auxiliary distributors 251 provided and three in this embodiment.
  • the ends of these branch pipes 32, that is, the other ends of the bypass pipe 30, are configured to be connected to different auxiliary distributors 251, respectively.
  • the anisotropy which opens and closes the bypass pipe 30 between the one end in the bypass pipe 30 to the branch point P, ie, on the main pipe 31, )
  • the valve 33 is provided.
  • the anisotropic valve 33 is configured to open the bypass pipe 30 by receiving a signal from a controller (not shown) at the time of frost removal, and to allow a hot gas refrigerant to flow from the compressor 23 to the outdoor heat exchanger 24. have. Thereby, the frost of the outdoor heat exchanger 24 can be removed, continuing heating operation.
  • the air conditioner 100 since each other end of the bypass pipe 30 is connected to the auxiliary distributor 251, the flow resistance of the distribution pipe 252 is hardly received and the hot gas refrigerant Can be supplied to the heat transfer pipe 241.
  • the flow rate of the hot gas refrigerant does not decrease, and it is possible to reliably remove the frost of the outdoor heat exchanger 24 without reducing the defrosting effect, and consequently, It is possible to prevent afterimages while reducing the defrosting time of the gas refrigerant flowing through the distribution pipe.
  • the number of branch pipes 32 of the bypass pipe 30 can be reduced, so that the cost can be reduced or the weight can be reduced.
  • anisotropic valve 33 is provided between the end of the bypass pipe 30 to the branch point P, when the bypass pipe 30 is opened by the said anisotropic valve 33, heating operation will be performed. Defrost function can be implemented.
  • this invention is not limited to the said 1st Embodiment.
  • the air conditioner 100 of the above embodiment has a single outdoor heat exchanger 24, but may be configured to include a plurality of outdoor heat exchangers 24A and 24B as shown in FIG. have. More specifically, the air conditioner 100 corresponds to each of the outdoor heat exchangers 24A and 24B, and includes distributors 25A and 25B, auxiliary distributors 251A and 251B, distribution pipes 252A and 252B and bypass pipes. 30A and 30B are provided.
  • the air conditioner 100 includes a first outdoor heat exchanger 24A and a second outdoor heat exchanger 24B, and corresponds to each of the outdoor heat exchangers 24A and 24B, and the first distributor 25a and The 2nd distributor 25b, the 1st expansion valve 26A, and the 2nd expansion valve 26B are provided.
  • a first auxiliary distributor 251A and a plurality of first distribution pipes 252A are installed between the first outdoor heat exchanger 24A and the first distributor 25a, and the second second heat exchanger 24A is disposed between the first outdoor heat exchanger 24A and the first distributor 25a.
  • a second auxiliary distributor 251B and a plurality of second distribution pipes 252B are provided between the outdoor heat exchanger 24B and the second distributor 25b.
  • auxiliary distributors 251A and 251B and the distribution pipes 252A and 252B have the same structure as the auxiliary distributor 251 and the distribution pipe 252 of the said embodiment.
  • the 1st bypass pipe 30A and the 2nd bypass pipe 30B are provided corresponding to each outdoor heat exchanger 24A, 24B.
  • This 1st bypass pipe 30A has the same structure as the bypass pipe 30 of the said embodiment.
  • the 2nd bypass pipe 30B branches into the 2nd main pipe 31B branched from the 1st main pipe 31A of the 1st bypass pipe 30A, and the branch point P2 provided in the 2nd main pipe 31B. It has a branch pipe 32B.
  • 33 A of 1st anisotropic valves are provided in 31 A of 1st main pipes, and the 2nd anisotropic valve 33B is provided in 2nd main pipes 31B.
  • bypass pipes 30A and 30B require 13 minutes to defrost.
  • the defrosting time is shorter than that of the prior art as the time taken to defrost is 5 minutes.
  • each other end of the distribution pipe may be directly connected to the heat transfer pipe without the auxiliary distributor.
  • each other end of the bypass pipe is connected to or near the connection portion between the distribution pipe and the heat transfer pipe.
  • the vicinity in the above description refers to a position of, for example, less than 1/10 of the total length of the distribution pipe on the upstream side or the downstream side (ie, the heat exchanger side or vice versa) from the connection portion.
  • the air conditioner 100 can distribute hot gas refrigerant to the indoor unit 10, the outdoor unit 20, and the indoor unit 10 and the outdoor unit 20. And a heat pump cycle 200 configured to.
  • the indoor unit 10 is provided with pressure reducing means 11A and 11B connected in parallel to each other, indoor heat exchangers 12A and 12B and indoor blowers 13A and 13B connected in series with the pressure reducing means 11A and 11B, respectively. .
  • the outdoor unit 20 is provided with a four-way valve 21, an accumulator 22, a compressor 23, an outdoor heat exchanger 24, a distributor 25, an expansion valve 26, and an outdoor blower 27.
  • the outdoor heat exchanger 24 has a plurality of heat exchange elements and in this embodiment has an upper heat exchange element 241 and a lower heat exchange element 242 installed along the up and down direction as shown in FIG. 4.
  • heat exchange elements 241 and 242 are connected to the distributor 25 through distribution pipes 251, respectively, and each heat exchange element 241 and 242 is provided with a temperature sensor, not shown.
  • the heat pump cycle 200 includes the pressure reducing means 11A and 11B, the indoor heat exchangers 12A and 12B, the four-way valve 21, the outdoor heat exchanger 24, the distributor 25 and the expansion valve 26.
  • the main circuit 201, the accumulator 22, and the compressor 23 are connected in order, and the compression circuit 202 is connected to the four-way valve 21 in order.
  • the heat pump cycle 200 is configured to invert the flow of the hot gas refrigerant in the main circuit 201 and to switch the cooling operation and the heating operation by controlling the opening and closing of four ports in the four-way valve 21. .
  • the four-way valve 21 allows the hot gas refrigerant discharged from the compressor 23 to be introduced into the outdoor heat exchanger 24 when the cooling operation is performed, and discharged from the compressor 23 when the heating operation is performed. It is comprised so that hot gas refrigerant may be introduce
  • the air conditioner 100 of the present embodiment is provided with a bypass pipe 30 having one end connected to the discharge side pipe 231 and branching in the middle while the other end is connected to the distribution pipe 251. It is.
  • the bypass pipe 30 is a first branch pipe which is a plurality of branch pipes branched from the main pipe 31 and the main pipe 31 connected to the discharge side pipe 231 of the compressor 23 and connected to the distribution pipe 251, respectively. 321 and the second branch pipe 322.
  • the bypass pipe 30 described above is provided with a first anisotropic valve 331 in the first branch pipe 321 and a second anisotropic valve 332 in the second branch pipe 322, and these anisotropic valves 331, 332. Is opened, the hot gas refrigerant flows through the corresponding branch pipes 321 and 322. The hot gas refrigerant is supplied to each of the heat exchange elements 241 and 242 via a distribution pipe 251 to which the branch pipes 321 and 322 are connected, thereby defrosting the respective heat exchange elements 241 and 242. .
  • the air conditioner 100 individually defrosts the heat exchange elements 241 and 242 and replaces the defrosted heat exchange elements 241 and 242 with the upper heat exchange element 241 and the lower heat exchange element ( A defrosting control unit, not shown, is provided that switches to 242.
  • the defrost control unit is configured to switch the heat exchange elements 241 and 242 from which frost is removed by switching the respective anisotropic valves 331 and 332 to the open state and the closed state, and in this embodiment, shown in FIG. 5.
  • the other heat exchange elements 242 and 241 can be started before the defrost of one heat exchange element 241 or 242 starts and ends.
  • the defrost control unit receives a signal from a non-illustrated temperature sensor installed in the upper heat exchange element 241 when the temperature sensor value is lower than or equal to a predetermined first lower limit, that is, the temperature of the upper heat exchange element 241 is predetermined When the temperature falls below the first lower limit temperature, the defrosting of the upper heat exchange element 241 is started.
  • the defrost control unit starts defrosting of the lower heat exchange element 242 when the temperature sensor value is greater than or equal to a predetermined second lower limit value, that is, when the temperature of the upper heat exchange element 241 becomes greater than or equal to the predetermined second lower limit temperature. Consists of.
  • the 1st lower limit temperature is set to the value lower than 2nd lower limit temperature.
  • the defrost control unit starts the defrost of the upper heat exchange element 241 by opening the first anisotropic valve 331 to open the upper heat exchange element 241. Is set to start the defrost of the lower heat exchange element 242 with the second anisotropic valve 332 open.
  • the defrosting control unit performs heat exchange when the value of the temperature sensor, which is not illustrated in each of the heat exchange elements 241 and 242, is higher than or equal to a predetermined upper limit, that is, when the temperature of each heat exchange element 241 and 242 becomes higher than or equal to the predetermined upper limit.
  • the defrosting of the elements 241, 242 is configured to end. Specifically, when the temperature of each heat exchange element (241, 242) is at least 2 degrees, the defrost control unit is to close each anisotropic valve (331, 332) to terminate the defrost of each heat exchange element (241, 242). It is set.
  • each heat exchange element 241 and 242 can be changed freely, without having to set to the same value mutually.
  • the defrosting control unit starts defrosting of the lower heat exchange element 242 before starting and ending defrosting of the upper heat exchange element 241 as shown in FIG. 5.
  • the heat exchange elements 241 and 242 are each defrosted for about 7 minutes while the top heat exchange element 241 and the bottom heat exchange element 242 are simultaneously defrosted for about 2 minutes.
  • each heat exchange element 241,242 can be changed freely by changing the lower limit temperature and upper limit temperature mentioned above.
  • the defrost time for defrosting the heat exchange elements 241 and 242 respectively is calculated according to the ratio of the heating operation time to the sum of the heating operation time and the defrost time, and in this embodiment, the heating operation time is the heating operation time and the defrost. It is calculated to be 80% or more of the sum of time. However, when the frost melts within the defrost time (7 minutes in the present embodiment) calculated as described above, each temperature sensor value rises, so in this case the defrost is finished within the defrost time.
  • the defrost time (7 minutes in this embodiment) which defrosts each heat exchange element 241 and 242 mentioned above, the time which simultaneously defrosts the upper heat exchange element 241 and the lower heat exchange element 242 (this embodiment). 2 minutes) may or may not be included.
  • the defrost control unit starts defrosting of the lower heat exchange element 242 before starting and ending defrost of the upper heat exchange element 241.
  • Water generated in the upper heat exchange element 241 may be prevented from freezing in the lower heat exchange element 242 and may prevent a decrease in the heating capability of the air conditioner 100.
  • each heat exchange element 241, 242 can be surely defrosted while continuing heating operation. .
  • the heat exchange elements 241 and 242 are installed in the up and down direction and the defrosting control is defrosted.
  • the heat exchange elements 241 and 242 are sequentially switched from the upper upper heat exchange element 241 to the lower lower heat exchange element 242. Therefore, it is possible to reliably prevent the water generated by defrosting the upper heat exchange element 241 from freezing in the lower heat exchange element 242.
  • this invention is not limited to the said 2nd Embodiment.
  • the outdoor heat exchanger 24 has an upper heat exchange element 241 and a lower heat exchange element 242, but the number of heat exchange elements is not limited and is illustrated, for example, in FIG. 6. It may have an upper heat exchange element 241, a lower heat exchange element 242, and a central heat exchange element 243 as shown at the top of FIG.
  • the outdoor heat exchanger 24 is configured such that the volume of the central heat exchange element 243 is smaller than the volume of the upper heat exchange element 241 and the lower heat exchange element 242.
  • each of these heat exchange elements 241, 242, 243 is connected to the distributor 25 via a distribution pipe 251, respectively, which branches from the main pipe 31 of the bypass pipe 30 to the distribution pipe 251.
  • the first branch pipe 321, the second branch pipe 322, and the third branch pipe 323 which are a plurality of branch pipes are connected.
  • Each of these branch pipes 321, 322, and 323 is provided with a first anisotropic valve 331, a second anisotropic valve 332, and a third anisotropic valve 333, respectively.
  • the defrosting control unit which is not shown, is configured to switch the heat exchange elements 241, 242 and 243 which are defrosted as the respective anisotropic valves 331, 332 and 333 are switched to the open state and the closed state. More specifically, the defrost control unit initially begins to defrost the upper heat exchange element 241 as shown in the lower part of FIG. 6 and before the defrost of the upper heat exchange element 241 ends, the central heat exchange element 243. The defrost of the lower heat exchange element 242 before the defrost of the corresponding central heat exchange element 243 ends.
  • each heat exchange element 241, 242, 243 the timing at which the defrost control unit starts and ends the defrosting of each heat exchange element 241, 242, 243 is based on the unshown temperature sensor values installed in each heat exchange element 241, 242, 243 as in the above embodiment. Controlled.
  • the volume of the central heat exchange element 243 is smaller than the volume of the upper heat exchange element 241 and the lower heat exchange element 242 so that the central heat exchange element 243 becomes hot and defrost of the upper heat exchange element 241.
  • the generated water can be more reliably prevented from freezing in the central heat exchange element 243.
  • the volume of the central heat exchange element 243 is reduced, so that the amount of water generated by the defrost of the central heat exchange element 243 is reduced, thereby reducing the amount of water flowing into the lower heat exchange element 242, so that the defrost time of the lower heat exchange element 242 is reduced. Can be shortened.
  • the volume of the central heat exchange element 243 is small to ensure the capacity of the evaporator during defrosting and to prevent the indoor blowing temperature from lowering, thereby reducing the discomfort caused by continuous heating.
  • the defrost control unit defrosts the upper heat exchange element 241 and the central heat exchange element 243. May be simultaneously started and the central heat exchange element 242 and the bottom heat exchange element 243 may be terminated simultaneously.
  • the defrost control unit starts the defrost of the upper heat exchange element 241 and the central heat exchange element 243 at the same time, the defrost of the central heat exchange element 243 continues to defrost the heat exchange element in the upper heat exchange element 241 Switching to the bottom heat exchange element 242 is configured to end defrost of the central heat exchange element 243 and the bottom heat exchange element 242 simultaneously.
  • This configuration can more reliably prevent freezing of the water generated by the defrosting of the upper heat exchange element 241 at the central heat exchange element 243, and the respective heat exchange elements 241, 242, 243 can be viewed while continuing the heating operation. You can certainly defrost it.
  • FIG. 8 As a specific structure for implementing the above-mentioned control, the structure shown in FIG. 8 is mentioned.
  • the air conditioner 100 further includes an auxiliary distributor 25a-c interposed between the distribution tube 251 and the heat transfer tubes 24a-c of each heat exchange element 241, 242, 243.
  • the first branch pipe 321 and the second branch pipe 322 branching from the main pipe 31 are connected to the auxiliary distributors 25a to c.
  • the first branch pipe 321 branched into two further pieces along the way, one of which is connected to the auxiliary distributor 25a installed corresponding to the upper heat exchange element 241, and the other of which is installed to correspond to the central heat exchange element 243. Is connected to the distributor 25c.
  • the second branch pipe 322 is further divided into two in the middle, and one side is connected to the auxiliary distributor 25b provided in correspondence with the lower heat exchange element 242, and the other distributor is installed in correspondence with the central heat exchange element 243 ( 25c).
  • the first branch pipes 321 and the second branch pipes 322 branch off and join again to be connected to the auxiliary distributor 25c, and branch points P1 and P2 installed at the confluence point X and the branch pipes 321 and 322. Between each ) Valves V1 and V2 are provided.
  • the hot gas refrigerant can be simultaneously supplied from the first branch pipe 321 to the upper heat exchange element 241 and the central heat exchange element 243, and the hot gas refrigerant can be supplied from the second branch pipe 322 to the lower heat exchange element 242.
  • the central heat exchange element 243 can be supplied simultaneously.
  • the defrosting control unit starts and ends defrosting of each heat exchange element by the temperature sensor value, but is configured to defrost each heat exchange element at a predetermined time by a value such as a timer, not shown.
  • the defrost time of the element may be configured to overlap at a predetermined time.
  • the same effect can be obtained by connecting the first branch pipe 321 and the second branch pipe 322 near the auxiliary distributors 25a, 25b, and 25c between the auxiliary distributors 25a, 25b, and 25c and the distribution pipe 251. It is obvious that you can get it.
  • the air conditioner 100 further includes a heat storage tank 40 for accumulating the compressor 23, and the refrigerant heated by the heat stored in the heat storage tank 40 is bypass pipe 30. It may be configured to flow through the outdoor heat exchanger (24).
  • the heat storage tank 40 is installed around the compressor 23 and heats the heat radiated from the compressor 23 through a contact surface with the compressor 23, for example, a heat storage material such as a liquid and a refrigerant therein.
  • the heat storage tank 40 does not necessarily need to be in contact with the compressor 23 and may be installed near the compressor 23.
  • the air conditioner 100 is configured such that the refrigerant flowing out of the heat storage tank 40 flows into each outdoor heat exchange element 241 and 242 after flowing into the compressor 23 and then through the bypass pipe 30.
  • the outflow-side pipe 411 through which the refrigerant flows out of the heat storage tank 40 is connected between the outdoor heat exchanger 24 and the four-way valve 21.
  • the check valve 5 is provided in the outflow side pipe 411.
  • an inflow pipe 412 into which the refrigerant flows into the heat storage tank 40 is branched between the indoor heat exchangers 12A and 12B and the distributor 25 and a signal from a control unit (not shown) in the inflow pipe 412.
  • the third anisotropic valve 413 which is switched to the open state and the closed state is installed.
  • control contents associated with the control unit (not shown) will be described.
  • control unit receives a signal from the heat storage temperature sensor 42, and when the heat storage temperature is lower than the first predetermined temperature, the third anisotropic valve 413 is closed and the heat storage temperature is a second predetermined temperature.
  • the third anisotropic valve 413 is opened, and when the heat storage temperature is higher than or equal to the first temperature and lower than or equal to the second temperature, the third anisotropic valve 413 is configured to maintain the open / close state.
  • the third anisotropic valve 413 is closed until the second temperature is reached, and when the second temperature is reached, the third anisotropic valve 413 is opened.
  • the heat storage temperature is lowered, the third anisotropic valve 413 is in an open state until the first temperature is reached, and when the first temperature is reached, the third anisotropic valve 413 is in a closed state.
  • control unit acquires a signal from an outside air temperature sensor (not shown) that detects the temperature of the outside air (hereinafter also referred to as outside air temperature), and when the outside air temperature is below a predetermined temperature, The third anisotropic valve 413 is closed when defrosting and the third anisotropic valve 413 is opened when defrosting the lower heat exchange element 242.
  • the refrigerant can be heated using heat radiated from the compressor 23, and the defrosting operation can be made highly efficient. Thereby, the fall of the heating capability at the time of defrosting operation can be reduced, and the comfort of a user at the time of defrosting operation can be maintained.
  • the heat of the heat storage tank 40 can be concentrated and used in the latter half of the defrosting operation, and the capacity of the heat storage material and the heat storage tank 40 can be reduced, and the cost can be reduced and the outdoor unit 20 can be made compact.
  • the refrigerant heated by the heat storage tank 40 flows into the compressor 23 and then flows to each of the heat exchange elements 241 and 242, the refrigerant can be brought to a higher temperature and defrost of each heat exchange element 241, 242. You can shorten the time.

