WO2015076055A1 - Imaging module, electronic device, and method for driving imaging module - Google Patents

Imaging module, electronic device, and method for driving imaging module Download PDF

Info

Publication number
WO2015076055A1
WO2015076055A1 PCT/JP2014/078195 JP2014078195W WO2015076055A1 WO 2015076055 A1 WO2015076055 A1 WO 2015076055A1 JP 2014078195 W JP2014078195 W JP 2014078195W WO 2015076055 A1 WO2015076055 A1 WO 2015076055A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
lens
image
imaging module
Prior art date
Application number
PCT/JP2014/078195
Other languages
French (fr)
Japanese (ja)
Inventor
健悟 菊田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015076055A1 publication Critical patent/WO2015076055A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element

Definitions

  • the present invention relates to an imaging module, an electronic apparatus, and a driving method of the imaging module, and more particularly to a technique applied when performing pulse width modulation (PWM) control of a lens driving mechanism of a lens unit.
  • PWM pulse width modulation
  • Patent Document 1 a motor control device that generates a PWM signal based on a reference clock, outputs the generated PWM signal as a drive signal to a drive unit (a three-phase inverter using three pairs of switching elements), and drives a three-phase motor Has been proposed.
  • Patent Document 1 in this type of motor control device, a multistage frequency divider circuit is generally used when generating a frequency division signal for counting from a reference clock signal.
  • the motor control device having such a configuration is described as an issue that electromagnetic noise is generated due to many switch operations.
  • Patent Document 1 does not use a frequency dividing circuit constituted by a multistage counting circuit (counter), but uses a simple circuit configuration by a logic output circuit that is a shift register, An appropriate duty ratio selection signal for setting a modulation factor (duty ratio) corresponding to the value is generated to reduce the scale of the circuit configuration while reducing the generation of noise.
  • Patent Document 2 discloses a small camera module mounted on a mobile phone, a portable game machine, a portable music player, or the like.
  • This camera module includes a lens driving unit such as an autofocus function, a zoom function, and a camera shake correction function.
  • Patent Document 3 discloses a lens driving device that drives a lens barrel of a camera module.
  • the lens driving device includes an autofocus lens driving unit and a camera shake correction unit that are driven by a voice coil motor (VCM).
  • VCM voice coil motor
  • an optical image stabilization (OIS: Optical Image Stabilizer) mechanism is PWM-controlled, it was confirmed that noise was found on the captured image as a result of sensory evaluation.
  • Patent Document 1 describes a technique for reducing noise generated by PWM control, but does not describe an image sensor, and does not describe a technique for removing noise on an image obtained from the image sensor.
  • Patent Document 2 does not describe PWM control of a lens driving unit having a camera shake correction function or the like.
  • the lens driving device described in Patent Document 3 does not perform PWM control of a camera shake correction unit having a voice coil motor (VCM), so that noise associated with PWM control does not occur, but power consumption increases.
  • VCM voice coil motor
  • the OIS mechanism is simply PWM controlled, there is a problem that noise is added to the image as described above.
  • the present invention has been made in view of such circumstances, and achieves power saving by performing pulse width modulation (PWM) control of the lens driving mechanism of the lens unit, and noise is added to the image even if PWM control is performed. It is an object of the present invention to provide an imaging module, an electronic apparatus, and a driving method of the imaging module that can be avoided.
  • PWM pulse width modulation
  • an imaging module includes a lens unit, an imaging element that receives an optical image via the lens unit, and converts the received optical image into an electrical signal, and an imaging element
  • An image sensor drive unit that outputs a drive signal to read an image signal from the image sensor, a lens drive mechanism that drives the lens unit, a pulse width modulation signal based on a command value that controls the lens unit, and a pulse width
  • a PWM control unit that controls the lens driving mechanism based on the modulation signal, and the PWM control unit generates a pulse width modulation signal synchronized with the drive signal generated by the image sensor driving unit.
  • the pulse width modulation signal generated by the PWM control unit is synchronized with the drive signal generated by the image sensor driving unit, thereby reducing noise generated in the image.
  • asynchronous noise occurs in the image.
  • there is horizontal stripe noise As an example in which asynchronous noise appears prominently, there is horizontal stripe noise.
  • the pulse width modulation signal and the drive signal are asynchronous, a line on which noise is periodically generated is generated, and this appears as horizontal stripe noise.
  • periodicity can be eliminated and noise cannot be detected.
  • the imaging element driving unit and the PWM control unit generate a driving signal and a pulse width modulation signal based on a common reference clock, respectively.
  • the PWM control unit can adjust the phase of the pulse width modulation signal so as to be synchronized with the drive signal generated by the image sensor driving unit, but generates the pulse width modulation signal based on a common reference clock. Thus, it can be easily synchronized with the drive signal.
  • the PWM control unit preferably has a clock input terminal for inputting a reference clock. That is, the PWM controller does not need to have a unique oscillator and can use an external clock (common reference clock).
  • the lens driving mechanism preferably includes a voice coil motor that is subjected to pulse width modulation control by a PWM control unit.
  • the lens driving mechanism is a camera shake correction mechanism that moves the lens unit in a plane orthogonal to the photographing optical axis direction.
  • the pixel pitch of the imaging element is 1 ⁇ m or less.
  • An image pickup module mounted on a smartphone or the like is very small, and one pixel of the image pickup device tends to be small as the number of pixels increases.
  • the pixel pitch is 1 ⁇ m or less (when the pixel is small), the amount of incident light per pixel is small, and the photoelectrically converted signal obtained from one pixel is also small, so the signal-to-noise ratio (S / N) is small.
  • the present invention is effective as a noise countermeasure for an imaging module including an imaging device having pixels with a pixel pitch of 1 ⁇ m or less.
  • An electronic device includes the imaging module according to any one of the above and an electronic device main body on which the imaging module is mounted.
  • an electronic device a smart phone, a mobile phone, a tablet terminal, a personal digital assistant (PDA), a glasses-type information terminal, a portable game machine, a portable music player, a camera clock, and the like can be considered. Since these devices are small and the image pickup module is also small, the image pickup element and the lens driving mechanism are close to each other, and noise is easily applied to the image. However, according to the present invention, it is possible to prevent noise from being applied to the image.
  • the electronic device main body includes a reference clock generation unit that generates a reference clock, and the reference clock generation unit supplies a reference clock to each of the image sensor driving unit and the PWM control unit. Supply.
  • the electronic device main body receives an image signal output from the imaging module and performs signal processing on the image signal, and the signal processing unit performs signal processing. And a recording unit for recording the image signal.
  • the invention includes a lens unit, an image sensor that receives an optical image via the lens unit, converts the received optical image into an electrical signal, and outputs a drive signal to the image sensor.
  • An image sensor drive unit that reads an image signal from the image sensor, a lens drive mechanism that drives the lens unit, a pulse width modulation signal based on a command value that controls the lens unit, and a lens drive based on the pulse width modulation signal
  • a pulse width modulation signal generated by the PWM control unit is synchronized with a driving signal generated by an imaging element driving unit.
  • the pulse width modulation signal generated by the PWM control unit is synchronized with the drive signal for driving the image sensor, noise generated in the image when the lens drive mechanism is PWM controlled is reduced. Can do.
  • Sectional perspective view which shows the structure of the imaging module which concerns on this invention Schematic diagram conceptually showing an embodiment of an imaging module according to the present invention
  • Block diagram showing an embodiment of a PWM controller Timing chart showing PWM frequency and image sensor drive frequency signals generated based on the reference clock Timing chart showing PWM frequency and PWM signals having various duty ratios 1
  • Schematic diagram conceptually showing a conventional imaging module
  • a diagram schematically showing the presence or absence of noise in the image The figure which shows the external appearance of the smart phone which is embodiment of an electronic device Block diagram showing the configuration of the smartphone
  • FIG. 1 is a cross-sectional perspective view showing the structure of an imaging module according to the present invention.
  • the imaging module 10 mainly includes a lens unit 12, an imaging element 14, an optical camera shake correction (OIS) mechanism (lens driving mechanism) 16, a focus adjustment mechanism 18, and the like.
  • OIS optical camera shake correction
  • the Z axis is the same axis as the photographic optical axis O
  • the XY axis is an axis orthogonal to the photographic optical axis O. It is.
  • a sensor substrate 22 is attached on a base 20, and an image sensor 14 is disposed on the sensor substrate 22.
  • primary color filters of three primary colors of red (R), green (G), and blue (B) are arranged in a predetermined pattern for each pixel (Bayer arrangement, G stripe R / G complete checkerboard, X -Trans (registered trademark) array, honeycomb array, etc.) and is composed of a CMOS (complementary metal-oxide semiconductor) type image sensor.
  • the image sensor is not limited to a CMOS image sensor, but may be a CCD (charge coupled device) image sensor.
  • a base member 26 having an opening corresponding to the image sensor 14 is fixed on the sensor substrate 22, and an infrared cut filter 28 is disposed in the opening of the base member 26.
  • the base member 26 is provided with a pair of OIS drive coils 28X and 28Y in the X-axis direction and the Y-axis direction via a coil substrate or the like.
  • OIS drive magnets 32X and 32Y are disposed on the lower surface of the magnet holder 30 so as to face the OIS drive coils 28X and 28Y, respectively, and an autofocus (AF) magnet 34 is disposed on the inner side thereof.
  • AF autofocus
  • a cover 38 is attached to the upper surface side of the magnet holder 30 with a metal plate 36 interposed therebetween.
  • the lens unit 12 of this example is configured by housing five lens groups in a lens barrel 42.
  • An AF coil 44 is disposed around the lens barrel 42.
  • the lens unit 12 is housed inside the magnet holder 30 and the like, and is biased toward the base member 26 by a leaf spring (not shown) integrally formed with the metal plate 36, and has a photographing optical axis O (Z axis). ) It is guided to move in the direction.
  • the lens unit 12 and the magnet holder 30 are suspended by four wire springs 40 and guided so as to be movable within a plane (XY plane) orthogonal to the photographing optical axis O. It is guided so as to be movable in the direction of the photographing optical axis O (Z axis).
  • the OIS drive coils 28X and 28Y and the OIS drive magnets 32X and 32Y function as a voice coil motor (VCM) of the OIS mechanism 16, and the AF magnet 34 and the AF coil 44 are VCMs of the focus adjustment mechanism 18. Function as.
  • VCM voice coil motor
  • the lens unit 12 can move in a plane orthogonal to the photographing optical axis O to correct camera shake, and when the VCM of the focus adjustment mechanism 18 is driven.
  • the lens unit 12 can move in the photographing optical axis O direction to perform focus adjustment.
  • FIG. 2 is a schematic view conceptually showing an embodiment of the imaging module 10 according to the present invention.
  • the lens unit 12 is guided so as to be movable in a plane orthogonal to the photographing optical axis O, and is guided so as to be movable in the direction of the photographing optical axis O.
  • the lens unit 12 can move in a plane orthogonal to the photographing optical axis O to correct camera shake, and the VCM 18a of the focus adjustment mechanism 18 is driven. Then, the lens unit 12 can move in the direction of the photographing optical axis O to perform focus adjustment.
  • the image sensor driving unit (not shown) of the image sensor 14 mounted on the sensor substrate 22 and the PWM control unit 50 that performs pulse width modulation (PWM) control of the OIS mechanism 16 are commonly used from the outside.
  • Clock CLK is supplied.
  • the image sensor driving unit generates various drive signals for driving the image sensor 14 based on a reference clock CLK input from the outside, and reads an image signal from the image sensor 14 using the generated drive signal.
  • the PWM control unit 50 generates a pulse width modulation signal (PWM signal) based on a reference clock CLK input from the outside and a command value for controlling the lens unit 12, and controls the OIS mechanism 16 based on the generated PWM signal. Control.
  • PWM signal pulse width modulation signal
  • FIG. 3 is a diagram illustrating an overall configuration example including peripheral circuits of the image sensor 14.
  • the image area 140 of the image sensor 14 is an area where an optical image is received (imaged) via the lens unit 12.
  • pixels 142 made up of a plurality of photoelectric conversion elements are two-dimensionally arranged.
  • the pixel pitch P of the pixels 142 of the image sensor 14 of this example is 1 ⁇ m, and an image pickup module equipped with an image sensor having such a small pixel is not commercially available at present.
  • the image sensor 14 includes an image sensor drive unit such as a timing generator (TG) 143, a vertical driver 144, and a horizontal driver 145, a signal processing unit 146, and MIPI (Mobile Industry Processor Interface) 147. .
  • TG timing generator
  • a vertical driver 144 vertical driver
  • a horizontal driver 145 horizontal driver
  • a signal processing unit 146 signal processing unit
  • MIPI Mobile Industry Processor Interface
  • the TG 143 generates various drive signals for driving the image sensor 14 based on a reference clock CLK input from the outside, and supplies the generated drive signals to each part of the image sensor 14. As a result, the image signal is read out. Note that readout such as thinning readout and partial readout can also be performed.
  • the vertical driver 144 selects the pixels 142 for one row based on the image sensor driving signal applied from the TG 143, and reads the signals from the selected pixels 142.
  • the signal processing unit 146 is provided corresponding to each column of the pixels 142, and performs correlated double sampling (CDS) processing on the signal for one row output from each column read by the vertical driver 144. To convert the processed signal into a digital signal.
  • the signal processed by the signal processing unit 146 is stored in a memory provided for each column.
  • the horizontal driver 145 performs control to sequentially read out signals for one row stored in the memory of the signal processing unit 146 in accordance with the image sensor driving signal applied from the TG 143 and output the signals to the MIPI 147.
  • the MIPI 147 transmits a digital signal in accordance with MIP (Mobile Industry Processor).
  • MIP Mobile Industry Processor
  • FIG. 4 is a block diagram illustrating an embodiment of the PWM control unit 50.
  • the PWM control unit 50 mainly includes a central processing unit (CPU) 51, a PWM signal generation unit 52, and a driver 54, and includes an input terminal 55, a lens position input terminal 56, and a clock input terminal. 57 and an output terminal 58.
  • CPU central processing unit
  • the imaging module 10 is provided with a gyro sensor 60 that detects angular velocities in the direction around the X axis and the direction around the Y axis of the lens unit 12, and from the gyro sensor 60 via the input terminal 55 around the X axis of the lens unit 12.
  • An angular velocity signal indicating the angular velocity in the direction and the direction around the Y axis is applied to the CPU 51.
  • the imaging module 10 is provided with a hall element 62 that detects the positions of the lens unit 12 in the X-axis direction and the Y-axis direction, and the X of the lens unit 12 is transmitted from the hall element 62 via the lens position input terminal 56. Position data indicating the current position in the axial direction and the Y-axis direction is added to the CPU 51.
  • the CPU 51 integrates the angular velocity signal output from the gyro sensor 60 to calculate the deflection angle of the lens unit 12 around the X axis and the Y axis, and cancels the calculated deflection angle of the lens unit 12. A lens displacement amount corresponding to linear movement in the X-axis direction and the Y-axis direction is calculated.
  • the CPU 51 calculates a control target value (command value) of the lens unit 12 based on the calculated lens displacement amount and the position data of the lens unit 12 input from the lens position input terminal 56, and the calculated command value is PWM. Output to the signal generator 52.
  • a reference clock CLK is applied from the clock input terminal 57 to the PWM signal generation unit 52.
  • This reference clock CLK is the same as the reference clock CLK applied to the TG 143 of the image sensor 14.
  • the PWM signal generation unit 52 generates a PWM signal for controlling the OIS mechanism 16 based on the control target value (command value) of the lens unit 12 input from the CPU 51 and the reference clock CLK input from the clock input terminal 57. To do.
  • the generated PWM signal is applied to the driver 54.
  • the driver 54 adjusts the amount of drive current supplied to the VCM 16a by adjusting the on time and the off time of the drive current supplied to the pair of VCMs 16a of the OIS mechanism 16 according to the duty ratio of the input PWM signal. Thereby, the OIS mechanism 16 is driven and the position of the lens unit 12 is controlled.
  • FIG. 5 is a timing chart showing the signal waveform of the PWM frequency and the signal waveform of the image sensor driving frequency generated based on the reference clock.
  • the PWM frequency signal is a signal obtained by dividing the frequency of the reference clock CLK by 1/8, and the image sensor driving frequency signal is multiplied by 5 times the frequency of the reference clock CLK ( (Multiplied by 5).
  • FIG. 6 is a timing chart showing a PWM frequency signal waveform and PWM signals having various duty ratios.
  • the duty ratio of the PWM signal is determined by a command value that is a control target value, and the PWM signal generation unit 52 (FIG. 4), based on the determined command value and the reference clock CLK input from the clock input terminal 57, A PWM signal having a PWM frequency is generated.
  • the PWM frequency signal generated by dividing or multiplying the common reference clock CLK and the image sensor driving frequency signal are different in frequency, but are synchronized.
  • FIG. 7 is a block diagram illustrating an embodiment of an electronic device 100 in which the imaging module 10 having the above configuration is mounted on an electronic device main body such as a portable terminal. Note that FIG. 7 shows only a part that functions as an imaging device of the electronic device 100.
  • a central processing unit (CPU) 102 is a part that performs overall control of the entire apparatus in accordance with an operation input from the operation unit 104 and a predetermined program, and includes auto focus (AF), automatic exposure (AE), and auto white balance. It also functions as a part that performs calculation and control for (AWB).
  • CPU central processing unit
  • the CPU 102 is provided with an oscillator 102a, and the CPU 102 uses a high frequency signal from the oscillator 102a as a clock source for a digital circuit and a timing source for a clock (quartz).
  • the CPU 102 includes a reference clock generation unit that generates a reference clock CLK based on a high frequency signal from the oscillator 102 a, and supplies the generated reference clock CLK to the imaging module 10 via the bus 103.
  • a RAM (Random Access Memory) 108 and a ROM (Read Only Memory) 110 are connected to the CPU 102 via a bus 103 and a memory interface (I / F) 106.
  • the RAM 108 is used as a program development area and a calculation work area for the CPU 102, and is also used as a temporary storage area for image data.
  • the ROM 110 stores programs executed by the CPU 102, various data necessary for control, various constants / information related to imaging operations, and the like.
  • the imaging module 10 performs an imaging operation or the like according to a command from the CPU 102, and outputs an image signal (RGB RAW data) read from the imaging element 14. This raw data is temporarily stored in the RAM 108 via the bus 103 and the memory I / F 106.
  • the RGB RAW data stored in the RAM 108 is input to the digital signal processing unit 112, where gain processing including offset processing, white balance correction, sensitivity correction, gamma correction processing, demosaic processing, RGB / YC conversion Digital signal processing such as processing is performed.
  • the demosaic process is a process for calculating all color information for each pixel from a mosaic image corresponding to the color filter array of a single-plate color image sensor, and is also called a demosaicing process or a synchronization process. For example, in the case of an image sensor made up of three color filters of RGB, this is a process of calculating color information for all RGB for each pixel from a mosaic image made of RGB.
  • the RAW data is recorded in the memory card 116 via the external memory I / F 114 in the RAW file format.
  • the operation unit 104 includes a shutter button, a mode selection switch for selecting a shooting mode and a playback mode, a menu button for displaying a menu screen on the liquid crystal display unit (LCD) 118, and a multi-function for selecting a desired item from the menu screen.
  • the cross key etc. are included.
  • An output signal from the operation unit 104 is input to the CPU 102 via the bus 103, and the CPU 102 performs appropriate processing such as shooting and reproduction based on the input signal from the operation unit 104.
  • the image data (luminance signal Y, color difference signals Cr, Cb) processed by the digital signal processing unit 112 is given to the compression / decompression processing circuit 124, where it is compressed according to a predetermined compression format (for example, JPEG system). .
  • the compressed image data is recorded in the memory card 116 via the external memory I / F 114 in the format of an image file (for example, a JPEG file).
  • the LCD 118 displays a video (live view image) during preparation for imaging by an image signal applied via the LCD interface 126, and a JPEG file or RAW file recorded on the memory card 116 in the playback mode.
  • the image is read and displayed.
  • the compressed image data stored in the JPEG file is decompressed by the compression / decompression circuit 124 and output to the LCD 118.
  • the RAW data stored in the RAW file is RAW developed by the digital signal processing unit 112. Is output to the LCD 118.
  • FIG. 8 is a schematic diagram conceptually showing a conventional imaging module 10A, which is used for comparison with the imaging module 10 according to the present invention shown in FIG.
  • the same reference numerals are given to portions common to the imaging module 10 shown in FIG. 2, and detailed description thereof is omitted.
  • the PWM control unit 50 that drives the OIS mechanism 16 (VCM 16a) of the imaging module 10 illustrated in FIG. 2 is supplied with a reference clock CLK (common to the reference clock CLK supplied to the imaging device 14) from the outside.
  • CLK common to the reference clock CLK supplied to the imaging device 14
  • the reference clock CLK is not supplied from the outside to the PWM control unit 50A of the imaging module 10A shown in FIG.
  • the PWM control unit 50A has a PWM control unit oscillator, and obtains a clock for generating a PWM signal based on a high-frequency signal from the oscillator.
  • the PWM signal generated by the PWM control unit 50A and the drive signal of the image sensor 14 generated based on the reference clock CLK are asynchronous, and noise is added to the image as a result of sensory evaluation on the captured image. It was confirmed.
  • FIG. 9 (a) and 9 (b) are diagrams schematically showing the presence or absence of noise in the image
  • FIG. 9 (a) is an image acquired by the imaging module 10 according to the present invention.
  • FIG. 9B shows an image acquired by the conventional imaging module 10A.
  • noise could not be detected by synchronizing the PWM signal and the drive signal of the imaging device 14 (no noise was added to the image).
  • the PWM signal and the drive signal of the imaging element 14 become asynchronous, and asynchronous noise appears in the captured image.
  • Table 1 below shows the results of sensory evaluation.
  • the noise generated in the image is reduced by synchronizing the PWM signal and the drive signal of the image sensor as compared with the asynchronous case.
  • the pixel pitch P of the image sensor 14 of this example is 1 ⁇ m.
  • the PWM signal and the drive signal of the image sensor are Synchronizing is particularly effective.
  • Examples of the electronic device 100 such as a portable terminal include a smartphone, a mobile phone, a tablet terminal, a personal digital assistant (PDA), a glasses-type information terminal, a portable game machine, a portable music player, and a camera clock.
  • a smartphone will be described as an example, and will be described in detail with reference to the drawings.
  • FIG. 10 shows an appearance of a smartphone 500 that is an embodiment of the electronic device 100.
  • a smartphone 500 illustrated in FIG. 10 includes a flat housing 502, and a display input in which a display panel 521 as a display unit and an operation panel 522 as an input unit are integrated on one surface of the housing 502. Part 520.
  • the housing 502 includes a speaker 531, a microphone 532, an operation unit 540, and a camera unit 541.
  • the configuration of the housing 502 is not limited to this, and for example, a configuration in which the display unit and the input unit are independent, or a configuration having a folding structure and a slide mechanism can be employed.
  • FIG. 11 is a block diagram showing a configuration of the smartphone 500 shown in FIG.
  • the main components of the smartphone 500 include a wireless communication unit 510, a display input unit 520, a call unit 530, an operation unit 540, a camera unit 541, a storage unit 550, and an external input / output.
  • Unit 560 GPS (Global Positioning System) reception unit 570, motion sensor unit 580, power supply unit 590, and main control unit 501.
  • a wireless communication function for performing mobile wireless communication via the base station device BS and the mobile communication network NW is provided as a main function of the smartphone 500.
  • the wireless communication unit 510 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 501. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
  • the display input unit 520 displays images (still images and moving images), character information, and the like visually by the control of the main control unit 501, and visually transmits information to the user, and detects user operations on the displayed information.
  • This is a so-called touch panel, and includes a display panel 521 and an operation panel 522.
  • the display panel 521 is preferably a 3D display panel.
  • the display panel 521 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
  • LCD Liquid Crystal Display
  • OELD Organic Electro-Luminescence Display
  • the operation panel 522 is a device that is placed so that an image displayed on the display surface of the display panel 521 is visible and detects one or a plurality of coordinates operated by a user's finger or stylus.
  • a detection signal generated due to the operation is output to the main control unit 501.
  • the main control unit 501 detects an operation position (coordinates) on the display panel 521 based on the received detection signal.
  • the display panel 521 and the operation panel 522 of the smartphone 500 integrally form the display input unit 520, but the operation panel 522 is disposed so as to completely cover the display panel 521. ing.
  • the operation panel 522 may have a function of detecting a user operation even in an area outside the display panel 521.
  • the operation panel 522 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 521 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 521. May be included).
  • the size of the display area and the size of the display panel 521 may be completely matched, but it is not always necessary to match the two.
  • the operation panel 522 may include two sensitive regions of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 502 and the like.
  • examples of the position detection method employed in the operation panel 522 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method. You can also
  • the call unit 530 includes a speaker 531 and a microphone 532, and converts a user's voice input through the microphone 532 into voice data that can be processed by the main control unit 501, and outputs the voice data to the main control unit 501, or a wireless communication unit 510 or the audio data received by the external input / output unit 560 is decoded and output from the speaker 531.
  • the speaker 531 and the microphone 532 can be mounted on the same surface as the surface on which the display input unit 520 is provided.
  • the operation unit 540 is a hardware key using a key switch or the like, and receives an instruction from the user.
  • the operation unit 540 is mounted on a lower portion and a lower side of the display unit of the housing 502 of the smartphone 500 and is turned on when pressed with a finger or the like, and is turned off when a finger is released with a restoring force such as a spring. It is a button type switch.
  • the storage unit 550 includes control programs and control data of the main control unit 501, address data in which names and telephone numbers of communication partners are associated, transmitted and received e-mail data, Web data downloaded by Web browsing, and downloaded contents Data is stored, and streaming data and the like are temporarily stored.
  • the storage unit 550 includes an internal storage unit 551 with a built-in smartphone and an external storage unit 552 having a removable external memory slot.
  • Each of the internal storage unit 551 and the external storage unit 552 constituting the storage unit 550 includes a flash memory type (flash memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), It is realized using a storage medium such as a card type memory (for example, Micro SD (registered trademark) memory), RAM (Random Access Memory), ROM (Read Only Memory), or the like.
  • flash memory type flash memory type
  • hard disk type hard disk type
  • multimedia card micro type multimedia card micro type
  • a storage medium such as a card type memory (for example, Micro SD (registered trademark) memory), RAM (Random Access Memory), ROM (Read Only Memory), or the like.
  • the external input / output unit 560 serves as an interface with all external devices connected to the smartphone 500, and communicates with other external devices (for example, universal serial bus (USB), IEEE1394, etc.) or a network.
  • external devices for example, universal serial bus (USB), IEEE1394, etc.
  • a network for example, Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wide Band) (registered trademark), ZigBee ( ZigBee) (registered trademark, etc.) for direct or indirect connection.
  • Examples of the external device connected to the smartphone 500 include a memory card connected via a wired / wireless headset, wired / wireless external charger, wired / wireless data port, card socket, and SIM (Subscriber).
  • Identity Module Card / UIM User Identity Module Card
  • external audio / video equipment connected via audio / video I / O (Input / Output) terminal
  • external audio / video equipment connected wirelessly, yes / no
  • the external input / output unit may transmit data received from such an external device to each component inside the smartphone 500, or may allow data inside the smartphone 500 to be transmitted to the external device. it can.
  • the GPS receiving unit 570 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with an instruction from the main control unit 501, executes positioning calculation processing based on the received plurality of GPS signals, A position consisting of longitude and altitude is detected.
  • the GPS receiving unit 570 can acquire position information from the wireless communication unit 510 or the external input / output unit 560 (for example, a wireless LAN), the GPS receiving unit 570 can also detect the position using the position information.
  • the motion sensor unit 580 includes, for example, a three-axis acceleration sensor, and detects the physical movement of the smartphone 500 in accordance with an instruction from the main control unit 501. By detecting the physical movement of the smartphone 500, the moving direction and acceleration of the smartphone 500 are detected. This detection result is output to the main control unit 501.
  • the power supply unit 590 supplies power stored in a battery (not shown) to each unit of the smartphone 500 in accordance with an instruction from the main control unit 501.
  • the main control unit 501 includes a microprocessor, operates according to a control program and control data stored in the storage unit 550, and controls each unit of the smartphone 500 in an integrated manner. Further, the main control unit 501 includes a mobile communication control function for controlling each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 510.
  • the application processing function is realized by the main control unit 501 operating in accordance with application software stored in the storage unit 550.
  • Application processing functions include, for example, an infrared communication function that controls the external input / output unit 560 to perform data communication with the opposite device, an e-mail function that transmits and receives e-mails, and a web browsing function that browses web pages. .
  • the main control unit 501 also has an image processing function such as displaying video on the display input unit 520 based on image data (still image or moving image data) such as received data or downloaded streaming data.
  • the image processing function is a function in which the main control unit 501 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 520.
  • the main control unit 501 executes display control for the display panel 521 and operation detection control for detecting a user operation through the operation unit 540 and the operation panel 522.
  • the main control unit 501 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail.
  • a software key such as a scroll bar, or a window for creating an e-mail.
  • the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 521.
  • the main control unit 501 detects a user operation through the operation unit 540, or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 522. Or a display image scroll request through a scroll bar.
  • the main control unit 501 causes the operation position with respect to the operation panel 522 to overlap with the display panel 521 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 521.
  • a touch panel control function for controlling the sensitive area of the operation panel 522 and the display position of the software key.
  • the main control unit 501 can also detect a gesture operation on the operation panel 522 and execute a preset function according to the detected gesture operation.
  • Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
  • the camera unit 541 is a digital camera that performs electronic photography using an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge-Coupled Device).
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the camera unit 541 converts image data obtained by shooting into compressed image data such as JPEG (JointoPhotographic coding Experts Group) under the control of the main control unit 501, and records the data in the storage unit 550.
  • the data can be output through the external input / output unit 560 and the wireless communication unit 510.
  • the camera unit 541 is mounted on the same surface as the display input unit 520, but the mounting position of the camera unit 541 is not limited to this and may be mounted on the back surface of the display input unit 520. Alternatively, a plurality of camera units 541 may be mounted. Note that when a plurality of camera units 541 are mounted, the camera unit 541 used for shooting can be switched to shoot alone, or a plurality of camera units 541 can be used simultaneously for shooting.
  • the camera unit 541 can be used for various functions of the smartphone 500.
  • an image acquired by the camera unit 541 can be displayed on the display panel 521, or the image of the camera unit 541 can be used as one of operation inputs of the operation panel 522.
  • the GPS receiving unit 570 detects the position, the position can also be detected with reference to an image from the camera unit 541.
  • the optical axis direction of the camera unit 541 of the smartphone 500 is determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment.
  • the image from the camera unit 541 can be used in the application software.
  • the present invention can be applied not only to the OIS mechanism 16 but also to the case where the focus adjustment mechanism 18 is PWM-controlled. In short, any lens driving mechanism that PWM-controls the lens unit can be applied.
  • SYMBOLS 10 Imaging module, 12 ... Lens unit, 14 ... Image sensor, 16 ... Optical camera shake correction (OIS) mechanism, 18 ... Focus adjustment mechanism, 16a, 18a ... Voice coil motor (VCM), 50 ... Pulse width modulation (PWM) ) Control unit 52... PWM signal generation unit 54.
  • Driver 57. Clock input terminal 100.
  • Electronic equipment 102. Central processing unit (CPU) 102 a Oscillator 112 112 Digital signal processing unit 142 Pixel 143 Timing generator (TG) 144 Vertical driver 145 Horizontal driver

Abstract

This invention provides an imaging module, an imaging device, and a method for driving an imaging module that make it possible to conserve power by using pulse-width modulation (PWM) to control a lens-driving mechanism without adding noise to images. An imaging module (10) in one mode of this invention has the following: a lens unit (12); an imaging element (14) that receives an optical image via said lens unit (12) and converts said optical image to an electrical signal; an imaging-element drive unit that outputs a drive signal to the imaging element (14) and reads out an image signal from the imaging element; a lens-driving mechanism that drives the lens unit (12); and a PWM control unit (50) that generates a PWM signal on the basis of a command value for controlling the lens unit (12) and controls the lens-driving mechanism on the basis of said PWM signal. The PWM control unit (50) generates a PWM signal that is synchronized with the drive signal outputted by the imaging-element drive unit.

Description

撮像モジュール、電子機器及び撮像モジュールの駆動方法IMAGING MODULE, ELECTRONIC DEVICE, AND IMAGING MODULE DRIVE METHOD
 本発明は撮像モジュール、電子機器及び撮像モジュールの駆動方法に係り、特にレンズユニットのレンズ駆動機構をパルス幅変調(PWM)制御するときに適用する技術に関する。 The present invention relates to an imaging module, an electronic apparatus, and a driving method of the imaging module, and more particularly to a technique applied when performing pulse width modulation (PWM) control of a lens driving mechanism of a lens unit.
 従来、基準クロックに基づいてPWM信号を生成し、生成したPWM信号を駆動信号として駆動部(一対のスイッチング素子を3組用いた3相インバータ)に出力し、3相モータを駆動するモータ制御装置が提案されている(特許文献1)。 Conventionally, a motor control device that generates a PWM signal based on a reference clock, outputs the generated PWM signal as a drive signal to a drive unit (a three-phase inverter using three pairs of switching elements), and drives a three-phase motor Has been proposed (Patent Document 1).
 また、特許文献1には、この種のモータ制御装置において、基準クロック信号から計数(カウント)用の分周信号を生成する場合、多段の分周回路が用いられるのが一般的であり、このような構成のモータ制御装置は、多くのスイッチ動作に伴う電磁ノイズが発生することが課題として記載されている。 Further, in Patent Document 1, in this type of motor control device, a multistage frequency divider circuit is generally used when generating a frequency division signal for counting from a reference clock signal. The motor control device having such a configuration is described as an issue that electromagnetic noise is generated due to many switch operations.
 そして、特許文献1に記載の発明は、多段の計数回路(カウンタ)で構成された分周回路を用いるのではなく、シフトレジスタである論理出力回路による簡素な回路構成を用いて、電気角の値に対応した変調率(デューティ比)を設定するための適正なデューティ比選択信号を生成し、ノイズの発生を低減しつつ、回路構成の規模を小さくするようにしている。 The invention described in Patent Document 1 does not use a frequency dividing circuit constituted by a multistage counting circuit (counter), but uses a simple circuit configuration by a logic output circuit that is a shift register, An appropriate duty ratio selection signal for setting a modulation factor (duty ratio) corresponding to the value is generated to reduce the scale of the circuit configuration while reducing the generation of noise.
 一方、特許文献2には、携帯電話機、携帯ゲーム機、携帯音楽プレーヤ等に搭載される小型のカメラモジュールが開示されている。このカメラモジュールは、オートフォーカス機能、ズーム機能、手ぶれ補正機能等のレンズ駆動ユニットを備えている。 On the other hand, Patent Document 2 discloses a small camera module mounted on a mobile phone, a portable game machine, a portable music player, or the like. This camera module includes a lens driving unit such as an autofocus function, a zoom function, and a camera shake correction function.
 また、特許文献3には、カメラモジュールのレンズバレルを駆動するレンズ駆動装置が開示されている。このレンズ駆動装置は、ボイスコイルモータ(VCM)により駆動されるオートフォーカス用レンズ駆動部と手振れ補正部とを備えている。 Patent Document 3 discloses a lens driving device that drives a lens barrel of a camera module. The lens driving device includes an autofocus lens driving unit and a camera shake correction unit that are driven by a voice coil motor (VCM).
特開2013-219895号公報JP 2013-219895 A 特開2013-88525号公報JP 2013-88525 A 特開2013-24944号公報JP 2013-24944 A
 スマートフォン等の携帯端末に使用される撮像モジュールにおいて、光学式手振れ補正(OIS:Optical Image Stabilizer)機構をPWM制御すると、官能評価の結果、撮像された画像にノイズが乗ることが確認された。 In an imaging module used for a mobile terminal such as a smartphone, when an optical image stabilization (OIS: Optical Image Stabilizer) mechanism is PWM-controlled, it was confirmed that noise was found on the captured image as a result of sensory evaluation.
 特許文献1には、PWM制御により発生するノイズを低減する技術が記載されているが、撮像素子に関する記載はなく、撮像素子から得られる画像に乗るノイズを除去する技術は記載されていない。 Patent Document 1 describes a technique for reducing noise generated by PWM control, but does not describe an image sensor, and does not describe a technique for removing noise on an image obtained from the image sensor.
 特許文献2には、手ぶれ補正機能等を有するレンズ駆動ユニットがPWM制御される記載がない。 Patent Document 2 does not describe PWM control of a lens driving unit having a camera shake correction function or the like.
 また、特許文献3に記載のレンズ駆動装置は、ボイスコイルモータ(VCM)を有する手振れ補正部をPWM制御しないため、PWM制御に伴うノイズが発生しないが、消費電力が大きくなるという問題がある。一方、単にOIS機構をPWM制御すると、前述したように画像にノイズが乗るという問題がある。 In addition, the lens driving device described in Patent Document 3 does not perform PWM control of a camera shake correction unit having a voice coil motor (VCM), so that noise associated with PWM control does not occur, but power consumption increases. On the other hand, if the OIS mechanism is simply PWM controlled, there is a problem that noise is added to the image as described above.
 本発明はこのような事情に鑑みてなされたもので、レンズユニットのレンズ駆動機構をパルス幅変調(PWM)制御することにより省電力化を図るとともに、PWM制御を行っても画像にノイズが乗らないようにすることができる撮像モジュール、電子機器及び撮像モジュールの駆動方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and achieves power saving by performing pulse width modulation (PWM) control of the lens driving mechanism of the lens unit, and noise is added to the image even if PWM control is performed. It is an object of the present invention to provide an imaging module, an electronic apparatus, and a driving method of the imaging module that can be avoided.
 上記目的を達成するために本発明の一の態様に係る撮像モジュールは、レンズユニットと、レンズユニットを介して光学像を受光し、受光した光学像を電気信号に変換する撮像素子と、撮像素子に駆動信号を出力し、撮像素子から画像信号を読み出す撮像素子駆動部と、レンズユニットを駆動するレンズ駆動機構と、レンズユニットを制御する指令値に基づいてパルス幅変調信号を生成し、パルス幅変調信号に基づいてレンズ駆動機構を制御するPWM制御部と、を備え、PWM制御部は、撮像素子駆動部で生成される駆動信号と同期したパルス幅変調信号を生成する。 To achieve the above object, an imaging module according to an aspect of the present invention includes a lens unit, an imaging element that receives an optical image via the lens unit, and converts the received optical image into an electrical signal, and an imaging element An image sensor drive unit that outputs a drive signal to read an image signal from the image sensor, a lens drive mechanism that drives the lens unit, a pulse width modulation signal based on a command value that controls the lens unit, and a pulse width A PWM control unit that controls the lens driving mechanism based on the modulation signal, and the PWM control unit generates a pulse width modulation signal synchronized with the drive signal generated by the image sensor driving unit.
 本発明の一の態様によれば、PWM制御部により生成されるパルス幅変調信号を、撮像素子駆動部で生成される駆動信号と同期させ、これにより画像に生じるノイズを低減できるようにしている。即ち、レンズ駆動機構をPWM制御するためのパルス幅変調信号と、撮像素子を駆動する駆動信号とが非同期の場合、画像に非同期ノイズが発生したが、両信号の同期をとることで画像のノイズを低減することができた。非同期ノイズが顕著に現れる例として横筋ノイズがあるが、これはパルス幅変調信号と駆動信号とが非同期の場合、周期的にノイズが乗るラインが生じ、それが横筋ノイズとして見える。一方、パルス幅変調信号と駆動信号との同期をとることで、周期性を無くすことができ、ノイズを感知できないようにすることができる。 According to one aspect of the present invention, the pulse width modulation signal generated by the PWM control unit is synchronized with the drive signal generated by the image sensor driving unit, thereby reducing noise generated in the image. . In other words, when the pulse width modulation signal for PWM control of the lens driving mechanism and the drive signal for driving the image sensor are asynchronous, asynchronous noise occurs in the image. Was able to be reduced. As an example in which asynchronous noise appears prominently, there is horizontal stripe noise. When the pulse width modulation signal and the drive signal are asynchronous, a line on which noise is periodically generated is generated, and this appears as horizontal stripe noise. On the other hand, by synchronizing the pulse width modulation signal and the drive signal, periodicity can be eliminated and noise cannot be detected.
 本発明の他の態様に係る撮像モジュールにおいて、撮像素子駆動部及びPWM制御部は、それぞれ共通の基準クロックに基づいて駆動信号及びパルス幅変調信号を生成することが好ましい。PWM制御部は、撮像素子駆動部で生成される駆動信号と同期するように、パルス幅変調信号の位相を調整することができるが、共通の基準クロックに基づいてパルス幅変調信号を生成することにより簡単に駆動信号と同期させることができる。 In the imaging module according to another aspect of the present invention, it is preferable that the imaging element driving unit and the PWM control unit generate a driving signal and a pulse width modulation signal based on a common reference clock, respectively. The PWM control unit can adjust the phase of the pulse width modulation signal so as to be synchronized with the drive signal generated by the image sensor driving unit, but generates the pulse width modulation signal based on a common reference clock. Thus, it can be easily synchronized with the drive signal.
 本発明の更に他の態様に係る撮像モジュールにおいて、PWM制御部は、基準クロックを入力するクロック入力端子を有することが好ましい。即ち、PWM制御部は、独自の発振子をもつ必要がなく、外部クロック(共通の基準クロック)を使用することができる。 In an imaging module according to still another aspect of the present invention, the PWM control unit preferably has a clock input terminal for inputting a reference clock. That is, the PWM controller does not need to have a unique oscillator and can use an external clock (common reference clock).
 本発明の更に他の態様に係る撮像モジュールにおいて、レンズ駆動機構は、PWM制御部によりパルス幅変調制御されるボイスコイルモータを含むことが好ましい。 In the imaging module according to still another aspect of the present invention, the lens driving mechanism preferably includes a voice coil motor that is subjected to pulse width modulation control by a PWM control unit.
 本発明の更に他の態様に係る撮像モジュールにおいて、レンズ駆動機構は、レンズユニットを撮影光軸方向と直交する面内で移動させる手振れ補正機構である。これにより、手振れによる像振れがなく、且つノイズが乗らない画像を撮像することができる。 In the imaging module according to still another aspect of the present invention, the lens driving mechanism is a camera shake correction mechanism that moves the lens unit in a plane orthogonal to the photographing optical axis direction. As a result, it is possible to capture an image without image blur due to camera shake and without noise.
 本発明の更に他の態様に係る撮像モジュールにおいて、撮像素子の画素ピッチは、1μm以下である。 In the imaging module according to still another aspect of the present invention, the pixel pitch of the imaging element is 1 μm or less.
 スマートフォン等に搭載される撮像モジュールは非常に小さく、かつ高画素化に伴って、撮像素子の1画素が小さくなる傾向にある。画素ピッチが1μm以下の場合(画素が小さい場合)、1画素当たりの入射光量が小さく、1画素から得られる光電変換した信号も小さいため、信号対雑音比(S/N)が小さい。本発明は、画素ピッチが1μm以下の画素を有する撮像素子を備えた撮像モジュールのノイズ対策として有効である。 An image pickup module mounted on a smartphone or the like is very small, and one pixel of the image pickup device tends to be small as the number of pixels increases. When the pixel pitch is 1 μm or less (when the pixel is small), the amount of incident light per pixel is small, and the photoelectrically converted signal obtained from one pixel is also small, so the signal-to-noise ratio (S / N) is small. The present invention is effective as a noise countermeasure for an imaging module including an imaging device having pixels with a pixel pitch of 1 μm or less.
 本発明の更に他の態様に係る電子機器は、上記のいずれかに記載の撮像モジュールと、撮像モジュールが搭載された電子機器本体と、を備えている。電子機器としては、スマートフォン、携帯電話機、タブレット端末、携帯情報端末(PDA)、メガネ型情報端末、携帯ゲーム機、携帯音楽プレーヤ、カメラ付き時計などが考えられる。これらの機器は小さく、撮像モジュールも小さいため、撮像素子とレンズ駆動機構とが近く、画像にノイズが乗りやすいが、本発明によれば、画像にノイズが乗らないようにすることができる。 An electronic device according to still another aspect of the present invention includes the imaging module according to any one of the above and an electronic device main body on which the imaging module is mounted. As an electronic device, a smart phone, a mobile phone, a tablet terminal, a personal digital assistant (PDA), a glasses-type information terminal, a portable game machine, a portable music player, a camera clock, and the like can be considered. Since these devices are small and the image pickup module is also small, the image pickup element and the lens driving mechanism are close to each other, and noise is easily applied to the image. However, according to the present invention, it is possible to prevent noise from being applied to the image.
 本発明の更に他の態様に係る電子機器において、電子機器本体は、基準クロックを発生する基準クロック発生部を有し、基準クロック発生部は、撮像素子駆動部及びPWM制御部にそれぞれ基準クロックを供給する。 In an electronic device according to still another aspect of the present invention, the electronic device main body includes a reference clock generation unit that generates a reference clock, and the reference clock generation unit supplies a reference clock to each of the image sensor driving unit and the PWM control unit. Supply.
 本発明の更に他の態様に係る電子機器において、電子機器本体は、撮像モジュールから出力される画像信号を受入し、画像信号に対して信号処理を行う信号処理部と、信号処理部により信号処理された画像信号を記録する記録部と、を有する。 In the electronic device according to still another aspect of the present invention, the electronic device main body receives an image signal output from the imaging module and performs signal processing on the image signal, and the signal processing unit performs signal processing. And a recording unit for recording the image signal.
 本発明の更に他の態様に係る発明は、レンズユニットと、レンズユニットを介して光学像を受光し、受光した光学像を電気信号に変換する撮像素子と、撮像素子に駆動信号を出力し、撮像素子から画像信号を読み出す撮像素子駆動部と、レンズユニットを駆動するレンズ駆動機構と、レンズユニットを制御する指令値に基づいてパルス幅変調信号を生成し、パルス幅変調信号に基づいてレンズ駆動機構を制御するPWM制御部と、を備えた撮像モジュールの駆動方法において、PWM制御部により生成されるパルス幅変調信号を、撮像素子駆動部で生成される駆動信号に同期させるようにしている。 The invention according to still another aspect of the present invention includes a lens unit, an image sensor that receives an optical image via the lens unit, converts the received optical image into an electrical signal, and outputs a drive signal to the image sensor. An image sensor drive unit that reads an image signal from the image sensor, a lens drive mechanism that drives the lens unit, a pulse width modulation signal based on a command value that controls the lens unit, and a lens drive based on the pulse width modulation signal In a driving method of an imaging module including a PWM control unit that controls a mechanism, a pulse width modulation signal generated by the PWM control unit is synchronized with a driving signal generated by an imaging element driving unit.
 本発明によれば、PWM制御部により生成されるパルス幅変調信号を、撮像素子を駆動する駆動信号と同期させるようにしたため、レンズ駆動機構をPWM制御する際に画像に生じるノイズを低減することができる。 According to the present invention, since the pulse width modulation signal generated by the PWM control unit is synchronized with the drive signal for driving the image sensor, noise generated in the image when the lens drive mechanism is PWM controlled is reduced. Can do.
本発明に係る撮像モジュールの構造を示す断面斜視図Sectional perspective view which shows the structure of the imaging module which concerns on this invention 本発明に係る撮像モジュールの実施の形態を概念的に示した概略図Schematic diagram conceptually showing an embodiment of an imaging module according to the present invention 撮像素子の周辺回路を含む全体構成例を示す図The figure which shows the example of whole structure containing the peripheral circuit of an image pick-up element PWM制御部の実施形態を示すブロック図Block diagram showing an embodiment of a PWM controller 基準クロックに基づいて生成されるPWM周波数、撮像素子駆動周波数の信号を示すタイミングチャートTiming chart showing PWM frequency and image sensor drive frequency signals generated based on the reference clock PWM周波数と各種のデューティ比を有するPWM信号とを示すタイミングチャートTiming chart showing PWM frequency and PWM signals having various duty ratios 撮像モジュールが搭載された電子機器の実施形態を示すブロック図1 is a block diagram showing an embodiment of an electronic device equipped with an imaging module 従来の撮像モジュールを概念的に示した概略図Schematic diagram conceptually showing a conventional imaging module 画像のノイズの有無を模式的に示した図A diagram schematically showing the presence or absence of noise in the image 電子機器の実施形態であるスマートフォンの外観を示す図The figure which shows the external appearance of the smart phone which is embodiment of an electronic device スマートフォンの構成を示すブロック図Block diagram showing the configuration of the smartphone
 以下、添付図面に従って本発明に係る撮像モジュール、電子機器及び撮像モジュールの駆動方法の実施の形態について説明する。 Hereinafter, embodiments of an imaging module, an electronic device, and an imaging module driving method according to the present invention will be described with reference to the accompanying drawings.
 <撮像モジュールの機構>
 図1は本発明に係る撮像モジュールの構造を示す断面斜視図である。
<Mechanism of imaging module>
FIG. 1 is a cross-sectional perspective view showing the structure of an imaging module according to the present invention.
 撮像モジュール10は、主としてレンズユニット12、撮像素子14、光学式手振れ補正(OIS)機構(レンズ駆動機構)16、焦点調節機構18等を備えている。尚、図1に示す3軸直交座標系のX,Y,Z軸のうちのZ軸は、撮影光軸Oと同一の軸であり、X-Y軸は、撮影光軸Oと直交する軸である。 The imaging module 10 mainly includes a lens unit 12, an imaging element 14, an optical camera shake correction (OIS) mechanism (lens driving mechanism) 16, a focus adjustment mechanism 18, and the like. Of the X, Y, and Z axes in the three-axis orthogonal coordinate system shown in FIG. 1, the Z axis is the same axis as the photographic optical axis O, and the XY axis is an axis orthogonal to the photographic optical axis O. It is.
 図1において、基台20上にセンサ基板22が取り付けられ、センサ基板22には、撮像素子14が配設されている。本例の撮像素子14は、画素毎に赤(R)、緑(G)、青(B)の3原色の原色フィルタが所定のパターンで配列(ベイヤ配列、GストライプR/G完全市松、X-Trans(登録商標)配列、ハニカム配列等)されたカラー撮像素子であり、CMOS(complementary metal oxide semiconductor)型イメージセンサにより構成されている。尚、CMOS型イメージセンサに限らず、CCD(charge coupled device)型イメージセンサでもよい。 In FIG. 1, a sensor substrate 22 is attached on a base 20, and an image sensor 14 is disposed on the sensor substrate 22. In the image pickup device 14 of this example, primary color filters of three primary colors of red (R), green (G), and blue (B) are arranged in a predetermined pattern for each pixel (Bayer arrangement, G stripe R / G complete checkerboard, X -Trans (registered trademark) array, honeycomb array, etc.) and is composed of a CMOS (complementary metal-oxide semiconductor) type image sensor. The image sensor is not limited to a CMOS image sensor, but may be a CCD (charge coupled device) image sensor.
 センサ基板22上には、撮像素子14に対応する開口を有するベース部材26が固定されており、ベース部材26の開口には、赤外線カットフィルタ28が配設されている。 A base member 26 having an opening corresponding to the image sensor 14 is fixed on the sensor substrate 22, and an infrared cut filter 28 is disposed in the opening of the base member 26.
 ベース部材26には、コイル基板等を介してX軸方向及びY軸方向にそれぞれ一対のOIS駆動用コイル28X,28Yが配設されている。 The base member 26 is provided with a pair of OIS drive coils 28X and 28Y in the X-axis direction and the Y-axis direction via a coil substrate or the like.
 一方、マグネットホルダ30の下面には、OIS駆動用コイル28X,28Yにそれぞれ対向してOIS駆動用マグネット32X,32Yが配設され、その内側には、オートフォーカス(AF)用マグネット34が配設されている。 On the other hand, OIS drive magnets 32X and 32Y are disposed on the lower surface of the magnet holder 30 so as to face the OIS drive coils 28X and 28Y, respectively, and an autofocus (AF) magnet 34 is disposed on the inner side thereof. Has been.
 また、マグネットホルダ30の上面側には、金属プレート36を挟んでカバー38が取り付けられている。 Further, a cover 38 is attached to the upper surface side of the magnet holder 30 with a metal plate 36 interposed therebetween.
 ベース部材26側(固定側)と、マグネットホルダ30側(可動側)との間には、4本のワイヤスプリング40(1本のみ図示されている)が配設され、これによりマグネットホルダ30側が、X-Y平面上で移動可能に吊られている。 Between the base member 26 side (fixed side) and the magnet holder 30 side (movable side), four wire springs 40 (only one is shown) are arranged. , Suspended so as to be movable on the XY plane.
 本例のレンズユニット12は、レンズバレル42内に5枚のレンズ群が収納されて構成されている。 The lens unit 12 of this example is configured by housing five lens groups in a lens barrel 42.
 レンズバレル42の周囲には、AF用コイル44が配設されている。 An AF coil 44 is disposed around the lens barrel 42.
 このレンズユニット12は、マグネットホルダ30等の内側に収容され、金属プレート36と一体成形された板バネ(図示せず)によりベース部材26側に付勢されるとともに、撮影光軸O(Z軸)方向に移動可能に案内されている。 The lens unit 12 is housed inside the magnet holder 30 and the like, and is biased toward the base member 26 by a leaf spring (not shown) integrally formed with the metal plate 36, and has a photographing optical axis O (Z axis). ) It is guided to move in the direction.
 即ち、レンズユニット12及びマグネットホルダ30等は、4本のワイヤスプリング40によって吊られ、撮影光軸Oと直交する面(X-Y面)内で移動自在に案内され、更にレンズユニット12は、撮影光軸O(Z軸)方向に移動自在に案内されている。 That is, the lens unit 12 and the magnet holder 30 are suspended by four wire springs 40 and guided so as to be movable within a plane (XY plane) orthogonal to the photographing optical axis O. It is guided so as to be movable in the direction of the photographing optical axis O (Z axis).
 OIS駆動用コイル28X,28YとOIS駆動用マグネット32X,32Yとは、OIS機構16のボイスコイルモータ(VCM)として機能し、AF用マグネット34とAF用コイル44とは、焦点調節機構18のVCMとして機能する。 The OIS drive coils 28X and 28Y and the OIS drive magnets 32X and 32Y function as a voice coil motor (VCM) of the OIS mechanism 16, and the AF magnet 34 and the AF coil 44 are VCMs of the focus adjustment mechanism 18. Function as.
 そして、OIS機構16のVCMが駆動されると、レンズユニット12は、撮影光軸Oと直交する面内で移動して手振れを補正することができ、焦点調節機構18のVCMが駆動されると、レンズユニット12は、撮影光軸O方向に移動して焦点調節を行うことができる。 When the VCM of the OIS mechanism 16 is driven, the lens unit 12 can move in a plane orthogonal to the photographing optical axis O to correct camera shake, and when the VCM of the focus adjustment mechanism 18 is driven. The lens unit 12 can move in the photographing optical axis O direction to perform focus adjustment.
 [実施の形態]
 図2は本発明に係る撮像モジュール10の実施の形態を概念的に示した概略図である。
[Embodiment]
FIG. 2 is a schematic view conceptually showing an embodiment of the imaging module 10 according to the present invention.
 前述したようにレンズユニット12は、撮影光軸Oと直交する面内で移動自在に案内され、かつ撮影光軸O方向に移動自在に案内されている。 As described above, the lens unit 12 is guided so as to be movable in a plane orthogonal to the photographing optical axis O, and is guided so as to be movable in the direction of the photographing optical axis O.
 そして、OIS機構16のアクチュエータであるVCM16aが駆動されると、レンズユニット12は、撮影光軸Oと直交する面内で移動して手振れを補正することができ、焦点調節機構18のVCM18aが駆動されると、レンズユニット12は、撮影光軸O方向に移動して焦点調節を行うことができる。 When the VCM 16a that is an actuator of the OIS mechanism 16 is driven, the lens unit 12 can move in a plane orthogonal to the photographing optical axis O to correct camera shake, and the VCM 18a of the focus adjustment mechanism 18 is driven. Then, the lens unit 12 can move in the direction of the photographing optical axis O to perform focus adjustment.
 本例では、センサ基板22上に搭載された撮像素子14の撮像素子駆動部(図示せず)及びOIS機構16をパルス幅変調(PWM)制御するPWM制御部50には、外部から共通の基準クロックCLKが供給されている。 In this example, the image sensor driving unit (not shown) of the image sensor 14 mounted on the sensor substrate 22 and the PWM control unit 50 that performs pulse width modulation (PWM) control of the OIS mechanism 16 are commonly used from the outside. Clock CLK is supplied.
 撮像素子駆動部は、外部から入力する基準クロックCLKに基づいて撮像素子14を駆動するための各種の駆動信号を生成し、生成した駆動信号により撮像素子14から画像信号を読み出す。 The image sensor driving unit generates various drive signals for driving the image sensor 14 based on a reference clock CLK input from the outside, and reads an image signal from the image sensor 14 using the generated drive signal.
 PWM制御部50は、外部から入力する基準クロックCLKと、レンズユニット12を制御する指令値とに基づいてパルス幅変調信号(PWM信号)を生成し、生成したPWM信号に基づいてOIS機構16を制御する。 The PWM control unit 50 generates a pulse width modulation signal (PWM signal) based on a reference clock CLK input from the outside and a command value for controlling the lens unit 12, and controls the OIS mechanism 16 based on the generated PWM signal. Control.
 <撮像素子>
 図3は、撮像素子14の周辺回路を含む全体構成例を示す図である。
<Image sensor>
FIG. 3 is a diagram illustrating an overall configuration example including peripheral circuits of the image sensor 14.
 撮像素子14の画像領域140は、レンズユニット12を介して光学像が受光(結像)する領域である。この画像領域140には、複数の光電変換素子からなる画素142が2次元状に配列されている。本例の撮像素子14の画素142の画素ピッチPは、1μmであり、このような小さい画素を有する撮像素子を搭載した撮像モジュールは、現在市販されていない。 The image area 140 of the image sensor 14 is an area where an optical image is received (imaged) via the lens unit 12. In the image area 140, pixels 142 made up of a plurality of photoelectric conversion elements are two-dimensionally arranged. The pixel pitch P of the pixels 142 of the image sensor 14 of this example is 1 μm, and an image pickup module equipped with an image sensor having such a small pixel is not commercially available at present.
 また、撮像素子14は、タイミングジェネレータ(TG)143、垂直ドライバ144、及び水平ドライバ145等の撮像素子駆動部と、信号処理部146と、MIPI(Mobile Industry Processor Interface)147とを有している。 The image sensor 14 includes an image sensor drive unit such as a timing generator (TG) 143, a vertical driver 144, and a horizontal driver 145, a signal processing unit 146, and MIPI (Mobile Industry Processor Interface) 147. .
 TG143は、外部から入力する基準クロックCLKに基づいて撮像素子14を駆動するための各種の駆動信号を生成し、生成した駆動信号を撮像素子14の各部に供給する。これにより、画像信号の読み出しが行われる。尚、間引き読み出しや部分読み出し等の読み出しも行うことができる。 The TG 143 generates various drive signals for driving the image sensor 14 based on a reference clock CLK input from the outside, and supplies the generated drive signals to each part of the image sensor 14. As a result, the image signal is read out. Note that readout such as thinning readout and partial readout can also be performed.
 垂直ドライバ144は、TG143から加えられる撮像素子駆動信号により1行分の画素142を選択し、選択した画素142からの信号の読み出しを行う。信号処理部146は、画素142の各列に対応して設けられており、垂直ドライバ144により読み出された各列から出力された1行分の信号に対し、相関二重サンプリング(CDS)処理を行ない、処理後の信号をデジタル信号に変換する。信号処理部146による処理後の信号は、列毎に設けられたメモリに記憶される。水平ドライバ145は、TG143から加えられる撮像素子駆動信号により信号処理部146のメモリに記憶された1行分の信号を順次読出してMIPI147に出力する制御を行なう。MIPI147は、MIP(Mobile Industry Processor)に従ってデジタル信号を伝送する。 The vertical driver 144 selects the pixels 142 for one row based on the image sensor driving signal applied from the TG 143, and reads the signals from the selected pixels 142. The signal processing unit 146 is provided corresponding to each column of the pixels 142, and performs correlated double sampling (CDS) processing on the signal for one row output from each column read by the vertical driver 144. To convert the processed signal into a digital signal. The signal processed by the signal processing unit 146 is stored in a memory provided for each column. The horizontal driver 145 performs control to sequentially read out signals for one row stored in the memory of the signal processing unit 146 in accordance with the image sensor driving signal applied from the TG 143 and output the signals to the MIPI 147. The MIPI 147 transmits a digital signal in accordance with MIP (Mobile Industry Processor).
 <PWM制御部>
 図4は、PWM制御部50の実施形態を示すブロック図である。
<PWM controller>
FIG. 4 is a block diagram illustrating an embodiment of the PWM control unit 50.
 図4に示すようにPWM制御部50は、主として中央処理装置(CPU)51、PWM信号生成部52と、ドライバ54とから構成されており、入力端子55、レンズ位置入力端子56、クロック入力端子57及び出力端子58を備えている。 As shown in FIG. 4, the PWM control unit 50 mainly includes a central processing unit (CPU) 51, a PWM signal generation unit 52, and a driver 54, and includes an input terminal 55, a lens position input terminal 56, and a clock input terminal. 57 and an output terminal 58.
 撮像モジュール10には、レンズユニット12のX軸回り方向及びY軸回り方向の角速度を検出するジャイロセンサ60が設けられており、ジャイロセンサ60から入力端子55を介してレンズユニット12のX軸回り方向及びY軸回り方向の角速度を示す角速度信号がCPU51に加えられている。 The imaging module 10 is provided with a gyro sensor 60 that detects angular velocities in the direction around the X axis and the direction around the Y axis of the lens unit 12, and from the gyro sensor 60 via the input terminal 55 around the X axis of the lens unit 12. An angular velocity signal indicating the angular velocity in the direction and the direction around the Y axis is applied to the CPU 51.
 また、撮像モジュール10には、レンズユニット12のX軸方向及びY軸方向の位置を検出するホール素子62が設けられており、ホール素子62からレンズ位置入力端子56を介してレンズユニット12のX軸方向及びY軸方向の現在位置を示す位置データがCPU51に加えられている。 In addition, the imaging module 10 is provided with a hall element 62 that detects the positions of the lens unit 12 in the X-axis direction and the Y-axis direction, and the X of the lens unit 12 is transmitted from the hall element 62 via the lens position input terminal 56. Position data indicating the current position in the axial direction and the Y-axis direction is added to the CPU 51.
 CPU51は、ジャイロセンサ60から出力される角速度信号を積分してレンズユニット12のX軸回り方向及びY軸回り方向の振れ角を算出し、算出した振れ角を相殺するための、レンズユニット12のX軸方向及びY軸方向の直線移動に相当するレンズ変位量を算出する。CPU51は、算出したレンズ変位量と、レンズ位置入力端子56から入力するレンズユニット12の位置データとに基づいて、レンズユニット12の制御目標値(指令値)を算出し、算出した指令値をPWM信号生成部52に出力する。 The CPU 51 integrates the angular velocity signal output from the gyro sensor 60 to calculate the deflection angle of the lens unit 12 around the X axis and the Y axis, and cancels the calculated deflection angle of the lens unit 12. A lens displacement amount corresponding to linear movement in the X-axis direction and the Y-axis direction is calculated. The CPU 51 calculates a control target value (command value) of the lens unit 12 based on the calculated lens displacement amount and the position data of the lens unit 12 input from the lens position input terminal 56, and the calculated command value is PWM. Output to the signal generator 52.
 PWM信号生成部52には、クロック入力端子57から基準クロックCLKが加えられている。この基準クロックCLKは、撮像素子14のTG143に加えられている基準クロックCLKと同一のものである。 A reference clock CLK is applied from the clock input terminal 57 to the PWM signal generation unit 52. This reference clock CLK is the same as the reference clock CLK applied to the TG 143 of the image sensor 14.
 PWM信号生成部52は、CPU51から入力するレンズユニット12の制御目標値(指令値)とクロック入力端子57から入力する基準クロックCLKとに基づいて、OIS機構16を制御するためのPWM信号を生成する。生成されたPWM信号は、ドライバ54に加えられる。 The PWM signal generation unit 52 generates a PWM signal for controlling the OIS mechanism 16 based on the control target value (command value) of the lens unit 12 input from the CPU 51 and the reference clock CLK input from the clock input terminal 57. To do. The generated PWM signal is applied to the driver 54.
 ドライバ54は、入力するPWM信号のデューティ比に応じてOIS機構16の一対のVCM16aに供給する駆動電流のオン時間、オフ時間を調整し、VCM16aに供給する駆動電流量を調節する。これにより、OIS機構16が駆動され、レンズユニット12の位置が制御される。 The driver 54 adjusts the amount of drive current supplied to the VCM 16a by adjusting the on time and the off time of the drive current supplied to the pair of VCMs 16a of the OIS mechanism 16 according to the duty ratio of the input PWM signal. Thereby, the OIS mechanism 16 is driven and the position of the lens unit 12 is controlled.
 図5は、基準クロックに基づいて生成されるPWM周波数の信号波形、撮像素子駆動周波数の信号波形を示すタイミングチャートである。 FIG. 5 is a timing chart showing the signal waveform of the PWM frequency and the signal waveform of the image sensor driving frequency generated based on the reference clock.
 図5に示す例では、PWM周波数の信号は、基準クロックCLKの周波数を8分の1に分周した信号であり、撮像素子駆動周波数の信号は、基準クロックCLKの周波数を5倍に逓倍(5逓倍)した信号である。 In the example shown in FIG. 5, the PWM frequency signal is a signal obtained by dividing the frequency of the reference clock CLK by 1/8, and the image sensor driving frequency signal is multiplied by 5 times the frequency of the reference clock CLK ( (Multiplied by 5).
 図6は、PWM周波数の信号波形と各種のデューティ比を有するPWM信号とを示すタイミングチャートである。 FIG. 6 is a timing chart showing a PWM frequency signal waveform and PWM signals having various duty ratios.
 PWM信号のデューティ比は、制御目標値である指令値により決定され、PWM信号生成部52(図4)は、決定された指令値とクロック入力端子57から入力する基準クロックCLKとに基づいて、PWM周波数を有するPWM信号を生成する。 The duty ratio of the PWM signal is determined by a command value that is a control target value, and the PWM signal generation unit 52 (FIG. 4), based on the determined command value and the reference clock CLK input from the clock input terminal 57, A PWM signal having a PWM frequency is generated.
 図5に示したように共通の基準クロックCLKを、分周あるいは逓倍して生成されたPWM周波数の信号と撮像素子駆動周波数の信号とは、互いに周波数が異なるが、同期した信号となる。 As shown in FIG. 5, the PWM frequency signal generated by dividing or multiplying the common reference clock CLK and the image sensor driving frequency signal are different in frequency, but are synchronized.
 これにより、PWM周波数のPWM信号によるOIS機構16のPWM制御中において、撮像素子駆動周波数の信号に基づいて撮像素子14から画像信号を読み出す際に、PWM制御に起因するノイズが、読み出される画像信号に乗らないようにすることができる。 Thereby, during the PWM control of the OIS mechanism 16 by the PWM signal of the PWM frequency, when the image signal is read from the image sensor 14 based on the signal of the image sensor drive frequency, the noise caused by the PWM control is read out. You can avoid getting on.
 <電子機器>
 図7は、携帯端末等の電子機器本体に上記構成の撮像モジュール10が搭載された、電子機器100の実施形態を示すブロック図である。尚、図7は電子機器100の撮像装置として機能する部分のみを示している。
<Electronic equipment>
FIG. 7 is a block diagram illustrating an embodiment of an electronic device 100 in which the imaging module 10 having the above configuration is mounted on an electronic device main body such as a portable terminal. Note that FIG. 7 shows only a part that functions as an imaging device of the electronic device 100.
 図7において、中央処理装置(CPU)102は、操作部104からの操作入力及び所定のプログラムに従って装置全体を統括制御する部分であり、オートフォーカス(AF)、自動露出(AE)、オートホワイトバランス(AWB)用の演算及び制御等を実施する部分としても機能する。 In FIG. 7, a central processing unit (CPU) 102 is a part that performs overall control of the entire apparatus in accordance with an operation input from the operation unit 104 and a predetermined program, and includes auto focus (AF), automatic exposure (AE), and auto white balance. It also functions as a part that performs calculation and control for (AWB).
 CPU102には、発振子102aが設けられており、CPU102は、発振子102aからの高周波信号を、デジタル回路のクロック源、時計(クォーツ)のタイミング源として使用する。本例では、CPU102は、発振子102aからの高周波信号に基づいて基準クロックCLKを生成する基準クロック発生部を含み、生成した基準クロックCLKをバス103を介して撮像モジュール10に供給している。 The CPU 102 is provided with an oscillator 102a, and the CPU 102 uses a high frequency signal from the oscillator 102a as a clock source for a digital circuit and a timing source for a clock (quartz). In this example, the CPU 102 includes a reference clock generation unit that generates a reference clock CLK based on a high frequency signal from the oscillator 102 a, and supplies the generated reference clock CLK to the imaging module 10 via the bus 103.
 また、CPU102には、バス103及びメモリ・インターフェース(I/F)106を介してRAM(Random Access Memory)108及びROM(Read Only Memory)110が接続されている。RAM108は、プログラムの展開領域及びCPU102の演算作業用領域として利用されるとともに、画像データの一時記憶領域として利用される。ROM110には、CPU102が実行するプログラム及び制御に必要な各種データや、撮像動作に関する各種定数/情報等が格納されている。 Further, a RAM (Random Access Memory) 108 and a ROM (Read Only Memory) 110 are connected to the CPU 102 via a bus 103 and a memory interface (I / F) 106. The RAM 108 is used as a program development area and a calculation work area for the CPU 102, and is also used as a temporary storage area for image data. The ROM 110 stores programs executed by the CPU 102, various data necessary for control, various constants / information related to imaging operations, and the like.
 撮像モジュール10は、CPU102からの指令により撮像動作等を行い、撮像素子14から読み出された画像信号(RGBのRAWデータ)を出力する。このRAWデータは、バス103及びメモリI/F106を介してRAM108に一時的に保存される。 The imaging module 10 performs an imaging operation or the like according to a command from the CPU 102, and outputs an image signal (RGB RAW data) read from the imaging element 14. This raw data is temporarily stored in the RAM 108 via the bus 103 and the memory I / F 106.
 RAM108に保存されたRGBのRAWデータは、デジタル信号処理部112に入力され、ここで、オフセット処理、ホワイトバランス補正、感度補正を含むゲイン・コントロール処理、ガンマ補正処理、デモザイク処理、RGB/YC変換処理等のデジタル信号処理が施される。尚、デモザイク処理とは、単板式のカラー撮像素子のカラーフィルタ配列に対応したモザイク画像から画素毎に全ての色情報を算出する処理であり、デモザイキング処理又は同時化処理ともいう。例えば、RGB3色のカラーフィルタからなる撮像素子の場合、RGBからなるモザイク画像から画素毎にRGB全ての色情報を算出する処理である。 The RGB RAW data stored in the RAM 108 is input to the digital signal processing unit 112, where gain processing including offset processing, white balance correction, sensitivity correction, gamma correction processing, demosaic processing, RGB / YC conversion Digital signal processing such as processing is performed. The demosaic process is a process for calculating all color information for each pixel from a mosaic image corresponding to the color filter array of a single-plate color image sensor, and is also called a demosaicing process or a synchronization process. For example, in the case of an image sensor made up of three color filters of RGB, this is a process of calculating color information for all RGB for each pixel from a mosaic image made of RGB.
 また、RAWデータ記録が選択されている場合には、RAWデータはRAWファイルのフォーマットで、外部メモリI/F114を介してメモリカード116に記録される。 When RAW data recording is selected, the RAW data is recorded in the memory card 116 via the external memory I / F 114 in the RAW file format.
 操作部104には、シャッターボタン、撮影モードと再生モードを選択するモード選択スイッチ、液晶表示部(LCD)118にメニュー画面を表示させるメニューボタン、メニュー画面から所望の項目を選択するためのマルチファンクションの十字キー等が含まれる。操作部104からの出力信号は、バス103を介してCPU102に入力され、CPU102は操作部104からの入力信号に基づいて撮影や再生等の適宜の処理を実施させる。 The operation unit 104 includes a shutter button, a mode selection switch for selecting a shooting mode and a playback mode, a menu button for displaying a menu screen on the liquid crystal display unit (LCD) 118, and a multi-function for selecting a desired item from the menu screen. The cross key etc. are included. An output signal from the operation unit 104 is input to the CPU 102 via the bus 103, and the CPU 102 performs appropriate processing such as shooting and reproduction based on the input signal from the operation unit 104.
 デジタル信号処理部112で処理された画像データ(輝度信号Y,色差信号Cr,Cb)は、圧縮伸張処理回路124に与えられ、ここで、所定の圧縮フォーマット(例えば、JPEG方式) に従って圧縮される。圧縮された画像データは、画像ファイル(例えば、JPEGファイル)のフォーマットで、外部メモリI/F114を介してメモリカード116に記録される。 The image data (luminance signal Y, color difference signals Cr, Cb) processed by the digital signal processing unit 112 is given to the compression / decompression processing circuit 124, where it is compressed according to a predetermined compression format (for example, JPEG system). . The compressed image data is recorded in the memory card 116 via the external memory I / F 114 in the format of an image file (for example, a JPEG file).
 また、LCD118には、LCDインターフェース126を介して加えられる画像信号により撮像準備中に映像(ライブビュー画像)が表示され、また、再生モード時にメモリカード116に記録されたJPEGファイル、又はRAWファイルが読み出され、画像が表示される。尚、JPEGファイルに格納された圧縮された画像データは、圧縮伸張処理回路124によって伸張処理が行われてLCD118に出力され、RAWファイルに格納されたRAWデータは、デジタル信号処理部112によってRAW現像した後にLCD118に出力される。 Further, the LCD 118 displays a video (live view image) during preparation for imaging by an image signal applied via the LCD interface 126, and a JPEG file or RAW file recorded on the memory card 116 in the playback mode. The image is read and displayed. The compressed image data stored in the JPEG file is decompressed by the compression / decompression circuit 124 and output to the LCD 118. The RAW data stored in the RAW file is RAW developed by the digital signal processing unit 112. Is output to the LCD 118.
 <比較例1>
 図8は従来の撮像モジュール10Aを概念的に示した概略図であり、図2に示した本発明に係る撮像モジュール10と対比するために用いた図である。尚、図8において、図2に示した撮像モジュール10と共通する部分には同一の符合を付し、その詳細な説明は省略する。
<Comparative Example 1>
FIG. 8 is a schematic diagram conceptually showing a conventional imaging module 10A, which is used for comparison with the imaging module 10 according to the present invention shown in FIG. In FIG. 8, the same reference numerals are given to portions common to the imaging module 10 shown in FIG. 2, and detailed description thereof is omitted.
 図2に示した撮像モジュール10のOIS機構16(VCM16a)を駆動するPWM制御部50には、外部から基準クロックCLK(撮像素子14に供給される基準クロックCLKと共通)が供給されているが、図8に示す撮像モジュール10AのPWM制御部50Aには、外部から基準クロックCLKが供給されていない。 The PWM control unit 50 that drives the OIS mechanism 16 (VCM 16a) of the imaging module 10 illustrated in FIG. 2 is supplied with a reference clock CLK (common to the reference clock CLK supplied to the imaging device 14) from the outside. The reference clock CLK is not supplied from the outside to the PWM control unit 50A of the imaging module 10A shown in FIG.
 即ち、PWM制御部50Aは、PWM制御部発振子を有し、その発振子からの高周波信号に基づいてPWM信号を生成するためのクロックを得ている。 That is, the PWM control unit 50A has a PWM control unit oscillator, and obtains a clock for generating a PWM signal based on a high-frequency signal from the oscillator.
 従って、PWM制御部50Aにより生成されるPWM信号と、基準クロックCLKに基づいて生成される撮像素子14の駆動信号とは非同期になり、撮像された画像に対する官能評価の結果、画像にノイズが乗ることが確認された。 Accordingly, the PWM signal generated by the PWM control unit 50A and the drive signal of the image sensor 14 generated based on the reference clock CLK are asynchronous, and noise is added to the image as a result of sensory evaluation on the captured image. It was confirmed.
 図9の(a)部分及び(b)部分は、それぞれ画像のノイズの有無を模式的に示した図であり、図9の(a)部分は本発明に係る撮像モジュール10により取得される画像を示し、図9の(b)部分は従来の撮像モジュール10Aにより取得される画像を示している。 9 (a) and 9 (b) are diagrams schematically showing the presence or absence of noise in the image, and FIG. 9 (a) is an image acquired by the imaging module 10 according to the present invention. FIG. 9B shows an image acquired by the conventional imaging module 10A.
 本発明に係る撮像モジュール10の場合、PWM信号と撮像素子14の駆動信号との同期をとることで、ノイズを感知することができなかった(画像にノイズが乗らなかった)。 In the case of the imaging module 10 according to the present invention, noise could not be detected by synchronizing the PWM signal and the drive signal of the imaging device 14 (no noise was added to the image).
 一方、従来の撮像モジュール10Aの場合、PWM信号と撮像素子14の駆動信号とが非同期となり、撮像された画像に非同期ノイズが現れた。 On the other hand, in the case of the conventional imaging module 10A, the PWM signal and the drive signal of the imaging element 14 become asynchronous, and asynchronous noise appears in the captured image.
 非同期ノイズが顕著に現れる例として、図9の(b)部分に示す横筋ノイズがあるが、従来の撮像モジュール10Aの場合、横筋ノイズが発生した。これはPWM信号と撮像素子14の駆動信号とが非同期であるため、周期的にノイズが乗るラインが生じ、それが横筋ノイズとして現れたものと考えられる。 As an example in which asynchronous noise appears prominently, there is horizontal stripe noise shown in part (b) of FIG. 9, but in the case of the conventional imaging module 10 </ b> A, horizontal stripe noise has occurred. This is because the PWM signal and the drive signal of the image sensor 14 are asynchronous, so that a line on which noise is periodically generated is generated, which appears as horizontal stripe noise.
 <比較例2>
 撮像素子の画素ピッチの大きさと、PWM信号と撮像素子の駆動信号との同期の有無とを適宜組み合わせて、撮像した画像の官能評価を行った。
<Comparative example 2>
Sensory evaluation of the captured image was performed by appropriately combining the size of the pixel pitch of the image sensor and the presence or absence of synchronization between the PWM signal and the drive signal of the image sensor.
 下記の表1に、官能評価の結果を示す。 Table 1 below shows the results of sensory evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [官能評価結果について]
 A:画像にノイズが無い。
[About sensory evaluation results]
A: There is no noise in the image.
 B:わずかにノイズが認められるものの、鑑賞上問題が無い。 B: Although there is a slight noise, there is no problem in viewing.
 C:画像にノイズがあり、鑑賞に堪えない。 C: There is noise in the image and it is unbearable for viewing.
 [表1]に示すように、画素ピッチが1.4μmの場合、PWM信号と撮像素子の駆動信号との同期の有無にかかわらず、画像にノイズが乗らなかった。これは、1画素のサイズが大きいため、その分、光電変換されるセンサ信号(アナログ信号)が大きく、S/Nが大きいためであると考えられる。 As shown in [Table 1], when the pixel pitch was 1.4 μm, no noise was added to the image regardless of the synchronization between the PWM signal and the drive signal of the image sensor. This is probably because the sensor signal (analog signal) subjected to photoelectric conversion is large and the S / N is large because the size of one pixel is large.
 画素ピッチが1.12μm及び0.9μmの場合、PWM信号と撮像素子の駆動信号との同期をとることで、非同期の場合よりも画像に生じるノイズが低減された。 When the pixel pitch is 1.12 μm and 0.9 μm, the noise generated in the image is reduced by synchronizing the PWM signal and the drive signal of the image sensor as compared with the asynchronous case.
 図3等に示したように本例の撮像素子14の画素ピッチPは1μmであるが、上記の官能評価の結果から、画素ピッチが1μm以下の場合にPWM信号と撮像素子の駆動信号との同期をとることが特に有効である。 As shown in FIG. 3 and the like, the pixel pitch P of the image sensor 14 of this example is 1 μm. However, from the result of the sensory evaluation, when the pixel pitch is 1 μm or less, the PWM signal and the drive signal of the image sensor are Synchronizing is particularly effective.
 携帯端末等の電子機器100としては、スマートフォン、携帯電話機、タブレット端末、携帯情報端末(PDA)、メガネ型情報端末、携帯ゲーム機、携帯音楽プレーヤ、カメラ付き時計などが挙げられる。以下、スマートフォンを例に挙げ、図面を参照しつつ、詳細に説明する。 Examples of the electronic device 100 such as a portable terminal include a smartphone, a mobile phone, a tablet terminal, a personal digital assistant (PDA), a glasses-type information terminal, a portable game machine, a portable music player, and a camera clock. Hereinafter, a smartphone will be described as an example, and will be described in detail with reference to the drawings.
 <スマートフォンの構成>
 図10は、電子機器100の実施形態であるスマートフォン500の外観を示すものである。図10に示すスマートフォン500は、平板状の筐体502を有し、筐体502の一方の面に表示部としての表示パネル521と、入力部としての操作パネル522とが一体となった表示入力部520を備えている。また、筐体502は、スピーカ531と、マイクロホン532、操作部540と、カメラ部541とを備えている。尚、筐体502の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成を採用することや、折り畳み構造やスライド機構を有する構成を採用することもできる。
<Configuration of smartphone>
FIG. 10 shows an appearance of a smartphone 500 that is an embodiment of the electronic device 100. A smartphone 500 illustrated in FIG. 10 includes a flat housing 502, and a display input in which a display panel 521 as a display unit and an operation panel 522 as an input unit are integrated on one surface of the housing 502. Part 520. The housing 502 includes a speaker 531, a microphone 532, an operation unit 540, and a camera unit 541. Note that the configuration of the housing 502 is not limited to this, and for example, a configuration in which the display unit and the input unit are independent, or a configuration having a folding structure and a slide mechanism can be employed.
 図11は、図10に示したスマートフォン500の構成を示すブロック図である。図11に示すように、スマートフォン500の主たる構成要素として、無線通信部510と、表示入力部520と、通話部530と、操作部540と、カメラ部541と、記憶部550と、外部入出力部560と、GPS(Global Positioning System)受信部570と、モーションセンサ部580と、電源部590と、主制御部501とを備える。また、スマートフォン500の主たる機能として、基地局装置BSと移動通信網NWとを介した移動無線通信を行う無線通信機能を備える。 FIG. 11 is a block diagram showing a configuration of the smartphone 500 shown in FIG. As shown in FIG. 11, the main components of the smartphone 500 include a wireless communication unit 510, a display input unit 520, a call unit 530, an operation unit 540, a camera unit 541, a storage unit 550, and an external input / output. Unit 560, GPS (Global Positioning System) reception unit 570, motion sensor unit 580, power supply unit 590, and main control unit 501. In addition, as a main function of the smartphone 500, a wireless communication function for performing mobile wireless communication via the base station device BS and the mobile communication network NW is provided.
 無線通信部510は、主制御部501の指示に従って、移動通信網NWに収容された基地局装置BSに対し無線通信を行うものである。この無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータなどの送受信や、Webデータやストリーミングデータなどの受信を行う。 The wireless communication unit 510 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 501. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
 表示入力部520は、主制御部501の制御により、画像(静止画及び動画)や文字情報などを表示して視覚的にユーザに情報を伝達すると共に、表示した情報に対するユーザ操作を検出する、いわゆるタッチパネルであって、表示パネル521と、操作パネル522とを備える。生成された3D画像を鑑賞する場合には、表示パネル521は、3D表示パネルであることが好ましい。 The display input unit 520 displays images (still images and moving images), character information, and the like visually by the control of the main control unit 501, and visually transmits information to the user, and detects user operations on the displayed information. This is a so-called touch panel, and includes a display panel 521 and an operation panel 522. When viewing the generated 3D image, the display panel 521 is preferably a 3D display panel.
 表示パネル521は、LCD(Liquid Crystal Display)、OELD(Organic Electro-Luminescence Display)などを表示デバイスとして用いたものである。 The display panel 521 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
 操作パネル522は、表示パネル521の表示面上に表示される画像を視認可能に載置され、ユーザの指や尖筆によって操作される一又は複数の座標を検出するデバイスである。このデバイスをユーザの指や尖筆によって操作すると、操作に起因して発生する検出信号を主制御部501に出力する。次いで、主制御部501は、受信した検出信号に基づいて、表示パネル521上の操作位置(座標)を検出する。 The operation panel 522 is a device that is placed so that an image displayed on the display surface of the display panel 521 is visible and detects one or a plurality of coordinates operated by a user's finger or stylus. When this device is operated by a user's finger or stylus, a detection signal generated due to the operation is output to the main control unit 501. Next, the main control unit 501 detects an operation position (coordinates) on the display panel 521 based on the received detection signal.
 図10に示すように、スマートフォン500の表示パネル521と操作パネル522とは一体となって表示入力部520を構成しているが、操作パネル522が表示パネル521を完全に覆うような配置となっている。この配置を採用した場合、操作パネル522は、表示パネル521外の領域についても、ユーザ操作を検出する機能を備えてもよい。換言すると、操作パネル522は、表示パネル521に重なる重畳部分についての検出領域(以下、表示領域と称する)と、それ以外の表示パネル521に重ならない外縁部分についての検出領域(以下、非表示領域と称する)とを備えていてもよい。 As shown in FIG. 10, the display panel 521 and the operation panel 522 of the smartphone 500 integrally form the display input unit 520, but the operation panel 522 is disposed so as to completely cover the display panel 521. ing. When this arrangement is adopted, the operation panel 522 may have a function of detecting a user operation even in an area outside the display panel 521. In other words, the operation panel 522 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 521 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 521. May be included).
 尚、表示領域の大きさと表示パネル521の大きさとを完全に一致させても良いが、両者を必ずしも一致させる必要はない。また、操作パネル522が、外縁部分と、それ以外の内側部分の2つの感応領域を備えていてもよい。更に、外縁部分の幅は、筐体502の大きさなどに応じて適宜設計されるものである。更にまた、操作パネル522で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式などが挙げられ、いずれの方式を採用することもできる。 Note that the size of the display area and the size of the display panel 521 may be completely matched, but it is not always necessary to match the two. In addition, the operation panel 522 may include two sensitive regions of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 502 and the like. Furthermore, examples of the position detection method employed in the operation panel 522 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method. You can also
 通話部530は、スピーカ531やマイクロホン532を備え、マイクロホン532を通じて入力されたユーザの音声を主制御部501にて処理可能な音声データに変換して主制御部501に出力したり、無線通信部510あるいは外部入出力部560により受信された音声データを復号してスピーカ531から出力するものである。また、図10に示すように、例えば、スピーカ531及びマイクロホン532を表示入力部520が設けられた面と同じ面に搭載することができる。 The call unit 530 includes a speaker 531 and a microphone 532, and converts a user's voice input through the microphone 532 into voice data that can be processed by the main control unit 501, and outputs the voice data to the main control unit 501, or a wireless communication unit 510 or the audio data received by the external input / output unit 560 is decoded and output from the speaker 531. Also, as shown in FIG. 10, for example, the speaker 531 and the microphone 532 can be mounted on the same surface as the surface on which the display input unit 520 is provided.
 操作部540は、キースイッチなどを用いたハードウェアキーであって、ユーザからの指示を受け付けるものである。例えば、操作部540は、スマートフォン500の筐体502の表示部の下部、下側面に搭載され、指などで押下されるとオンとなり、指を離すとバネなどの復元力によってオフ状態となる押しボタン式のスイッチである。 The operation unit 540 is a hardware key using a key switch or the like, and receives an instruction from the user. For example, the operation unit 540 is mounted on a lower portion and a lower side of the display unit of the housing 502 of the smartphone 500 and is turned on when pressed with a finger or the like, and is turned off when a finger is released with a restoring force such as a spring. It is a button type switch.
 記憶部550は、主制御部501の制御プログラムや制御データ、通信相手の名称や電話番号などを対応づけたアドレスデータ、送受信した電子メールのデータ、WebブラウジングによりダウンロードしたWebデータや、ダウンロードしたコンテンツデータを記憶し、またストリーミングデータなどを一時的に記憶するものである。また、記憶部550は、スマートフォン内蔵の内部記憶部551と着脱自在な外部メモリスロットを有する外部記憶部552により構成される。尚、記憶部550を構成するそれぞれの内部記憶部551と外部記憶部552は、フラッシュメモリタイプ(flash memory type)、ハードディスクタイプ(hard disk type)、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリ(例えば、Micro SD(登録商標)メモリ等)、RAM(Random Access Memory)、ROM(Read Only Memory)などの格納媒体を用いて実現される。 The storage unit 550 includes control programs and control data of the main control unit 501, address data in which names and telephone numbers of communication partners are associated, transmitted and received e-mail data, Web data downloaded by Web browsing, and downloaded contents Data is stored, and streaming data and the like are temporarily stored. The storage unit 550 includes an internal storage unit 551 with a built-in smartphone and an external storage unit 552 having a removable external memory slot. Each of the internal storage unit 551 and the external storage unit 552 constituting the storage unit 550 includes a flash memory type (flash memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), It is realized using a storage medium such as a card type memory (for example, Micro SD (registered trademark) memory), RAM (Random Access Memory), ROM (Read Only Memory), or the like.
 外部入出力部560は、スマートフォン500に連結される全ての外部機器とのインターフェースの役割を果たすものであり、他の外部機器に通信等(例えば、ユニバーサルシリアルバス(USB)、IEEE1394など)又はネットワーク(例えば、インターネット、無線LAN、ブルートゥース(Bluetooth)(登録商標)、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA)(登録商標)、UWB(Ultra Wideband)(登録商標)、ジグビー(ZigBee)(登録商標)など)により直接的又は間接的に接続するためのものである。 The external input / output unit 560 serves as an interface with all external devices connected to the smartphone 500, and communicates with other external devices (for example, universal serial bus (USB), IEEE1394, etc.) or a network. (For example, Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wide Band) (registered trademark), ZigBee ( ZigBee) (registered trademark, etc.) for direct or indirect connection.
 スマートフォン500に連結される外部機器としては、例えば、有/無線ヘッドセット、有/無線外部充電器、有/無線データポート、カードソケットを介して接続されるメモリカード(Memory card)やSIM(Subscriber Identity Module Card)/UIM(User Identity Module Card)カード、オーディオ・ビデオI/O(Input/Output)端子を介して接続される外部オーディオ・ビデオ機器、無線接続される外部オーディオ・ビデオ機器、有/無線接続されるスマートフォン、有/無線接続されるパーソナルコンピュータ、有/無線接続されるPDA、イヤホンなどがある。外部入出力部は、このような外部機器から伝送を受けたデータをスマートフォン500の内部の各構成要素に伝達することや、スマートフォン500の内部のデータが外部機器に伝送されるようにすることができる。 Examples of the external device connected to the smartphone 500 include a memory card connected via a wired / wireless headset, wired / wireless external charger, wired / wireless data port, card socket, and SIM (Subscriber). Identity Module Card) / UIM User Identity Module Card, external audio / video equipment connected via audio / video I / O (Input / Output) terminal, external audio / video equipment connected wirelessly, yes / no There are wirelessly connected smartphones, wired / wireless connected personal computers, wired / wireless connected PDAs, earphones, and the like. The external input / output unit may transmit data received from such an external device to each component inside the smartphone 500, or may allow data inside the smartphone 500 to be transmitted to the external device. it can.
 GPS受信部570は、主制御部501の指示に従って、GPS衛星ST1~STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、そのスマートフォン500の緯度、経度、高度からなる位置を検出する。GPS受信部570は、無線通信部510や外部入出力部560(例えば、無線LAN)から位置情報を取得できるときには、その位置情報を用いて位置を検出することもできる。 The GPS receiving unit 570 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with an instruction from the main control unit 501, executes positioning calculation processing based on the received plurality of GPS signals, A position consisting of longitude and altitude is detected. When the GPS receiving unit 570 can acquire position information from the wireless communication unit 510 or the external input / output unit 560 (for example, a wireless LAN), the GPS receiving unit 570 can also detect the position using the position information.
 モーションセンサ部580は、例えば、3軸の加速度センサなどを備え、主制御部501の指示に従って、スマートフォン500の物理的な動きを検出する。スマートフォン500の物理的な動きを検出することにより、スマートフォン500の動く方向や加速度が検出される。この検出結果は、主制御部501に出力されるものである。 The motion sensor unit 580 includes, for example, a three-axis acceleration sensor, and detects the physical movement of the smartphone 500 in accordance with an instruction from the main control unit 501. By detecting the physical movement of the smartphone 500, the moving direction and acceleration of the smartphone 500 are detected. This detection result is output to the main control unit 501.
 電源部590は、主制御部501の指示に従って、スマートフォン500の各部に、バッテリ(図示しない)に蓄えられる電力を供給するものである。 The power supply unit 590 supplies power stored in a battery (not shown) to each unit of the smartphone 500 in accordance with an instruction from the main control unit 501.
 主制御部501は、マイクロプロセッサを備え、記憶部550が記憶する制御プログラムや制御データに従って動作し、スマートフォン500の各部を統括して制御するものである。また、主制御部501は、無線通信部510を通じて、音声通信やデータ通信を行うために、通信系の各部を制御する移動通信制御機能と、アプリケーション処理機能を備える。 The main control unit 501 includes a microprocessor, operates according to a control program and control data stored in the storage unit 550, and controls each unit of the smartphone 500 in an integrated manner. Further, the main control unit 501 includes a mobile communication control function for controlling each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 510.
 アプリケーション処理機能は、記憶部550が記憶するアプリケーションソフトウェアに従って主制御部501が動作することにより実現するものである。アプリケーション処理機能としては、例えば、外部入出力部560を制御して対向機器とデータ通信を行う赤外線通信機能や、電子メールの送受信を行う電子メール機能、Webページを閲覧するWebブラウジング機能などがある。 The application processing function is realized by the main control unit 501 operating in accordance with application software stored in the storage unit 550. Application processing functions include, for example, an infrared communication function that controls the external input / output unit 560 to perform data communication with the opposite device, an e-mail function that transmits and receives e-mails, and a web browsing function that browses web pages. .
 また、主制御部501は、受信データやダウンロードしたストリーミングデータなどの画像データ(静止画や動画のデータ)に基づいて、映像を表示入力部520に表示する等の画像処理機能を備える。画像処理機能とは、主制御部501が、上記画像データを復号し、この復号結果に画像処理を施して、画像を表示入力部520に表示する機能のことをいう。 The main control unit 501 also has an image processing function such as displaying video on the display input unit 520 based on image data (still image or moving image data) such as received data or downloaded streaming data. The image processing function is a function in which the main control unit 501 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 520.
 更に、主制御部501は、表示パネル521に対する表示制御と、操作部540、操作パネル522を通じたユーザ操作を検出する操作検出制御を実行する。 Further, the main control unit 501 executes display control for the display panel 521 and operation detection control for detecting a user operation through the operation unit 540 and the operation panel 522.
 表示制御の実行により、主制御部501は、アプリケーションソフトウェアを起動するためのアイコンや、スクロールバーなどのソフトウェアキーを表示し、あるいは電子メールを作成するためのウィンドウを表示する。尚、スクロールバーとは、表示パネル521の表示領域に収まりきれない大きな画像などについて、画像の表示部分を移動する指示を受け付けるためのソフトウェアキーのことをいう。 By executing the display control, the main control unit 501 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail. Note that the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 521.
 また、操作検出制御の実行により、主制御部501は、操作部540を通じたユーザ操作を検出したり、操作パネル522を通じて、上記アイコンに対する操作や、上記ウィンドウの入力欄に対する文字列の入力を受け付けたり、あるいは、スクロールバーを通じた表示画像のスクロール要求を受け付ける。 Further, by executing the operation detection control, the main control unit 501 detects a user operation through the operation unit 540, or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 522. Or a display image scroll request through a scroll bar.
 更に、操作検出制御の実行により主制御部501は、操作パネル522に対する操作位置が、表示パネル521に重なる重畳部分(表示領域)か、それ以外の表示パネル521に重ならない外縁部分(非表示領域)かを判定し、操作パネル522の感応領域や、ソフトウェアキーの表示位置を制御するタッチパネル制御機能を備える。 Furthermore, by executing the operation detection control, the main control unit 501 causes the operation position with respect to the operation panel 522 to overlap with the display panel 521 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 521. And a touch panel control function for controlling the sensitive area of the operation panel 522 and the display position of the software key.
 また、主制御部501は、操作パネル522に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することもできる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指などによって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。 The main control unit 501 can also detect a gesture operation on the operation panel 522 and execute a preset function according to the detected gesture operation. Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
 カメラ部541は、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge-Coupled Device)などの撮像素子を用いて電子撮影するデジタルカメラである。このカメラ部541に前述した撮像モジュール10を適用することができる。 The camera unit 541 is a digital camera that performs electronic photography using an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge-Coupled Device). The imaging module 10 described above can be applied to the camera unit 541.
 また、カメラ部541は、主制御部501の制御により、撮影によって得た画像データを、例えばJPEG(Joint Photographic coding Experts Group)などの圧縮した画像データに変換し、記憶部550に記録したり、外部入出力部560や無線通信部510を通じて出力することができる。図10に示すにスマートフォン500において、カメラ部541は表示入力部520と同じ面に搭載されているが、カメラ部541の搭載位置はこれに限らず、表示入力部520の背面に搭載されてもよいし、あるいは、複数のカメラ部541が搭載されてもよい。尚、複数のカメラ部541が搭載されている場合には、撮影に供するカメラ部541を切り替えて単独にて撮影したり、あるいは、複数のカメラ部541を同時に使用して撮影することもできる。 The camera unit 541 converts image data obtained by shooting into compressed image data such as JPEG (JointoPhotographic coding Experts Group) under the control of the main control unit 501, and records the data in the storage unit 550. The data can be output through the external input / output unit 560 and the wireless communication unit 510. In the smartphone 500 shown in FIG. 10, the camera unit 541 is mounted on the same surface as the display input unit 520, but the mounting position of the camera unit 541 is not limited to this and may be mounted on the back surface of the display input unit 520. Alternatively, a plurality of camera units 541 may be mounted. Note that when a plurality of camera units 541 are mounted, the camera unit 541 used for shooting can be switched to shoot alone, or a plurality of camera units 541 can be used simultaneously for shooting.
 また、カメラ部541はスマートフォン500の各種機能に利用することができる。例えば、表示パネル521にカメラ部541で取得した画像を表示することや、操作パネル522の操作入力のひとつとして、カメラ部541の画像を利用することができる。また、GPS受信部570が位置を検出する際に、カメラ部541からの画像を参照して位置を検出することもできる。更には、カメラ部541からの画像を参照して、3軸の加速度センサを用いずに、あるいは、3軸の加速度センサと併用して、スマートフォン500のカメラ部541の光軸方向を判断することや、現在の使用環境を判断することもできる。勿論、カメラ部541からの画像をアプリケーションソフトウェア内で利用することもできる。 In addition, the camera unit 541 can be used for various functions of the smartphone 500. For example, an image acquired by the camera unit 541 can be displayed on the display panel 521, or the image of the camera unit 541 can be used as one of operation inputs of the operation panel 522. Further, when the GPS receiving unit 570 detects the position, the position can also be detected with reference to an image from the camera unit 541. Further, referring to the image from the camera unit 541, the optical axis direction of the camera unit 541 of the smartphone 500 is determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment. Of course, the image from the camera unit 541 can be used in the application software.
 [その他]
 本実施形態では、OIS機構16のアクチュエータであるVCM16aを、PWM駆動する場合について説明したが、圧電アクチュエータ等の他のアクチュエータをPWM駆動する場合にも本発明は適用できる。
[Others]
In the present embodiment, the case where the VCM 16a that is the actuator of the OIS mechanism 16 is PWM driven has been described. However, the present invention can also be applied to the case where another actuator such as a piezoelectric actuator is PWM driven.
 また、本発明は、OIS機構16に限らず、焦点調節機構18をPWM制御する場合にも適用でき、要はレンズユニットをPWM制御するレンズ駆動機構であれば、いかなるものにも適用できる。 The present invention can be applied not only to the OIS mechanism 16 but also to the case where the focus adjustment mechanism 18 is PWM-controlled. In short, any lens driving mechanism that PWM-controls the lens unit can be applied.
 更に、本発明は上述した実施形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。 Furthermore, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
 10…撮像モジュール、12…レンズユニット、14…撮像素子、16…光学式手振れ補正(OIS)機構、18…焦点調節機構、16a、18a…ボイスコイルモータ(VCM)、50…パルス幅変調(PWM)制御部、52…PWM信号生成部、54…ドライバ、57…クロック入力端子、100…電子機器、102…中央処理装置(CPU)、102a…発振子、112…デジタル信号処理部、142…画素、143…タイミングジェネレータ(TG)、144…垂直ドライバ、145…水平ドライバ DESCRIPTION OF SYMBOLS 10 ... Imaging module, 12 ... Lens unit, 14 ... Image sensor, 16 ... Optical camera shake correction (OIS) mechanism, 18 ... Focus adjustment mechanism, 16a, 18a ... Voice coil motor (VCM), 50 ... Pulse width modulation (PWM) ) Control unit 52... PWM signal generation unit 54. Driver 57. Clock input terminal 100. Electronic equipment 102. Central processing unit (CPU) 102 a Oscillator 112 112 Digital signal processing unit 142 Pixel 143 Timing generator (TG) 144 Vertical driver 145 Horizontal driver

Claims (10)

  1.  レンズユニットと、
     前記レンズユニットを介して光学像を受光し、受光した光学像を電気信号に変換する撮像素子と、
     前記撮像素子に駆動信号を出力し、該撮像素子から画像信号を読み出す撮像素子駆動部と、
     前記レンズユニットを駆動するレンズ駆動機構と、
     前記レンズユニットを制御する指令値に基づいてパルス幅変調信号を生成し、該パルス幅変調信号に基づいて前記レンズ駆動機構を制御するPWM制御部と、を備え、
     前記PWM制御部は、前記撮像素子駆動部から出力される駆動信号と同期したパルス幅変調信号を生成する撮像モジュール。
    A lens unit;
    An image sensor that receives an optical image through the lens unit and converts the received optical image into an electrical signal;
    An image sensor driving unit that outputs a drive signal to the image sensor and reads an image signal from the image sensor;
    A lens driving mechanism for driving the lens unit;
    A PWM control unit that generates a pulse width modulation signal based on a command value for controlling the lens unit, and controls the lens driving mechanism based on the pulse width modulation signal;
    The PWM control unit is an imaging module that generates a pulse width modulation signal synchronized with a driving signal output from the imaging element driving unit.
  2.  前記撮像素子駆動部及び前記PWM制御部は、それぞれ共通の基準クロックに基づいて前記駆動信号及び前記パルス幅変調信号を生成する請求項1に記載の撮像モジュール。 The imaging module according to claim 1, wherein the imaging element driving unit and the PWM control unit generate the driving signal and the pulse width modulation signal based on a common reference clock, respectively.
  3.  前記PWM制御部は、前記基準クロックを入力するクロック入力端子を有する請求項2に記載の撮像モジュール。 The imaging module according to claim 2, wherein the PWM control unit has a clock input terminal for inputting the reference clock.
  4.  前記レンズ駆動機構は、前記PWM制御部によりパルス幅変調制御されるボイスコイルモータを含む請求項1から3のいずれか1項に記載の撮像モジュール。 The imaging module according to any one of claims 1 to 3, wherein the lens driving mechanism includes a voice coil motor that is subjected to pulse width modulation control by the PWM control unit.
  5.  前記レンズ駆動機構は、前記レンズユニットを撮影光軸方向と直交する面内で移動させる手振れ補正機構である請求項1から4のいずれか1項に記載の撮像モジュール。 The imaging module according to any one of claims 1 to 4, wherein the lens driving mechanism is a camera shake correction mechanism that moves the lens unit in a plane orthogonal to a photographing optical axis direction.
  6.  前記撮像素子の画素ピッチは、1μm以下である請求項1から5のいずれか1項に記載の撮像モジュール。 The imaging module according to any one of claims 1 to 5, wherein a pixel pitch of the imaging element is 1 µm or less.
  7.  請求項1から6のいずれか1項に記載の撮像モジュールと、
     前記撮像モジュールが搭載された電子機器本体と、
     を備えた電子機器。
    The imaging module according to any one of claims 1 to 6,
    An electronic device body on which the imaging module is mounted;
    With electronic equipment.
  8.  前記電子機器本体は、基準クロックを発生する基準クロック発生部を有し、
     前記基準クロック発生部は、前記撮像素子駆動部及び前記PWM制御部にそれぞれ基準クロックを供給する請求項7に記載の電子機器。
    The electronic device main body has a reference clock generation unit for generating a reference clock,
    The electronic device according to claim 7, wherein the reference clock generation unit supplies a reference clock to the image sensor driving unit and the PWM control unit, respectively.
  9.  前記電子機器本体は、前記撮像モジュールから出力される画像信号を受入し、該画像信号に対して信号処理を行う信号処理部と、前記信号処理部により信号処理された画像信号を記録する記録部と、を有する請求項7又は8に記載の電子機器。 The electronic device main body receives an image signal output from the imaging module, performs signal processing on the image signal, and a recording unit that records the image signal processed by the signal processing unit The electronic device according to claim 7 or 8, further comprising:
  10.  レンズユニットと、前記レンズユニットを介して光学像を受光し、受光した光学像を電気信号に変換する撮像素子と、前記撮像素子に駆動信号を出力し、該撮像素子から画像信号を読み出す撮像素子駆動部と、前記レンズユニットを駆動するレンズ駆動機構と、前記レンズユニットを制御する指令値に基づいてパルス幅変調信号を生成し、該パルス幅変調信号に基づいて前記レンズ駆動機構を制御するPWM制御部と、を備えた撮像モジュールの駆動方法において、
     前記PWM制御部により生成されるパルス幅変調信号を、前記撮像素子駆動部から出力される駆動信号に同期させる撮像モジュールの駆動方法。
    A lens unit, an image sensor that receives an optical image via the lens unit, converts the received optical image into an electric signal, an image sensor that outputs a drive signal to the image sensor and reads an image signal from the image sensor PWM that generates a pulse width modulation signal based on a command value that controls the driving unit, the lens unit that drives the lens unit, and controls the lens unit, and that controls the lens drive mechanism based on the pulse width modulation signal And a driving method of the imaging module including the control unit,
    An imaging module driving method for synchronizing a pulse width modulation signal generated by the PWM control unit with a driving signal output from the imaging element driving unit.
PCT/JP2014/078195 2013-11-25 2014-10-23 Imaging module, electronic device, and method for driving imaging module WO2015076055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-243069 2013-11-25
JP2013243069 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076055A1 true WO2015076055A1 (en) 2015-05-28

Family

ID=53179325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078195 WO2015076055A1 (en) 2013-11-25 2014-10-23 Imaging module, electronic device, and method for driving imaging module

Country Status (1)

Country Link
WO (1) WO2015076055A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803066A (en) * 2017-11-17 2019-05-24 三星电子株式会社 For generating the electronic device and method of clock signal in camera model
JP2020148967A (en) * 2019-03-14 2020-09-17 キヤノン株式会社 Signal output device and control method thereof, and imaging apparatus
EP3617765B1 (en) * 2017-04-28 2022-11-09 Sony Semiconductor Solutions Corporation Imaging device and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271664A (en) * 2001-03-12 2002-09-20 Sanyo Electric Co Ltd Mobile phone
JP2013080062A (en) * 2011-10-03 2013-05-02 Rohm Co Ltd Drive circuit and driving method for linear actuator, lens module using them and electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271664A (en) * 2001-03-12 2002-09-20 Sanyo Electric Co Ltd Mobile phone
JP2013080062A (en) * 2011-10-03 2013-05-02 Rohm Co Ltd Drive circuit and driving method for linear actuator, lens module using them and electronic equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617765B1 (en) * 2017-04-28 2022-11-09 Sony Semiconductor Solutions Corporation Imaging device and electronic equipment
CN109803066A (en) * 2017-11-17 2019-05-24 三星电子株式会社 For generating the electronic device and method of clock signal in camera model
KR20190056696A (en) * 2017-11-17 2019-05-27 삼성전자주식회사 Method and electronic device for generating clock signal for image sensor in camera module
EP3496395A3 (en) * 2017-11-17 2019-09-11 Samsung Electronics Co., Ltd. Camera module and electronic device for generating clock signal for image sensor in camera module
US11196909B2 (en) 2017-11-17 2021-12-07 Samsung Electronics Co., Ltd. Electronic device and method for generating clock signal for image sensor in camera module
KR102435614B1 (en) * 2017-11-17 2022-08-24 삼성전자주식회사 Method and electronic device for generating clock signal for image sensor in camera module
CN109803066B (en) * 2017-11-17 2023-03-28 三星电子株式会社 Electronic device and method for generating a clock signal within a camera module
JP2020148967A (en) * 2019-03-14 2020-09-17 キヤノン株式会社 Signal output device and control method thereof, and imaging apparatus
JP7242357B2 (en) 2019-03-14 2023-03-20 キヤノン株式会社 SIGNAL OUTPUT DEVICE AND CONTROL METHOD THEREOF, IMAGING DEVICE

Similar Documents

Publication Publication Date Title
JP5690974B2 (en) Imaging apparatus and focus control method
JP5697801B2 (en) Imaging apparatus and automatic focusing method
JP5542249B2 (en) Image pickup device, image pickup apparatus using the same, and image pickup method
JP5775977B2 (en) Image processing apparatus, imaging apparatus, image processing method, and image processing program
JP5736512B2 (en) Imaging apparatus and operation control method thereof
JP5799178B2 (en) Imaging apparatus and focus control method
JP6077967B2 (en) Imaging device
WO2015198690A1 (en) Imaging device
WO2014141561A1 (en) Imaging device, signal processing method, and signal processing program
WO2015141084A1 (en) Imaging device, and focus control method
WO2014038258A1 (en) Imaging device and focus control method
JP7060634B2 (en) Image pickup device and image processing method
WO2013168667A1 (en) Image processing device and method, and image capturing device
WO2013179899A1 (en) Imaging device
EP2833406B1 (en) Imaging element and imaging device
JP5749409B2 (en) Imaging apparatus, image processing method, and program
WO2015076055A1 (en) Imaging module, electronic device, and method for driving imaging module
JP6427720B2 (en) Imaging device and imaging device
JP5677628B2 (en) Imaging apparatus and imaging method
WO2014080682A1 (en) Image-capturing device, and focusing method and focusing control program for said device
JP6374535B2 (en) Operating device, tracking system, operating method, and program
JP5680803B2 (en) Image processing apparatus and method, and imaging apparatus
JP6573730B2 (en) Imaging apparatus, imaging method, and imaging program
WO2020003944A1 (en) Imaging device, imaging method, and program
WO2013145887A1 (en) Imaging device and imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14863674

Country of ref document: EP

Kind code of ref document: A1