WO2015076316A1 - Rod-shaped steel material guiding method and guiding device - Google Patents

Rod-shaped steel material guiding method and guiding device Download PDF

Info

Publication number
WO2015076316A1
WO2015076316A1 PCT/JP2014/080699 JP2014080699W WO2015076316A1 WO 2015076316 A1 WO2015076316 A1 WO 2015076316A1 JP 2014080699 W JP2014080699 W JP 2014080699W WO 2015076316 A1 WO2015076316 A1 WO 2015076316A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
roller
bending
steel material
rollers
Prior art date
Application number
PCT/JP2014/080699
Other languages
French (fr)
Japanese (ja)
Inventor
中村 吉孝
宗典 石橋
豊 左田野
貞夫 吉澤
Original Assignee
新日鐵住金ステンレス株式会社
寿産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社, 寿産業株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to KR1020167000124A priority Critical patent/KR101800215B1/en
Priority to EP14863868.7A priority patent/EP3028783B1/en
Publication of WO2015076316A1 publication Critical patent/WO2015076316A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/10Winding-up or coiling by means of a moving guide
    • B21C47/14Winding-up or coiling by means of a moving guide by means of a rotating guide, e.g. laying the material around a stationary reel or drum

Definitions

  • the present invention relates to a guiding method and a guiding device for a linear steel material including a steel bar and a wire rod.
  • a heating furnace, a rough rolling mill, An intermediate rolling mill, a finishing rolling mill, a final finishing rolling mill, and a laying head are sequentially disposed, and a plurality of water cooling devices for cooling the wire are disposed between the finishing rolling mill and the final finishing rolling mill.
  • a pinch roll stand and a guiding means for guiding the wire to the laying head are disposed between the final finish rolling mill and the laying head.
  • the laying head is installed at a certain angle with respect to the pinch roll stand, and when guiding a thin wire rod from the pinch roll side to the laying head at a high speed, a pipe guide (guide pipe) is used as the guiding means. ) Is used.
  • the pipe guide is disposed between the pinch roll stand and the laying head, and has a curved shape.
  • An object of the present invention is to prevent the occurrence of oysters in a linear steel material, improve the quality, and obtain a stable ring shape.
  • the first feature of the present invention is that the pinch roll on the downstream side of the final finish rolling mill in the hot rolling line and the downstream side of the pinch roll are spaced apart and shifted downward from the opposing position of the pinch roll.
  • the linear steel material is bent in the direction of the laying head while being guided to the downstream side by a plurality of rollers of a roller guide for bending forming, and the linear steel material that has been bent is formed into a roller guide for bending back forming on the downstream side.
  • the plurality of rollers are guided to the laying head while being bent back in the laying head direction.
  • the second feature of the present invention is that the bending guide and the bending return guide for guiding the linear steel material between the pinch roll and the laying head on the downstream side of the final finishing mill in the hot rolling line.
  • the bending guide and the bending return guide are attached to support means.
  • the laying head is disposed at a position that is spaced downstream from the pinch roll and is shifted downward from the opposed position of the pinch roll.
  • the guide guide for bending on the upstream side guides the linear steel material to the downstream side by a plurality of rollers, and also provides a bending roller guide for bending the linear steel material in the direction of the laying head. There are multiple.
  • the guide guide for bending return is used to guide the linear steel material bent by the bending guide guide on the upstream side back to the laying head direction by a plurality of rollers, and to guide the laying head.
  • a plurality of roller guides for bending back molding are provided.
  • Each roller in each of the above-described bending guide roller guide and each bending back forming roller guide is rotatably attached to a roller pin via a bearing portion.
  • the intermediate guide is provided between the bending guide and the return guide, and the intermediate guide is a linear steel material. Is provided with a plurality of guide roller guides for guiding the guide along a downward inclined direction by a plurality of rollers to guide the guide to the bending return guide.
  • the fourth feature of the present invention is that the second or third feature is provided, and a roller guide of each guide guide is provided with a center guide.
  • a fifth feature of the present invention is any one of the second to fourth features described above, wherein each guide guide is composed of at least two roller guides, and each roller guide is a combination of at least three rollers. It is in what is.
  • the sixth feature of the present invention includes any one of the second to fourth features and the fifth feature, and the combination of the three rollers is either the upper side or the lower side.
  • a seventh feature of the present invention includes any one of the second to sixth features described above, and each roller guide in the guide guide includes a roller eccentricity adjusting mechanism for adjusting the position of the roller. There is to be.
  • the eighth feature of the present invention includes any one of the second to seventh features described above, and each roller guide in the guide guide is attached to the substrate as the support means so as to be replaceable alone. It is in.
  • a ninth feature of the present invention is that any one of the second to eighth features is provided, and all the roller guides of all the guides have the same configuration.
  • a tenth feature of the present invention is that any one of the second to ninth features is provided, and a member having a small friction coefficient is used for the bearing of the bearing portion.
  • the eleventh feature of the present invention is that any one of the second to tenth features is provided, and a resin seal is disposed on the bearing portion.
  • the bending guide roller guide is provided as the bending guide, and the bending guide roller guide is provided as the bending return guide. This can smooth the induction of the linear steel material to the laying head, prevent the occurrence of oysters in the pipe guide that has been used in the past, improve the quality, and contact the quill pipe inside the laying head. This can be avoided and a stable ring can be formed.
  • FIG. 1 is a front view showing a linear steel material guiding device according to the present invention, in which a part of a base plate is cut away.
  • FIG. 2 is an enlarged front view showing a first bending guide roller guide in the first guiding guide of the linear steel material guiding device according to the present invention.
  • FIG. 3 is an enlarged side view showing a first bending guide roller guide in the first guiding guide of the linear steel material guiding device according to the present invention.
  • FIG. 4 is an enlarged plan view showing a first bending guide roller guide in the first guiding guide of the linear steel material guiding device according to the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a state where the first bending guide roller guide is mounted in the first guiding guide of the linear steel material guiding device according to the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing the relationship between each roller of the first bending guide roller guide and the center guide in the first guiding guide of the linear steel material guiding device according to the present invention.
  • FIG. 7 is a configuration diagram for explaining the mutual action of each roller in the first, second, and third guides in the linear steel material guide device according to the present invention.
  • FIG. 8 is an enlarged side view showing a pinch roll outlet guide in the linear steel material guiding device according to the present invention.
  • FIG. 1 A linear steel material induction device according to the present invention will be described with reference to the drawings.
  • the linear steel material induction device shown in FIG. A first guide guide G1 that is a bending guide guide, a second guide guide G2 that is an intermediate guide guide, and a third guide guide G3 that is a return guide guide.
  • the laying head H on the most downstream side (right side in the figure) is arranged at a position that is spaced downstream from the pinch roll P and spaced downward from the pinch roll P. That is, the laying head H is arranged in the downward inclined direction with a space from the pinch roll P to the downstream side.
  • the upstream first guide guide G1 includes a plurality of bending guide roller guides (in the illustrated example, two bending guide roller guides G11 and G12).
  • the first and second roller guides for bending G11 and G12 guide the linear steel material toward the laying head H direction, and the linear steel material is directed to the laying head H direction in FIG. It has the function of bending in the lateral direction.
  • the first bend forming roller guide G11 includes a guide unit 2.
  • the guide unit 2 is detachably attached to the base plate 1a by mounting bolts 3, and this base plate is fixed to the front surface of the substrate by fixing bolts 4 (FIG. 1).
  • the first bending roller guide G11 can be replaced with a new one by itself with respect to the substrate 1 through the guide unit 2.
  • a plurality of rollers 5, 6, 7 are provided in the guide unit 2.
  • two rollers 5 and 6 are provided on the upper side and one roller 7 is provided on the lower side, and a line connecting the centers of the rollers forms an inverted triangle. .
  • the rollers 5, 6, and 7 apply a bending force that draws a gentle arc in the direction of the laying head H to the linear steel material and guide it toward the downstream side (right side in FIG. 1).
  • the rollers 5, 6, and 7 are rotatably attached to the roller pins 8 via bearings 9.
  • a member having a small friction coefficient (such as ceramics) is used for the bearing 9a of the bearing portion 9 so that heat generation can be suppressed against rotation of the roller corresponding to the traveling speed of the linear steel material.
  • the ball bearing which has arrange
  • a resin seal 9 c is disposed at both ends of the roller 6 in the bearing portion 9 to prevent the deposits such as scale from entering the inside, and the roller rotating at high speed. The heat generation can be suppressed.
  • resin seals are also arranged for the bearing portions of the other rollers 5 and 7 (only the bearing portion 9 of the roller 7 is shown in FIG. 3).
  • 9d is a washer and 9e is a spacer. 2 to 5
  • a gear wheel 10 that is rotatably attached to the upper plate portion of the guide unit 2 is integrally coupled to the upper portion of each roller pin 8.
  • Each roller pin 8 is eccentrically coupled to the gear wheel 10.
  • each roller pin 8 is supported by an eccentric piece 11 that is rotatably attached to the lower plate portion of the guide unit 2.
  • Each roller pin 8 is eccentrically connected to the eccentric piece 11. 2, 4, and 6, a center guide 17 is provided in the guide unit 2 of the first bending roller guide G11.
  • the center guide 17 is fixed to the guide unit 2 by a center guide fixing bolt 18, and a distal end portion (left end portion in FIG. 6) protrudes from the guide unit.
  • the center guide 17 guides the linear steel material between the upper rollers 5 and 6 and the lower roller 7 in FIG. 6. Then, the linear steel material is squeezed by the rollers 5, 6 and 7 and bent in the direction of the laying head H until it enters from the inlet 17a of the center guide 17 shown in FIG.
  • the first bending guide roller guide G11 shown in FIGS. 2 to 4 is provided with a roller eccentricity adjusting mechanism 12 for adjusting the positions (rolling positions) of the rollers 5, 6, and 7, respectively.
  • Each eccentricity adjusting mechanism 12 includes a gear wheel 10, an eccentric piece 11, a pinion shaft 13 and a pinion 14.
  • Each pinion shaft 13 is rotatably supported by the pedestal 15.
  • Each pedestal 15 is fixed on the guide unit 2 by mounting bolts 16.
  • each pinion 14 is attached to the pinion shaft 13 and meshes with the gear wheel 10.
  • each pinion 14 rotates, and each gear wheel 10 rotates as each pinion rotates, so each roller pin 8 attached to the rotating gear wheel in an eccentric state also rotates.
  • the rollers 5, 6, and 7 are eccentric (moved), and the reduction position can be adjusted.
  • the other second bending guide roller guide G12 in the first guide guide G1 is downstream of the first bending guide roller guide G11 (on the right side in FIG. 1). It is arranged adjacent to each other with a gap.
  • the configuration of the second bend forming roller guide G12 is the same as that of the first bend forming roller guide G11.
  • molding is the code
  • the second bend forming roller guide G12 is different from the first bend forming roller guide G11 in that the second bend forming roller guide G11 as a starting point as shown in FIG.
  • the molding roller guide is attached to the substrate 1 by rotating half a turn (clockwise 180 °). For this reason, the arrangement positions of the respective components of the second bend forming roller guide G12 are reversed from the first bend forming roller guide G11.
  • the two rollers 5 and 6 in the second bending roller guide G12 are located on the lower side in FIG. 1 and the one roller 7 is located on the upper side in the figure.
  • the first guide guide G1 continuously arranges the first and second bending roller guides G11 and G12 having the same configuration on the substrate 1 (the base plate 1a) in a state of being inverted with respect to each other, In the form of a set of a combination of the upper two rollers 5 and 6 and the lower one roller 7 and a reversed combination (a combination of the upper one roller 7 and the lower two rollers 5 and 6). Adjacently, a curvature that bends the linear steel material in the direction of the laying head H is created to enable smooth guidance to the laying head.
  • the second guide G2 will be described with reference to FIG.
  • the second guide G2 is continuous with the first guide G1 on the downstream side.
  • the second guide G2 includes a plurality of guide roller guides (two guide roller guides G21 and G22 in the illustrated example).
  • the first and second guide roller guides G21 and G22 have a function of guiding the linear steel material along the downward inclined direction and guiding it to the third guide guide G3.
  • Each configuration of the first and second guide roller guides G21 and G22 is the same as each configuration of the first and second bending roller guides G11 and G12.
  • symbol which shows each component part of the roller guides G21 and G22 for the 1st and 2nd guides which is common with the roller guides G11 and G12 for the 1st and 2nd bend forming is the 1st and 2nd
  • the reference numerals used when describing the bending roller guides G11 and G12 are used as they are. The difference lies in the arrangement positions of the first and second guide roller guides G21 and G22 arranged side by side. That is, The first and second bending roller guides G11 and G12 installed on the left side of FIG. 1 are in an inverted state, whereas the first and second guiding roller guides G21 and G22 are both.
  • first guide roller guides G21 and G22 can guide the linear steel material passing through the center guide 17 by the upper rollers 5 and 6 and the lower roller 7, respectively.
  • the third guide G3 will be described with reference to FIG.
  • the third guide guide G3 is continuous with the second guide guide G2 on the downstream side thereof, and is a back guide roller guide for bending back the linear steel material and smoothing the guide to the laying head H.
  • a plurality of rollers (two roller guides G31 and G32 for bending back forming in the illustrated example) are provided.
  • the roller guides G31 and G32 for the first and second bending back forming were bent in order to guide the linear steel material toward the laying head H and to smoothly guide the laying head to the laying head H. It has a function for bending back the linear steel material guided in a state and forming it linearly.
  • the first and second bending back forming roller guides G31 and G32 constituting the third guiding guide G3 are linearly guided by the second guiding guide G2 and run in a bent state.
  • the steel material has a function of forming in a straight line in order to avoid direct contact in the direction of the laying head H and contact with the quill pipe Ha that is a guide pipe in the laying head.
  • the configurations of the first and second bending guide roller guides G31 and G32 are the same as the configurations of the first and second bending guide roller guides G11 and G12.
  • the reference numerals indicating the respective components of the first and second bending back roller guides G31 and G32 which are common to the first and second bending roller guides G11 and G12 are the first and second The code
  • the first bending roller guide G11 is a combination of the upper two rollers 5, 6 and the lower one roller 7, while the first The roller guide G31 for bending back molding is different in that it is a combination of the upper one roller 7 and the lower two rollers 5, 6.
  • the second bending roller guide G12 is a combination of the upper one roller 7 and the lower two rollers 5 and 6, whereas the second bending back roller guide G32 is the upper. It is different in that it is a combination of two rollers 5 and 6 and a lower one roller 7. Further, the first and second bending back roller guides G31 and G32 are attached to the base plate 1a at a predetermined angle in the clockwise direction in FIG. 1 with respect to the first bending roller guide G11. This is different from the first bend forming roller guide.
  • the arrangement of the rollers 5, 6 and 7 of the first bending back roller guide G31 is such that the rollers 5, 6 and 7 of the second guiding roller guide G22 adjacent on the upstream side (left side in FIG. 1). The arrangement is in an inverted state.
  • the third guide G3 continuously arranges the first and second roller guides G31 and G32 for bending back in which the combination of the rollers 5, 6 and 7 is in an inverted state.
  • each set of first and second roller guides for bending back and forth is provided. The roller is bent back to the laying head H, straightened, and smoothly guided to the quill pipe Ha in the laying head H along a straight line.
  • reference numerals 5A1 to 5A6 are denoted for the roller 5 shown in FIG. 1, and numerals 6A1 to 6A6 are denoted for the roller 6.
  • reference numerals 7A1 to 7A6 are used.
  • the first bending roller guide G11 performs the first three-point bending of the linear steel material through the reduction of the three rollers 5A1, 7A1, and 6A1.
  • the three-point bending of the second linear steel material is performed through the reduction by a total of three rollers 7A1, 6A1 and the roller 6A2 of the second bending forming roller guide G12, and then the roller 6A1 and the second bending forming are performed.
  • Three-point bending of the third linear steel material is performed through the reduction by a total of three rollers 6A2 and 7A2 of the roller guide G12 for use, and the rollers 6A2, 7A2 and 5A2 of the roller guide G12 for second bending are further
  • the fourth linear steel material is bent three times through the reduction by the piece.
  • the linear steel material is reversed rollers 5A1, 7A1, 6A1 in the process of being guided downstream by the first bending roller guide G11 and the second bending roller guide G12. And a set of rollers 5A2, 7A2 and 6A2 are applied with a bending force four times to form a gentle arc along the laying head H direction.
  • the first guide roller guide G21 is provided by rollers 5A3, 7A3, and 6A3
  • the second guide roller guide G22 is provided by rollers 5A4, 7A4, and 6A4. Then, the bent steel wire is smoothly guided to the third guide G3.
  • the first three-point bending of the linear steel material is performed through the reduction by the three rollers 6A5, 7A5, and 5A5 of the first bending back forming roller guide G31.
  • the wire steel material is subjected to the second three-point bending of the linear steel material through the reduction by a total of three rollers 7A5 and 5A5 and the roller 5A6 of the second bending back forming roller guide G32, and then the rollers 5A5 and the second Bend-back forming roller guide G32 three-point bending of the linear steel material is performed through a reduction by a total of three rollers 5A6 and 7A6, and roller 5A6 of second bending-back forming roller guide G32
  • the third linear bending of the linear steel material is performed through the reduction by three pieces of 7A6 and 6A6.
  • the linear steel material is reversed rollers 6A5 and 7A5 in the process of being guided toward the downstream side by the first bending back roller guide G31 and the second bending back roller guide G32.
  • 5A5 and a set of rollers 5A6, 7A6, 6A6 are applied with a force for bending back four times, and straightening that extends linearly along the laying head H direction is performed.
  • the rollers 5A1, 6A1, 7A1 and the rollers 5A2, 6A2, 7A2 are arranged downstream, and the combination of the three rollers is continuous.
  • the rollers 5A3, 6A3 and 7A3 and the rollers 5A4, 6A4 and 7A4 are arranged in the downstream direction, and the combination of the three rollers is continuous, and the first and second bending back moldings are performed.
  • the roller guides G31 and G32 the roller 5A5, 6A5, 7A5 and the roller 5A6, 6A6, 7A6 are continuous toward the downstream, so the combination of the three rollers is continuous, so that the linear steel material is bent, guided and bent back. Molding can be performed smoothly and reliably.
  • an outlet guide 19 is disposed on the outlet side of the pinch roll P.
  • the exit guide 19 is for guiding the linear steel material extruded from the pinch roll P to the first bending guide roller guide G11 in the first guide guide G1 located on the most upstream side. .
  • the outlet guide 19 includes a guide box 20.
  • the guide box 20 is attached to the base plate 1a by mounting bolts 21.
  • a cylindrical delivery guide 22 is fixed in the guide box 20 by guide fixing bolts 23.
  • the distal end side (left end portion side in FIG. 1) of the delivery guide 22 protrudes from the guide box 20 toward the facing gap of the pinch roll P.
  • the linear steel material that has come out of the pinch roll P is guided to the center guide 17 of the first bending roller guide G11 through the inner hole 22a of the delivery guide 22.
  • derivation method of the linear steel material of this invention is demonstrated.
  • the linear steel material that has passed through the final finish rolling mill is eventually guided to the pinch roll P and is pushed out of the pinch roll to be the first induction guide G1 on the most upstream side.
  • the first and second bending roller guides G11 and G12 of this series are advanced, where a bending force is applied by the rollers 5, 6 and 7, and a gradual downward curve in the direction of the laying head H is sequentially applied.
  • first and second guide roller guides G21, G22 of the second guide guide G2 It is guided while drawing, and then proceeds to a series of first and second guide roller guides G21, G22 of the second guide guide G2, where it is guided by the roller along a downwardly inclined direction, Further, the process proceeds to the two first and second bending back roller guides G31 and G32 of the third guide guide G3, where the linear steel material is gradually bent by the rollers. And is returned to the original state becomes linear, is finally guided to laying head H, it is formed in a ring shape by laying head release.
  • the operation of the roller eccentricity adjusting mechanism 12 shown in FIGS. 1 and 2 will be described. First and second bending roller guides G11 and G12, and first and second guiding roller guides G21 and G22.
  • the gear wheel 10 is rotated via the pinion 14, and the roller pin 8 that rotates simultaneously. Since all or any of the rollers 5, 6 and 7 corresponding to the roller pins through the shaft rotates eccentrically, the positions of the rollers (the roller guides G11 and G12 for each bending and the roller guides for each bending and forming) G31 and G32 are adjusted in the reduced position, and the first and second guide roller guides G21 and G22 are adjusted in the guide position). Is, it is possible to optimum molding and induction.
  • the occurrence of oysters of the linear steel material is prevented by arranging rollers 5, 6, and 7 between the pinch roll P and the laying head H instead of the pipe guide described in the conventional example.
  • the quality can be improved and a stable ring shape can be formed.
  • the laying head H has a linear quill pipe Ha inside, but if the inner surface of the quill pipe and the linear steel material come into contact with each other, it causes oysters and the contact speed of the linear steel material is increased.
  • each of the first, second and third guides G1, G2, G3 is composed of two roller guides G11, G12, G21, G22, G31, G32.
  • any of the guides may be composed of three or more roller guides.
  • the roller guides G11, G12, G21, G22, G31, and G32 in the first, second, and third guides G1, G2, and G3 are each detachable from the substrate 1 as a single unit.
  • roller guides G11, G12, G21, G22, G31, and G32 can be installed by reversal rotation and can be freely selected. However, the arrangement is not necessarily limited to this example. Further, in the example shown in the figure, since all the roller guides G11, G12, G21, G22, G31, and G32 have the same structure, the manufacturing cost can be reduced and the base plate 1a can be reduced.
  • each roller guide can be used as it is, so there is an advantage that the workability of installation / removal and maintenance work are simplified, but all have the same structure. It is not necessary to.
  • Each pair of rollers in the two roller guides G11 and G12 is arranged in an inverted state, and similarly, each pair of rollers in the two roller guides G31 and G32 is also arranged in an inverted state. In the latter case, it is possible to perform bending forming four times, and in the latter case, four bending return forming operations, so that the linear steel material can be formed smoothly and reliably, and smooth guidance to the laying head H is achieved. It becomes possible.
  • the two adjacent sets of rollers are arranged side by side without being reversed, and the guidance is made smooth. You may make it arrange
  • the bearing 9a and the seal 9c of the bearing portion 9 an example using a member having a small friction coefficient is shown. However, the member is selectively used according to the speed of the linear steel material, and the above example is not necessarily used. It is not limited.
  • the first, second, and third guides G1, G2, and G3 are arranged to facilitate the induction and forming of the linear steel material.
  • the second guide G2 may not be arranged.
  • the first guide guide G1 is guided to the third head guide G3 as it is after bending the linear steel material, and then bent back to guide it to the laying head H.
  • each roller guide G11, G12, G21, G22, G31, G32 is provided with a roller eccentricity adjusting mechanism 12, and the rolling down position or guide position of each roller 5, 6, 7 is arbitrarily changed.
  • first and second bending roller guides G ⁇ b> 11 and G ⁇ b> 12 first and second guiding roller guides G ⁇ b> 21 and G ⁇ b> 22 and first and second bending back rollers.
  • the base plate 1a is provided with a convex or concave positioning portion 1a1 in the width direction (the vertical direction in the figure), but these are provided as necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)