Abstract

Even in the case of a large outdoor heat exchanger (24), it is possible to completely remove frost without reducing the defrosting effect. Provided are: a distributor (25) installed between the outdoor heat exchanger (24) and an expansion valve (26); a plurality of distribution pipes (252) of which one end is connected to the distributor (25) and of which the other end is connected to a plurality of heat transfer pipes (241) of the outdoor heat exchanger (24); and a bypass pipe (30) of which one end is connected to a compressor (23) and diverges on the way, and simultaneously of which the respective plurality of other ends are connected to a connection part between the distribution pipe (252) and the heat transfer pipe (241) or in the vicinity thereof.

Description

공기조화기Air conditioner
본 발명은 제상(
Figure PCTKR2014011379-appb-I000001
) 기능을 가지는 공기조화기에 관한 것이다.
The present invention is a defrost (
Figure PCTKR2014011379-appb-I000001
It relates to an air conditioner having a function.
종래의 이와 같은 종류의 공기조화기로서는 난방을 계속하면서 압축기로부터 토출되는 고온 가스 냉매를 실외 열교환기에 공급하여 서리를 제거하도록 구성된 것이 있다.A conventional air conditioner of this kind is configured to supply frost to the outdoor heat exchanger by discharging the hot gas refrigerant discharged from the compressor while continuing heating.
구체적인 구성으로는 일본출원공개공보 2009-85484호에 나타낸 바와 같이 압축기, 실외 열교환기, 팽창 밸브 및 실내 열교환기를 구비하며 압축기의 토출 측 배관과 실외 열교환기 및 팽창 밸브를 연결하는 배관을 연결하는 바이패스관이 설치되어 있다. 본 구성으로 서리 제거 시에 압축기로부터의 고온 가스 냉매를 상기 바이패스관을 통하여 실외 열교환기 전열관에 공급함으로써 제상 기능을 구현할 수 있도록 하였다.As a concrete configuration, as shown in Japanese Patent Application Laid-Open No. 2009-85484, a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are provided, and a pipe connecting the discharge side pipe of the compressor to the pipe connecting the outdoor heat exchanger and the expansion valve is disclosed. Pass pipe is installed. In this configuration, the defrosting function can be realized by supplying the hot gas refrigerant from the compressor to the outdoor heat exchanger heat exchanger tube through the bypass pipe when the frost is removed.
그런데 실외 열교환기는 대형일수록 긴 전열관이 필요하게 되고 그만큼 유로 저항에 의한 압력 손실이 커진다. 여기서 통상적으로 대형 실외 열교환기를 이용하는 경우는 전열관을 여러 개로 분할하고 실외 열교환기와 팽창 밸브와의 사이에 분배기를 설치함과 동시에 상기 분배기와 각 전열관을 분배관에서 연결할 수 있도록 구성하고 있다.However, the larger the outdoor heat exchanger, the longer the heat transfer tube is required, and the pressure loss due to the flow path resistance increases. In the case of using a large outdoor heat exchanger in general, the heat pipe is divided into several parts, and a distributor is installed between the outdoor heat exchanger and the expansion valve, and the distributor and each heat pipe are connected to each other in the distribution pipe.
그러나 상기와 같은 대형 실외 열교환기에서 서리를 제거할 경우 압축기로부터의 고온 가스 냉매가 분배관을 흘러 각 전열관에 공급되므로 분배관의 유로 저항 때문에 고온 가스 냉매 유량이 감소하게 된다. 이것에 의해 대형 실외 열교환기에서는 제상 능력이 저하하여 제상 시간이 길어져 충분하게 서리가 제거될 수 없는 경우에는 잔상(殘霜) 하는 문제가 발생한다.However, when the frost is removed in the large outdoor heat exchanger as described above, since the hot gas refrigerant from the compressor flows through the distribution pipe and is supplied to each heat pipe, the flow rate of the hot gas refrigerant decreases due to the flow resistance of the distribution pipe. As a result, in a large-scale outdoor heat exchanger, the defrosting ability decreases and the defrosting time becomes long, and when the frost cannot be sufficiently removed, there is a problem of remaining afterimage.
여기서 본 발명은 대형 실외 열교환기의 경우라도 제상 효과를 저하하지 않고 확실하게 서리를 제거하는 것을 주된 과제로 한다.Here, the main object of the present invention is to reliably remove frost without deteriorating the defrosting effect even in the case of a large outdoor heat exchanger.
즉 본 발명에 의한 공기조화기는 압축기, 실외 열교환기, 팽창 밸브 및 실내 열교환기가 환상(
Figure PCTKR2014011379-appb-I000002
)으로 연결된 냉매 회로를 가지는 공기정화기로서 상기 실외 열교환기 및 상기 팽창 밸브 간에 설치된 분배기와 일단이 상기 분배기에 연결되어 타단이 상기 실외 열교환기가 가지는 복수의 전열관에 연결되는 복수의 분배관과 일단이 상기 압축기에 연결되고 도중에 분기됨과 동시에 복수의 각 타단이 상기 분배관과 상기 전열관의 연결부 또는 그 근처에 연결되는 바이패스관을 한층 더 구비하는 것을 특징으로 한다.
That is, the air conditioner according to the present invention is a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger annular (
Figure PCTKR2014011379-appb-I000002
Air purifier having a refrigerant circuit connected to the plurality of distribution pipes and one end connected to the plurality of heat transfer tubes of the outdoor heat exchanger having one end connected to the distributor and one end of the distributor installed between the outdoor heat exchanger and the expansion valve. It is characterized in that it further comprises a bypass pipe which is connected to the compressor and branched along the way, and each of the other ends is connected to or near the connection portion of the distribution pipe and the heat transfer pipe.
상기와 같은 공기조화기일 경우에 바이패스관의 각 타단이 분배관과 전열관의 연결부 또는 그 근처에 연결되어 있으므로 분배관의 유로 저항을 거의 받지 않고 고온 가스 냉매를 전열관으로 공급할 수 있다. 이것에 의해 대형 실외 열교환기의 경우라도 고온 가스 냉매의 유량 감소 없이 제상 효과도 저하하지 않고 확실하게 서리를 제거할 수 있다.In the case of the air conditioner as described above, since the other end of the bypass pipe is connected to or near the connection part between the distribution pipe and the heat transfer pipe, the hot gas refrigerant may be supplied to the heat transfer pipe without receiving the flow resistance of the distribution pipe. As a result, even in a large outdoor heat exchanger, frost can be reliably removed without deteriorating the defrosting effect without reducing the flow rate of the hot gas refrigerant.
복수의 상기 전열관이 연결된 보조 분배기를 한층 더 구비하고 상기 분배관의 상기 일단이 상기 보조 분배기를 통하여 복수의 상기 전열관에 연결되고 상기 바이패스관의 상기 각 타단이 상기 보조 분배기에 연결되는 것이 바람직하다.It is preferable to further include an auxiliary distributor connected to the plurality of heat transfer tubes, wherein one end of the distribution pipe is connected to the plurality of heat transfer tubes via the auxiliary distributor, and the other ends of the bypass pipe are connected to the auxiliary distributor. .
이와 같이 함으로써 바이패스관의 각 타단이 보조 분배기에 연결되므로 바이패스관의 분기를 줄일 수 있고 비용 절감이나 경량화를 도모할 수 있다.In this way, since the other end of the bypass pipe is connected to the auxiliary distributor, the branch of the bypass pipe can be reduced, and the cost and weight can be reduced.
구체적인 실시 양태로서는 상기 실외 열교환기가 복수 설치되고 상기 각 실외 열교환기에 대응하여 상기 분배기, 상기 분배관 및 상기 바이패스관이 각각 설치된 것을 들 수 있다.As a specific embodiment, a plurality of said outdoor heat exchangers are provided and the said distributor, the said distribution pipe, and the said bypass pipe were respectively provided corresponding to each said outdoor heat exchanger.
또 상기 실외 열교환기가 복수의 열교환 요소를 가지며 상기 열교환 요소를 개별적으로 서리를 제거하여 서리가 제거되는 상기 열교환 요소를 전환하는 제상 제어부를 또한 구비하고 상기 제상 제어부가 1개의 열교환 요소의 서리 제거를 시작하여 종료하기 전에 다른 열교환 요소의 서리 제거를 시작하는 것이 바람직하다.The outdoor heat exchanger further includes a defrost control unit having a plurality of heat exchange elements and defrosting the heat exchange elements individually to switch the heat exchange element from which frost is removed, and the defrost control unit starts defrosting one heat exchange element. It is preferable to start the defrosting of the other heat exchange element before it is finished.
상기와 같은 공기조화기일 경우에 제상 제어부가 1개의 열교환 요소의 서리 제거를 시작하여 종료하기 전에 다른 열교환 요소의 서리 제거를 시작하므로 서리가 제거된 열교환 요소에서 생긴 물이 다른 열교환 요소에서 동결하는 것을 방지할 수 있고 난방 운전을 계속하면서도 각 열교환 요소를 확실하게 서리 제거할 수 있다.In the case of the air conditioner as described above, since the defrosting control unit starts defrosting the other heat exchange element before starting and terminating the defrost of one heat exchange element, the water generated in the defrost heat exchange element is frozen in the other heat exchange element. This prevents and ensures that each heat exchange element is defrosted reliably while continuing heating operations.
상기 복수의 열교환 요소가 상하 방향에 따라 설치되고 상기 제상 제어부가 서리 제거되는 상기 열교환 요소를 위쪽의 열교환 요소로부터 아래쪽의 열교환 요소를 향해 차례로 전환되는 것이 바람직하다.Preferably, the plurality of heat exchange elements are installed along the up and down direction, and the heat exchange element, from which the defrost control is defrosted, is sequentially switched from the top heat exchange element toward the bottom heat exchange element.
이와 같이 함으로써 위쪽의 열교환 요소를 서리 제거하여 생긴 물이 아래쪽의 열교환 요소에서 동결하는 것을 확실히 방지할 수 있다.By doing this, it is possible to reliably prevent the water generated by defrosting the upper heat exchange element from freezing at the lower heat exchange element.
상기 실외 열교환기가 상부 열교환 요소, 중앙 열교환 요소 및 하부 열교환 요소를 가지며 상기 중앙 열교환 요소 용적이 상기 상부 열교환 요소 용적 및 상기 하부 열교환 요소 용적보다 작은 것이 바람직하다.Preferably, the outdoor heat exchanger has an upper heat exchange element, a central heat exchange element and a lower heat exchange element and the central heat exchange element volume is smaller than the upper heat exchange element volume and the lower heat exchange element volume.
이와 같이 함으로써 중앙 열교환 요소 용적이 작아서 중앙 열교환 요소가 고온으로 되기 쉽고 상부 열교환 요소의 서리 제거로 생긴 물이 중앙 열교환 요소에서 동결하는 것을 보다 확실하게 방지할 수 있다.In this way, the volume of the central heat exchange element is small, which makes the central heat exchange element high in temperature, and it is possible to more reliably prevent freezing of the water generated by the defrost of the upper heat exchange element from the central heat exchange element.
또 중앙 열교환 요소 용적이 작아서 중앙 열교환 요소의 서리 제거로 생기는 물량이 적게 되고 하부 열교환 요소에는 서리가 생기기 어렵게 되고 결과적으로 하부 열교환 요소의 제상 시간을 짧게 할 수 있다.In addition, since the volume of the central heat exchange element is small, the volume generated by the defrosting of the central heat exchange element is reduced, the frost is less likely to occur in the lower heat exchange element, and as a result, the defrost time of the lower heat exchange element can be shortened.
상기 제상 제어부가 상기 상부 열교환 요소와 상기 중앙 열교환 요소를 동시에 서리 제거하고 서리 제거되는 상기 열교환 요소를 상기 상부 열교환 요소로부터 상기 하부 열교환 요소로 전환하여 상기 중앙 열교환 요소와 상기 하부 열교환 요소를 동시에 서리 제하는 것이 바람직하다.The defrost control unit simultaneously defrosts the upper heat exchange element and the central heat exchange element and converts the heat exchange element that is defrosted from the upper heat exchange element to the lower heat exchange element to simultaneously defrost the central heat exchange element and the lower heat exchange element. It is desirable to.
이와 같이 함으로써 상부 열교환 요소의 서리 제거로 생기는 물이 중앙 열교환 요소에서 동결하는 것을 보다 확실하게 방지할 수 있고 각 열교환 요소를 보다 확실하게 서리 제거할 수 있다.In this way, water generated by the defrosting of the upper heat exchanger element can be more reliably prevented from freezing in the central heat exchanger element, and each heat exchanger element can be reliably defrosted.
상기 제상 제어부가 상기 상부 열교환 요소의 서리 제거를 시작하여 종료할 때까지의 사이에 상기 중앙 열교환 요소를 서리 제거함과 동시에 상기 하부 열교환 요소의 서리 제거를 시작하여 종료할 때까지의 사이에 상기 중앙 열교환 요소를 서리 제거하는 것이 바람직하다.The central heat exchanger until the defrost control unit defrosts the central heat exchanger element until the defrosting of the upper heat exchanger element begins and ends, and at the same time until the defrosting of the lower heat exchanger element is started and finished. It is desirable to defrost the elements.
상기 압축기의 열을 축열()하는 축열조(
Figure PCTKR2014011379-appb-I000004
)를 한층 더 구비하고 상기 축열조에 축열된 열로 냉매를 가열함과 동시에 상기 냉매를 상기 바이패스 관을 통하여 상기 실외 열교환기로 흘릴 수 있도록 구성되는 것이 바람직하다.
Heat storage of the compressor ( Heat storage tank
Figure PCTKR2014011379-appb-I000004
) Is further provided and is configured to heat the refrigerant with heat stored in the heat storage tank and to flow the refrigerant to the outdoor heat exchanger through the bypass pipe.
이와 같이 함으로써 압축기로부터 방열된 열을 이용하여 냉매를 가열할 수 있고어 제상 운전을 고효율로 할 수 있다. 이것에 의해 제상 운전시의 난방 능력의 저하를 저감 할 수 있고 제상 운전시 사용자의 쾌적함을 손상시키지 않는다.In this way, the refrigerant can be heated using heat radiated from the compressor, and the defrosting operation can be made highly efficient. Thereby, the fall of the heating capability at the time of defrosting operation can be reduced, and the comfort of a user is not impaired at the time of defrosting operation.
상기 축열조에서 유출된 냉매가 상기 압축기에 유입된 다음 상기 바이패스관을 통하여 상기 실외 열교환기로 흐르도록 구성되는 것이 바람직하다.The refrigerant flowing out of the heat storage tank is preferably configured to flow into the outdoor heat exchanger through the bypass pipe after entering the compressor.
이와 같이 함으로써 축열조에서 유출된 냉매가 압축기에서 한층 더 고온으로 되어 제상 시간을 단축시킬 수 있다.In this way, the refrigerant flowing out of the heat storage tank becomes higher in the compressor, and the defrosting time can be shortened.
이와 같이 함으로써 상부 열교환 요소와 중앙 열교환 요소와의 사이에 생기는 잔빙(殘氷)이나 하부 열교환 요소와 중앙 열교환 요소와의 사이에 생기는 잔빙을 확실하게 방지할 수 있다.By doing in this way, the residual ice which arises between an upper heat exchange element and a central heat exchange element, and the remaining ice which arises between a lower heat exchange element and a central heat exchange element can be reliably prevented.
상기와 같이 구성한 본 발명에 의하면 대형 실외 열교환기의 경우라도 제상 효과를 저하하지 않고 확실하게 서리 제거할 수 있다.According to the present invention configured as described above, even in the case of a large outdoor heat exchanger, it is possible to reliably remove frost without deteriorating the defrosting effect.
도 1은 제1 실시 형태에서의 공기조화기의 개요 구성도이다.1 is a schematic configuration diagram of an air conditioner according to a first embodiment.
도 2는 제1 실시 형태에서의 전열관 및 분배관 연결부의 개요 구성도이다.It is a schematic block diagram of the heat exchanger tube and distribution pipe connection part in 1st Embodiment.
도 3은 제1 실시 형태의 변형 예에서의 공기조화기의 개요 구성도이다.3 is a schematic configuration diagram of an air conditioner in a modification of the first embodiment.
도 4는 제2 실시 형태에서의 공기조화기의 개요 구성도이다.4 is a schematic configuration diagram of an air conditioner according to a second embodiment.
도 5는 제2 실시 형태에서의 제상 운전을 설명하는 도면이다.It is a figure explaining defrost operation in 2nd Embodiment.
도 6은 제2 실시 형태의 변형 예에서의 공기조화기의 개요 구성도이다.6 is a schematic configuration diagram of an air conditioner in a modification of the second embodiment.
도 7은 제2 실시 형태의 변형 예에서의 제상 운전을 설명하는 도면이다.It is a figure explaining defrost operation in the modification of 2nd Embodiment.
도 8은 제2 실시 형태의 변형 예에서의 바이패스관의 구성을 나타낸 개요 구성도이다.8 is a schematic configuration diagram illustrating a configuration of a bypass tube in a modification of the second embodiment.
도 9는 제2 실시 형태의 변형 예에서의 공기 조화기의 개략 구성도이다.9 is a schematic configuration diagram of an air conditioner in a modification of the second embodiment.
<제1 실시 형태><1st embodiment>
이하에 본 발명에 의한 공기조화기의 제1 실시 형태에 대하여 도면을 참조하고 설명한다. 또한, 제1 실시 형태에서 참조 부호는 도 1 내지 도 3에서만 사용하는 참조 부호이다.EMBODIMENT OF THE INVENTION Below, 1st Embodiment of the air conditioner which concerns on this invention is described, referring drawings. Incidentally, in the first embodiment, reference numerals are reference numerals used only in Figs.
본 실시 형태에 의한 공기조화기(100)는 도 1에 나타낸 바와 같이 실내 유닛(10)과 실외 유닛(20)과 상기 실내 유닛(10) 및 실외 유닛(20)에 냉매가 유통할 수 있도록 구성된 히트 펌프 사이클(200)을 구비한다.As shown in FIG. 1, the air conditioner 100 according to the present embodiment is configured to allow refrigerant to be distributed to the indoor unit 10 and the outdoor unit 20, and the indoor unit 10 and the outdoor unit 20. A heat pump cycle 200.
실내 유닛(10)에는 서로 병렬 연결된 감압 수단(11A, 11B)과 상기 감압 수단(11A, 11B)에 각각 직렬로 연결된 실내 열교환기(12A, 12B)와 실내 송풍기(13A, 13B)가 설치된다.The indoor unit 10 is provided with pressure reducing means 11A and 11B connected in parallel with each other, indoor heat exchangers 12A and 12B and indoor blowers 13A and 13B connected in series with the pressure reducing means 11A and 11B, respectively.
실외 유닛(20)에는 사방 밸브(21)와 어큐뮬레이터(22)와 압축기(23)와 실외 열교환기(24)와 분배기(25)와 팽창 밸브(26)와 실외 송풍기(27)가 설치된다.The outdoor unit 20 is provided with a four-way valve 21, an accumulator 22, a compressor 23, an outdoor heat exchanger 24, a distributor 25, an expansion valve 26, and an outdoor blower 27.
히트 펌프 사이클(200)은 감압 수단(11A, 11B), 실내 열교환기(12A, 12B), 사방 밸브(21), 실외 열교환기(24), 분배기(25), 팽창 밸브(26)를, 상기 순서로 연결된 메인 회로(201)와 어큐뮬레이터(22), 압축기(23)의 순서로 연결되고 사방 밸브(21)에 연결되는 압축 회로(202)로 구성된다.The heat pump cycle 200 includes the pressure reducing means 11A and 11B, the indoor heat exchangers 12A and 12B, the four-way valve 21, the outdoor heat exchanger 24, the distributor 25 and the expansion valve 26. The main circuit 201, the accumulator 22, and the compressor 23 are connected in order, and the compression circuit 202 is connected to the four-way valve 21 in order.
히트 펌프 사이클(200)은 사방 밸브(21)에서의 4개 포트의 개폐를 제어함에 따라 메인 회로(201)에서의 냉매 흐름을 반전시키고 냉방 운전과 난방 운전을 전환할 수 있게 구성되어 있다. 구체적으로 사방 밸브(21)는 냉방 운전을 할 경우에는 압축기(23)로부터 토출된 고온 가스 냉매를 실외 열교환기(24)에 도입하도록 하고 난방 운전을 할 경우에는 압축기(23)로부터 토출된 고온 가스 냉매를 실내 열교환기(12A 및 12B)에 도입하도록 구성되어 있다.The heat pump cycle 200 is configured to reverse the refrigerant flow in the main circuit 201 and to switch the cooling operation and the heating operation by controlling the opening and closing of the four ports in the four-way valve 21. Specifically, the four-way valve 21 introduces the hot gas refrigerant discharged from the compressor 23 into the outdoor heat exchanger 24 when the cooling operation is performed, and the hot gas discharged from the compressor 23 when the heating operation is performed. The refrigerant is configured to be introduced into the indoor heat exchangers 12A and 12B.
여기서 본 실시 형태에서는 도 1 및 도 2에 나타낸 바와 같이 실외 열교환기(24) 및 분배기(25) 간에 복수의 보조 분배기(251) 및 복수의 분배관(252)이 설치되어 있다.In this embodiment, as shown in FIGS. 1 and 2, a plurality of auxiliary distributors 251 and a plurality of distribution pipes 252 are provided between the outdoor heat exchanger 24 and the distributor 25.
보조 분배기(251)는 실외 열교환기(24) 근처에 배치됨과 동시에 해당 실외 열교환기(24)가 가지는 복수의 전열관(241)이 연결되어 있다. 도 1에는 3개의 보조 분배기(251)가 설치되고 각 보조 분배기(251)에 3개의 전열관(241)이 연결된 구성을 나타내고 있으나 보조 분배기(251)의 개수나 각 보조 분배기(251)에 연결되는 전열관(241)의 개수는 상기의 개수에 한정되는 것은 아니다.The auxiliary distributor 251 is disposed near the outdoor heat exchanger 24, and a plurality of heat transfer tubes 241 included in the outdoor heat exchanger 24 are connected. 1 shows a configuration in which three auxiliary distributors 251 are installed and three heat transfer tubes 241 are connected to each auxiliary distributor 251, but the number of auxiliary distributors 251 or the heat transfer tubes connected to each auxiliary distributor 251 is shown. The number of 241 is not limited to said number.
분배관(252)은 분배기(25)와 실외 열교환기(24)를 연결함과 동시에 분배기(25)로부터 실외 열교환기(24)로 흐르는 냉매를 분배하여 각 전열관(241)으로 공급한다. 보다 구체적으로 상기 분배관(252)은 일단이 분배기(25)로 연결되고 타단이 보조 분배기(251)로 연결됨과 동시에 상기 보조 분배기(251)를 통하여 전열관(241)으로 연결되어 있다.The distribution pipe 252 connects the distributor 25 and the outdoor heat exchanger 24, and simultaneously distributes the refrigerant flowing from the distributor 25 to the outdoor heat exchanger 24, and supplies the refrigerant to the heat transfer tubes 241. More specifically, one end of the distribution pipe 252 is connected to the distributor 25 and the other end of the distribution pipe 252 is connected to the heat transfer pipe 241 through the auxiliary distributor 251.
즉, 분배관(252) 및 전열관(241)은 이들 간에 개재하는 보조 분배기(251)를 통하여 연결되어 있다. That is, the distribution pipe 252 and the heat transfer pipe 241 are connected through the auxiliary distributor 251 interposed therebetween.
그리고, 본 실시 형태에서의 공기조화기(100)는 도 1 및 도 2에 나타낸 바와 같이 일단이 압축기(23)의 토출 측 배관(231)에 연결되고 도중에 분기됨과 동시에 복수의 타단이 분배관(252)과 전열관(241)과의 연결부 또는 그 근처에 연결되는 바이패스관(30)이 설치되어 있다. 본 실시 형태에서는 상술한 바와 같이 분배관(252)과 전열관(241)과의 사이(상기 연결부)에는 보조 분배기(251)가 개재되고 바이패스관(30)의 각 타단은 보조 분배기(251)에 연결되어 있다.1 and 2, one end of the air conditioner 100 according to the present embodiment is connected to the discharge side pipe 231 of the compressor 23 and branched along the way. The bypass tube 30 connected to or near the connection portion 252 with the heat transfer tube 241 is provided. In the present embodiment, as described above, an auxiliary distributor 251 is interposed between the distribution pipe 252 and the heat transfer pipe 241 (the connecting portion), and each other end of the bypass pipe 30 is connected to the auxiliary distributor 251. It is connected.
구체적으로 상기 바이패스관(30)은 압축기(23)의 토출 측 배관(231)에 연결된 주관(
Figure PCTKR2014011379-appb-I000005
; 31)과 주관(31)에 설치된 기점(P)으로부터 분기하는 복수의 지관(
Figure PCTKR2014011379-appb-I000006
; 32)을 가진다. 지관(32)의 개수는 보조 분배기(251)가 설치된 개수와 동수이고 본 실시 형태에서는 3개이다. 그리고 이들 지관(32)의 단부 즉, 바이패스관(30)의 각 타단은 각각 다른 보조 분배기(251)에 연결되도록 구성되어 있다.
Specifically, the bypass pipe 30 is a main pipe connected to the discharge side pipe 231 of the compressor 23 (
Figure PCTKR2014011379-appb-I000005
; 31) and a plurality of branch pipes branching from the starting point P installed in the main pipe 31 (
Figure PCTKR2014011379-appb-I000006
; 32). The number of the branch pipes 32 is equal to the number of the auxiliary distributors 251 provided and three in this embodiment. The ends of these branch pipes 32, that is, the other ends of the bypass pipe 30, are configured to be connected to different auxiliary distributors 251, respectively.
또한, 본 실시 형태에서는 바이패스관(30)에서의 일단으로부터 분기점(P)까지의 사이 즉 주관(31)상에 바이패스관(30)을 개폐하는 이방(
Figure PCTKR2014011379-appb-I000007
) 밸브(33)가 설치되어 있다. 상기 이방 밸브(33)는 서리 제거 시에 미 도시된 제어부로부터 신호를 받아 바이패스관(30)을 개방 상태로 하고 압축기(23)로부터 실외 열교환기(24)에 고온 가스 냉매가 흘러가도록 구성되어 있다. 이것에 의해 난방 운전을 계속하면서 실외 열교환기(24)의 서리를 제거할 수 있다.
In addition, in this embodiment, the anisotropy which opens and closes the bypass pipe 30 between the one end in the bypass pipe 30 to the branch point P, ie, on the main pipe 31,
Figure PCTKR2014011379-appb-I000007
) The valve 33 is provided. The anisotropic valve 33 is configured to open the bypass pipe 30 by receiving a signal from a controller (not shown) at the time of frost removal, and to allow a hot gas refrigerant to flow from the compressor 23 to the outdoor heat exchanger 24. have. Thereby, the frost of the outdoor heat exchanger 24 can be removed, continuing heating operation.
이와 같이 구성된 본 실시 형태에 의한 공기조화기(100)에 의하면 바이패스관(30)의 각 타단이 보조 분배기(251)로 연결되어 있으므로 분배관(252)의 유로 저항을 거의 받지 않으며 고온 가스 냉매를 전열관(241)에 공급할 수 있다. 이것에 의해 대형 실외 열교환기(24)의 경우라도 고온 가스 냉매 유량은 감소하지 않으며 제상 효과의 감소함이 없이 확실하게 실외 열교환기(24)의 서리를 제거할 수 있고 결과적으로 서리 제거 시에 고온 가스 냉매를 분배관에 흐르는 제상 시간을 종래보다 짧게 하면서 잔상도 방지할 수 있다.According to the air conditioner 100 according to the present embodiment configured as described above, since each other end of the bypass pipe 30 is connected to the auxiliary distributor 251, the flow resistance of the distribution pipe 252 is hardly received and the hot gas refrigerant Can be supplied to the heat transfer pipe 241. As a result, even in the case of the large outdoor heat exchanger 24, the flow rate of the hot gas refrigerant does not decrease, and it is possible to reliably remove the frost of the outdoor heat exchanger 24 without reducing the defrosting effect, and consequently, It is possible to prevent afterimages while reducing the defrosting time of the gas refrigerant flowing through the distribution pipe.
또 바이패스관(30)의 각 타단이 보조 분배기(251)에 연결되므로 바이패스관(30)의 지관(32) 개수를 줄일 수 있어 비용 삭감이나 경량화를 도모할 수 있다.In addition, since the other end of the bypass pipe 30 is connected to the auxiliary distributor 251, the number of branch pipes 32 of the bypass pipe 30 can be reduced, so that the cost can be reduced or the weight can be reduced.
또한 바이패스관(30)에서의 일단으로부터 분기점(P)까지의 사이에 이방 밸브(33)가 설치되어 있으므로 상기 이방 밸브(33)에 의해 바이패스관(30)을 개방 상태로 하면 난방 운전을 하면서 제상 기능을 구현할 수 있다.Moreover, since the anisotropic valve 33 is provided between the end of the bypass pipe 30 to the branch point P, when the bypass pipe 30 is opened by the said anisotropic valve 33, heating operation will be performed. Defrost function can be implemented.
항상 바이패스관(30)의 각 타단을 보조 분배기(251)와 분배관(252)과의 사이의 보조 분배기(251) 근처에 연결하여도 동일한 효과를 얻을 수 있음은 자명하다.It is apparent that the same effect can be obtained even when the other end of the bypass pipe 30 is always connected near the auxiliary distributor 251 between the auxiliary distributor 251 and the distribution pipe 252.
<제1 실시 형태의 변형예><Modified example of the first embodiment>
또한 본 발명은 상기 제1 실시 형태에 한정되는 것은 아니다.In addition, this invention is not limited to the said 1st Embodiment.
예를 들면, 상기 실시 형태의 공기조화기(100)는 단일의 실외 열교환기(24)를 구비하는 것이었으나 도 3에 나타낸 바와 같이 복수의 실외 열교환기(24A, 24B)를 구비하도록 구성할 수 있다. 더욱 상세하게는 상기 공기조화기(100)는 각 실외 열교환기(24A, 24B)에 대응하여 분배기(25A, 25B), 보조 분배기(251A, 251B), 분배관(252A, 252B) 및 바이패스관(30A, 30B)이 설치되어 있다.For example, the air conditioner 100 of the above embodiment has a single outdoor heat exchanger 24, but may be configured to include a plurality of outdoor heat exchangers 24A and 24B as shown in FIG. have. More specifically, the air conditioner 100 corresponds to each of the outdoor heat exchangers 24A and 24B, and includes distributors 25A and 25B, auxiliary distributors 251A and 251B, distribution pipes 252A and 252B and bypass pipes. 30A and 30B are provided.
구체적으로 상기 공기조화기(100)는 제1 실외 열교환기(24A) 및 제2 실외 열교환기(24B)를 구비하고 이들 각 실외 열교환기(24A, 24B)에 대응하여 제1 분배기(25a) 및 제2 분배기(25b)와 제1 팽창 밸브(26A) 및 제2 팽창 밸브(26B)가 설치되어 있다.Specifically, the air conditioner 100 includes a first outdoor heat exchanger 24A and a second outdoor heat exchanger 24B, and corresponds to each of the outdoor heat exchangers 24A and 24B, and the first distributor 25a and The 2nd distributor 25b, the 1st expansion valve 26A, and the 2nd expansion valve 26B are provided.
더욱 상세하게는 도 3에 나타낸 바와 같이 제1 실외 열교환기(24A)와 제1 분배기(25a)와의 사이에는 제1 보조 분배기(251A) 및 복수의 제1 분배관(252A)이 설치되고 제2 실외 열교환기(24B)와 제2 분배기(25b)와의 사이에는 제2 보조 분배기(251B) 및 복수의 제2 분배관(252B)이 설치되어 있다.More specifically, as shown in FIG. 3, a first auxiliary distributor 251A and a plurality of first distribution pipes 252A are installed between the first outdoor heat exchanger 24A and the first distributor 25a, and the second second heat exchanger 24A is disposed between the first outdoor heat exchanger 24A and the first distributor 25a. A second auxiliary distributor 251B and a plurality of second distribution pipes 252B are provided between the outdoor heat exchanger 24B and the second distributor 25b.
또한, 이들 보조 분배기(251A, 251B) 및 분배관(252A, 252B)은 상기 실시 형태의 보조 분배기(251) 및 분배관(252)과 동일한 구성을 한다.In addition, these auxiliary distributors 251A and 251B and the distribution pipes 252A and 252B have the same structure as the auxiliary distributor 251 and the distribution pipe 252 of the said embodiment.
또 도 3에 나타낸 바와 같이 각 실외 열교환기(24A, 24B)에 대응하여 제1 바이패스관(30A) 및 제2 바이패스관(30B)이 설치되어 있다. 본 제1 바이패스관(30A)은 상기 실시 형태의 바이패스관(30)과 동일한 구성을 한다. 제2 바이패스관(30B)은 제1 바이패스관(30A)의 제1 주관(31A)에서 분기한 제2 주관(31B)과 제2 주관(31B)에 설치된 분기점(P2)에서 분기하는 복수의 지관(32B)을 가진다.3, the 1st bypass pipe 30A and the 2nd bypass pipe 30B are provided corresponding to each outdoor heat exchanger 24A, 24B. This 1st bypass pipe 30A has the same structure as the bypass pipe 30 of the said embodiment. The 2nd bypass pipe 30B branches into the 2nd main pipe 31B branched from the 1st main pipe 31A of the 1st bypass pipe 30A, and the branch point P2 provided in the 2nd main pipe 31B. It has a branch pipe 32B.
또한, 제1 주관(31A)에는 제1 이방 밸브(33A)가 설치되고 제2 주관(31B)에는 제2 이방 밸브(33B)가 설치되어 있다.Moreover, 33 A of 1st anisotropic valves are provided in 31 A of 1st main pipes, and the 2nd anisotropic valve 33B is provided in 2nd main pipes 31B.
상술한 구성으로 대형 실외 열교환기(24A, 24B)의 경우라도 제상 효과의 감소 없이 확실하게 서리를 제거할 수 있고 한쪽의 실외 열교환기(24A, 24B)에서 서리를 제거할 때 다른 쪽의 실외 열교환기(24B, 24A)를 증발기로서 기능시킬 수 있으므로 서리 제거할 때 난방 능력의 저하를 억제할 수 있다.With the above-described configuration, even in the case of the large outdoor heat exchangers 24A and 24B, it is possible to reliably remove frost without reducing the defrosting effect, and when the frost is removed from one outdoor heat exchanger 24A and 24B, the other outdoor heat exchanger is used. Since groups 24B and 24A can function as an evaporator, deterioration of heating capability can be suppressed when defrosting.
또한 바이패스관(30A, 30B)의 각 타단이 분배기(25A, 25B)와 팽창 밸브(26A, 26B)와의 사이에 연결된 종래 구성에서는 서리 제거에 13분 필요로 한 것에 비해 바이패스관(30A, 30B)의 각 타단이 보조 분배기(251A, 251B)에 연결된 상술의 구성에서는 서리 제거에 걸린 시간은 5분으로 종래보다 제상 시간을 짧게 할 수 있다.In addition, in the conventional configuration in which the other ends of the bypass pipes 30A and 30B are connected between the distributors 25A and 25B and the expansion valves 26A and 26B, the bypass pipes 30A and 30B require 13 minutes to defrost. In the above-described configuration in which the other end of 30B is connected to the auxiliary distributors 251A and 251B, the defrosting time is shorter than that of the prior art as the time taken to defrost is 5 minutes.
또 상기 실시 형태의 공기조화기는 복수의 보조 분배기를 구비하였으나 보조 분배기의 구비 없이 분배관의 각 타단이 전열관에 직접 연결될 수 있다. 이 경우에는 분배관과 전열관의 연결부 또는 그 근처에 바이패스관의 각 타단이 연결되는 것이 바람직하다.In addition, although the air conditioner of the above embodiment has a plurality of auxiliary distributors, each other end of the distribution pipe may be directly connected to the heat transfer pipe without the auxiliary distributor. In this case, it is preferable that each other end of the bypass pipe is connected to or near the connection portion between the distribution pipe and the heat transfer pipe.
단 상술에서의 근처란 연결부에서 상류측 또는 하류측(즉, 연결부로부터 열교환기측 또는 그 반대측)에 예를 들면 분배관 전체 길이의 1/10 미만 떨어진 길이의 위치를 말한다.However, the vicinity in the above description refers to a position of, for example, less than 1/10 of the total length of the distribution pipe on the upstream side or the downstream side (ie, the heat exchanger side or vice versa) from the connection portion.
<제2 실시 형태><2nd embodiment>
이하에 본 발명에 의한 공기조화기의 제2 실시 형태에 대하여 도면을 참조해서 설명한다. 또한, 제2 실시 형태에서의 참조 부호는 도 4~도 9에서만 사용하는 참조 부호이다.EMBODIMENT OF THE INVENTION Below, 2nd Embodiment of the air conditioner which concerns on this invention is described with reference to drawings. Note that reference numerals in the second embodiment are reference numerals used only in FIGS. 4 to 9.
본 실시 형태에 의한 공기조화기(100)는 도 4에 나타낸 바와 같이 실내 유닛(10)과 실외 유닛(20)과 상기 실내 유닛(10) 및 실외 유닛(20)에 고온 가스 냉매를 유통할 수 있도록 구성된 히트 펌프 사이클(200)을 구비한다.As shown in FIG. 4, the air conditioner 100 according to the present embodiment can distribute hot gas refrigerant to the indoor unit 10, the outdoor unit 20, and the indoor unit 10 and the outdoor unit 20. And a heat pump cycle 200 configured to.
실내 유닛(10)에는 서로 병렬 연결된 감압 수단(11A, 11B)과 상기 감압 수단(11A, 11B)에 각각 직렬로 연결된 실내 열교환기(12A, 12B)와 실내 송풍기(13A, 13B)가 설치되어 있다.The indoor unit 10 is provided with pressure reducing means 11A and 11B connected in parallel to each other, indoor heat exchangers 12A and 12B and indoor blowers 13A and 13B connected in series with the pressure reducing means 11A and 11B, respectively. .
실외 유닛(20)에는 사방 밸브(21)와 어큐뮬레이터(22)와 압축기(23)와 실외 열교환기(24)와 분배기(25)와 팽창 밸브(26)와 실외 송풍기(27)가 설치되어 있다.The outdoor unit 20 is provided with a four-way valve 21, an accumulator 22, a compressor 23, an outdoor heat exchanger 24, a distributor 25, an expansion valve 26, and an outdoor blower 27.
실외 열교환기(24)는 복수의 열교환 요소를 가지고 있으며 본 실시 형태에서는 도 4에 나타낸 바와 같이 상하 방향에 따라 설치된 상부 열교환 요소(241) 및 하부 열교환 요소(242)를 가진다.The outdoor heat exchanger 24 has a plurality of heat exchange elements and in this embodiment has an upper heat exchange element 241 and a lower heat exchange element 242 installed along the up and down direction as shown in FIG. 4.
이들 열교환 요소(241, 242)는 각각 분배관(251)을 통해 분배기(25)에 연결되고 각 열교환 요소(241, 242)에는 각각 미 도시된 온도 센서가 설치되어 있다.These heat exchange elements 241 and 242 are connected to the distributor 25 through distribution pipes 251, respectively, and each heat exchange element 241 and 242 is provided with a temperature sensor, not shown.
히트 펌프 사이클(200)은 감압 수단(11A, 11B), 실내 열교환기(12A, 12B), 사방 밸브(21), 실외 열교환기(24), 분배기(25), 팽창 밸브(26)를, 상기 순서로 연결된 메인 회로(201)와 어큐뮬레이터(22), 압축기(23)의 순서로 연결되고 사방 밸브(21)에 연결되는 압축 회로(202)로 구성된다.The heat pump cycle 200 includes the pressure reducing means 11A and 11B, the indoor heat exchangers 12A and 12B, the four-way valve 21, the outdoor heat exchanger 24, the distributor 25 and the expansion valve 26. The main circuit 201, the accumulator 22, and the compressor 23 are connected in order, and the compression circuit 202 is connected to the four-way valve 21 in order.
상기 히트 펌프 사이클(200)은 사방 밸브(21)에서의 4개 포트 개폐를 제어함으로써 메인 회로(201)에서의 고온 가스 냉매의 흐름을 반전시키고 냉방 운전과 난방 운전을 전환할 수 있도록 구성되어 있다. 구체적으로 사방 밸브(21)는 냉방 운전을 할 경우에는 압축기(23)에서 토출되는 고온 가스 냉매를 실외 열교환기(24)에 도입할 수 있도록 하고 난방 운전을 할 경우에는 압축기(23)에서 토출되는 고온 가스 냉매를 실내 열교환기(12A 및 12B)에 도입할 수 있도록 구성되어 있다.The heat pump cycle 200 is configured to invert the flow of the hot gas refrigerant in the main circuit 201 and to switch the cooling operation and the heating operation by controlling the opening and closing of four ports in the four-way valve 21. . Specifically, the four-way valve 21 allows the hot gas refrigerant discharged from the compressor 23 to be introduced into the outdoor heat exchanger 24 when the cooling operation is performed, and discharged from the compressor 23 when the heating operation is performed. It is comprised so that hot gas refrigerant may be introduce | transduced into indoor heat exchanger 12A and 12B.
여기서 본 실시 형태의 공기조화기(100)에는 일단이 압축기(23) 토출 측 배관(231)에 연결되고 도중에 분기하면서 복수의 타단이 분배관(251)에 연결되는 바이패스관(30)이 설치되어 있다. 구체적으로 상기 바이패스관(30)은 압축기(23) 토출 측 배관(231)에 연결된 주관(31)과 주관(31)으로부터 분기하여 각각 분배관(251)에 연결되는 복수의 지관인 제1 지관(321) 및 제2 지관(322)을 가진다.Here, the air conditioner 100 of the present embodiment is provided with a bypass pipe 30 having one end connected to the discharge side pipe 231 and branching in the middle while the other end is connected to the distribution pipe 251. It is. Specifically, the bypass pipe 30 is a first branch pipe which is a plurality of branch pipes branched from the main pipe 31 and the main pipe 31 connected to the discharge side pipe 231 of the compressor 23 and connected to the distribution pipe 251, respectively. 321 and the second branch pipe 322.
상술한 바이패스관(30)은 제1 지관(321)에 제1 이방 밸브(331)가 설치되고 제2 지관(322)에 제2 이방 밸브(332)가 설치되고 이들 이방 밸브(331, 332)가 개방 상태가 되면 대응하는 지관(321, 322)에 고온 가스 냉매가 흐르도록 구성되어 있다. 상기 고온 가스 냉매는 각 지관(321, 322)이 연결되는 분배관(251)을 거쳐 각 열교환 요소(241, 242)에 공급되고 이것에 의해 해당 각 열교환 요소(241, 242)의 서리가 제거된다.The bypass pipe 30 described above is provided with a first anisotropic valve 331 in the first branch pipe 321 and a second anisotropic valve 332 in the second branch pipe 322, and these anisotropic valves 331, 332. Is opened, the hot gas refrigerant flows through the corresponding branch pipes 321 and 322. The hot gas refrigerant is supplied to each of the heat exchange elements 241 and 242 via a distribution pipe 251 to which the branch pipes 321 and 322 are connected, thereby defrosting the respective heat exchange elements 241 and 242. .
그리고 본 실시 형태에서의 공기조화기(100)는 각 열교환 요소(241, 242)를 개별적으로 서리 제거하고 서리가 제거된 열교환 요소(241, 242)를 상부 열교환 요소(241) 및 하부 열교환 요소(242)로 전환하는, 미 도시된 제상 제어부가 설치되어 있다.The air conditioner 100 according to the present embodiment individually defrosts the heat exchange elements 241 and 242 and replaces the defrosted heat exchange elements 241 and 242 with the upper heat exchange element 241 and the lower heat exchange element ( A defrosting control unit, not shown, is provided that switches to 242.
구체적으로 상기 제상 제어부는 상기 각 이방 밸브(331, 332)를 개방 상태 및 폐쇄 상태로 전환함으로써 서리가 제거되는 열교환 요소(241, 242)를 전환할 수 있도록 구성되고 본 실시 형태에서는 도 5에 나타낸 바와 같이 일방의 열교환 요소(241, 242)의 서리 제거를 시작하여 종료하기 전에, 타방의 열교환 요소(242, 241)를 시작할 수 있도록 구성되어 있다.Specifically, the defrost control unit is configured to switch the heat exchange elements 241 and 242 from which frost is removed by switching the respective anisotropic valves 331 and 332 to the open state and the closed state, and in this embodiment, shown in FIG. 5. As described above, the other heat exchange elements 242 and 241 can be started before the defrost of one heat exchange element 241 or 242 starts and ends.
더욱 상세하게는 상기 제상 제어부는 상부 열교환 요소(241)에 설치된 미 도시된 온도 센서로부터 신호를 받아 상기 온도 센서값이 소정의 제1 하한치 이하가 되면 즉 상부 열교환 요소(241)의 온도가 소정의 제1 하한 온도 이하가 되면 상부 열교환 요소(241)의 서리 제거를 시작하도록 구성되어 있다. 또, 상기 제상 제어부는 상기 온도 센서값이 소정의 제2 하한치 이상이 되면 즉 상부 열교환 요소(241)의 온도가 소정의 제2 하한 온도 이상이 되면 하부 열교환 요소(242)의 서리 제거를 시작하도록 구성되어 있다.More specifically, the defrost control unit receives a signal from a non-illustrated temperature sensor installed in the upper heat exchange element 241 when the temperature sensor value is lower than or equal to a predetermined first lower limit, that is, the temperature of the upper heat exchange element 241 is predetermined When the temperature falls below the first lower limit temperature, the defrosting of the upper heat exchange element 241 is started. In addition, the defrost control unit starts defrosting of the lower heat exchange element 242 when the temperature sensor value is greater than or equal to a predetermined second lower limit value, that is, when the temperature of the upper heat exchange element 241 becomes greater than or equal to the predetermined second lower limit temperature. Consists of.
또한, 본 실시 형태에서 제1 하한 온도는 제2 하한 온도보다 낮은 값으로 설정되어 있다.In addition, in this embodiment, the 1st lower limit temperature is set to the value lower than 2nd lower limit temperature.
구체적으로 상기 제상 제어부는 상부 열교환 요소(241)의 온도가 -5도 이하가 되면 제1 이방 밸브(331)를 개방 상태로 하여 상부 열교환 요소(241)의 서리 제거를 시작하고 상부 열교환 요소(241)의 온도가 0도 이상이 되면 제2 이방 밸브(332)를 개방 상태로 하여 하부 열교환 요소(242)의 서리 제거를 시작하도록 설정되어 있다.Specifically, when the temperature of the upper heat exchange element 241 is less than or equal to -5 degrees, the defrost control unit starts the defrost of the upper heat exchange element 241 by opening the first anisotropic valve 331 to open the upper heat exchange element 241. Is set to start the defrost of the lower heat exchange element 242 with the second anisotropic valve 332 open.
또 본 제상 제어부는 각 열교환 요소(241, 242)에 설치된 미 도시된 온도 센서의 값이 각각 소정 상한치 이상이 되면 즉, 각 열교환 요소(241, 242)의 온도가 각각 소정 상한 온도 이상이 되면 열교환 요소(241, 242)의 서리 제거를 종료하도록 구성되어 있다. 구체적으로 본 제상 제어부는 각 열교환 요소(241, 242)의 온도가 각각 2도 이상이 되면 각 이방 밸브(331, 332)를 폐쇄 상태로 하여 각 열교환 요소(241, 242)의 서리 제거를 종료하도록 설정되어 있다.In addition, the defrosting control unit performs heat exchange when the value of the temperature sensor, which is not illustrated in each of the heat exchange elements 241 and 242, is higher than or equal to a predetermined upper limit, that is, when the temperature of each heat exchange element 241 and 242 becomes higher than or equal to the predetermined upper limit. The defrosting of the elements 241, 242 is configured to end. Specifically, when the temperature of each heat exchange element (241, 242) is at least 2 degrees, the defrost control unit is to close each anisotropic valve (331, 332) to terminate the defrost of each heat exchange element (241, 242). It is set.
또한, 각 열교환 요소(241, 242)의 상한 온도는 서로 동일한 값으로 설정할 필요 없이 자유롭게 변경할 수 있다.In addition, the upper limit temperature of each heat exchange element 241 and 242 can be changed freely, without having to set to the same value mutually.
상술한 설정으로 제상 제어부는 도 5에 나타낸 바와 같이 상부 열교환 요소(241)의 서리 제거를 시작하여 종료하기 전에 하부 열교환 요소(242)의 서리 제거를 시작하게 되고 본 실시 형태에서 상기 제상 제어부는 각 열교환 요소(241, 242)를 각각 약 7분간 서리 제거함과 동시에 상부 열교환 요소(241) 및 하부 열교환 요소(242)를 약 2분간 동시에 서리 제거한다.With the above-described setting, the defrosting control unit starts defrosting of the lower heat exchange element 242 before starting and ending defrosting of the upper heat exchange element 241 as shown in FIG. 5. The heat exchange elements 241 and 242 are each defrosted for about 7 minutes while the top heat exchange element 241 and the bottom heat exchange element 242 are simultaneously defrosted for about 2 minutes.
또한, 상술한 하한 온도 및 상한 온도를 변경함으로써 각 열교환 요소(241, 242)의 서리 제거 시간을 자유롭게 변경할 수 있다.In addition, the defrost time of each heat exchange element 241,242 can be changed freely by changing the lower limit temperature and upper limit temperature mentioned above.
여기서 각 열교환 요소(241, 242)를 각각 서리 제거하는 제상 시간은 난방 운전 시간과 제상 시간의 합계에 대해 난방 운전 시간이 차지하는 비율에 따라 산출되고 본 실시 형태에서는 난방 운전 시간이 난방 운전 시간과 제상 시간의 합계의 80% 이상이 되도록 산출된다. 다만, 상술한 것처럼 산출된 제상 시간(본 실시 형태에서는 7분) 이내에 서리가 녹는 경우에는 각 온도 센서값이 상승하므로 이 경우에는 제상 시간 이내에 서리 제거가 종료하게 된다.Here, the defrost time for defrosting the heat exchange elements 241 and 242 respectively is calculated according to the ratio of the heating operation time to the sum of the heating operation time and the defrost time, and in this embodiment, the heating operation time is the heating operation time and the defrost. It is calculated to be 80% or more of the sum of time. However, when the frost melts within the defrost time (7 minutes in the present embodiment) calculated as described above, each temperature sensor value rises, so in this case the defrost is finished within the defrost time.
또 상술한 각 열교환 요소(241, 242)를 각각 서리 제거하는 제상 시간(본 실시 형태에서는 7분)에는 상부 열교환 요소(241) 및 하부 열교환 요소(242)를 동시에 서리 제거하는 시간(본 실시 형태에서는 2분)이 포함되도록 할 수 있고 포함되지 않도록 할 수도 있다.Moreover, the defrost time (7 minutes in this embodiment) which defrosts each heat exchange element 241 and 242 mentioned above, the time which simultaneously defrosts the upper heat exchange element 241 and the lower heat exchange element 242 (this embodiment). 2 minutes) may or may not be included.
이와 같이 구성된 본 실시 형태의 공기조화기(100)에 의하면 제상 제어부가 상부 열교환 요소(241)의 서리 제거를 시작하여 종료하기 전에 하부 열교환 요소(242)의 서리 제거를 시작하므로 처음으로 서리 제거되는 상부 열교환 요소(241)에서 생긴 물이 하부 열교환 요소(242)에서 동결하는 것을 방지할 수 있고 공기조화기(100)의 난방 능력 저하를 방지할 수 있다.According to the air conditioner 100 of the present embodiment configured as described above, the defrost control unit starts defrosting of the lower heat exchange element 242 before starting and ending defrost of the upper heat exchange element 241. Water generated in the upper heat exchange element 241 may be prevented from freezing in the lower heat exchange element 242 and may prevent a decrease in the heating capability of the air conditioner 100.
또 일방의 열교환 요소(241, 242)를 서리 제거하면서 타방의 열교환 요소(242, 241)를 증발기로서 움직이게 함에 따라 난방 운전을 계속하면서 각 열교환 요소(241, 242)를 확실하게 서리 제거할 수 있다.In addition, by moving the other heat exchange element 242, 241 as an evaporator while defrosting one heat exchange element 241, 242, each heat exchange element 241, 242 can be surely defrosted while continuing heating operation. .
또한 열교환 요소(241, 242)가 상하 방향에 따라 설치되고 제상 제어부가 서리 제거되는 열교환 요소(241, 242)를 위쪽의 상부 열교환 요소(241)로부터 아래쪽의 하부 열교환 요소(242)를 향해 차례로 전환되므로 상부 열교환 요소(241)를 서리 제거함에 따라 생긴 물이 하부 열교환 요소(242)에서 동결하는 것을 확실하게 방지할 수 있다.In addition, the heat exchange elements 241 and 242 are installed in the up and down direction and the defrosting control is defrosted. The heat exchange elements 241 and 242 are sequentially switched from the upper upper heat exchange element 241 to the lower lower heat exchange element 242. Therefore, it is possible to reliably prevent the water generated by defrosting the upper heat exchange element 241 from freezing in the lower heat exchange element 242.
<제2 실시 형태의 변형예><Modified example of the second embodiment>
또한 본 발명은 상기 제2 실시 형태에 한정되는 것은 아니다.In addition, this invention is not limited to the said 2nd Embodiment.
예를 들면 상기 실시 형태의 공기조화기(100)는 실외 열교환기(24)가 상부 열교환 요소(241) 및 하부 열교환 요소(242)를 가지지만 열교환 요소의 개수는 한정되지 않고 예를 들면 도 6의 상단에 나타낸 바와 같이 상부 열교환 요소(241), 하부 열교환 요소(242) 및 중앙 열교환 요소(243)를 가질 수 있다.For example, in the air conditioner 100 of the above embodiment, the outdoor heat exchanger 24 has an upper heat exchange element 241 and a lower heat exchange element 242, but the number of heat exchange elements is not limited and is illustrated, for example, in FIG. 6. It may have an upper heat exchange element 241, a lower heat exchange element 242, and a central heat exchange element 243 as shown at the top of FIG.
더욱 상세하게는 상기 실외 열교환기(24)는 중앙 열교환 요소(243)의 용적이 상부 열교환 요소(241) 및 하부 열교환 요소(242)의 용적보다 작도록 구성되어 있다.More specifically, the outdoor heat exchanger 24 is configured such that the volume of the central heat exchange element 243 is smaller than the volume of the upper heat exchange element 241 and the lower heat exchange element 242.
구체적으로 이들 각 열교환 요소(241, 242, 243)는 각각 분배관(251)을 통해 분배기(25)에 연결되고 상기 분배관(251)에는 바이패스관(30)의 주관(31)으로부터 분기하는 복수의 지관인 제1 지관(321), 제2 지관(322) 및 제3 지관(323)이 연결되어 있다. 또, 이들의 각 지관(321, 322, 323)에는 각각 제1 이방 밸브(331), 제2 이방 밸브(332) 및 제3 이방 밸브(333)가 설치되어 있다.Specifically, each of these heat exchange elements 241, 242, 243 is connected to the distributor 25 via a distribution pipe 251, respectively, which branches from the main pipe 31 of the bypass pipe 30 to the distribution pipe 251. The first branch pipe 321, the second branch pipe 322, and the third branch pipe 323 which are a plurality of branch pipes are connected. Each of these branch pipes 321, 322, and 323 is provided with a first anisotropic valve 331, a second anisotropic valve 332, and a third anisotropic valve 333, respectively.
그리고 미 도시된 제상 제어부가 상기 각 이방 밸브(331, 332, 333)를 개방 상태 및 폐쇄 상태로 전환함에 따라 서리 제거되는 열교환 요소(241, 242, 243)를 전환하도록 구성되어 있다. 더욱 상세하게는 본 제상 제어부는 도 6의 하단에 나타낸 바와 같이 초기에 상부 열교환 요소(241)의 서리 제거를 시작하여 해당 상부 열교환 요소(241)의 서리 제거가 종료하기 전에 중앙 열교환 요소(243)의 서리 제거를 시작하고 해당 중앙 열교환 요소(243)의 서리 제거가 종료하기 전에 하부 열교환 요소(242)의 서리 제거를 시작하도록 구성되어 있다.The defrosting control unit, which is not shown, is configured to switch the heat exchange elements 241, 242 and 243 which are defrosted as the respective anisotropic valves 331, 332 and 333 are switched to the open state and the closed state. More specifically, the defrost control unit initially begins to defrost the upper heat exchange element 241 as shown in the lower part of FIG. 6 and before the defrost of the upper heat exchange element 241 ends, the central heat exchange element 243. The defrost of the lower heat exchange element 242 before the defrost of the corresponding central heat exchange element 243 ends.
또한, 제상 제어부가 각 열교환 요소(241, 242, 243)의 서리 제거를 시작 및 종료하는 타이밍은 상기 실시 형태와 같이 각 열교환 요소(241, 242, 243)에 설치된 미 도시된 온도 센서값에 의해 제어된다.Incidentally, the timing at which the defrost control unit starts and ends the defrosting of each heat exchange element 241, 242, 243 is based on the unshown temperature sensor values installed in each heat exchange element 241, 242, 243 as in the above embodiment. Controlled.
상술한 구성에 의하면 중앙 열교환 요소(243) 용적이 상부 열교환 요소(241) 및 하부 열교환 요소(242) 용적보다 작아서 중앙 열교환 요소(243)가 고온으로 되기 쉽고 상부 열교환 요소(241)의 서리 제거로 생긴 물이 중앙 열교환 요소(243)에서 동결하는 것을 보다 확실하게 방지할 수 있다.According to the above-described configuration, the volume of the central heat exchange element 243 is smaller than the volume of the upper heat exchange element 241 and the lower heat exchange element 242 so that the central heat exchange element 243 becomes hot and defrost of the upper heat exchange element 241. The generated water can be more reliably prevented from freezing in the central heat exchange element 243.
또 중앙 열교환 요소(243)의 용적이 작아서 중앙 열교환 요소(243)의 서리 제거로 생긴 물량이 감소하고 이것에 의해 하부 열교환 요소(242)로 흐르는 물량이 적게 됨으로써 하부 열교환 요소(242)의 제상 시간을 짧게 할 수 있다.In addition, the volume of the central heat exchange element 243 is reduced, so that the amount of water generated by the defrost of the central heat exchange element 243 is reduced, thereby reducing the amount of water flowing into the lower heat exchange element 242, so that the defrost time of the lower heat exchange element 242 is reduced. Can be shortened.
또한, 중앙 열교환 요소(243)의 용적이 작아서 서리 제거 중에 증발기의 능력을 확보할 수 있고 실내 송풍 온도가 저하하는 것을 방지함으로써 연속 난방에 의한 불쾌감을 덜어 줄 수 있다.In addition, the volume of the central heat exchange element 243 is small to ensure the capacity of the evaporator during defrosting and to prevent the indoor blowing temperature from lowering, thereby reducing the discomfort caused by continuous heating.
도 7에 도시된 바와 같이 상부 열교환 요소(241), 중앙 열교환 요소(243) 및 하부 열교환 요소(242)를 가지는 구성에서 제상 제어부는 상부 열교환 요소(241)와 중앙 열교환 요소(243)의 서리 제거를 동시에 시작하게 하고 중앙 열교환 요소(242)와 하부 열교환 요소(243)을 동시에 종료하도록 구성할 수도 있다.In the configuration having the upper heat exchange element 241, the central heat exchange element 243 and the lower heat exchange element 242 as shown in FIG. 7, the defrost control unit defrosts the upper heat exchange element 241 and the central heat exchange element 243. May be simultaneously started and the central heat exchange element 242 and the bottom heat exchange element 243 may be terminated simultaneously.
즉 본 제상 제어부는 상부 열교환 요소(241)와 중앙 열교환 요소(243)의 서리 제거를 동시에 시작하고 중앙 열교환 요소(243)의 서리 제거는 계속하여 서리 제거되는 열교환 요소를 상부 열교환 요소(241)에서 하부 열교환 요소(242)로 전환하여 중앙 열교환 요소(243)와 하부 열교환 요소(242)의 서리 제거를 동시에 종료하도록 구성되어 있다.In other words, the defrost control unit starts the defrost of the upper heat exchange element 241 and the central heat exchange element 243 at the same time, the defrost of the central heat exchange element 243 continues to defrost the heat exchange element in the upper heat exchange element 241 Switching to the bottom heat exchange element 242 is configured to end defrost of the central heat exchange element 243 and the bottom heat exchange element 242 simultaneously.
본 구성으로 상부 열교환 요소(241)의 서리 제거로 생기는 물이 중앙 열교환 요소(243)에서 동결하는 것을 보다 확실하게 방지할 수 있고 난방 운전을 계속하면서 각 열교환 요소(241, 242, 243)를 보다 확실하게 서리 제거할 수 있다.This configuration can more reliably prevent freezing of the water generated by the defrosting of the upper heat exchange element 241 at the central heat exchange element 243, and the respective heat exchange elements 241, 242, 243 can be viewed while continuing the heating operation. You can certainly defrost it.
상술한 제어를 구현하기 위한 구체적인 구성으로서는 도 8에 나타낸 구성을 들 수 있다.As a specific structure for implementing the above-mentioned control, the structure shown in FIG. 8 is mentioned.
즉 여기서 공기조화기(100)는 분배관(251)과 각 열교환 요소(241, 242, 243)의 전열관(24a~c)과의 사이에 개재하는 보조 분배기(25a~c)를 한층 더 구비하고 본 보조 분배기(25a~c)에 주관(31)으로부터 분기하는 제1 지관(321) 및 제2 지관(322)이 연결된다.In other words, the air conditioner 100 further includes an auxiliary distributor 25a-c interposed between the distribution tube 251 and the heat transfer tubes 24a-c of each heat exchange element 241, 242, 243. The first branch pipe 321 and the second branch pipe 322 branching from the main pipe 31 are connected to the auxiliary distributors 25a to c.
보다 구체적으로 제1 지관(321)은 도중에 한층 더 2개로 분기하여 일방이 상부 열교환 요소(241)에 대응하여 설치된 보조 분배기(25a)에 연결되고 타방이 중앙 열교환 요소(243)에 대응하여 설치된 보조 분배기(25c)에 연결된다.More specifically, the first branch pipe 321 branched into two further pieces along the way, one of which is connected to the auxiliary distributor 25a installed corresponding to the upper heat exchange element 241, and the other of which is installed to correspond to the central heat exchange element 243. Is connected to the distributor 25c.
또 제2 지관(322)은 도중에 한층 더 2개로 분기하여 일방이 하부 열교환 요소(242)에 대응하여 설치된 보조 분배기(25b)에 연결되고 타방이 중앙 열교환 요소(243)에 대응하여 설치된 보조 분배기(25c)에 연결된다.In addition, the second branch pipe 322 is further divided into two in the middle, and one side is connected to the auxiliary distributor 25b provided in correspondence with the lower heat exchange element 242, and the other distributor is installed in correspondence with the central heat exchange element 243 ( 25c).
그리고 제1 지관(321) 및 제2 지관(322)은 분기한 뒤에 다시 합류하여 보조 분배기(25c)에 연결되고 본 합류점(X)과 각 지관(321, 322)에 설치된 분기점(P1, P2)과의 사이에 각각 역지(
Figure PCTKR2014011379-appb-I000008
) 밸브(V1, V2)가 설치되어 있다.
The first branch pipes 321 and the second branch pipes 322 branch off and join again to be connected to the auxiliary distributor 25c, and branch points P1 and P2 installed at the confluence point X and the branch pipes 321 and 322. Between each
Figure PCTKR2014011379-appb-I000008
) Valves V1 and V2 are provided.
상술한 구성으로 고온 가스 냉매를 제1 지관(321)에서 상부 열교환 요소(241) 및 중앙 열교환 요소(243)에 동시에 공급할 수 있고 또 고온 가스 냉매를 제2 지관(322)에서 하부 열교환 요소(242) 및 중앙 열교환 요소(243)에 동시에 공급할 수 있다.With the above-described configuration, the hot gas refrigerant can be simultaneously supplied from the first branch pipe 321 to the upper heat exchange element 241 and the central heat exchange element 243, and the hot gas refrigerant can be supplied from the second branch pipe 322 to the lower heat exchange element 242. ) And the central heat exchange element 243 can be supplied simultaneously.
또 상기 실시 형태에서는 제상 제어부가 온도 센서값에 의해 각 열교환 요소의 서리 제거를 시작 및 종료하고 있었으나 미 도시된 타이머 등의 값에 의해 각 열교환 요소를 소정 시간에 서리 제거하도록 구성함과 동시에 각 열교환 요소의 제상 시간을 소정 시간에 중복하도록 구성할 수도 있다.In the above embodiment, the defrosting control unit starts and ends defrosting of each heat exchange element by the temperature sensor value, but is configured to defrost each heat exchange element at a predetermined time by a value such as a timer, not shown. The defrost time of the element may be configured to overlap at a predetermined time.
통상적으로 제1 지관(321) 및 제2 지관(322)을 보조 분배기(25a, 25b, 25c)와 분배관(251)과의 사이의 보조 분배기(25a, 25b, 25c) 근처에 연결해도 동일한 효과를 얻을 수 있다는 것은 자명한 사실이다.Typically, the same effect can be obtained by connecting the first branch pipe 321 and the second branch pipe 322 near the auxiliary distributors 25a, 25b, and 25c between the auxiliary distributors 25a, 25b, and 25c and the distribution pipe 251. It is obvious that you can get it.
또한 공기 조화기(100)는 도 9에 나타낸 바와 같이 압축기(23)를 축열하는 축열조(40)를 한층 더 구비하고 상기 축열조(40)에 축열된 열에 의해 가열된 냉매가 바이패스관(30)을 통하여 실외 열교환기(24)로 흐르도록 구성될 수 있다.In addition, the air conditioner 100 further includes a heat storage tank 40 for accumulating the compressor 23, and the refrigerant heated by the heat stored in the heat storage tank 40 is bypass pipe 30. It may be configured to flow through the outdoor heat exchanger (24).
구체적으로 상기 축열조(40)는 압축기(23) 주위에 설치되어 있고 압축기(23)에서 방열되는 열을 압축기(23)와의 접촉면을 통해 축열하는 것으로써 예를 들면 액체 등의 축열재와 내부로 냉매가 흐름과 동시에 상기 냉매에 축열된 열을 공급하는 축열 열교환기(41)와 축열조의 온도(이하, 축열 온도라고도 한다)를 검출하는 축열 온도 센서(42)를 가진다.Specifically, the heat storage tank 40 is installed around the compressor 23 and heats the heat radiated from the compressor 23 through a contact surface with the compressor 23, for example, a heat storage material such as a liquid and a refrigerant therein. A heat storage heat exchanger 41 for supplying heat stored in the refrigerant at the same time as the temporary flow and a heat storage temperature sensor 42 for detecting the temperature of the heat storage tank (hereinafter also referred to as heat storage temperature).
단, 축열조(40)는 반드시 압축기(23)와 접촉되어 있을 필요가 없고 압축기(23)의 근처에 설치될 수 있다.However, the heat storage tank 40 does not necessarily need to be in contact with the compressor 23 and may be installed near the compressor 23.
더욱 상세하게 상기 공기 조화기(100)는 축열조(40)에서 유출된 냉매가, 압축기(23)로 유입된 다음 바이패스관(30)을 통하여 각 실외열교환 요소(241, 242)로 흐르도록 구성되어 있고 여기에서는, 도 9에 나타낸 바와 같이 축열조(40)에서 냉매가 유출되는 유출측 배관(411)이, 실외 열교환기(24)와 사방 밸브(21)과의 사이에 접속된다. 단, 상기 유출측 배관(411)에는 역지 밸브(5)가 설치된다.In more detail, the air conditioner 100 is configured such that the refrigerant flowing out of the heat storage tank 40 flows into each outdoor heat exchange element 241 and 242 after flowing into the compressor 23 and then through the bypass pipe 30. As shown in FIG. 9, the outflow-side pipe 411 through which the refrigerant flows out of the heat storage tank 40 is connected between the outdoor heat exchanger 24 and the four-way valve 21. However, the check valve 5 is provided in the outflow side pipe 411.
또, 축열조(40)에 냉매가 유입되는 유입측 배관(412)은 실내 열교환기(12A, 12B)와 분배기(25) 사이로부터 분기있고 상기 유입측 배관(412)에는 도시하지 않는 제어부로부터의 신호를 받아서 개방 상태와 폐쇄 상태로 전환되는 제3 이방 밸브(413)가 설치된다.In addition, an inflow pipe 412 into which the refrigerant flows into the heat storage tank 40 is branched between the indoor heat exchangers 12A and 12B and the distributor 25 and a signal from a control unit (not shown) in the inflow pipe 412. The third anisotropic valve 413 which is switched to the open state and the closed state is installed.
이하, 도시하지 않는 제어부와 관련한 제어 내용에 대하여 설명한다.Hereinafter, the control contents associated with the control unit (not shown) will be described.
여기에서는 상기 제어부는 축열 온도 센서(42)로부터의 신호를 받음과 동시에, 축열 온도가 소정의 제1 온도보다 낮은 경우는 제3 이방 밸브(413)을 폐쇄 상태로 하고 축열 온도가 소정의 제2 온도보다 높은 경우는 제3 이방 밸브(413)을 개방 상태로 하고, 축열 온도가 제1 온도 이상이면서 제2 온도 이하인 경우는 제3 이방 밸브(413)의 개폐 상태를 유지하도록 구성된다.Here, the control unit receives a signal from the heat storage temperature sensor 42, and when the heat storage temperature is lower than the first predetermined temperature, the third anisotropic valve 413 is closed and the heat storage temperature is a second predetermined temperature. When the temperature is higher than the temperature, the third anisotropic valve 413 is opened, and when the heat storage temperature is higher than or equal to the first temperature and lower than or equal to the second temperature, the third anisotropic valve 413 is configured to maintain the open / close state.
즉, 축열 온도가 상승하는 경우는 제2 온도에 이를 때까지는 제3 이방 밸브(413)가 폐쇄 상태로 되어 있고 제2 온도에 이르면 제3 이방 밸브(413)가 개방 상태가 된다. 한편, 축열 온도가 저하되는 경우는 제1 온도에 이를 때까지 제3 이방 밸브(413)가 개방 상태에 있게 되고 제1 온도에 이르면 제3 이방 밸브(413)가 폐쇄 상태가 된다.That is, when the heat storage temperature rises, the third anisotropic valve 413 is closed until the second temperature is reached, and when the second temperature is reached, the third anisotropic valve 413 is opened. On the other hand, when the heat storage temperature is lowered, the third anisotropic valve 413 is in an open state until the first temperature is reached, and when the first temperature is reached, the third anisotropic valve 413 is in a closed state.
또, 상기 제어부는 바깥 공기의 온도(이하, 바깥 공기 온도라고도 한다)를 검출하는 도시하지 않는 바깥 공기 온도 센서로부터의 신호를 취득하고 바깥 공기 온도가 소정 온도 이하인 경우에 상부 열교환 요소(241)의 서리 제거 시에는 제3 이방 밸브(413)를 폐쇄 상태로 하고 하부 열교환 요소(242)의 서리 제거 시에 제3 이방 밸브(413)를 개방 상태로 하도록 구성된다.Further, the control unit acquires a signal from an outside air temperature sensor (not shown) that detects the temperature of the outside air (hereinafter also referred to as outside air temperature), and when the outside air temperature is below a predetermined temperature, The third anisotropic valve 413 is closed when defrosting and the third anisotropic valve 413 is opened when defrosting the lower heat exchange element 242.
상술한 구성에 의해 압축기(23)에서 방열된 열을 이용하여 냉매를 가열할 수 있고 제상 운전을 고효율로 할 수 있다. 이것에 의해 제상 운전시의 난방 능력의 저하를 저감 할 수 있고 제상 운전시에 있어서의 사용자의 쾌적함을 유지할 수 있다.By the above-described configuration, the refrigerant can be heated using heat radiated from the compressor 23, and the defrosting operation can be made highly efficient. Thereby, the fall of the heating capability at the time of defrosting operation can be reduced, and the comfort of a user at the time of defrosting operation can be maintained.
또, 축열조(40)의 열을 제상 운전의 후반부에 집중하여 사용할 수 있고 축열재의 용량과 축열조(40) 사이즈를 작게 함과 동시에 경비 삭감이나 실외 유닛(20)을 컴팩트하게 할 수 있다.In addition, the heat of the heat storage tank 40 can be concentrated and used in the latter half of the defrosting operation, and the capacity of the heat storage material and the heat storage tank 40 can be reduced, and the cost can be reduced and the outdoor unit 20 can be made compact.
또한, 축열조(40)에 의해 가열된 냉매가 압축기(23)로 유입된 다음 각 열교환 요소(241, 242)로 흐르므로 냉매를 보다 고온 상태로 할 수 있고 각 열교환 요소(241, 242)의 제상 시간을 짧게 할 수 있다.In addition, since the refrigerant heated by the heat storage tank 40 flows into the compressor 23 and then flows to each of the heat exchange elements 241 and 242, the refrigerant can be brought to a higher temperature and defrost of each heat exchange element 241, 242. You can shorten the time.
그밖에 본 발명은 상기 실시 형태에 한정되지 않으며 그 취지를 일탈하지 않는 범위에서 여러 가지로 변형할 수 있음은 말할 필요도 없다.In addition, needless to say, the present invention is not limited to the above embodiment and can be modified in various ways without departing from the spirit thereof.

Claims (20)

  1. 압축기, 실외 열교환기, 팽창 밸브 및 실내 열교환기가 연결되도록 마련되는 냉매회로;A refrigerant circuit provided to connect the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger;
    상기 실외 열교환기 및 상기 팽창 밸브 사이에 마련되는 분배기;A distributor provided between the outdoor heat exchanger and the expansion valve;
    일단이 상기 분배기에 연결되고 타단이 상기 실외 열교환기에 마련되는 복수의 전열관에 연결되도록 마련되는 복수의 분배관;A plurality of distribution tubes, one end of which is connected to the distributor and the other end of which is connected to a plurality of heat transfer tubes provided in the outdoor heat exchanger;
    일단이 상기 압축기에 연결되고 복수의 타단을 형성되도록 분기되는 바이패스관으로서, 상기 복수의 타단은 각각 상기 복수의 분배관과 상기 복수의 전열관 사이에 연결되도록 마련되는 바이패스관;을 포함하는 것을 특징으로 하는 공기조화기.And a bypass tube having one end connected to the compressor and branched to form a plurality of other ends, wherein the plurality of other ends are respectively connected to the plurality of distribution pipes and the plurality of heat transfer pipes. Air conditioner characterized by.
  2. 제 1항에 있어서,The method of claim 1,
    상기 복수의 전열관이 연결되는 보조 분배기를 더 포함하고,Further comprising an auxiliary distributor to which the plurality of heat pipes are connected,
    상기 분배관의 타단이 상기 보조 분배기를 통해 상기 복수의 전열관과 연결되고,The other end of the distribution pipe is connected to the plurality of heat transfer pipes through the auxiliary distributor,
    상기 바이패스관의 타단이 상기 보조 분배기에 연결되도록 마련되는 것을 특징으로 하는 공기조화기.And the other end of the bypass pipe is connected to the auxiliary distributor.
  3. 제 1항에 있어서,The method of claim 1,
    상기 실외 열교환기가 복수로 설치되고, 상기 복수의 열교환기와 대응되도록 상기 분배기, 상기 분배관 및 상기 바이패스관이 복수로 마련되는 것을 특징으로 하는 공기조화기.And a plurality of the outdoor heat exchangers, and a plurality of the distributors, the distribution pipes, and the bypass pipes to correspond to the plurality of heat exchangers.
  4. 제 1항에 있어서,The method of claim 1,
    상기 실외 열교환기는 상기 복수의 전열관이 연결되는 단위로 구분되는 복수의 열교환 요소를 포함하고,The outdoor heat exchanger includes a plurality of heat exchange elements divided into units to which the plurality of heat transfer tubes are connected,
    상기 공기조화기는 상기 열교환 요소에 발생되는 서리를 상기 열교환 요소 마다 개별적으로 제거하도록 마련되는 제상 제어부를 더 포함하고,The air conditioner further includes a defrost control unit provided to individually remove frost generated in the heat exchange element for each heat exchange element,
    상기 제상 제어부는 1개의 열교환 요소의 서리 제거를 시작하여 종료하기 전에 다른 열교환 요소의 서리 제거를 시작하는 것을 특징으로 하는 공기조화기.And the defrost control unit starts defrosting the other heat exchange element before starting and ending defrost of one heat exchange element.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 복수의 열교환 요소는 상하 방향으로 배치되도록 마련되고,The plurality of heat exchange elements are provided to be arranged in the vertical direction,
    상기 제상 제어부는,The defrost control unit,
    상측에 위치한 상기 열교환 요소에서 하측에 위치한 상기 열교환 요소를 향하여 차례로 서리가 제거되도록 마련되는 것을 특징으로 하는 공기조화기.And an frost is sequentially removed from the heat exchanging element located on the upper side toward the heat exchanging element located on the lower side.
  6. 제 4항에 있어서,The method of claim 4, wherein
    상기 실외 열교환기는 상부 열교환 요소, 중앙 열교환 요소 및 하부 열교환 요소를 포함하고,The outdoor heat exchanger comprises an upper heat exchange element, a central heat exchange element and a lower heat exchange element,
    상기 중앙 열교환 요소의 용적은,The volume of the central heat exchange element is
    상기 상부 열교환 요소 용적 및 상기 하부 열교환 요소 용적보다 작은 것을 특징으로 하는 공기조화기.And an air conditioner smaller than said upper heat exchange element volume and said lower heat exchange element volume.
  7. 제6항에 있어서,The method of claim 6,
    상기 제상 제어부는,The defrost control unit,
    상기 상부 열교환 요소와 상기 중앙 열교환 요소에서 동시에 서리가 제거되고, 상기 상부 열교환 요소의 제상이 완료되면 상기 하부 열교환 요소의 제상으로 전환되어 상기 중앙 열교환 요소와 상기 하부 열교환 요소에서 동시에 서리 제거되도록 마련되는 것을 특징으로 하는 공기조화기.Defrost is simultaneously removed from the upper heat exchange element and the central heat exchange element, and when the defrost of the upper heat exchange element is completed, the defrost of the lower heat exchange element is provided to be simultaneously defrosted from the central heat exchange element and the lower heat exchange element. Air conditioner, characterized in that.
  8. 제6항에 있어서,The method of claim 6,
    상기 제상 제어부는,The defrost control unit,
    상기 상부 열교환 요소 제상의 시작과 종료 사이에 상기 중앙 열교환 요소의 제상이 시작되고, 상기 하부 열교환 요소 제상의 시작과 종료 사이에 상기 중앙 열교환 요소의 제상이 종료되도록 마련되는 것을 특징으로 하는 공기조화기.Wherein the defrosting of the central heat exchange element begins between the start and the end of the upper heat exchange element defrost and the defrost of the central heat exchange element ends between the start and the end of the lower heat exchange element defrost. .
  9. 제1 항에 있어서The method of claim 1
    상기 압축기 열을 축열하는 축열조를 더 포함하고,A heat storage tank for accumulating the compressor heat;
    상기 축열조에 축열된 열에 의해 가열된 냉매를 상기 바이패스관을 통하여 상기 실외 열교환기로 유입시킬 수 있도록 마련되는 것을 특징으로 하는 공기 조화기.And a refrigerant heated by heat stored in the heat storage tank to flow into the outdoor heat exchanger through the bypass pipe.
  10. 제9항에 있어서,The method of claim 9,
    상기 축열조에서 토출된 냉매가 상기 압축기로 유입된 후 상기 바이패스관을 통하여 상기 실외 열교환기로 흐르도록 마련되는 것을 특징으로 하는 공기 조화기.And a refrigerant discharged from the heat storage tank flows into the outdoor heat exchanger through the bypass pipe after flowing into the compressor.
  11. 압축기, 서로 구획된 복수의 열교환 요소를 포함하는 실외 열교환기, 팽창 밸브 및 실내 열교환기가 연결되도록 마련되는 냉매회로;A refrigerant circuit provided to connect a compressor, an outdoor heat exchanger including a plurality of heat exchange elements partitioned from each other, an expansion valve, and an indoor heat exchanger;
    상기 실외 열교환기 및 상기 팽창 밸브 사이에 마련되는 분배기;A distributor provided between the outdoor heat exchanger and the expansion valve;
    일단이 상기 압축기에 연결되고 타단이 상기 분배기와 상기 실외 열교환기 사이에 연결되도록 마련되는 바이패스관;을 포함하고,And a bypass tube having one end connected to the compressor and the other end connected between the distributor and the outdoor heat exchanger.
    상기 복수의 열교환 요소가 상기 바이패스관에 각각 연결되어 시간차에 따라 개별적으로 서리 제거가 이루어지는 것을 특징으로 하는 공기조화기.And the plurality of heat exchange elements are connected to the bypass pipe, respectively, to defrost individually according to time difference.
  12. 제 11항에 있어서,The method of claim 11,
    상기 복수의 열교환 요소는 상기 실외 열교환기의 상하 방향으로 배치되고,The plurality of heat exchange elements are disposed in a vertical direction of the outdoor heat exchanger,
    상측에 위치한 상기 열교환 요소부터 제상이 시작되며 순차적으로 하측에 위치한 상기 열교환 요소의 제상이 진행되도록 마련되는 것을 특징으로 하는 공기조화기. Defrosting is started from the heat exchange element located on the upper side, and the air conditioner characterized in that the defrost of the heat exchange element located on the lower side proceeds sequentially.
  13. 제 12항에 있어서,The method of claim 12,
    상기 복수의 열교환 요소는 3개의 이상으로 구비되고,The plurality of heat exchange elements are provided with three or more,
    상기 열교환 요소의 사이에 배치된 상기 일 열교환 요소는 상기 실외 열교환기의 상하단부에 배치된 복수의 상기 타 열교환 요소보다 용적이 작은 것을 특징으로 하는 공기조화기.And the one heat exchanger element disposed between the heat exchanger elements has a smaller volume than the plurality of other heat exchanger elements disposed at upper and lower ends of the outdoor heat exchanger.
  14. 제 12항에 있어서,The method of claim 12,
    상기 바이패스관은,The bypass pipe,
    상기 바이패스관이 상기 복수의 열교환 요소와 분배기 사이에 연결되도록 상기 바이패스관의 일부가 분기되어 형성되는 복수의 분지관을 포함하고,A plurality of branch pipes formed by branching a portion of the bypass pipe so that the bypass pipe is connected between the plurality of heat exchange elements and the distributor,
    상기 복수의 분지관에는 각각 이방밸브가 마련되는 것을 특징으로 하는 공기조화기.The air conditioner, characterized in that each of the plurality of branch pipes are provided with an anisotropic valve.
  15. 제 14항에 있어서,The method of claim 14,
    상기 이방밸브는,The anisotropic valve,
    복수의 열교환 요소의 제상 시기에 따라 개별적으로 개방 또는 폐쇄되는 것을 특징으로 하는 공기조화기An air conditioner, characterized in that it is opened or closed individually according to the defrost timing of the plurality of heat exchange elements.
  16. 제 14항에 있어서,The method of claim 14,
    상기 복수의 열교환 요소에 마련되는 복수의 전열관과 상기 분배기 사이에 마련되는 복수의 보조 분배기를 더 포함하고,And a plurality of auxiliary distributors provided between the plurality of heat transfer tubes provided in the plurality of heat exchange elements and the distributors,
    상기 복수의 분지관은 상기 복수의 보조 분배기에 연결되는 것을 특징으로 하는 공기조화기.And the plurality of branch pipes are connected to the plurality of auxiliary distributors.
  17. 제 11항에 있어서,The method of claim 11,
    상기 실외 열교환기가 복수로 설치되고, 상기 복수의 열교환기와 대응되도록 상기 분배기 및 상기 바이패스관이 복수로 마련되는 것을 특징으로 하는 공기조화기.The plurality of outdoor heat exchangers are installed, the air conditioner characterized in that a plurality of the distributor and the bypass pipe is provided so as to correspond to the plurality of heat exchangers.
  18. 제11 항에 있어서The method of claim 11,
    상기 압축기 열을 축열하는 축열조를 더 포함하고,A heat storage tank for accumulating the compressor heat;
    상기 축열조에 축열된 열에 의해 가열된 냉매를 상기 바이패스관을 통하여 상기 복수의 열교환 요소로 유입시킬 수 있도록 마련되는 것을 특징으로 하는 공기 조화기.And a refrigerant heated by heat stored in the heat storage tank to flow into the plurality of heat exchange elements through the bypass pipe.
  19. 제 18항에 있어서,The method of claim 18,
    상기 축열조에서 토출된 냉매가 상기 압축기로 유입된 후 상기 바이패스관을 통하여 상기 복수의 열교환기 요소로 흐르도록 마련되는 것을 특징으로 하는 공기 조화기.And a refrigerant discharged from the heat storage tank flows into the plurality of heat exchanger elements through the bypass pipe after being introduced into the compressor.
  20. 압축기, 복수의 열교환 요소를 포함하는 실외 열교환기, 팽창 밸브 및 실내 열교환기가 연결되도록 마련되는 냉매회로;A refrigerant circuit provided to connect the compressor, an outdoor heat exchanger including a plurality of heat exchange elements, an expansion valve, and an indoor heat exchanger;
    상기 복수의 열교환 요소 및 상기 팽창 밸브 사이에 마련되는 분배기;A distributor provided between the plurality of heat exchange elements and the expansion valve;
    일단이 상기 압축기에 연결되고 타단이 상기 분배기와 상기 복수의 열교환 요소 사이에 연결되도록 마련되는 바이패스관;을 포함하고,And a bypass tube having one end connected to the compressor and the other end connected between the distributor and the plurality of heat exchange elements.
    상기 바이패스관은,The bypass pipe,
    일단이 복수개로 분기되어 상기 복수의 열교환 요소에 연결되고,One end branched into a plurality and connected to the plurality of heat exchange elements,
    상기 복수의 열교환 요소에서 발생된 서리를 개별적으로 제거하도록 상기 압축기에서 토출된 냉매를 상기 바이패스관에 마련된 복수의 이방밸브를 통해 개별적으로 상기 복수의 열교환 요소에 공급하는 것을 특징으로 하는 공기조화기.And an air conditioner separately supplied to the plurality of heat exchange elements through a plurality of anisotropic valves provided in the bypass pipe to individually remove frost generated in the plurality of heat exchange elements. .
PCT/KR2014/011379 2013-11-25 2014-11-25 Air conditioner WO2015076644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14864749.8A EP3040635A4 (en) 2013-11-25 2014-11-25 Air conditioner
US15/039,272 US20170153050A1 (en) 2013-11-25 2014-11-25 Air conditioner

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013-242574 2013-11-25
JP2013242573 2013-11-25
JP2013242574 2013-11-25
JP2013-242573 2013-11-25
JP2014-186146 2014-09-12
JP2014186146 2014-09-12
JP2014-222663 2014-10-31
JP2014222663A JP6688555B2 (en) 2013-11-25 2014-10-31 Air conditioner
KR10-2014-0165105 2014-11-25
KR1020140165105A KR102289373B1 (en) 2013-11-25 2014-11-25 Air conditioner

Publications (1)

Publication Number Publication Date
WO2015076644A1 true WO2015076644A1 (en) 2015-05-28

Family

ID=53179837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011379 WO2015076644A1 (en) 2013-11-25 2014-11-25 Air conditioner

Country Status (1)

Country Link
WO (1) WO2015076644A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288033A (en) * 2016-08-05 2017-01-04 珠海格力电器股份有限公司 Air-conditioner
JP2017101868A (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Refrigerator
CN106895554A (en) * 2017-02-14 2017-06-27 珠海格力电器股份有限公司 The methods, devices and systems and air-conditioner of user's registration in electric equipment
WO2018156368A1 (en) * 2017-02-22 2018-08-30 Nura Holding Pty Ltd Headphone ventilation
US10165345B2 (en) 2016-01-14 2018-12-25 Nura Holdings Pty Ltd Headphones with combined ear-cup and ear-bud
CN110686420A (en) * 2019-10-22 2020-01-14 广东美的暖通设备有限公司 Multi-split air conditioner, defrosting method and computer readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182133A (en) * 1978-08-02 1980-01-08 Carrier Corporation Humidity control for a refrigeration system
KR20070102047A (en) * 2006-04-13 2007-10-18 주식회사 코벡엔지니어링 High speed defrosting heat pump
JP2008256304A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Refrigerating device
JP2009085484A (en) 2007-09-28 2009-04-23 Daikin Ind Ltd Outdoor unit for air conditioner
JP2009222366A (en) * 2008-03-19 2009-10-01 Hitachi Appliances Inc Refrigerant distributor
JP2012098007A (en) * 2010-11-05 2012-05-24 Mitsubishi Electric Corp Refrigerant distributor, heat exchanger, and refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182133A (en) * 1978-08-02 1980-01-08 Carrier Corporation Humidity control for a refrigeration system
KR20070102047A (en) * 2006-04-13 2007-10-18 주식회사 코벡엔지니어링 High speed defrosting heat pump
JP2008256304A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Refrigerating device
JP2009085484A (en) 2007-09-28 2009-04-23 Daikin Ind Ltd Outdoor unit for air conditioner
JP2009222366A (en) * 2008-03-19 2009-10-01 Hitachi Appliances Inc Refrigerant distributor
JP2012098007A (en) * 2010-11-05 2012-05-24 Mitsubishi Electric Corp Refrigerant distributor, heat exchanger, and refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3040635A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101868A (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Refrigerator
US10165345B2 (en) 2016-01-14 2018-12-25 Nura Holdings Pty Ltd Headphones with combined ear-cup and ear-bud
CN106288033A (en) * 2016-08-05 2017-01-04 珠海格力电器股份有限公司 Air-conditioner
CN106895554A (en) * 2017-02-14 2017-06-27 珠海格力电器股份有限公司 The methods, devices and systems and air-conditioner of user's registration in electric equipment
WO2018156368A1 (en) * 2017-02-22 2018-08-30 Nura Holding Pty Ltd Headphone ventilation
US10536763B2 (en) 2017-02-22 2020-01-14 Nura Holding Pty Ltd Headphone ventilation
CN110686420A (en) * 2019-10-22 2020-01-14 广东美的暖通设备有限公司 Multi-split air conditioner, defrosting method and computer readable storage medium

Similar Documents

Publication Publication Date Title
WO2015076644A1 (en) Air conditioner
WO2012169764A2 (en) Air conditioner in electric vehicle
WO2018188514A1 (en) Air conditioner and cleaning control method
WO2011149151A1 (en) Hot water supply device associated with heat pump
CN105627432A (en) Air conditioning system and defrosting control method thereof
WO2016013800A1 (en) A refrigerator and a method controlling the same
WO2011031014A2 (en) Air conditioner and method for controlling the same
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2010093132A2 (en) A control method of a refrigerator
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2016114557A1 (en) Air conditioning system
JP2016057051A (en) Air conditioner
WO2021157820A1 (en) Air conditioner
WO2015076509A1 (en) Air conditioner and method of controlling the same
WO2019208942A1 (en) Heat exchange system for vehicle
WO2019151815A1 (en) Air conditioner
WO2020204596A1 (en) Outdoor heat exchanger and air conditioner comprising same
CN108224678A (en) A kind of air-conditioning and defrosting control method
WO2018135850A1 (en) Waste heat recovery type hybrid heat pump system
WO2011090309A2 (en) Refrigerator and method for controlling the same
WO2018026137A1 (en) Heat exchanger alternating-type heat pump system
WO2018155871A1 (en) Vehicle heat pump system
WO2020209474A1 (en) Air conditioning apparatus
WO2020204570A1 (en) Heat management system for vehicle
EP3374704A1 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864749

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014864749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864749

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15039272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP