WO2015076025A1 - Distortion correction device, amplifier device, and wireless communication device - Google Patents

Distortion correction device, amplifier device, and wireless communication device Download PDF

Info

Publication number
WO2015076025A1
WO2015076025A1 PCT/JP2014/076315 JP2014076315W WO2015076025A1 WO 2015076025 A1 WO2015076025 A1 WO 2015076025A1 JP 2014076315 W JP2014076315 W JP 2014076315W WO 2015076025 A1 WO2015076025 A1 WO 2015076025A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
delay
output signal
delay error
distortion compensation
Prior art date
Application number
PCT/JP2014/076315
Other languages
French (fr)
Japanese (ja)
Inventor
英史 持田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2015076025A1 publication Critical patent/WO2015076025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits

Definitions

  • the present invention relates to a distortion compensation device, an amplification device, and a wireless communication device.
  • the maximum system bandwidth is about 20 MHz, but in LTE-A (Advanced), which is an LTE successor system, the system bandwidth is scheduled to be expanded to about 100 MHz. .
  • LTE-A Advanced
  • the amplification device of the base station apparatus used in the wireless communication system needs to cope with a wide band, and there is a concern about an increase in component costs accompanying the wide band.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an amplifying apparatus and a wireless communication apparatus that can be further reduced in cost.
  • a distortion compensation apparatus includes: a distortion compensation unit that performs distortion compensation of an amplifier that amplifies an input signal; and an AD converter that AD-converts an output signal output from the amplifier and supplies the signal to the distortion compensation unit.
  • the AD converter performs AD conversion on the output signal at a low sampling rate lower than a sampling rate when DA conversion is performed on a signal supplied to the amplifier, and the distortion compensator includes the input signal, Distortion compensation is performed based on the output signal AD-converted at a low sampling rate.
  • an amplification device includes an amplifier and the distortion compensation device.
  • a wireless communication apparatus includes the amplifying apparatus for amplifying communication signals.
  • the cost can be further reduced.
  • FIG. 5 is a flowchart illustrating a procedure of delay adjustment processing in FIG. 4.
  • an amplification device used in a wireless communication device of a wireless communication system includes a distortion compensation device that performs distortion compensation of an amplifier by digital signal processing.
  • This distortion compensation device includes an AD converter that converts an analog output signal into a digital signal in order to acquire an analog output signal output from the amplifier as a feedback signal. If the bandwidth of the output signal to be converted becomes large, this AD converter must use a higher sampling rate accordingly, and the bandwidth of the radio signal may increase the cost of the AD converter. There is.
  • a distortion compensation apparatus includes a distortion compensation unit that performs distortion compensation of an amplifier that amplifies an input signal, and an AD converter that AD-converts an output signal output from the amplifier and supplies the output signal to the distortion compensation unit
  • the AD converter performs AD conversion on the output signal at a sampling rate lower than a sampling rate when DA conversion is performed on a signal supplied to the amplifier, and the distortion compensator includes the input signal. And distortion compensation based on the output signal AD-converted at the low sampling rate.
  • the AD converter AD-converts the output signal at a low sampling rate lower than the sampling rate when the signal supplied to the amplifier is DA-converted
  • the distortion compensation unit Performs distortion compensation based on an input signal and an output signal that has been AD-converted at a low sampling rate. Therefore, even when processing a wideband signal, AD conversion with a higher sampling rate is performed according to the wideband signal. Since it is not necessary to use a vessel, the cost can be reduced.
  • the number of samples of the output signal may be relatively smaller than that when AD conversion is performed at the same sampling rate as that at the time of DA conversion by AD conversion at a low sampling rate. For this reason, it is preferable that the distortion compensation unit estimates a model of the amplifier based on the input signal and the output signal AD-converted at the low sampling rate, and performs distortion compensation based on the model. . In this case, even if the output signal has a low sampling rate, distortion compensation can be performed without reducing accuracy by extending the observation period accordingly.
  • a pass bandwidth of the filter is equal to or greater than a frequency bandwidth of the input signal. It is preferable that it is set to.
  • the pass band width of the filter becomes larger than the low sampling rate that is the sampling rate of the AD converter, not only the signal component of the band acquired by the low sampling rate but also the signal component of the output signal.
  • the signal in the peripheral band is also given to the AD converter as a folding component.
  • the AD converter can acquire not only the signal component in the band acquired at the low sampling rate but also the signal in the peripheral band of the signal component as the folded component. As a result, it is possible to obtain signal components that are generated due to distortion generated in the output signal without losing information on the signal components that appear in the adjacent band of the output signal, so that distortion compensation is performed without reducing accuracy. Can do.
  • a delay error generated between the timing of the output signal AD-converted at the low sampling rate and the timing of the input signal is determined from the length of the period corresponding to the low sampling rate. It is preferable to further include a delay processing unit that estimates and corrects in units of a small period. In this case, although the output signal is AD-converted at a low sampling rate, the delay error can be estimated in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate. The delay error can be corrected with higher accuracy than the period length.
  • the delay processing unit obtains an estimated value of the delay error for each of a plurality of different predetermined periods, and obtains the estimated value of each delay error for each of the plurality of predetermined periods.
  • the obtained representative value may be obtained as the estimated value of the delay error.
  • the representative value can be obtained from the estimated value of each delay error.
  • the delay error estimation value can be obtained in units of periods smaller than the length of the period corresponding to the sampling rate of the AD converter, and as a result, the delay error can be obtained more accurately.
  • the delay processing unit changes the delay error by a predetermined unit time, and changes the delay error every time the delay error is changed by the predetermined unit time.
  • a residual between the output signal after being changed and the input signal is obtained, and the delay based on the magnitude of the residual is selected from the delay errors changed by the predetermined unit time.
  • An error estimate may be determined.
  • an estimated value of delay error can be obtained in units of unit time.
  • the predetermined unit time is shorter than a period corresponding to the low sampling rate.
  • the estimated value of the delay error can be obtained in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate, and the estimated value of the delay error can be obtained more accurately.
  • the delay processing unit can change a delay error between the timing of the output signal and the timing of the input signal by digital processing, but adjusts the phase of the operation clock supplied to the AD converter.
  • the delay error can be changed by adjusting the timing of the output signal.
  • the delay processing unit can change the delay error between the timing of the output signal and the timing of the input signal by analog processing, and can reduce the load on the delay processing unit.
  • the distortion compensator is configured to provide a compensation signal obtained by performing distortion compensation on the input signal to the amplifier, and the delay processing unit includes the timing of the input signal and the timing of the compensation signal. It is preferable to correct a delay error occurring between the two. In this case, the delay processing unit can correct a delay error that occurs between the timing of the input signal and the timing of the compensation signal. Thereby, it is possible to suppress the influence of the delay that occurs during distortion compensation on the accuracy of the estimated value of the delay error that occurs between the timing of the output signal and the timing of the input signal.
  • the low sampling rate may be set lower than the frequency bandwidth of the input signal. In this case, the low sampling rate can be set to a lower value, and the cost is low. Is more advantageous.
  • the pass band width of the filter may be set to be equal to or greater than a frequency bandwidth of a distortion component generated in the output signal when the amplifier amplifies the input signal.
  • an amplifying apparatus includes an amplifier and the distortion compensating apparatus according to (1) above.
  • a wireless communication apparatus includes the amplifying apparatus described in (12) above for amplifying a communication signal.
  • the amplification device and the wireless communication device configured as described above, even when processing a wideband signal in the distortion compensation device, it is not necessary to use an AD converter having a higher sampling rate in accordance with the wideband signal. Cost reduction is possible.
  • FIG. 1 is a block diagram illustrating a main part of a wireless communication device including an amplification device according to an embodiment.
  • the wireless communication device includes an amplifying device 1 for amplifying a transmission signal transmitted as a wireless signal.
  • the amplifying apparatus 1 may be used for amplification of a received signal.
  • the amplifying apparatus 1 includes a high-power amplifier (HPA, hereinafter simply referred to as an amplifier) 2 and a distortion compensator 3.
  • the distortion compensation unit 3 has a function of performing distortion compensation processing by digital signal processing on a signal x that is a transmission signal given as a digital signal.
  • the distortion compensator 3 outputs a compensation signal u by distortion compensation processing.
  • a DA converter (DAC) 4 for converting a digital signal into an analog signal and an up converter 5 are connected between the distortion compensation unit 3 and the signal input terminal of the amplifier 2.
  • the compensation signal u output from the distortion compensator 3 is converted to an analog signal by being applied to the DAC 4, and further up-converted to a radio frequency by being multiplied by the radio frequency local signal generated by the oscillator 6 by the up-converter 5. After being converted, it is supplied to the amplifier 2.
  • the amplifier 2 amplifies the input compensation signal u.
  • An antenna 7 is connected to the signal output terminal of the amplifier 2, and the output signal y output from the amplifier 2 is radiated from the antenna 7 as a radio transmission signal.
  • a coupler 8 Between the signal output terminal of the amplifier 2 and the distortion compensator 3, a coupler 8, a down converter 9, a filter unit 10, and an AD converter 11 for obtaining an output signal y output from the amplifier 2 are provided. It is connected.
  • the output signal y of the amplifier 2 obtained from the coupler 8 is given to the down converter 9.
  • the output signal y is down-converted to a baseband frequency by multiplying the local signal of the baseband frequency generated by the oscillator 6 by the downconverter 9, and then the AD converter (ADC) 11 through the filter unit 10. Given to.
  • the ADC 11 converts the output signal y into a digital signal at a low sampling rate that is lower than the sampling rate when the DAC 4 converts the compensation signal u into an analog signal.
  • the sampling rate of the DAC 4 is set to 614.4 MHz. Therefore, the low sampling rate that is the sampling rate of the ADC 11 is set to a frequency lower than 614.4 MHz.
  • the frequency bandwidth of the main signal component of the signal x is 20 MHz.
  • the low sampling rate is preferably set lower than the frequency bandwidth of the signal x.
  • the low sampling rate that is the sampling rate of the ADC 11 can be set to 15.36 MHz that is a value lower than 100 MHz, for example.
  • the signal x as the digital signal and the output signal y are signals composed of sample data discretized at a predetermined sampling rate. Therefore, the output signal y converted into a digital signal is constituted by a sample sequence discretized by a low sampling rate that is a frequency lower than 614.4 MHz.
  • the filter unit 10 provided in the front stage of the ADC 11 is a low-pass filter, and the pass bandwidth is set to be equal to or larger than the frequency bandwidth of the signal x.
  • the pass bandwidth of the filter unit 10 of the present embodiment is set to about 6 times the frequency bandwidth of the signal x, and is set so as to pass up to the fifth-order distortion of the signal x.
  • the DAC 4, up-converter 5, oscillator 6, amplifier 2, antenna 7, coupler 8, down-converter 9, filter unit 10, and ADC 11 receive the compensation signal u that is a digital signal and convert it into an analog signal, then necessary It is included in an analog processing unit 12 that performs analog signal processing.
  • the distortion compensation unit 3 is included in a digital processing unit 13 that provides a compensation signal u, which is a digital signal, to the analog processing unit 12.
  • the distortion compensator 3 is supplied with a signal x as an input signal amplified by the amplifier 2 and an output signal y converted into a digital signal by the ADC 11.
  • the distortion compensation unit 3 performs distortion compensation based on these signals.
  • the distortion compensation unit 3 accepts the output signal y obtained from the coupler 8 as a feedback signal via the filter unit 10, ADC 11, etc., and estimates the model of the amplifier 2 based on the output signal y and the signal x, Based on the model estimated by the digital signal processing, distortion compensation of the amplifier 2 is performed.
  • the distortion compensation unit 3, the filter unit 10, and the ADC 11 constitute a distortion compensation device 14 that receives the output signal y as a feedback signal and compensates for distortion of the signal x.
  • the distortion compensation unit 3 includes a compensation processing unit 20 that performs predistortion processing on the signal x, a coefficient calculation unit 21 that calculates a coefficient (distortion compensation coefficient) in the model of the amplifier 2, and an input / output signal.
  • a compensation processing unit 20 that performs predistortion processing on the signal x
  • a coefficient calculation unit 21 that calculates a coefficient (distortion compensation coefficient) in the model of the amplifier 2
  • an input / output signal are provided with a delay processing unit 22 that performs a process for correcting a delay error and a delay adjustment unit 23 that adjusts the signal timing of the signal x supplied to the coefficient calculation unit 21 to adjust the delay.
  • the compensation processing unit 20 performs predistortion processing using a model representing the compensation signal u that has been subjected to distortion compensation for the given signal x. Specifically, the compensation processing unit 20 performs the predistortion compensation process by obtaining the compensation signal u [n] from the signal x [n] using, for example, a model represented by the following formula (1). Note that n is a number indicating the order of the sample sequence constituting the signal x which is a digital signal discretized at a predetermined sampling rate.
  • Equation (1) is a generalization of an amplifier model called a Hammerstein model, and is also called a memory polynomial model.
  • h k, l is a coefficient (DPD coefficient) necessary for determining the characteristics of the compensation signal u [n], and is expressed as the following equation (2).
  • the compensation processing unit 20 of the present embodiment applies the signal x [n] and the DPD coefficient to the model shown in Expression (1) to obtain the compensation signal u [n].
  • the DPD coefficient is given from the coefficient calculation unit 21.
  • the compensation processing unit 20 updates the DPD coefficient in the model to a new DPD coefficient given from the coefficient calculation unit 21, and obtains a compensation signal u [n].
  • the Hammerstein model is used as the amplifier model
  • another model for example, a Wiener model or a Wiener-Hammerstein model can also be used.
  • the coefficient calculation unit 21 has a function of calculating a DPD coefficient and a function of updating the DPD coefficient by supplying the calculated DPD coefficient to the compensation processing unit 20.
  • the coefficient calculation unit 21 is supplied with an output signal y converted into a digital signal by the ADC 11 and a signal x given through the delay adjustment unit 23.
  • the signal y is AD-converted at a low sampling rate lower than the sampling rate of the DAC 4, for example, when the sampling rate (low sampling rate) of the ADC 11 is lower than the sampling rate of the signal x, the signal x is There is a possibility that there is a sample in which the sample of the corresponding output signal y does not exist on the time axis in the sample sequence.
  • the coefficient calculation unit 21 of the present embodiment does not obtain a residual for a sample in which there is no sample of the corresponding output signal y on the time axis in the sample sequence of the signal x, and when there are samples corresponding to each other. It is configured to obtain the residual Res.
  • the coefficient calculation unit 21 refers to the previously calculated DPD coefficient, and can compensate for the new DPD coefficient that can minimize the mean square of the residual Res, that is, the distortion between the signal x and the output signal y as much as possible.
  • the coefficient is obtained recursively.
  • the above-described distortion compensation model is estimated by obtaining the DPD coefficient from the signal x as the input signal amplified by the amplifier 2 and the output signal y output from the amplifier 2.
  • the so-called direct learning method is adopted.
  • the ADC 11 AD-converts the output signal y at a low sampling rate
  • the distortion compensation unit 3 generally includes a signal x sampled at a sampling rate higher than the low sampling rate, Since distortion compensation is performed based on the output signal y AD-converted at a low sampling rate, it is not necessary to use the ADC 11 having a higher sampling rate in accordance with the wideband signal when processing a wideband signal. Cost reduction is possible.
  • the low sampling rate may be set lower than the frequency bandwidth of the signal x.
  • the low sampling rate can be set to a lower value, which is advantageous for cost reduction. It is.
  • the number of samples of the output signal y may be relatively smaller than that when AD conversion is performed at the same sampling rate as that at the time of DA conversion due to AD conversion at a low sampling rate.
  • the direct learning method since the direct learning method is employed in this embodiment, even if the output signal has a low sampling rate, distortion compensation can be performed without reducing accuracy by extending the observation period accordingly. it can.
  • the pass bandwidth of the filter unit 10 connected between the amplifier 2 and the ADC 11 is set to be equal to or less than the frequency bandwidth of the signal x.
  • the pass bandwidth of the filter unit 10 is larger than the sampling rate of the ADC 11, not only the signal component of the band acquired by the low sampling rate but also the signal of the peripheral band of the signal component in the output signal y.
  • the ADC 11 can acquire not only the signal component in the band acquired at the low sampling rate but also the signal in the peripheral band of the signal component as the folded component.
  • the pass bandwidth of the filter unit 10 of the present embodiment is set to about 6 times the frequency bandwidth of the signal x, and is set to pass up to the fifth-order distortion of the signal x.
  • the pass bandwidth of the filter unit 10 may be set to be equal to or greater than the frequency bandwidth of the distortion component (fifth-order distortion) generated in the output signal y when the amplifier 2 amplifies the signal x.
  • the delay adjusting unit 23 has a function of adjusting the timing of the signal x given to the coefficient calculating unit 21.
  • the delay adjusting unit 23 adjusts the timing of the signal x based on the information regarding the estimated value of the delay error given from the delay processing unit 22.
  • the signal x and the output signal y supplied to the coefficient calculation unit 21 need to be supplied to the coefficient calculation unit 21 with the timings of both signals matched as much as possible so that the samples corresponding to each other are processed. This is because an accurate DPD coefficient cannot be obtained unless calculation is performed between samples corresponding to each other.
  • the output signal y passes through the filter unit 10 and the ADC 11 of the analog processing unit 12 and reaches the coefficient calculation unit 21. Therefore, the output signal y reaches the coefficient calculator 21 with a delay from the signal x. For this reason, the delay adjustment unit 23 acquires the signal x from the previous stage of the compensation processing unit 20, and adjusts the timing of the acquired signal x, thereby giving the timing of the output signal y when given to the coefficient calculation unit 21. And a delay error occurring between the timing of the signal x and the timing of the signal x are corrected.
  • the delay error between the input signal to be amplified and the feedback signal when performing distortion compensation falls within a range of about 1.6 ns (614.4 MHz) if the signal has a frequency bandwidth of 100 MHz. It is necessary to perform correction so as to achieve accuracy, and by correcting the delay in this way, it is possible to maintain the accuracy required in the distortion compensation processing. Note that the delay error between the input signal and the feedback signal is obtained based on the correlation value of both signals.
  • the sampling rate for DA conversion of the input signal is set to a frequency that can accurately correct the delay error (for example, about 5 to 6 times the frequency bandwidth of the signal), and the delay error has the same accuracy. This is because it can be estimated.
  • the sampling rate of the DAC 4 is set to about 600 MHz. Then, since the ADC 11 is set to a low sampling rate lower than 600 MHz, the delay error generated between the timing of the signal x and the timing of the output signal y is estimated in the unit of the length of the cycle of the sampling rate of 600 MHz. Can not do it.
  • the delay processing unit 22 corresponds to an estimated value of the delay error generated between the timing of the output signal y AD-converted at the low sampling rate and the timing of the signal x to the low sampling rate. It can be determined and corrected in units of periods smaller than the length of the period. That is, although the output signal y is AD converted at a low sampling rate, an estimated value of the delay error can be obtained in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate. The delay error can be corrected more accurately with a finer accuracy than the corresponding period length. As a result, it is possible to maintain the necessary accuracy in the distortion compensation process.
  • the delay processing unit 22 will be described.
  • the delay processing unit 22 has a function of obtaining an estimated value of a delay error between the output signal y given to the distortion compensation unit 3 and the signal x. Further, the delay processing unit 22 gives the obtained delay error to the delay adjustment unit 23 as information on the delay error, and causes the delay adjustment unit 23 to adjust the timing of the signal x. In this way, the delay processing unit 22 obtains an estimated value of the delay error, and performs a delay adjustment process that corrects the delay error between the timing of the output signal y and the timing of the signal x.
  • the delay processing unit 22 has a function of controlling the coefficient calculation unit 21 and controlling the update of the DPD coefficient in the compensation processing unit 20.
  • the delay processing unit 22 causes the coefficient calculation unit 21 to stop outputting the DPD coefficient as necessary in performing the delay adjustment process, or to stop updating the DPD coefficient in the compensation processing unit 20, or the coefficient calculation unit 21. It is possible to cause the compensation processing unit 20 to update the DPD coefficient by executing the output of the DPD coefficient.
  • the delay processing unit 22 is provided with the signal x acquired from the previous stage of the compensation processing unit 20 and the output signal y from the ADC 11. In addition, the delay processing unit 22 is also given a compensation signal u acquired from the subsequent stage of the compensation processing unit 20. The delay processing unit 22 estimates the delay error between the timing of the output signal y and the timing of the input signal x (output signal) based on the output signal y and the signal x given to the delay processing unit 22. a first delay error estimator 22a for calculating a delay error estimate value of y).
  • the delay processing unit 22 is based on the signal x and the compensation signal u, between the timing of the input signal x resulting from the predistortion processing performed by the compensation processing unit 20 and the timing of the compensation signal u.
  • a second delay error estimator 22b for calculating an estimated value of delay error (estimated value of delay error of DPD) is provided.
  • FIG. 2 is a flowchart showing a procedure of delay adjustment processing performed by the delay processing unit 22 according to the first embodiment.
  • the flowchart shown in FIG. 2 shows a procedure immediately after the wireless communication device (distortion compensation device 14) is activated and the delay processing unit 22 starts its operation.
  • the delay processing unit 22 sets the number of iterations I indicating the number of iterations of processing to “1” (step S101). As will be described later, the number of iterations I is incremented by “1” every time the processing loop is completed, and thus indicates the elapsed time since the start of the wireless communication apparatus (distortion compensation unit 3).
  • the delay processing unit 22 acquires the signal x and the output signal y (step S102). At this time, the delay processing unit 22 acquires the sample sequences of the signal x and the output signal y included in the acquisition period as a predetermined period set to acquire the signal x and the output signal y.
  • the delay processing unit 22 performs upsampling processing on the signal x and the output signal y (step S103).
  • the signal x and the output signal y are used to obtain a correlation value with each other and to obtain an estimated value of delay error. Therefore, the upsampling process is performed on the signal x and the output signal y so that the sampling rate is equal to or higher than the sampling rate of the DAC 4 so that the correlation value can be obtained with higher accuracy.
  • the magnification of the upsampling process can be set to about 100 times, for example.
  • the sampling rate (low sampling rate) of the ADC 11 is 15.36 MHz
  • the output signal y is up-sampled to a sampling rate of about 1.6 GHz.
  • the delay processing unit 22 After performing the upsampling process on the signal x and the output signal y, the delay processing unit 22 performs an operation for obtaining a delay error estimated value ⁇ between the timing of the output signal y and the timing of the input signal x.
  • the first delay error estimator 22a is executed.
  • the first delay error estimation unit 22a obtains a correlation value between the output signal y acquired in step S102 and the signal x, and based on the correlation value, the timing of the output signal y and the timing of the input signal x An estimated value of the delay error between the two is obtained by calculation (step S104).
  • the first delay error estimator 22a obtains the correlation value R ( ⁇ ) based on the above equation (4), and calculates ⁇ that maximizes the correlation value R ( ⁇ ) as shown in the following equation (5).
  • the delay error estimated value ⁇ (I) of the output signal y is obtained.
  • Delay error estimate value ⁇ (I) argmax
  • ⁇ (I) represents an estimated value of the delay error of the output signal y acquired in the acquisition period when the number of iterations is I.
  • the delay processing unit 22 determines whether or not the number of iterations I is equal to or greater than a preset number of times W (step S105). When determining that the number of iterations I is not equal to or greater than the set number of times W, the delay processing unit 22 adds “1” to the number of iterations I (step S106), returns to step S102, and an acquisition period different from the acquisition period in which the previous signal was acquired. The signal x and the output signal y are obtained, and the delay error estimated value ⁇ (I) of the output signal y is obtained again (steps S102 to S104). The delay processing unit 22 repeats steps S102 to S104 until the number of iterations I reaches the set number W, thereby obtaining the delay error estimated value ⁇ (I) of the output signal y for each of a plurality of different acquisition periods.
  • the estimated delay error value ⁇ I of the current output signal y ( ⁇ (1) + ⁇ (2) + ⁇ (3) + + ⁇ (W)) / W ... (6)
  • the delay processing unit 22 causes the second delay error estimating unit 22b to obtain an estimated value of the delay error caused by the processing by the compensation processing unit 20 (step S109).
  • the second delay error estimation unit 22b obtains a correlation value between the signal x and the compensation signal u, and based on this correlation value, a delay error between the timing of the input signal x and the timing of the compensation signal u. An estimated value ⁇ i is obtained.
  • the second delay error estimator 22b obtains a correlation value and obtains a DPD delay error estimate ⁇ i. The calculation of the correlation value and the DPD delay error estimated value based on the correlation value is the same as the calculation shown in the above equations (4) and (5).
  • the delay processing unit 22 converts the DPD delay error estimated value ⁇ i obtained by the second delay error estimating unit 22b into the current delay error estimated value ⁇ I of the output signal y. Addition (subtraction) is performed to obtain a delay error estimated value ⁇ to be adjusted by the delay adjustment unit 23 (step S110).
  • Delay error estimate ⁇ ⁇ I ⁇ (K p ⁇ ⁇ i) ... (7)
  • the delay processing unit 22 multiplies the DPD delay error estimated value ⁇ i by the correction coefficient K P and adds it.
  • This correction coefficient K P is a coefficient that determines the degree of correction for the delay of the DPD, and is set to a value that can reduce the influence of the delay of the DPD on the delay of the output signal y as much as possible. Specifically, the correction coefficient K P is set to a value between “0” and “1”.
  • the delay processing unit 22 gives information indicating the obtained delay error estimated value ⁇ to the delay adjusting unit 23, and causes the delay adjusting unit 23 to adjust the timing of the signal x (step S111).
  • the delay adjusting unit 23 adjusts the timing of the signal x based on the given information indicating the estimated delay error value ⁇ , and the delay generated between the timing of the output signal y and the timing of the signal x in the coefficient calculating unit 21. Correct so that the error is eliminated.
  • the delay error generated between the timing of the output signal y and the timing of the signal x in the coefficient calculation unit 21 is corrected to such an extent that the necessary accuracy in the predistortion processing by the compensation processing unit 20 can be maintained. be able to.
  • the delay processing unit 22 having adjusted the timing of the signal x by the delay adjustment unit 23 causes the coefficient calculation unit 21 to start calculating the DPD coefficient and to start updating the DPD coefficient of the compensation processing unit 20 (step S112). Thereby, the predistortion compensation processing by the compensation processing unit 20 is started.
  • step S106 adds “1” to the number of iterations I (step S106), returns to step S102, and again obtains the current number of iterations I through steps S102 to S105.
  • the delay error estimated value ⁇ (I) of the output signal y is obtained, and the process proceeds to step S107.
  • step S107 After it is determined that the number of iterations I is the set number of times W, the number of times of iteration I is greater than the set number of times W, so the delay processing unit 22 determines in step S107 that the number of iterations I is not the set number of times W. (Step S107).
  • the delay processing unit 22 obtains the current delay error estimated value ⁇ I of the output signal y based on the following equation (8) (step S113).
  • the estimated delay error value ⁇ I of the current output signal y ⁇ ⁇ ⁇ I-1 + (1- ⁇ ) ⁇ argmax
  • ⁇ ⁇ ⁇ I-1 + (1- ⁇ ) ⁇ ⁇ (I) ... (8)
  • is a time constant. After the number of iterations I becomes equal to or greater than the set number of times W, the delay processing unit 22 uses a value obtained by multiplying the delay error estimated value ⁇ (I) obtained for each iteration by the time constant ⁇ to a past delay error estimated value ⁇ . The moving average value is calculated by adding to I-1 . The delay processing unit 22 obtains this moving average value as a delay error estimated value ⁇ I of the current output signal y.
  • the time constant ⁇ is set to a numerical value greater than or equal to 0 and less than 1.
  • the delay error estimated value ⁇ (I) of the newly added number of iterations I in equation (8) becomes the current delay error estimated value ⁇ I of the output signal y.
  • the fluctuation that occurs can be suppressed, and a stable delay error estimated value ⁇ I can be obtained. For example, if the set number of times W is set to “100”, the time constant ⁇ is set to “0.999”.
  • step S109 the delay processing unit 22 proceeds to step S109, and performs the same processing as described above, thereby obtaining a delay error estimated value ⁇ to be adjusted by the delay adjustment unit 23, which is expressed by Expression (7), and delay adjustment.
  • the unit 23 adjusts the timing of the signal x.
  • the delay processing unit 22 performs the delay adjustment process, so that the timing required for the output signal y in the coefficient calculation unit 21 can be maintained to such an extent that the accuracy necessary for the predistortion processing by the compensation processing unit 20 can be maintained. And the estimated value of the delay error that occurs between the timing of the signal x and the delay error can be corrected with high accuracy.
  • the delay processing unit 22 obtains the delay error estimated value ⁇ (I) between the timing of the output signal y AD-converted at the low sampling rate and the timing of the signal x from a plurality of different acquisition periods.
  • a delay between the timing of the output signal y obtained by AD conversion at a low sampling rate and the average value obtained from each delay error estimated value ⁇ (I) for each of a plurality of acquisition periods and the timing of the signal x It is obtained as an error estimated value ⁇ I.
  • each delay error estimated value ⁇ (I) for each of a plurality of acquisition periods. Even if a variation occurs, the average value or the moving average value is obtained from each delay error estimated value ⁇ (I), so that the delay is performed in a unit of a period smaller than the length of the period corresponding to the sampling rate of the ADC 11. An estimated value of error can be obtained, and as a result, an estimated value of delay error can be obtained more accurately.
  • the delay error can be obtained in a unit of a period smaller than the length of the period corresponding to the low sampling rate in spite of the AD conversion of the output signal y at the low sampling rate.
  • the delay error can be corrected more accurately with a precision finer than the length of the period to be performed. As a result, it is possible to maintain the necessary accuracy in the distortion compensation process.
  • the delay error estimated value ⁇ to be adjusted by the delay adjusting unit 23 is added to the delay error estimated value ⁇ I of the DPD in addition to the delay error estimated value ⁇ I of the current output signal y. Therefore, the delay processing unit 22 can correct the delay error estimated value ⁇ i of the DPD. Thereby, it is possible to suppress the influence of the delay that occurs during the predistortion processing on the accuracy of the delay error that occurs between the timing of the output signal y and the timing of the signal x.
  • the predistortion compensation process when the number of iterations I is less than the set number W after the delay processing unit 22 starts to operate, the predistortion compensation process is not executed, and the number of iterations I is equal to or greater than the set number W.
  • the predistortion compensation process is started. This is because the delay error estimated value ⁇ I obtained based on the equation (6) obtained when the number of iterations I reaches the set number of times W is the moving average obtained thereafter in step S113 and equation (8). This is because it is used as an initial value.
  • the delay error estimated value ⁇ includes an error due to a large fluctuation, and the delay error estimated value including such an error is included. If the DPD coefficient is calculated based on ⁇ , an incorrect DPD coefficient may be calculated and the predistortion compensation process may not be performed normally.
  • the initial value of the moving average value is obtained without executing the predistortion processing. Thereafter, execution of the predistortion compensation process is started. That is, since the delay processing unit 22 obtains the initial value of the moving average value based on Step S108 and Expression (6) before the start of the predistortion compensation process, it suppresses obtaining an incorrect DPD coefficient and appropriately In addition, predistortion compensation processing can be performed.
  • the set number of times W is a weight for stably obtaining the initial value of the moving average value, and is set to a value at which a stable initial value (delay error ⁇ I obtained based on Expression (6)) can be obtained.
  • FIG. 3 is a graph showing an example of a result obtained by performing simulation for a case where the delay error estimated value is repeatedly calculated immediately after the delay processing unit 22 of the present embodiment starts operation.
  • the horizontal axis represents the number of iterations I
  • the vertical axis represents the delay error.
  • the broken line indicates the true value of the delay error of the output signal y.
  • the “delay error estimated value obtained by conventional sampling” indicated by a one-dot chain line indicates an estimated value of the delay error of the output signal y obtained by using the output signal y sampled at the same sampling rate as the DAC 4. Yes.
  • FIG. 3 shows the result of setting the set number of times W to “100”, and in the range up to the number of iterations I of “100”, the output for each acquisition period obtained by the above equation (5).
  • the delay error estimated value ⁇ (I) of the signal y is shown.
  • the delay error estimated value ⁇ I of the output signal y obtained as a moving average by the above equation (8). Is shown.
  • the delay error estimated value obtained by the present embodiment varies in the delay error estimated value ⁇ (I) for each acquisition period in the range where the number of iterations I is up to “100”.
  • these average values and the moving average values obtained thereafter in the range where the number of iterations I is “100” or more are compared with the estimated delay error values obtained by the conventional sampling. It can be confirmed that the delay error can be estimated accurately.
  • each delay error estimated value ⁇ (I) when an average value or a moving average value of each delay error estimated value ⁇ (I) is obtained as a representative value obtained from each delay error estimated value ⁇ (I) for each of a plurality of acquisition periods.
  • the median of each delay error estimated value ⁇ (I) may be used as a representative value.
  • the moving average value is continuously obtained. Instead, the average value of all the delay error estimated values ⁇ (I) may be obtained continuously.
  • FIG. 4 is a flowchart illustrating a procedure of processing for performing delay adjustment performed by the delay processing unit 22 according to the second embodiment. Differences between the delay processing unit 22 of the present embodiment and the delay processing unit 22 according to the first embodiment are as follows. That is, in the delay processing unit 22 according to the first embodiment, a delay error estimated value between the timing of the signal x and the timing of the output signal y is calculated for each of a plurality of acquisition periods, and the delay error estimated value is calculated. The case where the delay adjustment process is performed using the averaged value is illustrated.
  • the timing of the signal x given to the coefficient calculation unit 21 is adjusted little by little, and the residual Res between the signal x and the output signal y is adjusted for each adjustment.
  • the coefficient calculation unit 21 calculates the delay error and obtains the estimated value of the delay error based on the residual Res.
  • the delay processing unit 22 first determines whether or not the wireless communication device (distortion compensation device 14) has just been started (step S301). When determining that it is immediately after startup, the delay processing unit 22 executes delay adjustment processing before starting to update the DPD coefficient (step S302).
  • FIG. 5 is a flowchart showing the procedure of the delay adjustment process in FIG.
  • the delay processing unit 22 acquires the signal x and the output signal y in step S401 (step S400).
  • the delay processing unit 22 acquires data strings of the signal x and the output signal y included in the acquisition period as a predetermined period set for acquiring the signal x and the output signal y.
  • the delay processing unit 22 performs upsampling processing on the signal x and the output signal y (step S401).
  • the signal x and the output signal y are used to obtain a correlation value with each other and to obtain an estimated value of delay error. Therefore, an upsampling process is performed on the signal x and the output signal y so that the correlation value can be obtained.
  • the estimation of the delay error based on the correlation value performed here is performed with accuracy determined in units of the period length corresponding to the sampling rate of the frequency similar to the frequency bandwidth of the signal x, and an approximate delay error estimation value is obtained.
  • the upsampling process in step S401 is performed at a magnification such that the signal x and the output signal y have a sampling rate with a frequency comparable to the frequency bandwidth of the signal x.
  • the sampling rate (low sampling rate) of the ADC 11 is 15.36 MHz
  • the upsampling processing magnification is set to several times to about 100 times.
  • the delay processing unit 22 performs an operation for obtaining an estimated value of the delay error between the timing of the output signal y and the timing of the input signal x (estimated value of the delay error of the output signal y) as a first delay.
  • the error estimation part 22a is made to perform.
  • the first delay error estimator 22a obtains a correlation value between the output signal y acquired in step S401 and the signal x, and obtains a delay error estimate value of the output signal y by calculation based on the correlation value. (Step S402).
  • the calculation of the correlation value and the delay error estimated value based on the correlation value is the same as the calculation shown in the above formulas (4) and (5).
  • the first delay error estimator 22a obtains an estimated value of the delay error using the output signal y and the signal x having a sampling rate with a frequency comparable to the frequency bandwidth of the signal x. For this reason, the delay error of the output signal y obtained in step S402 is obtained with an accuracy determined by the unit of the length of the period corresponding to the sampling rate having the same frequency as the frequency bandwidth of the signal x, so that the delay error is corrected.
  • the numerical range including the true value of the delay error can be clarified within the low accuracy.
  • the delay processing unit 22 sets an initial value of the delay error value T of the signal x based on the output signal y based on the estimated delay error value of the output signal y. Delay adjustment based on the delay error value T is performed (step S403). At this time, the delay processing unit 22 delays the delay so as to minimize the delay error with respect to the output signal y in the numerical range including the true value of the delay error that is apparent in the estimated value of the delay error. An error value T is set. This is because, as will be described later, the delay error value T is gradually increased by increments ⁇ T so that the delay error value T is adjusted to approach the true value.
  • the delay processing unit 22 After correcting the delay error with relatively low accuracy, the delay processing unit 22 causes the coefficient calculation unit 21 to acquire the signal x and the output signal y (step S404).
  • the coefficient calculation unit 21 acquires a signal reflecting the delay error correction performed in step S403.
  • the coefficient calculation unit 21 performs a downsampling process on the signal x acquired in step S404 (step S405).
  • the downsampling process for the signal x is performed to obtain a residual Res from the output signal y having a low sampling rate. For this reason, the coefficient calculation unit 21 performs the downsampling process so that the sampling rate of the signal x becomes a value close to a lower sampling rate.
  • the magnification of the downsampling process can be set to, for example, about 1 / several to several tens of times.
  • the coefficient calculation unit 21 After performing the downsampling process on the signal x, the coefficient calculation unit 21 obtains a residual Res between the output signal y and the signal x shown in the above equation (3) (step S406). When the coefficient calculation unit 21 calculates the residual Res, the coefficient calculation unit 21 gives the calculated residual Res to the delay processing unit 22.
  • the delay processing unit 22 determines whether or not there is a residual Res that becomes a minimum value (minimum value) in the residual Res or the residual Res given in the past (Ste S407). If it is determined that there is no residual Res that becomes a local minimum value, the delay processing unit 22 adds the addition value ⁇ T as a predetermined unit time to the delay error value T (step S409), and the delay adjustment unit 23 again receives the delay. Delay adjustment based on the error value T is performed (step S410), and the process returns to step S404.
  • the delay processing unit 22 repeatedly executes steps S404 to S409 until it is determined in step S407 that there is a residual Res that becomes a minimum value.
  • the delay processing unit 22 determines that there is a residual Res having a minimum value. That is, the range in which the delay error value T is changed is set to the entire numerical range specified as including the true value of the delay error, the residual Res is calculated over the numerical range, and then the residual is calculated. The minimum value of Res is obtained as a minimum value. As another method, when the residual Res is obtained while changing the delay error value T sequentially from a certain initial value, and the local minimum is estimated from the displacement between the residuals Res, the local minimum is estimated to be the local minimum. It can also be determined that there is a residual Res that becomes a value.
  • the signal x that is delay-adjusted based on the delay error value T is delayed by the addition value ⁇ T by adding the addition value ⁇ T to the delay error value T. Therefore, the delay error of the output signal y changes (increases) by the addition value ⁇ T.
  • the delay processing unit 22 repeatedly executes steps S404 to S409 to change (increase) the delay error of the output signal y by the addition value ⁇ T (step S409), and also to change the delay error of the output signal y.
  • steps S404 to S409 to change (increase) the delay error of the output signal y by the addition value ⁇ T (step S409), and also to change the delay error of the output signal y.
  • the added value ⁇ T is changed, the output signal y after changing the delay error of the output signal y and the signal x are acquired (step S404), and the residual Res between the output signal y and the signal x is obtained. Is obtained (step S406).
  • step S407 the delay processing unit 22 repeatedly executes steps S404 to S409, and if it is determined that there is a residual Res that is a minimum value, the delay processing unit 22 specifies a delay error value T that causes the residual Res to be a minimum value (step S407). S411).
  • the delay error value T at that time is specified as the delay error estimation value of the current output signal y.
  • the delay processing unit 22 causes the second delay error estimation unit 22b to obtain the DPD delay error estimation value ⁇ i generated by the processing by the compensation processing unit 20 (step S412).
  • the DPD delay error estimated value ⁇ i is calculated by the same method as in the first embodiment.
  • the delay processing unit 22 converts the DPD delay error estimated value ⁇ i obtained by the second delay error estimating unit 22b into a delay error value T with the residual Res as a minimum value. Addition (subtraction) is performed to obtain a delay error estimated value ⁇ to be adjusted by the delay adjustment unit 23 (step S413).
  • Delay error ⁇ T ⁇ (K p ⁇ ⁇ i) (9)
  • the correction coefficient K P is a coefficient that determines the degree of correction for the delay of the DPD, and is as described in the first embodiment.
  • the delay processing unit 22 gives information indicating the obtained delay error estimated value ⁇ to the delay adjusting unit 23, and causes the delay adjusting unit 23 to adjust the timing of the signal x (step S414).
  • the delay adjusting unit 23 adjusts the timing of the signal x based on the given information indicating the estimated delay error value ⁇ , and the delay generated between the timing of the output signal y and the timing of the signal x in the coefficient calculating unit 21. Correct so that the error is eliminated. As described above, the delay processing unit 22 finishes the delay adjustment process.
  • the delay error of the output signal y is changed by the addition value ⁇ T, and the delay error of the output signal y is changed every time the delay error of the output signal y is changed by the addition value ⁇ T.
  • a residual Res between the subsequent output signal y and the signal x is obtained, and the present state is determined based on the magnitude of the residual Res from the delay errors (delay error value T) changed by the addition value ⁇ T.
  • the delay error estimated value of the output signal y is determined.
  • the delay error value T when the residual Res becomes the minimum value is obtained as the delay error estimated value of the output signal y from among the delay error values T changed by the addition value ⁇ T.
  • the delay error estimated value can be obtained in units of the added value ⁇ T.
  • the added value ⁇ T is set to a time shorter than the length of the cycle corresponding to the low sampling rate.
  • the delay error estimated value of the output signal y can be obtained in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate, and the delay error can be obtained with higher accuracy.
  • the addition value ⁇ T is set to a time shorter than the length of the period corresponding to the sampling rate of the DAC 4. In this case, the delay error estimated value of the output signal y can be obtained in units of a smaller period, and the delay error can be obtained with higher accuracy.
  • FIG. 6 is a graph illustrating an example of a result obtained by performing a simulation when the delay processing unit 22 of the present embodiment performs the delay adjustment process.
  • the horizontal axis represents the number of iterations
  • the vertical axis represents the value indicating the residual Res as power.
  • the light color diagram shows the residual power obtained when the signals x are delayed from each other with a predetermined delay error and the delay adjustment processing according to the present embodiment is performed, and the dark color diagram. Indicates the residual power obtained by the present embodiment for the output signal y and the signal x with the predetermined delay error.
  • Each diagram shows the residual power obtained within a period of 2 samples ( ⁇ 1 sample) in a signal having a sampling rate having the same frequency as the frequency bandwidth of the signal x.
  • the timing at which the residual power becomes a minimum value is the true value of the delay error.
  • the minimum value of the residual power according to the present embodiment is slightly deviated from the true value, it can be confirmed that the delay error can be estimated with high accuracy without being greatly deviated.
  • the delay processing unit 22 proceeds to step S303 in FIG. 4 and causes the coefficient calculation unit 21 to start calculating the DPD coefficient and also starts updating the DPD coefficient of the compensation processing unit 20 (step S303). S303). Thereby, the predistortion compensation process by the compensation processor 20 is started and the process is finished.
  • step S301 If it is determined in step S301 that it is not immediately after startup, the delay processing unit 22 determines whether or not a predetermined period has elapsed since the previous delay adjustment processing was executed (step S304).
  • the delay processing unit 22 stops updating the DPD coefficient of the compensation processing unit 20 (step S305), and proceeds to step S302. Delay adjustment processing is executed (step S302). Thereafter, the delay processing unit 22 starts updating the DPD coefficient (step S303) and ends the process. On the other hand, when it is determined that the predetermined period has not elapsed since the previous delay adjustment process was executed, the delay processing unit 22 ends the process.
  • the delay processing unit 22 is configured to perform a delay adjustment process every time a predetermined period elapses.
  • the delay error between the timing of the output signal y and the timing of the signal x has a small change with time, but does not change, and therefore needs to be adjusted with a certain frequency. For this reason, the delay processing unit 22 of the present embodiment performs a delay adjustment process every time a predetermined period elapses. As a result, the delay error can be accurately corrected over a long period of time.
  • the predetermined period is set to about 1 to 2 days, for example.
  • the delay processing unit 22 performs the delay adjustment process after stopping the update of the DPD coefficient. That is, the delay processing unit 22 does not execute the delay adjustment process while executing the update of the DPD coefficient, and executes the delay adjustment process while the update of the DPD coefficient is stopped. If the delay adjustment process is executed without stopping the updating of the DPD coefficient, the delay processing unit 22 changes the delay error by the addition value ⁇ T, so that the error is included in the delay error. There is a possibility that the predistortion compensation processing cannot be performed normally.
  • the delay processing unit 22 does not execute the delay adjustment process while executing the update of the DPD coefficient, and performs the delay adjustment process while the update of the DPD coefficient is stopped. Since this is executed, it is possible to suppress the determination of an incorrect DPD coefficient and to appropriately perform the predistortion processing.
  • the delay processing unit 22 shows the case where the delay error between the timing of the output signal y and the timing of the signal x is changed and adjusted by digital processing.
  • the analog processing unit 12 side By adjusting the timing of the output signal y, it is possible to obtain the residual Res by adding the addition value ⁇ T to the delay error value T and changing the delay error, thereby obtaining an estimated value of the delay error.
  • FIG. 7 is a block diagram illustrating a main part of a wireless communication device according to a modification of the second embodiment.
  • the distortion compensation device 14 included in the wireless communication device illustrated in FIG. 7 is different from the wireless communication device of the second embodiment in that it includes an adjustment unit 30 for adjusting the phase of the operation clock supplied to the ADC 11.
  • the adjustment unit 30 has a function of arbitrarily adjusting the phase of the operation clock supplied to the ADC 11 under the control of the delay processing unit 22.
  • the delay processing unit 22 controls the adjustment unit 30 to adjust the phase of the operation clock of the ADC 11 and adjust the timing of the output signal y that is AD-converted and output from the ADC 11. Thereby, the delay processing unit 22 can change the delay error between the timing of the output signal y and the timing of the signal x. Therefore, also in the distortion compensation apparatus 14 shown in FIG. 7, the delay adjustment process shown in FIGS. 4 and 5 can be executed. In this case, since the delay processing unit 22 can change the delay error by analog processing, the load on the delay processing unit 22 can be reduced.
  • the delay processing unit 22 included in the amplifying apparatus according to the first embodiment shown in FIG. 1 estimates and corrects delay errors by a general method.
  • An apparatus configured as described above was also evaluated.
  • a correlation value is obtained between the output signal y having a low sampling rate and the signal x, and the delay error estimated value obtained based on the correlation value is used as it is. Was corrected.
  • each amplifying apparatus an OFDM signal having a frequency bandwidth of 100 MHz was used as the signal x, the DAC 4 sampling rate was 614.4 MHz, and the ADC 11 sampling rate (low sampling rate) was 15.36 MHz.
  • the pass bandwidth of the filter unit 10 is about 600 MHz.
  • FIG. 8 is a diagram illustrating an example of a frequency spectrum of an OFDM signal amplified by an amplifying apparatus according to another embodiment.
  • an “original signal” is an input signal (signal x) and indicates the frequency spectrum of the input signal.
  • output signal by conventional distortion compensation processing means that a delay error estimated value of the output signal y is obtained using the output signal y sampled at the same sampling rate as the DAC 4, and this delay error estimated value is This is an output signal when delay compensation is performed based on the distortion compensation processing, and the frequency spectrum of this output signal is shown.
  • the “output signal without distortion compensation processing” is an output signal when the input signal is amplified without distortion compensation processing, and indicates the frequency spectrum of this output signal.
  • the “output signal according to another embodiment” is an output signal that has been subjected to distortion compensation processing by the amplifying apparatus according to the other embodiment, and indicates a frequency spectrum of the output signal.
  • the output power according to the other embodiment has improved leakage power in the adjacent channel of the signal band as compared with the output signal without distortion compensation processing.
  • the output signal according to the other embodiment tends to deteriorate in signal quality as it goes away from the center frequency as compared with the original signal or the output signal obtained by the conventional distortion compensation processing.
  • FIG. 9 is a diagram illustrating an example of a frequency spectrum of an OFDM signal amplified by the amplification device according to the first embodiment
  • FIG. 10 is an example of a frequency spectrum of the OFDM signal amplified by the amplification device according to the second embodiment.
  • FIG. 9 Also in the output signals according to the first and second embodiments, it can be seen that the leakage power in the adjacent channel of the signal band is improved as compared with the output signal without distortion compensation processing.
  • the output signals according to the first and second embodiments have substantially the same signal quality as the original signals and the output signals obtained by the conventional distortion compensation processing.
  • the amplifying apparatus of this embodiment has sufficient distortion compensation accuracy.
  • the present invention is not limited to the above embodiments.
  • the case where the distortion compensation unit 3 of the distortion compensation device 14 includes the delay processing unit 22 is illustrated, but the delay processing unit 22 is not necessarily provided, and a general method is used.
  • a correlation value may be obtained between the output signal y having a low sampling rate and the signal x, and the delay error may be corrected using the estimated value of the delay error obtained based on the correlation value as it is. .
  • the distortion compensation device 14 of each of the above embodiments estimates the above-described distortion compensation model by obtaining the DPD coefficient from the signal x amplified by the amplifier 2 and the output signal y output from the amplifier 2.
  • the so-called direct learning method is employed, but an indirect learning method in which an inverse model is estimated from the compensation signal u from the compensation processing unit 20 and the output signal y and reflected in the signal x may be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

This distortion correction device (14) comprises a distortion correction unit (3) which carries out a distortion correction of an amplifier (2) which amplifies a signal (x), and an A/D converter (11) which A/D converts an output signal (y) outputted by the amplifier (2) and provides the same to the distortion correction unit (3). The A/D converter (11) A/D converts the output signal (y) at a low sampling rate which is lower than a sampling rate of a D/A converter (4) which D/A converts a signal which is provided to the amplifier (2). The distortion correction unit (3) carries out the distortion correction on the basis of the signal (x) and the output signal (y) which is A/D converted at the low sampling rate.

Description

歪補償装置、増幅装置及び無線通信装置Distortion compensation device, amplification device, and wireless communication device
 本発明は、歪補償装置、増幅装置、及び無線通信装置に関するものである。 The present invention relates to a distortion compensation device, an amplification device, and a wireless communication device.
 近年、携帯電話等に用いられる無線通信システムにおいては、LTE(Long Term Evolution)等の高速かつ広帯域な通信方式が普及しつつある(例えば、特許文献1参照)。 In recent years, in a wireless communication system used for a mobile phone or the like, a high-speed and wide-band communication method such as LTE (Long Term Evolution) is spreading (for example, see Patent Document 1).
特開2010-219818JP2010-211981
 上記LTEでは、システムの利用帯域が最大で20MHz程度であったが、LTEの後継システムであるLTE-A(Advanced)では、システムの利用帯域が100MHz程度にまで拡張されることが予定されている。
 このため、上記無線通信システムに用いられる基地局装置の増幅装置においても、広帯域化に対応する必要があり、広帯域化に伴う部品コストの増加が懸念される。
In LTE, the maximum system bandwidth is about 20 MHz, but in LTE-A (Advanced), which is an LTE successor system, the system bandwidth is scheduled to be expanded to about 100 MHz. .
For this reason, the amplification device of the base station apparatus used in the wireless communication system needs to cope with a wide band, and there is a concern about an increase in component costs accompanying the wide band.
 その一方、上記LTE-Aでは、通信容量の増加を目的としてスモールセルが積極的に導入されるため、このスモールセルに対応した小型基地局装置に用いる増幅装置として、低コストな増幅装置が求められている。 On the other hand, in the LTE-A, a small cell is actively introduced for the purpose of increasing the communication capacity. Therefore, a low-cost amplifying device is required as an amplifying device used for a small base station device corresponding to the small cell. It has been.
 上記スモールセルに対応した小型基地局装置用の増幅装置では、LTE-Aの採用による広帯域化によって部品コストの増加が懸念されているにも関わらず、さらなる低コスト化が求められているという問題を有している。 In the amplifying apparatus for small base station apparatus corresponding to the above small cell, there is a problem that further cost reduction is required even though there is a concern that the cost of parts is increased due to the wide band due to the adoption of LTE-A. have.
 本発明はこのような事情に鑑みてなされたものであり、より低コスト化が可能な増幅装置及び無線通信装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide an amplifying apparatus and a wireless communication apparatus that can be further reduced in cost.
 一実施形態に係る歪補償装置は、入力信号を増幅する増幅器の歪補償を行う歪補償部と、前記増幅器が出力する出力信号をAD変換して前記歪補償部に与えるAD変換器と、を備え、前記AD変換器は、前記増幅器に与えられる信号をDA変換する際のサンプリングレートよりも低い低サンプリングレートで、前記出力信号をAD変換し、前記歪補償部は、前記入力信号と、前記低サンプリングレートでAD変換された前記出力信号とに基づいて歪補償を行う。 A distortion compensation apparatus according to an embodiment includes: a distortion compensation unit that performs distortion compensation of an amplifier that amplifies an input signal; and an AD converter that AD-converts an output signal output from the amplifier and supplies the signal to the distortion compensation unit. The AD converter performs AD conversion on the output signal at a low sampling rate lower than a sampling rate when DA conversion is performed on a signal supplied to the amplifier, and the distortion compensator includes the input signal, Distortion compensation is performed based on the output signal AD-converted at a low sampling rate.
 また、一実施形態に係る増幅装置は、増幅器と、上記歪補償装置と、を備えている。 In addition, an amplification device according to an embodiment includes an amplifier and the distortion compensation device.
 また、一実施形態に係る無線通信装置は、上記増幅装置を通信信号の増幅のために備えている。 Also, a wireless communication apparatus according to an embodiment includes the amplifying apparatus for amplifying communication signals.
 本発明の歪補償装置、増幅装置及び無線通信装置によれば、より低コスト化が可能となる。 According to the distortion compensating device, the amplifying device, and the wireless communication device of the present invention, the cost can be further reduced.
実施形態に係る増幅装置を備えた無線通信装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the radio | wireless communication apparatus provided with the amplifier which concerns on embodiment. 第1実施形態に係る遅延処理部が行う遅延調整処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the delay adjustment process which the delay process part which concerns on 1st Embodiment performs. 第1実施形態の遅延処理部が動作を開始した直後から遅延誤差推定値を反復して演算した場合についてシミュレーションを行い、得られた結果の一例を示したグラフである。It is the graph which showed an example of the result obtained by performing a simulation about the case where the delay error estimation value is repeatedly calculated immediately after the delay processing unit of the first embodiment starts the operation. 第2実施形態に係る遅延処理部が行う遅延調整を行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which performs the delay adjustment which the delay process part which concerns on 2nd Embodiment performs. 図4中、遅延調整処理の手順を示すフローチャートである。FIG. 5 is a flowchart illustrating a procedure of delay adjustment processing in FIG. 4. 第2実施形態の遅延処理部が遅延調整処理を行った場合についてシミュレーションを行い、得られた結果の一例を示したグラフである。It is the graph which showed an example of the result obtained by performing simulation about the case where the delay processing part of a 2nd embodiment performed delay adjustment processing. 第2実施形態の変形例に係る無線通信装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the radio | wireless communication apparatus which concerns on the modification of 2nd Embodiment. 他の実施形態に係る増幅装置によって増幅したOFDM信号の周波数スペクトルの一例を示す図である。It is a figure which shows an example of the frequency spectrum of the OFDM signal amplified by the amplifier which concerns on other embodiment. 第1実施形態に係る増幅装置によって増幅したOFDM信号の周波数スペクトルの一例を示す図である。It is a figure which shows an example of the frequency spectrum of the OFDM signal amplified by the amplifier which concerns on 1st Embodiment. 第2実施形態に係る増幅装置によって増幅したOFDM信号の周波数スペクトルの一例を示す図である。It is a figure which shows an example of the frequency spectrum of the OFDM signal amplified by the amplifier which concerns on 2nd Embodiment.
[実施形態の説明]
 無線通信システムの無線通信装置等に用いられる増幅装置は、一般に、デジタル信号処理によって増幅器の歪補償を行う歪補償装置を備えている。この歪補償装置は、増幅器が出力したアナログの出力信号を帰還信号として取得するため、アナログの出力信号をデジタルの信号に変換するAD変換器を備えている。このAD変換器は、変換する出力信号の帯域幅が大きくなれば、それに応じてよりサンプリングレートの高いものを用いなければならず、無線信号の広帯域化によってAD変換器のコストが増加する可能性がある。
[Description of Embodiment]
2. Description of the Related Art In general, an amplification device used in a wireless communication device of a wireless communication system includes a distortion compensation device that performs distortion compensation of an amplifier by digital signal processing. This distortion compensation device includes an AD converter that converts an analog output signal into a digital signal in order to acquire an analog output signal output from the amplifier as a feedback signal. If the bandwidth of the output signal to be converted becomes large, this AD converter must use a higher sampling rate accordingly, and the bandwidth of the radio signal may increase the cost of the AD converter. There is.
 まず最初に実施形態の内容を列記して説明する。
(1)一実施形態である歪補償装置は、入力信号を増幅する増幅器の歪補償を行う歪補償部と、前記増幅器が出力する出力信号をAD変換して前記歪補償部に与えるAD変換器と、を備え、前記AD変換器は、前記増幅器に与えられる信号をDA変換する際のサンプリングレートよりも低い低サンプリングレートで、前記出力信号をAD変換し、前記歪補償部は、前記入力信号と、前記低サンプリングレートでAD変換された前記出力信号とに基づいて歪補償を行う。
First, the contents of the embodiment will be listed and described.
(1) A distortion compensation apparatus according to an embodiment includes a distortion compensation unit that performs distortion compensation of an amplifier that amplifies an input signal, and an AD converter that AD-converts an output signal output from the amplifier and supplies the output signal to the distortion compensation unit The AD converter performs AD conversion on the output signal at a sampling rate lower than a sampling rate when DA conversion is performed on a signal supplied to the amplifier, and the distortion compensator includes the input signal. And distortion compensation based on the output signal AD-converted at the low sampling rate.
 上記のように構成された歪補償装置によれば、AD変換器が、増幅器に与えられる信号をDA変換する際のサンプリングレートよりも低い低サンプリングレートで、出力信号をAD変換し、歪補償部は、入力信号と、低サンプリングレートでAD変換された出力信号とに基づいて歪補償を行うので、広帯域の信号を処理する場合にも、その広帯域の信号に応じてより高いサンプリングレートのAD変換器を用いる必要がないので、低コスト化が可能となる。 According to the distortion compensation apparatus configured as described above, the AD converter AD-converts the output signal at a low sampling rate lower than the sampling rate when the signal supplied to the amplifier is DA-converted, and the distortion compensation unit Performs distortion compensation based on an input signal and an output signal that has been AD-converted at a low sampling rate. Therefore, even when processing a wideband signal, AD conversion with a higher sampling rate is performed according to the wideband signal. Since it is not necessary to use a vessel, the cost can be reduced.
(2)出力信号のサンプル数は、低サンプリングレートでAD変換されることで、DA変換する際のサンプリングレートと同じサンプリングレートでAD変換する場合よりも相対的に少ない場合がある。このため、前記歪補償部は、前記入力信号と、前記低サンプリングレートでAD変換された前記出力信号とに基づいて前記増幅器のモデルを推定し、このモデルに基づいて歪補償を行うことが好ましい。
 この場合、出力信号が低サンプリングレートであるとしても、その分観測期間を延ばすことにより、精度を低下させることなく歪補償を行うことができる。
(2) The number of samples of the output signal may be relatively smaller than that when AD conversion is performed at the same sampling rate as that at the time of DA conversion by AD conversion at a low sampling rate. For this reason, it is preferable that the distortion compensation unit estimates a model of the amplifier based on the input signal and the output signal AD-converted at the low sampling rate, and performs distortion compensation based on the model. .
In this case, even if the output signal has a low sampling rate, distortion compensation can be performed without reducing accuracy by extending the observation period accordingly.
(3)上記歪補償装置が、前記増幅器と前記AD変換器との間に接続されているフィルタをさらに備えている場合には、前記フィルタの通過帯域幅が、前記入力信号の周波数帯域幅以上に設定されていることが好ましい。
 この場合、フィルタの通過帯域幅は、AD変換器のサンプリングレートである低サンプリングレートよりも大きくなるため、出力信号の内、低サンプリングレートによって取得される帯域の信号成分だけでなくその信号成分の周辺帯域の信号も折り返し成分としてAD変換器に与えられる。これによって、AD変換器は、低サンプリングレートによって取得される帯域の信号成分の他、その信号成分の周辺帯域の信号も折り返し成分として取得することができる。
 これにより、出力信号に生じる歪によって発生する信号成分であって、出力信号の隣接帯域に現れる信号成分の情報を失うことなく取得することができるため、精度を低下させることなく歪補償を行うことができる。
(3) When the distortion compensation apparatus further includes a filter connected between the amplifier and the AD converter, a pass bandwidth of the filter is equal to or greater than a frequency bandwidth of the input signal. It is preferable that it is set to.
In this case, since the pass band width of the filter becomes larger than the low sampling rate that is the sampling rate of the AD converter, not only the signal component of the band acquired by the low sampling rate but also the signal component of the output signal. The signal in the peripheral band is also given to the AD converter as a folding component. As a result, the AD converter can acquire not only the signal component in the band acquired at the low sampling rate but also the signal in the peripheral band of the signal component as the folded component.
As a result, it is possible to obtain signal components that are generated due to distortion generated in the output signal without losing information on the signal components that appear in the adjacent band of the output signal, so that distortion compensation is performed without reducing accuracy. Can do.
(4)上記歪補償装置において、前記低サンプリングレートでAD変換された前記出力信号のタイミングと、前記入力信号のタイミングとの間に生じる遅延誤差を、前記低サンプリングレートに対応する周期の長さよりも小さい期間の単位で推定し補正する遅延処理部をさらに備えていることが好ましい。
 この場合、出力信号を低サンプリングレートでAD変換したにも関わらず、低サンプリングレートに対応する周期の長さよりも小さい期間の単位で遅延誤差を推定することができるので、低サンプリングレートに対応する周期の長さよりも細かい精度で、より精度よく遅延誤差を補正することができる。
(4) In the distortion compensator, a delay error generated between the timing of the output signal AD-converted at the low sampling rate and the timing of the input signal is determined from the length of the period corresponding to the low sampling rate. It is preferable to further include a delay processing unit that estimates and corrects in units of a small period.
In this case, although the output signal is AD-converted at a low sampling rate, the delay error can be estimated in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate. The delay error can be corrected with higher accuracy than the period length.
(5)また、上記歪補償装置において、前記遅延処理部は、前記遅延誤差の推定値を、互いに異なる複数の所定期間ごとに求め、前記複数の所定期間ごとの各遅延誤差の推定値から求められる代表値を、前記遅延誤差の推定値として求めてもよい。
 この場合、遅延誤差の真値は、経時的に大きく変動しないので、複数の所定期間ごとの各遅延誤差の推定値にばらつきが生じたとしても、各遅延誤差の推定値から代表値を求めれば、AD変換器のサンプリングレートに対応する周期の長さよりも小さい期間の単位で遅延誤差の推定値を求めることができ、この結果、より精度よく遅延誤差を求めることができる。
(5) In the distortion compensation device, the delay processing unit obtains an estimated value of the delay error for each of a plurality of different predetermined periods, and obtains the estimated value of each delay error for each of the plurality of predetermined periods. The obtained representative value may be obtained as the estimated value of the delay error.
In this case, since the true value of the delay error does not vary greatly with time, even if there is a variation in the estimated value of each delay error for a plurality of predetermined periods, the representative value can be obtained from the estimated value of each delay error. The delay error estimation value can be obtained in units of periods smaller than the length of the period corresponding to the sampling rate of the AD converter, and as a result, the delay error can be obtained more accurately.
(6)(7)上記歪補償装置において、前記遅延処理部は、前記遅延誤差を所定の単位時間ずつ変化させるとともに、前記遅延誤差を前記所定の単位時間ずつ変化させる毎に、前記遅延誤差を変化させた後の前記出力信号と、前記入力信号との間の残差を求め、前記所定の単位時間ずつ変化させた各遅延誤差の中から、前記残差の大きさに基づいて、前記遅延誤差の推定値を決定してもよい。
 この場合、単位時間の単位で遅延誤差の推定値を求めることができる。
 このため、前記所定の単位時間は、前記低サンプリングレートに対応する周期の長さよりも短い時間であることが好ましい。
 これにより、低サンプリングレートに対応する周期の長さよりも小さい期間の単位で遅延誤差の推定値を求めることができ、より精度よく遅延誤差の推定値を求めることができる。
(6) (7) In the distortion compensation device, the delay processing unit changes the delay error by a predetermined unit time, and changes the delay error every time the delay error is changed by the predetermined unit time. A residual between the output signal after being changed and the input signal is obtained, and the delay based on the magnitude of the residual is selected from the delay errors changed by the predetermined unit time. An error estimate may be determined.
In this case, an estimated value of delay error can be obtained in units of unit time.
For this reason, it is preferable that the predetermined unit time is shorter than a period corresponding to the low sampling rate.
Thereby, the estimated value of the delay error can be obtained in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate, and the estimated value of the delay error can be obtained more accurately.
(8)遅延処理部は、デジタル処理によって、出力信号のタイミングと、入力信号のタイミングとの間の遅延誤差を変化させることもできるが、前記AD変換器に与えられる動作クロックの位相を調整することによって、前記出力信号のタイミングを調整し、前記遅延誤差を変化させることもできる。
 この場合、遅延処理部は、アナログ処理によって、出力信号のタイミングと、入力信号のタイミングとの間の遅延誤差を変化させることができ、遅延処理部の負荷を軽減することとができる。
(8) The delay processing unit can change a delay error between the timing of the output signal and the timing of the input signal by digital processing, but adjusts the phase of the operation clock supplied to the AD converter. Thus, the delay error can be changed by adjusting the timing of the output signal.
In this case, the delay processing unit can change the delay error between the timing of the output signal and the timing of the input signal by analog processing, and can reduce the load on the delay processing unit.
(9)また、上記歪補償装置において、歪補償部が歪補償を行う際に生じる遅延があると、遅延処理部が求める、出力信号のタイミングと、入力信号のタイミングとの間に生じる遅延誤差の推定値の精度が低下するおそれが生じる。
 このため、前記歪補償部は、前記入力信号に対して歪補償を行った補償信号を前記増幅器に与えるように構成され、前記遅延処理部は、前記入力信号のタイミングと、前記補償信号のタイミングとの間に生じる遅延誤差を補正することが好ましい。
 この場合、遅延処理部は、入力信号のタイミングと、補償信号のタイミングとの間に生じる遅延誤差を補正することができる。これにより、歪補償の際に生じる遅延が、出力信号のタイミングと、入力信号のタイミングとの間に生じる遅延誤差の推定値の精度に与える影響を抑制することができる。
(9) Further, in the above distortion compensation device, if there is a delay that occurs when the distortion compensation unit performs distortion compensation, a delay error that occurs between the timing of the output signal and the timing of the input signal, which is obtained by the delay processing unit. The accuracy of the estimated value may be reduced.
For this reason, the distortion compensator is configured to provide a compensation signal obtained by performing distortion compensation on the input signal to the amplifier, and the delay processing unit includes the timing of the input signal and the timing of the compensation signal. It is preferable to correct a delay error occurring between the two.
In this case, the delay processing unit can correct a delay error that occurs between the timing of the input signal and the timing of the compensation signal. Thereby, it is possible to suppress the influence of the delay that occurs during distortion compensation on the accuracy of the estimated value of the delay error that occurs between the timing of the output signal and the timing of the input signal.
(10)上記歪補償装置において、前記低サンプリングレートは、入力信号の周波数帯域幅よりも低く設定されていてもよく、この場合、低サンプリングレートをより低い値に設定することができ、低コスト化により有利である。 (10) In the distortion compensation apparatus, the low sampling rate may be set lower than the frequency bandwidth of the input signal. In this case, the low sampling rate can be set to a lower value, and the cost is low. Is more advantageous.
(11)上記歪補償装置において、前記フィルタの通過帯域幅は、前記増幅器が前記入力信号を増幅したことによって前記出力信号に生じる歪成分の周波数帯域幅以上に設定されていてもよく、この場合、出力信号に生じる歪によって発生する信号成分であって、出力信号の隣接帯域に現れる信号成分の情報をより効果的に取得することができる。 (11) In the distortion compensation apparatus, the pass band width of the filter may be set to be equal to or greater than a frequency bandwidth of a distortion component generated in the output signal when the amplifier amplifies the input signal. Thus, it is possible to more effectively acquire signal component information that is generated due to distortion generated in the output signal and that appears in the adjacent band of the output signal.
(12)また、一実施形態である増幅装置は、増幅器と、上記(1)に記載の歪補償装置と、を備えている。 (12) Further, an amplifying apparatus according to an embodiment includes an amplifier and the distortion compensating apparatus according to (1) above.
(13)また、一実施形態である無線通信装置は、上記(12)に記載の増幅装置を通信信号の増幅のために備えている。 (13) In addition, a wireless communication apparatus according to an embodiment includes the amplifying apparatus described in (12) above for amplifying a communication signal.
 上記構成の増幅装置及び無線通信装置によれば、歪補償装置において、広帯域の信号を処理する場合にも、その広帯域の信号に応じてより高いサンプリングレートのAD変換器を用いる必要がないので、低コスト化が可能となる。 According to the amplification device and the wireless communication device configured as described above, even when processing a wideband signal in the distortion compensation device, it is not necessary to use an AD converter having a higher sampling rate in accordance with the wideband signal. Cost reduction is possible.
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
〔1. 無線通信装置の要部構成〕
 図1は、実施形態に係る増幅装置を備えた無線通信装置の要部を示すブロック図である。図中、無線通信装置は、無線信号として送信される送信信号の増幅を行うための増幅装置1を備えている。なお、この増幅装置1は、受信信号の増幅に用いても良い。
[Details of the embodiment]
Hereinafter, preferred embodiments will be described with reference to the drawings.
[1. Configuration of main part of wireless communication device]
FIG. 1 is a block diagram illustrating a main part of a wireless communication device including an amplification device according to an embodiment. In the figure, the wireless communication device includes an amplifying device 1 for amplifying a transmission signal transmitted as a wireless signal. Note that the amplifying apparatus 1 may be used for amplification of a received signal.
 増幅装置1は、高出力増幅器(HPA、以下、単に増幅器ともいう)2と、歪補償部3とを備えている。
 歪補償部3は、デジタル信号として与えられる送信信号である信号xに対して、デジタル信号処理による歪補償処理を行う機能を有している。歪補償部3は、歪補償処理によって、補償信号uを出力する。
The amplifying apparatus 1 includes a high-power amplifier (HPA, hereinafter simply referred to as an amplifier) 2 and a distortion compensator 3.
The distortion compensation unit 3 has a function of performing distortion compensation processing by digital signal processing on a signal x that is a transmission signal given as a digital signal. The distortion compensator 3 outputs a compensation signal u by distortion compensation processing.
 歪補償部3と、増幅器2の信号入力端との間には、デジタル信号をアナログ信号に変換するDA変換器(DAC)4と、アップコンバータ5とが接続されている。
 歪補償部3が出力する補償信号uは、DAC4に与えられることでアナログ信号に変換され、さらに、アップコンバータ5によって発振器6が生成する無線周波数のローカル信号が乗算されることにより無線周波数にアップコンバートされた後、増幅器2に与えられる。
 増幅器2は、入力される補償信号uを増幅する。増幅器2の信号出力端には、アンテナ7が接続されており、増幅器2が出力する出力信号yは、無線送信信号としてアンテナ7から放射される。
A DA converter (DAC) 4 for converting a digital signal into an analog signal and an up converter 5 are connected between the distortion compensation unit 3 and the signal input terminal of the amplifier 2.
The compensation signal u output from the distortion compensator 3 is converted to an analog signal by being applied to the DAC 4, and further up-converted to a radio frequency by being multiplied by the radio frequency local signal generated by the oscillator 6 by the up-converter 5. After being converted, it is supplied to the amplifier 2.
The amplifier 2 amplifies the input compensation signal u. An antenna 7 is connected to the signal output terminal of the amplifier 2, and the output signal y output from the amplifier 2 is radiated from the antenna 7 as a radio transmission signal.
 増幅器2の信号出力端と、歪補償部3との間には、増幅器2が出力する出力信号yを得るためのカプラ8と、ダウンコンバータ9と、フィルタ部10と、AD変換器11とが接続されている。
 カプラ8から得られる増幅器2の出力信号yは、ダウンコンバータ9に与えられる。
 出力信号yは、ダウンコンバータ9によって発振器6が生成するベースバンドの周波数のローカル信号が乗算されることによりベースバンド周波数にダウンコンバートされた後、フィルタ部10を介してAD変換器(ADC)11に与えられる。
Between the signal output terminal of the amplifier 2 and the distortion compensator 3, a coupler 8, a down converter 9, a filter unit 10, and an AD converter 11 for obtaining an output signal y output from the amplifier 2 are provided. It is connected.
The output signal y of the amplifier 2 obtained from the coupler 8 is given to the down converter 9.
The output signal y is down-converted to a baseband frequency by multiplying the local signal of the baseband frequency generated by the oscillator 6 by the downconverter 9, and then the AD converter (ADC) 11 through the filter unit 10. Given to.
 ADC11は、DAC4が補償信号uをアナログ信号に変換する際のサンプリングレートよりも低いサンプリングレートである低サンプリングレートで、出力信号yをデジタル信号に変換する。
 本実施形態において、増幅器2が増幅する信号xの周波数帯域幅が100MHzであるとすると、例えば、DAC4のサンプリングレートは、614.4MHzに設定される。よって、ADC11のサンプリングレートである低サンプリングレートは、614.4MHzより低い周波数に設定される。
 なお、信号xの主信号成分の周波数帯域幅は20MHzである。
The ADC 11 converts the output signal y into a digital signal at a low sampling rate that is lower than the sampling rate when the DAC 4 converts the compensation signal u into an analog signal.
In the present embodiment, if the frequency bandwidth of the signal x amplified by the amplifier 2 is 100 MHz, for example, the sampling rate of the DAC 4 is set to 614.4 MHz. Therefore, the low sampling rate that is the sampling rate of the ADC 11 is set to a frequency lower than 614.4 MHz.
The frequency bandwidth of the main signal component of the signal x is 20 MHz.
 さらに、低サンプリングレートは、信号xの周波数帯域幅よりも低く設定されていることが好ましい。
 信号xの周波数帯域幅が100MHzである場合、ADC11のサンプリングレートである低サンプリングレートとして、例えば、100MHzよりも低い値である15.36MHzに設定することができる。
Furthermore, the low sampling rate is preferably set lower than the frequency bandwidth of the signal x.
When the frequency bandwidth of the signal x is 100 MHz, the low sampling rate that is the sampling rate of the ADC 11 can be set to 15.36 MHz that is a value lower than 100 MHz, for example.
 またここで、デジタル信号としての信号x、及び出力信号yは、所定のサンプリングレートによって離散化されたサンプルデータによって構成される信号である。
 よって、デジタル信号に変換される出力信号yは、614.4MHzより低い周波数である低サンプリングレートによって離散化されたサンプル列によって構成される。
Here, the signal x as the digital signal and the output signal y are signals composed of sample data discretized at a predetermined sampling rate.
Therefore, the output signal y converted into a digital signal is constituted by a sample sequence discretized by a low sampling rate that is a frequency lower than 614.4 MHz.
 ADC11の前段に設けられているフィルタ部10は、ローパスフィルタであり、通過帯域幅が信号xの周波数帯域幅以上に設定されている。なお、本実施形態のフィルタ部10の通過帯域幅は、信号xの周波数帯域幅の約6倍に設定されており、信号xの5次歪まで通過可能に設定されている。 The filter unit 10 provided in the front stage of the ADC 11 is a low-pass filter, and the pass bandwidth is set to be equal to or larger than the frequency bandwidth of the signal x. Note that the pass bandwidth of the filter unit 10 of the present embodiment is set to about 6 times the frequency bandwidth of the signal x, and is set so as to pass up to the fifth-order distortion of the signal x.
 上記DAC4、アップコンバータ5、発振器6、増幅器2、アンテナ7、カプラ8、ダウンコンバータ9、フィルタ部10、及びADC11は、デジタル信号である補償信号uを受け付けてアナログ信号に変換した後、必要なアナログ信号処理を行うアナログ処理部12に含まれている。 The DAC 4, up-converter 5, oscillator 6, amplifier 2, antenna 7, coupler 8, down-converter 9, filter unit 10, and ADC 11 receive the compensation signal u that is a digital signal and convert it into an analog signal, then necessary It is included in an analog processing unit 12 that performs analog signal processing.
 歪補償部3は、デジタル信号である補償信号uをアナログ処理部12に対して与えるデジタル処理部13に含まれている。
 歪補償部3には、増幅器2により増幅される入力信号としての信号xと、ADC11がデジタル信号に変換した出力信号yとが与えられる。歪補償部3は、これら各信号に基づいて歪補償を行う。
The distortion compensation unit 3 is included in a digital processing unit 13 that provides a compensation signal u, which is a digital signal, to the analog processing unit 12.
The distortion compensator 3 is supplied with a signal x as an input signal amplified by the amplifier 2 and an output signal y converted into a digital signal by the ADC 11. The distortion compensation unit 3 performs distortion compensation based on these signals.
〔2. 歪補償装置について〕
 歪補償部3は、カプラ8から得られた出力信号yをフィルタ部10やADC11等を介して帰還信号として受け付け、この出力信号yと、信号xとに基づいて増幅器2のモデルを推定し、デジタル信号処理によって推定したモデルに基づいて増幅器2の歪補償を行う。
[2. About distortion compensation device)
The distortion compensation unit 3 accepts the output signal y obtained from the coupler 8 as a feedback signal via the filter unit 10, ADC 11, etc., and estimates the model of the amplifier 2 based on the output signal y and the signal x, Based on the model estimated by the digital signal processing, distortion compensation of the amplifier 2 is performed.
 つまり、本実施形態において、歪補償部3と、フィルタ部10と、ADC11とは、出力信号yを帰還信号として受け付けて信号xの歪補償を行う歪補償装置14を構成している。 That is, in this embodiment, the distortion compensation unit 3, the filter unit 10, and the ADC 11 constitute a distortion compensation device 14 that receives the output signal y as a feedback signal and compensates for distortion of the signal x.
 歪補償部3は、信号xに対して前置歪補償(Predistortion)処理を行う補償処理部20と、増幅器2のモデルにおける係数(歪補償係数)を演算する係数演算部21と、入出力信号についての遅延誤差を補正するための処理を行う遅延処理部22と、係数演算部21に与えられる信号xの信号タイミングを調整して遅延調整を行う遅延調整部23とを備えている。 The distortion compensation unit 3 includes a compensation processing unit 20 that performs predistortion processing on the signal x, a coefficient calculation unit 21 that calculates a coefficient (distortion compensation coefficient) in the model of the amplifier 2, and an input / output signal. Are provided with a delay processing unit 22 that performs a process for correcting a delay error and a delay adjustment unit 23 that adjusts the signal timing of the signal x supplied to the coefficient calculation unit 21 to adjust the delay.
 補償処理部20は、与えられる信号xに対して歪補償を行った補償信号uを表すモデルを用いて前置歪補償処理を行う。
 具体的に、補償処理部20は、例えば、下記式(1)に示すモデルを用いて、信号x[n]から補償信号u[n]を求めることで前置歪補償処理を行う。なお、nは、所定のサンプリングレートで離散化されたデジタル信号である信号xを構成するサンプル列の順序を示す番号である。
The compensation processing unit 20 performs predistortion processing using a model representing the compensation signal u that has been subjected to distortion compensation for the given signal x.
Specifically, the compensation processing unit 20 performs the predistortion compensation process by obtaining the compensation signal u [n] from the signal x [n] using, for example, a model represented by the following formula (1). Note that n is a number indicating the order of the sample sequence constituting the signal x which is a digital signal discretized at a predetermined sampling rate.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(1)は、Hammersteinモデルと呼ばれるアンプモデルを一般化したものであり、メモリ多項式型モデルとも呼ばれる。
 上記式(1)中、hk,lは、補償信号u[n]の特性を定めるために必要な係数(DPD係数)であり、下記式(2)のように表される。
The above equation (1) is a generalization of an amplifier model called a Hammerstein model, and is also called a memory polynomial model.
In the above equation (1), h k, l is a coefficient (DPD coefficient) necessary for determining the characteristics of the compensation signal u [n], and is expressed as the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本実施形態の補償処理部20は、信号x[n]と、上記DPD係数とを式(1)に示すモデルに適用して補償信号u[n]を求める。
 上記DPD係数は、係数演算部21から与えられる。
 補償処理部20は、係数演算部21からDPD係数が与えられると、上記モデルにおけるDPD係数を、係数演算部21から与えられた新たなDPD係数に更新し、補償信号u[n]を求める。
The compensation processing unit 20 of the present embodiment applies the signal x [n] and the DPD coefficient to the model shown in Expression (1) to obtain the compensation signal u [n].
The DPD coefficient is given from the coefficient calculation unit 21.
When the DPD coefficient is given from the coefficient calculation unit 21, the compensation processing unit 20 updates the DPD coefficient in the model to a new DPD coefficient given from the coefficient calculation unit 21, and obtains a compensation signal u [n].
 なお、本実施形態では、アンプモデルとして、Hammersteinモデルを用いた例を示したが、他のモデル、例えば、Wienerモデル、又はWiener-Hammersteinモデルを用いることもできる。 In the present embodiment, an example in which the Hammerstein model is used as the amplifier model is shown, but another model, for example, a Wiener model or a Wiener-Hammerstein model can also be used.
 係数演算部21は、DPD係数を演算する機能と、演算したDPD係数を補償処理部20に与えてDPD係数を更新させる機能を有している。
 係数演算部21には、ADC11によってデジタル信号に変換された出力信号yと、遅延調整部23を介して与えられる信号xとが与えられる。
 係数演算部21は、下記式(3)に示すように、信号xと、出力信号yとの間の残差Resを求める。
      残差Res = y - x   ・・・(3)
The coefficient calculation unit 21 has a function of calculating a DPD coefficient and a function of updating the DPD coefficient by supplying the calculated DPD coefficient to the compensation processing unit 20.
The coefficient calculation unit 21 is supplied with an output signal y converted into a digital signal by the ADC 11 and a signal x given through the delay adjustment unit 23.
The coefficient calculation unit 21 obtains a residual Res between the signal x and the output signal y as shown in the following formula (3).
Residual Res = y−x (3)
 なお、信号yは、DAC4のサンプリングレートよりも低い低サンプリングレートでAD変換されているので、例えば、ADC11のサンプリングレート(低サンプリングレート)が、信号xのサンプリングレートよりも低い場合、信号xを構成しているサンプル列の内、時間軸上で対応する出力信号yのサンプルが存在しないサンプルが存在する可能性がある。本実施形態の係数演算部21は、信号xのサンプル列の内、時間軸上で対応する出力信号yのサンプルが存在しないサンプルについては残差を求めず、互いに対応するサンプルが存在する場合に残差Resを求めるように構成されている。 Since the signal y is AD-converted at a low sampling rate lower than the sampling rate of the DAC 4, for example, when the sampling rate (low sampling rate) of the ADC 11 is lower than the sampling rate of the signal x, the signal x is There is a possibility that there is a sample in which the sample of the corresponding output signal y does not exist on the time axis in the sample sequence. The coefficient calculation unit 21 of the present embodiment does not obtain a residual for a sample in which there is no sample of the corresponding output signal y on the time axis in the sample sequence of the signal x, and when there are samples corresponding to each other. It is configured to obtain the residual Res.
 係数演算部21は、前回演算したDPD係数を参照しつつ、残差Resの2乗平均を最小としうる新たなDPD係数、つまり信号xと出力信号yとの間の歪をできるだけ補償し得るDPD係数を回帰的に求める。 The coefficient calculation unit 21 refers to the previously calculated DPD coefficient, and can compensate for the new DPD coefficient that can minimize the mean square of the residual Res, that is, the distortion between the signal x and the output signal y as much as possible. The coefficient is obtained recursively.
 このように、本実施形態では、増幅器2に増幅される入力信号としての信号xと、増幅器2が出力する出力信号yとからDPD係数を求めることで、上述の歪補償のためのモデルを推定する、いわゆる直接学習法を採用している。 As described above, in this embodiment, the above-described distortion compensation model is estimated by obtaining the DPD coefficient from the signal x as the input signal amplified by the amplifier 2 and the output signal y output from the amplifier 2. The so-called direct learning method is adopted.
 上記構成の歪補償装置14では、ADC11が、低サンプリングレートで出力信号yをAD変換し、歪補償部3は、一般的に低サンプリングレートよりも高いサンプリングレートでサンプリングされている信号xと、低サンプリングレートでAD変換された出力信号yとに基づいて歪補償を行うので、広帯域の信号を処理する場合にも、その広帯域の信号に応じてより高いサンプリングレートのADC11を用いる必要がないので、低コスト化が可能となる。 In the distortion compensation device 14 configured as described above, the ADC 11 AD-converts the output signal y at a low sampling rate, and the distortion compensation unit 3 generally includes a signal x sampled at a sampling rate higher than the low sampling rate, Since distortion compensation is performed based on the output signal y AD-converted at a low sampling rate, it is not necessary to use the ADC 11 having a higher sampling rate in accordance with the wideband signal when processing a wideband signal. Cost reduction is possible.
 なお、上述したように、低サンプリングレートは、信号xの周波数帯域幅よりも低く設定されていてもよく、この場合、低サンプリングレートをより低い値に設定することができ、低コスト化により有利である。 As described above, the low sampling rate may be set lower than the frequency bandwidth of the signal x. In this case, the low sampling rate can be set to a lower value, which is advantageous for cost reduction. It is.
 出力信号yのサンプル数は、低サンプリングレートでAD変換されることで、DA変換する際のサンプリングレートと同じサンプリングレートでAD変換する場合よりも相対的に少ない場合がある。この点、本実施形態では、直接学習法を採用しているので、出力信号が低サンプリングレートであるとしても、その分観測期間を延ばすことにより、精度を低下させることなく歪補償を行うことができる。 The number of samples of the output signal y may be relatively smaller than that when AD conversion is performed at the same sampling rate as that at the time of DA conversion due to AD conversion at a low sampling rate. In this regard, since the direct learning method is employed in this embodiment, even if the output signal has a low sampling rate, distortion compensation can be performed without reducing accuracy by extending the observation period accordingly. it can.
 さらに、本実施形態では、増幅器2とADC11との間に接続されているフィルタ部10の通過帯域幅が、信号xの周波数帯域幅以下に設定されている。
 この場合、フィルタ部10の通過帯域幅は、ADC11のサンプリングレートよりも大きくなるため、出力信号yの内、低サンプリングレートによって取得される帯域の信号成分だけでなくその信号成分の周辺帯域の信号も折り返し成分としてADC11に与えられる。これによって、ADC11は、低サンプリングレートによって取得される帯域の信号成分の他、その信号成分の周辺帯域の信号も折り返し成分として取得することができる。
 これにより、出力信号に生じる歪によって発生する信号成分であって、出力信号の隣接帯域に現れる信号成分の情報を失うことなく取得することができるため、精度を低下させることなく歪補償を行うことができる。
Further, in the present embodiment, the pass bandwidth of the filter unit 10 connected between the amplifier 2 and the ADC 11 is set to be equal to or less than the frequency bandwidth of the signal x.
In this case, since the pass bandwidth of the filter unit 10 is larger than the sampling rate of the ADC 11, not only the signal component of the band acquired by the low sampling rate but also the signal of the peripheral band of the signal component in the output signal y. Is also given to the ADC 11 as a folding component. As a result, the ADC 11 can acquire not only the signal component in the band acquired at the low sampling rate but also the signal in the peripheral band of the signal component as the folded component.
As a result, it is possible to obtain signal components that are generated due to distortion generated in the output signal without losing information on the signal components that appear in the adjacent band of the output signal, so that distortion compensation is performed without reducing accuracy. Can do.
 なお、本実施形態のフィルタ部10の通過帯域幅は、上述のように、信号xの周波数帯域幅の約6倍に設定されており、信号xの5次歪まで通過可能に設定されている。
 このように、フィルタ部10の通過帯域幅は、増幅器2が信号xを増幅したことによって出力信号yに生じる歪成分(5次歪)の周波数帯域幅以上に設定されていてもよく、この場合、出力信号yに生じる歪によって発生する信号成分であって、出力信号yの隣接帯域に現れる信号成分の情報をより効果的に取得することができる。
Note that, as described above, the pass bandwidth of the filter unit 10 of the present embodiment is set to about 6 times the frequency bandwidth of the signal x, and is set to pass up to the fifth-order distortion of the signal x. .
As described above, the pass bandwidth of the filter unit 10 may be set to be equal to or greater than the frequency bandwidth of the distortion component (fifth-order distortion) generated in the output signal y when the amplifier 2 amplifies the signal x. Thus, it is possible to more effectively acquire information on signal components that are generated by distortion generated in the output signal y and appear in the adjacent band of the output signal y.
 遅延調整部23は、係数演算部21に与えられる信号xのタイミングを調整する機能を有している。遅延調整部23は、遅延処理部22から与えられる遅延誤差の推定値に関する情報に基づいて信号xのタイミングを調整する。 The delay adjusting unit 23 has a function of adjusting the timing of the signal x given to the coefficient calculating unit 21. The delay adjusting unit 23 adjusts the timing of the signal x based on the information regarding the estimated value of the delay error given from the delay processing unit 22.
 係数演算部21に与えられる信号xと、出力信号yとは、互いに対応するサンプル同士で処理されるように、両信号のタイミングをできるだけ一致させて係数演算部21に与える必要がある。互いに対応するサンプル同士で演算しなければ正確なDPD係数を求めることができないからである。 The signal x and the output signal y supplied to the coefficient calculation unit 21 need to be supplied to the coefficient calculation unit 21 with the timings of both signals matched as much as possible so that the samples corresponding to each other are processed. This is because an accurate DPD coefficient cannot be obtained unless calculation is performed between samples corresponding to each other.
 出力信号yは、アナログ処理部12のフィルタ部10やADC11を通過して係数演算部21に到達する。よって、出力信号yは、信号xよりも、遅延して係数演算部21に到達する。
 このため、遅延調整部23は、補償処理部20の前段から信号xを取得し、取得した信号xのタイミングを調整することによって、係数演算部21に与えられたときにおける、出力信号yのタイミングと、信号xのタイミングとの間に生じる遅延誤差が解消されるように補正する。
The output signal y passes through the filter unit 10 and the ADC 11 of the analog processing unit 12 and reaches the coefficient calculation unit 21. Therefore, the output signal y reaches the coefficient calculator 21 with a delay from the signal x.
For this reason, the delay adjustment unit 23 acquires the signal x from the previous stage of the compensation processing unit 20, and adjusts the timing of the acquired signal x, thereby giving the timing of the output signal y when given to the coefficient calculation unit 21. And a delay error occurring between the timing of the signal x and the timing of the signal x are corrected.
 ここで、一般に、歪補償を行う際の増幅される入力信号と、帰還信号との遅延誤差は、周波数帯域幅が100MHzの信号であれば、1.6ns(614.4MHz)程度の範囲に収まる精度となるように補正する必要があり、このように遅延を補正することによって、歪補償処理において必要な精度を維持することができる。なお、入力信号と、帰還信号との遅延誤差は、両信号の相関値に基づいて求められる。 Here, in general, the delay error between the input signal to be amplified and the feedback signal when performing distortion compensation falls within a range of about 1.6 ns (614.4 MHz) if the signal has a frequency bandwidth of 100 MHz. It is necessary to perform correction so as to achieve accuracy, and by correcting the delay in this way, it is possible to maintain the accuracy required in the distortion compensation processing. Note that the delay error between the input signal and the feedback signal is obtained based on the correlation value of both signals.
 帰還信号(増幅器の出力信号)が、増幅器により増幅される入力信号をDA変換する際のサンプリングレートと同じサンプリングレートでAD変換される場合、入力信号のタイミングと、帰還信号のタイミングとの遅延誤差については、高い精度で推定し補正することができる。入力信号をDA変換する際のサンプリングレートが、遅延誤差を精度よく補正し得る程度の周波数(例えば、信号の周波数帯域幅の5~6倍程度)に設定され、遅延誤差も同程度の精度で推定できるからである。 When the feedback signal (amplifier output signal) is AD-converted at the same sampling rate as the DA conversion of the input signal amplified by the amplifier, a delay error between the input signal timing and the feedback signal timing Can be estimated and corrected with high accuracy. The sampling rate for DA conversion of the input signal is set to a frequency that can accurately correct the delay error (for example, about 5 to 6 times the frequency bandwidth of the signal), and the delay error has the same accuracy. This is because it can be estimated.
 しかし、本実施形態の歪補償装置14(歪補償部3)では、低サンプリングレートでAD変換された出力信号yと、一般的には低サンプリングレートよりも高いサンプリングレートでサンプリングされている信号xとを用いて歪補償処理を行うため、信号xのタイミングと、出力信号yのタイミングとの間の遅延誤差を推定し補正しようとすると、低サンプリングレートに対応する周期の長さよりも細かい精度では遅延誤差を推定し補正できないおそれがある。 However, in the distortion compensation device 14 (distortion compensation unit 3) of the present embodiment, the output signal y AD-converted at a low sampling rate and the signal x that is generally sampled at a sampling rate higher than the low sampling rate. Therefore, if a delay error between the timing of the signal x and the timing of the output signal y is estimated and corrected, the accuracy is finer than the length of the period corresponding to the low sampling rate. There is a possibility that the delay error cannot be estimated and corrected.
 例えば、信号xの周波数帯域幅が100MHzであるとすると、DAC4のサンプリングレートは、600MHz程度に設定される。すると、ADC11は600MHzよりも低い低サンプリングレートに設定されるので、信号xのタイミングと、出力信号yのタイミングとの間に生じる遅延誤差を、サンプリングレートが600MHzの周期の長さの単位では推定することができない。 For example, if the frequency bandwidth of the signal x is 100 MHz, the sampling rate of the DAC 4 is set to about 600 MHz. Then, since the ADC 11 is set to a low sampling rate lower than 600 MHz, the delay error generated between the timing of the signal x and the timing of the output signal y is estimated in the unit of the length of the cycle of the sampling rate of 600 MHz. Can not do it.
 この点、本実施形態の遅延処理部22は、低サンプリングレートでAD変換された出力信号yのタイミングと、信号xのタイミングとの間に生じる遅延誤差の推定値を、低サンプリングレートに対応する周期の長さよりも小さい期間の単位で求めて補正することができる。
 つまり、出力信号yを低サンプリングレートでAD変換したにも関わらず、低サンプリングレートに対応する周期の長さよりも小さい期間の単位で遅延誤差の推定値を求めることができるので、低サンプリングレートに対応する周期の長さよりも細かい精度で、より精度よく遅延誤差を補正することができる。
 この結果、歪補償処理において必要な精度を維持することができる。
 以下、遅延処理部22について説明する。
In this regard, the delay processing unit 22 according to the present embodiment corresponds to an estimated value of the delay error generated between the timing of the output signal y AD-converted at the low sampling rate and the timing of the signal x to the low sampling rate. It can be determined and corrected in units of periods smaller than the length of the period.
That is, although the output signal y is AD converted at a low sampling rate, an estimated value of the delay error can be obtained in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate. The delay error can be corrected more accurately with a finer accuracy than the corresponding period length.
As a result, it is possible to maintain the necessary accuracy in the distortion compensation process.
Hereinafter, the delay processing unit 22 will be described.
〔3. 第1実施形態に係る遅延処理部について〕
 遅延処理部22は、歪補償部3に与えられる出力信号yと、信号xとの間の遅延誤差の推定値を求める機能を有している。また、遅延処理部22は、求めた遅延誤差を、遅延誤差に関する情報として遅延調整部23に与え、当該遅延調整部23に信号xのタイミングを調整させる。このように、遅延処理部22は、遅延誤差の推定値を求め、出力信号yのタイミングと、信号xのタイミングとの間の遅延誤差が解消されるように補正する遅延調整処理を行う。
[3. Regarding Delay Processing Unit According to First Embodiment]
The delay processing unit 22 has a function of obtaining an estimated value of a delay error between the output signal y given to the distortion compensation unit 3 and the signal x. Further, the delay processing unit 22 gives the obtained delay error to the delay adjustment unit 23 as information on the delay error, and causes the delay adjustment unit 23 to adjust the timing of the signal x. In this way, the delay processing unit 22 obtains an estimated value of the delay error, and performs a delay adjustment process that corrects the delay error between the timing of the output signal y and the timing of the signal x.
 また、遅延処理部22は、係数演算部21を制御し、補償処理部20におけるDPD係数の更新を制御する機能を有している。遅延処理部22は、遅延調整処理を行う上で必要に応じて、係数演算部21にDPD係数の出力を中止させて、補償処理部20におけるDPD係数の更新を中止させたり、係数演算部21にDPD係数の出力を実行させて、補償処理部20におけるDPD係数の更新を実行させたりすることができる。 The delay processing unit 22 has a function of controlling the coefficient calculation unit 21 and controlling the update of the DPD coefficient in the compensation processing unit 20. The delay processing unit 22 causes the coefficient calculation unit 21 to stop outputting the DPD coefficient as necessary in performing the delay adjustment process, or to stop updating the DPD coefficient in the compensation processing unit 20, or the coefficient calculation unit 21. It is possible to cause the compensation processing unit 20 to update the DPD coefficient by executing the output of the DPD coefficient.
 遅延処理部22には、補償処理部20の前段部分から取得された信号xと、ADC11からの出力信号yとが与えられる。また、遅延処理部22には、補償処理部20の後段部分から取得された補償信号uも与えられる。
 遅延処理部22は、当該遅延処理部22に与えられる出力信号yと、信号xとに基づいて、出力信号yのタイミングと、入力信号xのタイミングとの間の遅延誤差の推定値(出力信号yの遅延誤差の推定値)を演算する第1遅延誤差推定部22aを備えている。
 また、遅延処理部22は、信号xと、補償信号uとに基づいて、補償処理部20が行う前置歪補償処理に起因する入力信号xのタイミングと、補償信号uのタイミングとの間の遅延誤差の推定値(DPDの遅延誤差の推定値)を演算する第2遅延誤差推定部22bを備えている。
The delay processing unit 22 is provided with the signal x acquired from the previous stage of the compensation processing unit 20 and the output signal y from the ADC 11. In addition, the delay processing unit 22 is also given a compensation signal u acquired from the subsequent stage of the compensation processing unit 20.
The delay processing unit 22 estimates the delay error between the timing of the output signal y and the timing of the input signal x (output signal) based on the output signal y and the signal x given to the delay processing unit 22. a first delay error estimator 22a for calculating a delay error estimate value of y).
In addition, the delay processing unit 22 is based on the signal x and the compensation signal u, between the timing of the input signal x resulting from the predistortion processing performed by the compensation processing unit 20 and the timing of the compensation signal u. A second delay error estimator 22b for calculating an estimated value of delay error (estimated value of delay error of DPD) is provided.
 図2は、第1実施形態に係る遅延処理部22が行う遅延調整処理の手順を示すフローチャートである。この図2に示すフローチャートは、無線通信装置(歪補償装置14)を起動し、遅延処理部22が動作を開始した直後からの手順を示している。 FIG. 2 is a flowchart showing a procedure of delay adjustment processing performed by the delay processing unit 22 according to the first embodiment. The flowchart shown in FIG. 2 shows a procedure immediately after the wireless communication device (distortion compensation device 14) is activated and the delay processing unit 22 starts its operation.
 まず、遅延処理部22は、動作を開始すると、処理の反復回数を示す反復回数Iを「1」に設定する(ステップS101)。なお、反復回数Iは、後述するように、処理のループを終えるごとに「1」ずつ加算されるため、無線通信装置(歪補償部3)を起動してからの経過時間を示している。
 次いで、遅延処理部22は、信号x及び出力信号yを取得する(ステップS102)。このとき、遅延処理部22は、信号x及び出力信号yを取得するために設定された所定期間としての取得期間に含まれる信号x及び出力信号yそれぞれのサンプル列を取得する。
First, when starting the operation, the delay processing unit 22 sets the number of iterations I indicating the number of iterations of processing to “1” (step S101). As will be described later, the number of iterations I is incremented by “1” every time the processing loop is completed, and thus indicates the elapsed time since the start of the wireless communication apparatus (distortion compensation unit 3).
Next, the delay processing unit 22 acquires the signal x and the output signal y (step S102). At this time, the delay processing unit 22 acquires the sample sequences of the signal x and the output signal y included in the acquisition period as a predetermined period set to acquire the signal x and the output signal y.
 次いで遅延処理部22は、信号x及び出力信号yに対してアップサンプリング処理を行う(ステップS103)。信号x及び出力信号yは、後述するように、互いに相関値を求め遅延誤差の推定値を求めるために用いられる。このため、より精度よく相関値を求めることができるように、信号x及び出力信号yに対して、DAC4のサンプリングレート以上のサンプリングレートとなるようにアップサンプリング処理を行う。
 なお、アップサンプリング処理の倍率は、例えば、100倍程度に設定することができる。ADC11のサンプリングレート(低サンプリングレート)が、15.36MHzである場合、出力信号yは、サンプリングレートが約1.6GHzにアップサンプリングされる。
Next, the delay processing unit 22 performs upsampling processing on the signal x and the output signal y (step S103). As will be described later, the signal x and the output signal y are used to obtain a correlation value with each other and to obtain an estimated value of delay error. Therefore, the upsampling process is performed on the signal x and the output signal y so that the sampling rate is equal to or higher than the sampling rate of the DAC 4 so that the correlation value can be obtained with higher accuracy.
Note that the magnification of the upsampling process can be set to about 100 times, for example. When the sampling rate (low sampling rate) of the ADC 11 is 15.36 MHz, the output signal y is up-sampled to a sampling rate of about 1.6 GHz.
 信号x及び出力信号yに対してアップサンプリング処理を行った後、遅延処理部22は、出力信号yのタイミングと、入力信号xのタイミングとの間の遅延誤差推定値Δτを求めるための演算を、第1遅延誤差推定部22aに実行させる。 After performing the upsampling process on the signal x and the output signal y, the delay processing unit 22 performs an operation for obtaining a delay error estimated value Δτ between the timing of the output signal y and the timing of the input signal x. The first delay error estimator 22a is executed.
 第1遅延誤差推定部22aは、ステップS102で取得された出力信号yと、信号xとの間の相関値を求め、この相関値に基づいて、出力信号yのタイミングと、入力信号xのタイミングとの間の遅延誤差の推定値を演算により求める(ステップS104)。
 出力信号yと、信号xとの間の相関値は、例えば、下記式(4)のように表される。
   相関値R(τ) = x(t-τ) × y(t)  ・・・(4)
The first delay error estimation unit 22a obtains a correlation value between the output signal y acquired in step S102 and the signal x, and based on the correlation value, the timing of the output signal y and the timing of the input signal x An estimated value of the delay error between the two is obtained by calculation (step S104).
The correlation value between the output signal y and the signal x is expressed by, for example, the following formula (4).
Correlation value R (τ) = x * (t−τ) × y (t) (4)
 上記式(4)中、tは時間、τは遅延誤差(遅延量)、x(t-τ)は、x(t-τ)の複素共役を示している。
 第1遅延誤差推定部22aは、上記式(4)に基づいて、相関値R(τ)を求め、下記式(5)に示すように、上記相関値R(τ)が最大となるτを、出力信号yの遅延誤差推定値Δτ(I)として求める。
 出力信号yの遅延誤差推定値Δτ(I) = argmax|R(τ)|
                      ・・・(5)
In the above equation (4), t is time, τ is a delay error (delay amount), and x * (t−τ) is a complex conjugate of x (t−τ).
The first delay error estimator 22a obtains the correlation value R (τ) based on the above equation (4), and calculates τ that maximizes the correlation value R (τ) as shown in the following equation (5). The delay error estimated value Δτ (I) of the output signal y is obtained.
Delay error estimate value Δτ (I) = argmax | R (τ) |
... (5)
 上記式(5)中、Δτ(I)は、反復回数Iのときの取得期間で取得した出力信号yの遅延誤差の推定値を示している。 In the above equation (5), Δτ (I) represents an estimated value of the delay error of the output signal y acquired in the acquisition period when the number of iterations is I.
 次いで、遅延処理部22は、反復回数Iが、予め設定された設定回数W以上であるか否かを判断する(ステップS105)。
 反復回数Iが設定回数W以上でないと判断すると、遅延処理部22は、反復回数Iに「1」を加え(ステップS106)、ステップS102に戻り、前回信号を取得した取得期間とは異なる取得期間の信号x及び出力信号yを取得して、再度、出力信号yの遅延誤差推定値Δτ(I)を求める(ステップS102~S104)。
 遅延処理部22は、反復回数Iが設定回数Wに達するまで、ステップS102~S104を繰り返すことで、出力信号yの遅延誤差推定値Δτ(I)を、互いに異なる複数の取得期間ごとに求める。
Next, the delay processing unit 22 determines whether or not the number of iterations I is equal to or greater than a preset number of times W (step S105).
When determining that the number of iterations I is not equal to or greater than the set number of times W, the delay processing unit 22 adds “1” to the number of iterations I (step S106), returns to step S102, and an acquisition period different from the acquisition period in which the previous signal was acquired. The signal x and the output signal y are obtained, and the delay error estimated value Δτ (I) of the output signal y is obtained again (steps S102 to S104).
The delay processing unit 22 repeats steps S102 to S104 until the number of iterations I reaches the set number W, thereby obtaining the delay error estimated value Δτ (I) of the output signal y for each of a plurality of different acquisition periods.
 一方、ステップS105において、反復回数Iが設定回数W以上であると判断すると、遅延処理部22は、さらに、反復回数Iが設定回数Wであるか否かを判断する(ステップS107)。
 反復回数Iが設定回数Wであると判断すると、遅延処理部22は、下記式(6)に基づいて、現状の出力信号yの遅延誤差推定値Δτを求める。遅延処理部22は、式(6)に示すように、反復回数Iが「1」から設定回数Wに至るまでに求めた、各反復回数Iごとの出力信号yの遅延誤差推定値Δτ(I)(I=1,2,3・・・W)の平均値を求めることによって、現状の出力信号yの遅延誤差推定値Δτを求める(ステップS108)。
 現状の出力信号yの遅延誤差推定値Δτ
   = (Δτ(1)+Δτ(2)+Δτ(3)+ ・・・
                 +Δτ(W)) / W
                      ・・・(6)
On the other hand, if it is determined in step S105 that the number of iterations I is greater than or equal to the set number W, the delay processing unit 22 further determines whether or not the number of iterations I is the set number of times W (step S107).
If it is determined that the number of iterations I is the set number of times W, the delay processing unit 22 obtains the current delay error estimated value Δτ I of the output signal y based on the following equation (6). As shown in the equation (6), the delay processing unit 22 calculates the delay error estimate Δτ (I of the output signal y for each iteration number I obtained from the iteration number I ranging from “1” to the set number W. ) (I = 1, 2, 3,... W) to obtain an average value of delay error estimated value Δτ I of the current output signal y (step S108).
The estimated delay error value Δτ I of the current output signal y
= (Δτ (1) + Δτ (2) + Δτ (3) +
+ Δτ (W)) / W
... (6)
 次いで、遅延処理部22は、補償処理部20による処理によって生じる遅延誤差の推定値を、第2遅延誤差推定部22bに求めさせる(ステップS109)。 Next, the delay processing unit 22 causes the second delay error estimating unit 22b to obtain an estimated value of the delay error caused by the processing by the compensation processing unit 20 (step S109).
 第2遅延誤差推定部22bは、信号xと、補償信号uとの間の相関値を求め、この相関値に基づいて、入力信号xのタイミングと、補償信号uのタイミングとの間の遅延誤差推定値Δiを求める。第2遅延誤差推定部22bは、相関値を求めて、DPDの遅延誤差推定値Δiを求める。なお、相関値、及び相関値に基づくDPDの遅延誤差推定値の演算は、上記式(4)及び式(5)に示す演算と同様である。 The second delay error estimation unit 22b obtains a correlation value between the signal x and the compensation signal u, and based on this correlation value, a delay error between the timing of the input signal x and the timing of the compensation signal u. An estimated value Δi is obtained. The second delay error estimator 22b obtains a correlation value and obtains a DPD delay error estimate Δi. The calculation of the correlation value and the DPD delay error estimated value based on the correlation value is the same as the calculation shown in the above equations (4) and (5).
 さらに、遅延処理部22は、下記式(7)に示すように、第2遅延誤差推定部22bが求めたDPDの遅延誤差推定値Δiを、現状の出力信号yの遅延誤差推定値Δτに加算(減算)し、遅延調整部23に調整させるべき遅延誤差推定値Δτを求める(ステップS110)。
   遅延誤差推定値Δτ = Δτ-(K × Δi)
                       ・・・(7)
Furthermore, as shown in the following equation (7), the delay processing unit 22 converts the DPD delay error estimated value Δi obtained by the second delay error estimating unit 22b into the current delay error estimated value Δτ I of the output signal y. Addition (subtraction) is performed to obtain a delay error estimated value Δτ to be adjusted by the delay adjustment unit 23 (step S110).
Delay error estimate Δτ = Δτ I − (K p × Δi)
... (7)
 このとき、遅延処理部22は、DPDの遅延誤差推定値Δiに対して、補正係数Kを乗じて加算する。この補正係数Kは、DPDの遅延に対する補正の度合を定める係数であり、出力信号yの遅延に対するDPDの遅延の影響が、できるだけ低減することができる値に設定される。具体的には、補正係数Kは、「0」以上、「1」以下の値に設定される。 At this time, the delay processing unit 22 multiplies the DPD delay error estimated value Δi by the correction coefficient K P and adds it. This correction coefficient K P is a coefficient that determines the degree of correction for the delay of the DPD, and is set to a value that can reduce the influence of the delay of the DPD on the delay of the output signal y as much as possible. Specifically, the correction coefficient K P is set to a value between “0” and “1”.
 次いで、遅延処理部22は、求めた遅延誤差推定値Δτを示す情報を遅延調整部23に与えて、遅延調整部23に信号xのタイミングを調整させる(ステップS111)。
 遅延調整部23は、与えられる遅延誤差推定値Δτを示す情報に基づいて信号xのタイミングを調整し、係数演算部21における、出力信号yのタイミングと、信号xのタイミングとの間に生じる遅延誤差が解消されるように補正する。
Next, the delay processing unit 22 gives information indicating the obtained delay error estimated value Δτ to the delay adjusting unit 23, and causes the delay adjusting unit 23 to adjust the timing of the signal x (step S111).
The delay adjusting unit 23 adjusts the timing of the signal x based on the given information indicating the estimated delay error value Δτ, and the delay generated between the timing of the output signal y and the timing of the signal x in the coefficient calculating unit 21. Correct so that the error is eliminated.
 これによって、補償処理部20による前置歪補償処理において必要な精度を維持できる程度に、係数演算部21における、出力信号yのタイミングと、信号xのタイミングとの間に生じる遅延誤差を補正することができる。 As a result, the delay error generated between the timing of the output signal y and the timing of the signal x in the coefficient calculation unit 21 is corrected to such an extent that the necessary accuracy in the predistortion processing by the compensation processing unit 20 can be maintained. be able to.
 遅延調整部23に信号xのタイミングを調整させた遅延処理部22は、係数演算部21にDPD係数の演算を開始させるとともに、補償処理部20のDPD係数の更新を開始させる(ステップS112)。これによって、補償処理部20による前置歪補償処理が開始される。 The delay processing unit 22 having adjusted the timing of the signal x by the delay adjustment unit 23 causes the coefficient calculation unit 21 to start calculating the DPD coefficient and to start updating the DPD coefficient of the compensation processing unit 20 (step S112). Thereby, the predistortion compensation processing by the compensation processing unit 20 is started.
 その後、遅延処理部22は、ステップS106に進み、反復回数Iに「1」を加えて(ステップS106)、ステップS102に戻り、再度、ステップS102~105を経て、現状の反復回数Iで取得した出力信号yの遅延誤差推定値Δτ(I)を求め、ステップS107に進む。 Thereafter, the delay processing unit 22 proceeds to step S106, adds “1” to the number of iterations I (step S106), returns to step S102, and again obtains the current number of iterations I through steps S102 to S105. The delay error estimated value Δτ (I) of the output signal y is obtained, and the process proceeds to step S107.
 反復回数Iが設定回数Wであると判断された以降は、反復回数Iは、設定回数Wより大きくなるので、遅延処理部22は、ステップS107において、反復回数Iが設定回数Wではないと判断する(ステップS107)。 After it is determined that the number of iterations I is the set number of times W, the number of times of iteration I is greater than the set number of times W, so the delay processing unit 22 determines in step S107 that the number of iterations I is not the set number of times W. (Step S107).
 この場合、遅延処理部22は、下記式(8)に基づいて、現状の出力信号yの遅延誤差推定値Δτを求める(ステップS113)。
  現状の出力信号yの遅延誤差推定値Δτ 
      = β・ΔτI-1+(1-β)・argmax|R(τ)|
      = β・ΔτI-1+(1-β)・Δτ(I)
                        ・・・(8)
In this case, the delay processing unit 22 obtains the current delay error estimated value Δτ I of the output signal y based on the following equation (8) (step S113).
The estimated delay error value Δτ I of the current output signal y
= Β · Δτ I-1 + (1-β) · argmax | R (τ) |
= Β · Δτ I-1 + (1-β) · Δτ (I)
... (8)
 上記式(8)において、βは時定数である。遅延処理部22は、反復回数Iが設定回数W以上となった後は、反復するごとに得られる遅延誤差推定値Δτ(I)に時定数βを乗算した値を過去の遅延誤差推定値ΔτI-1に加算することで移動平均値を演算する。遅延処理部22は、この移動平均値を、現状の出力信号yの遅延誤差推定値Δτとして求める。なお、時定数βは、0以上でかつ1未満の数値に設定される。 In the above formula (8), β is a time constant. After the number of iterations I becomes equal to or greater than the set number of times W, the delay processing unit 22 uses a value obtained by multiplying the delay error estimated value Δτ (I) obtained for each iteration by the time constant β to a past delay error estimated value Δτ. The moving average value is calculated by adding to I-1 . The delay processing unit 22 obtains this moving average value as a delay error estimated value Δτ I of the current output signal y. The time constant β is set to a numerical value greater than or equal to 0 and less than 1.
 この時定数βをできるだけ大きく設定すれば、式(8)中において、新たに加算される反復回数Iの遅延誤差推定値Δτ(I)が、現状の出力信号yの遅延誤差推定値Δτに生じる変動を抑制でき、安定した遅延誤差推定値Δτを得ることができる。
 例えば、設定回数Wを「100」に設定したとすると、時定数βは、「0.999」に設定される。
If this time constant β is set as large as possible, the delay error estimated value Δτ (I) of the newly added number of iterations I in equation (8) becomes the current delay error estimated value Δτ I of the output signal y. The fluctuation that occurs can be suppressed, and a stable delay error estimated value Δτ I can be obtained.
For example, if the set number of times W is set to “100”, the time constant β is set to “0.999”.
 その後、遅延処理部22は、ステップS109に進み、上記と同様の処理を行うことで、式(7)で表される、遅延調整部23に調整させるべき遅延誤差推定値Δτを求め、遅延調整部23に信号xのタイミングを調整させる。 Thereafter, the delay processing unit 22 proceeds to step S109, and performs the same processing as described above, thereby obtaining a delay error estimated value Δτ to be adjusted by the delay adjustment unit 23, which is expressed by Expression (7), and delay adjustment. The unit 23 adjusts the timing of the signal x.
 以上のように、遅延処理部22は、遅延調整処理を行うことによって、補償処理部20による前置歪補償処理において必要な精度を維持できる程度に、係数演算部21における、出力信号yのタイミングと、信号xのタイミングとの間に生じる遅延誤差の推定値を精度よく求めることができ、精度よく遅延誤差を補正することができる。 As described above, the delay processing unit 22 performs the delay adjustment process, so that the timing required for the output signal y in the coefficient calculation unit 21 can be maintained to such an extent that the accuracy necessary for the predistortion processing by the compensation processing unit 20 can be maintained. And the estimated value of the delay error that occurs between the timing of the signal x and the delay error can be corrected with high accuracy.
 本実施形態では、遅延処理部22は、低サンプリングレートでAD変換された出力信号yのタイミングと、信号xのタイミングとの間の遅延誤差推定値Δτ(I)を、互いに異なる複数の取得期間ごとに求め、複数の取得期間ごとの各遅延誤差推定値Δτ(I)から求められる平均値を、低サンプリングレートでAD変換された出力信号yのタイミングと、信号xのタイミングとの間の遅延誤差推定値Δτとして求める。 In the present embodiment, the delay processing unit 22 obtains the delay error estimated value Δτ (I) between the timing of the output signal y AD-converted at the low sampling rate and the timing of the signal x from a plurality of different acquisition periods. A delay between the timing of the output signal y obtained by AD conversion at a low sampling rate and the average value obtained from each delay error estimated value Δτ (I) for each of a plurality of acquisition periods and the timing of the signal x It is obtained as an error estimated value Δτ I.
 ここで、出力信号yのタイミングと、信号xのタイミングとの間の遅延誤差の真値は、経時的に大きく変動しないので、複数の取得期間ごとの各遅延誤差推定値Δτ(I)の値にばらつきが生じたとしても、各遅延誤差推定値Δτ(I)の値から平均値、又は移動平均値を求めることで、ADC11のサンプリングレートに対応する周期の長さよりも小さい期間の単位で遅延誤差の推定値を求めることができ、この結果、より精度よく遅延誤差の推定値を求めることができる。 Here, since the true value of the delay error between the timing of the output signal y and the timing of the signal x does not vary greatly with time, the value of each delay error estimated value Δτ (I) for each of a plurality of acquisition periods. Even if a variation occurs, the average value or the moving average value is obtained from each delay error estimated value Δτ (I), so that the delay is performed in a unit of a period smaller than the length of the period corresponding to the sampling rate of the ADC 11. An estimated value of error can be obtained, and as a result, an estimated value of delay error can be obtained more accurately.
 このように、出力信号yを低サンプリングレートでAD変換したにも関わらず、低サンプリングレートに対応する周期の長さよりも小さい期間の単位で遅延誤差を求めることができるので、低サンプリングレートに対応する周期の長さよりも細かい精度で、より精度よく遅延誤差を補正することができる。
 この結果、歪補償処理において必要な精度を維持することができる。
As described above, the delay error can be obtained in a unit of a period smaller than the length of the period corresponding to the low sampling rate in spite of the AD conversion of the output signal y at the low sampling rate. The delay error can be corrected more accurately with a precision finer than the length of the period to be performed.
As a result, it is possible to maintain the necessary accuracy in the distortion compensation process.
 また、補償処理部20が行う前置歪補償処理に生じる遅延があると、遅延誤差推定値Δτの精度が低下するおそれがある。
 この点、本実施形態では、遅延調整部23に調整させるべき遅延誤差推定値Δτは、現状の出力信号yの遅延誤差推定値Δτに加えて、DPDの遅延誤差推定値Δiも加算されて求められるので、遅延処理部22は、DPDの遅延誤差推定値Δiについても補正することができる。これにより、前置歪補償処理の際に生じる遅延が、出力信号yのタイミングと、信号xのタイミングとの間に生じる遅延誤差の精度に与える影響を抑制することができる。
Further, if there is a delay in the predistortion processing performed by the compensation processing unit 20, the accuracy of the delay error estimated value Δτ may be reduced.
In this regard, in the present embodiment, the delay error estimated value Δτ to be adjusted by the delay adjusting unit 23 is added to the delay error estimated value Δτ I of the DPD in addition to the delay error estimated value Δτ I of the current output signal y. Therefore, the delay processing unit 22 can correct the delay error estimated value Δi of the DPD. Thereby, it is possible to suppress the influence of the delay that occurs during the predistortion processing on the accuracy of the delay error that occurs between the timing of the output signal y and the timing of the signal x.
 本実施形態において、遅延処理部22が動作を開始してから反復回数Iが設定回数W未満の範囲では、前置歪補償処理は実行されず、反復回数Iが設定回数W以上となることで、前置歪補償処理が開始される。
 これは、反復回数Iが設定回数Wに到達したときに求められる、上記式(6)に基づいて得られる遅延誤差推定値Δτが、その後ステップS113及び式(8)にて求められる移動平均値の初期値として用いられるためである。
In the present embodiment, when the number of iterations I is less than the set number W after the delay processing unit 22 starts to operate, the predistortion compensation process is not executed, and the number of iterations I is equal to or greater than the set number W. The predistortion compensation process is started.
This is because the delay error estimated value Δτ I obtained based on the equation (6) obtained when the number of iterations I reaches the set number of times W is the moving average obtained thereafter in step S113 and equation (8). This is because it is used as an initial value.
 本実施形態では、移動平均値の初期値を求めた後に、DPD係数の更新を開始し前置歪補償処理を開始する。
 仮に、移動平均値の初期値を求めることなく、DPD係数の更新を開始すると、遅延誤差推定値Δτは、大きく変動することによって誤差を含んでしまい、このような誤差を含んだ遅延誤差推定値Δτによって、DPD係数を演算すれば、誤ったDPD係数を演算し、前置歪補償処理が正常に行うことができないおそれがある。
In the present embodiment, after obtaining the initial value of the moving average value, updating of the DPD coefficient is started and the predistortion compensation process is started.
If the update of the DPD coefficient is started without obtaining the initial value of the moving average value, the delay error estimated value Δτ includes an error due to a large fluctuation, and the delay error estimated value including such an error is included. If the DPD coefficient is calculated based on Δτ, an incorrect DPD coefficient may be calculated and the predistortion compensation process may not be performed normally.
 この点、本実施形態では、遅延処理部22が動作を開始してから反復回数Iが設定回数Wまでの間については、前置歪補償処理を実行せずに移動平均値の初期値を求め、その後、前置歪補償処理の実行を開始する。つまり、遅延処理部22は、前置歪補償処理の開始前に、ステップS108及び式(6)に基づいて移動平均値の初期値を求めるので、誤ったDPD係数を求めるのを抑制し、適切に前置歪補償処理を行うことができる。 In this respect, in the present embodiment, for the period from the start of the operation of the delay processing unit 22 to the number of iterations I until the set number of times W, the initial value of the moving average value is obtained without executing the predistortion processing. Thereafter, execution of the predistortion compensation process is started. That is, since the delay processing unit 22 obtains the initial value of the moving average value based on Step S108 and Expression (6) before the start of the predistortion compensation process, it suppresses obtaining an incorrect DPD coefficient and appropriately In addition, predistortion compensation processing can be performed.
 また、設定回数Wは、移動平均値の初期値を安定的に求めるためのウエイトであり、安定した初期値(式(6)に基づいて得られる遅延誤差Δτ)が得られる値に設定される。 The set number of times W is a weight for stably obtaining the initial value of the moving average value, and is set to a value at which a stable initial value (delay error Δτ I obtained based on Expression (6)) can be obtained. The
 図3は、本実施形態の遅延処理部22が動作を開始した直後から遅延誤差推定値を反復して演算した場合についてシミュレーションを行い、得られた結果の一例を示したグラフである。図中、横軸は反復回数I、縦軸は遅延誤差を示している。
 図中、破線は、出力信号yの遅延誤差の真値を示している。また、一点鎖線で示す「従来のサンプリングによって求めた遅延誤差推定値」は、DAC4と同じサンプリングレートでサンプリングされた出力信号yを用いて求めた、出力信号yの遅延誤差の推定値を示している。
FIG. 3 is a graph showing an example of a result obtained by performing simulation for a case where the delay error estimated value is repeatedly calculated immediately after the delay processing unit 22 of the present embodiment starts operation. In the figure, the horizontal axis represents the number of iterations I, and the vertical axis represents the delay error.
In the figure, the broken line indicates the true value of the delay error of the output signal y. The “delay error estimated value obtained by conventional sampling” indicated by a one-dot chain line indicates an estimated value of the delay error of the output signal y obtained by using the output signal y sampled at the same sampling rate as the DAC 4. Yes.
 また、図3の例では、設定回数Wを「100」に設定した結果を示しており、反復回数Iが「100」までの範囲では、上記式(5)により求められる、取得期間ごとの出力信号yの遅延誤差推定値Δτ(I)を示しており、反復回数Iが「100」以上の範囲では、上記式(8)により移動平均として求められる、出力信号yの遅延誤差推定値Δτを示している。 Further, the example of FIG. 3 shows the result of setting the set number of times W to “100”, and in the range up to the number of iterations I of “100”, the output for each acquisition period obtained by the above equation (5). The delay error estimated value Δτ (I) of the signal y is shown. In the range where the number of iterations I is “100” or more, the delay error estimated value Δτ I of the output signal y obtained as a moving average by the above equation (8). Is shown.
 図3に示すように、本実施形態によって求めた遅延誤差推定値は、反復回数Iが「100」までの範囲における、各取得期間ごとの遅延誤差推定値Δτ(I)にはばらつきがみられるが、反復回数Iが「100」以上の範囲でみられる、これらの平均値及びその後に求められる移動平均値は、従来のサンプリングによって求めた場合の遅延誤差推定値と比較して、大きな差異はなく、精度よく遅延誤差を推定できることが確認できる。 As shown in FIG. 3, the delay error estimated value obtained by the present embodiment varies in the delay error estimated value Δτ (I) for each acquisition period in the range where the number of iterations I is up to “100”. However, these average values and the moving average values obtained thereafter in the range where the number of iterations I is “100” or more are compared with the estimated delay error values obtained by the conventional sampling. It can be confirmed that the delay error can be estimated accurately.
 上記第1実施形態では、複数の取得期間ごとの各遅延誤差推定値Δτ(I)から求められる代表値として、各遅延誤差推定値Δτ(I)の平均値、又は移動平均値を求めた場合を示したが、例えば、各遅延誤差推定値Δτ(I)のメジアンを代表値とすることもできる。
 また、上記第1実施形態では、移動平均値の初期値としての各遅延誤差推定値Δτ(I)の平均値を求めた後は、継続的に移動平均値を求めたが、例えば、移動平均を求めることなく、そのまま、各遅延誤差推定値Δτ(I)全ての平均値を継続的に求めるようにしてもよい。
In the first embodiment, when an average value or a moving average value of each delay error estimated value Δτ (I) is obtained as a representative value obtained from each delay error estimated value Δτ (I) for each of a plurality of acquisition periods. However, for example, the median of each delay error estimated value Δτ (I) may be used as a representative value.
In the first embodiment, after the average value of each delay error estimated value Δτ (I) as an initial value of the moving average value is obtained, the moving average value is continuously obtained. Instead, the average value of all the delay error estimated values Δτ (I) may be obtained continuously.
〔4. 第2実施形態に係る遅延処理部について〕
 図4は、第2実施形態に係る遅延処理部22が行う遅延調整を行う処理の手順を示すフローチャートである。
 本実施形態の遅延処理部22と、第1実施形態に係る遅延処理部22との相違点は、以下の通りである。すなわち、第1実施形態に係る遅延処理部22では、複数の取得期間ごとに、信号xのタイミングと、出力信号yのタイミングとの間の遅延誤差推定値を演算し、その遅延誤差推定値を平均化した値を用いて遅延調整処理を行う場合を例示した。
[4. Regarding Delay Processing Unit According to Second Embodiment]
FIG. 4 is a flowchart illustrating a procedure of processing for performing delay adjustment performed by the delay processing unit 22 according to the second embodiment.
Differences between the delay processing unit 22 of the present embodiment and the delay processing unit 22 according to the first embodiment are as follows. That is, in the delay processing unit 22 according to the first embodiment, a delay error estimated value between the timing of the signal x and the timing of the output signal y is calculated for each of a plurality of acquisition periods, and the delay error estimated value is calculated. The case where the delay adjustment process is performed using the averaged value is illustrated.
 これに対し、第2実施形態に係る遅延処理部22では、係数演算部21に与えられる信号xのタイミングを少しずつずらして調整し、その調整ごとに信号xと出力信号yとの残差Resを係数演算部21に演算させ、この残差Resに基づいて遅延誤差の推定値を求める点において、第1実施形態と相違している。以下、本実施形態と、第1実施形態との間で相違する点について説明するが、その他の点については、第1実施形態と同様である。 In contrast, in the delay processing unit 22 according to the second embodiment, the timing of the signal x given to the coefficient calculation unit 21 is adjusted little by little, and the residual Res between the signal x and the output signal y is adjusted for each adjustment. Is different from the first embodiment in that the coefficient calculation unit 21 calculates the delay error and obtains the estimated value of the delay error based on the residual Res. Hereinafter, although the difference between the present embodiment and the first embodiment will be described, the other points are the same as those of the first embodiment.
 本実施形態において、遅延処理部22は、まず、無線通信装置(歪補償装置14)が起動直後であるか否かを判断する(ステップS301)。
 起動直後であると判断する場合、遅延処理部22は、DPD係数の更新を開始させる前に、遅延調整処理を実行する(ステップS302)。
In the present embodiment, the delay processing unit 22 first determines whether or not the wireless communication device (distortion compensation device 14) has just been started (step S301).
When determining that it is immediately after startup, the delay processing unit 22 executes delay adjustment processing before starting to update the DPD coefficient (step S302).
 図5は、図4中、遅延調整処理の手順を示すフローチャートである。
 まず、遅延処理部22は、ステップS401において、信号x及び出力信号yを取得する(ステップS400)。遅延処理部22は、信号x及び出力信号yを取得するために設定された所定期間としての取得期間に含まれる信号x及び出力信号yそれぞれのデータ列を取得する。
FIG. 5 is a flowchart showing the procedure of the delay adjustment process in FIG.
First, the delay processing unit 22 acquires the signal x and the output signal y in step S401 (step S400). The delay processing unit 22 acquires data strings of the signal x and the output signal y included in the acquisition period as a predetermined period set for acquiring the signal x and the output signal y.
 次いで、遅延処理部22は、信号x及び出力信号yに対してアップサンプリング処理を行う(ステップS401)。信号x及び出力信号yは、後述するように、互いに相関値を求め遅延誤差の推定値を求めるために用いられる。このため、相関値を求めることができるように、信号x及び出力信号yに対して、アップサンプリング処理を行う。なお、ここで行う相関値による遅延誤差の推定は、信号xの周波数帯域幅と同程度の周波数のサンプリングレートに対応する周期長さ単位で定まる精度で行い、概略の遅延誤差推定値を求める。よって、ステップS401でのアップサンプリング処理は、信号x及び出力信号yが、信号xの周波数帯域幅と同程度の周波数のサンプリングレートとなるような倍率で行われる。
 例えば、ADC11のサンプリングレート(低サンプリングレート)が15.36MHzである場合、アップサンプリング処理の倍率は、数倍~100倍程度に設定される。
Next, the delay processing unit 22 performs upsampling processing on the signal x and the output signal y (step S401). As will be described later, the signal x and the output signal y are used to obtain a correlation value with each other and to obtain an estimated value of delay error. Therefore, an upsampling process is performed on the signal x and the output signal y so that the correlation value can be obtained. Note that the estimation of the delay error based on the correlation value performed here is performed with accuracy determined in units of the period length corresponding to the sampling rate of the frequency similar to the frequency bandwidth of the signal x, and an approximate delay error estimation value is obtained. Therefore, the upsampling process in step S401 is performed at a magnification such that the signal x and the output signal y have a sampling rate with a frequency comparable to the frequency bandwidth of the signal x.
For example, when the sampling rate (low sampling rate) of the ADC 11 is 15.36 MHz, the upsampling processing magnification is set to several times to about 100 times.
 次いで、遅延処理部22は、出力信号yのタイミングと、入力信号xのタイミングとの間の遅延誤差の推定値(出力信号yの遅延誤差の推定値)を求めるための演算を、第1遅延誤差推定部22aに実行させる。 Next, the delay processing unit 22 performs an operation for obtaining an estimated value of the delay error between the timing of the output signal y and the timing of the input signal x (estimated value of the delay error of the output signal y) as a first delay. The error estimation part 22a is made to perform.
 第1遅延誤差推定部22aは、ステップS401で取得された出力信号yと、信号xとの間の相関値を求め、この相関値に基づいて、出力信号yの遅延誤差推定値を演算により求める(ステップS402)。
 なお、相関値、及び相関値に基づく遅延誤差推定値の演算は、上記式(4)及び式(5)に示す演算と同様である。
The first delay error estimator 22a obtains a correlation value between the output signal y acquired in step S401 and the signal x, and obtains a delay error estimate value of the output signal y by calculation based on the correlation value. (Step S402).
The calculation of the correlation value and the delay error estimated value based on the correlation value is the same as the calculation shown in the above formulas (4) and (5).
 ここでは、第1遅延誤差推定部22aは、信号xの周波数帯域幅と同程度の周波数のサンプリングレートとされた出力信号y及び信号xを用いて遅延誤差の推定値を求める。このため、ステップS402において求められる出力信号yの遅延誤差は、信号xの周波数帯域幅と同程度の周波数のサンプリングレートに対応する周期の長さ単位で定まる精度で求められるため、遅延誤差を補正するために必要な精度よりも低い精度となるが、この遅延誤差の推定値を求めることによって、その低い精度の中で、遅延誤差の真値が含まれる数値範囲を明らかにすることができる。 Here, the first delay error estimator 22a obtains an estimated value of the delay error using the output signal y and the signal x having a sampling rate with a frequency comparable to the frequency bandwidth of the signal x. For this reason, the delay error of the output signal y obtained in step S402 is obtained with an accuracy determined by the unit of the length of the period corresponding to the sampling rate having the same frequency as the frequency bandwidth of the signal x, so that the delay error is corrected. However, by obtaining the estimated value of the delay error, the numerical range including the true value of the delay error can be clarified within the low accuracy.
 次いで、遅延処理部22は、求めた出力信号yの遅延誤差の推定値に基づいて、出力信号yを基準とした信号xの遅延誤差値Tの初期値を設定し、遅延調整部23に、遅延誤差値Tに基づいた遅延調整を行わせる(ステップS403)。
 なお、このとき、遅延処理部22は、遅延誤差の推定値において明らかとなる遅延誤差の真値が含まれる数値範囲の中で、出力信号yに対して最も少ない遅延誤差となるように、遅延誤差値Tを設定する。
 その理由は、後述するように、遅延誤差値Tを加算値ΔTずつ序々に増加させることで、遅延誤差値Tが真値に近づくように調整するからである。
Next, the delay processing unit 22 sets an initial value of the delay error value T of the signal x based on the output signal y based on the estimated delay error value of the output signal y. Delay adjustment based on the delay error value T is performed (step S403).
At this time, the delay processing unit 22 delays the delay so as to minimize the delay error with respect to the output signal y in the numerical range including the true value of the delay error that is apparent in the estimated value of the delay error. An error value T is set.
This is because, as will be described later, the delay error value T is gradually increased by increments ΔT so that the delay error value T is adjusted to approach the true value.
 比較的低い精度で遅延誤差を補正した後、遅延処理部22は、係数演算部21に、信号x及び出力信号yを取得させる(ステップS404)。係数演算部21は、ステップS403において行われた遅延誤差の補正が反映された信号を取得する。 After correcting the delay error with relatively low accuracy, the delay processing unit 22 causes the coefficient calculation unit 21 to acquire the signal x and the output signal y (step S404). The coefficient calculation unit 21 acquires a signal reflecting the delay error correction performed in step S403.
 次いで、係数演算部21は、ステップS404で取得した信号xに対してダウンサンプリング処理を行う(ステップS405)。この信号xに対するダウンサンプリング処理は、低サンプリングレートの出力信号yとの間で残差Resを求めるために行われる。
 このため、係数演算部21は、信号xのサンプリングレートが、より低サンプリングレートに近い値となるようにダウンサンプリング処理を行う。ダウンサンプリング処理の倍率は、例えば、数分の1倍~数10分の1倍程度に設定することができる。
Next, the coefficient calculation unit 21 performs a downsampling process on the signal x acquired in step S404 (step S405). The downsampling process for the signal x is performed to obtain a residual Res from the output signal y having a low sampling rate.
For this reason, the coefficient calculation unit 21 performs the downsampling process so that the sampling rate of the signal x becomes a value close to a lower sampling rate. The magnification of the downsampling process can be set to, for example, about 1 / several to several tens of times.
 信号xに対してダウンサンプリング処理を行った後、係数演算部21は、上記式(3)に示す、出力信号yと、信号xとの間の残差Resを求める(ステップS406)。
 係数演算部21は、残差Resを求めると、求めた残差Resを遅延処理部22に与える。
After performing the downsampling process on the signal x, the coefficient calculation unit 21 obtains a residual Res between the output signal y and the signal x shown in the above equation (3) (step S406).
When the coefficient calculation unit 21 calculates the residual Res, the coefficient calculation unit 21 gives the calculated residual Res to the delay processing unit 22.
 遅延処理部22は、残差Resが与えられると、この残差Res、又は、過去に与えられた残差Resの中において、極小値(最小値)となる残差Resの有無を判断する(ステップS407)。
 極小値となる残差Resが無いと判断すると、遅延処理部22は、遅延誤差値Tに所定の単位時間としての加算値ΔTを加算し(ステップS409)、再度、遅延調整部23に、遅延誤差値Tに基づいた遅延調整を行わせ(ステップS410)、ステップS404に戻る。
When the residual Res is given, the delay processing unit 22 determines whether or not there is a residual Res that becomes a minimum value (minimum value) in the residual Res or the residual Res given in the past ( Step S407).
If it is determined that there is no residual Res that becomes a local minimum value, the delay processing unit 22 adds the addition value ΔT as a predetermined unit time to the delay error value T (step S409), and the delay adjustment unit 23 again receives the delay. Delay adjustment based on the error value T is performed (step S410), and the process returns to step S404.
 遅延処理部22は、ステップS407において、極小値となる残差Resがあると判断するまでステップS404~S409を繰り返し実行する。 The delay processing unit 22 repeatedly executes steps S404 to S409 until it is determined in step S407 that there is a residual Res that becomes a minimum value.
 遅延処理部22が極小値となる残差Resがあると判断するためには、以下の方法を採用することができる。すなわち、遅延誤差値Tを変化させる範囲を、遅延誤差の真値が含まれていると特定された数値範囲全域に設定し、前記数値範囲内に亘って残差Resを演算し、その後残差Resの最小値を極小値として求める。
 また他の方法として、ある初期値から順に遅延誤差値Tを変化させつつ残差Resを求め、各残差Res同士の変位から極小点が推定されたときに、その推定された極小点に極小値となる残差Resがあると判断することもできる。
In order for the delay processing unit 22 to determine that there is a residual Res having a minimum value, the following method can be employed. That is, the range in which the delay error value T is changed is set to the entire numerical range specified as including the true value of the delay error, the residual Res is calculated over the numerical range, and then the residual is calculated. The minimum value of Res is obtained as a minimum value.
As another method, when the residual Res is obtained while changing the delay error value T sequentially from a certain initial value, and the local minimum is estimated from the displacement between the residuals Res, the local minimum is estimated to be the local minimum. It can also be determined that there is a residual Res that becomes a value.
 遅延誤差値Tに基づいて遅延調整される信号xは、遅延誤差値Tに加算値ΔTが加算されることによって、加算値ΔTずつ遅延する。よって、出力信号yの遅延誤差は、加算値ΔTずつ変化(増加)する。 The signal x that is delay-adjusted based on the delay error value T is delayed by the addition value ΔT by adding the addition value ΔT to the delay error value T. Therefore, the delay error of the output signal y changes (increases) by the addition value ΔT.
 よって、遅延処理部22は、ステップS404~S409を繰り返し実行することで、出力信号yの遅延誤差を、加算値ΔTずつ変化(増加)させるとともに(ステップS409)、出力信号yの遅延誤差を、加算値ΔTずつ変化させる毎に、出力信号yの遅延誤差を変化させた後の出力信号yと、信号xを取得し(ステップS404)、出力信号yと、信号xとの間の残差Resを求める(ステップS406)。 Therefore, the delay processing unit 22 repeatedly executes steps S404 to S409 to change (increase) the delay error of the output signal y by the addition value ΔT (step S409), and also to change the delay error of the output signal y. Each time the added value ΔT is changed, the output signal y after changing the delay error of the output signal y and the signal x are acquired (step S404), and the residual Res between the output signal y and the signal x is obtained. Is obtained (step S406).
 遅延処理部22は、ステップS407において、ステップS404~S409を繰り返し実行し、極小値となる残差Resがあると判断した場合、残差Resが極小値となる遅延誤差値Tを特定する(ステップS411)。残差Resが極小値となる場合、出力信号yと、信号xとが繰り返し演算した遅延誤差値Tの中で最も一致しているといえる。よって、そのときの(残差Resを極小値とする)遅延誤差値Tを、現状の出力信号yの遅延誤差推定値として特定する。 In step S407, the delay processing unit 22 repeatedly executes steps S404 to S409, and if it is determined that there is a residual Res that is a minimum value, the delay processing unit 22 specifies a delay error value T that causes the residual Res to be a minimum value (step S407). S411). When the residual Res is a minimum value, it can be said that the output signal y and the signal x are the best match among the delay error values T calculated repeatedly. Therefore, the delay error value T at that time (residual Res is the minimum value) is specified as the delay error estimation value of the current output signal y.
 次いで、遅延処理部22は、補償処理部20による処理によって生じるDPDの遅延誤差推定値Δiを、第2遅延誤差推定部22bに求めさせる(ステップS412)。なお、DPDの遅延誤差推定値Δiの演算は、第1実施形態と同様の方法で行う。 Next, the delay processing unit 22 causes the second delay error estimation unit 22b to obtain the DPD delay error estimation value Δi generated by the processing by the compensation processing unit 20 (step S412). The DPD delay error estimated value Δi is calculated by the same method as in the first embodiment.
 次いで、遅延処理部22は、下記式(9)に示すように、第2遅延誤差推定部22bが求めたDPDの遅延誤差推定値Δiを、残差Resを極小値とする遅延誤差値Tに加算(減算)し、遅延調整部23に調整させるべき遅延誤差推定値Δτを求める(ステップS413)。
   遅延誤差Δτ = T-(K × Δi)    ・・・(9)
Next, as shown in the following equation (9), the delay processing unit 22 converts the DPD delay error estimated value Δi obtained by the second delay error estimating unit 22b into a delay error value T with the residual Res as a minimum value. Addition (subtraction) is performed to obtain a delay error estimated value Δτ to be adjusted by the delay adjustment unit 23 (step S413).
Delay error Δτ = T− (K p × Δi) (9)
 なお、式(9)中、補正係数Kは、DPDの遅延に対する補正の度合を定める係数であり、第1実施形態にて説明した通りである。 In the equation (9), the correction coefficient K P is a coefficient that determines the degree of correction for the delay of the DPD, and is as described in the first embodiment.
 遅延処理部22は、求めた遅延誤差推定値Δτを示す情報を遅延調整部23に与えて、遅延調整部23に信号xのタイミングを調整させる(ステップS414)。
 遅延調整部23は、与えられる遅延誤差推定値Δτを示す情報に基づいて信号xのタイミングを調整し、係数演算部21における、出力信号yのタイミングと、信号xのタイミングとの間に生じる遅延誤差が解消されるように補正する。
 以上のようにして、遅延処理部22は、遅延調整処理を終える。
The delay processing unit 22 gives information indicating the obtained delay error estimated value Δτ to the delay adjusting unit 23, and causes the delay adjusting unit 23 to adjust the timing of the signal x (step S414).
The delay adjusting unit 23 adjusts the timing of the signal x based on the given information indicating the estimated delay error value Δτ, and the delay generated between the timing of the output signal y and the timing of the signal x in the coefficient calculating unit 21. Correct so that the error is eliminated.
As described above, the delay processing unit 22 finishes the delay adjustment process.
 このように、本実施形態では、出力信号yの遅延誤差を加算値ΔTずつ変化させるとともに、出力信号yの遅延誤差を加算値ΔTずつ変化させる毎に、出力信号yの遅延誤差を変化させた後の出力信号yと、信号xとの間の残差Resを求め、加算値ΔTずつ変化させた各遅延誤差(遅延誤差値T)の中から、残差Resの大きさに基づいて、現状の出力信号yの遅延誤差推定値を決定する。
 上記実施形態では、加算値ΔTずつ変化させた各遅延誤差値Tの中から、残差Resが極小値となるときの遅延誤差値Tを、出力信号yの遅延誤差推定値として求める。
 この場合、加算値ΔTの単位で遅延誤差推定値を求めることができる。
As described above, in this embodiment, the delay error of the output signal y is changed by the addition value ΔT, and the delay error of the output signal y is changed every time the delay error of the output signal y is changed by the addition value ΔT. A residual Res between the subsequent output signal y and the signal x is obtained, and the present state is determined based on the magnitude of the residual Res from the delay errors (delay error value T) changed by the addition value ΔT. The delay error estimated value of the output signal y is determined.
In the above-described embodiment, the delay error value T when the residual Res becomes the minimum value is obtained as the delay error estimated value of the output signal y from among the delay error values T changed by the addition value ΔT.
In this case, the delay error estimated value can be obtained in units of the added value ΔT.
 このため、加算値ΔTは、低サンプリングレートに対応する周期の長さよりも短い時間に設定される。
 これにより、低サンプリングレートに対応する周期の長さよりも小さい期間の単位で出力信号yの遅延誤差推定値を求めることができ、より精度よく遅延誤差を求めることができる。
 また、より好ましくは、加算値ΔTは、DAC4のサンプリングレートに対応する周期の長さよりも短い時間に設定される。この場合、さらに小さい期間の単位で出力信号yの遅延誤差推定値を求めることができ、より精度よく遅延誤差を求めることができる。
For this reason, the added value ΔT is set to a time shorter than the length of the cycle corresponding to the low sampling rate.
As a result, the delay error estimated value of the output signal y can be obtained in a unit of a period smaller than the length of the cycle corresponding to the low sampling rate, and the delay error can be obtained with higher accuracy.
More preferably, the addition value ΔT is set to a time shorter than the length of the period corresponding to the sampling rate of the DAC 4. In this case, the delay error estimated value of the output signal y can be obtained in units of a smaller period, and the delay error can be obtained with higher accuracy.
 図6は、本実施形態の遅延処理部22が遅延調整処理を行った場合についてシミュレーションを行い、得られた結果の一例を示したグラフである。図中、横軸は反復回数、縦軸は、残差Resを電力として示した値を示している。
 図中、薄い色の線図は、信号x同士を所定の遅延誤差をもって互いに遅延させて本実施形態による遅延調整処理を行った場合に得られる残差電力を示しており、濃い色の線図は、前記所定の遅延誤差とした出力信号yと信号xについて本実施形態によって得た残差電力を示している。
 また、各線図は、信号xの周波数帯域幅と同じ周波数のサンプリングレートの信号における2サンプル分(±1サンプル分)の期間内で求めた残差電力を示している。
FIG. 6 is a graph illustrating an example of a result obtained by performing a simulation when the delay processing unit 22 of the present embodiment performs the delay adjustment process. In the figure, the horizontal axis represents the number of iterations, and the vertical axis represents the value indicating the residual Res as power.
In the drawing, the light color diagram shows the residual power obtained when the signals x are delayed from each other with a predetermined delay error and the delay adjustment processing according to the present embodiment is performed, and the dark color diagram. Indicates the residual power obtained by the present embodiment for the output signal y and the signal x with the predetermined delay error.
Each diagram shows the residual power obtained within a period of 2 samples (± 1 sample) in a signal having a sampling rate having the same frequency as the frequency bandwidth of the signal x.
 各線図には、図中、残差電力(残差Res)の演算に対応して、残差電力の低数値側に向く鋭いピークが多数見られる。各ピークの低数値側の値は、遅延処理部22が演算した残差電力(残差Res)を示している。
 残差電力の演算は、反復するごとに加算値ΔTずつ遅延誤差を変化させるので、遅延誤差をより遅延させる方向に変化させていったときに真値が存在する場合、図6に示すように、残差電力は反復回数が増加するに従って序々に低下し、遅延誤差(遅延誤差値T)が真値となる付近で極小値となる。極小値を過ぎると残差電力は、再度増加していく。
In each diagram, many sharp peaks directed to the low value side of the residual power are seen corresponding to the calculation of the residual power (residual Res). The value on the low value side of each peak indicates the residual power (residual Res) calculated by the delay processing unit 22.
Since the calculation of the residual power changes the delay error by an additional value ΔT each time it is repeated, if a true value exists when the delay error is changed in a more delayed direction, as shown in FIG. The residual power gradually decreases as the number of iterations increases, and becomes a local minimum near the delay error (delay error value T) becomes a true value. When the minimum value is passed, the residual power increases again.
 薄い色の線図は、信号x同士の間で得た残差電力であるため、残差電力が極小値となるタイミングが遅延誤差の真値である。
 本実施形態による残差電力の極小値は、真値に対して僅かにずれてはいるが、大きくずれることはなく、精度よく遅延誤差を推定できることが確認できる。
Since the light color diagram is the residual power obtained between the signals x, the timing at which the residual power becomes a minimum value is the true value of the delay error.
Although the minimum value of the residual power according to the present embodiment is slightly deviated from the true value, it can be confirmed that the delay error can be estimated with high accuracy without being greatly deviated.
 遅延調整処理を終えると、遅延処理部22は、図4中、ステップS303に進み、係数演算部21にDPD係数の演算を開始させるとともに、補償処理部20のDPD係数の更新を開始させる(ステップS303)。これによって、補償処理部20による前置歪補償処理が開始され、処理を終える。 When the delay adjustment process is completed, the delay processing unit 22 proceeds to step S303 in FIG. 4 and causes the coefficient calculation unit 21 to start calculating the DPD coefficient and also starts updating the DPD coefficient of the compensation processing unit 20 (step S303). S303). Thereby, the predistortion compensation process by the compensation processor 20 is started and the process is finished.
 ステップS301において起動直後でないと判断すると、遅延処理部22は、前回遅延調整処理を実行してから所定期間が経過しているか否かを判断する(ステップS304)。 If it is determined in step S301 that it is not immediately after startup, the delay processing unit 22 determines whether or not a predetermined period has elapsed since the previous delay adjustment processing was executed (step S304).
 前回遅延調整処理を実行してから所定期間が経過していると判断する場合、遅延処理部22は、補償処理部20のDPD係数の更新を停止させ(ステップS305)、ステップS302に進んで、遅延調整処理を実行する(ステップS302)。その後、遅延処理部22は、DPD係数の更新を開始させ(ステップS303)、処理を終える。
 一方、前回遅延調整処理を実行してから所定期間が経過していないと判断する場合、遅延処理部22は、処理を終える。
If it is determined that the predetermined period has elapsed since the previous delay adjustment process was executed, the delay processing unit 22 stops updating the DPD coefficient of the compensation processing unit 20 (step S305), and proceeds to step S302. Delay adjustment processing is executed (step S302). Thereafter, the delay processing unit 22 starts updating the DPD coefficient (step S303) and ends the process.
On the other hand, when it is determined that the predetermined period has not elapsed since the previous delay adjustment process was executed, the delay processing unit 22 ends the process.
 このように遅延処理部22は、所定期間が経過する毎に遅延調整処理を行うように構成されている。
 出力信号yのタイミングと、信号xのタイミングとの遅延誤差は、経時的変化が小さいが、変化しないわけではないため、ある程度の頻度で調整する必要がある。
 このため、本実施形態の遅延処理部22は、所定期間が経過する毎に遅延調整処理を行う。これによって、長期間に亘って、精度よく遅延誤差を補正することができる。なお、所定期間としては、例えば、1~2日程度に設定される。
As described above, the delay processing unit 22 is configured to perform a delay adjustment process every time a predetermined period elapses.
The delay error between the timing of the output signal y and the timing of the signal x has a small change with time, but does not change, and therefore needs to be adjusted with a certain frequency.
For this reason, the delay processing unit 22 of the present embodiment performs a delay adjustment process every time a predetermined period elapses. As a result, the delay error can be accurately corrected over a long period of time. The predetermined period is set to about 1 to 2 days, for example.
 また、遅延処理部22は、DPD係数の更新を停止させた後、遅延調整処理を実行する。
 つまり、遅延処理部22は、DPD係数の更新を実行している間には、遅延調整処理を実行せず、DPD係数の更新を停止している間に遅延調整処理を実行する。
 仮に、DPD係数の更新を停止することなく遅延調整処理を実行すると、遅延処理部22は、遅延誤差を加算値ΔTずつ変化させるので、遅延誤差に誤差が含まれることとなり、誤ったDPD係数を演算し、前置歪補償処理が正常に行うことができないおそれがある。
In addition, the delay processing unit 22 performs the delay adjustment process after stopping the update of the DPD coefficient.
That is, the delay processing unit 22 does not execute the delay adjustment process while executing the update of the DPD coefficient, and executes the delay adjustment process while the update of the DPD coefficient is stopped.
If the delay adjustment process is executed without stopping the updating of the DPD coefficient, the delay processing unit 22 changes the delay error by the addition value ΔT, so that the error is included in the delay error. There is a possibility that the predistortion compensation processing cannot be performed normally.
 この点、本実施形態では、遅延処理部22は、DPD係数の更新を実行している間には、遅延調整処理を実行せず、DPD係数の更新を停止している間に遅延調整処理を実行するので、誤ったDPD係数を求めるのを抑制し、適切に前置歪補償処理を行うことができる。 In this regard, in the present embodiment, the delay processing unit 22 does not execute the delay adjustment process while executing the update of the DPD coefficient, and performs the delay adjustment process while the update of the DPD coefficient is stopped. Since this is executed, it is possible to suppress the determination of an incorrect DPD coefficient and to appropriately perform the predistortion processing.
 上記実施形態では、遅延処理部22は、デジタル処理によって、出力信号yのタイミングと、信号xのタイミングとの間の遅延誤差を変化させ調整した場合を示したが、例えば、アナログ処理部12側で、出力信号yのタイミングを調整することにより、遅延誤差値Tに加算値ΔTを加算して遅延誤差を変化させつつ残差Resを求め、遅延誤差の推定値を求めることができる。 In the above embodiment, the delay processing unit 22 shows the case where the delay error between the timing of the output signal y and the timing of the signal x is changed and adjusted by digital processing. For example, the analog processing unit 12 side Thus, by adjusting the timing of the output signal y, it is possible to obtain the residual Res by adding the addition value ΔT to the delay error value T and changing the delay error, thereby obtaining an estimated value of the delay error.
 図7は、第2実施形態の変形例に係る無線通信装置の要部を示すブロック図である。
 図7に示す無線通信装置が備える歪補償装置14は、ADC11に与えられる動作クロックの位相を調整するための調整部30を備えている点において、第2実施形態の無線通信装置と相違する。
 この調整部30は、遅延処理部22による制御によって、ADC11に与えられる動作クロックの位相を任意に調整する機能を有している。
FIG. 7 is a block diagram illustrating a main part of a wireless communication device according to a modification of the second embodiment.
The distortion compensation device 14 included in the wireless communication device illustrated in FIG. 7 is different from the wireless communication device of the second embodiment in that it includes an adjustment unit 30 for adjusting the phase of the operation clock supplied to the ADC 11.
The adjustment unit 30 has a function of arbitrarily adjusting the phase of the operation clock supplied to the ADC 11 under the control of the delay processing unit 22.
 遅延処理部22は、調整部30を制御することにより、ADC11の動作クロックの位相を調整し、ADC11からAD変換されて出力される出力信号yのタイミングを調整することができる。
 これにより遅延処理部22は、出力信号yのタイミングと、信号xのタイミングとの間の遅延誤差を変化させることができる。
 従って、図7に示す歪補償装置14においても、図4及び図5に示した遅延調整処理を実行することができる。
 この場合、遅延処理部22は、アナログ処理によって遅延誤差を変化させることができるので、遅延処理部22の負荷を軽減することができる。
The delay processing unit 22 controls the adjustment unit 30 to adjust the phase of the operation clock of the ADC 11 and adjust the timing of the output signal y that is AD-converted and output from the ADC 11.
Thereby, the delay processing unit 22 can change the delay error between the timing of the output signal y and the timing of the signal x.
Therefore, also in the distortion compensation apparatus 14 shown in FIG. 7, the delay adjustment process shown in FIGS. 4 and 5 can be executed.
In this case, since the delay processing unit 22 can change the delay error by analog processing, the load on the delay processing unit 22 can be reduced.
〔5. 歪補償の評価について〕
 本発明者は、本実施形態の歪補償装置14による歪補償精度が、従来の歪補償装置と比較して遜色がないことを確認するために、本実施形態の歪補償装置14を備えた増幅装置による信号の入出力特性について検証し評価した。以下、その評価結果について説明する。
[5. (Evaluation of distortion compensation)
In order to confirm that the distortion compensation accuracy of the distortion compensator 14 according to the present embodiment is not inferior to that of the conventional distortion compensator, the inventor of the present invention has the amplification provided with the distortion compensator 14 according to the present embodiment. The input / output characteristics of the signal by the device were verified and evaluated. Hereinafter, the evaluation result will be described.
 評価試験としては、上記第1実施形態に係る増幅装置、及び、上記第2実施形態に係る増幅装置を用いて周波数帯域幅100MHzのOFDM信号を増幅したときの入出力信号の態様をコンピュータを用いたシミュレーションによって求め、歪補償精度について評価した。
 また、第1及び第2実施形態の他、他の実施形態として、図1に示す第1実施形態に係る増幅装置が備える遅延処理部22が一般的な方法で遅延誤差の推定及び補正を行うように構成された装置についても評価した。なお、上記一般的な方法としては、低サンプリングレートの出力信号yと、信号xとの間で相関値を求め、この相関値に基づいて得られた遅延誤差の推定値をそのまま用いて遅延誤差の補正を行った。
As an evaluation test, a computer is used for the aspect of input / output signals when an OFDM signal having a frequency bandwidth of 100 MHz is amplified using the amplification device according to the first embodiment and the amplification device according to the second embodiment. The distortion compensation accuracy was evaluated by simulation.
In addition to the first and second embodiments, as another embodiment, the delay processing unit 22 included in the amplifying apparatus according to the first embodiment shown in FIG. 1 estimates and corrects delay errors by a general method. An apparatus configured as described above was also evaluated. As a general method, a correlation value is obtained between the output signal y having a low sampling rate and the signal x, and the delay error estimated value obtained based on the correlation value is used as it is. Was corrected.
 なお、各増幅装置において、信号xとしては、周波数帯域幅100MHzのOFDM信号を用い、DAC4のサンプリングレートを614.4MHz、ADC11のサンプリングレート(低サンプリングレート)を15.36MHzとした。また、フィルタ部10の通過帯域幅は、約600MHzとした。 In each amplifying apparatus, an OFDM signal having a frequency bandwidth of 100 MHz was used as the signal x, the DAC 4 sampling rate was 614.4 MHz, and the ADC 11 sampling rate (low sampling rate) was 15.36 MHz. The pass bandwidth of the filter unit 10 is about 600 MHz.
 図8は、他の実施形態に係る増幅装置によって増幅したOFDM信号の周波数スペクトルの一例を示す図である。
 図中、「オリジナルの信号」とは、入力信号(信号x)であり、入力信号の周波数スペクトルを示している。
 また、図中、「従来の歪補償処理による出力信号」とは、DAC4と同じサンプリングレートでサンプリングされた出力信号yを用いて出力信号yの遅延誤差推定値を求め、この遅延誤差推定値に基づいて遅延補正を行い歪補償処理を行った場合の出力信号であり、この出力信号の周波数スペクトルを示している。
FIG. 8 is a diagram illustrating an example of a frequency spectrum of an OFDM signal amplified by an amplifying apparatus according to another embodiment.
In the figure, an “original signal” is an input signal (signal x) and indicates the frequency spectrum of the input signal.
Also, in the figure, “output signal by conventional distortion compensation processing” means that a delay error estimated value of the output signal y is obtained using the output signal y sampled at the same sampling rate as the DAC 4, and this delay error estimated value is This is an output signal when delay compensation is performed based on the distortion compensation processing, and the frequency spectrum of this output signal is shown.
 「歪補償処理なしの場合の出力信号」とは、歪補償処理なしで入力信号を増幅したときの出力信号であり、この出力信号の周波数スペクトルを示している。
 「他の実施形態による出力信号」とは、上記他の実施形態の増幅装置によって歪補償処理を行った出力信号であり、この出力信号の周波数スペクトルを示している。
The “output signal without distortion compensation processing” is an output signal when the input signal is amplified without distortion compensation processing, and indicates the frequency spectrum of this output signal.
The “output signal according to another embodiment” is an output signal that has been subjected to distortion compensation processing by the amplifying apparatus according to the other embodiment, and indicates a frequency spectrum of the output signal.
 図に示すように、他の実施形態による出力信号は、歪補償処理なしの出力信号と比較して、信号帯域の隣接チャネルにおける漏洩電力が改善されていることが判る。
 但し、他の実施形態による出力信号は、オリジナルの信号や、従来の歪補償処理による出力信号と比較すると、中心周波数から離れるに従って信号品質が悪化する傾向が見られる。
As shown in the figure, it can be seen that the output power according to the other embodiment has improved leakage power in the adjacent channel of the signal band as compared with the output signal without distortion compensation processing.
However, the output signal according to the other embodiment tends to deteriorate in signal quality as it goes away from the center frequency as compared with the original signal or the output signal obtained by the conventional distortion compensation processing.
 図9は、第1実施形態に係る増幅装置によって増幅したOFDM信号の周波数スペクトルの一例を示す図であり、図10は、第2実施形態に係る増幅装置によって増幅したOFDM信号の周波数スペクトルの一例を示す図である。
 第1及び第2実施形態による出力信号においても、歪補償処理なしの出力信号と比較して、信号帯域の隣接チャネルにおける漏洩電力が改善されていることが判る。
 また、第1及び第2実施形態による出力信号は、オリジナルの信号や、従来の歪補償処理による出力信号と比較しても、ほぼ遜色ない信号品質が得られていることが判る。
FIG. 9 is a diagram illustrating an example of a frequency spectrum of an OFDM signal amplified by the amplification device according to the first embodiment, and FIG. 10 is an example of a frequency spectrum of the OFDM signal amplified by the amplification device according to the second embodiment. FIG.
Also in the output signals according to the first and second embodiments, it can be seen that the leakage power in the adjacent channel of the signal band is improved as compared with the output signal without distortion compensation processing.
In addition, it can be seen that the output signals according to the first and second embodiments have substantially the same signal quality as the original signals and the output signals obtained by the conventional distortion compensation processing.
 以上、上記評価試験によれば、本実施形態の増幅装置は、十分な歪補償精度を有していることを確認することができた。 As described above, according to the evaluation test, it was confirmed that the amplifying apparatus of this embodiment has sufficient distortion compensation accuracy.
〔6. その他〕
 なお、本発明は、上記各実施形態に限定されるものではない。
 例えば、上記各実施形態では、歪補償装置14の歪補償部3が遅延処理部22を備えている場合を例示したが、この遅延処理部22は必ず備えている必要はなく、一般的な方法、例えば、低サンプリングレートの出力信号yと、信号xとの間で相関値を求め、この相関値に基づいて得られた遅延誤差の推定値をそのまま用いて遅延誤差の補正を行ってもよい。
[6. Others]
The present invention is not limited to the above embodiments.
For example, in each of the above embodiments, the case where the distortion compensation unit 3 of the distortion compensation device 14 includes the delay processing unit 22 is illustrated, but the delay processing unit 22 is not necessarily provided, and a general method is used. For example, a correlation value may be obtained between the output signal y having a low sampling rate and the signal x, and the delay error may be corrected using the estimated value of the delay error obtained based on the correlation value as it is. .
 また、上記各実施形態の歪補償装置14は、増幅器2に増幅される信号xと、増幅器2が出力する出力信号yとからDPD係数を求めることで、上述の歪補償のためのモデルを推定する、いわゆる直接学習法を採用しているが、補償処理部20からの補償信号uと、出力信号yとから逆モデルを推定して信号xに反映させる間接学習法を採用してもよい。 In addition, the distortion compensation device 14 of each of the above embodiments estimates the above-described distortion compensation model by obtaining the DPD coefficient from the signal x amplified by the amplifier 2 and the output signal y output from the amplifier 2. The so-called direct learning method is employed, but an indirect learning method in which an inverse model is estimated from the compensation signal u from the compensation processing unit 20 and the output signal y and reflected in the signal x may be employed.
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 増幅装置
 2 増幅器
 3 歪補償部
 4 DA変換器
 5 アップコンバータ
 6 発振器
 7 アンテナ
 8 カプラ
 9 ダウンコンバータ
 10 フィルタ部
 11 AD変換器
 12 アナログ処理部
 13 デジタル処理部
 14 歪補償装置
 20 補償処理部
 21 係数演算部
 22 遅延処理部
 22a 第1遅延誤差推定部
 22b 第2遅延誤差推定部
 23 遅延調整部
 30 調整部
DESCRIPTION OF SYMBOLS 1 Amplifying device 2 Amplifier 3 Distortion compensation part 4 DA converter 5 Up converter 6 Oscillator 7 Antenna 8 Coupler 9 Down converter 10 Filter part 11 AD converter 12 Analog processing part 13 Digital processing part 14 Distortion compensation apparatus 20 Compensation processing part 21 Coefficient Calculation unit 22 Delay processing unit 22a First delay error estimation unit 22b Second delay error estimation unit 23 Delay adjustment unit 30 Adjustment unit

