WO2015076450A1 - Pim 측정 장치 및 이를 포함한 중계 유닛 - Google Patents

Pim 측정 장치 및 이를 포함한 중계 유닛 Download PDF

Info

Publication number
WO2015076450A1
WO2015076450A1 PCT/KR2013/011899 KR2013011899W WO2015076450A1 WO 2015076450 A1 WO2015076450 A1 WO 2015076450A1 KR 2013011899 W KR2013011899 W KR 2013011899W WO 2015076450 A1 WO2015076450 A1 WO 2015076450A1
Authority
WO
WIPO (PCT)
Prior art keywords
pim
signal
frequency
tone pulse
signal generator
Prior art date
Application number
PCT/KR2013/011899
Other languages
English (en)
French (fr)
Inventor
여영신
한경은
Original Assignee
주식회사 쏠리드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쏠리드 filed Critical 주식회사 쏠리드
Priority to US14/583,558 priority Critical patent/US9897638B2/en
Publication of WO2015076450A1 publication Critical patent/WO2015076450A1/ko
Priority to US15/865,749 priority patent/US10317447B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Definitions

  • the present invention relates to a distributed antenna system (DAS), and more particularly, to a PIM measuring apparatus for measuring a PIM of a distribution network and / or facility equipment in a distributed antenna system and a relay unit including the same. .
  • DAS distributed antenna system
  • PIM Passive Intermodulation
  • DAS Distributed Antenna System
  • the PIM characteristics in the equipment of the Distributed Antenna System (DAS) are maintained at a certain quality or higher in production, but in the field, the PIM is controlled by passive elements used in the distribution network from the rear end of the antenna port of the remote equipment to the final antenna. Problems may arise.
  • DAS Distributed Antenna System
  • An object of the present invention is to provide a PIM measuring apparatus and a relay unit including the same for measuring PIM of a distribution network and / or facility equipment in a distributed antenna system.
  • a PIM measuring apparatus for measuring a passive intermodulation (PIM) in at least one of a facility and a distribution network in a distributed antenna system, mounted on the relay unit of the distributed antenna system ,
  • a pulse generator for generating two-tone pulse signals having different frequencies;
  • a PIM detector for detecting an IM signal fed back from facility equipment or distribution network in the distributed antenna system corresponding to the transmission of the two-tone pulse signal;
  • a controller for determining PIM generation information in the distributed antenna system based on the fed back IM signal.
  • the pulse generator In one embodiment, the pulse generator, the pulse generator, and
  • a first test signal generator for generating a continuous wave of a first frequency
  • a first on / off switch for receiving the continuous wave of the first frequency from the first test signal generator and converting the pulse into a pulsed signal
  • a second test signal generator for generating a continuous wave of a second frequency having a frequency different from the first frequency
  • a second on / off switch for receiving the continuous wave of the second frequency from the second test signal generator and converting the pulse into a pulsed signal.
  • the first test signal generator and the second test signal generator respectively, is provided with a frequency variable module capable of selecting the frequency of the continuous wave to be generated,
  • the control unit may select the two frequencies in the frequency band for which PIM measurement is required from the first test signal generator and the second test signal generator so that a continuous wave corresponding to the first test signal generator and the second test signal generator is generated.
  • the generator may be controlled, and the first on / off switch and the second on / off switch may be controlled so that the continuous waves of the two frequencies are converted at the same time into the pulsed signal in accordance with the time point of transmitting the two-tone pulse signal. have.
  • control unit by driving a time counter to measure the time required from the time of occurrence or transmission of the two-tone pulse signal to the time of detection of the fed back IM signal, the distance corresponding to the measured time required By calculating the PIM generation position can be confirmed.
  • the PIM detector detects a signal having a frequency corresponding to Equation 1 of the received signal as a feedback IM signal corresponding to the two-tone pulse signal,
  • the controller may determine the PIM characteristic at the PIM generation position based on the IM signal having the largest signal size among the detected IM signals.
  • the frequency of the IM signal Mf 1 ⁇ Nf 2 , f 1 and f 2 is the frequency of the two-tone pulse signal, M and N is a natural number.
  • control unit if the relay unit on which the PIM measuring apparatus is mounted is in a rest period without a relay service, the two-tone pulse signal is sent to perform the PIM measurement or A service interrupt command may be sent to the relay unit such that the relay service is interrupted during the test period of the PIM measurement according to the two-tone pulse signal.
  • the relay unit equipped with the PIM measuring apparatus provides a multiband service
  • the control unit controls the operation of the first test signal generator and the second test signal generator to enable PIM measurement in facility equipment installed in the distribution network or the distribution network for each frequency band of the multi-band.
  • the PIM measurement for each frequency band may be sequentially performed according to the two-tone pulse signal generated for the corresponding band for each frequency band of the band.
  • control unit performs the PIM measurement while the relay unit on which the PIM measurement apparatus is mounted performs a relay service
  • Two frequencies to be used for the two-tone pulse signal may be selected so that the IM signal to be detected by the PIM detector may have a frequency that does not overlap with the service frequency band used by the relay service according to Equation (1). have.
  • a relay unit constituting a distributed antenna system and having a PIM measuring device having the above-described features.
  • the relay unit when the relay unit is a donor unit connected to a plurality of remote units,
  • the PIM measuring apparatus sequentially generates two-tone pulse signals necessary for each remote unit to sequentially measure PIM of an antenna distribution network connected to each of the plurality of remote units and facility equipment installed in the antenna distribution network. It is possible to perform remote-specific PIM measurement based on the transmitted IM signal.
  • a PIM measuring apparatus and a relay unit including the same for measuring PIM of a distribution network and / or facility equipment in a distributed antenna system.
  • FIG. 1 is a conceptual diagram illustrating a PIM measurement method applied to a distributed antenna system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining a PIM measurement apparatus mounted on a relay unit according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of an embodiment of a PIM measurement apparatus.
  • FIG. 4 is an exemplary diagram for explaining a generation frequency band of an IM signal corresponding to a two-tone pulse signal.
  • FIG. 5 is a view for explaining a frequency selection method of a two-tone pulse signal assuming a case where PIM measurement is performed simultaneously with a service signal of a relay unit.
  • FIG. 6 is an exemplary diagram for explaining a frequency band-specific PIM measurement scheme in a remote unit providing a multi-band service.
  • FIG. 7 is an exemplary diagram for explaining a PIM measurement method for a DAS distribution network and facility equipment on the assumption that a PIM measuring device is mounted in a donor unit.
  • one component when one component is referred to as “connected” or “connected” with another component, the one component may be directly connected or directly connected to the other component, but in particular It is to be understood that, unless there is an opposite substrate, it may be connected or connected via another component in the middle.
  • FIG. 1 is a conceptual diagram illustrating a PIM measurement method applied to a distributed antenna system according to an embodiment of the present invention.
  • a distributed antenna system in which a plurality of antennas ANT are distributed in one remote unit 10 is illustrated.
  • the signal distributors 32, 34, and 36 are used for signal distribution to the plurality of antennas ANT.
  • a relay unit constituting the distributed antenna system in this example, the remote unit 10, but the relay unit is a donor unit 20 as shown in FIG. 7 to be described later).
  • the PIM measuring apparatus 100 may be mounted on the PIM measuring apparatus 100 to measure the location and characteristics of the PIM generation by the distribution network in the distributed antenna system and various facility equipment installed in the distribution network.
  • PIM measuring apparatus 100 generates a two-tone pulse signal having a different frequency (f1 and f2) as shown in Figure 1 and transmits to the distribution network and facility equipment of the distributed antenna system, the distribution network or / and facilities
  • PIM measurement is performed by detecting an IM signal (Intermodulation signal) fed back from the corresponding PIM generating position (which means a position where a passive element having poor PIM characteristics is installed).
  • the feedback time of the IM signal is different depending on the distance from the remote unit 10 on which the PIM measuring apparatus 100 is mounted to the PIM generating position (see t1 to tn in FIG.
  • FIG. 2 is a block diagram illustrating a PIM measuring apparatus mounted on a relay unit according to an exemplary embodiment of the present invention
  • FIG. 3 is a circuit diagram of an exemplary embodiment of the PIM measuring apparatus.
  • 4 is an exemplary diagram for describing a generation frequency band of an IM signal corresponding to a two-tone pulse signal.
  • the PIM measuring apparatus 100 may include a two-tone pulse generator 110, a PIM detector 120, and a controller 130.
  • the two-tone pulse generator 110 generates a two-tone pulse signal having different frequencies.
  • the two-tone pulse generator 110 may include the first test signal generator 112, the second test signal generator 114, the first on / off switch 116, and the second on. And an on / off switch 118.
  • the first test signal generator 112 generates a continuous wave of the first frequency
  • the second test signal generator 114 generates a continuous wave of a second frequency different from the above first frequency.
  • the first frequency and the second frequency may be fixed to a predetermined frequency, respectively, but may be designed to be variable in order to enable measurement of PIM characteristics for various frequency bands in a distributed antenna system.
  • the first test signal generator 112 and the second test signal generator 114 may each include a frequency variable module that enables frequency selection of continuous waves to be generated. Accordingly, the first test signal generator 112 and the second test signal generator 114 receive the frequency variable selection command of the controller 130 and generate continuous waves of frequencies corresponding to the selection command of the controller 130, respectively. can do.
  • the controller 130 may switch the first on / off switch.
  • the on / off control time point may be synchronized to a time point when the PIM measurement is required (a time point for transmitting the two-tone pulse signal).
  • the on / off time points of the first on / off switch 116 and the second on / off switch 118 may be controlled to the same time.
  • the on / off time points of the two switches 116 and 118 are not necessarily the same time, and depending on the design implementation method, they may be switched at regular intervals from each other within a range where there is no problem with the PIM measurement.
  • the two-tone pulse signal generated as described above is propagated to the distribution network and facility equipment of the distributed antenna system via a signal multiplexer 16 in the signal transmitter and receiver 114.
  • the two-tone pulse signal is generated from the continuous wave by the component circuit shown in FIG. 3 is illustrated.
  • the two-tone pulse generator 110 according to the embodiment of the present invention is not necessarily limited to the above configuration. Of course, it may be generated as a pulse signal of a different frequency from the beginning.
  • the spurious in the case of passive elements of the distribution network and facility equipment having poor PIM characteristics with respect to the frequency of the transmitted two-tone pulse signal A signal (ie an IM signal) is generated, which is fed back to the relay unit in the form of a reflected wave.
  • the IM signal fed back as described above is detected by the PIM detector 120, and the controller 130 may analyze the detected IM signal to check the location and characteristics of the PIM generation. For example, the controller 130 may measure the time required from the time point at which the two-tone pulse signal is generated or transmitted to the time point at which the feedback or IM signal is received or detected, and calculates a distance corresponding to the measured time duration. You can check the occurrence location. To this end, the controller 130 may drive a time counter (that is, a timer) from the time when the two-tone pulse signal is generated or transmitted, and measure the time from the IM signal to the feedback time.
  • a time counter that is, a timer
  • Equation 1 whether the signal received by the relay unit is an IM signal may be determined by Equation 1 below.
  • f 1 and f 2 are frequencies of the two-tone pulse signal, and M and N may be natural numbers. Of course, M and N may both have a value of zero, so long as both have a non-zero value.
  • IM signals of various orders may be generated according to the values of M and N, but IM signals requiring analysis in a distributed antenna system may be relay units.
  • IM signal generated in the Rx Band ie, can be received through the Rx Band. This is because other orders of IM signals are removed by the filter.
  • the controller 130 may determine the PIM characteristic based on the IM signal fed back (that is, received through the Rx band), and in this case, determine the PIM characteristic based on the largest signal among the fed back IM signals. Can be done.
  • the controller 130 transmits the two-tone pulse signal and performs the PIM measurement in accordance with a pause period during which the relay unit on which the PIM measurement apparatus 100 is mounted does not perform a relay service. Can be controlled. Alternatively, the controller 130 may transmit a service stop command to the relay unit such that the relay service is stopped during the test period of the PIM measurement according to the two-tone pulse signal. This is because, when the relay unit is in service, the PIM measurement may be difficult to mix the service signal and the PIM signal or to accurately distinguish the PIM signal power.
  • the PIM measurement does not necessarily need to be performed during a service break, but may be performed even while in service. That is, the controller 130 performs the PIM measurement while the relay unit performs the relay service, and the service in which the IM signal to be detected by the PIM detector 120 is used by the relay service according to Equation 1 described above.
  • the PIM measurement may be performed even during the relay service of the relay unit by selecting two frequencies to be used for the two-tone pulse signal so as to have a frequency that does not overlap the frequency band. A related figure is shown in FIG. 5.
  • an IM signal frequency that can be fed back without overlapping a service related signal received through an Rx band of a relay unit is calculated by inversely calculating the IM signal frequency using Equation 1 above. It can be seen that the frequency of the two-tone pulse signal can be selected.
  • the above-described PIM measurement method can be extended to multiple frequency bands (ie, multiple service bands) or can be extended by mounting a PIM measurement device in a donor unit and performing PIM measurement for a plurality of remote units to be connected to the donor unit. Do. An example of this is shown in FIGS. 6 and 7.
  • FIG. 6 is an exemplary view for explaining a PIM measurement method for each frequency band in a remote unit that provides a multi-band service
  • FIG. 7 is assuming that the PIM measuring device is mounted in a donor unit.
  • This is an exemplary view for explaining a PIM measurement method for the equipment.
  • the Rimoto unit 100 equipped with the PIM measuring apparatus 100 provides a multiband service.
  • reference numeral 12 in FIG. 6 denotes an optical module.
  • the control unit 130 of the PIM measuring apparatus 100, the first test signal generator and the second test described above to measure the PIM in the equipment installed in the distribution network or distribution network for each frequency band of the multi-band
  • the control unit 130 of the PIM measuring apparatus 100, the first test signal generator and the second test described above to measure the PIM in the equipment installed in the distribution network or distribution network for each frequency band of the multi-band
  • the control unit 130 of the PIM measuring apparatus 100, the first test signal generator and the second test described above to measure the PIM in the equipment installed in the distribution network or distribution network for each frequency band of the multi-band
  • the reason why the PIM measurement is separately performed for each frequency band of the multi-band is that the PIM characteristics of the passive elements installed in the distribution network and the facility equipment may be different for each corresponding frequency band.
  • the PIM measuring apparatus 100 (control unit 130 of) is configured to perform PIM measurement of an antenna distribution network connected to a plurality of remote units and facility equipment installed in the antenna distribution network.
  • the required two-tone pulse signal can be generated and transmitted to each remote unit sequentially, and thus PIM measurement for each remote can be performed based on the fed back IM signal.
  • a 1 ⁇ N switch 26 may be used for switching for remote PIM sequential measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Radio Relay Systems (AREA)

Abstract

분산 안테나 시스템(Distributed antenna system) 내의 시설장비 및 분배망 중 적어도 하나에서의 PIM(Passive intermodulation)을 측정하기 위한 PIM 측정 장치로서, 서로 다른 주파수를 갖는 2톤(two tone) 펄스 신호를 발생하는 펄스 발생부; 상기 2톤 펄스 신호의 송출에 상응하여 상기 분산 안테나 시스템 내의 시설장비 또는 분배망으로부터 피드백된 IM(intermodulation) 신호를 검출하는 PIM 검출부; 상기 피드백된 IM 신호에 근거하여 상기 분산 안테나 시스템 내에서의 PIM 발생 정보를 판별하는 제어부를 포함하는, PIM 측정 장치가 제공된다.

Description

PIM 측정 장치 및 이를 포함한 중계 유닛
본 발명은 분산 안테나 시스템(DAS : Distributed Antenna System)에 관한 것으로, 보다 구체적으로는 분산 안테나 시스템 내의 분배망 또는/및 시설장비에 관한 PIM 측정을 위한 PIM 측정 장치 및 이를 포함하는 중계 유닛에 관한 것이다.
PIM(Passive Intermodulation)은 수동 소자의 비선형 특성에 의해 발생하는 스퓨리어스(spurious) 신호로, 통신 경로 상에서 신호 대 잡음 특성을 떨어뜨려 통신품질을 열화시키는 현상을 말한다. 분산 안테나 시스템(DAS : Distributed Antenna System)의 장비 내에서의 PIM 특성은 생산시 일정 품질 이상으로 유지되나, 필드에서는 리모트 장비의 안테나 포트 후단에서 최종 안테나까지의 분배망에 사용된 수동 소자에 의해 PIM 문제가 발생할 수 있다. 그러나 종래의 DAS에서는 필드에서 PIM 문제가 발생하였을 경우 정확한 발생 위치 및 원인 등을 찾기 매우 어려운 상황인 바, 분산 안테나 시스템에서 PIM 측정이 가능한 방안이 필요하다.
본 발명은 분산 안테나 시스템 내의 분배망 또는/및 시설장비에 관한 PIM 측정을 위한 PIM 측정 장치 및 이를 포함하는 중계 유닛을 제공하고자 한다.
본 발명의 일 측면에 따르면, 분산 안테나 시스템(Distributed antenna system) 내의 시설장비 및 분배망 중 적어도 하나에서의 PIM(Passive intermodulation)을 측정하기 위한 PIM 측정 장치는, 상기 분산 안테나 시스템의 중계 유닛에 탑재되며,
서로 다른 주파수를 갖는 2톤(two tone) 펄스 신호를 발생하는 펄스 발생부; 상기 2톤 펄스 신호의 송출에 상응하여 상기 분산 안테나 시스템 내의 시설장비 또는 분배망으로부터 피드백된 IM(intermodulation) 신호를 검출하는 PIM 검출부; 상기 피드백된 IM 신호에 근거하여 상기 분산 안테나 시스템 내에서의 PIM 발생 정보를 판별하는 제어부를 포함한다.
일 실시예에서, 상기 펄스 발생부는,
제1 주파수의 연속파를 생성하는 제1 테스트 신호 발생기; 상기 제1 테스트 신호 발생기로부터 상기 제1 주파수의 연속파를 입력받고 펄스성 신호로 변경하는 제1 온/오프 스위치; 상기 제1 주파수와 상이한 주파수를 갖는 제2 주파수의 연속파를 생성하는 제2 테스트 신호 발생기; 및 상기 제2 테스트 신호 발생기로부터 상기 제2 주파수의 연속파를 입력받고 펄스성 신호로 변경하는 제2 온/오프 스위치를 포함할 수 있다.
일 실시예에서, 상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기는, 각각, 생성될 연속파의 주파수 선택이 가능한 주파수 가변 모듈이 구비되며,
상기 제어부는, 상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기로부터 PIM 측정이 필요한 주파수 대역 내의 2개의 주파수를 선택하여 이에 상응하는 연속파가 생성되도록 상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기를 제어하고, 상기 2톤 펄스 신호의 송출 시점에 맞춰 상기 2개의 주파수에 관한 연속파가 펄스성 신호로 동일 시점에 변환되도록 상기 제1 온/오프 스위치 및 제2 온/오프 스위치를 제어할 수 있다.
일 실시예에서, 상기 제어부는, 시간 카운터를 구동하여 상기 2톤 펄스 신호의 발생 시점 또는 송출 시점으로부터 상기 피드백된 IM 신호의 검출 시점까지의 소요시간을 측정하고, 측정된 소요시간에 상응하는 거리를 계산함으로써 상기 PIM 발생 위치를 확인할 수 있다.
일 실시예에서, 상기 PIM 검출부는, 수신된 신호 중 하기 수학식 1에 상응하는 주파수를 갖는 신호를 상기 2톤 펄스 신호에 상응하여 피드백된 IM 신호로서 검출하고,
상기 제어부는, 상기 검출된 IM 신호 중 가장 큰 신호 크기를 갖는 IM 신호를 기준으로 PIM 발생 위치에서의 PIM 특성을 판단할 수 있다.
여기서, [수학식 1] IM 신호의 주파수 = Mf1 ± Nf2 이며, f1 및 f2는 상기 2톤 펄스 신호의 주파수이며, M 및 N은 자연수이다.
일 실시예에서, 상기 제어부는, 상기 PIM 측정 장치가 탑재된 중계 유닛이 중계 서비스를 하지 않는 휴지기(休止期)에 있는 경우 상기 2톤 펄스 신호가 송출되어 상기 PIM 측정을 수행되도록 제어하거나 또는 상기 2톤 펄스 신호에 따른 PIM 측정의 테스트 기간 동안 중계 서비스가 중단되도록 상기 중계 유닛에 서비스 중단 명령을 전달할 수 있다.
일 실시예에서, 상기 PIM 측정 장치가 탑재된 중계 유닛이 다중대역(Multiband) 서비스를 제공하는 경우,
상기 제어부는, 상기 다중대역의 주파수 대역별로 상기 분배망 또는 상기 분배망에 설치된 시설장비에서의 PIM 측정이 가능하도록, 상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기의 동작을 제어하여 상기 다중대역의 주파수 대역별로 해당 대역에 맞게 생성된 2톤 펄스 신호에 따라 상기 주파수 대역별로의 PIM 측정이 순차적으로 수행되도록 할 수 있다.
일 실시예에서, 상기 제어부는, 상기 PIM 측정 장치가 탑재된 중계 유닛이 중계 서비스를 하는 동안에 PIM 측정을 수행하되,
상기 PIM 검출부에 의해 검출될 상기 IM 신호가 상기 수학식 1에 따라 상기 중계 서비스에 의해 사용되는 서비스 주파수 대역과 중첩되지 않는 주파수를 가질 수 있도록, 상기 2톤 펄스 신호에 사용될 2개의 주파수를 선택할 수 있다.
본 발명의 다른 측면에 따르면, 분산 안테나 시스템(Distributed antenna system)을 구성하며, 상술한 특징들에 갖는 PIM 측정 장치를 탑재하는 중계 유닛이 제공된다.
일 실시예에서, 상기 중계 유닛이 복수의 리모트 유닛(Remote unit)과 연결되는 도너 유닛(Donor unit)인 경우,
상기 PIM 측정 장치는, 상기 복수의 리모트 유닛 마다에 연결된 안테나 분배망 및 상기 안테나 분배망에 설치된 시설장비의 PIM 측정이 가능하도록, 리모트 유닛 별로 필요한 2톤 펄스 신호를 생성하여 각각의 리모트 유닛으로 순차 전송하고 이에 따라 피드백된 IM 신호에 기초하여 리모트 별 PIM 측정을 수행할 수 있다.
본 발명이 실시예에 의하면, 분산 안테나 시스템 내의 분배망 또는/및 시설장비에 관한 PIM 측정을 위한 PIM 측정 장치 및 이를 포함하는 중계 유닛을 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 분산 안테나 시스템에 적용된 PIM 측정 방안을 설명하기 위한 개념도.
도 2는 본 발명의 실시예에 따라 중계 유닛에 탑재되는 PIM 측정 장치를 설명하기 위한 블록도.
도 3은 PIM 측정 장치에 관한 일 실시예의 구성 회로도.
도 4는 2톤 펄스 신호에 상응하는 IM 신호의 발생 주파수 대역을 설명하기 위한 예시도.
도 5는 중계 유닛의 서비스 신호와 동시에 PIM 측정을 수행하는 경우를 가정할 때의 2톤 펄스 신호의 주파수 선택 방법을 설명하기 위한 도면.
도 6은 다중대역 서비스를 제공하는 리모트 유닛에서의 주파수 대역별 PIM 측정 방안을 설명하기 위한 예시도.
도 7은 PIM 측정 장치가 도너 유닛에 탑재되는 경우를 가정하여 DAS 분배망 및 시설 장비에 대한 PIM 측정 방안을 설명하기 위한 예시도.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 분산 안테나 시스템에 적용된 PIM 측정 방안을 설명하기 위한 개념도이다.
도 1을 참조하면, 하나의 리모트 유닛(10)에 복수의 안테나(ANT)가 분산 설치되는 분산 안테나 시스템이 예시되고 있다. 이때, 복수의 안테나(ANT)로의 신호분배에는 신호분배기(32, 34, 36)가 이용된다. 본 발명의 실시예에서는 도 1에 도시된 바와 같이 분산 안테나 시스템을 구성하는 중계 유닛(본 예에서는 리모트 유닛(10)임, 다만 여기서 중계 유닛은 후술할 도 7에서와 같이 도너 유닛(20)일 수도 있음)에 PIM 측정 장치(100)를 탑재하여, 분산 안테나 시스템 내의 분배망 및 그 분배망 내에 설치되는 각종 시설장비에 의한 PIM 발생 위치 및 특성 측정을 수행한다.
PIM 측정 장치(100)는 도 1에 도시된 바와 같이 서로 상이한 주파수(f1 및 f2)를 갖는 2톤 펄스 신호를 생성하여 분산 안테나 시스템의 분배망 및 시설장비로 송출하고, 분배망 또는/및 시설장비의 특정 위치에서 PIM이 발생한 경우 해당 PIM 발생위치(이는 PIM 특성이 좋지 않은 수동소자가 설치된 위치를 의미함)로부터 피드백된 IM 신호(Intermodulation signal)을 검출함으로써, PIM 측정을 수행한다. 이때, IM 신호의 피드백 시간은 PIM 측정 장치(100)가 탑재된 리모트 유닛(10)으로부터 PIM 발생 위치까지의 거리에 따라 상이해지므로(도 1의 t1 ~ tn 참조), 해당 피드백 시간(즉, 2톤 펄스 신호의 발생 또는 송출 시점으로부터 IM 신호가 수신 또는 검출된 시점까지의 소요 시간)을 측정하면 PIM 발생 위치에 관한 정보를 획득할 수 있다. 또한 검출된 IM 신호의 신호 크기에 근거하여 해당 위치의 PIM 특정을 측정할 수 있다. 이에 관해서는 이하 도 2 및 도 3을 참조하여 보다 상세히 설명하기로 한다.
도 2는 본 발명의 실시예에 따라 중계 유닛에 탑재되는 PIM 측정 장치를 설명하기 위한 블록도이고, 도 3은 PIM 측정 장치에 관한 일 실시예의 구성 회로도이다. 그리고 도 4는 2톤 펄스 신호에 상응하는 IM 신호의 발생 주파수 대역을 설명하기 위한 예시도이다.
도 2를 참조하면, 본 발명의 실시예에 따른 PIM 측정 장치(100)는 2톤 펄스 발생부(110), PIM 검출부(120) 및 제어부(130)를 포함할 수 있다.
2톤 펄스 발생부(110)는 서로 다른 주파수를 갖는 2톤 펄스 신호를 발생한다. 예를 들어, 도 3을 참조하면, 2톤 펄스 발생부(110)는 제1 테스트 신호 발생기(112), 제2 테스트 신호 발생기(114), 제1 온/오프 스위치(116), 제2 온/오프 스위치(118)을 포함하여 구성될 수 있다.
여기서, 제1 테스트 신호 발생기(112)는 제1 주파수의 연속파를 생성하며, 제2 테스트 신호 발생기(114)는 위의 제1 주파수와는 상이한 제2 주파수의 연속파를 생성한다. 이때, 제1 주파수 및 제2 주파수는 사전에 지정된 주파수로 각각 고정되어 있을 수도 있지만, 분산 안테나 시스템에서 다양한 주파수 대역별로 PIM 특성을 측정 가능하게 하기 위하여 가변 가능하도록 설계될 수 있다. 이를 위해, 제1 테스트 신호 발생기(112) 및 제2 테스트 신호 발생기(114)는 각각 생성될 연속파의 주파수 선택을 가능하도록 하는 주파수 가변 모듈을 구비할 수 있다. 이에 따라, 제1 테스트 신호 발생기(112) 및 제2 테스트 신호 발생기(114)는 제어부(130)의 주파수 가변 선택 명령을 수신하고, 제어부(130)의 선택 명령에 각각 상응하는 주파수의 연속파를 생성할 수 있다.
상술한 바에 따라, 제1 테스트 신호 발생기(112) 및 제2 테스트 신호 발생기(114)로부터 주파수 선택된 제1 및 제2 주파수의 2톤 연속파가 생성되면, 제어부(130)는 제1 온/오프 스위치(116) 및 제2 온/오프 스위치(118)의 온/오프 동작을 제어함으로써, 상기 2톤 연속파가 펄스성 신호(즉, 2톤 펄스 신호)로 변경되도록 한다. 이때, 온/오프 제어 시점은 PIM 측정이 필요한 시점(2톤 펄스 신호의 송출이 필요한 시점)에 동기화될 수 있다. 또한 제1 온/오프 스위치(116) 및 제2 온/오프 스위치(118)의 온/오프 시점은 동일 시점으로 제어될 수 있다. 물론 양 스위치(116, 118)의 온/오프 시점은 반드시 동일 시점일 필요는 없으며, 설계 구현 방식에 따라 PIM 측정에 문제가 없는 범위 내에서 서로 일정 시간의 간격을 두고 스위칭 될 수도 있을 것이다.
상술한 바와 같이 발생된 2톤 펄스 신호는 신호 송출 및 수신부(114) 내의 신호 다중화기(Multiplexer)(16)를 거쳐 분산 안테나 시스템의 분배망 및 시설장비로 전파된다. 이상에서는 2톤 펄스 신호가 도 3에 도시된 구성 회로에 의해 연속파로부터 만들어지는 경우를 예시하였지만, 본 발명의 실시예에 따른 2톤 펄스 발생부(110)는 반드시 위와 같은 구성에 한정되는 것은 아니며, 처음부터 상이한 주파수의 펄스 신호로서 생성될 수도 있음은 물론이다.
상술한 바와 같이 생성된 2톤 펄스 신호가 분산 안테나 시스템의 분배망 및 시설장비로 송출되면, 송출된 2톤 펄스 신호의 주파수에 대하여 PIM 특성이 좋지 않은 분배망 및 시설장비의 수동 소자의 경우 스퓨리어스 신호(즉, IM 신호)가 생성되게 되며, 이는 반사파 형태로 다시 중계 유닛 측으로 피드백된다. 이와 같이 피드백된 IM 신호는 PIM 검출부(120)에 의해 검출되며, 제어부(130)는 검출된 IM 신호를 분석하여 PIM 발생 위치 및 특성을 확인할 수 있다. 예를 들어, 제어부(130)는, 2톤 펄스 신호의 발생 시점 또는 송출 시점으로부터 피드백된 IM 신호의 수신 또는 검출 시점까지의 소요 시간을 측정하고, 측정된 소요 시간에 상응하는 거리를 계산함으로써 PIM 발생 위치를 확인할 수 있다. 이를 위해, 제어부(130)는 2톤 펄스 신호의 발생 시점 또는 송출 시점으로부터 시간 카운터(즉, 타이머)를 구동하여 IM 신호의 피드백 시점까지의 시간을 측정할 수 있다.
이때, 중계 유닛으로 수신된 신호가 IM 신호인지 여부는 하기의 수학식 1에 의해 판단될 수 있다. 하기 수학식 1에서, f1 및 f2는 상기 2톤 펄스 신호의 주파수이며, M 및 N은 자연수일 수 있다. 물론 M 및 N은 모두 0이 아닌 값을 갖는 한도 내에서, 어느 하나가 0의 값을 가질 수도 있다.
[수학식 1] IM 신호의 주파수 = Mf1 ± Nf2
이에 관한 관련 도면이 도 4를 통해 예시되고 있다. 도 4를 참조하면, M 및 N의 값에 따라 다양한 차수(여기서, 차수는 M+N의 값을 의미함)의 IM 신호가 발생할 수 있으나, 실제 분산 안테나 시스템에서 분석이 필요한 IM 신호는 중계 유닛의 Rx Band에서 발생하는(즉, Rx Band를 통해 수신될 수 있는) IM 신호이다. 그 외의 차수의 IM 신호는 필터에 의해 제거되기 때문이다. 이에 따라, 제어부(130)는 피드백된(즉, Rx Band를 통해 수신되는) IM 신호에 근거하여 PIM 특성을 판별할 수 있으며, 이 경우 피드백된 IM 신호 중 가장 큰 신호를 기준으로 PIM 특성 판별을 수행할 수 있다.
상술한 PIM 측정을 위해 제어부(130)는, PIM 측정 장치(100)가 탑재된 중계 유닛이 중계 서비스를 하지 않는 휴지기(休止期)에 맞춰, 상기 2톤 펄스 신호를 송출하고 상기 PIM 측정이 수행되도록 제어할 수 있다. 혹은 제어부(130)는 상기 2톤 펄스 신호에 따른 PIM 측정의 테스트 기간 동안 중계 서비스가 중단되도록 상기 중계 유닛에 서비스 중단 명령을 전달할 수 있다. 이는 중계 유닛이 서비스 중인 경우 PIM 측정을 하면 서비스 신호와 PIM 신호가 혼합되거나 PIM 신호전력을 정확히 구별해내기 어려울 수 있기 때문이다.
다만, PIM 측정은 반드시 서비스 휴지기 등에 수행하여야 하는 것은 아니며, 서비스 중인 동안에도 수행할 수 있다. 즉, 제어부(130)는, 중계 유닛이 중계 서비스를 하는 동안에 PIM 측정을 수행하되, PIM 검출부(120)에 의해 검출될 상기 IM 신호가 앞서 설명한 수학식 1에 따라 상기 중계 서비스에 의해 사용되는 서비스 주파수 대역과 중첩되지 않는 주파수를 가질 수 있도록, 상기 2톤 펄스 신호에 사용될 2개의 주파수를 선택하는 방식으로, 중계 유닛의 중계 서비스 중에도 PIM 측정을 수행할 수 있다. 이에 관련된 도면이 도 5에 나타나 있다.
도 5를 참조할 때, 중계 유닛의 Rx Band를 통해 수신되는 서비스 관련 신호와 중첩되지 않고 피드백될 수 있는 IM 신호 주파수를 가정하고, 이러한 IM 신호 주파수를 상기 수학식 1을 이용하여 역으로 계산함으로써 2톤 펄스 신호의 주파수를 선택할 수 있음을 확인할 수 있다.
상술한 PIM 측정 방법은 다중 주파수 대역(즉, 다중 서비스 대역)에 확장하여 적용하거나 또는 도너 유닛에 PIM 측정 장치를 탑재하고 도너 유닛에 연결될 복수의 리모트 유닛 별로 PIM 측정을 수행하는 방법으로 확장도 가능하다. 이에 대한 예시가 도 6 및 도 7에 도시되어 있다. 여기서, 도 6은 다중대역 서비스를 제공하는 리모트 유닛에서의 주파수 대역별 PIM 측정 방안을 설명하기 위한 예시도이고, 도 7은 PIM 측정 장치가 도너 유닛에 탑재되는 경우를 가정하여 DAS 분배망 및 시설 장비에 대한 PIM 측정 방안을 설명하기 위한 예시도이다.
도 6을 참조하면, PIM 측정 장치(100)가 탑재된 리모토 유닛(100)은 다중대역(Multiband) 서비스를 제공한다. 여기서, 도 6의 도면부호 12는 광 모듈이다. 이 경우, PIM 측정 장치(100)의 제어부(130)는, 다중대역의 주파수 대역별로 분배망 또는 분배망에 설치된 시설장비에서의 PIM 측정하기 위해, 앞서 설명한 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기의 동작을 제어하여 2톤 펄스 신호를 상기 다중대역의 주파수 대역별로 해당 대역에 맞게 가변 생성하고, 이를 통해 상기 주파수 대역별로의 PIM 측정을 순차적으로 수행할 수 있다. 상술한 바와 같이 다중대역의 주파수 대역별로 PIM 측정을 별도 수행하는 이유는, 해당 주파수 대역별로 분배망 및 시설장비에 설치된 수동 소자가 갖는 PIM 특성이 상이할 수 있기 때문이다.
또한 도 7을 참조하면, 도너 유닛(20)에 PIM 측정 장치(100)가 탑재된 케이스를 도시하고 있다. 도 7의 케이스에서, PIM 측정 장치(100)(의 제어부(130))는, 복수의 리모트 유닛 마다에 연결된 안테나 분배망 및 상기 안테나 분배망에 설치된 시설장비의 PIM 측정이 가능하도록, 리모트 유닛 별로 필요한 2톤 펄스 신호를 생성하여 각각의 리모트 유닛으로 순차 전송하고 이에 따라 피드백된 IM 신호에 기초하여 리모트 별 PIM 측정을 수행할 수 있다. 이때, 리모트 별 PIM 순차 측정을 위한 스위칭에는 1ㅧN 스위치(26)이 이용될 수 있다.
이상에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.

Claims (10)

  1. 분산 안테나 시스템(Distributed antenna system) 내의 시설장비 및 분배망 중 적어도 하나에서의 PIM(Passive intermodulation)을 측정하기 위한 PIM 측정 장치로서,
    상기 분산 안테나 시스템의 중계 유닛에 탑재되며,
    서로 다른 주파수를 갖는 2톤(two tone) 펄스 신호를 발생하는 펄스 발생부; 상기 2톤 펄스 신호의 송출에 상응하여 상기 분산 안테나 시스템 내의 시설장비 또는 분배망으로부터 피드백된 IM(intermodulation) 신호를 검출하는 PIM 검출부; 상기 피드백된 IM 신호에 근거하여 상기 분산 안테나 시스템 내에서의 PIM 발생 정보를 판별하는 제어부를 포함하는, PIM 측정 장치.
  2. 제1항에 있어서,
    상기 펄스 발생부는,
    제1 주파수의 연속파를 생성하는 제1 테스트 신호 발생기; 상기 제1 테스트 신호 발생기로부터 상기 제1 주파수의 연속파를 입력받고 펄스성 신호로 변경하는 제1 온/오프 스위치; 상기 제1 주파수와 상이한 주파수를 갖는 제2 주파수의 연속파를 생성하는 제2 테스트 신호 발생기; 및 상기 제2 테스트 신호 발생기로부터 상기 제2 주파수의 연속파를 입력받고 펄스성 신호로 변경하는 제2 온/오프 스위치를 포함하는, PIM 측정 장치.
  3. 제2항에 있어서,
    상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기는, 각각, 생성될 연속파의 주파수 선택이 가능한 주파수 가변 모듈이 구비되며,
    상기 제어부는, 상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기로부터 PIM 측정이 필요한 주파수 대역 내의 2개의 주파수를 선택하여 이에 상응하는 연속파가 생성되도록 상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기를 제어하고, 상기 2톤 펄스 신호의 송출 시점에 맞춰 상기 2개의 주파수에 관한 연속파가 펄스성 신호로 동일 시점에 변환되도록 상기 제1 온/오프 스위치 및 제2 온/오프 스위치를 제어하는, PIM 측정 장치.
  4. 제1항에 있어서,
    상기 제어부는, 시간 카운터를 구동하여 상기 2톤 펄스 신호의 발생 시점 또는 송출 시점으로부터 상기 피드백된 IM 신호의 검출 시점까지의 소요시간을 측정하고, 측정된 소요시간에 상응하는 거리를 계산함으로써 상기 PIM 발생 위치를 확인하는, PIM 측정 장치.
  5. 제1항에 있어서,
    상기 PIM 검출부는, 수신된 신호 중 하기 수학식 1에 상응하는 주파수를 갖는 신호를 상기 2톤 펄스 신호에 상응하여 피드백된 IM 신호로서 검출하고,
    상기 제어부는, 상기 검출된 IM 신호 중 가장 큰 신호 크기를 갖는 IM 신호를 기준으로 PIM 발생 위치에서의 PIM 특성을 판단하는, PIM 측정 장치.
    [수학식 1] IM 신호의 주파수 = Mf1 ± Nf2
    여기서, f1 및 f2는 상기 2톤 펄스 신호의 주파수이며, M 및 N은 자연수임.
  6. 제1항에 있어서,
    상기 제어부는, 상기 PIM 측정 장치가 탑재된 중계 유닛이 중계 서비스를 하지 않는 휴지기(休止期)에 있는 경우 상기 2톤 펄스 신호가 송출되어 상기 PIM 측정을 수행되도록 제어하거나 또는 상기 2톤 펄스 신호에 따른 PIM 측정의 테스트 기간 동안 중계 서비스가 중단되도록 상기 중계 유닛에 서비스 중단 명령을 전달하는, PIM 측정 장치.
  7. 제3항에 있어서,
    상기 PIM 측정 장치가 탑재된 중계 유닛이 다중대역(Multiband) 서비스를 제공하는 경우,
    상기 제어부는, 상기 다중대역의 주파수 대역별로 상기 분배망 또는 상기 분배망에 설치된 시설장비에서의 PIM 측정이 가능하도록, 상기 제1 테스트 신호 발생기 및 상기 제2 테스트 신호 발생기의 동작을 제어하여 상기 다중대역의 주파수 대역별로 해당 대역에 맞게 생성된 2톤 펄스 신호에 따라 상기 주파수 대역별로의 PIM 측정이 순차적으로 수행되도록 하는, PIM 측정 장치.
  8. 제5항에 있어서,
    상기 제어부는, 상기 PIM 측정 장치가 탑재된 중계 유닛이 중계 서비스를 하는 동안에 PIM 측정을 수행하되,
    상기 PIM 검출부에 의해 검출될 상기 IM 신호가 상기 수학식 1에 따라 상기 중계 서비스에 의해 사용되는 서비스 주파수 대역과 중첩되지 않는 주파수를 가질 수 있도록, 상기 2톤 펄스 신호에 사용될 2개의 주파수를 선택하는, PIM 측정 장치.
  9. 분산 안테나 시스템(Distributed antenna system)을 구성하며, 제1항 내지 제8항 중 어느 한 항에 따른 PIM 측정 장치를 탑재하는 중계 유닛.
  10. 제9항에 있어서,
    상기 중계 유닛이 복수의 리모트 유닛(Remote unit)과 연결되는 도너 유닛(Donor unit)인 경우,
    상기 PIM 측정 장치는, 상기 복수의 리모트 유닛 마다에 연결된 안테나 분배망 및 상기 안테나 분배망에 설치된 시설장비의 PIM 측정이 가능하도록, 리모트 유닛 별로 필요한 2톤 펄스 신호를 생성하여 각각의 리모트 유닛으로 순차 전송하고 이에 따라 피드백된 IM 신호에 기초하여 리모트 별 PIM 측정을 수행하는, 중계 유닛.
PCT/KR2013/011899 2013-11-25 2013-12-19 Pim 측정 장치 및 이를 포함한 중계 유닛 WO2015076450A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/583,558 US9897638B2 (en) 2013-11-25 2014-12-26 Passive intermodulation measurement device and relay unit including the same
US15/865,749 US10317447B2 (en) 2013-11-25 2018-01-09 Passive intermodulation measurement device and relay unit including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0143572 2013-11-25
KR1020130143572A KR102065555B1 (ko) 2013-11-25 2013-11-25 Pim 측정 장치 및 이를 포함한 중계 유닛

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/583,558 Continuation-In-Part US9897638B2 (en) 2013-11-25 2014-12-26 Passive intermodulation measurement device and relay unit including the same

Publications (1)

Publication Number Publication Date
WO2015076450A1 true WO2015076450A1 (ko) 2015-05-28

Family

ID=53179704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011899 WO2015076450A1 (ko) 2013-11-25 2013-12-19 Pim 측정 장치 및 이를 포함한 중계 유닛

Country Status (3)

Country Link
US (2) US9897638B2 (ko)
KR (1) KR102065555B1 (ko)
WO (1) WO2015076450A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9448280B2 (en) * 2012-02-29 2016-09-20 International Business Machines Corporation Circuit test system and method using a wideband multi-tone test signal
GB2526787B (en) * 2014-05-29 2016-11-23 Aceaxis Ltd Processing of passive intermodulation detection results
GB2531357B (en) * 2014-10-17 2019-01-09 Aceaxis Ltd Mitigating passive intermodulation interference in a wireless network
CN107005946B (zh) * 2015-05-08 2020-03-24 京信通信系统(中国)有限公司 有源das系统中继端增益控制方法和装置、中继端机
US10039022B2 (en) 2015-06-09 2018-07-31 At&T Intellectual Property I, L.P. Remote diagnosis and cancellation of passive intermodulation
US10440660B2 (en) * 2015-07-08 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Uplink spectrum analysis technique for passive intermodulation (PIM) detection
WO2017048669A1 (en) * 2015-09-17 2017-03-23 Commscope Technologies Llc Systems and methods for detecting passive intermodulation sources using thermal imaging
US9768812B1 (en) 2016-06-10 2017-09-19 At&T Intellectual Property I, L.P. Facilitation of passive intermodulation cancellation
US10187098B1 (en) 2017-06-30 2019-01-22 At&T Intellectual Property I, L.P. Facilitation of passive intermodulation cancelation via machine learning
GB2575115B (en) * 2018-06-29 2021-02-17 Aceaxis Ltd Method or means of locating a source of passive intermodulation within an antenna array
US11742889B2 (en) 2019-04-09 2023-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Eigenvalue-based passive intermodulation detection
US11480597B2 (en) * 2020-01-16 2022-10-25 Rohde & Schwarz Gmbh & Co. Kg Method and apparatus for analyzing a relationship between tone frequencies and spurious frequencies
CN114079519B (zh) * 2020-08-18 2023-01-06 华为技术有限公司 一种无源互调故障点的检测方法及装置
WO2024137638A1 (en) * 2022-12-20 2024-06-27 Commscope Technologies Llc Time aligning in a distributed antenna system downlink data originating from two different types of donor base stations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116185A (ko) * 2006-10-23 2006-11-14 에이스웨이브텍(주) 이중 대역 상호 변조 왜곡 측정 장비
KR20070015100A (ko) * 2006-12-13 2007-02-01 에이스웨이브텍(주) 이동형 상호 변조 왜곡 측정 장비
KR20080086604A (ko) * 2007-03-23 2008-09-26 에스케이 텔레콤주식회사 이동통신망에서 기존 인프라 활용을 위한 상호 변조 감지시스템 및 방법
KR20110071722A (ko) * 2009-12-21 2011-06-29 주식회사 케이티 수동 혼변조 왜곡 발생 위치 추정 장치 및 그 방법
KR101136994B1 (ko) * 2010-12-28 2012-04-18 이노넷 주식회사 수동 소자의 수동상호변조왜곡 신호의 위치 및 크기 탐지 시스템 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144692A (en) * 1998-04-07 2000-11-07 Harris Corporation System and method of testing for passive intermodulation in antennas
US8558533B2 (en) * 2006-09-06 2013-10-15 Yokohama National University Passive intermodulation distortion measuring method and system
US8294469B2 (en) * 2008-10-06 2012-10-23 Anritsu Company Passive intermodulation (PIM) distance to fault analyzer with selectable harmonic level
US9532252B2 (en) * 2012-12-04 2016-12-27 At&T Intellectual Property I, L.P. Diagnosis of cellular network element states using radio frequency measurements
KR20170092990A (ko) * 2016-02-04 2017-08-14 한국전자통신연구원 Pim 검출 장치, 이동식 pim 검출장치 및 그 검출방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116185A (ko) * 2006-10-23 2006-11-14 에이스웨이브텍(주) 이중 대역 상호 변조 왜곡 측정 장비
KR20070015100A (ko) * 2006-12-13 2007-02-01 에이스웨이브텍(주) 이동형 상호 변조 왜곡 측정 장비
KR20080086604A (ko) * 2007-03-23 2008-09-26 에스케이 텔레콤주식회사 이동통신망에서 기존 인프라 활용을 위한 상호 변조 감지시스템 및 방법
KR20110071722A (ko) * 2009-12-21 2011-06-29 주식회사 케이티 수동 혼변조 왜곡 발생 위치 추정 장치 및 그 방법
KR101136994B1 (ko) * 2010-12-28 2012-04-18 이노넷 주식회사 수동 소자의 수동상호변조왜곡 신호의 위치 및 크기 탐지 시스템 및 방법

Also Published As

Publication number Publication date
US20180128865A1 (en) 2018-05-10
US10317447B2 (en) 2019-06-11
US20150145528A1 (en) 2015-05-28
KR20150059899A (ko) 2015-06-03
KR102065555B1 (ko) 2020-01-13
US9897638B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
WO2015076450A1 (ko) Pim 측정 장치 및 이를 포함한 중계 유닛
CN103414529B (zh) 一种通用自动测试与故障诊断系统
CN203537403U (zh) 一种通用自动测试系统
EP2141832B1 (en) Automatic topology discovery for passive optical networks
CN102707200A (zh) 电力系统的测试和监控
WO2018159944A1 (ko) 무선 통신 시스템에서 네트워크 환경 관리 방법 및 장치
WO2015199266A1 (ko) 광통신 선로 감시 장치 및 방법
US9900114B2 (en) Monitoring system for a distributed antenna system
WO2022215816A1 (ko) 5g 밀리미터파 대역의 듀얼밴드 입출력신호를 검출하기 위한 감지시스템
WO2018155872A1 (ko) Otdr을 이용한 광선로 감시 시스템
WO2016108450A1 (ko) 분산 안테나 시스템의 리모트 장치
WO2022245181A1 (ko) 수중 통신장치 및 그 id 송수신 방법
WO2018169141A1 (ko) 파장 분할 다중화 방식 부분 방전 감시 시스템
WO2015076492A1 (ko) 홈 네트워크 전송 선로의 간섭 완화 장치, 간섭 완화 방법 및 이를 이용한 통신 시스템
WO2024167113A1 (ko) 금속체 표면파 통신을 이용한 진동 모니터링 시스템 및 방법
US5212534A (en) Distance-measuring method and transmitting and receiving station for carrying out the same
WO2016204331A1 (ko) 광 선로 감시 시스템
WO2016088943A1 (ko) 스마트홈 시큐리티 시스템에서 침입을 감지하는 방법 및 장치
US20220086541A1 (en) Distance-route resource sharing for distributed fiber optic sensors
WO2022005186A1 (ko) 안테나 성능시험 시스템
WO2017104905A1 (ko) 광 전송 지연 보상 방법 및 장치
WO2020149487A1 (ko) 다중 릴레이의 빔포밍 제어 장치 및 방법
WO2020138939A1 (ko) 복수개의 안테나 엘리먼트를 포함하는 안테나 모듈 시험 장치
WO2016039507A1 (ko) 건물 내 무선 통신 기반의 센서 배치를 위한 위치 결정 방법 및 건물 내 무선 통신 기반의 센서 배치를 위한 위치 결정 시스템
CN110708387A (zh) 一种不停电配电柜电表箱巡检监控装置及巡查监控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897914

Country of ref document: EP

Kind code of ref document: A1