Abstract

The purpose of the invention is to improve the quality of a rod-shaped steel material by preventing the generation of scratches on the rod-shaped steel material, and to obtain a stable ring shape. First to third guides (G1, G2, G3) are disposed to guide the rod-shaped steel material from pinch rolls (P) to a laying head (H). The first guide (G1), on the most upstream side, is provided with a plurality of bending and shaping roller guides (G11, G12) which impart a curvature to the rod-shaped steel material, bending it in the direction of the laying head (H). The second guide (G2) is provided with a plurality of directing roller guides (G21, G22) which guide the rod-shaped steel material downstream. The third guide (G3), on the most downstream side, is contiguous with the second guide (G2) and is provided with a plurality of bending-back and shaping roller guides (G31, G32) for bending back the rod-shaped steel material in the direction of the laying head (H), to make it straight.

Description

線状鋼材の誘導方法及び誘導装置Method and apparatus for guiding wire steel
 本発明は、棒鋼や線材を含む線状鋼材の誘導方法及び誘導装置に関するものである。 The present invention relates to a guiding method and a guiding device for a linear steel material including a steel bar and a wire rod.
 鋼材を熱間圧延して線状鋼材に製造する場合、例えば特開2010−99669号公報に開示されている熱間圧延ラインでは、上流側から下流側に向けて、加熱炉、粗圧延機、中間圧延機、仕上げ圧延機、最終仕上げ圧延機及びレイングヘッドが順次配設され、上記仕上げ圧延機と最終仕上げ圧延機との間には線材を冷却する複数の水冷装置が配備されている。
 上記公報に開示されてはいないが、一般的に最終の仕上げ圧延機とレイングヘッドとの間にピンチロールスタンド及びその下流に上記線材をレイングヘッドへ案内するための誘導手段が配置されている。
 そして、上記レイングヘッドは上記ピンチロールスタンドに対して一定角度斜めに設置されていて、細径の線材を高速でピンチロール側から上記レイングヘッドへ誘導する場合、誘導手段としてはパイプガイド(誘導管)が用いられている。上記パイプガイドは、ピンチロールスタンドとレイングヘッドとの間に配置され、凸形に湾曲した形状となっている。
When a steel material is hot rolled to produce a linear steel material, for example, in a hot rolling line disclosed in JP 2010-99669 A, a heating furnace, a rough rolling mill, An intermediate rolling mill, a finishing rolling mill, a final finishing rolling mill, and a laying head are sequentially disposed, and a plurality of water cooling devices for cooling the wire are disposed between the finishing rolling mill and the final finishing rolling mill.
Although not disclosed in the above publication, generally, a pinch roll stand and a guiding means for guiding the wire to the laying head are disposed between the final finish rolling mill and the laying head.
The laying head is installed at a certain angle with respect to the pinch roll stand, and when guiding a thin wire rod from the pinch roll side to the laying head at a high speed, a pipe guide (guide pipe) is used as the guiding means. ) Is used. The pipe guide is disposed between the pinch roll stand and the laying head, and has a curved shape.
特開2010−99669号公報JP 2010-99669 A
 線材の誘導時には、ピンチロールから出た上述した細径であって高速走行する線材は、パイプガイドによってレイングヘッドに誘導される際、上記パイプガイドの内面に接触するとカキ疵の原因となり、また、接触することにより線材の速度にムラが発生し、レイングヘッドによって良好なリングが形成できなくなる課題があった。換言すれば、上記カキ疵や線材速度のムラにより、安定したリング形成を得ることができなくなり、これらのことが最終的に線材の品質や操業面上の観点から解決すべき問題となっていた。
 本発明の目的は、線状鋼材のカキ疵の発生を防止し品質を向上させると共に、安定したリング形状を得ることにある。
At the time of guiding the wire rod, the above-mentioned small diameter wire rod that has come out of the pinch roll, when guided to the laying head by the pipe guide, causes oysters when touching the inner surface of the pipe guide, The contact causes unevenness in the speed of the wire, and there is a problem that a good ring cannot be formed by the laying head. In other words, it is impossible to obtain a stable ring formation due to the unevenness of the oyster cake and the wire speed, and these have finally become problems to be solved from the viewpoint of the quality and operation of the wire. .
An object of the present invention is to prevent the occurrence of oysters in a linear steel material, improve the quality, and obtain a stable ring shape.
 本発明の第1の特徴は、熱間圧延ラインにおける最終の仕上げ圧延機の下流側のピンチロールと、このピンチロールの下流側に間隔を空けてかつピンチロールの対向位置から下側にずらした位置に配置されているレイングヘッドとの間における線状鋼材を誘導するための誘導方法にある。上記線状鋼材を曲げ成形用のローラーガイドの複数のローラーによって下流側へ誘導しながら上記レイングヘッド方向に曲げ成形し、曲げ成形された上記線状鋼材を下流側の曲げ戻し成形用のローラーガイドの複数のローラーによって上記レイングヘッド方向に曲げ戻し成形しながら、上記レイングヘッドに誘導するものである。
 本発明の第2の特徴は、熱間圧延ラインにおける最終の仕上げ圧延機の下流側のピンチロールからレイングヘッドまでの間に線状鋼材を誘導するための曲げ用誘導ガイド及び曲げ戻し用誘導ガイドを配置してある線状鋼材の誘導装置にある。上記曲げ用誘導ガイド及び上記曲げ戻し用誘導ガイドは支持手段に取り付けられている。上記レイングヘッドは、上記ピンチロールに対してその下流側に間隔を空けてかつピンチロールの対向位置から下側にずらした位置に配置されている。上流側の上記曲げ用誘導ガイドは、複数のローラーによって上記線状鋼材を下流側に誘導すると共に、上記線状鋼材に対して上記レイングヘッド方向に曲げる曲率を与えるための曲げ成形用のローラーガイドを複数備えている。上記曲げ戻し用誘導ガイドは上流側の上記曲げ用誘導ガイドによって曲げられた上記線状鋼材を複数のローラーによって上記レイングヘッド方向に曲げ戻して直線状に成形すると共に、上記レイングヘッドへ誘導するための曲げ戻し成形用のローラーガイドを複数備えている。上記各曲げ成形用のローラーガイド及び各曲げ戻し成形用のローラーガイドにおけるそれぞれのローラーは軸受部を介してローラーピンに回転自在に取り付けられている。
 本発明の第3の特徴は、上記第2の特徴を備えており、曲げ用誘導ガイドと曲げ戻し用誘導ガイドとの間に中間用誘導ガイドを配置し、この中間用誘導ガイドは線状鋼材を複数のローラーによって下向き傾斜方向に沿って誘導して上記曲げ戻し用誘導ガイドに導くための案内用のローラーガイドを複数備えていることにある。
 本発明の第4の特徴は、上記第2又は第3の特徴を備えており、各誘導ガイドのローラーガイドにはセンターガイドを設けてあることにある。
 本発明の第5の特徴は、上記第2乃至第4のいずれかの特徴を備えており、各誘導ガイドは少なくとも2連のローラーガイドからなり、いずれのローラーガイドも少なくとも3個のローラーを組み合わせているものであることにある。
 本発明の第6の特徴は、上記第2乃至第4のいずれかの特徴を備えていると共に、上記第5の特徴を備えており、3個のローラーの組み合わせは、上側又は下側のいずれか一方側に配置されている2個のローラーと、他方側に配置されている1個のローラーとからなり、両曲げ成形用のローラーガイドにおける隣接している3個のローラーの組み合わせは互いに反転した位置関係にあり、両曲げ戻し成形用のローラーガイドにおける隣接している3個のローラーの組み合わせは互いに反転した位置関係にあることにある。
 本発明の第7の特徴は、上記第2乃至第6のいずれかの特徴を備えており、誘導ガイドにおける各ローラーガイドは、ローラーの位置を調整するためのローラーの偏芯調整機構を備えていることにある。
 本発明の第8の特徴は、上記第2乃至第7のいずれかの特徴を備えており、誘導ガイドにおける各ローラーガイドは、支持手段である基板にそれぞれ単体で交換可能に取り付けられていることにある。
 本発明の第9の特徴は、上記第2乃至第8のいずれかの特徴を備えており、全ての誘導ガイドの各ローラーガイドはいずれも同一構成であることにある。
 本発明の第10の特徴は、上記第2乃至第9のいずれかの特徴を備えており、軸受部の軸受に摩擦係数の小さな部材を用いていることにある。
 本発明の第11の特徴は、上記第2乃至第10のいずれかの特徴を備えており、軸受部には樹脂製のシールを配置してあることにある。
The first feature of the present invention is that the pinch roll on the downstream side of the final finish rolling mill in the hot rolling line and the downstream side of the pinch roll are spaced apart and shifted downward from the opposing position of the pinch roll. There exists in the induction | guidance | derivation method for guide | inducing a linear steel material between the laying head arrange | positioned in a position. The linear steel material is bent in the direction of the laying head while being guided to the downstream side by a plurality of rollers of a roller guide for bending forming, and the linear steel material that has been bent is formed into a roller guide for bending back forming on the downstream side. The plurality of rollers are guided to the laying head while being bent back in the laying head direction.
The second feature of the present invention is that the bending guide and the bending return guide for guiding the linear steel material between the pinch roll and the laying head on the downstream side of the final finishing mill in the hot rolling line. Is in a linear steel material guiding device. The bending guide and the bending return guide are attached to support means. The laying head is disposed at a position that is spaced downstream from the pinch roll and is shifted downward from the opposed position of the pinch roll. The guide guide for bending on the upstream side guides the linear steel material to the downstream side by a plurality of rollers, and also provides a bending roller guide for bending the linear steel material in the direction of the laying head. There are multiple. The guide guide for bending return is used to guide the linear steel material bent by the bending guide guide on the upstream side back to the laying head direction by a plurality of rollers, and to guide the laying head. A plurality of roller guides for bending back molding are provided. Each roller in each of the above-described bending guide roller guide and each bending back forming roller guide is rotatably attached to a roller pin via a bearing portion.
According to a third aspect of the present invention, the intermediate guide is provided between the bending guide and the return guide, and the intermediate guide is a linear steel material. Is provided with a plurality of guide roller guides for guiding the guide along a downward inclined direction by a plurality of rollers to guide the guide to the bending return guide.
The fourth feature of the present invention is that the second or third feature is provided, and a roller guide of each guide guide is provided with a center guide.
A fifth feature of the present invention is any one of the second to fourth features described above, wherein each guide guide is composed of at least two roller guides, and each roller guide is a combination of at least three rollers. It is in what is.
The sixth feature of the present invention includes any one of the second to fourth features and the fifth feature, and the combination of the three rollers is either the upper side or the lower side. It consists of two rollers arranged on one side and one roller arranged on the other side, and the combination of three adjacent rollers in the roller guide for bi-bending molding is reversed to each other The combination of the three adjacent rollers in the roller guides for both bending back moldings is in a positional relationship that is reversed with respect to each other.
A seventh feature of the present invention includes any one of the second to sixth features described above, and each roller guide in the guide guide includes a roller eccentricity adjusting mechanism for adjusting the position of the roller. There is to be.
The eighth feature of the present invention includes any one of the second to seventh features described above, and each roller guide in the guide guide is attached to the substrate as the support means so as to be replaceable alone. It is in.
A ninth feature of the present invention is that any one of the second to eighth features is provided, and all the roller guides of all the guides have the same configuration.
A tenth feature of the present invention is that any one of the second to ninth features is provided, and a member having a small friction coefficient is used for the bearing of the bearing portion.
The eleventh feature of the present invention is that any one of the second to tenth features is provided, and a resin seal is disposed on the bearing portion.
 本発明によれば、曲げ用誘導ガイドとして曲げ成形用のローラーガイドを、曲げ戻し用誘導ガイドとして曲げ戻し成形用のローラーガイドを設けて、線状鋼材の曲げ誘導及び直線誘導を可能にしたので、レイングヘッドへの上記線状鋼材の誘導を滑らかにすることができ、従来使用されていたパイプガイドでのカキ疵の発生を防止し、品質を向上させ、レイングヘッド内部のクイルパイプへの接触を回避することができ、安定したリングを形成することができる。 According to the present invention, the bending guide roller guide is provided as the bending guide, and the bending guide roller guide is provided as the bending return guide. This can smooth the induction of the linear steel material to the laying head, prevent the occurrence of oysters in the pipe guide that has been used in the past, improve the quality, and contact the quill pipe inside the laying head. This can be avoided and a stable ring can be formed.
 図1は、本発明に係る線状鋼材の誘導装置を示す正面図であって、台板の一部を切欠している図である。
 図2は、本発明に係る線状鋼材の誘導装置の第1の誘導ガイドにおける第1の曲げ成形用のローラーガイドを示す拡大正面図である。
 図3は、本発明に係る線状鋼材の誘導装置の第1の誘導ガイドにおける第1の曲げ成形用のローラーガイドを示す拡大側面図である。
 図4は、本発明に係る線状鋼材の誘導装置の第1の誘導ガイドにおける第1の曲げ成形用のローラーガイドを示す拡大平面図である。
 図5は、本発明に係る線状鋼材の誘導装置の第1の誘導ガイドにおける第1の曲げ成形用のローラーガイドのローラーの取付け状態を拡大して示す断面図である。
 図6は、本発明に係る線状鋼材の誘導装置の第1の誘導ガイドにおける第1の曲げ成形用のローラーガイドの各ローラーとセンターガイドとの関係を拡大して示す断面図である。
 図7は、本発明に係る線状鋼材の誘導装置における第1、第2及び第3の誘導ガイドにおける各ローラーの相互の作用をそれぞれ説明するための構成図である。
 図8は、本発明に係る線状鋼材の誘導装置におけるピンチロールの出口ガイドを示す拡大側面図である。
FIG. 1 is a front view showing a linear steel material guiding device according to the present invention, in which a part of a base plate is cut away.
FIG. 2 is an enlarged front view showing a first bending guide roller guide in the first guiding guide of the linear steel material guiding device according to the present invention.
FIG. 3 is an enlarged side view showing a first bending guide roller guide in the first guiding guide of the linear steel material guiding device according to the present invention.
FIG. 4 is an enlarged plan view showing a first bending guide roller guide in the first guiding guide of the linear steel material guiding device according to the present invention.
FIG. 5 is an enlarged cross-sectional view showing a state where the first bending guide roller guide is mounted in the first guiding guide of the linear steel material guiding device according to the present invention.
FIG. 6 is an enlarged cross-sectional view showing the relationship between each roller of the first bending guide roller guide and the center guide in the first guiding guide of the linear steel material guiding device according to the present invention.
FIG. 7 is a configuration diagram for explaining the mutual action of each roller in the first, second, and third guides in the linear steel material guide device according to the present invention.
FIG. 8 is an enlarged side view showing a pinch roll outlet guide in the linear steel material guiding device according to the present invention.
 本発明に係る線状鋼材の誘導装置について図面を参照して説明する。
 図1に示す線状鋼材の誘導装置は、熱間圧延ラインにおける最終の仕上げ圧延機の下流側に配置してあるピンチロールPからレイングヘッドHまでの間の線状鋼材を誘導するために、曲げ用誘導ガイドである第1の誘導ガイドG1、中間用誘導ガイドである第2の誘導ガイドG2及び曲げ戻し用誘導ガイドである第3の誘導ガイドG3を備えている。
 図1において、最下流側(図右側)のレイングヘッドHは、ピンチロールPに対してその下流側に間隔を空けてかつピンチロールの対向位置から下側にずらした位置に配置されている。すなわち、レイングヘッドHは、ピンチロールPから下流側に間隔を空けてかつ下向き傾斜方向に配置されている。
 ピンチロールPとレイングヘッドHとの間にはほぼ「へ」字形の基板1を配置してある。基板1正面に同形の台板1aが重ねられており、この台板に第1、第2及び第3の誘導ガイドG1,G2,G3が取外し可能に取り付けられている。
 第1の誘導ガイドG1について図1~図6を参照して説明する。
 図1において、上流側の第1の誘導ガイドG1は、曲げ成形用のローラーガイドを複数(図示の例では2台の曲げ成形用のローラーガイドG11,G12)備えている。第1及び第2の曲げ成形用のローラーガイドG11,G12は、上記線状鋼材をレイングヘッドH方向に向けて誘導するものであると共に、上記線状鋼材をレイングヘッドH方向である図1下側方向に曲げ成形する機能を有している。
 第1及び第2の曲げ成形用のローラーガイドG11,G12のうちの一方の第1の曲げ成形用のローラーガイドG11について説明する。
 図2~図4において、第1の曲げ成形用のローラーガイドG11はガイドユニット2を備えている。ガイドユニット2は取付けボルト3によって台板1aに着脱可能に取り付けられており、この台板は固定ボルト4(図1)によって基板正面に固定されている。第1の曲げ成形用のローラーガイドG11は、ガイドユニット2を通じて基板1に対して単体で新たなものと交換可能である。
 ガイドユニット2内には複数のローラー5,6,7を設けてある。図2に示すガイドユニット2の例では、上側に2個のローラー5,6を、下側には1個のローラー7を設け、各ローラーの中心間を結ぶ線が逆三角形を形成している。ローラー5,6,7は上記線状鋼材をレイングヘッドH方向に緩やかな円弧を描く曲げ力を付与して、下流側(図1右側)に向けて誘導する。
 図3~図5において、各ローラー5,6,7は、各ローラーピン8に軸受部9を介して回転自在に取り付けられている。軸受部9の軸受9aには摩擦係数の小さな部材(例えばセラミックス等)を用いて、線状鋼材の走行速度に対応するローラーの回転に対して発熱を抑制可能にしている。図3及び図5に示す軸受9aにあっては、その内部にボール9bを配置している玉軸受が用いられている。図5に示す例によれば、軸受部9にはローラー6の両端に樹脂製のシール9cを配置して、スケール等の付着物が内部に浸入することを防止し、高速回転しているローラーとの発熱を抑制可能にしている。同様に、他のローラー5,7の軸受部(図3ではローラー7の軸受部9のみ図示)についても樹脂製のシールを配置してある。
 図5において、9dはワッシャー、9eはスペーサである。
 図2~図5において、各ローラーピン8の上部には、ガイドユニット2の上板部に回転可能に取り付けてあるギアホイール10が一体的に結合されている。各ローラーピン8はギアホイール10に対して偏芯的に結合されている。また、各ローラーピン8の下端部は、ガイドユニット2の下板部に回転可能に取り付けてあるエキセンピース11に軸受けされている。各ローラーピン8はエキセンピース11に偏芯的に連結されている。
 図2、図4及び図6において、第1の曲げ成形用のローラーガイドG11のガイドユニット2内にはセンターガイド17を設けてある。センターガイド17はセンターガイド固定ボルト18によってガイドユニット2に固定され、先端部(図6左端部)がガイドユニットから突出されている。センターガイド17は、線状鋼材を図6上側のローラー5,6と下側のローラー7との間に導き入れるものである。そして、線状鋼材は、図6に示すセンターガイド17の入口17aから入って出口17bを通過するまでの間に各ローラー5,6,7によって圧下されてレイングヘッドH方向に曲げられる。
 細くて高速走行する線状鋼材は、走行中に上下又は左右に振れる傾向にあるので、センターガイド17はガイドユニット2内を通過する上記線状鋼材の直進を促して、ローラー5,6,7による案内や圧下を確実なものにする役割を有している。
 図2~図4に示す第1の曲げ成形用のローラーガイドG11は、各ローラー5,6,7の位置(圧下位置)をそれぞれ調整するためのローラーの偏芯調整機構12を設けてある。
 各偏芯調整機構12は、ギアホイール10、エキセンピース11、ピニオン軸13及びピニオン14を備えている。各ピニオン軸13はペデスタル15に回転可能に軸受けされている。各ペデスタル15は取付けボルト16によってガイドユニット2上に固着されている。各ピニオン14はピニオン軸13に取り付けられており、ギアホイール10と噛み合っている。
 各ピニオン軸13の回転操作によって、各ピニオン14は回転し、各ピニオンの回転に伴って各ギアホイール10が回転するから、回転するギアホイールに偏芯状態に取り付けてある各ローラーピン8も回転して、各ローラー5,6,7が偏芯(移動)して、圧下位置を調整することができる。
 図1及び図2において、第1の誘導ガイドG1における他方の第2の曲げ成形用のローラーガイドG12は、一方の第1の曲げ成形用のローラーガイドG11にその下流側(図1右側)で間隔を隔てて隣接して配置されている。第2の曲げ成形用のローラーガイドG12の構成は第1の曲げ成形用のローラーガイドG11のそれと同一である。このため、第1の曲げ成形用のローラーガイドG11と共通する第2の曲げ成形用のローラーガイドG12の各構成部分を示す符号は、第1の曲げ成形用のローラーガイドの説明時に使用した符号をそのまま使用している。
 第2の曲げ成形用のローラーガイドG12が第1の曲げ成形用のローラーガイドG11と相違する点は、図1に示すように、第1の曲げ成形用のローラーガイドを起点として第2の曲げ成形用のローラーガイドを基板1に半転(時計方向に180°回転)させて取り付けていることにある。このため、第2の曲げ成形用のローラーガイドG12の各構成部分の配置位置は、第1の曲げ成形用のローラーガイドG11を起点として反転させたものとなっている。この結果、第2の曲げ成形用のローラーガイドG12における2個のローラー5,6が図1下側に、1個のローラー7が同図上側に位置している。
 このように、第1の誘導ガイドG1は、同一構成の第1及び第2の曲げ成形用のローラーガイドG11,G12を互いに反転した状態で連続して基板1(台板1a)に並べると共に、上2個のローラー5,6と下1個のローラー7の組み合わせと、反転させた組み合わせ(上1個のローラー7と下2個のローラー5,6の組み合わせ)とを一セットにした形態で隣接配置し、線状鋼材をレイングヘッドH方向へ曲げる曲率を作って、レイングヘッドへの滑らかな誘導を可能にしている。
 第2の誘導ガイドG2について図1を参照して説明する。
 第2の誘導ガイドG2は前記第1の誘導ガイドG1にその下流側で連続している。第2の誘導ガイドG2は、案内用のローラーガイドを複数(図示の例では2台の案内用のローラーガイドG21,G22)備えている。第1及び第2の案内用のローラーガイドG21,G22は、上記線状鋼材を上記下向き傾斜方向に沿って誘導して第3の誘導ガイドG3に導く機能を有している。
 第1及び第2の案内用のローラーガイドG21,G22の各構成は、前記第1及び第2の曲げ成形用のローラーガイドG11,G12の各構成と同一である。このため、第1及び第2の曲げ成形用のローラーガイドG11,G12と共通する第1及び第2の案内用のローラーガイドG21,G22の各構成部分を示す符号は、第1及び第2の曲げ成形用のローラーガイドG11,G12の説明時に用いた符号をそのまま使用している。
 相違点は、並設されている第1及び第2の案内用のローラーガイドG21,G22の配置位置にある。すなわち、
 図1左側に設置されている第1及び第2の曲げ成形用のローラーガイドG11,G12は互いに反転状態にあるのに対して、第1及び第2の案内用のローラーガイドG21,G22は双方共にローラー5,6を上側にし、ローラー7を下側に位置し反転状態にない点で相違している。
 隣接している第1の案内用のローラーガイドG21と第2の曲げ成形用のローラーガイドG12との関係において、一方(図1右方)の第1の案内用のローラーガイドはローラー7が下側に位置し、他方(左方)の第2の曲げ成形用のローラーガイドのローラー7が上側に位置して、基板1に対して反転状態に取り付けられている。
 第1及び第2の案内用のローラーガイドG21,G22は、それぞれ上側のローラー5,6と下側のローラー7とによってセンターガイド17を通過する線状鋼材を案内可能である。
 図1に示す第1及び第2の案内用のローラーガイドG21,G22におけるローラーの偏芯調整機構12にあっては、その偏芯操作によってローラー5,6,7の案内位置が調整可能となる。
 第3の誘導ガイドG3について図1を参照して説明する。
 第3の誘導ガイドG3は前記第2の誘導ガイドG2にその下流側で連続し、上記線状鋼材を曲げ戻してレイングヘッドHへの誘導を滑らかにするための曲げ戻し成形用のローラーガイドを複数(図示の例では2台の曲げ戻し成形用のローラーガイドG31,G32)備えている。
 第1及び第2の曲げ戻し成形用のローラーガイドG31,G32は、上記線状鋼材をレイングヘッドHに向けての誘導を図ると共に、レイングヘッドへの誘導を滑らかにするために、曲げられた状態で誘導されてくる上記線状鋼材を曲げ戻して直線状に成形するための機能を有している。換言すれば、第3の誘導ガイドG3を構成している第1及び第2の曲げ戻し成形用のローラーガイドG31,G32は、曲った状態で第2の誘導ガイドG2により誘導され走行する線状鋼材をレイングヘッドH方向に向かって直行してレイングヘッド内の誘導パイプであるクイルパイプHaに接触することを避けるために直線状に成形する機能を有している。
 第1及び第2の曲げ戻し成形用のローラーガイドG31,G32の各構成は、前記第1及び第2の曲げ成形用のローラーガイドG11,G12の各構成と同一である。このため、第1及び第2の曲げ成形用のローラーガイドG11,G12と共通する第1及び第2の曲げ戻し成形用のローラーガイドG31,G32の各構成部分を示す符号は、第1及び第2の曲げ成形用のローラーガイドの説明時に用いた符号をそのまま使用している。
 ローラー5,6,7の配置位置に関して、第1の曲げ成形用のローラーガイドG11は上2個のローラー5,6と下1個のローラー7との組み合わせであるのに対して、第1の曲げ戻し成形用のローラーガイドG31は上1個のローラー7と下2個のローラー5,6の組み合わせである点で相違している。そして、第2の曲げ成形用のローラーガイドG12は上1個のローラー7と下2個のローラー5,6の組み合わせであるのに対して、第2の曲げ戻し成形用のローラーガイドG32は上2個のローラー5,6と下1個のローラー7との組み合わせである点で相違している。
 また、第1及び第2の曲げ戻し成形用のローラーガイドG31,G32は、第1の曲げ成形用のローラーガイドG11よりも図1時計方向側に所定角度傾けて台板1aに取り付けられている点で第1の曲げ成形用のローラーガイドと相違している。
 第1の曲げ戻し成形用のローラーガイドG31のローラー5,6,7の配置は、上流側(図1左側)で隣接している第2の案内用のローラーガイドG22のローラー5,6,7の配置とは反転状態にある。
 図1に示すように、第3の誘導ガイドG3は、互いにローラー5,6,7の組み合わせが反転状態にある第1及び第2の曲げ戻し成形用のローラーガイドG31,G32を連続的に配置すると共に、第2の誘導ガイドG2によって誘導された曲げられたままの線状鋼材がその曲率に沿って進むことを回避するため、第1及び第2の曲げ戻し成形用のローラーガイドの各組のローラーはレイングヘッドHに曲げ戻して真直に矯正して直線状に沿って滑らかにレイングヘッドH内のクイルパイプHaへ誘導する。
 図1に示す各第1、第2及び第3の誘導ガイドG1,G2,G3における6組のローラー5,6,7の相互の作用について図7を参照して説明する。
 なお、図7では、6組のローラーの組み合わせそれぞれについて個々のローラーを区別するために、図1に示すローラー5にあっては符号5A1~5A6を、ローラー6にあっては符号6A1~6A6を、ローラー7にあっては符号7A1~7A6を使用している。
 図7(i)の第1の誘導ガイドG1において、第1の曲げ成形用のローラーガイドG11は、ローラー5A1,7A1,6A1の3個による圧下を通じて1回目の線状鋼材の3点曲げをし、ついでローラー7A1,6A1と第2の曲げ成形用のローラーガイドG12のローラー6A2との合計3個による圧下を通じて2回目の線状鋼材の3点曲げをし、引き続きローラー6A1と第2の曲げ成形用のローラーガイドG12のローラー6A2,7A2の合計3個による圧下を通じて3回目の線状鋼材の3点曲げをし、さらに第2の曲げ成形用のローラーガイドG12のローラー6A2,7A2,5A2の3個による圧下を通じて4回目の線状鋼材の3点曲げをする。
 したがって、線状鋼材は、第1の曲げ成形用のローラーガイドG11及び第2の曲げ成形用のローラーガイドG12によって下流側に向けて誘導される過程では、反転されているローラー5A1,7A1,6A1の組と、ローラー5A2,7A2,6A2の組によって4回の曲げ力が付与されて、レイングヘッドH方向に沿って緩やかな円弧を描く成形が行われる。
 図7(ii)の第2の誘導ガイドG2において、第1の案内用のローラーガイドG21はローラー5A3,7A3,6A3によって、そして第2の案内用のローラーガイドG22はローラー5A4,7A4,6A4によって、曲がり成形された線状鋼材を第3の誘導ガイドG3に円滑に誘導する。
 図7(iii)の第3の誘導ガイドG3において、第1の曲げ戻し成形用のローラーガイドG31のローラー6A5,7A5,5A5の3個による圧下を通じて1回目の線状鋼材の3点曲げ戻しを行い、ついでローラー7A5,5A5と第2の曲げ戻し成形用のローラーガイドG32のローラー5A6の合計3個による圧下を通じて2回目の線状鋼材の3点曲げ戻しを行い、引き続きローラー5A5と第2の曲げ戻し成形用のローラーガイドG32のローラー5A6,7A6の合計3個による圧下を通じて3回目の線状鋼材の3点曲げ戻しを行い、さらに第2の曲げ戻し成形用のローラーガイドG32のローラー5A6,7A6,6A6の3個による圧下を通じて4回目の線状鋼材の3点曲げ戻しを行う。
 したがって、線状鋼材は、第1の曲げ戻し成形用のローラーガイドG31及び第2の曲げ戻し成形用のローラーガイドG32によって下流側に向けて誘導される過程では、反転されているローラー6A5,7A5,5A5の組と、ローラー5A6,7A6,6A6の組によって4回の曲げ戻しのための力が付与されて、レイングヘッドH方向に沿って直線状に伸びる矯正成形が行われる。
 このように、第1及び第2の曲げ成形用のローラーガイドG11,G12ではローラー5A1,6A1,7A1及びローラー5A2,6A2,7A2が下流に向けて3個のローラーの組み合わせが連続し、第1及び第2の案内用のローラーガイドG21,G22ではローラー5A3,6A3,7A3及びローラー5A4,6A4,7A4が下流に向けて3個のローラーの組み合わせが連続し、第1及び第2の曲げ戻し成形用のローラーガイドG31,G32ではローラー5A5,6A5,7A5及びローラー5A6,6A6,7A6が下流に向けて3個のローラーの組み合わせが連続しているので、線状鋼材の曲がり成形、案内及び曲げ戻し成形を円滑かつ確実に行える。
 図1に示すように、ピンチロールPの出口側に出口ガイド19を配置してある。
 出口ガイド19は、ピンチロールPから押し出された線状鋼材を最上流側に位置している第1の誘導ガイドG1における第1の曲げ成形用のローラーガイドG11へと誘導するためのものである。
 図1及び図8に示すように、出口ガイド19はガイドボックス20を備えている。ガイドボックス20は取付けボルト21によって台板1aに取り付けられている。ガイドボックス20内に筒状のデリバリーガイド22をガイド固定ボルト23によって固定してある。デリバリーガイド22の先端部側(図1左端部側)はガイドボックス20内からピンチロールPの対向間隙に向けて突出されている。ピンチロールPから抜け出た線状鋼材はデリバリーガイド22の内孔22aを通って第1の曲げ成形用のローラーガイドG11のセンターガイド17へと誘導される。
 図8に示す符号24はロール冷却水ノズルである。
 次に、本発明の線状鋼材の誘導方法について説明する。
 図1に示すように、熱間圧延工程において、最終の仕上げ圧延機を抜けた線状鋼材はやがてピンチロールPへと誘導され、ピンチロールから押し出されて最上流側の第1の誘導ガイドG1の2連の第1及び第2の曲げ成形用のローラーガイドG11,G12に進み、そこではローラー5,6,7によって曲げ力が付与されて順次レイングヘッドH方向に向けて緩やかな下方カーブを描きながら誘導され、そして、第2の誘導ガイドG2の2連の第1及び第2の案内用のローラーガイドG21,G22に進み、そこではローラーによって下流側に下向き傾斜方向に沿って誘導され、さらに第3の誘導ガイドG3の2連の第1及び第2の曲げ戻し成形用のローラーガイドG31,G32に進み、そこではローラーによって線状鋼材の曲がりが徐々に元の状態に戻されて直線状となって、やがてレイングヘッドHへ誘導され、レイングヘッドでリング状に形成され放出される。
 図1及び図2に示すローラーの偏芯調整機構12の操作について説明すると、第1及び第2の曲げ成形用のローラーガイドG11,G12、第1及び第2の案内用のローラーガイドG21,G22及び第1及び第2の曲げ戻し成形用のローラーガイドG31,G32において、すべての又はいずれかのピニオン軸13を回すと、ピニオン14を介してギアホイール10が回転し、同時に回転するローラーピン8を通じてローラーピンに対応しているローラー5,6,7のすべての又はいずれかが偏芯回転するから、ローラーの位置(各曲げ成形用のローラーガイドG11,G12及び各曲げ戻し成形用のローラーガイドG31,G32にあっては圧下位置、第1及び第2の案内用のローラーガイドG21,G22にあっては案内位置)が調整され、最適な成形及び誘導が可能となる。
 図示する本発明によれば、ピンチロールPとレイングヘッドH間において、従来例で説明したパイプガイドの代わりにローラー5,6,7を配置することによって線状鋼材のカキ疵の発生を防止し品質を向上させると共に、安定したリング形状を形成することができる。
 また、レイングヘッドHはその内部に直線的なクイルパイプHaを有しているが、このクイルパイプの内面と線状鋼材が接触するとカキ疵の原因となり、また、接触することにより線状鋼材の速度のムラが発生し、良好なリングが形成できなくなるおそれがあるが、図示する本発明によれば、ローラー5,6,7を配置することによってカキ疵の発生を防止することができ、そして、レイングヘッド側(下方側)に曲率を与えられた線状鋼材は、その曲率に沿って進むため、クイルパイプHaの内部で接触を起こし、リング形成に問題が生じるが、曲率を与えられた線状鋼材を真直に矯正させる(曲げ戻しをする)ので、クイルパイプ内部の接触を避けることができ、その上、線状鋼材の最後端尾の鞭打ち状を防ぐことにも役立ち、安定したリングを形成することができる。
 図1及び図2に示す例では基板1は、その上面にその一部としての台板1aを重ねたが、必ずしも台板を使用することを要しない。
 図1に示す例において、第1、第2及び第3の誘導ガイドG1,G2,G3はいずれも各2連のローラーガイドG11,G12,G21,G22,G31,G32で構成したが、全ての又はいずれかの誘導ガイドは3連以上のローラーガイドで構成しても良い。そして、第1、第2及び第3の誘導ガイドG1,G2,G3における各ローラーガイドG11,G12,G21,G22,G31,G32はそれぞれ単体で基板1に着脱可能であるため、必要に応じて単体での交換をすることができ、取付けや保守がし易くなる利点があるが、必ずしも単体での着脱を不可欠要件とするものではない。また、各ローラーガイドG11,G12,G21,G22,G31,G32は反転回転での設置が可能であって、配置を自由に選択することができるが、必ずしもにこの配置例に限定されない。さらに、図示の例ではすべての各ローラーガイドG11,G12,G21,G22,G31,G32について、同一構造のものを使用しているので、製造のコストダウンを図ることができると共に、台板1aに各ローラーガイドの設置位置を予め設定しておけば、どのローラーガイドもそのまま利用することができるので、取付け取外しの作業性、保守作業が簡易になる利点があるが、必ずしもすべてのものを同一構造とする必要はない。2連のローラーガイドG11,G12における各組のローラーを互いに反転状態に配置し、同様に2連のローラーガイドG31,G32における各組のローラーも互いに反転状態に配置しているので、前者にあっては4回の曲げ成形を、後者にあっては4回の曲げ戻し成形が可能となるから、円滑かつ確実に線状鋼材の成形をすることができ、レイングヘッドHへのスムーズな誘導が可能となる。
 図1に示す2連のローラーガイドG21,G22においては、隣接する両組のローラーを互いに反転状態に配置することなく並べて、案内を円滑にするようにしているが、2連のローラーガイドG11,G12における各組のローラーのように互いに反転状態に配置するようにしても良い。
 軸受部9の軸受9a及びシール9cにおいて、摩擦係数の小さな部材を用いる例を示しているが、線状鋼材の速度に応じて上記部材を選択的に使用するものであって、必ずしも上記例に限定されない。
 図1に示す例において、第1、第2及び第3の誘導ガイドG1,G2,G3を配置して上記線状鋼材の誘導及び成形を円滑にするようにしたが、必ずしも誘導を目的とする第2の誘導ガイドG2を配置しなくても良い。第2の誘導ガイドG2を配置しない場合には、第1の誘導ガイドG1は線状鋼材を曲げてからそのまま第3の誘導ガイドG3に誘導してそこで曲げ戻してレイングヘッドHに誘導するようにする。そして、この場合、図1に示す例においては、第2の誘導ガイドG2の一方の第1の案内用のローラーガイドG21のローラーの偏芯調整機構12によって各ローラー5,6,7の圧下位置を変更する方法により、又は第1の誘導ガイドG1の第2の曲げ成形用のローラーガイドG12に対して第2の誘導ガイドの第1の案内用のローラーガイドG21の距離や傾きを調整する方法によって対応する。他方の第2の案内用のローラーガイドG22についても、ローラーの偏芯調整機構12によって各ローラー5,6,7の圧下位置を変更する方法により、又は第3の誘導ガイドG3の第1の曲げ戻し成形用のローラーガイドG31に対して第2の誘導ガイドG2の第2の案内用のローラーガイドG22の距離や傾きを調整する方法によって対応する。
 図示の例では、各ローラーガイドG11,G12,G21,G22,G31,G32にローラーの偏芯調整機構12を設けて、各ローラー5,6,7の圧下位置又は案内位置を任意に変更して上記線状鋼材に対する最適な成形及び誘導が可能となるようにしたが、必ずしもローラーの偏芯調整機構を設けることを要しない。
 図1に示す例では、第1及び第2の曲げ成形用のローラーガイドG11,G12、第1及び第2の案内用のローラーガイドG21,G22及び第1及び第2の曲げ戻し成形用のローラーガイドG31,G32の位置出しを容易にするために台板1aにその幅方向(図上下方向)に向けて凸状又は凹状の位置決め部1a1を設けているが、これらは必要に応じて設ける。
A linear steel material induction device according to the present invention will be described with reference to the drawings.
In order to guide the linear steel material between the pinch roll P and the laying head H arranged on the downstream side of the final finish rolling mill in the hot rolling line, the linear steel material induction device shown in FIG. A first guide guide G1 that is a bending guide guide, a second guide guide G2 that is an intermediate guide guide, and a third guide guide G3 that is a return guide guide.
In FIG. 1, the laying head H on the most downstream side (right side in the figure) is arranged at a position that is spaced downstream from the pinch roll P and spaced downward from the pinch roll P. That is, the laying head H is arranged in the downward inclined direction with a space from the pinch roll P to the downstream side.
Between the pinch roll P and the laying head H, a substantially “H” shaped substrate 1 is arranged. A base plate 1a having the same shape is stacked on the front surface of the substrate 1, and first, second and third guides G1, G2 and G3 are detachably attached to the base plate.
The first guide G1 will be described with reference to FIGS.
In FIG. 1, the upstream first guide guide G1 includes a plurality of bending guide roller guides (in the illustrated example, two bending guide roller guides G11 and G12). The first and second roller guides for bending G11 and G12 guide the linear steel material toward the laying head H direction, and the linear steel material is directed to the laying head H direction in FIG. It has the function of bending in the lateral direction.
The first bending guide roller guide G11 out of the first and second bending guide roller guides G11 and G12 will be described.
2 to 4, the first bend forming roller guide G11 includes a guide unit 2. The guide unit 2 is detachably attached to the base plate 1a by mounting bolts 3, and this base plate is fixed to the front surface of the substrate by fixing bolts 4 (FIG. 1). The first bending roller guide G11 can be replaced with a new one by itself with respect to the substrate 1 through the guide unit 2.
A plurality of rollers 5, 6, 7 are provided in the guide unit 2. In the example of the guide unit 2 shown in FIG. 2, two rollers 5 and 6 are provided on the upper side and one roller 7 is provided on the lower side, and a line connecting the centers of the rollers forms an inverted triangle. . The rollers 5, 6, and 7 apply a bending force that draws a gentle arc in the direction of the laying head H to the linear steel material and guide it toward the downstream side (right side in FIG. 1).
3 to 5, the rollers 5, 6, and 7 are rotatably attached to the roller pins 8 via bearings 9. A member having a small friction coefficient (such as ceramics) is used for the bearing 9a of the bearing portion 9 so that heat generation can be suppressed against rotation of the roller corresponding to the traveling speed of the linear steel material. In the bearing 9a shown in FIG.3 and FIG.5, the ball bearing which has arrange | positioned the ball | bowl 9b in the inside is used. According to the example shown in FIG. 5, a resin seal 9 c is disposed at both ends of the roller 6 in the bearing portion 9 to prevent the deposits such as scale from entering the inside, and the roller rotating at high speed. The heat generation can be suppressed. Similarly, resin seals are also arranged for the bearing portions of the other rollers 5 and 7 (only the bearing portion 9 of the roller 7 is shown in FIG. 3).
In FIG. 5, 9d is a washer and 9e is a spacer.
2 to 5, a gear wheel 10 that is rotatably attached to the upper plate portion of the guide unit 2 is integrally coupled to the upper portion of each roller pin 8. Each roller pin 8 is eccentrically coupled to the gear wheel 10. Further, the lower end portion of each roller pin 8 is supported by an eccentric piece 11 that is rotatably attached to the lower plate portion of the guide unit 2. Each roller pin 8 is eccentrically connected to the eccentric piece 11.
2, 4, and 6, a center guide 17 is provided in the guide unit 2 of the first bending roller guide G11. The center guide 17 is fixed to the guide unit 2 by a center guide fixing bolt 18, and a distal end portion (left end portion in FIG. 6) protrudes from the guide unit. The center guide 17 guides the linear steel material between the upper rollers 5 and 6 and the lower roller 7 in FIG. 6. Then, the linear steel material is squeezed by the rollers 5, 6 and 7 and bent in the direction of the laying head H until it enters from the inlet 17a of the center guide 17 shown in FIG.
The thin linear steel material that travels at high speed tends to swing up and down or left and right during traveling. Therefore, the center guide 17 urges the linear steel material that passes through the guide unit 2 to go straight, and the rollers 5, 6, and 7 It has a role to ensure guidance and reduction by.
The first bending guide roller guide G11 shown in FIGS. 2 to 4 is provided with a roller eccentricity adjusting mechanism 12 for adjusting the positions (rolling positions) of the rollers 5, 6, and 7, respectively.
Each eccentricity adjusting mechanism 12 includes a gear wheel 10, an eccentric piece 11, a pinion shaft 13 and a pinion 14. Each pinion shaft 13 is rotatably supported by the pedestal 15. Each pedestal 15 is fixed on the guide unit 2 by mounting bolts 16. Each pinion 14 is attached to the pinion shaft 13 and meshes with the gear wheel 10.
By rotating each pinion shaft 13, each pinion 14 rotates, and each gear wheel 10 rotates as each pinion rotates, so each roller pin 8 attached to the rotating gear wheel in an eccentric state also rotates. Then, the rollers 5, 6, and 7 are eccentric (moved), and the reduction position can be adjusted.
1 and 2, the other second bending guide roller guide G12 in the first guide guide G1 is downstream of the first bending guide roller guide G11 (on the right side in FIG. 1). It is arranged adjacent to each other with a gap. The configuration of the second bend forming roller guide G12 is the same as that of the first bend forming roller guide G11. For this reason, the code | symbol which shows each component part of the roller guide G12 for 2nd bending shaping | molding which is common with the roller guide G11 for 1st bending shaping | molding is the code | symbol used at the time of description of the roller guide for 1st bending shaping | molding Is used as it is.
The second bend forming roller guide G12 is different from the first bend forming roller guide G11 in that the second bend forming roller guide G11 as a starting point as shown in FIG. The molding roller guide is attached to the substrate 1 by rotating half a turn (clockwise 180 °). For this reason, the arrangement positions of the respective components of the second bend forming roller guide G12 are reversed from the first bend forming roller guide G11. As a result, the two rollers 5 and 6 in the second bending roller guide G12 are located on the lower side in FIG. 1 and the one roller 7 is located on the upper side in the figure.
In this way, the first guide guide G1 continuously arranges the first and second bending roller guides G11 and G12 having the same configuration on the substrate 1 (the base plate 1a) in a state of being inverted with respect to each other, In the form of a set of a combination of the upper two rollers 5 and 6 and the lower one roller 7 and a reversed combination (a combination of the upper one roller 7 and the lower two rollers 5 and 6). Adjacently, a curvature that bends the linear steel material in the direction of the laying head H is created to enable smooth guidance to the laying head.
The second guide G2 will be described with reference to FIG.
The second guide G2 is continuous with the first guide G1 on the downstream side. The second guide G2 includes a plurality of guide roller guides (two guide roller guides G21 and G22 in the illustrated example). The first and second guide roller guides G21 and G22 have a function of guiding the linear steel material along the downward inclined direction and guiding it to the third guide guide G3.
Each configuration of the first and second guide roller guides G21 and G22 is the same as each configuration of the first and second bending roller guides G11 and G12. For this reason, the code | symbol which shows each component part of the roller guides G21 and G22 for the 1st and 2nd guides which is common with the roller guides G11 and G12 for the 1st and 2nd bend forming is the 1st and 2nd The reference numerals used when describing the bending roller guides G11 and G12 are used as they are.
The difference lies in the arrangement positions of the first and second guide roller guides G21 and G22 arranged side by side. That is,
The first and second bending roller guides G11 and G12 installed on the left side of FIG. 1 are in an inverted state, whereas the first and second guiding roller guides G21 and G22 are both. Both of them are different in that the rollers 5 and 6 are on the upper side and the roller 7 is on the lower side and are not reversed.
In the relationship between the adjacent first guide roller guide G21 and the second bend forming roller guide G12, one of the first guide roller guides (right side in FIG. 1) has the roller 7 below. The roller 7 of the other (left) second bend forming roller guide is positioned on the upper side and is attached to the substrate 1 in an inverted state.
The first and second guide roller guides G21 and G22 can guide the linear steel material passing through the center guide 17 by the upper rollers 5 and 6 and the lower roller 7, respectively.
In the roller eccentricity adjusting mechanism 12 in the first and second guide roller guides G21 and G22 shown in FIG. 1, the guide positions of the rollers 5, 6, and 7 can be adjusted by the eccentric operation. .
The third guide G3 will be described with reference to FIG.
The third guide guide G3 is continuous with the second guide guide G2 on the downstream side thereof, and is a back guide roller guide for bending back the linear steel material and smoothing the guide to the laying head H. A plurality of rollers (two roller guides G31 and G32 for bending back forming in the illustrated example) are provided.
The roller guides G31 and G32 for the first and second bending back forming were bent in order to guide the linear steel material toward the laying head H and to smoothly guide the laying head to the laying head H. It has a function for bending back the linear steel material guided in a state and forming it linearly. In other words, the first and second bending back forming roller guides G31 and G32 constituting the third guiding guide G3 are linearly guided by the second guiding guide G2 and run in a bent state. The steel material has a function of forming in a straight line in order to avoid direct contact in the direction of the laying head H and contact with the quill pipe Ha that is a guide pipe in the laying head.
The configurations of the first and second bending guide roller guides G31 and G32 are the same as the configurations of the first and second bending guide roller guides G11 and G12. For this reason, the reference numerals indicating the respective components of the first and second bending back roller guides G31 and G32 which are common to the first and second bending roller guides G11 and G12 are the first and second The code | symbol used at the time of description of the roller guide for 2 bending forming is used as it is.
Regarding the arrangement positions of the rollers 5, 6 and 7, the first bending roller guide G11 is a combination of the upper two rollers 5, 6 and the lower one roller 7, while the first The roller guide G31 for bending back molding is different in that it is a combination of the upper one roller 7 and the lower two rollers 5, 6. The second bending roller guide G12 is a combination of the upper one roller 7 and the lower two rollers 5 and 6, whereas the second bending back roller guide G32 is the upper. It is different in that it is a combination of two rollers 5 and 6 and a lower one roller 7.
Further, the first and second bending back roller guides G31 and G32 are attached to the base plate 1a at a predetermined angle in the clockwise direction in FIG. 1 with respect to the first bending roller guide G11. This is different from the first bend forming roller guide.
The arrangement of the rollers 5, 6 and 7 of the first bending back roller guide G31 is such that the rollers 5, 6 and 7 of the second guiding roller guide G22 adjacent on the upstream side (left side in FIG. 1). The arrangement is in an inverted state.
As shown in FIG. 1, the third guide G3 continuously arranges the first and second roller guides G31 and G32 for bending back in which the combination of the rollers 5, 6 and 7 is in an inverted state. In addition, in order to prevent the unbent linear steel material guided by the second guide guide G2 from proceeding along its curvature, each set of first and second roller guides for bending back and forth is provided. The roller is bent back to the laying head H, straightened, and smoothly guided to the quill pipe Ha in the laying head H along a straight line.
The mutual action of the six sets of rollers 5, 6, and 7 in each of the first, second, and third guides G1, G2, and G3 shown in FIG. 1 will be described with reference to FIG.
In FIG. 7, in order to distinguish the individual rollers for each of the six roller combinations, reference numerals 5A1 to 5A6 are denoted for the roller 5 shown in FIG. 1, and numerals 6A1 to 6A6 are denoted for the roller 6. In the roller 7, reference numerals 7A1 to 7A6 are used.
In the first guide G1 of FIG. 7 (i), the first bending roller guide G11 performs the first three-point bending of the linear steel material through the reduction of the three rollers 5A1, 7A1, and 6A1. Then, the three-point bending of the second linear steel material is performed through the reduction by a total of three rollers 7A1, 6A1 and the roller 6A2 of the second bending forming roller guide G12, and then the roller 6A1 and the second bending forming are performed. Three-point bending of the third linear steel material is performed through the reduction by a total of three rollers 6A2 and 7A2 of the roller guide G12 for use, and the rollers 6A2, 7A2 and 5A2 of the roller guide G12 for second bending are further The fourth linear steel material is bent three times through the reduction by the piece.
Therefore, the linear steel material is reversed rollers 5A1, 7A1, 6A1 in the process of being guided downstream by the first bending roller guide G11 and the second bending roller guide G12. And a set of rollers 5A2, 7A2 and 6A2 are applied with a bending force four times to form a gentle arc along the laying head H direction.
7 (ii), the first guide roller guide G21 is provided by rollers 5A3, 7A3, and 6A3, and the second guide roller guide G22 is provided by rollers 5A4, 7A4, and 6A4. Then, the bent steel wire is smoothly guided to the third guide G3.
In the third guide G3 of FIG. 7 (iii), the first three-point bending of the linear steel material is performed through the reduction by the three rollers 6A5, 7A5, and 5A5 of the first bending back forming roller guide G31. Next, the wire steel material is subjected to the second three-point bending of the linear steel material through the reduction by a total of three rollers 7A5 and 5A5 and the roller 5A6 of the second bending back forming roller guide G32, and then the rollers 5A5 and the second Bend-back forming roller guide G32 three-point bending of the linear steel material is performed through a reduction by a total of three rollers 5A6 and 7A6, and roller 5A6 of second bending-back forming roller guide G32 The third linear bending of the linear steel material is performed through the reduction by three pieces of 7A6 and 6A6.
Therefore, the linear steel material is reversed rollers 6A5 and 7A5 in the process of being guided toward the downstream side by the first bending back roller guide G31 and the second bending back roller guide G32. , 5A5 and a set of rollers 5A6, 7A6, 6A6 are applied with a force for bending back four times, and straightening that extends linearly along the laying head H direction is performed.
Thus, in the first and second bending guide roller guides G11 and G12, the rollers 5A1, 6A1, 7A1 and the rollers 5A2, 6A2, 7A2 are arranged downstream, and the combination of the three rollers is continuous. In the second guide roller guides G21 and G22, the rollers 5A3, 6A3 and 7A3 and the rollers 5A4, 6A4 and 7A4 are arranged in the downstream direction, and the combination of the three rollers is continuous, and the first and second bending back moldings are performed. In the roller guides G31 and G32, the roller 5A5, 6A5, 7A5 and the roller 5A6, 6A6, 7A6 are continuous toward the downstream, so the combination of the three rollers is continuous, so that the linear steel material is bent, guided and bent back. Molding can be performed smoothly and reliably.
As shown in FIG. 1, an outlet guide 19 is disposed on the outlet side of the pinch roll P.
The exit guide 19 is for guiding the linear steel material extruded from the pinch roll P to the first bending guide roller guide G11 in the first guide guide G1 located on the most upstream side. .
As shown in FIGS. 1 and 8, the outlet guide 19 includes a guide box 20. The guide box 20 is attached to the base plate 1a by mounting bolts 21. A cylindrical delivery guide 22 is fixed in the guide box 20 by guide fixing bolts 23. The distal end side (left end portion side in FIG. 1) of the delivery guide 22 protrudes from the guide box 20 toward the facing gap of the pinch roll P. The linear steel material that has come out of the pinch roll P is guided to the center guide 17 of the first bending roller guide G11 through the inner hole 22a of the delivery guide 22.
The code | symbol 24 shown in FIG. 8 is a roll cooling water nozzle.
Next, the induction | guidance | derivation method of the linear steel material of this invention is demonstrated.
As shown in FIG. 1, in the hot rolling process, the linear steel material that has passed through the final finish rolling mill is eventually guided to the pinch roll P and is pushed out of the pinch roll to be the first induction guide G1 on the most upstream side. The first and second bending roller guides G11 and G12 of this series are advanced, where a bending force is applied by the rollers 5, 6 and 7, and a gradual downward curve in the direction of the laying head H is sequentially applied. It is guided while drawing, and then proceeds to a series of first and second guide roller guides G21, G22 of the second guide guide G2, where it is guided by the roller along a downwardly inclined direction, Further, the process proceeds to the two first and second bending back roller guides G31 and G32 of the third guide guide G3, where the linear steel material is gradually bent by the rollers. And is returned to the original state becomes linear, is finally guided to laying head H, it is formed in a ring shape by laying head release.
The operation of the roller eccentricity adjusting mechanism 12 shown in FIGS. 1 and 2 will be described. First and second bending roller guides G11 and G12, and first and second guiding roller guides G21 and G22. In the first and second roller guides G31 and G32 for bending back, when all or any of the pinion shafts 13 is rotated, the gear wheel 10 is rotated via the pinion 14, and the roller pin 8 that rotates simultaneously. Since all or any of the rollers 5, 6 and 7 corresponding to the roller pins through the shaft rotates eccentrically, the positions of the rollers (the roller guides G11 and G12 for each bending and the roller guides for each bending and forming) G31 and G32 are adjusted in the reduced position, and the first and second guide roller guides G21 and G22 are adjusted in the guide position). Is, it is possible to optimum molding and induction.
According to the present invention shown in the figure, the occurrence of oysters of the linear steel material is prevented by arranging rollers 5, 6, and 7 between the pinch roll P and the laying head H instead of the pipe guide described in the conventional example. The quality can be improved and a stable ring shape can be formed.
In addition, the laying head H has a linear quill pipe Ha inside, but if the inner surface of the quill pipe and the linear steel material come into contact with each other, it causes oysters and the contact speed of the linear steel material is increased. Although unevenness may occur and a good ring may not be formed, according to the present invention shown in the figure, it is possible to prevent the occurrence of oyster wrinkles by arranging the rollers 5, 6, and 7, and The linear steel material that is given a curvature on the head side (downward side) travels along the curvature, so that contact occurs inside the quill pipe Ha, causing a problem in ring formation, but the linear steel material that is given a curvature. Straightens (bends back), avoids contact inside the quill pipe, and also helps prevent lashing at the end of the wire steel It is possible to form a ring.
In the example shown in FIGS. 1 and 2, the base plate 1 as a part of the substrate 1 is overlapped on the upper surface thereof, but it is not always necessary to use the base plate.
In the example shown in FIG. 1, each of the first, second and third guides G1, G2, G3 is composed of two roller guides G11, G12, G21, G22, G31, G32. Alternatively, any of the guides may be composed of three or more roller guides. The roller guides G11, G12, G21, G22, G31, and G32 in the first, second, and third guides G1, G2, and G3 are each detachable from the substrate 1 as a single unit. Although it can be replaced by a single unit, there is an advantage that it is easy to mount and maintain, but it is not necessarily an essential requirement to attach and detach a single unit. The roller guides G11, G12, G21, G22, G31, and G32 can be installed by reversal rotation and can be freely selected. However, the arrangement is not necessarily limited to this example. Further, in the example shown in the figure, since all the roller guides G11, G12, G21, G22, G31, and G32 have the same structure, the manufacturing cost can be reduced and the base plate 1a can be reduced. If the installation position of each roller guide is set in advance, any roller guide can be used as it is, so there is an advantage that the workability of installation / removal and maintenance work are simplified, but all have the same structure. It is not necessary to. Each pair of rollers in the two roller guides G11 and G12 is arranged in an inverted state, and similarly, each pair of rollers in the two roller guides G31 and G32 is also arranged in an inverted state. In the latter case, it is possible to perform bending forming four times, and in the latter case, four bending return forming operations, so that the linear steel material can be formed smoothly and reliably, and smooth guidance to the laying head H is achieved. It becomes possible.
In the two series of roller guides G21 and G22 shown in FIG. 1, the two adjacent sets of rollers are arranged side by side without being reversed, and the guidance is made smooth. You may make it arrange | position in a mutually inverted state like each set of rollers in G12.
In the bearing 9a and the seal 9c of the bearing portion 9, an example using a member having a small friction coefficient is shown. However, the member is selectively used according to the speed of the linear steel material, and the above example is not necessarily used. It is not limited.
In the example shown in FIG. 1, the first, second, and third guides G1, G2, and G3 are arranged to facilitate the induction and forming of the linear steel material. The second guide G2 may not be arranged. When the second guide guide G2 is not disposed, the first guide guide G1 is guided to the third head guide G3 as it is after bending the linear steel material, and then bent back to guide it to the laying head H. To do. In this case, in the example shown in FIG. 1, the rolling down positions of the rollers 5, 6, 7 by the roller eccentricity adjusting mechanism 12 of the first guide roller guide G 21 of the second guide guide G 2. Or a method of adjusting the distance or inclination of the first guide roller guide G21 of the second guide guide with respect to the second bending guide roller guide G12 of the first guide guide G1. It corresponds by. Also for the other second guide roller guide G22, a method of changing the reduction position of each of the rollers 5, 6, and 7 by the roller eccentricity adjusting mechanism 12, or the first bending of the third guide guide G3 is performed. It corresponds by the method of adjusting the distance and inclination of the 2nd guide roller guide G22 of the 2nd guide guide G2 with respect to the roller guide G31 for reverse molding.
In the illustrated example, each roller guide G11, G12, G21, G22, G31, G32 is provided with a roller eccentricity adjusting mechanism 12, and the rolling down position or guide position of each roller 5, 6, 7 is arbitrarily changed. Although the optimum forming and guiding of the linear steel material can be performed, it is not always necessary to provide a roller eccentricity adjusting mechanism.
In the example shown in FIG. 1, first and second bending roller guides G <b> 11 and G <b> 12, first and second guiding roller guides G <b> 21 and G <b> 22 and first and second bending back rollers. In order to facilitate the positioning of the guides G31 and G32, the base plate 1a is provided with a convex or concave positioning portion 1a1 in the width direction (the vertical direction in the figure), but these are provided as necessary.
 G1      第1の誘導ガイド(曲げ用誘導ガイド)
 G11     第1の曲げ成形用のローラーガイド(ローラーガイド)
 G12     第2の曲げ成形用のローラーガイド(ローラーガイド)
 G2      第2の誘導ガイド(中間用誘導ガイド)
 G21     第1の案内用のローラーガイド(ローラーガイド)
 G22     第2の案内用のローラーガイド(ローラーガイド)
 G3      第3の誘導ガイド(曲げ戻し用誘導ガイド)
 G31     第1の曲げ戻し成形用のローラーガイド(ローラーガイド)
 G32     第2の曲げ戻し成形用のローラーガイド(ローラーガイド)
 H       レイングヘッド
 P       ピンチロール
 1       基板(支持手段)
 2       ガイドユニット
 5,6,7   ローラー
 8       ローラーピン
 9       軸受部
 9a      軸受
 9c      シール
 10      ギアホイール
 12      ローラーの偏芯調整機構
 13      ピニオン軸
 14      ピニオン
 15      ペデスタル
 17      センターガイド
G1 First guide (bending guide)
G11 Roller guide for first bending (roller guide)
G12 Roller guide for second bending (roller guide)
G2 Second guide (intermediate guide)
G21 Roller guide for first guide (roller guide)
G22 Second guide roller guide (roller guide)
G3 Third guide (bend back guide)
G31 Roller guide for first bending back forming (roller guide)
G32 Roller guide for second bending back forming (roller guide)
H laying head P Pinch roll 1 Substrate (supporting means)
2 Guide unit 5, 6, 7 Roller 8 Roller pin 9 Bearing part 9a Bearing 9c Seal 10 Gear wheel 12 Roller eccentricity adjustment mechanism 13 Pinion shaft 14 Pinion 15 Pedestal 17 Center guide

Claims (11)

  1.  熱間圧延ラインにおける最終の仕上げ圧延機の下流側のピンチロールと、このピンチロールの下流側に間隔を空けてかつピンチロールの対向位置から下側にずらした位置に配置されているレイングヘッドとの間における線状鋼材を誘導するための誘導方法であり、
     上記線状鋼材を曲げ成形用のローラーガイドの複数のローラーによって下流側へ誘導しながら上記レイングヘッド方向に曲げ成形し、曲げ成形された上記線状鋼材を下流側の曲げ戻し成形用のローラーガイドの複数のローラーによって上記レイングヘッド方向に曲げ戻し成形しながら、上記レイングヘッドに誘導するものであることを特徴とする線状鋼材の誘導方法。
    A pinch roll on the downstream side of the final finish rolling mill in the hot rolling line, and a lay head arranged at a position spaced downstream from the opposing position of the pinch roll and spaced downstream of the pinch roll. Is a guiding method for guiding the linear steel material between
    The linear steel material is bent in the direction of the laying head while being guided to the downstream side by a plurality of rollers of a roller guide for bending forming, and the linear steel material that has been bent is formed into a roller guide for bending back forming on the downstream side. A method for guiding a linear steel material, wherein the guide is guided to the laying head while being bent back in the laying head direction by a plurality of rollers.
  2.  熱間圧延ラインにおける最終の仕上げ圧延機の下流側のピンチロールからレイングヘッドまでの間に線状鋼材を誘導するための曲げ用誘導ガイド及び曲げ戻し用誘導ガイドを配置してあり、
     上記曲げ用誘導ガイド及び上記曲げ戻し用誘導ガイドは支持手段に取り付けられており、
     上記レイングヘッドは、上記ピンチロールに対してその下流側に間隔を空けてかつピンチロールの対向位置から下側にずらした位置に配置されており、
     上流側の上記曲げ用誘導ガイドは、複数のローラーによって上記線状鋼材を下流側に誘導すると共に、上記線状鋼材に対して上記レイングヘッド方向に曲げる曲率を与えるための曲げ成形用のローラーガイドを複数備えており、
     上記曲げ戻し用誘導ガイドは上流側の上記曲げ用誘導ガイドによって曲げられた上記線状鋼材を複数のローラーによって上記レイングヘッド方向に曲げ戻して直線状に成形すると共に、上記レイングヘッドへ誘導するための曲げ戻し成形用のローラーガイドを複数備えており、
     上記各曲げ成形用のローラーガイド及び各曲げ戻し成形用のローラーガイドにおけるそれぞれのローラーは軸受部を介してローラーピンに回転自在に取り付けられている
     ことを特徴とする線状鋼材の誘導装置。
    A bending induction guide and a bending induction guide for guiding the linear steel material are arranged between the pinch roll and the laying head on the downstream side of the final finish rolling mill in the hot rolling line,
    The bending guide and the bending return guide are attached to support means,
    The laying head is disposed at a position that is spaced downstream from the pinch roll and shifted downward from the opposed position of the pinch roll.
    The guide guide for bending on the upstream side guides the linear steel material to the downstream side by a plurality of rollers, and also provides a bending roller guide for bending the linear steel material in the direction of the laying head. With multiple
    The guide guide for bending return is used to guide the linear steel material bent by the bending guide guide on the upstream side back to the laying head direction by a plurality of rollers, and to guide the laying head. Equipped with multiple roller guides for bending back molding
    Each of the rollers in the above-described bending guide roller guides and each of the bending back forming roller guides is rotatably attached to a roller pin via a bearing portion.
  3.  曲げ用誘導ガイドと曲げ戻し用誘導ガイドとの間に中間用誘導ガイドを配置し、この中間用誘導ガイドは線状鋼材を複数のローラーによって下向き傾斜方向に沿って誘導して上記曲げ戻し用誘導ガイドに導くための案内用のローラーガイドを複数備えていることを特徴とする請求項2記載の線状鋼材の誘導装置。 An intermediate guide guide is disposed between the bending guide guide and the bending return guide guide, and the intermediate guide guide guides the linear steel material along a downwardly inclined direction by a plurality of rollers, thereby guiding the bending return guide. 3. The linear steel material guiding apparatus according to claim 2, comprising a plurality of guide roller guides for guiding the guide.
  4.  各誘導ガイドのローラーガイドにはセンターガイドを設けてあることを特徴とする請求項2又は請求項3記載の線状鋼材の誘導装置。 4. A linear steel material guiding apparatus according to claim 2, wherein a center guide is provided on a roller guide of each guiding guide.
  5.  各誘導ガイドは少なくとも2連のローラーガイドからなり、いずれのローラーガイドも少なくとも3個のローラーを組み合わせているものであることを特徴とする請求項2乃至請求項4のいずれかに記載の線状鋼材の誘導装置。 Each linear guide is composed of at least two roller guides, and each roller guide is a combination of at least three rollers. Steel induction device.
  6.  各誘導ガイドは少なくとも2連のローラーガイドからなり、いずれのローラーガイドも少なくとも3個のローラーを組み合わせているものであり、3個のローラーの組み合わせは、上側又は下側のいずれか一方側に配置されている2個のローラーと、他方側に配置されている1個のローラーとからなり、両曲げ成形用のローラーガイドにおける隣接している3個のローラーの組み合わせは互いに反転した位置関係にあり、両曲げ戻し成形用のローラーガイドにおける隣接している3個のローラーの組み合わせは互いに反転した位置関係にあることを特徴とする請求項2乃至請求項4のいずれかに記載の線状鋼材の誘導装置。 Each guide guide is composed of at least two roller guides, and each roller guide is a combination of at least three rollers, and the combination of the three rollers is arranged on either the upper side or the lower side. The two adjacent rollers in the roller guide for bi-bending molding are in an inverted relationship with each other. The linear steel material according to any one of claims 2 to 4, wherein a combination of three adjacent rollers in the two-bending roller guides is in an inverted positional relationship with each other. Guidance device.
  7.  誘導ガイドにおける各ローラーガイドは、ローラーの位置を調整するためのローラーの偏芯調整機構を備えていることを特徴とする請求項2乃至請求項6のいずれかに記載の線状鋼材の誘導装置。 Each linear guide in a guidance guide is provided with the eccentricity adjustment mechanism of the roller for adjusting the position of a roller, The guidance apparatus of the linear steel materials in any one of Claim 2 thru | or 6 characterized by the above-mentioned. .
  8.  誘導ガイドにおける各ローラーガイドは、支持手段である基板にそれぞれ単体で交換可能に取り付けられていることを特徴とする請求項2乃至請求項7のいずれかに記載の線状鋼材の誘導装置。 The guide apparatus for a linear steel material according to any one of claims 2 to 7, wherein each roller guide in the guide guide is attached to a substrate as a support means so as to be replaceable as a single unit.
  9.  全ての誘導ガイドの各ローラーガイドはいずれも同一構成であることを特徴とする請求項2乃至請求項8のいずれかに記載の線状鋼材の誘導装置。 The linear steel material guiding device according to any one of claims 2 to 8, wherein each roller guide of all the guiding guides has the same configuration.
  10.  軸受部の軸受に摩擦係数の小さな部材を用いていることを特徴とする請求項2乃至請求項9のいずれかに記載の線状鋼材の誘導装置。 10. The linear steel material guiding apparatus according to claim 2, wherein a member having a small friction coefficient is used for the bearing of the bearing portion.
  11.  軸受部には樹脂製のシールを配置してあることを特徴とする請求項2乃至請求項10のいずれかに記載の線状鋼材の誘導装置。 11. The linear steel material guiding apparatus according to claim 2, wherein a resin seal is disposed on the bearing portion.
PCT/JP2014/080699 2013-11-19 2014-11-12 Rod-shaped steel material guiding method and guiding device WO2015076316A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167000124A KR101800215B1 (en) 2013-11-19 2014-11-12 Rod-shaped steel material guiding method and guiding device
EP14863868.7A EP3028783B1 (en) 2013-11-19 2014-11-12 Rod-shaped steel material guiding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013238585A JP6190700B2 (en) 2013-11-19 2013-11-19 Linear steel induction device
JP2013-238585 2013-11-19

Publications (1)

Publication Number Publication Date
WO2015076316A1 true WO2015076316A1 (en) 2015-05-28

Family

ID=53179576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080699 WO2015076316A1 (en) 2013-11-19 2014-11-12 Rod-shaped steel material guiding method and guiding device

Country Status (4)

Country Link
EP (1) EP3028783B1 (en)
JP (1) JP6190700B2 (en)
KR (1) KR101800215B1 (en)
WO (1) WO2015076316A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113714311A (en) * 2021-08-31 2021-11-30 马鞍山钢铁股份有限公司 Guide and guard device for wire rod row roller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116921A (en) * 1981-12-29 1983-07-12 Kotobuki Sangyo Kk Variable combination controlling and guiding apparatus
JP2003205308A (en) * 2002-01-08 2003-07-22 Daido Steel Co Ltd Introducing guidance device for rolled wire rod
JP2005280941A (en) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd Wire winding device
JP2010099669A (en) 2008-10-21 2010-05-06 Kobe Steel Ltd Wire rolling method
JP2013530050A (en) * 2010-07-01 2013-07-25 シーメンス インダストリー インコーポレイテッド Turndown device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347683Y2 (en) * 1985-02-15 1991-10-11
JPH02188377A (en) * 1987-09-28 1990-07-24 Aichi Steel Works Ltd Wire material laying device
US5934536A (en) * 1998-03-04 1999-08-10 Morgan Construction Company Adjustable turndown apparatus
CN201676902U (en) * 2010-05-28 2010-12-22 东阳市沃诺斯硬质合金有限公司 Guide roller chained type connection structure elbow box
CN202343821U (en) * 2011-11-24 2012-07-25 南京钢铁股份有限公司 Pinch roll outlet elbow pipe device
CN103157662A (en) * 2013-04-03 2013-06-19 东北特殊钢集团有限责任公司 Novel rolling prebending device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116921A (en) * 1981-12-29 1983-07-12 Kotobuki Sangyo Kk Variable combination controlling and guiding apparatus
JP2003205308A (en) * 2002-01-08 2003-07-22 Daido Steel Co Ltd Introducing guidance device for rolled wire rod
JP2005280941A (en) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd Wire winding device
JP2010099669A (en) 2008-10-21 2010-05-06 Kobe Steel Ltd Wire rolling method
JP2013530050A (en) * 2010-07-01 2013-07-25 シーメンス インダストリー インコーポレイテッド Turndown device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113714311A (en) * 2021-08-31 2021-11-30 马鞍山钢铁股份有限公司 Guide and guard device for wire rod row roller

Also Published As

Publication number Publication date
JP2015098043A (en) 2015-05-28
KR20160015369A (en) 2016-02-12
KR101800215B1 (en) 2017-11-22
JP6190700B2 (en) 2017-08-30
EP3028783B1 (en) 2020-02-12
EP3028783A4 (en) 2017-04-12
EP3028783A1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
KR940010444B1 (en) Rolling installation for and rolling method of continuous cast strip
CN201470674U (en) High-speed wire rod production line pre-finishing mill group
KR950011311B1 (en) Four-roller type sizing mill apparatus for producing round steel rods
WO2015076316A1 (en) Rod-shaped steel material guiding method and guiding device
CN203061601U (en) Straightening production line of stretch-bending straighteners
CN103801601A (en) Pre-bending machine used before wire rod recoiling machine
CN101543853B (en) Non-driven on-line flat steel hot straightening machine
CN203578391U (en) Flat steel rolling inlet guide and guard unit
JP2008260026A (en) Apparatus for taking out cast strip in continuous casting facilities
CN109772950B (en) Metal welded pipe forming device with common roller and operation method thereof
CN103846283B (en) Lamination transmission close-coupled multi-roll mill
WO2010044050A1 (en) Apparatus for straightening metal profiles and the like
CN203750991U (en) Device for rolling steel pipe by tension reducing
CN202045213U (en) Seven-roll straightening equipment for copper and copper alloy pipe billet and rod billet
DK2776185T3 (en) Pulling device for metal products, such as bars, round pieces or metal wire
CN204996980U (en) Tooth&#39;s socket formula bar straightener constructs
JP6359399B2 (en) Spiral steel pipe manufacturing apparatus and manufacturing method
CN103056195A (en) Multidirectional rebar de-scaling and tensioning device
CN104148390A (en) Process and equipment for stretch-reducing hot rolling of hollow anchor rods
KR20100062458A (en) Movable type guide apparatus for rolled materials
CN106216495B (en) A kind of Cold Bending Forming of Frame machine
CN210475198U (en) Rectangular steel pipe forming assembly line
JP5966991B2 (en) H-shaped steel bend straightening device
JP2008126259A (en) Manufacturing method and cooling system of t-shape steel
IT202100023606A1 (en) EQUIPMENT, PLANT AND LAMINATION PROCEDURE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863868

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167000124

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014863868

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE