WO2015076274A1 - Coil unit and contactless power transfer device - Google Patents

Coil unit and contactless power transfer device Download PDF

Info

Publication number
WO2015076274A1
WO2015076274A1 PCT/JP2014/080551 JP2014080551W WO2015076274A1 WO 2015076274 A1 WO2015076274 A1 WO 2015076274A1 JP 2014080551 W JP2014080551 W JP 2014080551W WO 2015076274 A1 WO2015076274 A1 WO 2015076274A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coil unit
power
transmission
holding member
Prior art date
Application number
PCT/JP2014/080551
Other languages
French (fr)
Japanese (ja)
Inventor
将夫 石阪
アントニー ガフ
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to DE112014005267.1T priority Critical patent/DE112014005267T5/en
Publication of WO2015076274A1 publication Critical patent/WO2015076274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a coil unit and a non-contact power transmission device.
  • the resonance method is a technique for supplying AC power to a transmission resonance coil, and transmitting power by resonating the transmission resonance coil with a reception resonance coil disposed opposite to the transmission resonance coil via an electromagnetic field. Can be transmitted between relatively remote locations.
  • the coil unit used in the non-contact power transmission apparatus is mainly composed of a coil bobbin that is a coil holding member and a coil wound around the coil bobbin. Since this coil unit is disposed on the bottom or road surface of an electric vehicle, it is desired to reduce the thickness, and a method of winding a coil around the coil bobbin is considered.
  • the coil unit is arranged so that the main surface of the flat coil bobbin faces in the vertical direction, but the force for winding the coil forming the coil may be insufficient. Due to the shortage of the winding force, the coil winding portion does not come into close contact with the coil bobbin but hangs down on the lower surface side of the coil bobbin, resulting in inconveniences such as variations in coil inductance.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a coil unit and a non-contact power transmission device having excellent adhesion between a coil holding member and a coil.
  • the above-described object of the present invention is achieved by the following configuration.
  • the coil holding member having a pair of main surfaces facing each other and wound around the coil holding member
  • the coil holding member includes a tension applying unit that applies tension to a winding portion of the coil on one main surface.
  • the tension applying portion is formed by forming one main surface in a substantially semi-elliptical shape.
  • the coil holding member further has a guide wall erected on the main surface so as to separate adjacent windings from each other.
  • the guide wall is set such that the height of the guide wall increases as the distance from the center of the coil holding portion increases.
  • a non-contact power transmission device which is the coil unit according to any one of 1) to (4).
  • FIG. 1 is an explanatory diagram illustrating a configuration of a non-contact power transmission apparatus according to the present embodiment.
  • FIG. 2 is a perspective view schematically showing the configuration of the receiving coil unit.
  • FIG. 3 is an explanatory diagram showing the force acting on the coil.
  • FIG. 4 is a perspective view schematically showing a configuration of a receiving coil unit as a modified example.
  • FIG. 5 is a side view schematically showing the configuration of the receiving coil unit shown in FIG.
  • FIG. 1 is an explanatory diagram showing a configuration of a non-contact power transmission apparatus 1 according to an embodiment of the present invention.
  • the non-contact power transmission device 1 according to the present embodiment includes a power feeding device 10 and a power receiving device 20, and supplies power from the power feeding device 10, and the power receiving device 20 receives power without contact.
  • the non-contact power transmission device 1 is applied to a system for charging a battery (secondary battery) 6 as a power source in an electric vehicle 5, and the power supply device 10 serves as a ground side infrastructure.
  • the power receiving device 20 is mounted on the electric vehicle 5.
  • the power feeding device 10 is installed in a parking lot or the like for charging the battery 6 of the electric vehicle 5 and supplies power to the power receiving device 20.
  • the power supply device 10 is mainly configured by a high-frequency power source 11 and a transmission coil unit 12.
  • the high-frequency power source 11 includes an oscillation source (for example, an inverter) inside the power supply housing, and converts AC power transmitted from a commercial power source into AC power having a predetermined high frequency.
  • the high frequency power supply 11 is connected to the transmission coil unit 12 via the transmission cable 13, and transmits the converted high frequency AC power to the transmission coil unit 12.
  • the transmission coil unit 12 transmits high-frequency AC power transmitted from the high-frequency power source 11 to the reception coil unit 21 on the power receiving device 20 side, and details thereof will be described later.
  • the transmission coil unit 12 is housed inside the housing from the viewpoint of protection and security, and is disposed on a predetermined road surface corresponding to a parking lot.
  • the power receiving device 20 receives power from the power feeding device 10 and outputs the received power to the battery 6.
  • the power receiving device 20 is mainly configured by a receiving coil unit 21 and a rectifier 22.
  • the receiving coil unit 21 receives AC power transmitted from the transmitting coil unit 12 on the power feeding apparatus 10 side.
  • the receiving coil unit 21 is housed inside the housing from the viewpoint of protection and security, and is disposed on the bottom surface of the electric vehicle 5.
  • the reception coil unit 21 is disposed so as to face the transmission coil unit 12 when the electric vehicle 5 is parked in a prescribed space of the parking lot.
  • the rectifier 22 includes a rectifier circuit (for example, a bridge circuit), and rectifies AC power received by the receiving coil unit 21 into DC power.
  • the rectifier 22 is connected to the battery 6 via the transmission cable 23, and the rectified DC power is charged by the battery 6.
  • the battery 6 is connected to an inverter (not shown) for converting DC power output from the battery 6 into AC power, and a vehicle drive motor (not shown) is generated by the AC power output from the inverter. Drive.
  • the transmission coil unit 12 and the reception coil unit 21 will be described.
  • the transmission coil unit 12 and the reception coil unit 21 have configurations corresponding to each other.
  • the configuration of the reception coil unit 21 will be described, but the same applies to the transmission coil unit 12.
  • FIG. 2 is a perspective view schematically showing the configuration of the receiving coil unit 21.
  • the reception coil unit 21 includes a coil bobbin 210 and a coil 220 wound around the coil bobbin 210.
  • the coil bobbin 210 is a coil holding member that holds the coil 220, and is configured by covering a plate-like ferrite core 210a with a resin 210b.
  • the coil bobbin 210 has a flat plate shape and includes a pair of main surfaces 211 and 212 that face each other.
  • the coil bobbin 210 is set so that its main surfaces 211 and 212 are substantially parallel to the road surface so as to face the counterpart transmission coil unit 12 (specifically, the main surface of the coil bobbin) disposed on the road surface. Is done.
  • the coil bobbin 210 has one main surface 211 positioned on the top surface, the main surface 211 facing the bottom surface of the electric vehicle 5, the other main surface 212 positioned on the bottom surface, and the main surface 212 facing the road surface.
  • the coil 220 is obtained by winding a winding 221 spirally around the coil bobbin 210.
  • winding portions corresponding to one turn are arranged at equal intervals.
  • a litz wire As the winding 221 serving as the coil 220, for example, a litz wire can be used.
  • a litz wire is formed by twisting together a plurality of strands composed of conductors whose surfaces are electrically insulated. In this embodiment, a plurality of strands are twisted flat and the cross section is rectangular. The so-called flat punching shape is adopted.
  • the flat litz wire as the winding 221 is covered and protected by a sheath.
  • a structure of a litz wire not only a flat shape but a cross section may be circular.
  • the coil bobbin 210 is set so that the thickness of the cross section of the coil bobbin 210 perpendicular to the axis of the coil 220 decreases as it approaches the end from the center of the coil bobbin 210.
  • the coil bobbin 210 has a cross-sectional shape set to a substantially elliptical shape, and the individual main surfaces 211 and 212 are formed in a substantially semi-elliptical shape.
  • the main surface 211 on the upper surface side is formed in a substantially semi-elliptical shape bulging upward, and the main surface 212 on the lower surface side is formed in a substantially semi-elliptical shape bulging downward.
  • the coil bobbin 210 further has a guide wall 213 that separates adjacent windings from each other.
  • a plurality of guide walls 213 are erected on the main surfaces 211 and 212 of the coil bobbin, and a plurality of guide walls 213 are provided corresponding to the routing locus of the winding 221 wound around the coil bobbin 210.
  • Each guide wall 213 is set such that its height is lower as it is located at the center of the coil bobbin 210 and its height is higher as it is located at the end.
  • the coil bobbin 210 has a plate thickness that decreases as it approaches the end, and has a reverse relationship to the height of the guide wall 213. Due to such a reverse relationship, the overall shape of the coil bobbin 210 (including the guide wall 213) is set so that its height is substantially constant.
  • the power receiving device 20 of the electric vehicle 5 approaches the power feeding device 10 provided in the parking lot, and the transmission coil unit 12 and the reception coil unit 21 are spaced apart from each other.
  • the transmission coil unit 12 and the reception coil unit 21 are electromagnetically resonated, and power is supplied from the power supply apparatus 10 to the power reception apparatus 20 in a non-contact manner.
  • the receiving coil unit 21 includes a coil bobbin 210 having a flat plate shape having a pair of main surfaces 211 and 212 facing each other, and a coil 220 spirally wound around the coil bobbin 210.
  • the coil bobbin 210 has a substantially elliptical cross section, and is formed in a substantially semi-elliptical shape in which the upper and lower main surfaces 211 and 212 bulge in the vertical direction.
  • Such semi-elliptical main surfaces 211 and 212 function as a tension applying section that applies tension to the winding portion of the coil 220.
  • both the main surfaces 211 and 212 are formed in a semi-elliptical shape, a tension applying portion is set on each of the main surfaces 211 and 212.
  • a phenomenon such as sag due to its own weight is likely to occur significantly on the main surface 212 on the lower surface side. Therefore, the coil bobbin 210 may be formed in a semi-elliptical shape only on the main surface 212 positioned on the lower surface side when the receiving coil unit 21 is installed.
  • the upper and lower main surfaces 211 and 212 are each formed in a semi-elliptical shape, it is not necessary to consider the vertical direction when the receiving coil unit 21 is installed, so that workability can be improved. The situation of the winding 221 floating on the main surface 211 on the upper surface side can be effectively eliminated.
  • the coil bobbin 210 further includes a guide wall 213 erected on the main surfaces 211 and 212 so that adjacent windings are separated from each other.
  • the guide wall 213 can be used as a guide when the winding 221 is wound. Thereby, the efficiency of the winding work of the winding 221 can be improved, and the winding portions can be reliably arranged at appropriate intervals.
  • the guide wall 213 is set such that the height of the guide wall 213 increases as the distance from the central portion of the coil bobbin 210 increases.
  • the shape of the coil bobbin 210 adopts an elliptical shape, the thickness on the end side is smaller than that of the central portion. Therefore, even if the guide wall 213 is raised on the end side of the coil bobbin 210, an increase in the overall dimensions of the coil bobbin 210 including the guide wall 213 can be suppressed. Thus, the guide wall 213 can be set high on the end side of the coil bobbin 210 while suppressing the increase in the size of the entire shape. Thus, by ensuring the height of the guide wall 213, the attitude
  • tensile_strength provision part which provides tension
  • the realization of the tension applying unit can be realized not only in this form but also in other forms.
  • the guide wall 213 is omitted for convenience, but it may be provided.
  • FIG. 4 is an explanatory view showing a modification of the transmission coil unit 12, and in the example shown in the figure, the winding 221 has a circular cross section.
  • the pair of main surfaces 211 and 212 is set to have a flat surface shape, and a tension applying unit 214 is disposed on each of the main surfaces 211 and 212.
  • the tension applying portion 214 is disposed at the center of each main surface 211, 212, and is formed by projecting a part of the main surface 211, 212 in the axial direction of the coil 220. It is formed continuously along.
  • the tension applying unit 214 is not only realized by a shape (semi-elliptical shape) in which the main surfaces 211 and 212 are entirely expanded, but also a part of the main surfaces 211 and 212 is used as the tension applying unit 214. Is also possible. However, if the main surfaces 211 and 212 are inflated as a whole, the winding 221 will be in contact with the entire area of the main surfaces 211 and 212, so that the stress will be distributed over the entire area of the winding 221. This is also preferable from the viewpoint of protecting the winding 221.
  • tensile_strength provision part 214 is set to each of the main surfaces 211 and 212.
  • the tension applying portion 214 is provided only on one main surface 212 positioned on the lower surface side when the receiving coil unit 21 is installed. There may be.
  • the non-contact electric power transmission apparatus concerning this embodiment was demonstrated, this invention is not limited to this embodiment, A various change is possible in the range of the invention.
  • the non-contact power transmission apparatus not only the non-contact power transmission apparatus but also a coil unit used for this functions as part of the invention.
  • the configuration of the reception coil unit has been mainly described.
  • the transmission coil unit can also have the same configuration, and at least one of the configuration only needs to have the above configuration.
  • a coil holding member (coil bobbin 210) having a pair of main surfaces (211 and 212) facing each other; A coil (winding 221) wound around the coil holding member (coil bobbin 210), The coil holding member (coil bobbin 210) A coil unit (12, 21) provided with a tension applying portion that applies tension to the winding portion of the coil (winding 221) on one main surface (212).
  • the coil holding member (coil bobbin 210) further includes a guide wall (213) erected on the main surface (212) so as to separate adjacent windings from each other.
  • the non-contact power transmission device (1) having a transmission coil unit (12) for transmitting power and a reception coil unit (21) for receiving power transmitted from the transmission coil unit (12).
  • the non-contact power transmission device (1) in which at least one of the transmission coil unit (12) and the reception coil unit (21) is the coil unit (12, 21) according to any one of [1] to [4]. ).
  • the present invention it is possible to improve the adhesion between the coil holding member and the coil.
  • the present invention that exhibits this effect is useful for the coil unit and the non-contact power transmission apparatus.
  • Non-contact electric power transmission apparatus 5
  • Electric vehicle 6
  • Battery 10
  • Power supply apparatus 11
  • High frequency power supply 12
  • Transmission coil unit 13 Transmission cable (power supply side)
  • power receiving device 21
  • receiving coil unit 22
  • rectifier 23
  • Coil bobbin 210a Ferrite core 210b Resin 211
  • Main surface 212
  • Main surface 213 Guide wall 214
  • Tension applying portion 220 Coil 221 Winding

Abstract

A receiving coil unit (21) comprises the following: a plate-shaped coil bobbin (210) that has a pair of opposing principal surfaces (211, 212); and a coil (220) wound around said coil bobbin (210) in a helical fashion. The cross-sectional shape of the coil bobbin (210) is substantially elliptical, and the top and bottom principal surfaces (211, 212) each have a substantially semi-elliptical shape that bulges upwards or downwards, respectively. Such semi-elliptical principal surfaces (211, 212) act as tension-applying members that apply tension to the wound section of the coil (220).

Description

コイルユニット及び非接触電力伝送装置Coil unit and non-contact power transmission device
 本発明は、コイルユニット及び非接触電力伝送装置に関する。 The present invention relates to a coil unit and a non-contact power transmission device.
 近年、電気自動車等が備える二次電池の充電などにおいては、充電作業を容易にするために、プラグ接続等の物理的接続を必要としないワイヤレス(非接触)での電力伝送技術が用いられている(例えば特許文献1)。 In recent years, in charging secondary batteries provided in electric vehicles, etc., wireless (non-contact) power transmission technology that does not require physical connection such as plug connection has been used in order to facilitate charging work. (For example, Patent Document 1).
 このようなワイヤレスでの電力伝送を行う非接触電力伝送装置としては、電磁誘導現象を利用した電磁誘導方式、電磁波を利用した電磁波送信方式、共鳴現象を利用した共鳴方式などが知られている。例えば、共鳴方式は、送信共鳴コイルに交流電力を供給し、電磁場を介して送信共鳴コイルとこれに対向配置された受信共鳴コイルを共鳴させて電力を伝送する技術であり、数kWの大電力を比較的離れた場所間で伝送することが可能となっている。 As such a non-contact power transmission device that performs wireless power transmission, an electromagnetic induction method using an electromagnetic induction phenomenon, an electromagnetic wave transmission method using an electromagnetic wave, a resonance method using a resonance phenomenon, and the like are known. For example, the resonance method is a technique for supplying AC power to a transmission resonance coil, and transmitting power by resonating the transmission resonance coil with a reception resonance coil disposed opposite to the transmission resonance coil via an electromagnetic field. Can be transmitted between relatively remote locations.
 非接触電力伝送装置で用いられるコイルユニットは、コイル保持部材であるコイルボビンと、コイルボビンに巻回されたコイルとを主体に構成されている。このコイルユニットは、電気自動車の底部や路面上に配置されるため、薄型化が望まれており、コイルボビンを平板形状とし、その周囲にコイルを巻回する手法が考えられている。 The coil unit used in the non-contact power transmission apparatus is mainly composed of a coil bobbin that is a coil holding member and a coil wound around the coil bobbin. Since this coil unit is disposed on the bottom or road surface of an electric vehicle, it is desired to reduce the thickness, and a method of winding a coil around the coil bobbin is considered.
日本国特開2013-90393号公報Japanese Unexamined Patent Publication No. 2013-90393
 ところで、コイルユニットは、平板状のコイルボビンの主面が上下方向を向くように配置されることとなるが、コイルをなす巻線を巻回する力が不十分となることがある。この巻回力の不足により、コイルボビンの下面側ではコイルの巻線部分がコイルボビンに密着せずに下方に垂れ下がった状態となり、コイルのインダクタンスにばらつきが起きるなどの不都合を生じさせることとなる。 By the way, the coil unit is arranged so that the main surface of the flat coil bobbin faces in the vertical direction, but the force for winding the coil forming the coil may be insufficient. Due to the shortage of the winding force, the coil winding portion does not come into close contact with the coil bobbin but hangs down on the lower surface side of the coil bobbin, resulting in inconveniences such as variations in coil inductance.
 本発明はかかる事情に鑑みてなされたものであり、その目的は、コイル保持部材とコイルとの密着性に優れたコイルユニット及び非接触電力伝送装置を提供する。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a coil unit and a non-contact power transmission device having excellent adhesion between a coil holding member and a coil.
 本発明の前述した目的は、下記の構成により達成される。
 (1)相手方コイルに電力を送信し又は相手方コイルから送信された電力を受信するコイルユニットにおいて、互いに対向する一対の主面を備えたコイル保持部材と、コイル保持部材の周囲に巻回されるコイルと、を有し、コイル保持部材は、一方の主面に、コイルの巻線部分に対して張力を付与する張力付与部を備えるコイルユニット。
The above-described object of the present invention is achieved by the following configuration.
(1) In a coil unit that transmits electric power to a counterpart coil or receives electric power transmitted from the counterpart coil, the coil holding member having a pair of main surfaces facing each other and wound around the coil holding member The coil holding member includes a tension applying unit that applies tension to a winding portion of the coil on one main surface.
 (2)上記(1)において、張力付与部は、一方の主面を略半楕円状に形成することにより構成される。 (2) In the above (1), the tension applying portion is formed by forming one main surface in a substantially semi-elliptical shape.
 (3)上記(1)又は(2)において、コイル保持部材は、隣り合う巻線同士を互いに隔てるように主面に立設されたガイド壁をさらに有する。 (3) In the above (1) or (2), the coil holding member further has a guide wall erected on the main surface so as to separate adjacent windings from each other.
 (4)上記(3)において、ガイド壁は、コイル保持部の中央部から離れる程、その高さが増加するように設定されている。 (4) In the above (3), the guide wall is set such that the height of the guide wall increases as the distance from the center of the coil holding portion increases.
 (5)電力を送信する送信コイルユニットと、送信コイルユニットから送信された電力を受信する受信コイルユニットとを有する非接触電力伝送装置において、送信コイルユニット及び受信コイルユニットの少なくとも一方が、上記(1)ないし(4)のいずれかに記載のコイルユニットである非接触電力伝送装置。 (5) In a non-contact power transmission apparatus having a transmission coil unit that transmits power and a reception coil unit that receives power transmitted from the transmission coil unit, at least one of the transmission coil unit and the reception coil unit is the above ( A non-contact power transmission device which is the coil unit according to any one of 1) to (4).
 本発明によれば、張力付与部によりコイルの巻線部分に張力が付与されるので、コイルには、コイル保持部材の内側へと引っ張られる力が作用することなる。これにより、コイル保持部材とコイルとの密着性を高めることができる。 According to the present invention, since tension is applied to the coil winding portion by the tension applying portion, a force pulled toward the inside of the coil holding member acts on the coil. Thereby, the adhesiveness of a coil holding member and a coil can be improved.
図1は、本実施形態に係る非接触電力伝送装置の構成を示す説明図である。FIG. 1 is an explanatory diagram illustrating a configuration of a non-contact power transmission apparatus according to the present embodiment. 図2は、受信コイルユニットの構成を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the configuration of the receiving coil unit. 図3は、コイルに作用する力を示す説明図である。FIG. 3 is an explanatory diagram showing the force acting on the coil. 図4は、変形例としての受信コイルユニットの構成を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a configuration of a receiving coil unit as a modified example. 図5は、図4に示す受信コイルユニットの構成を模式的に示す側面図である。FIG. 5 is a side view schematically showing the configuration of the receiving coil unit shown in FIG.
 図1は、本発明の実施形態に係る非接触電力伝送装置1の構成を示す説明図である。本実施形態に係る非接触電力伝送装置1は、給電装置10と、受電装置20とで構成されており、給電装置10から給電を行い、受電装置20が非接触で受電をするものである。非接触電力伝送装置1は、図1に示すように、電気自動車5における電源としての電池(二次電池)6を充電するためのシステムに適用されており、給電装置10が地上側のインフラとして構成され、受電装置20が電気自動車5に搭載される。 FIG. 1 is an explanatory diagram showing a configuration of a non-contact power transmission apparatus 1 according to an embodiment of the present invention. The non-contact power transmission device 1 according to the present embodiment includes a power feeding device 10 and a power receiving device 20, and supplies power from the power feeding device 10, and the power receiving device 20 receives power without contact. As shown in FIG. 1, the non-contact power transmission device 1 is applied to a system for charging a battery (secondary battery) 6 as a power source in an electric vehicle 5, and the power supply device 10 serves as a ground side infrastructure. Thus, the power receiving device 20 is mounted on the electric vehicle 5.
 給電装置10は、電気自動車5の電池6を充電するための駐車場などに設置されており、受電装置20に対して電力を供給する。この給電装置10は、高周波電源11と、送信コイルユニット12とを主体に構成されている。 The power feeding device 10 is installed in a parking lot or the like for charging the battery 6 of the electric vehicle 5 and supplies power to the power receiving device 20. The power supply device 10 is mainly configured by a high-frequency power source 11 and a transmission coil unit 12.
 高周波電源11は、電源筐体の内部に発振源(例えばインバータなど)を備えており、商用電源から送電される交流電力を所定の高周波の交流電力に変換する。高周波電源11は、伝送ケーブル13を介して送信コイルユニット12に接続されており、変換した高周波の交流電力を送信コイルユニット12に送信する。 The high-frequency power source 11 includes an oscillation source (for example, an inverter) inside the power supply housing, and converts AC power transmitted from a commercial power source into AC power having a predetermined high frequency. The high frequency power supply 11 is connected to the transmission coil unit 12 via the transmission cable 13, and transmits the converted high frequency AC power to the transmission coil unit 12.
 送信コイルユニット12は、高周波電源11から送電された高周波の交流電力を、受電装置20側の受信コイルユニット21に送信するものであり、その詳細については後述する。送信コイルユニット12は、その保護や保安上の観点から筐体の内部に収容されており、駐車場に相当する所定の路面上に配設されている。 The transmission coil unit 12 transmits high-frequency AC power transmitted from the high-frequency power source 11 to the reception coil unit 21 on the power receiving device 20 side, and details thereof will be described later. The transmission coil unit 12 is housed inside the housing from the viewpoint of protection and security, and is disposed on a predetermined road surface corresponding to a parking lot.
 一方、受電装置20は、給電装置10からの電力を受け取り、この受け取った電力を電池6に出力する。受電装置20は、受信コイルユニット21と、整流器22とを主体に構成されている。 On the other hand, the power receiving device 20 receives power from the power feeding device 10 and outputs the received power to the battery 6. The power receiving device 20 is mainly configured by a receiving coil unit 21 and a rectifier 22.
 受信コイルユニット21は、給電装置10側の送信コイルユニット12から送信された交流電力を受信するものである。受信コイルユニット21は、その保護や保安上の観点から筐体の内部に収容されており、電気自動車5の底面に配設されている。受信コイルユニット21は、電気自動車5を駐車場の規定スペースに駐車した場合、送信コイルユニット12の上方に対峙するように配置されている。 The receiving coil unit 21 receives AC power transmitted from the transmitting coil unit 12 on the power feeding apparatus 10 side. The receiving coil unit 21 is housed inside the housing from the viewpoint of protection and security, and is disposed on the bottom surface of the electric vehicle 5. The reception coil unit 21 is disposed so as to face the transmission coil unit 12 when the electric vehicle 5 is parked in a prescribed space of the parking lot.
 整流器22は、整流回路(例えばブリッジ回路)を備えており、受信コイルユニット21によって受信された交流電力を直流電力へと整流する。整流器22は、伝送ケーブル23を介して電池6に接続されており、整流された直流電力は電池6で充電される。この電池6には当該電池6から出力される直流電力を交流電力に変換するインバータ(図示せず)が接続されており、このインバータから出力される交流電力により車両用駆動モータ(図示せず)が駆動する。 The rectifier 22 includes a rectifier circuit (for example, a bridge circuit), and rectifies AC power received by the receiving coil unit 21 into DC power. The rectifier 22 is connected to the battery 6 via the transmission cable 23, and the rectified DC power is charged by the battery 6. The battery 6 is connected to an inverter (not shown) for converting DC power output from the battery 6 into AC power, and a vehicle drive motor (not shown) is generated by the AC power output from the inverter. Drive.
 以下、送信コイルユニット12及び受信コイルユニット21について説明する。なお、本実施形態では、送信コイルユニット12及び受信コイルユニット21は互いに対応した構成のものであり、以下、受信コイルユニット21の構成について説明をするが、送信コイルユニット12についても同様である。 Hereinafter, the transmission coil unit 12 and the reception coil unit 21 will be described. In the present embodiment, the transmission coil unit 12 and the reception coil unit 21 have configurations corresponding to each other. Hereinafter, the configuration of the reception coil unit 21 will be described, but the same applies to the transmission coil unit 12.
 図2は、受信コイルユニット21の構成を模式的に示す斜視図である。受信コイルユニット21は、コイルボビン210と、このコイルボビン210に巻回されるコイル220とを有している。 FIG. 2 is a perspective view schematically showing the configuration of the receiving coil unit 21. FIG. The reception coil unit 21 includes a coil bobbin 210 and a coil 220 wound around the coil bobbin 210.
 コイルボビン210は、コイル220を保持するコイル保持部材であり、板状のフェライトコア210aを樹脂210bで覆って構成されている。コイルボビン210は、平板形状を有しており、互い対向する一対の主面211,212を備えている。コイルボビン210は、路面上に配置される相手方の送信コイルユニット12(具体的にはそのコイルボビンの主面)と向き合う関係となるように、その主面211,212が路面に対して略平行に設定される。コイルボビン210は、一方の主面211が上面に位置づけられ、この主面211が電気自動車5の底面と対向し、他方の主面212が下面に位置づけられ、この主面212が路面と対向する。 The coil bobbin 210 is a coil holding member that holds the coil 220, and is configured by covering a plate-like ferrite core 210a with a resin 210b. The coil bobbin 210 has a flat plate shape and includes a pair of main surfaces 211 and 212 that face each other. The coil bobbin 210 is set so that its main surfaces 211 and 212 are substantially parallel to the road surface so as to face the counterpart transmission coil unit 12 (specifically, the main surface of the coil bobbin) disposed on the road surface. Is done. The coil bobbin 210 has one main surface 211 positioned on the top surface, the main surface 211 facing the bottom surface of the electric vehicle 5, the other main surface 212 positioned on the bottom surface, and the main surface 212 facing the road surface.
 コイル220は、巻線221をコイルボビン210の周囲に螺旋状に巻回したものである。コイルボビン210に巻回されたコイル220において、1ターン相当の巻線部分は等間隔に配置されている。 The coil 220 is obtained by winding a winding 221 spirally around the coil bobbin 210. In the coil 220 wound around the coil bobbin 210, winding portions corresponding to one turn are arranged at equal intervals.
 コイル220としての巻線221としては、例えばリッツ線を用いることができる。リッツ線は、それぞれの表面が電気絶縁された導体で構成される複数の素線を撚り合わせて構成したものであり、本実施形態では、複数の素線が平たく撚り合わされて、断面が矩形形状となる、いわゆる平打ち形状を採用している。巻線221としての平打ち状のリッツ線はその周囲がシースによって覆われて保護されている。なお、リッツ線の構成としては、平打ち形状のみならず、断面が円形状となるものであってもよい。 As the winding 221 serving as the coil 220, for example, a litz wire can be used. A litz wire is formed by twisting together a plurality of strands composed of conductors whose surfaces are electrically insulated. In this embodiment, a plurality of strands are twisted flat and the cross section is rectangular. The so-called flat punching shape is adopted. The flat litz wire as the winding 221 is covered and protected by a sheath. In addition, as a structure of a litz wire, not only a flat shape but a cross section may be circular.
 以下、本実施形態の特徴の一つであるコイルボビン210の形状について説明する。具体的には、コイルボビン210は、コイル220の軸線と直交する断面の形状について、コイルボビン210の中央部から端部に近づく程板厚が薄くなるように設定されている。図2に示す例では、コイルボビン210は、その断面形状が略楕円形状に設定されており、個々の主面211,212は略半楕円状に形成されている。上面側の主面211は、上方向に膨出した略半楕円状に形成され、下面側の主面212は、下方向に膨出した略半楕円状に形成されている。 Hereinafter, the shape of the coil bobbin 210, which is one of the features of the present embodiment, will be described. Specifically, the coil bobbin 210 is set so that the thickness of the cross section of the coil bobbin 210 perpendicular to the axis of the coil 220 decreases as it approaches the end from the center of the coil bobbin 210. In the example shown in FIG. 2, the coil bobbin 210 has a cross-sectional shape set to a substantially elliptical shape, and the individual main surfaces 211 and 212 are formed in a substantially semi-elliptical shape. The main surface 211 on the upper surface side is formed in a substantially semi-elliptical shape bulging upward, and the main surface 212 on the lower surface side is formed in a substantially semi-elliptical shape bulging downward.
 また、コイルボビン210は、隣り合う巻線同士を互いに隔てるガイド壁213をさらに有している。ガイド壁213は、コイルボビンの主面211,212にそれぞれ立設されており、コイルボビン210の周囲に巻回される巻線221の配索軌跡に対応して複数設けられている。 The coil bobbin 210 further has a guide wall 213 that separates adjacent windings from each other. A plurality of guide walls 213 are erected on the main surfaces 211 and 212 of the coil bobbin, and a plurality of guide walls 213 are provided corresponding to the routing locus of the winding 221 wound around the coil bobbin 210.
 個々のガイド壁213は、コイルボビン210の中央に位置する程その高さが低く、端部に位置する程その高さが高くなるように設定されている。上述のように、コイルボビン210は、端部に近づく程板厚が薄くなっており、ガイド壁213の高さとは逆の関係になっている。このような逆の関係により、コイルボビン210全体の形状(ガイド壁213を含む)については、その高さが概ね一定となるように設定されている。 Each guide wall 213 is set such that its height is lower as it is located at the center of the coil bobbin 210 and its height is higher as it is located at the end. As described above, the coil bobbin 210 has a plate thickness that decreases as it approaches the end, and has a reverse relationship to the height of the guide wall 213. Due to such a reverse relationship, the overall shape of the coil bobbin 210 (including the guide wall 213) is set so that its height is substantially constant.
 このような構成の非接触電力伝送装置1によれば、電気自動車5の受電装置20が駐車場に設けられた給電装置10に近づき、送信コイルユニット12と受信コイルユニット21が互いに間隔を空けて対向したときに、送信コイルユニット12と受信コイルユニット21とが電磁共鳴して給電装置10から受電装置20に非接触で電力が供給される。 According to the non-contact power transmission device 1 having such a configuration, the power receiving device 20 of the electric vehicle 5 approaches the power feeding device 10 provided in the parking lot, and the transmission coil unit 12 and the reception coil unit 21 are spaced apart from each other. When facing each other, the transmission coil unit 12 and the reception coil unit 21 are electromagnetically resonated, and power is supplied from the power supply apparatus 10 to the power reception apparatus 20 in a non-contact manner.
 このように本実施形態において、受信コイルユニット21は、互い対向する一対の主面211,212を備えた平板形状を有するコイルボビン210と、コイルボビン210の周囲に螺旋状に巻回されるコイル220とを有している。コイルボビン210は、その断面形状が略楕円形状に設定されており、上下の各主面211,212が上下方向に膨出した略半楕円形状に形成されている。このような半楕円形状の主面211,212は、コイル220の巻線部分に対して張力を付与する張力付与部として機能することとなる。 Thus, in the present embodiment, the receiving coil unit 21 includes a coil bobbin 210 having a flat plate shape having a pair of main surfaces 211 and 212 facing each other, and a coil 220 spirally wound around the coil bobbin 210. have. The coil bobbin 210 has a substantially elliptical cross section, and is formed in a substantially semi-elliptical shape in which the upper and lower main surfaces 211 and 212 bulge in the vertical direction. Such semi-elliptical main surfaces 211 and 212 function as a tension applying section that applies tension to the winding portion of the coil 220.
 かかる構成によれば、張力付与部としての個々の主面211,212により、コイル220の巻線部分に張力が付与されることとなる。このため、図3に示すように、コイル220(巻線221)には、コイルボビン210の内側へと引っ張られる力が作用することなる。これにより、コイル220をなす巻線221の一部が、下面側の主面212から離間して垂れ下がったり、上面側の主面211から浮き上がったりするといった事態を抑制することができる。そのため、インダクタンスのばらつきの発生も抑制することができる。さらには、限られたスペース内において巻線221を効率よく巻回することができる。 According to such a configuration, tension is applied to the winding portion of the coil 220 by the individual main surfaces 211 and 212 as tension applying portions. For this reason, as shown in FIG. 3, a force pulled toward the inside of the coil bobbin 210 acts on the coil 220 (winding 221). As a result, it is possible to suppress a situation in which a part of the winding 221 forming the coil 220 hangs away from the main surface 212 on the lower surface side or floats from the main surface 211 on the upper surface side. Therefore, the occurrence of inductance variation can be suppressed. Furthermore, the winding 221 can be efficiently wound in a limited space.
 ここで、本実施形態では、主面211,212の両方が半楕円形状に形成されているため、主面211,212のそれぞれに張力付与部が設定されることとなる。しかしながら、自重による垂れ下がりといった現象は、下面側の主面212に顕著に生じ易い。よって、コイルボビン210は、受信コイルユニット21が設置される際に下面側に位置づけられる主面212に限り、半楕円形状に形成してもよい。しかしながら、上下の主面211,212をそれぞれ半楕円形状に形成した場合には、受信コイルユニット21の設置時に上下方向の向きを考慮する必要がないので作業性の向上を図ることができ、また、上面側の主面211に生じる巻線221の浮きといった事態を有効に解消することができる。 Here, in this embodiment, since both the main surfaces 211 and 212 are formed in a semi-elliptical shape, a tension applying portion is set on each of the main surfaces 211 and 212. However, a phenomenon such as sag due to its own weight is likely to occur significantly on the main surface 212 on the lower surface side. Therefore, the coil bobbin 210 may be formed in a semi-elliptical shape only on the main surface 212 positioned on the lower surface side when the receiving coil unit 21 is installed. However, when the upper and lower main surfaces 211 and 212 are each formed in a semi-elliptical shape, it is not necessary to consider the vertical direction when the receiving coil unit 21 is installed, so that workability can be improved. The situation of the winding 221 floating on the main surface 211 on the upper surface side can be effectively eliminated.
 また、本実施形態において、コイルボビン210は、隣り合う巻線同士を互いに隔てるように主面211,212に立設されたガイド壁213をさらに有している。 In this embodiment, the coil bobbin 210 further includes a guide wall 213 erected on the main surfaces 211 and 212 so that adjacent windings are separated from each other.
 かかる構成によれば、ガイド壁213を、巻線221を巻回する際をガイドとして利用することができる。これにより、巻線221の巻回作業の効率の向上を図ることができ、また、各巻線部分を適切な間隔で確実に配置することができる。 According to this configuration, the guide wall 213 can be used as a guide when the winding 221 is wound. Thereby, the efficiency of the winding work of the winding 221 can be improved, and the winding portions can be reliably arranged at appropriate intervals.
 また、本実施形態において、ガイド壁213は、コイルボビン210の中央部から離れる程、その高さが増加するように設定されている。 Further, in the present embodiment, the guide wall 213 is set such that the height of the guide wall 213 increases as the distance from the central portion of the coil bobbin 210 increases.
 本実施形態ではコイルボビン210の形状が楕円形状を採用しているため、端部側の厚みは中央部のそれよりも小さいものとなっている。そのため、コイルボビン210の端部側でガイド壁213を高くしても、ガイド壁213を含むコイルボビン210全体の寸法の増加を抑制することができる。このように全体形状の寸法増加を抑制しつつも、コイルボビン210の端部側ではガイド壁213を高く設定することできる。このようにガイド壁213の高さが確保されることで、ガイド壁213によるコイル220の姿勢規制力を適切に得ることができる。 In this embodiment, since the shape of the coil bobbin 210 adopts an elliptical shape, the thickness on the end side is smaller than that of the central portion. Therefore, even if the guide wall 213 is raised on the end side of the coil bobbin 210, an increase in the overall dimensions of the coil bobbin 210 including the guide wall 213 can be suppressed. Thus, the guide wall 213 can be set high on the end side of the coil bobbin 210 while suppressing the increase in the size of the entire shape. Thus, by ensuring the height of the guide wall 213, the attitude | position control force of the coil 220 by the guide wall 213 can be obtained appropriately.
 なお、本実施形態に係るコイルボビン210では、一対の主面211,212を判断円形状に設定することで、コイル220の巻線部分に対して張力を付与する張力付与部を実現している。しかしながら、張力付与部の実現は、このような形態のみならず、他の形態によっても実現可能である。なお、以下の説明では、便宜上、ガイド壁213について省略するが、これを備えるものであってもよい。 In addition, in the coil bobbin 210 which concerns on this embodiment, the tension | tensile_strength provision part which provides tension | tensile_strength with respect to the coil | winding part of the coil 220 is implement | achieved by setting a pair of main surface 211,212 to judgment circle shape. However, the realization of the tension applying unit can be realized not only in this form but also in other forms. In the following description, the guide wall 213 is omitted for convenience, but it may be provided.
 図4は、送信コイルユニット12の変形例を示す説明図であり、同図に示す例では、巻線221として断面が円形状のものが描かれている。具体的には、一対の主面211,212はフラットな面形状に設定されており、個々の主面211,212には、張力付与部214が配置されている。この張力付与部214は、個々の主面211,212の中央部に配置されており、当該主面211,212の一部を凸状に突出形成したものであり、コイル220の軸心方向に沿って連続的に形成されている。 FIG. 4 is an explanatory view showing a modification of the transmission coil unit 12, and in the example shown in the figure, the winding 221 has a circular cross section. Specifically, the pair of main surfaces 211 and 212 is set to have a flat surface shape, and a tension applying unit 214 is disposed on each of the main surfaces 211 and 212. The tension applying portion 214 is disposed at the center of each main surface 211, 212, and is formed by projecting a part of the main surface 211, 212 in the axial direction of the coil 220. It is formed continuously along.
 このような構成によれば、張力付与部214により、コイル220の巻線部分に張力が付与されることとなる。このため、コイル220(巻線221)には、コイルボビン210の内側へと引っ張られる力が作用することなる。これにより、コイル220をなす巻線221の一部が、下面側の主面212から離間して垂れ下がったり、上面側の主面211から浮き上がったりするといった事態を抑制することができる。 According to such a configuration, tension is applied to the winding portion of the coil 220 by the tension applying unit 214. For this reason, the force pulled to the inside of the coil bobbin 210 acts on the coil 220 (winding 221). As a result, it is possible to suppress a situation in which a part of the winding 221 forming the coil 220 hangs away from the main surface 212 on the lower surface side or floats from the main surface 211 on the upper surface side.
 このように、張力付与部214は、主面211,212を全体的に膨らませた形状(半楕円形状)により実現するのみならず、主面211,212の一部分を張力付与部214として利用することも可能である。もっとも、主面211,212を全体的に膨らませた形状であれば、巻線221が主面211,212の全域に接触することになるから、巻線221の全域に応力が分散することとなり、巻線221の保護の観点からも好ましい。 As described above, the tension applying unit 214 is not only realized by a shape (semi-elliptical shape) in which the main surfaces 211 and 212 are entirely expanded, but also a part of the main surfaces 211 and 212 is used as the tension applying unit 214. Is also possible. However, if the main surfaces 211 and 212 are inflated as a whole, the winding 221 will be in contact with the entire area of the main surfaces 211 and 212, so that the stress will be distributed over the entire area of the winding 221. This is also preferable from the viewpoint of protecting the winding 221.
 なお、図4に示す変形例では、主面211,212のそれぞれに張力付与部214が設定されている。しかしながら、自重による垂れ下がりが下面側に顕著に生じ易いことを考慮して、受信コイルユニット21が設置される際に下面側に位置づけられる一方の主面212にのみ、張力付与部214を備えるものであってもよい。 In addition, in the modification shown in FIG. 4, the tension | tensile_strength provision part 214 is set to each of the main surfaces 211 and 212. FIG. However, in consideration of the fact that drooping due to its own weight is likely to occur on the lower surface side, the tension applying portion 214 is provided only on one main surface 212 positioned on the lower surface side when the receiving coil unit 21 is installed. There may be.
 以上、本実施形態にかかる非接触電力伝送装置について説明したが、本発明はこの実施形態に限定されることなく、その発明の範囲において種々の変更が可能である。また、非接触電力伝送装置のみならず、これに用いられるコイルユニットも発明の一部として機能する。また、本実施形態では、受信コイルユニットの構成をメインに説明したが、送信コイルユニットについても同様の構成とすることができ、少なくとも一方が上記の構成を備えていればよい。 As mentioned above, although the non-contact electric power transmission apparatus concerning this embodiment was demonstrated, this invention is not limited to this embodiment, A various change is possible in the range of the invention. Moreover, not only the non-contact power transmission apparatus but also a coil unit used for this functions as part of the invention. In the present embodiment, the configuration of the reception coil unit has been mainly described. However, the transmission coil unit can also have the same configuration, and at least one of the configuration only needs to have the above configuration.
 ここで、上述した本発明に係るコイルユニット及び非接触電力伝送装置の実施形態の特徴をそれぞれ以下[1]~[5]に簡潔に纏めて列記する。 Here, the features of the above-described embodiments of the coil unit and the non-contact power transmission apparatus according to the present invention will be briefly summarized and listed in the following [1] to [5], respectively.
 [1] 相手方コイルに電力を送信し又は相手方コイルから送信された電力を受信するコイルユニット(12,21)において、
 互いに対向する一対の主面(211,212)を備えたコイル保持部材(コイルボビン210)と、
 前記コイル保持部材(コイルボビン210)の周囲に巻回されるコイル(巻線221)と、を有し、
 前記コイル保持部材(コイルボビン210)は、
 一方の主面(212)に、前記コイル(巻線221)の巻線部分に対して張力を付与する張力付与部を備えるコイルユニット(12,21)。
 [2] 前記張力付与部は、前記一方の主面(212)を略半楕円状に形成することにより構成される上記[1]に記載されたコイルユニット(12,21)。
 [3] 前記コイル保持部材(コイルボビン210)は、隣り合う巻線同士を互いに隔てるように前記主面(212)に立設されたガイド壁(213)をさらに有する上記[1]又は[2]に記載されたコイルユニット(12,21)。
 [4] 前記ガイド壁(213)は、前記コイル保持部材(コイルボビン210)の中央部から離れる程、その高さが増加するように設定されている上記[3]に記載されたコイルユニット(12,21)。
 [5] 電力を送信する送信コイルユニット(12)と、前記送信コイルユニット(12)から送信された電力を受信する受信コイルユニット(21)と、を有する非接触電力伝送装置(1)において、
 前記送信コイルユニット(12)及び前記受信コイルユニット(21)の少なくとも一方が、上記[1]から[4]のいずれかに記載のコイルユニット(12,21)である非接触電力伝送装置(1)。
[1] In the coil unit (12, 21) for transmitting power to the counterpart coil or receiving power transmitted from the counterpart coil,
A coil holding member (coil bobbin 210) having a pair of main surfaces (211 and 212) facing each other;
A coil (winding 221) wound around the coil holding member (coil bobbin 210),
The coil holding member (coil bobbin 210)
A coil unit (12, 21) provided with a tension applying portion that applies tension to the winding portion of the coil (winding 221) on one main surface (212).
[2] The coil unit (12, 21) described in the above [1], wherein the tension applying unit is configured by forming the one main surface (212) in a substantially semi-elliptical shape.
[3] The above [1] or [2], wherein the coil holding member (coil bobbin 210) further includes a guide wall (213) erected on the main surface (212) so as to separate adjacent windings from each other. The coil unit described in (12, 21).
[4] The coil unit (12) described in the above [3], wherein the guide wall (213) is set such that the height of the guide wall (213) increases as the distance from the central portion of the coil holding member (coil bobbin 210) increases. , 21).
[5] In the non-contact power transmission device (1) having a transmission coil unit (12) for transmitting power and a reception coil unit (21) for receiving power transmitted from the transmission coil unit (12).
The non-contact power transmission device (1) in which at least one of the transmission coil unit (12) and the reception coil unit (21) is the coil unit (12, 21) according to any one of [1] to [4]. ).
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2013年11月19日出願の日本特許出願(特願2013-238979)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on November 19, 2013 (Japanese Patent Application No. 2013-2338979), the contents of which are incorporated herein by reference.
 本発明によれば、コイル保持部材とコイルとの密着性を高めることができるという効果を奏する。この効果を奏する本発明は、コイルユニット及び非接触電力伝送装置に関して有用である。 According to the present invention, it is possible to improve the adhesion between the coil holding member and the coil. The present invention that exhibits this effect is useful for the coil unit and the non-contact power transmission apparatus.
1   非接触電力伝送装置
5   電気自動車
6   電池
10   給電装置
11   高周波電源
12   送信コイルユニット
13   伝送ケーブル(給電側)
20   受電装置
21   受信コイルユニット
22   整流器
23   伝送ケーブル(受電側)
210  コイルボビン
210a フェライトコア
210b 樹脂
211  主面
212  主面
213  ガイド壁
214  張力付与部
220  コイル
221  巻線
DESCRIPTION OF SYMBOLS 1 Non-contact electric power transmission apparatus 5 Electric vehicle 6 Battery 10 Power supply apparatus 11 High frequency power supply 12 Transmission coil unit 13 Transmission cable (power supply side)
20 power receiving device 21 receiving coil unit 22 rectifier 23 transmission cable (power receiving side)
210 Coil bobbin 210a Ferrite core 210b Resin 211 Main surface 212 Main surface 213 Guide wall 214 Tension applying portion 220 Coil 221 Winding

Claims (5)

  1.  相手方コイルに電力を送信し又は相手方コイルから送信された電力を受信するコイルユニットにおいて、
     互いに対向する一対の主面を備えたコイル保持部材と、
     前記コイル保持部材の周囲に巻回されるコイルと、を有し、
     前記コイル保持部材は、
     一方の主面に、前記コイルの巻線部分に対して張力を付与する張力付与部を備えるコイルユニット。
    In the coil unit that transmits power to the counterpart coil or receives power transmitted from the counterpart coil,
    A coil holding member having a pair of main surfaces facing each other;
    A coil wound around the coil holding member,
    The coil holding member is
    A coil unit comprising a tension applying portion that applies tension to a winding portion of the coil on one main surface.
  2.  前記張力付与部は、前記一方の主面を略半楕円状に形成することにより構成される請求項1に記載されたコイルユニット。 The coil unit according to claim 1, wherein the tension applying portion is configured by forming the one main surface into a substantially semi-elliptical shape.
  3.  前記コイル保持部材は、隣り合う巻線同士を互いに隔てるように前記主面に立設されたガイド壁をさらに有する請求項1又は2に記載されたコイルユニット。 The coil unit according to claim 1 or 2, wherein the coil holding member further includes a guide wall erected on the main surface so as to separate adjacent windings from each other.
  4.  前記ガイド壁は、前記コイル保持部材の中央部から離れる程、その高さが増加するように設定されている請求項3に記載されたコイルユニット。 The coil unit according to claim 3, wherein the guide wall is set such that the height of the guide wall increases as the distance from the central portion of the coil holding member increases.
  5.  電力を送信する送信コイルユニットと、前記送信コイルユニットから送信された電力を受信する受信コイルユニットと、を有する非接触電力伝送装置において、
     前記送信コイルユニット及び前記受信コイルユニットの少なくとも一方が、請求項1から4のいずれか一項に記載のコイルユニットである非接触電力伝送装置。
    In a non-contact power transmission device having a transmission coil unit that transmits power and a reception coil unit that receives power transmitted from the transmission coil unit,
    The non-contact electric power transmission apparatus whose at least one of the said transmission coil unit and the said reception coil unit is a coil unit as described in any one of Claim 1 to 4.
PCT/JP2014/080551 2013-11-19 2014-11-18 Coil unit and contactless power transfer device WO2015076274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014005267.1T DE112014005267T5 (en) 2013-11-19 2014-11-18 Coil unit and device for contactless energy transfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-238979 2013-11-19
JP2013238979A JP6249731B2 (en) 2013-11-19 2013-11-19 Coil unit and non-contact power transmission device

Publications (1)

Publication Number Publication Date
WO2015076274A1 true WO2015076274A1 (en) 2015-05-28

Family

ID=53179535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080551 WO2015076274A1 (en) 2013-11-19 2014-11-18 Coil unit and contactless power transfer device

Country Status (3)

Country Link
JP (1) JP6249731B2 (en)
DE (1) DE112014005267T5 (en)
WO (1) WO2015076274A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029713A1 (en) * 2015-08-18 2017-02-23 株式会社 東芝 Inductor and wireless power transmission device
CN109461981A (en) * 2018-10-23 2019-03-12 深圳市爱迪芯科技有限公司 A kind of rechargeable battery of wireless charging type

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359311B2 (en) * 2014-03-27 2018-07-18 パイオニア株式会社 Coil unit
US20180123392A1 (en) 2016-10-31 2018-05-03 Apple Inc. Wireless Charging System With Solenoids

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832609U (en) * 1981-08-24 1983-03-03 東芝テック株式会社 Bobbin shape
JPH08264338A (en) * 1995-03-28 1996-10-11 Matsushita Electric Works Ltd Electromagnetic device
JPH09330838A (en) * 1996-06-13 1997-12-22 Matsushita Electric Ind Co Ltd Power unit
JPH1189004A (en) * 1997-09-11 1999-03-30 Toyota Autom Loom Works Ltd Power receiving equipment in moving body, and moving body
JP2002217017A (en) * 2001-01-12 2002-08-02 Matsushita Electric Works Ltd Coil bobbin
JP2007180126A (en) * 2005-12-27 2007-07-12 Matsushita Electric Works Ltd Bobbin, non-contact power-feeding mechanism, functional apparatus, expansion functional module used for the same, and manufacturing method of non-contact power-feeding mechanism
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system
JP2015012067A (en) * 2013-06-27 2015-01-19 Tdk株式会社 Coil unit for wireless power transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294232A (en) * 1997-04-18 1998-11-04 Murata Mfg Co Ltd Core, formation method for the core and chip coil using the core
JP4631894B2 (en) * 2007-10-09 2011-02-16 Tdk株式会社 Coil parts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832609U (en) * 1981-08-24 1983-03-03 東芝テック株式会社 Bobbin shape
JPH08264338A (en) * 1995-03-28 1996-10-11 Matsushita Electric Works Ltd Electromagnetic device
JPH09330838A (en) * 1996-06-13 1997-12-22 Matsushita Electric Ind Co Ltd Power unit
JPH1189004A (en) * 1997-09-11 1999-03-30 Toyota Autom Loom Works Ltd Power receiving equipment in moving body, and moving body
JP2002217017A (en) * 2001-01-12 2002-08-02 Matsushita Electric Works Ltd Coil bobbin
JP2007180126A (en) * 2005-12-27 2007-07-12 Matsushita Electric Works Ltd Bobbin, non-contact power-feeding mechanism, functional apparatus, expansion functional module used for the same, and manufacturing method of non-contact power-feeding mechanism
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system
JP2015012067A (en) * 2013-06-27 2015-01-19 Tdk株式会社 Coil unit for wireless power transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029713A1 (en) * 2015-08-18 2017-02-23 株式会社 東芝 Inductor and wireless power transmission device
CN109461981A (en) * 2018-10-23 2019-03-12 深圳市爱迪芯科技有限公司 A kind of rechargeable battery of wireless charging type
CN109461981B (en) * 2018-10-23 2020-08-04 深圳市爱迪芯科技有限公司 Wireless charging type rechargeable battery

Also Published As

Publication number Publication date
JP6249731B2 (en) 2017-12-20
JP2015099847A (en) 2015-05-28
DE112014005267T5 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5924496B2 (en) Power transmission system
JP6369493B2 (en) Power supply coil unit, wireless power supply device, and wireless power transmission device
WO2013099221A1 (en) Non-contact charging device
JP6300107B2 (en) Non-contact power transmission device
WO2015155835A1 (en) Non-contact power supply coil
WO2015076274A1 (en) Coil unit and contactless power transfer device
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
WO2014119296A1 (en) Contactless power transmission device
WO2013153783A1 (en) Non-contact power supply pad and non-contact power supply device
KR20150015491A (en) Vehicle
WO2013046368A1 (en) Power receiving device, power transmitting device, and power transmission system
JP2013219210A (en) Non-contact power transmission device
WO2014034844A1 (en) Power transmission system
US20160197492A1 (en) Contactless power transmission device
JP5988211B2 (en) Power transmission system
JP2013135491A (en) Antenna
US10332677B2 (en) Power reception device and power transmission device
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
JP2013214613A (en) Coil unit and power transmission device having coil unit
JP6678324B2 (en) Coil device, non-contact power supply device, and non-contact power receiving device
JP2014093797A (en) Power transmission system
JP2014093320A (en) Power transmission system
WO2014076953A1 (en) Core to be used in coil of non-contact power transmission apparatus
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JP2019179907A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014005267

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864198

Country of ref document: EP

Kind code of ref document: A1