WO2015076642A1 - Porous body with improved processability, and manufacturing method and processing method therefor - Google Patents

Porous body with improved processability, and manufacturing method and processing method therefor Download PDF

Info

Publication number
WO2015076642A1
WO2015076642A1 PCT/KR2014/011370 KR2014011370W WO2015076642A1 WO 2015076642 A1 WO2015076642 A1 WO 2015076642A1 KR 2014011370 W KR2014011370 W KR 2014011370W WO 2015076642 A1 WO2015076642 A1 WO 2015076642A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
resin
wax
partial polymer
resins
Prior art date
Application number
PCT/KR2014/011370
Other languages
French (fr)
Korean (ko)
Inventor
이명현
서원선
공은배
강종호
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2015076642A1 publication Critical patent/WO2015076642A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic

Definitions

  • the present invention relates to a porous body with improved workability, a method for manufacturing the same, and a processing method, and more particularly, preparing a unit or partial polymer in a solution state or a resin in a molten state; Submerging the porous body in the solution unit or partial polymer or in the molten resin to allow the resin to penetrate the pores of the porous body; And curing or solidifying the resin penetrated into the porous body by photopolymerization, thermal polymerization, or cooling, to provide a method of manufacturing a porous body having improved processability.
  • Porous body refers to a material comprising a plurality of pores. Porosity in materials may be a cause of fracture defects and therefore must be controlled for minimization, whereas porous bodies that actively use pores are used in many industries. Typical applications include artificial biomaterials, dust filters, catalysts and catalyst carriers, adsorbents, thermal insulation materials, filtration materials, electrode materials, lightweight structural materials, and shock absorbers.
  • the pore size and its distribution in the porous body are the most important factors. If the pore size is determined according to the purpose, the pore size should be uniformly distributed.
  • artificial bone substitutes bone tissue in the dental and orthopedic concept as the artificial biological material.
  • the main bone tissue in the dental concept is the alveolar bone
  • the alveolar bone is a general term for the bone tissue surrounding the teeth, and the open pore. Since it is a highly porous structure with a porosity of 30 to 90% as a standard, the strength is weaker than that of other bone tissues, and it is easily absorbed in relation to internal and external stimuli, or is easily lost in parallel with gum disease. Therefore, the tooth is easily shaken or extracted naturally, and once extracted, the tooth cannot be transplanted again, so there is a difficulty in relying on an implant procedure. In recent years, the number of procedures for restoring teeth depending on the implant procedure is increasing rapidly. However, even when an implant procedure is required, the fixture, which is the artificial root portion of the implant, must be firmly fixed in the alveolar bone. It's not easy.
  • alveolar bone For implantation, alveolar bone must be regenerated.
  • the alveolar bone regeneration method includes autologous bone graft and pulled bone development, but separate surgery is required to collect bone tissue, and the amount that can be collected is limited. , Goal posts, etc. are used.
  • the materials used for the bone aggregates include calcium phosphate-based materials such as apatite (HA), calcium triphosphate (TCP), and biphasic Calcium Phosphate (BCP) mixed with biomaterials, and gypsum-based materials.
  • HA apatite
  • TCP calcium triphosphate
  • BCP biphasic Calcium Phosphate
  • organic combustion method, foaming method, gel casting method, poly sponge method, gel casting method and foaming method are mixed, gel casting method and polymer sponge method are mixed. And the like.
  • the granular shape produced is filled or the block shape is trimmed as close as necessary to the required shape by hand using a surgical tool and the granular powder is filled in the unmatched part.
  • the application of the CAD / CAM process is rapidly increasing in the manufacture of dental prostheses such as artificial dental crowns, veneers, onlays, and inlays, and it is attempting to apply the strengths of this process to bone augmentation.
  • the block-type frame member to which the CAD / CAM process is applied is a high porosity open pore structure as described above, there is a problem that the mechanical processing itself is not easy. That is, the bone member has a very weak mechanical strength to break up to an unintended area during mechanical processing, or a very difficult to process into a complicated shape.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to enable precise processing of a highly porous framework material having a high porosity.
  • Another object of the present invention is to enable the bone frame material to be processed to minimize the loss of material.
  • the present invention by precisely processing the bone replacement material, it is possible to increase the consistency of the gum structure or defect area of the patient requiring alveolar bone graft, thus the new bone is formed uniformly and stably, the implant of the implant placed in the bone replacement material It is another object to increase the patient's satisfaction by improving the coupling characteristics.
  • the present invention is capable of precise processing of the bone frame material, it is manufactured according to the volume and shape of the required bone replacement portion, there is no need to use another substitute material, and thus the procedure can be made simple and accurate, such as implants in the planned position
  • Another object is to enable accurate placement of prostheses and without the need for granular or other separate structures.
  • Another object of the present invention is to provide a method that can easily produce a bone frame material in a state capable of processing.
  • the present invention is to provide a unit or partial polymer, or a resin in the molten state of the solution state to achieve the above object; Submerging the porous body in the solution unit or partial polymer or molten resin to allow the unit or partial polymer or resin to penetrate the pores of the porous body; And polymerizing or curing the unit or partial polymer permeated into the porous body by an initiator, light or heat, or solidifying the melt-penetrated resin by cooling. .
  • the solution unit or partial polymer is in a solution state at room temperature and is preferably polymerized and cured by an initiator, light or heat.
  • the resin in which the monomer or partial polymer of the solution state is polymerized is polyethylene (PE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), poly Vinyl chloride (PVC), ABS resin (acrylonitrile-butadiene-styrene resin), acrylonitrile-styrene resin (ASTNWL, S-AN), polymethyl methacrylate (methacrylic resin, PMMA), polyamide (Nylon, PA), polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET, PETP), polybutylene terephthalate (PBT, abbreviation PBTP), modified polyphenylene ether, fluoroplastics , Phenolic resin (PE), urea resin (UF), melamine resin (MF), unsaturated polyester resin (UP), epoxy resin (ER), polyurethane (PUR), silicone resin (SI), alkyd resin
  • the molten or dissolved resin is preferably solid at room temperature, melted or dissolved by heating or a solvent, and solidified by cooling.
  • the resin in the molten state may be polyethylene (PE), polyester, polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polyamide (PA), polycarbonate ( PC) or thermosetting resins including polyethylene terephthalate (PET), polyethylene wax, polypropylenr wax, polyoxyethylen glycol wax, halogenated hydrocarbon wax, Dental waxes including hydrogenated waxes or wax esters; Paraffin wax, Liquid paraffin, Microcrystalline wax, Petrolatum, Barnsdah wax, Ozokerite, Montan wax or three Petroleum waxes including resins; Animal waxes including wool wax, soy wax, lanolin or bees wax; Includes Japan wax, Cocoa butter, Carnauba wax, Crystal palm wax, Candellia wax or Ouricury wax Vegetable waxes; Polyethylene wax, Granule Wax, White wax, Gel wax, Polymer of Phthalic Anhydride and E
  • the resin in the molten state is in a molten state at a temperature of 70 ⁇ 300 °C, preferably having a viscosity range value of 1 ⁇ 10,000cP.
  • the porous body preferably has an open porosity of at least 30% or a total porosity of at least 50%.
  • the porous body is preferably a calcium phosphate-based material or a gypsum-based material including hydroxy apatite, tricalcium phosphate (TCP) or biphasic calcium phosphate (BCP).
  • TCP tricalcium phosphate
  • BCP biphasic calcium phosphate
  • the step of solidifying or curing the resin it is preferable to partially solidify or harden the porous body while the porous body is submerged in the resin, and to remove the submerged porous body from the resin to complete the solidification or curing.
  • the present invention is to submerge the porous body in a solution unit or partial polymer, or a resin in the molten state to allow the unit or partial polymer, or the resin to penetrate the pores of the porous body, the solution unit or partial polymer penetrated into the porous body
  • the mechanically processing step preferably, the step of processing by a CAD / CAM method.
  • the present invention is to submerge the porous body in a solution unit or partial polymer, or a resin in a molten state to allow the unit or partial polymer, or resin to penetrate the pores of the porous body, the solution unit or a solution state penetrated into the porous body or
  • the porous polymer with improved workability filled with the cured or solidified resin is polymerized by curing the partial polymer with an initiator, light or heat, or solidifying the molten resin by cooling.
  • the porous body is filled with a resin in at least 90% of the open pores.
  • the porous body is filled with a resin in the range of more than 0 and less than 90% of the open pores.
  • the effect is expected to be processed to minimize the loss of material to the bone material.
  • the present invention enables precise processing of the bone framework, so that the procedure can be made simple and accurate, and the bone framework can be accurately restored to the planned position. Thus, an easy and accurate operation is expected to work.
  • the present invention is expected to produce a very simple operation effect of the manufacturing process of the bone material in a state capable of processing.
  • FIG. 1 is a schematic diagram showing a state before and after the resin filling of the porous body produced by one embodiment of the present invention
  • Figure 2 is a schematic diagram of the jig provided to test the workability of the porous body produced by one embodiment of the present invention
  • Figure 3 (a) is a graph showing the drilling load of the porous body measured in the process of infiltrating the hard wax into the 65 ppi porous body prepared by one embodiment of the present invention
  • 3 (b) is an embodiment of the present invention
  • the present invention discloses a porous body in a state in which a high porosity porous body which is easily broken and not easily processed, and manufactured by impregnating a resin so as to reduce material damage during processing, and a manufacturing method and a processing method thereof.
  • a resin having a substantial portion or all of the pores of the porous body serves as a support for the porous pore structure, and participates in the processing together with the porous body in the process of processing the porous body, and then dissolves using a solvent or through low temperature heat treatment.
  • the porous body of a desired form can be manufactured easily and correctly by taking out by melt
  • FIG. 1 the schematic diagram regarding the state before and after resin filling of the porous body manufactured by one Example of this invention was shown.
  • the illustrated porous body is a cross-sectional view, (a) shows before the filling material is filled in the open pores, and (b) shows after the filling material is filled in the open pores.
  • the porous body is immersed in a solution unit or partial polymer or a molten resin.
  • the resin in the solution state or in the molten state can be easily penetrated into the pore structure in the porous body because the viscosity is low enough, and it is more preferable to select and apply the wettability according to the porous material.
  • the monomer or partial polymer is also included in the category of the resin, and the term monomer or partial polymer is separately used in the solution state as described above to distinguish the handling method according to whether the resin is liquid or solid at room temperature. It's just that.
  • the unit or partial polymer raw material in a solution state is in a liquid state at room temperature, and when curing is required, chemical curing, thermal curing, or photoinitiator is separately added to chemical curing, thermal curing, or photocuring.
  • Polymerized resins in which the monomer or partial polymer in a solution state are polymerized include both thermoplastic resins and thermosetting resins, and examples thereof include polyethylene (PE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and polypropylene.
  • PE polyethylene
  • LDPE low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • polypropylene polypropylene
  • PP polystyrene
  • PS polyvinyl chloride
  • ABS resin acrylonitrile-butadiene-styrene resin
  • acrylonitrile-styrene resin AS-AN
  • PC polyethylene terephthalate
  • PET polybutylene terephthalate
  • PBT modified polyphenylene ether
  • Fluoroplastics phenolic resins (PE), urea resins (UF), melamine resins (MF), unsaturated polyester resins (UP), epoxy resins (ER), polyurethanes (PUR), silicone resins (SI), Alkyd resin (ALK).
  • the resin in the molten state is present in the solid state or gel state at room temperature, and when properly heated, is changed into the molten state, and when cooled again, retains the original solid phase.
  • the resin used in the molten state includes a thermoplastic resin, and examples thereof include polyethylene (PE), polyester, polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), Thermosetting resins including polyamide (PA), polycarbonate (PC) or polyethylene terephthalate (PET), polyethylene wax, polypropylenr wax, polyoxyethylene glycol wax, Dental waxes, including halogenated hydrocarbon waxes, hydrogenated waxes or wax esters; Paraffin wax, Liquid paraffin, Microcrystalline wax, Petrolatum, Barnsdah wax, Ozokerite, Montan wax or three Petroleum waxes including resins; Animal waxes including wool wax, soy wax, lanolin or bees wax; Includes Japan wax, Cocoa butter, Carnauba wax, Crystal palm wax, Candellia wax or Ouricury wax Vegetable waxes; Polyethylene wax, Granule Wax, White wax, Gel wax
  • the polymer resin in the molten state is preferably high in strength, melting point, glass transition temperature (Tg) at room temperature.
  • the resin In order to infiltrate the resin into the porous body, the resin must be heated to an appropriate temperature.
  • an appropriate temperature For example, in the case of polymers of wax, phthalic anhydride and ethylene glycol, they exist in a molten state which exhibits very low viscosities in the temperature range of about 100 to 200 ° C., in particular around 107 ° C., so that the melt is in the porous body. It is easy to penetrate or withdraw from the porous body.
  • epoxy PMMA, or the like is preferably used as the unit or partial polymer in the solution state.
  • the molten resin is preferably a polymer of phthalic anhydride and ethylene glycol (Ethylene Glycol), shellac, rosin and the like.
  • the above resins are generally melted, deposited, and cured in the temperature range of 90 to 150 ° C., and thus can fill pores in the porous body without causing thermal damage to the porous body.
  • the resin penetrates more than 90% of the open pores in the porous body, it will be easier to handle the porous body. Therefore, the above 90% has the meaning, but if the process is not complicated, the resin should be processed only in the part requiring processing. Even if the penetration volume is less than 5% of the open pores, if the polymer resin coated with the porous internal structure shows sufficient strength, external stress during CAD / CAM processing can withstand the stress.
  • the porosity may be less than 90%. That is, it may have a range value greater than 0 and less than 90%.
  • the porous body is submerged in the resin to allow the resin to penetrate into the pores of the porous body, but the resin may be withdrawn again in the process of pulling the porous body out of the resin again.
  • the desired shape is obtained through mechanical processing.
  • the bone defects or the shape of the alveolar bone formation needs to be taken by CT (computerized tomography) and imported from CAD software to design the replacement alveolar bone of the shape that needs to be augmented or restored to the patient, this design data
  • CT computerized tomography
  • CAD computerized tomography
  • CAM computer-controlled processing device
  • CAD / CAM processing may be the best in producing alveolar bone that is matched to an individual patient, but mechanical processing is not limited to the above CAD / CAM processing. In some cases, other types of mechanical processing methods such as MAM cutting may be used.
  • the above resins must be removed for transplantation, and heat scattered to obtain a pure porous body. This is because the bone substitute is composed of such a pure porous body.
  • the resin is capable of melting or dissolving, it may be melted instead of heat scattering or dissolved by a solvent to be withdrawn from the porous body.
  • a solvent for example, a ketone-based substance such as acetone may be used, and other solvents capable of dissolving the resin may also be used.
  • the porous body according to one embodiment of the present invention preferably has a scaffold structure and preferably has a porosity of at least 40% or a total porosity of at least 60%. Since this is a desired characteristic of the bone replacement system for the alveolar bone, the present invention can be applied to a porous body which is expected to be damaged in the processing process even if the alveolar bone is not the bone replacement material. In addition, it can be applied regardless of the characteristics of the pores, i.e., whether it is an open or a closed hole, and since the material cannot have a complete closed hole, the ratio of the closed holes becomes to some extent as long as the open holes exist. Regardless of whether it is possible to penetrate the resin, the method according to the present invention may be applied to a porous body predominantly discarded.
  • Porous bodies as bone substitutes for alveolar bone include calcium phosphate-based or gypsum-based materials including hydroxyapatite, tricalcium phosphate (TCP) or biphasic calcium phosphate (BCP). Although not listed, other possible materials may be sufficient.
  • paraffin wax is preferably used as the soft wax for filling the porous body.
  • Soft waxes include Paraffin wax, Liquid paraffin, Microcrystalline wax, Petrolatum, Barnsdah wax, Ozokerite, Montan wax petroleum waxes, including waxes or ceresins; Animal waxes including Wool wax, Soy wax, Lanolin or Bees wax, Japan wax, Cocoa butter, Carnauba wax ( Vegetable waxes including Carnauba wax, Crystal palm wax, Candellia wax or Ouricury wax; Polyethylene wax, Granule Wax, White Wax or Synthetic Wax including Gel Wax may be used.
  • the soft wax was melted by heating at 100 ° C., and then permeated into the porous body to solidify the resin through a cooling process.
  • a drilling test was performed under the following two conditions.
  • the porous body fixed by penetrating the soft wax to fix the jig caused a lot of breakage in the processing step.
  • the soft wax was faithful to fill the open pores, but did not fully support the porous body during processing.
  • the use of the soft wax alone has the potential for processing the porous body, it can be seen that it shows a much better processing state than when not using the soft wax.
  • the damage of the porous body may vary depending on the type of tool and the processing conditions (drill RPM, feed rate).
  • hard wax was used as another resin.
  • Such hard waxes are polymers of phthalic anhydride and ethylene glycol, polypropylene wax, halogenated hydrocarbon waxes, hydrogenated waxes, and Fischer-Tropsch. And waxes (Fischer-Tropsch wax), multi waxes, and the like.
  • a crystal wax which is a polymer of double phthalic anhydride and ethanediol, was used.
  • porous body having a three-dimensional porous structure In order to further improve the processability of the porous body having a three-dimensional porous structure, it is necessary to fill the empty space inside the porous body to further mitigate the impact on the porous body during processing.
  • hard wax should pay more attention than soft wax in terms of permeability. Therefore, it is easy to penetrate into porous body, has high rigidity during processing, and selects and applies materials that can remove solvent to minimize the amount of decomposition products during heat treatment process. shall.
  • the hard wax that has been filled in the pores can be easily removed by acetone, which is a solvent after processing, and the remaining organic matter can be easily removed by a heat treatment process, thereby reducing the process time compared to a process in which the organic material must be removed by a total heat treatment process.
  • porous wax penetrated porous body was subjected to the experiment using the drill RPM 800 and the drill feed rate 200mm / min, which are the harshest conditions that were applied during the machining of the soft wax penetrated porous material.
  • the porous wax impregnated with hard wax had a good surface edge after processing, and no breakage of the porous structure such as chipping was observed.
  • Figure 3 (a) is a graph showing the drilling load of the porous body measured in the process of infiltrating the hard wax into the 65 ppi porous body prepared by one embodiment of the present invention
  • 3 (b) is an embodiment of the present invention It is a graph showing the drilling load of the porous body measured in the process of infiltrating the soft wax and the hard wax into the 65ppi porous body manufactured by the example, respectively.
  • the processability of the porous body according to the pore size was all so good that the difference can not be confirmed in the step of impregnating the hard wax.
  • the larger the pore size the more the structure collapsed at the edge of the processing hole.
  • this may be due to the original shape structure of the porous body, although it is also destroyed by the stress concentration during the machining process. This is not a big problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

The present invention relates to a porous body with improved processability, and a manufacturing method and a processing method therefor. More specifcially, the present invention provides a method for manufacturing a porous body with improved processability, comprising the steps of: preparing a monomer or prepolymer in solution state, or a resin in melted state; immersing the porous body in the monomer or prepolymer in solution state, or in the resin in melted state so that the resin permeates the pores of the porous body; and curing or coagulating, by photopolymerization, thermal polymerization or cooling, the resin that has permeated the porous body.

Description

가공성이 개선된 다공체 및 그 제조방법과 가공방법Porous body with improved workability, manufacturing method and processing method
본 발명은 가공성이 개선된 다공체 및 그 제조방법과 가공방법에 관한 것으로서, 보다 상세하게는 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지를 마련하는 단계; 상기 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지에 다공체를 침잠하여 수지가 다공체의 기공에 침투되도록 하는 단계; 및 상기 다공체에 침투된 수지를 광중합, 열중합 또는 냉각에 의하여 경화시키거나 응고시키는 단계;를 포함하여 구성되는 가공성이 개선된 다공체의 제조방법을 제공한다. The present invention relates to a porous body with improved workability, a method for manufacturing the same, and a processing method, and more particularly, preparing a unit or partial polymer in a solution state or a resin in a molten state; Submerging the porous body in the solution unit or partial polymer or in the molten resin to allow the resin to penetrate the pores of the porous body; And curing or solidifying the resin penetrated into the porous body by photopolymerization, thermal polymerization, or cooling, to provide a method of manufacturing a porous body having improved processability.
다공체는 다수의 기공을 포함하는 재료를 의미한다. 재료에서 기공은 파괴 결함의 원인이 되므로 최소화를 위해 제어되어야 하기도 하나, 반대로 기공을 적극적으로 이용하는 다공체는 여러 산업 분야에 이용된다. 대표적인 응용으로 인공생체재료, 집진 필터, 촉매 및 촉매 운반체, 흡착체, 단열재료, 여과재료, 전극재료, 경량구조재료, 충격흡수체 등이다. 다공체에서 기공의 크기와 그 분포 상태가 가장 중요한 인자이다. 목적에 따라서 기공의 크기가 정해지면 기공의 크기가 일정하게 분포되어야 한다. Porous body refers to a material comprising a plurality of pores. Porosity in materials may be a cause of fracture defects and therefore must be controlled for minimization, whereas porous bodies that actively use pores are used in many industries. Typical applications include artificial biomaterials, dust filters, catalysts and catalyst carriers, adsorbents, thermal insulation materials, filtration materials, electrode materials, lightweight structural materials, and shock absorbers. The pore size and its distribution in the porous body are the most important factors. If the pore size is determined according to the purpose, the pore size should be uniformly distributed.
특히 인공생체재료로서는 치의학적, 정형외과적 개념에서의 골조직을 인공뼈가 대체하고 있는데, 특히 치의학적 개념의 주요 골조직은 치조골로서, 치조골은 치아를 감싸는 골조직의 총칭이며, 개기공(open pore) 기준으로 기공율이 30 ~ 90%에 달하는 고도의 다공질 구조이므로, 다른 골조직에 비하여 강도가 약하며, 내외부의 자극과 관련하여 흡수되거나, 잇몸질환과 병행하여 쉽게 소실되는 경향이 있다. 따라서, 치아가 쉽게 흔들리거나 자연 발치되며, 한번 발치된 치아는 이를 다시 이식할 수 없으므로, 임플란트 시술에 의존해야만 하는 어려움이 있다. 또한, 근래 임플란트 시술에 의존하여 치아를 수복하는 시술이 급격히 증가하고 있다. 그러나, 임플란트 시술을 요하는 경우에도 임플란트에서 인공치근 부분인 픽스쳐(fixture)가 치조골 내에서 단단히 고정되어야 하는데, 치조골이 소실되었거나, 여러가지 이유로 제거에 의해 발생된 치조골의 결손이 존재한다면 이러한 임플란트 시술마저 쉽지 않게 된다.In particular, artificial bone substitutes bone tissue in the dental and orthopedic concept as the artificial biological material. In particular, the main bone tissue in the dental concept is the alveolar bone, and the alveolar bone is a general term for the bone tissue surrounding the teeth, and the open pore. Since it is a highly porous structure with a porosity of 30 to 90% as a standard, the strength is weaker than that of other bone tissues, and it is easily absorbed in relation to internal and external stimuli, or is easily lost in parallel with gum disease. Therefore, the tooth is easily shaken or extracted naturally, and once extracted, the tooth cannot be transplanted again, so there is a difficulty in relying on an implant procedure. In recent years, the number of procedures for restoring teeth depending on the implant procedure is increasing rapidly. However, even when an implant procedure is required, the fixture, which is the artificial root portion of the implant, must be firmly fixed in the alveolar bone. It's not easy.
임플란트 시술을 위해서는 치조골을 재생하여야 하는데, 치조골의 재생방식으로는 자가골 이식, 당김뼈 발생 등의 시술법이 있으나, 골조직 채취를 위해 별도의 수술이 필요하고, 채취할 수 있는 양이 한정되어 있으므로, 동종골, 골대체재 등이 사용되고 있다. For implantation, alveolar bone must be regenerated. The alveolar bone regeneration method includes autologous bone graft and pulled bone development, but separate surgery is required to collect bone tissue, and the amount that can be collected is limited. , Goal posts, etc. are used.
특히 골대체제의 경우에는 특정한 조건을 만족하여야 하며, 이러한 조건으로는 기존의 인접골 조직에 대한 흡수성, 이식된 이후의 장기적 안정성, 기계적 강도, 표면거칠기, 골형성 및 골유도 능력 등이 있으나, 이러한 조건을 만족하는 골대체재를 확보하였다고 하더라도, 치조골의 해면조직과 같은 특성을 구현하려면 고도의 다공성 재질로 제작되어야 하는데, 이 때, 가공이 용이하지 않은 문제점이 있다. 가공의 필요성은 환자마다 증대술을 적용할 치조골의 구조나 소실정도, 결손부피 및 결손 내면구조 등에 따라서 다르다는 점에서 비롯된다.Particularly, in the case of bone replacement system, specific conditions must be satisfied. Such conditions include absorbency to existing adjacent bone tissue, long-term stability after transplantation, mechanical strength, surface roughness, bone formation, and osteoinduction ability. Even if the bone frame material satisfying the condition is secured, in order to realize the characteristics such as the sponge tissue of the alveolar bone, it must be made of a highly porous material, at this time, there is a problem that processing is not easy. The necessity of processing originates from the fact that each patient differs according to the structure and loss of alveolar bone to which augmentation is applied, defect volume and internal structure of defect.
구체적으로, 골대체재로 사용되는 재료는 바이오 세라믹인 수산화아파타이트 (HA), 삼인산칼슘 (TCP), 그리고 두 재료가 혼합된 Biphasic Calcium Phosphate (BCP) 등 인산칼슘계 물질 및 석고계 물질 등이 있으며, 이들을 각각 단독으로 사용하거나, 병합해서 사용할 수 있고, 이를 다양한 제조공정을 적용하여 골대체재로 생산하고 있다. 여기서, HA와 TCP상의 양을 조절하면 다공성 인산칼슘 세라믹의 생분해 속도를 조절이 가능한 장점이 있으며, 골 전도성 향상 및 생분해 속도를 조절하기 위한 HA와 TCP로 구성된 복합체에 관련한 연구가 계속하여 진행되고 있다.Specifically, the materials used for the bone aggregates include calcium phosphate-based materials such as apatite (HA), calcium triphosphate (TCP), and biphasic Calcium Phosphate (BCP) mixed with biomaterials, and gypsum-based materials. Each of these may be used alone, or may be used in combination, and it is produced as a bone substitute by applying various manufacturing processes. Here, by controlling the amount of HA and TCP phase, there is an advantage that the biodegradation rate of the porous calcium phosphate ceramics can be controlled, and researches on the composite composed of HA and TCP for improving bone conductivity and controlling biodegradation rate are continuously conducted. .
골대체재의 제조공정으로는 유기물 연소에 의한 방법, 발포법, 겔 캐스팅 방법, 폴리어 스펀지 법, 겔 캐스팅 방법과 발포법을 혼합한 방법, 겔 캐스팅 방법과 폴리머 스펀지(template)법을 혼합한 방법 등을 열거할 수 있다.As the manufacturing method of the framework material, organic combustion method, foaming method, gel casting method, poly sponge method, gel casting method and foaming method are mixed, gel casting method and polymer sponge method are mixed. And the like.
골대체재를 이용한 치조골의 복원 및 증대시술에서는 제조된 입상(granular) 형태를 채워넣거나 블록 형태를 시술용 도구를 이용한 수작업으로 필요한 형상에 최대한 가깝게 트리밍하여 적용한 후 정합되지 않은 부분에는 입상분말을 채워넣음으로써 골대체재가 최대한 환자의 잇몸구조에 정합되도록 보정한다. In the restoration and augmentation of the alveolar bone using the bone base material, the granular shape produced is filled or the block shape is trimmed as close as necessary to the required shape by hand using a surgical tool and the granular powder is filled in the unmatched part. By adjusting the bone stay to match the gum structure of the patient as much as possible.
하지만, 입상 형태의 경우, 이를 잇몸내에 매립하여도 시술과정에서 유출되는 환자의 혈액과 함께 동반배출되는 문제점이 있으며, 형태가 고정되지 아니하므로, 이식한 후에도 변형이 발생될 가능성이 존재한다. 또한, 블록형태의 골대체재도 수작업에 의한 가공으로 정합성이 확보되지 않을 수도 있다.However, in the case of the granular form, even if it is embedded in the gum, there is a problem that the discharge along with the blood of the patient outflow during the procedure, since the shape is not fixed, there is a possibility that deformation occurs even after transplantation. In addition, even in the form of a block-like bone aggregate may not be secured by manual processing.
근래에 인공치관, 비니어, 온레이, 인레이 등 치과 보철물의 제조에 CAD/CAM공정 적용이 급격히 증가하는 추세로 이 공정의 가공정밀성, 효율성, 용이성 등의 강점을 골증대술에도 적용하고자 시도되고 있다. 그러나, CAD/CAM 공정을 적용하는 블록형태의 골대체재는 전술한 바와 같이 매우 기공율이 높은 개기공 구조로서, 기계적 가공 자체가 용이하지 아니한 문제점이 있다. 즉, 상기 골대체재는 기계적 강도가 매우 취약하여 기계적 가공시 의도하지 않은 영역까지 파손된다거나, 복잡형상으로의 가공이 매우 어려운 문제점이 있다. Recently, the application of the CAD / CAM process is rapidly increasing in the manufacture of dental prostheses such as artificial dental crowns, veneers, onlays, and inlays, and it is attempting to apply the strengths of this process to bone augmentation. . However, the block-type frame member to which the CAD / CAM process is applied is a high porosity open pore structure as described above, there is a problem that the mechanical processing itself is not easy. That is, the bone member has a very weak mechanical strength to break up to an unintended area during mechanical processing, or a very difficult to process into a complicated shape.
본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 높은 기공율을 갖는 고도의 다공질인 골대체재의 정밀한 가공을 가능하게 하는 것을 목적으로 한다.The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to enable precise processing of a highly porous framework material having a high porosity.
또한, 본 발명은 상기 골대체재를 재료의 손실을 최소화하여 가공할 수 있도록 하는 것을 다른 목적으로 한다.In addition, another object of the present invention is to enable the bone frame material to be processed to minimize the loss of material.
또한, 본 발명은 상기 골대체재를 정밀하게 가공함으로써, 치조골 이식이 필요한 환자의 잇몸구조 또는 결손부위에 대한 정합성을 높일 수 있으며, 따라서 신생골이 균일하고 안정적으로 형성되고, 골대체재내에 식립된 임플란트의 결합특성 향상이 가능하여 환자의 만족도를 높이는 것을 또 다른 목적으로 한다.In addition, the present invention by precisely processing the bone replacement material, it is possible to increase the consistency of the gum structure or defect area of the patient requiring alveolar bone graft, thus the new bone is formed uniformly and stably, the implant of the implant placed in the bone replacement material It is another object to increase the patient's satisfaction by improving the coupling characteristics.
또한, 본 발명은 골대체재의 정밀한 가공이 가능하므로, 필요한 골대체부위의 체적과 형상대로 제작이 이루어져 또 다른 대체재를 사용할 필요가 없으며, 따라서 시술이 간이하고 정확하게 이루어질 수 있고, 계획된 위치에 임플란트 등 보철물을 정확하게 식립하는 것을 가능하게 하며, 입상이나 다른 별도의 구조물을 투입하지 아니하여도 가능하도록 하는 것을 또 다른 목적으로 한다.In addition, since the present invention is capable of precise processing of the bone frame material, it is manufactured according to the volume and shape of the required bone replacement portion, there is no need to use another substitute material, and thus the procedure can be made simple and accurate, such as implants in the planned position Another object is to enable accurate placement of prostheses and without the need for granular or other separate structures.
또한, 본 발명은 가공이 가능한 상태의 골대체재를 용이하게 제조할 수 있는 방법을 제시하는 것을 또 다른 목적으로 한다. In addition, another object of the present invention is to provide a method that can easily produce a bone frame material in a state capable of processing.
본 발명은 전술한 목적을 달성하기 위하여, 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지를 마련하는 단계; 상기 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지에 다공체를 침잠하여 상기 단위체 또는 부분중합체, 또는 수지가 다공체의 기공에 침투되도록 하는 단계; 및 상기 다공체에 침투된 단위체 또는 부분중합체를 개시제, 빛 또는 열에 의해 중합경화시키거나, 용융침투된 수지를 냉각에 의하여 응고시키는 단계;를 포함하여 구성되는 가공성이 개선된 다공체의 제조방법을 제공한다.The present invention is to provide a unit or partial polymer, or a resin in the molten state of the solution state to achieve the above object; Submerging the porous body in the solution unit or partial polymer or molten resin to allow the unit or partial polymer or resin to penetrate the pores of the porous body; And polymerizing or curing the unit or partial polymer permeated into the porous body by an initiator, light or heat, or solidifying the melt-penetrated resin by cooling. .
상기 용액상태의 단위체 또는 부분중합체는 상온에서 용액상태이며, 개시제, 빛 또는 열에 의해 중합 경화되는 것이 바람직하다.The solution unit or partial polymer is in a solution state at room temperature and is preferably polymerized and cured by an initiator, light or heat.
상기 용액상태의 단위체 또는 부분중합체가 중합경화된 수지는 폴리에틸렌(PE), 저밀도 폴리에틸렌(LDPE), 중밀도 폴리에틸렌(MDPE), 고밀도 폴리에틸렌(HDPE), 폴리프로필렌(PP), 폴리스티렌(PS), 폴리염화비닐(염화비닐수지:PVC), ABS 수지(acrylonitrile-butadiene-styrene resin), 아크릴로니트릴-스티렌수지(ASTNWL, S-AN), 폴리메틸 메타크릴레이트(메타크릴수지, PMMA), 폴리아미드(나일론, PA),폴리아세탈(POM), 폴리카보네이트(PC), 폴리에틸렌 테레프탈레이트(PET, PETP), 폴리부틸렌 테레프탈레이트(PBT, 약호PBTP), 변성 폴리페닐렌에테르, 불소수지(Fluoroplastics), 페놀수지(PE), 우레아수지(UF), 멜라민수지(MF), 불포화 폴리에스터 수지(UP), 에폭시 수지(ER), 폴리우레탄(PUR), 실리콘 수지(SI), 알키드 수지(ALK)를 포함하는 것이 바람직하다.The resin in which the monomer or partial polymer of the solution state is polymerized is polyethylene (PE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), poly Vinyl chloride (PVC), ABS resin (acrylonitrile-butadiene-styrene resin), acrylonitrile-styrene resin (ASTNWL, S-AN), polymethyl methacrylate (methacrylic resin, PMMA), polyamide (Nylon, PA), polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET, PETP), polybutylene terephthalate (PBT, abbreviation PBTP), modified polyphenylene ether, fluoroplastics , Phenolic resin (PE), urea resin (UF), melamine resin (MF), unsaturated polyester resin (UP), epoxy resin (ER), polyurethane (PUR), silicone resin (SI), alkyd resin (ALK) It is preferable to include.
상기 용융 또는 용해상태의 수지는 상온에서 고체상태이며, 가열 또는 용매에 의해 용융 또는 용해되고, 냉각에 의해 응고되는 것이 바람직하다.The molten or dissolved resin is preferably solid at room temperature, melted or dissolved by heating or a solvent, and solidified by cooling.
상기 용융상태의 수지는 폴리에틸렌(PE), 폴리에스테르, 폴리프로필렌(PP), 폴리스티렌(PS), 폴리염화비닐(PVC), 폴리메틸 메타크릴레이트(PMMA), 폴리아미드(PA), 폴리카보네이트(PC) 또는 폴리에틸렌 테레프탈레이트(PET)를 포함하는 열경화성 수지, 폴리에틸렌 왁스(Polyethylen wax), 폴리프로필렌 왁스(Polypropylenr wax), 폴리옥시에틸렌 글리콜왁스(Polyoxyethylen glycol wax), 할로겐화 탄화수소 왁스(Halogenated hydrocarbon wax), 하이드로겐화 왁스(Hydrogenated wax) 또는 왁스 에스테르(wax ester)를 포함하는 치과용 왁스; 파라핀 왁스(Paraffin wax), 유동 파라핀(Liquid paraffin), 마이크로크리스탈 왁스(Microcrystalline wax), 페트롤라툼(Petrolatum), 반다 왁스(Barnsdah wax), 오조케라이트(Ozokerite), 몬탄 왁스(Montan wax) 또는 세레진(Seresin)을 포함하는 석유계 왁스; 양모랍(Wool wax), 소이 왁스(Soy wax), 라놀린(Lanolin) 또는 밀랍 왁스(Bees wax)를 포함하는 동물성왁스; 일본 왁스(Japan wax), 코코아 버터(Cocoa butter), 카르나우바 왁스(Carnauba wax), 크리스탈 팜 왁스(Crystal palm wax), 칸데릴라 왁스(Candellia wax) 또는 오우리큐리 왁스(Ouricury wax)를 포함하는 식물성 왁스; 폴리에틸렌 왁스(Polyethylen wax), 그래뉼 왁스(Granule Wax), 화이트 왁스(White wax), 젤 왁스(Gel wax), 무수 프탈산(Phthalic Anhydride)와 에틸렌 글리콜(Ethylene Glycol)의 중합체, 피셔-트롭쉬 왁스(Fischer-Tropsch wax) 또는 멀티 왁스(Multi wax)를 포함하는 합성 왁스; 샌드락(Sandarac), 로진(Rosin) 또는 셸락(Shellac)을 포함하는 천연 유래 레진을 포함하는 것이 바람직하다.The resin in the molten state may be polyethylene (PE), polyester, polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polyamide (PA), polycarbonate ( PC) or thermosetting resins including polyethylene terephthalate (PET), polyethylene wax, polypropylenr wax, polyoxyethylen glycol wax, halogenated hydrocarbon wax, Dental waxes including hydrogenated waxes or wax esters; Paraffin wax, Liquid paraffin, Microcrystalline wax, Petrolatum, Barnsdah wax, Ozokerite, Montan wax or three Petroleum waxes including resins; Animal waxes including wool wax, soy wax, lanolin or bees wax; Includes Japan wax, Cocoa butter, Carnauba wax, Crystal palm wax, Candellia wax or Ouricury wax Vegetable waxes; Polyethylene wax, Granule Wax, White wax, Gel wax, Polymer of Phthalic Anhydride and Ethylene Glycol, Fischer-Tropsch Wax Synthetic waxes including Fischer-Tropsch wax or Multi wax; It is preferred to include naturally occurring resins including Sandrac, Rosin or Shellac.
상기 용융상태의 수지는 70 ~ 300℃의 온도에서 용융상태에 있으며, 1 ~ 10,000cP의 점도 범위값을 갖는 것이 바람직하다.The resin in the molten state is in a molten state at a temperature of 70 ~ 300 ℃, preferably having a viscosity range value of 1 ~ 10,000cP.
상기 다공체는 적어도 30%의 개기공율을 갖거나 또는 적어도 50%의 총 기공율을 갖는 것이 바람직하다.The porous body preferably has an open porosity of at least 30% or a total porosity of at least 50%.
상기 다공체는 하이드록시 아파타이트(Hydroxy Apatite), 삼인산칼슘 (Tri Calcium Phosphate, TCP) 또는 2상 인산칼슘(Biphasic Calcium Phosphate, BCP)을 포함하는 인산칼슘계 물질 또는 석고계 물질인 것이 바람직하다.The porous body is preferably a calcium phosphate-based material or a gypsum-based material including hydroxy apatite, tricalcium phosphate (TCP) or biphasic calcium phosphate (BCP).
상기 수지를 응고하거나 경화하는 단계에서는, 다공체가 수지에 침잠된 상태에서 일부 응고 또는 경화가 이루어지도록 하고, 침잠된 다공체를 수지로부터 인출하여 응고 또는 경화가 완료되도록 하는 것이 바람직하다.In the step of solidifying or curing the resin, it is preferable to partially solidify or harden the porous body while the porous body is submerged in the resin, and to remove the submerged porous body from the resin to complete the solidification or curing.
또한 본 발명은 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지에 다공체를 침잠하여 단위체 또는 부분중합체, 또는 수지가 다공체의 기공에 침투되도록 하고, 상기 다공체에 침투된 용액상태의 단위체 또는 부분중합체를 개시제, 빛 또는 열에 의해 중합경화시키거나, 용융상태의 수지를 냉각에 의하여 응고시킴으로써 경화 또는 응고된 수지가 채워진 다공체를 제조하는 단계; 및 상기 경화 또는 응고된 수지가 채워진 다공체를 기계적으로 가공하는 단계;를 포함하여 구성되는 가공성이 개선된 다공체의 가공방법을 제공한다.In addition, the present invention is to submerge the porous body in a solution unit or partial polymer, or a resin in the molten state to allow the unit or partial polymer, or the resin to penetrate the pores of the porous body, the solution unit or partial polymer penetrated into the porous body Preparing a porous body filled with the cured or solidified resin by curing the polymer by curing with an initiator, light or heat, or solidifying the molten resin by cooling; And mechanically processing the porous body filled with the cured or solidified resin.
상기 기계적으로 가공하는 단계;는, CAD/CAM 방법에 의해 가공하는 단계;인 것이 바람직하다.The mechanically processing step; preferably, the step of processing by a CAD / CAM method.
또한, 본 발명은 용액상태의 단위체 또는 부분 중합체, 또는 용융상태의 수지에 다공체를 침잠하여 상기 단위체 또는 부분중합체, 또는 수지가 다공체의 기공에 침투되도록 하고, 상기 다공체에 침투된 용액상태의 단위체 또는 부분중합체를 개시제, 빛 또는 열에 의해 중합경화시키거나, 용융상태의 수지를 냉각에 의하여 응고시킴으로써 경화 또는 응고된 수지가 충전된 가공성이 개선된 다공체를 제공한다.In addition, the present invention is to submerge the porous body in a solution unit or partial polymer, or a resin in a molten state to allow the unit or partial polymer, or resin to penetrate the pores of the porous body, the solution unit or a solution state penetrated into the porous body or The porous polymer with improved workability filled with the cured or solidified resin is polymerized by curing the partial polymer with an initiator, light or heat, or solidifying the molten resin by cooling.
상기 다공체에는 개기공(open pore)의 적어도 90%에 수지가 충전된 것이 바람직하다.Preferably, the porous body is filled with a resin in at least 90% of the open pores.
상기 다공체에는 개기공(open pore)의 0 초과 90% 미만의 범위에 수지가 충전된 것이 바람직하다.It is preferable that the porous body is filled with a resin in the range of more than 0 and less than 90% of the open pores.
이상과 같은 본 발명에 따르면, 높은 기공율을 갖는 고도의 다공질인 골대체재의 정밀한 가공이 가능한 작용효과가 기대된다.According to the present invention as described above, it is expected that the effect that the precise processing of the highly porous bone framework material having a high porosity is possible.
또한, 상기 골대체재를 재료의 손실을 최소화하여 가공할 수 있는 작용효과가 기대된다.In addition, the effect is expected to be processed to minimize the loss of material to the bone material.
또한, 상기 골대체재를 정밀하게 가공함으로써, 치조골 이식이 필요한 환자의 잇몸 결함구조에 대한 정합성을 높일 수 있으며, 따라서 신생골의 균일생성, 식립된 임플란트의 결합성 향상, 환자의 만족도 향상이 가능한 작용효과가 기대된다.In addition, by precisely processing the bone base material, it is possible to increase the consistency of the gum defect structure of patients needing alveolar bone graft, and thus the effect of improving the uniformity of new bone, improved implantability of implanted implant, improved patient satisfaction Is expected.
또한, 본 발명은 골대체재의 정밀한 가공이 가능하므로, 입상(granular) 인공골 또는 다른 대체재를 사용할 필요가 없으며, 따라서 시술이 간이하고 정확하게 이루어질 수 있고, 골대체재를 계획된 위치에 정확하게 수복하는 것이 가능하여, 용이하고 정확한 수술이 가능한 작용효과가 기대된다.In addition, since the present invention enables precise processing of the bone framework, there is no need to use granular artificial bones or other substitutes, so that the procedure can be made simple and accurate, and the bone framework can be accurately restored to the planned position. Thus, an easy and accurate operation is expected to work.
또한, 본 발명은 가공이 가능한 상태의 골대체재의 제조과정이 매우 간이한 작용효과가 기대된다.In addition, the present invention is expected to produce a very simple operation effect of the manufacturing process of the bone material in a state capable of processing.
도 1은 본 발명의 일 실시예에 의해 제조된 다공체의 수지 충전 전과 후의 상태를 나타내는 모식도,1 is a schematic diagram showing a state before and after the resin filling of the porous body produced by one embodiment of the present invention,
도 2는 본 발명의 일 실시예에 의해 제조된 다공체의 가공성을 테스트하기 위하여 마련된 지그의 모식도,Figure 2 is a schematic diagram of the jig provided to test the workability of the porous body produced by one embodiment of the present invention,
도 3(a)는 본 발명의 일 실시예에 의해 제조된 65ppi 다공체에 경성왁스를 침투시키고, 이를 가공하는 과정에서 측정된 다공체의 드릴링 하중을 나타내는 그래프, 3(b)는 본 발명의 일 실시예에 의해 제조된 65ppi 다공체에 연성왁스와 경성왁스를 각각 침투시키고, 이를 가공하는 과정에서 측정된 다공체의 드릴링 하중을 나타내는 그래프,Figure 3 (a) is a graph showing the drilling load of the porous body measured in the process of infiltrating the hard wax into the 65 ppi porous body prepared by one embodiment of the present invention, 3 (b) is an embodiment of the present invention A graph showing the drilling load of the porous body measured in the process of infiltrating the soft wax and the hard wax into the 65 ppi porous body manufactured by the example, respectively,
이하에서는 본 발명을 첨부되는 도면 및 바람직한 실시예를 기초로 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.
본 발명에서는 파손이 쉬워 가공이 용이하지 않은 고기공율 다공체를 가공이 용이하며, 가공과정에서 재료 파손을 줄일 수 있도록 수지를 함침시켜 제조된 상태의 다공체와 그 제조방법 및 가공방법을 개시한다. The present invention discloses a porous body in a state in which a high porosity porous body which is easily broken and not easily processed, and manufactured by impregnating a resin so as to reduce material damage during processing, and a manufacturing method and a processing method thereof.
본 발명에 의하면 다공체의 기공을 상당부분 또는 전부 채운 수지가 다공체 기공구조의 지지체 역할을 하며, 다공체의 가공과정에서 다공체와 함께 가공에 참여하고, 이후 용매를 이용하여 용해시키거나 또는 저온 열처리를 통하여 수지를 용융시킴으로써 인출하거나, 또는 열비산시킴으로써 원하는 형태의 다공체를 용이하고 정확하게 제조할 수 있다. According to the present invention, a resin having a substantial portion or all of the pores of the porous body serves as a support for the porous pore structure, and participates in the processing together with the porous body in the process of processing the porous body, and then dissolves using a solvent or through low temperature heat treatment. The porous body of a desired form can be manufactured easily and correctly by taking out by melt | melting a resin, or heat-scattering.
도 1에서는 본 발명의 일 실시예에 의해 제조된 다공체의 수지 충전 전과 후의 상태에 관한 모식도를 나타내었다. In FIG. 1, the schematic diagram regarding the state before and after resin filling of the porous body manufactured by one Example of this invention was shown.
도시된 다공체는 단면도로서, (a)는 개기공내에 충전물질이 채워지기 전, (b)는 개기공내에 충전물질이 채워진 후를 각각 나타내는 것이다. The illustrated porous body is a cross-sectional view, (a) shows before the filling material is filled in the open pores, and (b) shows after the filling material is filled in the open pores.
<제조예><Production example>
1. 다공체를 용액상태의 단위체 또는 부분 중합체, 또는 용융상태의 수지에 침잠한다. 1. The porous body is immersed in a solution unit or partial polymer or a molten resin.
여기서 용액상태 또는 용융상태의 수지는 점도가 충분히 낮은 상태이므로 다공체 내 기공구조에 쉽게 침투될 수 있으며, 이 때 다공체 재질에 따라서 젖음성을 선별하여 적용하면 더 바람직하다.Here, the resin in the solution state or in the molten state can be easily penetrated into the pore structure in the porous body because the viscosity is low enough, and it is more preferable to select and apply the wettability according to the porous material.
또한, 단위체 또는 부분 중합체도 수지의 범주에 포함되는 것으로 이해하여야 하며, 수지가 상온에서 액상인지 고상인지에 따라 취급하는 방법을 구분하기 위하여 위와 같이 용액상태인 경우 단위체 또는 부분 중합체라는 용어를 별도로 사용한 것에 불과하다.In addition, it is to be understood that the monomer or partial polymer is also included in the category of the resin, and the term monomer or partial polymer is separately used in the solution state as described above to distinguish the handling method according to whether the resin is liquid or solid at room temperature. It's just that.
2. 다공체 내 기공에 침투된 수지를 응고 또는 경화시킨다.2. Solidify or cure the resin penetrated into the pores in the porous body.
용액상태의 단위체 또는 부분 중합체 원료는 상온에서 액상으로 존재하며, 경화가 필요할 경우, 화학개시제, 열개시제 또는 광개시제를 별도로 투입하면 화학 경화, 열경화 또는 광경화가 이루어진다. The unit or partial polymer raw material in a solution state is in a liquid state at room temperature, and when curing is required, chemical curing, thermal curing, or photoinitiator is separately added to chemical curing, thermal curing, or photocuring.
용액상태의 단위체 또는 부분 중합체가 중합경화된 수지는 열가소성 수지와 열경화성 수지를 모두 망라하며, 예로서는 폴리에틸렌(PE), 저밀도 폴리에틸렌(LDPE), 중밀도 폴리에틸렌(MDPE), 고밀도 폴리에틸렌(HDPE), 폴리프로필렌(PP), 폴리스티렌(PS), 폴리염화비닐(염화비닐수지:PVC), ABS 수지(acrylonitrile-butadiene-styrene resin), 아크릴로니트릴-스티렌수지(ASTNWL, S-AN), 폴리메틸 메타크릴레이트(메타크릴수지, PMMA), 폴리아미드(나일론, PA),폴리아세탈(POM), 폴리카보네이트(PC), 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 변성 폴리페닐렌에테르, 불소수지(Fluoroplastics), 페놀수지(PE), 우레아수지(UF), 멜라민수지(MF), 불포화 폴리에스터 수지(UP), 에폭시 수지(ER), 폴리우레탄(PUR), 실리콘 수지(SI), 알키드 수지(ALK)를 포함한다. Polymerized resins in which the monomer or partial polymer in a solution state are polymerized include both thermoplastic resins and thermosetting resins, and examples thereof include polyethylene (PE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and polypropylene. (PP), polystyrene (PS), polyvinyl chloride (PVC), ABS resin (acrylonitrile-butadiene-styrene resin), acrylonitrile-styrene resin (ASTNWL, S-AN), polymethyl methacrylate (Methacryl resin, PMMA), polyamide (nylon, PA), polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), modified polyphenylene ether, Fluoroplastics, phenolic resins (PE), urea resins (UF), melamine resins (MF), unsaturated polyester resins (UP), epoxy resins (ER), polyurethanes (PUR), silicone resins (SI), Alkyd resin (ALK).
또한, 용융상태의 수지는 상온에서 고상 또는 겔상태로 존재하며, 적절히 가열하면 용융상태로 변화되고, 다시 냉각하면 원래의 고상을 다시 유지하는 특성을 갖는다. In addition, the resin in the molten state is present in the solid state or gel state at room temperature, and when properly heated, is changed into the molten state, and when cooled again, retains the original solid phase.
상기 용융상태로 사용하는 수지는 열가소성 수지를 망라하며, 예로서는 폴리에틸렌(PE), 폴리에스테르, 폴리프로필렌(PP), 폴리스티렌(PS), 폴리염화비닐(PVC), 폴리메틸 메타크릴레이트(PMMA), 폴리아미드(PA), 폴리카보네이트(PC) 또는 폴리에틸렌 테레프탈레이트(PET)를 포함하는 열경화성 수지, 폴리에틸렌 왁스(Polyethylen wax), 폴리프로필렌 왁스(Polypropylenr wax), 폴리옥시에틸렌 글리콜왁스(Polyoxyethylen glycol wax), 할로겐화 탄화수소 왁스(Halogenated hydrocarbon wax), 하이드로겐화 왁스(Hydrogenated wax) 또는 왁스 에스테르(wax ester)를 포함하는 치과용 왁스; 파라핀 왁스(Paraffin wax), 유동 파라핀(Liquid paraffin), 마이크로크리스탈 왁스(Microcrystalline wax), 페트롤라툼(Petrolatum), 반다 왁스(Barnsdah wax), 오조케라이트(Ozokerite), 몬탄 왁스(Montan wax) 또는 세레진(Seresin)을 포함하는 석유계 왁스; 양모랍(Wool wax), 소이 왁스(Soy wax), 라놀린(Lanolin) 또는 밀랍 왁스(Bees wax)를 포함하는 동물성왁스; 일본 왁스(Japan wax), 코코아 버터(Cocoa butter), 카르나우바 왁스(Carnauba wax), 크리스탈 팜 왁스(Crystal palm wax), 칸데릴라 왁스(Candellia wax) 또는 오우리큐리 왁스(Ouricury wax)를 포함하는 식물성 왁스; 폴리에틸렌 왁스(Polyethylen wax), 그래뉼 왁스(Granule Wax), 화이트 왁스(White wax), 젤 왁스(Gel wax), 무수 프탈산(Phthalic Anhydride)과 에틸렌 글리콜(Ethylene Glycol)의 중합체, 피셔-트롭쉬 왁스(Fischer-Tropsch wax) 또는 멀티 왁스(Multi wax)를 포함하는 합성 왁스; 샌드락(Sandarac), 로진(Rosin) 또는 셸락(Shellac)을 포함하는 천연 유래 레진을 포함한다.The resin used in the molten state includes a thermoplastic resin, and examples thereof include polyethylene (PE), polyester, polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), Thermosetting resins including polyamide (PA), polycarbonate (PC) or polyethylene terephthalate (PET), polyethylene wax, polypropylenr wax, polyoxyethylene glycol wax, Dental waxes, including halogenated hydrocarbon waxes, hydrogenated waxes or wax esters; Paraffin wax, Liquid paraffin, Microcrystalline wax, Petrolatum, Barnsdah wax, Ozokerite, Montan wax or three Petroleum waxes including resins; Animal waxes including wool wax, soy wax, lanolin or bees wax; Includes Japan wax, Cocoa butter, Carnauba wax, Crystal palm wax, Candellia wax or Ouricury wax Vegetable waxes; Polyethylene wax, Granule Wax, White wax, Gel wax, Polymer of Phthalic Anhydride and Ethylene Glycol, Fischer-Tropsch Wax Synthetic waxes including Fischer-Tropsch wax or Multi wax; Natural derived resins, including Sandrac, Rosin, or Shellac.
상기 용융상태의 고분자 수지는 상온에서는 강도, 녹는점, 유리전이온도(Tg)가 높은 것이 바람직하다.The polymer resin in the molten state is preferably high in strength, melting point, glass transition temperature (Tg) at room temperature.
여기서, 상기 수지를 다공체에 침투시키기 위해서는 적정 온도로 가열하여야 한다. 예를 들어 왁스, 무수 프탈산(Phthalic Anhydride)과 에틸렌글리콜의 중합체 의 경우에는 약 100 ~ 200℃의 온도범위, 특히 107℃ 부근에서 매우 낮은 점도를 나타내는 용융체 상태로 존재하며, 따라서 상기 용융체는 다공체내에 침투되거나, 다공체로부터 인출되기에 용이하다. In order to infiltrate the resin into the porous body, the resin must be heated to an appropriate temperature. For example, in the case of polymers of wax, phthalic anhydride and ethylene glycol, they exist in a molten state which exhibits very low viscosities in the temperature range of about 100 to 200 ° C., in particular around 107 ° C., so that the melt is in the porous body. It is easy to penetrate or withdraw from the porous body.
상기 용액상태의 단위체 또는 부분 중합체는 바람직하게는 에폭시, PMMA 등을 사용한다. As the unit or partial polymer in the solution state, epoxy, PMMA, or the like is preferably used.
또한, 상기 용융상태의 수지는 바람직하게는 무수 프탈산(Phthalic Anhydride)와 에틸렌 글리콜(Ethylene Glycol)의 중합체, 쉘락(shellac), 로진(Rosin) 등을 사용한다.In addition, the molten resin is preferably a polymer of phthalic anhydride and ethylene glycol (Ethylene Glycol), shellac, rosin and the like.
위 수지들은 대체로 90 ~ 150℃의 온도범위에서 용융, 침적, 경화되며, 따라서 다공체에 열손상을 일으키지 않고도 다공체 내 기공을 충전할 수 있다.The above resins are generally melted, deposited, and cured in the temperature range of 90 to 150 ° C., and thus can fill pores in the porous body without causing thermal damage to the porous body.
다공체에서 개기공 중 90% 이상의 개기공에 수지가 침투되는 경우라야 다공체의 취급이 용이해질 것이며, 따라서 위 90%는 그 의의를 가지나, 만일 복잡형상 가공이 아닌 경우라면 가공이 필요한 부분에만 수지가 침투해도 무방하며, 침투부피가 개기공의 5% 이하일 경우라도 다공체 내부 구조를 피복한 고분자 수지가 충분한 강도를 나타낸다면 CAD/CAM 가공시의 외부 stress를 버텨낼 수 있으므로 이 경우에는 수지가 침투된 개기공의 비율이 90% 미만이어도 상관없다. 즉, 0 초과 90% 미만의 범위값을 가질 수도 있다. If the resin penetrates more than 90% of the open pores in the porous body, it will be easier to handle the porous body. Therefore, the above 90% has the meaning, but if the process is not complicated, the resin should be processed only in the part requiring processing. Even if the penetration volume is less than 5% of the open pores, if the polymer resin coated with the porous internal structure shows sufficient strength, external stress during CAD / CAM processing can withstand the stress. The porosity may be less than 90%. That is, it may have a range value greater than 0 and less than 90%.
한편, 경우에 따라서는 다공체를 수지에 침잠하여 수지가 다공체의 기공내에 침투되도록 하였으나 다공체를 다시 수지로부터 인상하는 과정에서 수지가 다시 인출될 수도 있다. In some cases, the porous body is submerged in the resin to allow the resin to penetrate into the pores of the porous body, but the resin may be withdrawn again in the process of pulling the porous body out of the resin again.
이러한 점을 감안하여, 수지를 응고하거나 경화하는 단계를 나누어줄 필요가 있는데, 예를 들어 다공체가 수지에 침잠된 상태에서 냉각 또는 광경화, 열경화 함으로써, 수지를 일부 응고 또는 경화시키고, 완전한 응고 또는 경화가 이루어지기 이전에 침잠된 다공체를 수지로부터 인출하여 응고 또는 경화를 완료하는 것도 대체 가능한 방법이 될 수 있다.In view of this, it is necessary to divide the steps of solidifying or curing the resin, for example, by cooling or photocuring and thermosetting the porous body submerged in the resin, thereby partially solidifying or curing the resin and completely solidifying the resin. Alternatively, alternative methods may be used to take out the submerged porous body from the resin to complete solidification or curing before curing.
3. 다공체를 가공한다. 3. Process the porous body.
위 수지들을 다공체 내에 충전한 후, 기계적 가공을 통해서 원하는 형상을 얻는다. 본 발명에서는 환자의 골결손부위나 치조골형성이 필요한 부분의 형상을 CT(computerized tomography)로 촬영하고 이를 CAD 소프트웨어에서 불러들여 환자에게 증대 또는 복원이 필요한 형상의 대체 치조골을 설계한 후, 이 설계데이터에 따라 컴퓨터제어가공장치(CAM)에서 골대체재 블랭크 블록(blank block - 블록형태의 모노리스 성형체, porous block bone)을 가공하여 목적한 설계 형상의 치조골로 제조한다. 환자마다 증대 또는 복원이 필요한 치조골의 형상은 상이하므로, 개별 환자에게 정합되는 치조골을 제조하는데 있어서는 CAD/CAM 가공이 가장 우수하다고 할 것이나, 기계적 가공은 위 CAD/CAM 가공에만 한정되는 것은 아니며, 필요에 따라서 MAM 절삭가공 등 다른 형태의 기계적 가공방법을 사용할 수도 있다. After filling the above resin into the porous body, the desired shape is obtained through mechanical processing. In the present invention, the bone defects or the shape of the alveolar bone formation needs to be taken by CT (computerized tomography) and imported from CAD software to design the replacement alveolar bone of the shape that needs to be augmented or restored to the patient, this design data According to the computer-controlled processing device (CAM) to process the blank block (blank block-monolith shaped block, porous block bone) of the frame to produce the alveolar bone of the desired design shape. Since the shape of the alveolar bone that needs to be augmented or restored is different for each patient, CAD / CAM processing may be the best in producing alveolar bone that is matched to an individual patient, but mechanical processing is not limited to the above CAD / CAM processing. In some cases, other types of mechanical processing methods such as MAM cutting may be used.
4. 수지를 제거한다.4. Remove the resin.
골대체재의 가공이 완료되고나면 이식을 위하여 위 수지들을 제거해야 하며, 열비산함으로써 순수 다공체를 얻는다. 골대체제는 이와 같은 순수 다공체로 이루어지기 때문이다. 만일 용융 또는 용해가 가능한 수지라면 열비산 대신 이를 용융시키거나, 용매에 의해 용해시켜서 다공체로부터 인출되도록 할 수도 있다. 용매는 예를 들어 아세톤 등 케톤계 물질을 사용할 수 있으며, 그 밖에도 수지를 용해할 수 있는 용매는 다른 종류도 가능하다.Once processing of the framework is completed, the above resins must be removed for transplantation, and heat scattered to obtain a pure porous body. This is because the bone substitute is composed of such a pure porous body. If the resin is capable of melting or dissolving, it may be melted instead of heat scattering or dissolved by a solvent to be withdrawn from the porous body. As the solvent, for example, a ketone-based substance such as acetone may be used, and other solvents capable of dissolving the resin may also be used.
<다공체의 특성><Characteristics of Porous Body>
본 발명의 일 실시예에 의한 다공체는 바람직하게는 스캐폴드 구조(scaffold structure)를 가지며, 적어도 40%의 개기공율을 갖거나 또는 적어도 60%의 총 기공율을 갖는 것이 바람직하다. 이는 치조골에 대한 골대체제에 요망되는 특성이므로, 만일 치조골의 골대체재가 아니라면 위 기공율을 벗어나면서도 가공과정에서 파손이 예상되는 다공체에도 본 발명을 적용할 수 있다. 또한, 기공의 특성, 즉 개기공이냐 폐기공이냐의 여부에 관계없이 적용될 수 있는 바, 재료가 완전한 폐기공을 가질 수는 없는 것이므로, 개기공이 존재하는 한, 폐기공의 비율이 어느정도가 되었든지 상관없이 수지의 침투가 가능하다면 본 발명에 의한 방법을 폐기공이 우세한 다공체에도 적용할 수 있을 것이다.The porous body according to one embodiment of the present invention preferably has a scaffold structure and preferably has a porosity of at least 40% or a total porosity of at least 60%. Since this is a desired characteristic of the bone replacement system for the alveolar bone, the present invention can be applied to a porous body which is expected to be damaged in the processing process even if the alveolar bone is not the bone replacement material. In addition, it can be applied regardless of the characteristics of the pores, i.e., whether it is an open or a closed hole, and since the material cannot have a complete closed hole, the ratio of the closed holes becomes to some extent as long as the open holes exist. Regardless of whether it is possible to penetrate the resin, the method according to the present invention may be applied to a porous body predominantly discarded.
치조골에 대한 골대체재로서의 다공체는 하이드록시 아파타이트(Hydroxy Apatite), 삼인산칼슘 (Tri Calcium Phosphate, TCP) 또는 2상 인산칼슘(Biphasic Calcium Phosphate, BCP)을 포함하는 인산칼슘계 물질 또는 석고계 물질을 들 수 있으며, 열거되지는 아니하였으나, 그 밖에도 가능한 다른 물질도 충분히 존재할 수 있다. Porous bodies as bone substitutes for alveolar bone include calcium phosphate-based or gypsum-based materials including hydroxyapatite, tricalcium phosphate (TCP) or biphasic calcium phosphate (BCP). Although not listed, other possible materials may be sufficient.
가장 광범위하게는 모든 다공체가 대상이 될 수 있으며, 다만 본 발명의 적용이 필요한 경우에 따른 적정한 기공율이 정해질 수는 있으나, 이는 재료의 특성에 따라서 달라지므로 일의적으로 표현할 수는 없을 것이다. In the broadest range, all porous bodies may be targeted, but an appropriate porosity may be determined when the present invention is required, but this may not be uniquely expressed because it depends on the properties of the material.
<실시예><Example>
1. 수지로서 연성왁스(soft wax)의 사용1. Use of soft wax as resin
본 실시예에서는 다공체를 충전하기 위한 연성왁스로서 바람직하게는 파라핀 왁스를 사용하였다. 연성왁스로는 파라핀 왁스(Paraffin wax), 유동 파라핀(Liquid paraffin), 마이크로크리스탈 왁스(Microcrystalline wax), 페트롤라툼(Petrolatum), 반다 왁스(Barnsdah wax), 오조케라이트(Ozokerite), 몬탄 왁스(Montan wax) 또는 세레진(Seresin)을 포함하는 석유계 왁스; 양모랍(Wool wax), 소이 왁스(Soy wax), 라놀린(Lanolin) 또는 밀랍 왁스(Bees wax)를 포함하는 동물성왁스, 일본 왁스(Japan wax), 코코아 버터(Cocoa butter), 카르나우바 왁스(Carnauba wax), 크리스탈 팜 왁스(Crystal palm wax), 칸데릴라 왁스(Candellia wax) 또는 오우리큐리 왁스(Ouricury wax)을 포함하는 식물성 왁스; 폴리에틸렌 왁스(Polyethylen wax), 그래뉼 왁스(Granule Wax), 화이트 왁스(White wax) 또는 젤 왁스(Gel wax)를 포함하는 합성 왁스 등을 사용할 수도 있다. In this embodiment, paraffin wax is preferably used as the soft wax for filling the porous body. Soft waxes include Paraffin wax, Liquid paraffin, Microcrystalline wax, Petrolatum, Barnsdah wax, Ozokerite, Montan wax petroleum waxes, including waxes or ceresins; Animal waxes including Wool wax, Soy wax, Lanolin or Bees wax, Japan wax, Cocoa butter, Carnauba wax ( Vegetable waxes including Carnauba wax, Crystal palm wax, Candellia wax or Ouricury wax; Polyethylene wax, Granule Wax, White Wax or Synthetic Wax including Gel Wax may be used.
상기 연성왁스를 100℃에서 가열하여 용융시킨 후, 다공체에 침투하고 냉각과정을 통하여 수지를 응고시켰다. 이와 같이 제조된 다공체를 이용하여 하기 두 가지 조건에서 드릴링 테스트(drilling test)를 실시하였다. The soft wax was melted by heating at 100 ° C., and then permeated into the porous body to solidify the resin through a cooling process. Using the porous body thus prepared, a drilling test was performed under the following two conditions.
CAM 가공시에는 내면과 외면에 대하여 황삭 공정 후 내면 정삭 공정을 거치게 되는데 황삭 및 정삭 공정에서 가공대상물의 손상 등을 확인하기 위해서는 drilling test를 적용한 것이다.In CAM machining, roughing is performed on the inner surface and the outer surface, followed by the inner surface finishing process. Drilling test is applied to check the damage of the workpiece in the roughing and finishing process.
표 1 평가 tool 및 조건
Tool 직경 Drilling 깊이 Drill RPM Drill 이송 속도
Test 1 Titanium 가공용 Tool 2 Min. 4mm 300RPM 10mm/min
Test 2 Zirconia 가공용 Tool 2 Max. 10mm 800RPM 100mm/min
Table 1 Evaluation tool and condition
Tool diameter Drilling depth Drill RPM Drill feed speed
Test
1 Titanium Processing Tool 2 Min. 4mm 300 RPM 10mm / min
Test
2 Zirconia Processing Tool 2 Max. 10 mm 800 RPM 100mm / min
상기 테스트를 위한 지그의 모식도를 도 2에서와 같이 나타내었다.Schematic diagram of the jig for the test is shown as in FIG.
지그 체결을 위해 연성왁스를 침투시켜 고정한 다공체는 가공 단계에서 많은 파손이 일어났다. 이를 통하여 알 수 있었던 것은, 연성왁스는 개기공을 충전하는 역할은 충실히 하였으나, 가공시 다공체를 지지하는 역할은 완전히 수행하지 못하였다. 그럼에도 불구하고, 연성왁스의 사용만으로도 다공체의 가공에 대한 가능성이 있으며, 연성왁스를 사용하지 아니하는 경우보다는 훨씬 우수한 가공상태를 나타냄을 확인할 수 있었다. 물론, tool의 종류 및 가공조건(Drill RPM, 이송 속도)에 따라 다공체의 손상 정도가 달라질 수 있다.The porous body fixed by penetrating the soft wax to fix the jig caused a lot of breakage in the processing step. Through this, it was found that the soft wax was faithful to fill the open pores, but did not fully support the porous body during processing. Nevertheless, the use of the soft wax alone has the potential for processing the porous body, it can be seen that it shows a much better processing state than when not using the soft wax. Of course, the damage of the porous body may vary depending on the type of tool and the processing conditions (drill RPM, feed rate).
2. 수지로서 경성왁스의 사용2. Use of hard wax as resin
또 다른 수지로서 경성왁스(hard wax)를 사용하였다. As another resin, hard wax was used.
이와 같은 경성왁스는 무수 프탈산(Phthalic Anhydride)와 에틸렌 글리콜(Ethylene Glycol)의 중합체, 폴리프로필렌 왁스(Polypropylenr wax), 할로겐화 탄화수소 왁스(Halogenated hydrocarbon wax), 하이드로겐화 왁스(Hydrogenated wax), 피셔-트롭쉬 왁스(Fischer-Tropsch wax), 멀티 왁스(Multi wax) 등을 들 수 있으며, 본 실시예에서는 이중 프탈릭 안하이드라이드(Phthalic Anhydride)와 에타네디올(Ethanediol)의 중합체인 크리스탈 왁스를 사용하였다Such hard waxes are polymers of phthalic anhydride and ethylene glycol, polypropylene wax, halogenated hydrocarbon waxes, hydrogenated waxes, and Fischer-Tropsch. And waxes (Fischer-Tropsch wax), multi waxes, and the like. In this embodiment, a crystal wax, which is a polymer of double phthalic anhydride and ethanediol, was used.
3차원 다공구조를 갖는 다공체의 가공성을 보다 증진하기 위해서는 다공체 내부의 빈 공간을 채워서 가공중 다공체에 가해지는 충격을 보다 완화시켜야 한다. 다만, 경성왁스는 침투성 측면에서 연성왁스보다 더 주의를 기울여야 하며, 따라서 다공체내 침투가 용이하고 가공시 강성이 높으며 열처리 공정시 분해물의 양을 최소화하기 위한 solvent의 제거 공정이 가능한 소재를 선정하여 적용하여야 한다.In order to further improve the processability of the porous body having a three-dimensional porous structure, it is necessary to fill the empty space inside the porous body to further mitigate the impact on the porous body during processing. However, hard wax should pay more attention than soft wax in terms of permeability. Therefore, it is easy to penetrate into porous body, has high rigidity during processing, and selects and applies materials that can remove solvent to minimize the amount of decomposition products during heat treatment process. shall.
경성왁스 적용시 100℃ 내외로 온도가 증가하면 용융에 의해 다공체 내부로 침투가 용이하며, 온도가 떨어지면 응고하여 경성왁스와 함께 강성을 유지하는 다공체의 제조가 가능하다. When hard wax is applied, it is easy to penetrate into the porous body by melting when the temperature increases to around 100 ° C, and it is possible to manufacture a porous body that maintains rigidity with hard wax by solidifying when the temperature drops.
용융상태의 경성왁스가 침투된 후 다시 응고되었을 때의 부피 변화는 없는 것으로 확인되었으므로, 경성왁스의 팽창 수축에 따른 문제점은 발생되지 아니하였다. Since it was confirmed that there was no volume change when the molten hard wax penetrated and then solidified again, there was no problem caused by expansion and contraction of the hard wax.
기공에 충전되었던 경성왁스는 가공 후 용매인 아세톤에 의해 쉽게 제거되고 잔류 유기물은 열처리 공정에 의해 용이하게 제거하여 전량 열처리 공정에 의해 유기물을 제거해야 하는 공정에 비하여 공정시간을 단축할 수 있다.The hard wax that has been filled in the pores can be easily removed by acetone, which is a solvent after processing, and the remaining organic matter can be easily removed by a heat treatment process, thereby reducing the process time compared to a process in which the organic material must be removed by a total heat treatment process.
3. 경성왁스가 침투된 다공체의 가공3. Processing of porous body penetrated with hard wax
경성왁스가 침투된 다공체를 연성왁스가 침투된 다공제에 대한 가공실험시 적용하였던 가장 가혹한 조건인 Drill RPM 800, Drill 이송속도 200mm/min를 적용하여 가공실험하였다.The porous wax penetrated porous body was subjected to the experiment using the drill RPM 800 and the drill feed rate 200mm / min, which are the harshest conditions that were applied during the machining of the soft wax penetrated porous material.
경성왁스가 함침된 다공체는 가공 후 표면 모서리부분의 상태가 양호하며, chipping 등 다공체 구조의 파손은 관찰되지 않았다.The porous wax impregnated with hard wax had a good surface edge after processing, and no breakage of the porous structure such as chipping was observed.
경성왁스 제거 후에 관찰한 결과에서도 가공 표면 모서리 부분의 구조가 가공시 tool의 영향을 거의 받지 않고 분괴도 없는 것으로 확인되었다. After the removal of the hard wax, it was confirmed that the structure of the edge of the machined surface was hardly affected by the tool during the machining and there was no fracture.
도 3(a)는 본 발명의 일 실시예에 의해 제조된 65ppi 다공체에 경성왁스를 침투시키고, 이를 가공하는 과정에서 측정된 다공체의 드릴링 하중을 나타내는 그래프, 3(b)는 본 발명의 일 실시예에 의해 제조된 65ppi 다공체에 연성왁스와 경성왁스를 각각 침투시키고, 이를 가공하는 과정에서 측정된 다공체의 드릴링 하중을 나타내는 그래프이다. Figure 3 (a) is a graph showing the drilling load of the porous body measured in the process of infiltrating the hard wax into the 65 ppi porous body prepared by one embodiment of the present invention, 3 (b) is an embodiment of the present invention It is a graph showing the drilling load of the porous body measured in the process of infiltrating the soft wax and the hard wax into the 65ppi porous body manufactured by the example, respectively.
도시된 바와 같이, 드릴링(Drilling) 공정 적용시 17N 정도의 하중이 가해지며, 이는 연성왁스를 사용했을 때의 약 9.3N에 비해 매우 큰 값으로서 매우 높은 강성을 확보 할 수 있었다. As shown, when the drilling (Drilling) process is applied, a load of about 17N is applied, which is a very large value compared to about 9.3N when using a soft wax was able to secure a very high rigidity.
하중이 높으면 다공체 및 왁스의 강도가 높다는 것을 뜻하며, 즉 왁스가 지지체를 잘 보호하고 있음을 의미하는 것이다.Higher loads mean higher strength of the porous body and the wax, ie, the wax is better protecting the support.
다공체의 기공의 크기에 따른 가공성을 비교 실험하였는데, 기공 크기에 따른 다공체의 가공성은 경성왁스를 함침한 단계에서는 차이를 확인할 수 없을 정도로 모두 양호하였다. 한편, 경성왁스를 제거한 후 관찰한 결과, 기공크기가 클수록 가공홀의 모서리에서 구조가 붕괴된 것을 확인하였으나, 이것은 가공 공정중의 응력집중에 의한 파괴이기도 하지만 다공체 본래의 형상 구조에 기인한 것일 수도 있으므로, 큰 문제가 되지는 않는 것으로 판단된다.Compared to the processability of the pores of the porous body was compared, the processability of the porous body according to the pore size was all so good that the difference can not be confirmed in the step of impregnating the hard wax. On the other hand, after removing the hard wax, it was confirmed that the larger the pore size, the more the structure collapsed at the edge of the processing hole. However, this may be due to the original shape structure of the porous body, although it is also destroyed by the stress concentration during the machining process. This is not a big problem.
이상과 같이 본 발명을 바람직한 실시예를 기초로 설명하였으나, 상기 실시예로부터 본 발명의 보호범위가 한정되는 것으로 해석되지는 아니하며, 본 발명의 보호범위는 후술하는 특허청구범위의 해석에 의하여야 함은 자명한 것이라 할 것이다. Although the present invention has been described based on the preferred embodiments as described above, the scope of protection of the present invention is not to be construed as limiting the scope of the present invention, and the scope of protection of the present invention should be based on the interpretation of the following claims. Will be obvious.

Claims (14)

  1. 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지를 마련하는 단계; Preparing a unit or partial polymer in a solution state or a resin in a molten state;
    상기 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지에 다공체를 침잠하여 상기 단위체 또는 부분중합체, 또는 수지가 다공체의 기공에 침투되도록 하는 단계; 및 Submerging the porous body in the solution unit or partial polymer or molten resin to allow the unit or partial polymer or resin to penetrate the pores of the porous body; And
    상기 다공체에 침투된 단위체 또는 부분중합체를 개시제, 빛 또는 열에 의해 중합경화시키거나, 용융침투된 수지를 냉각에 의하여 응고시키는 단계;Polymerizing or curing the unit or partial polymer penetrated into the porous body by an initiator, light or heat, or solidifying the melt-penetrated resin by cooling;
    를 포함하여 구성되는 것을 특징으로 하는 가공성이 개선된 다공체의 제조방법.Process for producing a porous body with improved workability, characterized in that comprising a.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 용액상태의 단위체 또는 부분중합체는 상온에서 용액상태이며, 개시제, 빛 또는 열에 의해 중합 경화되는 것임을 특징으로 하는 가공성이 개선된 다공체의 제조방법.The unit or partial polymer of the solution state is a solution state at room temperature, and a method for producing a porous body improved workability, characterized in that the polymerization cured by the initiator, light or heat.
  3. 제 2 항에 있어서, The method of claim 2,
    용액상태의 단위체 또는 부분중합체가 중합경화된 수지는 폴리에틸렌(PE), 저밀도 폴리에틸렌(LDPE), 중밀도 폴리에틸렌(MDPE), 고밀도 폴리에틸렌(HDPE), 폴리프로필렌(PP), 폴리스티렌(PS), 폴리염화비닐(염화비닐수지:PVC), ABS 수지(acrylonitrile-butadiene-styrene resin), 아크릴로니트릴-스티렌수지(ASTNWL, S-AN), 폴리메틸 메타크릴레이트(메타크릴수지, PMMA), 폴리아미드(나일론, PA),폴리아세탈(POM), 폴리카보네이트(PC), 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 변성 폴리페닐렌에테르, 불소수지(Fluoroplastics), 페놀수지(PE), 우레아수지(UF), 멜라민수지(MF), 불포화 폴리에스터 수지(UP), 에폭시 수지(ER), 폴리우레탄(PUR), 실리콘 수지(SI), 알키드 수지(ALK)를 포함하는 것을 특징으로 하는 가공성이 개선된 다공체의 제조방법.Polymerized resins in which monomers or partial polymers in solution form are polyethylene (PE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), polychlorinated Vinyl (vinyl chloride resin: PVC), ABS resin (acrylonitrile-butadiene-styrene resin), acrylonitrile-styrene resin (ASTNWL, S-AN), polymethyl methacrylate (methacrylic resin, PMMA), polyamide ( Nylon, PA), Polyacetal (POM), Polycarbonate (PC), Polyethylene Terephthalate (PET), Polybutylene Terephthalate (PBT), Modified Polyphenylene Ether, Fluoroplastics, Phenolic Resin (PE) And urea resins (UF), melamine resins (MF), unsaturated polyester resins (UP), epoxy resins (ER), polyurethanes (PUR), silicone resins (SI), and alkyd resins (ALK). Method for producing a porous body having improved workability.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 용융 또는 용해상태의 수지는 상온에서 고체상태이며, 가열 또는 용매에 의해 용융 또는 용해되고, 냉각에 의해 다시 응고되는 것임을 특징으로 하는 가공성이 개선된 다공체의 제조방법.The method of claim 1, wherein the molten or dissolved resin is solid at room temperature, melted or melted by heating or a solvent, and solidified again by cooling.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 용융상태의 수지는 폴리에틸렌(PE), 폴리에스테르, 폴리프로필렌(PP), 폴리스티렌(PS), 폴리염화비닐(PVC), 폴리메틸 메타크릴레이트(PMMA), 폴리아미드(PA), 폴리카보네이트(PC) 또는 폴리에틸렌 테레프탈레이트(PET)를 포함하는 열경화성 수지, 폴리에틸렌 왁스(Polyethylen wax), 폴리프로필렌 왁스(Polypropylenr wax), 폴리옥시에틸렌 글리콜왁스(Polyoxyethylen glycol wax), 할로겐화 탄화수소 왁스(Halogenated hydrocarbon wax), 하이드로겐화 왁스(Hydrogenated wax) 또는 왁스 에스테르(wax ester)를 포함하는 치과용 왁스; 파라핀 왁스(Paraffin wax), 유동 파라핀(Liquid paraffin), 마이크로크리스탈 왁스(Microcrystalline wax), 페트롤라툼(Petrolatum), 반다 왁스(Barnsdah wax), 오조케라이트(Ozokerite), 몬탄 왁스(Montan wax) 또는 세레진(Seresin)을 포함하는 석유계 왁스; 양모랍(Wool wax), 소이 왁스(Soy wax), 라놀린(Lanolin) 또는 밀랍 왁스(Bees wax)를 포함하는 동물성왁스; 일본 왁스(Japan wax), 코코아 버터(Cocoa butter), 카르나우바 왁스(Carnauba wax), 크리스탈 팜 왁스(Crystal palm wax), 칸데릴라 왁스(Candellia wax) 또는 오우리큐리 왁스(Ouricury wax)를 포함하는 식물성 왁스; 폴리에틸렌 왁스(Polyethylen wax), 그래뉼 왁스(Granule Wax), 화이트 왁스(White wax), 젤 왁스(Gel wax), 무수 프탈산(Phthalic Anhydride)와 에틸렌 글리콜(Ethylene Glycol)의 중합체, 피셔-트롭쉬 왁스(Fischer-Tropsch wax) 또는 멀티 왁스(Multi wax)를 포함하는 합성 왁스; 샌드락(Sandarac), 로진(Rosin) 또는 셸락(Shellac)을 포함하는 천연 유래 레진을 포함하는 것을 특징으로 하는 가공성이 개선된 다공체의 제조방법.The resin in the molten state may be polyethylene (PE), polyester, polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polyamide (PA), polycarbonate ( PC) or thermosetting resins including polyethylene terephthalate (PET), polyethylene wax, polypropylene wax, polyoxyethylen glycol wax, halogenated hydrocarbon wax, Dental waxes including hydrogenated waxes or wax esters; Paraffin wax, Liquid paraffin, Microcrystalline wax, Petrolatum, Barnsdah wax, Ozokerite, Montan wax or three Petroleum waxes including resins; Animal waxes including wool wax, soy wax, lanolin or bees wax; Includes Japan wax, Cocoa butter, Carnauba wax, Crystal palm wax, Candellia wax or Ouricury wax Vegetable waxes; Polyethylene wax, Granule Wax, White wax, Gel wax, Polymer of Phthalic Anhydride and Ethylene Glycol, Fischer-Tropsch Wax Synthetic waxes including Fischer-Tropsch wax or Multi wax; Method for producing a porous body with improved processability, characterized in that it comprises a naturally derived resin, including Sandrac (Randarac), rosin (Rosin) or Shellac (Shellac).
  6. 제 4 항에 있어서, The method of claim 4, wherein
    상기 용융상태의 수지는 70 ~ 300℃의 온도에서 용융상태에 있으며, 1 ~ 10,000cP의 점도 범위값을 갖는 것을 특징으로 하는 가공성이 개선된 다공체의 제조방법.The molten resin is in a molten state at a temperature of 70 ~ 300 ℃, and has a viscosity range value of 1 ~ 10,000cP characterized in that the processability improved porous body manufacturing method.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 다공체는 적어도 30%의 개기공율을 갖거나 또는 적어도 50%의 총 기공율을 갖는 것임을 특징으로 하는 가공성이 개선된 다공체의 제조방법.And the porous body has an open porosity of at least 30% or a total porosity of at least 50%.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 다공체는 하이드록시 아파타이트(Hydroxy Apatite), 삼인산칼슘 (Tri Calcium Phosphate, TCP) 또는 2상 인산칼슘(Biphasic Calcium Phosphate, BCP)을 포함하는 인산칼슘계 물질 또는 석고계 물질인 것을 특징으로 하는 가공성이 개선된 다공체의 제조방법.The porous body is a phosphate-based material or gypsum-based material including hydroxyapatite, tricalcium phosphate (TCP) or biphasic calcium phosphate (BCP), or a gypsum-based material. Improved method for producing porous bodies.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 수지를 응고하거나 경화하는 단계에서는, 다공체가 수지에 침잠된 상태에서 일부 응고 또는 경화가 이루어지도록 하고, 침잠된 다공체를 수지로부터 인출하여 응고 또는 경화가 완료되도록 하는 것을 특징으로 하는 가공성이 개선된 다공체의 제조방법.In the step of solidifying or curing the resin, it is possible to partially solidify or cure in the state in which the porous body is submerged in the resin, and to improve the processability, characterized in that the solidified or hardened to be taken out by pulling out the submerged porous body from the resin Method for producing a porous body.
  10. 용액상태의 단위체 또는 부분중합체, 또는 용융상태의 수지에 다공체를 침잠하여 단위체 또는 부분중합체, 또는 수지가 다공체의 기공에 침투되도록 하고, 상기 다공체에 침투된 용액상태의 단위체 또는 부분중합체를 개시제, 빛 또는 열에 의해 중합경화시키거나, 용융상태의 수지를 냉각에 의하여 응고시킴으로써 경화 또는 응고된 수지가 채워진 다공체를 제조하는 단계; 및 Submerging the porous body in a solution unit or partial polymer or molten resin to allow the unit or partial polymer or resin to penetrate into the pores of the porous body, and the unit or partial polymer in solution state penetrated into the porous body is initiated by an initiator, light Or preparing a porous body filled with a cured or solidified resin by curing with heat or by solidifying the molten resin by cooling; And
    상기 경화 또는 응고된 수지가 채워진 다공체를 기계적으로 가공하는 단계;Mechanically processing the porous body filled with the cured or solidified resin;
    를 포함하여 구성되는 것을 특징으로 하는 가공성이 개선된 다공체의 가공방법.Method for processing a porous body improved workability, characterized in that comprising a.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 기계적으로 가공하는 단계;는,Mechanically processing;
    CAD/CAM 방법에 의해 가공하는 단계;Processing by CAD / CAM method;
    인 것을 특징으로 하는 가공성이 개선된 다공체의 가공방법.A processing method of a porous body having improved workability, characterized in that.
  12. 용액상태의 단위체 또는 부분 중합체, 또는 용융상태의 수지에 다공체를 침잠하여 상기 단위체 또는 부분중합체, 또는 수지가 다공체의 기공에 침투되도록 하고, 상기 다공체에 침투된 용액상태의 단위체 또는 부분중합체를 개시제, 빛 또는 열에 의해 중합경화시키거나, 용융상태의 수지를 냉각에 의하여 응고시킴으로써 경화 또는 응고된 수지가 충전된 것을 특징으로 하는 가공성이 개선된 다공체.Submerging the porous body in a solution unit or partial polymer or molten resin to allow the unit or partial polymer or resin to penetrate the pores of the porous body, and the solution unit or partial polymer infiltrated into the porous body is initiated by an initiator, A porous body having improved workability, wherein the cured or solidified resin is filled by polymerization or curing by light or heat or by solidifying the molten resin by cooling.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 다공체에는 개기공(open pore)의 적어도 90%에 수지가 충전된 것을 특징으로 하는 가공성이 개선된 다공체.The porous body has improved workability, characterized in that the resin is filled in at least 90% of the open pores (open pore).
  14. 제 12 항에 있어서,The method of claim 12,
    상기 다공체에는 개기공(open pore)의 0 초과 90% 미만의 범위에 수지가 충전된 것을 특징으로 하는 가공성이 개선된 다공체.The porous body is a porous body with improved workability, characterized in that the resin is filled in the range of more than 0 and less than 90% of the open pores (open pore).
PCT/KR2014/011370 2013-11-25 2014-11-25 Porous body with improved processability, and manufacturing method and processing method therefor WO2015076642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0144085 2013-11-25
KR1020130144085A KR101569119B1 (en) 2013-11-25 2013-11-25 Porous body having advanced machinability and the manufacturing and machining method of the same

Publications (1)

Publication Number Publication Date
WO2015076642A1 true WO2015076642A1 (en) 2015-05-28

Family

ID=53179835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011370 WO2015076642A1 (en) 2013-11-25 2014-11-25 Porous body with improved processability, and manufacturing method and processing method therefor

Country Status (2)

Country Link
KR (1) KR101569119B1 (en)
WO (1) WO2015076642A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016109437A1 (en) * 2016-05-23 2017-11-23 Kulzer Gmbh Ceramic blank filled with an organic compound with improved processing properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016418A (en) * 1996-06-07 2000-03-25 에드윈 씨. 쇼어스 Improved porous biomaterials and methods for their manufacture
KR20090051857A (en) * 2007-11-20 2009-05-25 한국원자력연구원 Fabrication of biodegradable biopolymer/calcium phospate hybrid scaffold having high functional biodegradability
KR20100061649A (en) * 2007-07-12 2010-06-08 스트라우만 홀딩 에이쥐 Composite bone repair material
KR20110120784A (en) * 2010-04-29 2011-11-04 유창국 Composition and manufacturing method for porous calcium phosphate granules by physical foaming
KR20120111380A (en) * 2011-03-31 2012-10-10 인제대학교 산학협력단 Complex scaffold for bone-cartilage regeneration, method for preparing thereof and composition for treating bone cartilage disease comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016418A (en) * 1996-06-07 2000-03-25 에드윈 씨. 쇼어스 Improved porous biomaterials and methods for their manufacture
KR20100061649A (en) * 2007-07-12 2010-06-08 스트라우만 홀딩 에이쥐 Composite bone repair material
KR20090051857A (en) * 2007-11-20 2009-05-25 한국원자력연구원 Fabrication of biodegradable biopolymer/calcium phospate hybrid scaffold having high functional biodegradability
KR20110120784A (en) * 2010-04-29 2011-11-04 유창국 Composition and manufacturing method for porous calcium phosphate granules by physical foaming
KR20120111380A (en) * 2011-03-31 2012-10-10 인제대학교 산학협력단 Complex scaffold for bone-cartilage regeneration, method for preparing thereof and composition for treating bone cartilage disease comprising the same

Also Published As

Publication number Publication date
KR20150060089A (en) 2015-06-03
KR101569119B1 (en) 2015-11-13

Similar Documents

Publication Publication Date Title
US11556682B2 (en) Method for 3-D printing a custom bone graft
JP4504418B2 (en) Method of manufacturing bioactive prosthetic device for bone tissue regeneration and prosthetic device
EP3538016B1 (en) Implant made from fibre-reinforced plastic
EP2879619B1 (en) Bone regeneration material
DE69821774T2 (en) Biodegradable composites
CN107805066B (en) Method for processing biological ceramic parts based on selective laser sintering
DE69532390T2 (en) METHOD FOR PRODUCING AN OBJECT FROM POROUS MATERIAL
WO2012134059A2 (en) Complex support body for regenerating bones and cartilage, method for manufacturing complex support body, and composition for treating bones and cartilage containing same as active ingredient
CN112960988A (en) 3D printing cuttable biological ceramic support and preparation method and application thereof
RU2181600C2 (en) Composite porous material for substitution of bones and method for its manufacture
DE102011107577B4 (en) Implant, component set, method for producing an implant and / or a component set and apparatus for carrying out a method for producing an implant and / or a component
WO2015076642A1 (en) Porous body with improved processability, and manufacturing method and processing method therefor
DE102014212234A1 (en) Bone replacement material and method of making bone replacement material
Amin et al. Bioceramic scaffolds
WO2006017845A2 (en) High aspect ratio template and method for producing same
KR101132747B1 (en) 3-Dimension Ceramic Porous Scaffold And Manufacturing Method Of The Same
JP4915004B2 (en) Scaffold for tissue regeneration composed of biodegradable resin composite material
WO2017034243A1 (en) Method of producing medical material for replacing lost portions of hard tissue, and medical material produced through same
JP2023517843A (en) Bioactive implantable devices and composite biomaterials and methods of making same
KR101367221B1 (en) 3-dimension scaffold and manufacturing method of thesame
KR20170120765A (en) Ceramic Bone Graft Material and Method of Manufacturing the same
NISHIKAWA et al. Bone augmentation experiment using coral on the skull of rat
SUKKHAWAN et al. DEVELOPMENT OF ZIRCONIA CERAMICS BY 3D PRINTING FOR DENTAL APPLICATION
Nery et al. 3D Bioprinter+ Electrospinner for Bone-Ligament Tissue Engineering
KR20130042441A (en) Porous implant, and preparing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14864727

Country of ref document: EP

Kind code of ref document: A1