Claims (13)

  1.  入力信号を増幅する増幅器の歪補償を行う歪補償部と、
     前記増幅器が出力する出力信号をAD変換して前記歪補償部に与えるAD変換器と、を備え、
     前記AD変換器は、前記増幅器に与えられる信号をDA変換する際のサンプリングレートよりも低い低サンプリングレートで、前記出力信号をAD変換し、
     前記歪補償部は、前記入力信号と、前記低サンプリングレートでAD変換された前記出力信号とに基づいて歪補償を行う歪補償装置。
    A distortion compensation unit that performs distortion compensation of an amplifier that amplifies an input signal;
    An AD converter that AD-converts an output signal output from the amplifier and supplies the signal to the distortion compensator, and
    The AD converter AD-converts the output signal at a low sampling rate lower than a sampling rate when the signal supplied to the amplifier is DA-converted,
    The distortion compensation unit is a distortion compensation device that performs distortion compensation based on the input signal and the output signal that has been AD-converted at the low sampling rate.
  2.  前記歪補償部は、前記入力信号と、前記低サンプリングレートでAD変換された前記出力信号とに基づいて前記増幅器のモデルを推定し、このモデルに基づいて歪補償を行う請求項1に記載の歪補償装置。 2. The distortion compensation unit according to claim 1, wherein the distortion compensation unit estimates a model of the amplifier based on the input signal and the output signal that is AD-converted at the low sampling rate, and performs distortion compensation based on the model. Distortion compensation device.
  3.  前記増幅器と前記AD変換器との間に接続されているフィルタをさらに備え、
     前記フィルタの通過帯域幅が、前記入力信号の周波数帯域幅以上に設定されている請求項1又は請求項2に記載の歪補償装置。
    A filter connected between the amplifier and the AD converter;
    The distortion compensation apparatus according to claim 1 or 2, wherein a pass bandwidth of the filter is set to be equal to or greater than a frequency bandwidth of the input signal.
  4.  前記低サンプリングレートでAD変換された前記出力信号のタイミングと、前記入力信号のタイミングとの間に生じる遅延誤差を、前記低サンプリングレートに対応する周期の長さよりも小さい期間の単位で推定し補正する遅延処理部をさらに備えている請求項1~請求項3のいずれか一項に記載の歪補償装置。 A delay error occurring between the timing of the output signal AD-converted at the low sampling rate and the timing of the input signal is estimated and corrected in units of periods smaller than the length of the period corresponding to the low sampling rate. The distortion compensation apparatus according to any one of claims 1 to 3, further comprising a delay processing unit that performs the processing.
  5.  前記遅延処理部は、前記遅延誤差の推定値を、互いに異なる複数の所定期間ごとに求め、前記複数の所定期間ごとの各遅延誤差の推定値から求められる代表値を、前記遅延誤差の推定値として求める請求項4に記載の歪補償装置。 The delay processing unit obtains an estimated value of the delay error for each of a plurality of different predetermined periods, and obtains a representative value obtained from the estimated value of each delay error for each of the plurality of predetermined periods as an estimated value of the delay error. The distortion compensation apparatus according to claim 4, which is obtained as follows.
  6.  前記遅延処理部は、前記遅延誤差を所定の単位時間ずつ変化させるとともに、前記遅延誤差を前記所定の単位時間ずつ変化させる毎に、前記遅延誤差を変化させた後の前記出力信号と、前記入力信号との間の残差を求め、前記所定の単位時間ずつ変化させた各遅延誤差の中から、前記残差の大きさに基づいて、前記遅延誤差の推定値を決定する請求項4に記載の歪補償装置。 The delay processing unit changes the delay error by a predetermined unit time, and each time the delay error is changed by the predetermined unit time, the output signal after changing the delay error, and the input 5. The residual error is obtained from a signal, and an estimated value of the delay error is determined based on a magnitude of the residual from each delay error changed by the predetermined unit time. Distortion compensation device.
  7.  前記所定の単位時間は、前記低サンプリングレートに対応する周期の長さよりも短い時間である請求項6に記載の歪補償装置。 The distortion compensation apparatus according to claim 6, wherein the predetermined unit time is a time shorter than a length of a cycle corresponding to the low sampling rate.
  8.  前記遅延処理部は、前記AD変換器に与えられる動作クロックの位相を調整することによって、前記出力信号のタイミングを調整し、前記遅延誤差を変化させる請求項6に記載の歪補償装置。 The distortion compensation apparatus according to claim 6, wherein the delay processing unit adjusts a timing of the output signal by changing a phase of an operation clock given to the AD converter to change the delay error.
  9.  前記歪補償部は、前記入力信号に対して歪補償を行った補償信号を前記増幅器に与えるように構成され、
     前記遅延処理部は、前記入力信号のタイミングと、前記補償信号のタイミングとの間に生じる遅延誤差を補正する請求項4に記載の歪補償装置。
    The distortion compensator is configured to provide a compensation signal that has been subjected to distortion compensation for the input signal to the amplifier,
    The distortion compensation apparatus according to claim 4, wherein the delay processing unit corrects a delay error generated between the timing of the input signal and the timing of the compensation signal.
  10.  前記低サンプリングレートは、信号xの周波数帯域幅よりも低く設定されている請求項1に記載の歪補償装置。 The distortion compensation device according to claim 1, wherein the low sampling rate is set lower than a frequency bandwidth of the signal x.
  11.  前記フィルタの通過帯域幅は、前記増幅器が前記入力信号を増幅したことによって前記出力信号に生じる歪成分の周波数帯域幅以上に設定されている請求項3に記載の歪補償装置。 The distortion compensation device according to claim 3, wherein a pass bandwidth of the filter is set to be equal to or greater than a frequency bandwidth of a distortion component generated in the output signal when the amplifier amplifies the input signal.
  12.  増幅器と、請求項1に記載の歪補償装置と、を備えている増幅装置。 An amplifying apparatus comprising: an amplifier; and the distortion compensating apparatus according to claim 1.
  13.  請求項12に記載の増幅装置を通信信号の増幅のために備えている無線通信装置。 A wireless communication device comprising the amplification device according to claim 12 for amplification of a communication signal.
PCT/JP2014/076315 2013-11-21 2014-10-01 Distortion correction device, amplifier device, and wireless communication device WO2015076025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-241089 2013-11-21
JP2013241089A JP2015103861A (en) 2013-11-21 2013-11-21 Distortion compensation device, amplifier and wireless communication device

Publications (1)

Publication Number Publication Date
WO2015076025A1 true WO2015076025A1 (en) 2015-05-28

Family

ID=53179296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076315 WO2015076025A1 (en) 2013-11-21 2014-10-01 Distortion correction device, amplifier device, and wireless communication device

Country Status (2)

Country Link
JP (1) JP2015103861A (en)
WO (1) WO2015076025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200002486A1 (en) 2022-02-11 2023-08-11 Fondazione St Italiano Tecnologia HYDROFREEZE MICROPARTICLES FOR THE DELIVERY OF THERAPEUTIC AND DIAGNOSTIC AGENTS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223171A (en) * 2001-01-29 2002-08-09 Fujitsu Ltd Nonlinear distortion compensating transmitter correcting and interpolating distortion compensation coefficient
JP2005150932A (en) * 2003-11-12 2005-06-09 Hitachi Kokusai Electric Inc Predistortion device
JP2006080931A (en) * 2004-09-10 2006-03-23 Hitachi Communication Technologies Ltd Delay synchronization loop circuit, digital pre-distortion type transmitter, and radio base station
JP2007166445A (en) * 2005-12-16 2007-06-28 Mitsubishi Electric Corp Delay compensation circuit
JP2008205759A (en) * 2007-02-20 2008-09-04 Japan Radio Co Ltd Distortion compensating device
JP2010114759A (en) * 2008-11-07 2010-05-20 Sumitomo Electric Ind Ltd Distortion compensation circuit
JP2012509614A (en) * 2008-11-11 2012-04-19 アクシス ネットワーク テクノロジー リミテッド. Efficient adaptive digital precompensation system for resources

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223171A (en) * 2001-01-29 2002-08-09 Fujitsu Ltd Nonlinear distortion compensating transmitter correcting and interpolating distortion compensation coefficient
JP2005150932A (en) * 2003-11-12 2005-06-09 Hitachi Kokusai Electric Inc Predistortion device
JP2006080931A (en) * 2004-09-10 2006-03-23 Hitachi Communication Technologies Ltd Delay synchronization loop circuit, digital pre-distortion type transmitter, and radio base station
JP2007166445A (en) * 2005-12-16 2007-06-28 Mitsubishi Electric Corp Delay compensation circuit
JP2008205759A (en) * 2007-02-20 2008-09-04 Japan Radio Co Ltd Distortion compensating device
JP2010114759A (en) * 2008-11-07 2010-05-20 Sumitomo Electric Ind Ltd Distortion compensation circuit
JP2012509614A (en) * 2008-11-11 2012-04-19 アクシス ネットワーク テクノロジー リミテッド. Efficient adaptive digital precompensation system for resources

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200002486A1 (en) 2022-02-11 2023-08-11 Fondazione St Italiano Tecnologia HYDROFREEZE MICROPARTICLES FOR THE DELIVERY OF THERAPEUTIC AND DIAGNOSTIC AGENTS

Also Published As

Publication number Publication date
JP2015103861A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
US9712169B2 (en) Transmit power measurement apparatus having programmable filter device that is set at least based on frequency response of transmit power detection path and related transmit power measurement method thereof
US10931318B2 (en) Subsampled linearization system
US11303251B2 (en) Digital predistortion adjustment based on determination of load condition characteristics
US7920644B2 (en) Predistortion apparatus and predistortion method
US9066368B2 (en) Method of calibrating the delay of an envelope tracking signal
EP2365629B1 (en) Communication device and power correction method
KR100864558B1 (en) Distortion compensating apparatus and method
US8665017B2 (en) Amplifier circuit and radio communication apparatus
US8391808B2 (en) Method and system for estimating and compensating non-linear distortion in a transmitter using calibration
US10432243B2 (en) Receiver nonlinearity estimation and cancellation
JP2005203960A (en) Method for adjusting timing of radio communication equipment
US20180351588A1 (en) Cancellation device, cancellation method, and wireless communication apparatus
CN101107797A (en) Method and system for determining the amplitude and/or phase of the output signal for a transmission body depending on the amplitude of the input signal
US20180167093A1 (en) Distortion compensation apparatus and distortion compensation method
JP5146086B2 (en) Wireless transmission device
KR102354060B1 (en) Method for Path Calibration in Multi-Path Radio-frequency Transceiver and Apparatus Using the Same
US7973601B2 (en) Distortion compensation apparatus
WO2015076025A1 (en) Distortion correction device, amplifier device, and wireless communication device
JP2011171840A (en) Amplifying device and radio transmitter with the same, and gain adjustment method of amplifying device
US20110124304A1 (en) Transmission apparatus and adjustment value measurement method
US9203449B2 (en) Delay quantity estimation apparatus and delay quantity estimation method
US9819372B2 (en) Radio communication device and burst distortion correcting method
TWI602460B (en) Method for fast automatic power control of wireless transmitters
US7816984B2 (en) Lookup table generation method and related device for a predistorter
JP5497552B2 (en) Communication apparatus and distortion correction method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864435

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14864435

Country of ref document: EP

Kind code of ref document: A1