WO2015075923A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2015075923A1
WO2015075923A1 PCT/JP2014/005812 JP2014005812W WO2015075923A1 WO 2015075923 A1 WO2015075923 A1 WO 2015075923A1 JP 2014005812 W JP2014005812 W JP 2014005812W WO 2015075923 A1 WO2015075923 A1 WO 2015075923A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
deviation
command value
voltage
output
Prior art date
Application number
PCT/JP2014/005812
Other languages
French (fr)
Japanese (ja)
Inventor
毅 古賀
片岡 幹彦
秀明 江崎
浜松 正典
鷹取 正夫
杉本 和繁
大野 達也
武憲 檜野
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2015075923A1 publication Critical patent/WO2015075923A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Definitions

  • This invention relates to the power converter device used for a motor generator in a microgrid, a ship, etc.
  • Patent Document 3 there are those described in Patent Document 3 and Non-Patent Document 1 as power converters applied to motor generators (shaft generators) used in ships.
  • Patent Document 3 discloses a power conversion device that is applied to a motor generator used in a ship and controls electric power between a power supply system and a motor generator.
  • a form is employed in which the control method is switched by switching the stop and by switching between the generator operation mode and the motor operation mode of the motor generator.
  • Non-Patent Document 1 discloses a power converter for a shaft generator.
  • the generator operation mode when the generator is tripped when the load is shared by the generator that supplies power to the system and the governor loop, the frequency cannot be determined by itself. Therefore, the frequency becomes indefinite, the system cannot be maintained, and the accident response capability is lacking. Further, when the shaft generator is in the motor operation mode, the system-side converter performs constant DC voltage control, so that the system frequency cannot be compensated quickly.
  • the present invention has been made to solve the above-described problems, and provides a power conversion device capable of stabilizing the frequency and voltage of a power supply system regardless of the operating state of the power conversion device. It is aimed.
  • a power converter is a power converter connected between a power supply system and a motor generator, and is connected to the power supply system.
  • the system side conversion device converts the DC power input from the power storage device into AC power and outputs the AC power to the power system, and the AC power input from the power system is converted to DC power.
  • a system side power converter configured to selectively perform a second system side conversion operation to be converted and output to the power storage device, an AC voltage output from the system side power converter to the power system, and Using the measured value of AC current, Assuming that a virtual synchronous generator capable of operating as a motor instead of the main power converter is connected to the power system, the system power converter is connected to the power system with the virtual synchronization. By operating as a generator, there is a system-side controller that causes the system-side power converter to perform the first system-side conversion operation and the second system-side conversion operation based on the same control law.
  • the rotating machine side conversion device receives the first rotating machine side conversion operation for converting the AC power input from the motor generator into DC power and outputs the DC power to the power storage device, and is input from the power storage device.
  • a rotating machine side power converter configured to alternatively perform a second rotating machine side conversion operation for converting DC power to AC power and outputting the converted power to the motor generator, based on the same control law
  • the rotating machine side power converter has the first The turning-side conversion operation and the second rotating machine-side converting operation are performed, and each of the first rotating machine-side converting operation and the second rotating machine-side converting operation is measured by the measured voltage of the power storage device.
  • a rotating machine side controller that performs the control so that the voltage becomes a predetermined voltage.
  • the system controller controls the control law. Since the system side power converter is controlled based on the same control law without switching, and the rotating machine side controller controls the rotating machine side power converter based on the same control law without switching the control law. The power converter as a whole is controlled based on the same control law without switching the control law. Then, the system-side power converter is controlled to output power to the power supply system on the assumption that a virtual synchronous generator is connected to the power supply system instead of the system-side power converter. Thereby, it is possible to perform frequency control and voltage control similar to those of an actual generator.
  • the power conversion device is always controlled based on the same control law without switching the control law due to the change of the operation state, and the same frequency control as that of the actual generator is applied to the power supply system. Regardless of the operation status of the power conversion device, the operation status of the main engine directly or indirectly connected to the motor generator, the power supply configuration of the system, etc. Even if an accidental shift to independent operation occurs, the frequency and voltage of the power supply system can be stabilized. Further, the rotating machine side power converter connected to the motor generator is controlled so that the voltage of the power storage device becomes a predetermined voltage. Thereby, the voltage of the power storage device is maintained at a predetermined voltage, and the generator simulation operation by the system-side power converter can be stabilized.
  • the system-side controller is a governor model for calculating an internal phase difference angle of the virtual synchronous generator, a deviation of the reactive power that the system-side power converter outputs to the power system with respect to a reactive power command value,
  • the AVR model that calculates the internal induced voltage of the virtual synchronous generator based on the deviation of the AC voltage output to the power supply system by the grid-side power converter with respect to the output voltage command value, and the governor model.
  • the voltage command value for making the deviation between the current command value and the feedback value of the alternating current output to the power supply system zero is calculated, and this voltage command value is converted into a PWM signal.
  • a PWM converter that outputs to the system power converter, and the governor model calculates and outputs an angular speed deviation of the AC voltage output from the system power converter to the power system with respect to an angular speed command value.
  • a deviation calculator an active power deviation calculator that calculates a deviation of the active power that the grid-side power converter outputs to the power supply system with respect to an active power command value, and a deviation calculated by the active power deviation calculator
  • a calculation unit that multiplies a gain and outputs a value obtained by performing a first-order lag calculation; a subtracter that subtracts the output of the angular velocity deviation calculation unit from the output of the calculation unit; You may make it have an integrator which calculates a phase difference angle.
  • the system-side controller performs an angular velocity deviation calculation unit that calculates an angular velocity deviation of an AC voltage output from the system-side power converter to the power supply system with respect to an angular velocity command value, and performs a primary delay operation on the deviation.
  • a filter unit that subtracts a value subjected to delay calculation from the deviation and outputs the value, and an active power deviation calculation unit that calculates a deviation of the active power with respect to the active power command value, and an output value of the filter unit
  • the deviation calculated by the active power deviation calculator may be configured to operate the power converter on the power supply system as the virtual synchronous generator.
  • the output of the filter unit becomes zero in a steady state, and active power can be supplied following the active power command value.
  • the output of the filter unit varies from zero, so it is possible to share the load with other generators connected to the power supply system.
  • the system controller includes a governor model for calculating an internal phase difference angle of the virtual synchronous generator, a deviation of reactive power output to the power system by the system power converter with respect to a reactive power command value, and an output voltage
  • An AVR model for calculating an internal induced voltage of the virtual synchronous generator based on a deviation of an AC voltage output to the power supply system from the system-side power converter with respect to a command value, and an internal calculated by the governor model
  • a generator model that calculates a current command value corresponding to an output current of the virtual synchronous generator based on the phase difference angle and the internal induced voltage calculated by the AVR model, and the generator model that is calculated by the generator model
  • a PWM converter that converts a current command value into a PWM signal and outputs the PWM signal to the grid-side power converter
  • the governor model is configured so that the grid-side power converter for the angular velocity command value
  • An angular velocity deviation calculator that calculates the angular velocity deviation of the AC voltage output to the power supply system,
  • An active power deviation calculating unit that calculates a deviation of the active power that the grid-side power converter outputs to the power system with respect to an active power command value, and a predetermined gain for the deviation calculated by the active power deviation calculating unit.
  • a calculation unit that outputs a value obtained by multiplying and performing a first-order lag calculation, a subtractor that subtracts the output of the filter unit from the output of the calculation unit, and calculates the internal phase difference angle by integrating the output of the subtractor You may make it have an integrator to do.
  • the output of the filter unit becomes zero in a steady state, and active power can be supplied following the active power command value.
  • the output of the filter unit varies from zero, so it is possible to share the load with other generators connected to the power supply system.
  • the filter unit may be configured to include a limiting unit that limits a value obtained by performing the first-order lag calculation to be within a predetermined limit range.
  • the system-side controller receives an active power command value from the outside, and active power corresponding to the active power command value is supplied from the power storage device to the power supply system or from the power storage device to the power supply system.
  • the system-side power converter is configured to be controlled, and the rotating machine-side controller is input with the active power command value input to the system-side controller, and according to the active power command value
  • the active power obtained by adding the active power and the active power corresponding to the deviation of the measured voltage of the power storage device with respect to the predetermined voltage is from the motor generator to the power storage device, or from the power storage device to the motor generator. You may be comprised so that the said rotary machine side power converter may be controlled so that it may be supplied.
  • the present invention has the above-described configuration, regardless of the operation state of the power conversion device, the operation state of the main engine directly or indirectly connected to the motor generator, or the power supply configuration of the system. There is an effect that it is possible to provide a power conversion device capable of stabilizing the frequency and voltage of the system.
  • FIG. 1 is a schematic block diagram illustrating an example of a system to which a power conversion device according to an embodiment of the present invention is applied.
  • FIG. 2 is a schematic block diagram illustrating a more specific application example of the power conversion device according to the embodiment of the present invention.
  • FIG. 3 is a functional block diagram of the system controller of the power conversion device shown in FIGS. 1 and 2.
  • FIG. 4 is a block diagram illustrating details of the rotating machine side conversion device of the power conversion device illustrated in FIGS. 1 and 2.
  • FIG. 5 is a phasor diagram showing the relationship among the internal induced voltage, the output voltage, and the output current in the equivalent circuit for one phase of the virtual generator.
  • FIG. 1 is a schematic block diagram illustrating an example of a system to which a power conversion device according to an embodiment of the present invention is applied.
  • the power conversion device 1 is connected between an AC power supply system (bus) 2 that is an AC circuit and a motor generator 3.
  • the AC power supply system 2 is connected to at least one power load 4 and at least one prime mover generator 5.
  • the commercial power system 6 may be connected to the AC power supply system 2, and a power storage facility (not shown) such as a secondary battery may be connected.
  • the AC power supply system 2 to which the power conversion device 1 is connected may be connected to the commercial power system 6 or may be an independent power supply system that is not connected to the commercial power system 6. Also good.
  • any one of a motor, a flywheel, a crankshaft, a prime mover, a speed reducer, a speed increaser, a wheel, a propeller, and the like is connected to the mechanical shaft 3a of the motor generator 3.
  • the motor generator 3 may be a synchronous machine (synchronous motor generator) or an induction machine (induction motor generator).
  • Each of the power converter 1, the power load 4, the prime mover generator 5, and the commercial power system 6 is provided with circuit breakers S1, S4, S5, and S6 that are disconnected from the AC power supply system 2 when an abnormality or the like occurs. You may have been.
  • FIG. 2 is a schematic block diagram showing a more specific application example of the power conversion device 1 of the present embodiment.
  • the AC power supply system 2 (hereinafter referred to as “power supply system 2”) is a power supply system in the ship, and the power supply system 2 is normally operated with a generator 7 made of, for example, a diesel generator.
  • a generator 7 made of, for example, a diesel generator.
  • electric power is supplied to the electric power load 4 in the ship.
  • the same circuit breaker (S1 etc.) as FIG. 1 may be provided.
  • the main shaft of the speed reducer 8 is connected to the mechanical shaft 3 a of the motor generator 3.
  • the speed reducer 8 is connected to, for example, a main engine (prime mover) of the ship and is connected to a propeller that propels the ship, and is driven by the power of the main engine and / or the motor generator 3. The propeller is rotated.
  • the power conversion device 1 is provided between the power supply system 2 and the motor generator 3, and is connected to the power supply system 2.
  • the power conversion device 101 is connected to the motor generator 3, and the rotating machine side conversion device 102 is connected to the motor generator 3.
  • the power storage device 103 is provided.
  • the power storage device 103 is connected between the wirings of the DC wiring 104 that connects the system side conversion device 101 and the rotating machine side conversion device 102.
  • As the power storage device 103 a capacitor is illustrated, but a secondary battery may be used.
  • the system-side converter 101 includes a system-side power converter 11, a system-side controller 12 that controls the system-side power converter 11, and voltages Vr, Vs, Vt of each of the three phases (r-phase, s-phase, t-phase)
  • a voltage detection unit 13 using a voltage sensor (voltage measurement PT) for detecting current, and a current sensor for detecting currents ir, is, it of each of the three phases (r phase, s phase, t phase) of the system side
  • a current detection unit 14 using a current measurement PC The system side three-phase voltages Vr, Vs, Vt detected by the voltage detector 13 and the system side three-phase currents ir, is, it detected by the current detector 14 are input to the system controller 12. . In FIG. 1, the voltage detection unit 13 and the current detection unit 14 are not shown.
  • the rotating machine side conversion device 102 includes a rotating machine side power converter 16 connected to the system side power converter 11 by the DC wiring 104, a rotating machine side controller 17 that controls the rotating machine side power converter 16, and the positive and negative of the power storage device 104. And a voltage detector 18 for detecting a DC voltage V DC between both terminals.
  • the DC voltage VDC detected by the voltage detection unit 18 is input to the rotating machine side controller 17. In FIG. 1, the voltage detector 18 is not shown.
  • the system-side controller 12 and the rotating machine-side controller 17 are each configured by a control device such as an FPGA (field-programmable gate array), a PLC (programmable logic controller), or a microcontroller.
  • the system controller 12 and the rotating machine controller 17 may be configured by a common (single) controller.
  • system controller 12 and the rotating machine controller 17 change the operating state of the power converter 1 such as an active power command value P * , which will be described later, from the general control device 9 which is an external host control system. A command or the like is input.
  • the system side power converter 11 includes, for example, six switching elements each including a diode connected in antiparallel.
  • the power converter 11 is formed of a semiconductor element, and for example, an IGBT is used for each switching element.
  • the system-side controller 12 outputs a control signal (PWM signal) input to the control terminal of each of the switching elements (for example, the gate terminal of the IGBT) to the power converter 11 to turn each switching element on and off.
  • the power converter 11 is caused to function as an inverter or a converter.
  • FIG. 3 is a functional block diagram of the system controller 12.
  • an adder, a subtracter, and an adder / subtractor are not distinguished from each other and are referred to as an adder / subtractor (the same applies to the description of FIG. 4).
  • the system-side controller 12 includes a PWM conversion unit 20, a generator model 30, a generator control model 65 having an AVR model 40 and a governor model 50, a PLL calculation unit 61, dq conversion units 62 and 63, a voltage An effective value calculation unit 64 is provided. These are functions realized by the system-side controller 12 executing a program built therein.
  • the system-side controller 12 controls the power converter 11 so that the system-side power converter 11 operates as a virtual synchronous generator (hereinafter also referred to as “virtual generator”) with respect to the power supply system 2. It is configured.
  • virtual generator virtual synchronous generator
  • the generator model 30 is a model of a synchronous generator body that can also operate as an electric motor.
  • the generator control model 65 is a control model (calculation block) in which the function of the synchronous generator is modeled using predetermined calculation parameters.
  • the generator control model 65 is a control model in which a governor and an AVR that control the synchronous generator are modeled, and any model that includes the governor model and the AVR model may be used.
  • a well-known thing can be used, for example, a Park model etc. can be used.
  • the PLL calculation unit 61 is a phase and angular velocity calculation unit that calculates the phase ⁇ and the angular velocity ⁇ of the system side voltage using the system side three-phase voltages Vr, Vs, and Vt detected by the voltage detection unit 13.
  • the PLL calculation unit 61 calculates a line voltage from the three-phase voltages Vr, Vs, and Vt, performs PLL calculation using these values, and calculates the phase ⁇ and the angular velocity ⁇ of the system side voltage.
  • Such a PLL calculation unit 61 is disclosed in, for example, the above-mentioned Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-130146) and the like, and is well-known, and details thereof are omitted here.
  • the dq converter 62 includes a system-side three-phase voltage (output voltage of the power converter 11) Vr, Vs, Vt detected by the voltage detector 13 and a system-side voltage phase ⁇ calculated by the PLL calculator 61. Is entered. Then, the dq conversion unit 62 performs dq conversion on the three-phase voltages Vr, Vs, and Vt using the system-side voltage phase ⁇ , and calculates the d-axis component V d and the q-axis component V q of the voltage.
  • the dq conversion unit 63 includes a system-side three-phase current (output current of the power converter 11) ir, is, it detected by the current detection unit 14 and a system-side voltage phase calculated by the PLL calculation unit 61. ⁇ is input. Then, dq converting section 63 uses the mains voltage phase theta, three-phase currents ir, IS, and dq convert it to calculate the d-axis component i d and the q-axis component i q of the current.
  • the voltage effective value calculating unit 64 calculates the system side voltage effective value V g from V q and V d calculated by the dq conversion unit 62 using the following equation.
  • the system side controller 12 has an electric power calculation part, and in this electric power calculation part, to the system side based on system side three-phase voltage Vr, Vs, Vt and electric current ir, is, it.
  • the active power P and reactive power Q to be output are calculated, the active power P is given to the governor model 50, and the reactive power Q is given to the AVR model 40.
  • the power calculation unit may calculate the grid-side active power P and the reactive power Q by the following equations, for example.
  • the governor model 50 includes a control for giving a deviation of the active power P with respect to the active power command value P * input from the outside (the overall control device 9), a governor speed drooping characteristic, and a PLL for the angular speed command value ⁇ * .
  • the internal phase difference angle ⁇ of the virtual generator is calculated.
  • the angular velocity command value ⁇ * may be input from the outside (the overall control device 9) or may be held inside the governor model 50.
  • the angular velocity command value ⁇ * is a predetermined angular velocity (angular velocity reference value) corresponding to, for example, a frequency of 60 Hz, and the velocity drooping characteristic has a frequency drop corresponding to 5% of the frequency of 60 Hz, for example, when a rated active power is output.
  • the adder / subtractor 51 calculates a deviation by subtracting the active power P from the active power command value P * , and outputs the deviation to the droop block 52.
  • the droop block 52 outputs a value obtained by multiplying the output of the adder / subtractor 51 by a predetermined calculation according to the speed drooping characteristic of the governor (for example, a value obtained by multiplying a real constant gain K gd ) to the low-pass filter unit 53.
  • the low-pass filter unit 53 gives a first-order lag to the output of the droop block 52 and outputs this to the adder / subtractor 54.
  • the reason for giving the first-order lag is to prevent the response to the active power deviation from becoming sensitive.
  • the adder / subtracter 55 calculates an angular velocity deviation by subtracting the angular velocity ⁇ calculated by the PLL calculation unit 61 from the angular velocity command value ⁇ * , and outputs this to the high-pass filter unit 56.
  • the angular velocity deviation input to the high-pass filter unit 56 is input to the upper / lower limiter 57 and the adder / subtractor 59.
  • the input angular velocity deviation is limited by the upper / lower limiter 57 within the limit range in which the upper limit value (for example, 0 ⁇ 2 ⁇ ) and the lower limit value (for example, ⁇ 2 ⁇ 2 ⁇ ) are determined, and is sent to the temporary delay filter unit 58. Entered. Then, a first-order delay is given by the temporary delay filter unit 58 and is input to the adder / subtractor 59.
  • the adder / subtractor 59 subtracts the output of the temporary delay filter unit 58 from the angular velocity deviation output from the adder / subtractor 55 and outputs the subtraction value to the adder / subtractor 54.
  • the angle ⁇ is calculated.
  • the internal phase difference angle ⁇ is output to the generator model 30.
  • the AVR model 40 includes a control of giving a deviation of the reactive power Q with respect to the reactive power command value Q * , a voltage drooping characteristic of the AVR, a voltage effective value command value V g * (hereinafter, “output voltage command value V g * ”). And the internal induced voltage E f is calculated based on the system side voltage effective value V g .
  • the reactive power command value Q * is input from the outside (the overall control device 9).
  • the output voltage command value V g * may be input from the outside (the overall control device 9) or may be held inside the AVR model 40.
  • the output voltage command value V g * is, for example, a predetermined value (AC voltage reference value) of 202V.
  • the system side voltage effective value V g is input from the voltage effective value calculation unit 64.
  • the adder / subtractor 41 outputs a value (reactive power deviation) obtained by subtracting the reactive power Q from the reactive power command value Q * to the droop block 42.
  • the droop block 42 outputs, to the low-pass filter unit 43, a value obtained by multiplying the output of the adder / subtractor 41 by a predetermined calculation according to the drooping characteristic of the AVR (for example, a product of a real constant gain K ad ).
  • the low-pass filter unit 43 gives a first-order delay to the output of the droop block 42 and outputs this to the adder / subtractor 44.
  • the reason for giving the first-order lag is to prevent the response to the reactive power deviation from becoming sensitive.
  • the output voltage command value V g * is input to the adder / subtractor 44.
  • the adder / subtractor 44 adds the output of the low-pass filter unit 43 and the output voltage command value V g *, and further subtracts the system side voltage effective value V g from the added value (voltage deviation taking into account the reactive power deviation). Is output to the PI control block 45.
  • the PI control block 45 performs proportional-integral compensation on the output of the adder / subtractor 44 to calculate the internal induced voltage E f and outputs it to the generator model 30.
  • the generator model 30 simulates a synchronous generator as a virtual generator.
  • the virtual generator includes an internal induced voltage E f due to the field of the virtual generator, an internal impedance of the virtual generator (winding reactance x and winding resistance r of the armature), and an output voltage of the virtual generator. It is modeled using V g (complex voltage vector) and output current I (complex current vector).
  • FIG. 5 is a phasor diagram showing the relationship among the internal induced voltage E f , the output voltage V g, and the output current (current command value I * ) in the equivalent circuit for one phase of the virtual generator.
  • the generator model 30 includes an internal phase difference angle ⁇ calculated by the governor model 50, an internal induced voltage E f calculated by the AVR model 40, a d-axis component V d of the output voltage calculated by the dq converter 62, and Based on the q-axis component V q and the given internal impedances r and x, the command value I * (the q-axis current command value i q * and the d-axis current command value i d * ) of the virtual generator output current Is calculated.
  • the calculation unit 36 calculates the q-axis current command value i q * and the d-axis current command value i d * .
  • the q-axis current command value i q * and the d-axis current command value i d * are calculated and output to the PWM conversion unit 20 using the following relational expression.
  • the calculation unit 36 performs an operation based on the calculation formula of i q * and the calculation formula of i d * .
  • the generator model 30 is configured as a control model for calculating a command value for current feedback control.
  • the PWM conversion unit 20 calculates the current command value (i q * , i d * ) calculated by the generator model 30 and the feedback value (i q , i d ) of the alternating current output to the power supply system 2.
  • the voltage command value for making the deviation of zero is calculated, and the voltage command value is converted into a PWM signal and output to the system side power converter 11. That is, the power converter 11 is controlled to output a current corresponding to the command value I * (i q * , i d * ) of the output current calculated by the generator model 30.
  • the PWM conversion unit 20 includes adders / subtractors 21 and 22, PI control blocks 23 and 24, a dq inverse conversion unit 25, and a PWM signal generation unit 26.
  • Subtracter 21 from the generator model 30 d-axis current command value is input from the i d *, calculates d-axis error current by subtracting the d-axis component i d of the output current inputted from the dq conversion section 63 This is output to the PI control block 23 (d-axis current controller).
  • the PI control block 23 performs proportional integral compensation on the d-axis error current to calculate a d-axis voltage command value V d *, and outputs this to the dq inverse conversion unit 25.
  • the adder / subtracter 22 subtracts the q-axis component i q of the output current input from the dq converter 63 from the q-axis current command value i q * input from the generator model 30 to obtain the q-axis error current. This is calculated and output to the PI control block 24 (q-axis current controller).
  • the PI control block 24 performs proportional integral compensation on the q-axis error current to calculate a q-axis voltage command value V q *, and outputs this to the dq inverse conversion unit 25.
  • the dq reverse conversion unit 25 performs dq reverse conversion of the d-axis voltage command value V d * and the q-axis voltage command value V q * using the system-side voltage phase ⁇ , and the system-side three-phase voltage output command value Vr *. , Vs * , Vt * are generated and output to the PWM signal generator 26.
  • the PWM signal generation unit 26 converts the three-phase voltage output command values Vr * , Vs * , and Vt * into a PWM signal and outputs the PWM signal to the system-side power converter 11.
  • feedback control is performed so that the output current of the power converter 11 becomes a current corresponding to the d-axis current command value i d * and the q-axis current command value i q * calculated by the generator model 30.
  • FIG. 4 is a block diagram showing details of the rotating machine side conversion device 102.
  • the rotating machine side power converter 16 is configured by three single-phase inverters 16x, 16y, and 16z, and each of the single-phase inverters 16x, 16y, and 16z of each phase has four switching units each including a diode connected in antiparallel. It is comprised by the element.
  • the power converter 16 is formed of a semiconductor element, and for example, an IGBT is used for each switching element.
  • Each of the single-phase inverters 16x, 16y, and 16z has a DC wiring 104 connected to the bipolar terminals of the power storage device 103 connected to each DC portion thereof.
  • the output lines (AC side wiring) of the single-phase inverters 16x, 16y, and 16z are connected to the motor generator 3, and the current values (currents ix, iy, and iz of each phase) of the output lines are current sensors. Detected by 19x, 19y, and 19z and input to the dq converter 87 of the rotating machine side controller 17.
  • a magnetic pole position sensor is provided.
  • the magnetic pole position (angle) ⁇ MG1 detected by this magnetic pole position sensor is input to the dq converter 87 and the dq reverse converter 88 of the rotating machine side controller 17.
  • the angular velocity calculating section (not shown), the calculated mechanical angular ⁇ rm_MG1 of the motor generator 3 from the magnetic pole position (angle) theta MG1, the mechanical angular ⁇ rm_MG1, the operating section 74 and 75 of the rotary-side controller 17
  • a conversion unit (not shown).
  • the mechanical angular velocity ⁇ rm_MG1 input to the conversion unit is converted to an electrical angular velocity ⁇ re_MG1 and input to the multiplier 82 of the interference component correction circuit 80.
  • an angular velocity sensor is provided.
  • the mechanical angular velocity ⁇ rm_MG1 detected by the angular velocity sensor is input to the calculation units 74 and 75.
  • the mechanical angular velocity ⁇ rm_MG1 is converted into an electrical angular velocity ⁇ re_MG1 by a conversion unit (not shown) and input to the multiplier 82.
  • a magnetic pole position (angle) ⁇ MG1 is calculated from the mechanical angular velocity ⁇ rm_MG1 by a calculation unit (not shown) and input to the dq conversion unit 87 and the dq inverse conversion unit 88.
  • the rotating machine side controller 17 outputs PWM signals (PWM_X_cmd, PWM_Y_cmd, PWM_Z_cmd) that are input to the control terminals (for example, the gate terminals of the IGBT) of the switching elements of the single-phase inverters 16x, 16y, and 16z.
  • the power converter 16 functions as an inverter or a converter by turning on and off the element.
  • FIG. 4 shows functional blocks of the rotating machine side controller 17.
  • the DC voltage VDC is a measurement voltage of the power storage device 104 input from the voltage detection unit 18 of FIG.
  • the DC voltage set value V * DC is held (stored) in advance in the rotating machine side controller 17.
  • the active power command value P * is input to the rotation-side controller 17 is the same as the active power command value P * is input to the mains controller 12 of FIG. 3, the external (integration control apparatus 9 ).
  • the dq converter 87 of the rotating machine side controller 17 uses the magnetic pole position (angle) ⁇ MG1 to detect the X-phase, Y-phase, and Z-phase currents ix, iy, and iz detected by the current sensors 19x, 19y, and 19z. And qq component i q _MG1 and d axis component i d _MG1 of the output current are calculated and output to the interference component correction circuit 80, and the q axis component i q _MG1 is output to the adder / subtractor 78. The d-axis component i d _MG1 is output to the adder / subtractor 76.
  • the multiplier 82 multiplies the electric angular velocity ⁇ re_MG1 of the motor generator 3 by the d-axis inductance 81 (predetermined value L d ), and outputs the value to the multipliers 83 and 84.
  • Multiplier 83 multiplies the output value of multiplier 82 by q-axis component i q _MG1 and outputs the value to adder / subtractor 85.
  • the multiplier 84 multiplies the output value of the multiplier 82 by the d-axis component i d _MG1, and outputs the value to the adder / subtractor 86.
  • the adder / subtracter 85 adds the output value of the multiplier 83 to the output value of the PI control block 77 described later (d-axis voltage command value before correction), and the adder / subtractor 86 adds the output value of the PI control block 79 described later.
  • the d-axis voltage command value V By subtracting the output value of the multiplier 84 from the output value (q-axis voltage command value before correction), the d-axis voltage command value V in which the mutual interference component corresponding to the d-axis current value and the q-axis current value is compensated. and to calculate the d * _MG1 and q-axis voltage command value V q * _MG1.
  • the d-axis current command value calculation unit 75 calculates a d-axis current command value i d * _MG 1 corresponding to the mechanical angular velocity ⁇ rm_MG 1, and outputs this to the adder / subtractor 76.
  • the d-axis current command value i d * _MG1 is set to 0.
  • the current command value i d * _MG1 is output as a predetermined value b (b ⁇ 0).
  • the d-axis current command value i d * _MG1 corresponding to the degree of the excess may be output.
  • the adder / subtractor 76 calculates the d-axis error current by subtracting the d-axis component i d _MG1 of the output current input from the dq conversion unit 87 from the d-axis current command value i d * _MG1, and calculates it as a PI control block. 77 (d-axis current controller).
  • the PI control block 77 performs proportional-integral compensation on the d-axis error current and outputs it to the adder / subtractor 85.
  • the adder / subtracter 85 adds the output value of the multiplier 83 to the output value of the PI control block 77 (d-axis voltage command value before correction), and inversely converts this value (d-axis voltage command value V d * _MG1) to dq. To the unit 88.
  • the q-axis current command value calculation unit 70 includes an adder / subtractor 71, a PI control block 72, an adder / subtractor 73, and a q-axis current correction value calculation unit 74.
  • the adder-subtracter 71 calculates an error voltage by subtracting the DC voltage V DC from DC voltage setting value V * DC, and outputs it to the PI control block 72 (DC voltage controller).
  • the PI control block 72 performs proportional-integral compensation on this error voltage and outputs it to the adder / subtractor 73.
  • the q-axis current correction value calculation unit 74 converts the mechanical angular speed ⁇ rm_MG1 of the motor generator 3 into the electrical angular speed ⁇ re_MG1, and uses this to convert the active power command value P * into an active current command value that becomes a q-axis current correction value. Is output to the adder / subtractor 73. Specifically, the effective current command value (q-axis current correction value) is calculated by the following equation.
  • Effective current command value k ⁇ P * / ⁇ re_MG1 (k is a predetermined coefficient)
  • the adder / subtracter 73 adds the output value (pre-correction q-axis current command value) of the PI control block 72 and the effective current command value (q-axis current correction value) from the calculation unit 74 to add the q-axis current command value i. q * _MG1 is calculated and output to the adder / subtractor 78.
  • the active power command value P * input to the system-side controller 12 is input, and the q-axis current command value i q * is added to that value . Since _MG1 is generated, feedforward control is performed so that the voltage of the power storage device 104 becomes the set value V * DC, and the voltage fluctuation of the power storage device 104 can be minimized.
  • the output value of the PI control block 72 may be output to the adder / subtractor 78 as it is as the q-axis current command value i q * _MG1 without providing the q-axis current correction value calculation unit 74 and the adder / subtractor 73.
  • the measurement voltage V DC of the power storage device 104 is controlled to be a constant voltage (V * DC ).
  • the fluctuation of DC (the voltage of the power storage device 104) can be made smaller, which is preferable.
  • the adder / subtractor 78 subtracts the q-axis component i q _MG1 of the output current input from the dq converter 87 from the q-axis current command value i d * _MG1, and calculates the q-axis error current.
  • Output to the PI control block 79 (q-axis current controller).
  • the PI control block 79 performs proportional-integral compensation on the q-axis error current and outputs it to the adder / subtractor 86.
  • the adder / subtracter 86 subtracts the output value of the multiplier 83 from the output value of the PI control block 79 (q-axis voltage command value before correction), and inversely converts this value (q-axis voltage command value V q * _MG1) to dq. To the unit 88.
  • the dq reverse conversion unit 88 performs dq reverse conversion on the d-axis voltage command value V d * _MG1 and the q-axis voltage command value V q * _MG1 using the magnetic pole position (angle) ⁇ MG1 of the motor generator 3.
  • the three-phase (X phase, Y phase, Z phase) voltage output command values Vx * _MG1, Vy * _MG1, Vz * _MG1 are generated and output to the PWM signal generators 89x, 89y, 89z of the respective phases. To do.
  • the PWM signal generators 89x, 89y, 89z use the voltages V DCx , V DCy , V DCz of the DC parts of the inverters 16x, 16y, 16z, respectively, to output the voltage output command values Vx * _MG1, Vy * _MG1, Vz.
  • PWM signals PWM_X_cmd, PWM_Y_cmd, and PWM_Z_cmd corresponding to _MG1 are generated and output to the single-phase inverters 16x, 16y, and 16z.
  • feedback control is performed so that the output current of the power converter 16 becomes a current corresponding to the d-axis current command value i d * _MG1 and the q-axis current command value i q * _MG1.
  • the speed reducer 8 is connected to the main engine and the propeller, the propeller is rotated via the speed reducer 8 by the power of the main engine, and the mechanical shaft 3a of the motor generator 3 connected to the speed reducer 8 is rotating.
  • the speed reducer 8 is connected to the main engine and the propeller, the propeller is rotated via the speed reducer 8 by the power of the main engine, and the mechanical shaft 3a of the motor generator 3 connected to the speed reducer 8 is rotating.
  • the rotating machine side power converter 16 functions as a converter
  • the system side power converter 11 functions as an inverter. State (first operating state).
  • the active power corresponding to the active power command value P * and the system side voltage angular velocity ⁇ (frequency of the power system 2) is supplied from the system side power converter 11 to the power system. 2 is supplied.
  • reactive power corresponding to the reactive power command value Q * and the system side voltage effective value V g (voltage of the power system 2) at that time is supplied from the system side power converter 11 to the power system 2.
  • the load can be shared with another generator (for example, the generator 7) connected to the power supply system 2 or another power converter (not shown) having a droop according to the system side voltage angular velocity ⁇ .
  • another generator for example, the generator 7
  • another power converter not shown
  • the other generator for example, generator 7) connected to the power supply system 2 can also be stopped. Therefore, even when an unexpected operation stop of the generator 7 occurs, power can be supplied to the power supply system 2. That is, the power system 2 in the ship can be operated independently only by the power supply from the power conversion device 1. In this case, the output power becomes equal to the power consumption of all the loads 4 connected to the power supply system 2.
  • the steady-state deviation remains depending on the droop setting for fluctuations in the active power load and reactive power load, but the frequency (angular velocity) and voltage of the power supply system 2 are set values (angular velocity command value ⁇ * , output voltage command value V g * ). The magnitude of the deviation can be adjusted by setting such as droop.
  • the system-side power converter 11 functions as a converter.
  • the rotating machine side power converter 16 becomes an operating state (second operating state) in which it functions as an inverter.
  • the active power corresponding to the active power command value P * and the system-side voltage angular velocity ⁇ (frequency of the power supply system 2) is supplied from the power supply system 2 to the motor generator 3 by the control of the system-side controller 12. Supplied. Thereby, torque in the speed increasing direction can be applied to the propeller main shaft via the speed reducer 8.
  • the motor generator 3 is operated in the motor operation mode with the main engine stopped, and the ship is navigated by the electric power from the power supply system 2 as described above. it can.
  • active power command value P * operating condition when it is switched to the state or the like when it is switched vice versa, when it is changed active power command value P * operating condition is changed by the general control device 9, the active power command value P * is rotary machine side Since it is also input to the controller 17, feedforward control is performed so that the voltage of the power storage device 103 becomes the set value V * DC under the control of the rotating machine side controller 17, and the voltage fluctuation of the power storage device 104 is minimized. can do.
  • the system side controller 12 makes the system side power converter 11 the same. Control is performed based on the control law, and the rotating machine side controller 17 is configured to control the rotating machine side power converter 11 based on the same control law. Therefore, the power conversion apparatus 1 as a whole also switches the control law. Without being controlled based on the same control law.
  • the operation of the power conversion device 1 can be performed without changing the control law. It becomes possible.
  • the power conversion device 1 can be operated without changing the control law.
  • the power supply system 2 is connected to another power supply system (for example, a commercial power system)
  • the power supply system 2 is connected to the other power supply system when disconnected from the other power supply system or from the disconnected state.
  • the power conversion device 1 can be operated without changing the control law.
  • the system-side power converter 11 is controlled to output power to the power supply system 2 on the assumption that the virtual generator is connected to the power supply system 2 instead of the system-side power converter 11.
  • frequency control and voltage control similar to those of an actual generator can be performed, and even if a load fluctuation occurs in the power supply system 2, the power quality of the own system is stabilized in cooperation with the normal generator. Can be achieved.
  • the power supply system 2 does not require operation of another generator, and only the system-side power converter 11 can generate a single operation.
  • the power conversion device 1 is always controlled based on the same control law without switching the control law by changing the operation state, and the power system 2 has the same frequency as the actual generator. Since the control and the voltage control are performed, the frequency and voltage of the power supply system 2 can be stabilized regardless of the operating state of the power conversion apparatus 1 and even if a load fluctuation occurs in the power supply system 2.
  • the rotating machine side power converter 16 connected to the motor generator 3 is controlled so as to operate so that the voltage of the power storage device 103 becomes the DC voltage set value V * DC .
  • the voltage of the power storage device 103 is maintained at the predetermined voltage V * DC , and the generator simulation operation by the system-side power converter 11 can be stabilized.
  • the same active power command value P * as that of the system side controller 12 is input to the q-axis current command value calculation unit 70 of the rotating machine side controller 17, the power storage is performed even when the active power command value P * is changed. It is possible to satisfactorily maintain the set value V * DC while suppressing fluctuations in the voltage of the device 103 as much as possible.
  • the high-pass filter unit 56 may not include the limiter 57.
  • the output of the high-pass filter unit 56 becomes zero in a steady state, and the active power supplied by the active power command value P * follows. It becomes possible.
  • the output of the high-pass filter unit 56 varies from zero, so that it is possible to share the load with other generators connected to the power supply system 2. it can.
  • the limit range of the limiter 57 is maintained even in a steady state when power is supplied from the power supply system 2 to the motor generator 3. Since the deviation of the angular velocity in the part exceeding the value is output from the high-pass filter unit 56, it is possible to share the load with other generators connected to the power supply system 2. Even when another generator connected to the power supply system 2 is tripped or lost, the governor loop functions with a frequency deviation (angular velocity deviation) that exceeds the limit range of the limiter 57, and the system frequency beyond that. In addition, the power system 2 can be stabilized by determining the system frequency by the generator model.
  • the high pass filter unit 56 may not be provided. In this case, since the deviation of the angular velocity, which is the output of the adder / subtractor 55, is input to the adder / subtractor 54, the load sharing with other generators connected to the power supply system 2 can be performed at all times.
  • the present invention is useful as a power converter that can stabilize the frequency and voltage of the power supply system regardless of the operating state of the power converter.

Abstract

One example of this power conversion device comprises a system-side conversion device (101) connected to a power-supply system (2), a rotary-machinery-side conversion device (102) connected to a motor-generator (3), and an electricity-storage device (103) connected therebetween. The system-side conversion device (101) has a system-side power converter (11) and a system-side controller (12) that makes said system-side power converter (11) operate as a virtual synchronous generator with respect to the power-supply system (2) so as to perform a first system-side conversion operation and a second system-side conversion operation on the basis of the same control law. The rotary-machinery-side conversion device (102) has a rotary-machinery-side power converter (16) and a rotary-machinery-side controller (17) that makes said rotary-machinery-side power converter (16) perform a first rotary-machinery-side conversion operation and a second rotary-machinery-side conversion operation on the basis of the same control law, each of said operations being performed so as to bring the measured voltage across the electricity-storage device (103) to a prescribed voltage.

Description

電力変換装置Power converter
 本発明は、マイクログリッド、船舶等において電動発電機に用いられる電力変換装置に関する。 This invention relates to the power converter device used for a motor generator in a microgrid, a ship, etc.
 マイクログリッド(小規模配電網)や、船舶の船内の電源系統等において、電力品質の安定化を図るために、二次電池を電力変換装置を介して電源系統に接続した構成が知られている(例えば、特許文献1,2参照)。 In order to stabilize power quality in a microgrid (small-scale power distribution network) or a power system in a ship, a configuration in which a secondary battery is connected to the power system via a power converter is known. (For example, refer to Patent Documents 1 and 2).
 一方、船舶で用いられる電動発電機(軸発電機)などに適用される電力変換装置として、特許文献3や非特許文献1に記載されたものがある。 On the other hand, there are those described in Patent Document 3 and Non-Patent Document 1 as power converters applied to motor generators (shaft generators) used in ships.
特開2007-244068号公報JP 2007-244068 A 特開2012-130146号公報JP 2012-130146 A US 2012/0309242 A1US 2012/03092242 A1
 特許文献3には、船舶で用いられる電動発電機などに適用され、電源系統と電動発電機との間で電力を制御する電力変換装置が開示されている。この電力変換装置では、電源系統に電力を供給する原動機発電機の運転・停止の切り替えによって、また、電動発電機と直接または減速機/増速機を介して接続された主機(原動機)の運転・停止の切り替えによって、また、電動発電機の発電機運転モードと電動機運転モードの切り替えによって、制御方式を切り替える形式がとられている。その結果、予定されていない機器の停止や、電動発電機が電動運転モード中に電源系統の負荷変動が生じると、電源系統の周波数や電圧が変動するといった系統安定性の問題、および事故対応能力の不足が生じていた。 Patent Document 3 discloses a power conversion device that is applied to a motor generator used in a ship and controls electric power between a power supply system and a motor generator. In this power conversion device, the operation of the main engine (motor) connected to the motor generator directly or via the speed reducer / speed increaser by switching the operation / stop of the motor generator that supplies power to the power supply system A form is employed in which the control method is switched by switching the stop and by switching between the generator operation mode and the motor operation mode of the motor generator. As a result, system stability issues such as power system frequency and voltage fluctuations and accident response capability when unscheduled equipment stops or when the load on the power system changes while the motor generator is in the electric operation mode. There was a shortage of.
 また、非特許文献1には、軸発電機用電力変換装置が開示されている。この電力変換装置では、軸発電機が発電機運転モードにおいて、系統に電力を供給する発電機とガバナドループによって負荷分担している際、発電機がトリップすると、周波数を自力で決定することが出来ないため、周波数が不定となり、系統を維持することができなくなり、事故対応能力に欠ける。また、軸発電機が電動機運転モードにおいて、系統側変換器が直流電圧一定制御を行うため、系統周波数を速やかに補償することができない。 Further, Non-Patent Document 1 discloses a power converter for a shaft generator. In this power converter, in the generator operation mode, when the generator is tripped when the load is shared by the generator that supplies power to the system and the governor loop, the frequency cannot be determined by itself. Therefore, the frequency becomes indefinite, the system cannot be maintained, and the accident response capability is lacking. Further, when the shaft generator is in the motor operation mode, the system-side converter performs constant DC voltage control, so that the system frequency cannot be compensated quickly.
 本発明は上記のような課題を解決するためになされたもので、電力変換装置の運転状態にかかわらず、電源系統の周波数および電圧の安定化を図ることができる電力変換装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and provides a power conversion device capable of stabilizing the frequency and voltage of a power supply system regardless of the operating state of the power conversion device. It is aimed.
 上記目的を達成するために、本発明のある形態(aspect)に係る電力変換装置は、電源系統と電動発電機との間に接続された電力変換装置であって、前記電源系統に接続された系統側変換装置と、前記電動発電機に接続された回転機側変換装置と、前記系統側変換装置と前記回転機側変換装置とを接続する直流配線に接続された蓄電装置とを備え、前記系統側変換装置は、前記蓄電装置から入力される直流電力を交流電力に変換して前記電源系統へ出力する第1の系統側変換動作と、前記電源系統から入力される交流電力を直流電力に変換して前記蓄電装置へ出力する第2の系統側変換動作とを択一的に行うよう構成された系統側電力変換器と、前記系統側電力変換器が前記電源系統へ出力する交流電圧及び交流電流の計測値を用いて、前記系統側電力変換器の代わりに電動機としての動作も可能にした仮想の同期発電機が前記電源系統に接続されているとみなして前記系統側電力変換器を前記電源系統に対して前記仮想の同期発電機として動作させることにより、同一の制御則に基づいて前記系統側電力変換器に前記第1の系統側変換動作と前記第2の系統側変換動作とを行わせる系統側制御器とを有し、前記回転機側変換装置は、前記電動発電機から入力される交流電力を直流電力に変換して前記蓄電装置へ出力する第1の回転機側変換動作と、前記蓄電装置から入力される直流電力を交流電力に変換して前記電動発電機へ出力する第2の回転機側変換動作とを択一的に行うよう構成された回転機側電力変換器と、同一の制御則に基づいて前記回転機側電力変換器に前記第1の回転機側変換動作と前記第2の回転機側変換動作とを行わせ、かつ前記第1の回転機側変換動作及び前記第2の回転機側変換動作の各々の動作を前記蓄電装置の計測電圧が所定電圧となるように行わせる回転機側制御器とを有する。 In order to achieve the above object, a power converter according to an aspect of the present invention is a power converter connected between a power supply system and a motor generator, and is connected to the power supply system. A system side converter, a rotating machine side converter connected to the motor generator, and a power storage device connected to a DC wiring connecting the system side converter and the rotating machine side converter, The system side conversion device converts the DC power input from the power storage device into AC power and outputs the AC power to the power system, and the AC power input from the power system is converted to DC power. A system side power converter configured to selectively perform a second system side conversion operation to be converted and output to the power storage device, an AC voltage output from the system side power converter to the power system, and Using the measured value of AC current, Assuming that a virtual synchronous generator capable of operating as a motor instead of the main power converter is connected to the power system, the system power converter is connected to the power system with the virtual synchronization. By operating as a generator, there is a system-side controller that causes the system-side power converter to perform the first system-side conversion operation and the second system-side conversion operation based on the same control law. The rotating machine side conversion device receives the first rotating machine side conversion operation for converting the AC power input from the motor generator into DC power and outputs the DC power to the power storage device, and is input from the power storage device. A rotating machine side power converter configured to alternatively perform a second rotating machine side conversion operation for converting DC power to AC power and outputting the converted power to the motor generator, based on the same control law The rotating machine side power converter has the first The turning-side conversion operation and the second rotating machine-side converting operation are performed, and each of the first rotating machine-side converting operation and the second rotating machine-side converting operation is measured by the measured voltage of the power storage device. And a rotating machine side controller that performs the control so that the voltage becomes a predetermined voltage.
 この構成によれば、例えば電動発電機の発電機運転モードと電動機運転モードとの運転モードの切り替えが行われる等により、電力変換装置の運転状態が切り替わっても、系統側制御器が制御則を切り替えることなく同一の制御則に基づいて系統側電力変換器の制御を行い、回転機側制御器が制御則を切り替えることなく同一の制御則に基づいて回転機側電力変換器の制御を行うので、電力変換装置全体としても制御則を切り替えることなく同一の制御則に基づいて制御される。そして、系統側電力変換器が当該系統側電力変換器の代わりに仮想の同期発電機が電源系統に接続されているとみなして電力を電源系統へ出力するよう制御される。これにより、実際の発電機と同様の周波数制御及び電圧制御を行うことが可能であり、例えば通常の発電機と協調して自系統の電力品質の安定化を図ることが可能になる。以上のように、電力変換装置は、その運転状態の変更によって制御則を切り替えることなく常に同一の制御則に基づいて制御され、かつ、電源系統に対して実際の発電機と同様の周波数制御及び電圧制御を行うので、電力変換装置の運転状態や、例えば電動発電機に直接または間接的に連結されたメインエンジンの運転状態や、系統の電源構成にかかわらず、また、他の発電機が停止することによる不慮の単独運転への移行などが生じても、電源系統の周波数および電圧の安定化を図ることができる。さらに、電動発電機に接続された回転機側電力変換器が、蓄電装置の電圧が所定電圧となるように制御される。これにより、蓄電装置の電圧が所定電圧に保たれ、系統側電力変換器による発電機模擬動作の安定化を図ることができる。 According to this configuration, even when the operation state of the power conversion device is switched, for example, when the operation mode is switched between the generator operation mode and the motor operation mode of the motor generator, the system controller controls the control law. Since the system side power converter is controlled based on the same control law without switching, and the rotating machine side controller controls the rotating machine side power converter based on the same control law without switching the control law. The power converter as a whole is controlled based on the same control law without switching the control law. Then, the system-side power converter is controlled to output power to the power supply system on the assumption that a virtual synchronous generator is connected to the power supply system instead of the system-side power converter. Thereby, it is possible to perform frequency control and voltage control similar to those of an actual generator. For example, it is possible to stabilize the power quality of its own system in cooperation with a normal generator. As described above, the power conversion device is always controlled based on the same control law without switching the control law due to the change of the operation state, and the same frequency control as that of the actual generator is applied to the power supply system. Regardless of the operation status of the power conversion device, the operation status of the main engine directly or indirectly connected to the motor generator, the power supply configuration of the system, etc. Even if an accidental shift to independent operation occurs, the frequency and voltage of the power supply system can be stabilized. Further, the rotating machine side power converter connected to the motor generator is controlled so that the voltage of the power storage device becomes a predetermined voltage. Thereby, the voltage of the power storage device is maintained at a predetermined voltage, and the generator simulation operation by the system-side power converter can be stabilized.
 また、前記系統側制御器は、前記仮想の同期発電機の内部相差角を算出するガバナモデルと、無効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する無効電力の偏差と、出力電圧指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の偏差とに基づいて、前記仮想の同期発電機の内部誘起電圧を算出するAVRモデルと、前記ガバナモデルで算出された内部相差角と、前記AVRモデルで算出された内部誘起電圧とに基づいて、前記仮想の同期発電機の出力電流に相当する電流指令値を算出する発電機モデルと、前記発電機モデルで算出された電流指令値と前記電源系統へ出力される交流電流のフィードバック値との偏差を零にするための電圧指令値を算出し、この電圧指令値をPWM信号に変換して前記系統側電力変換器へ出力するPWM変換部とを備え、前記ガバナモデルは、角速度指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の角速度の偏差を算出し出力する角速度偏差算出部と、有効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する有効電力の偏差を算出する有効電力偏差算出部と、前記有効電力偏差算出部で算出した偏差に所定のゲインを掛けてかつ一次遅れ演算を施した値を出力する演算部と、前記演算部の出力から前記角速度偏差算出部の出力を減算する減算器と、前記減算器の出力を積分して前記内部相差角を算出する積分器とを有するようにしてもよい。 Further, the system-side controller is a governor model for calculating an internal phase difference angle of the virtual synchronous generator, a deviation of the reactive power that the system-side power converter outputs to the power system with respect to a reactive power command value, The AVR model that calculates the internal induced voltage of the virtual synchronous generator based on the deviation of the AC voltage output to the power supply system by the grid-side power converter with respect to the output voltage command value, and the governor model. A generator model for calculating a current command value corresponding to an output current of the virtual synchronous generator based on the internal phase difference angle and the internal induced voltage calculated by the AVR model, and the generator model The voltage command value for making the deviation between the current command value and the feedback value of the alternating current output to the power supply system zero is calculated, and this voltage command value is converted into a PWM signal. A PWM converter that outputs to the system power converter, and the governor model calculates and outputs an angular speed deviation of the AC voltage output from the system power converter to the power system with respect to an angular speed command value. A deviation calculator, an active power deviation calculator that calculates a deviation of the active power that the grid-side power converter outputs to the power supply system with respect to an active power command value, and a deviation calculated by the active power deviation calculator A calculation unit that multiplies a gain and outputs a value obtained by performing a first-order lag calculation; a subtracter that subtracts the output of the angular velocity deviation calculation unit from the output of the calculation unit; You may make it have an integrator which calculates a phase difference angle.
 この構成によれば、電源系統から電動発電機へ電力供給が行われている場合に、定常状態においても、また有効電力指令値の変更等の過渡時においても、電源系統に接続された他の発電機等との負荷分担を行うことができる。 According to this configuration, when power is being supplied from the power supply system to the motor generator, in a steady state or during a transition such as a change in the active power command value, the other power supply system connected Load sharing with a generator or the like can be performed.
 前記系統側制御器は、角速度指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の角速度の偏差を算出する角速度偏差算出部と、前記偏差に一次遅れ演算を施し、この一次遅れ演算を施した値を前記偏差から減算し、その値を出力するフィルタ部と、有効電力指令値に対する有効電力の偏差を算出する有効電力偏差算出部とを有し、前記フィルタ部の出力値と前記有効電力偏差算出部で算出した偏差とに基づいて、前記系統側電力変換器を前記電源系統に対して前記仮想の同期発電機として動作させるよう構成されていてもよい。 The system-side controller performs an angular velocity deviation calculation unit that calculates an angular velocity deviation of an AC voltage output from the system-side power converter to the power supply system with respect to an angular velocity command value, and performs a primary delay operation on the deviation. A filter unit that subtracts a value subjected to delay calculation from the deviation and outputs the value, and an active power deviation calculation unit that calculates a deviation of the active power with respect to the active power command value, and an output value of the filter unit And the deviation calculated by the active power deviation calculator may be configured to operate the power converter on the power supply system as the virtual synchronous generator.
 この構成によれば、電源系統から電動発電機へ電力供給が行われている場合に、定常状態においてはフィルタ部の出力が零となり、有効電力指令値に追従した有効電力の供給が可能となる。また、有効電力指令値の変更等の過渡時においては、フィルタ部の出力が零から変動するので、電源系統に接続された他の発電機等との負荷分担を行うことができる。 According to this configuration, when power is supplied from the power supply system to the motor generator, the output of the filter unit becomes zero in a steady state, and active power can be supplied following the active power command value. . In addition, during a transition such as a change in the active power command value, the output of the filter unit varies from zero, so it is possible to share the load with other generators connected to the power supply system.
 前記系統側制御器は、前記仮想の同期発電機の内部相差角を算出するガバナモデルと、無効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する無効電力の偏差と、出力電圧指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の偏差とに基づいて、前記仮想の同期発電機の内部誘起電圧を算出するAVRモデルと、前記ガバナモデルで算出された内部相差角と、前記AVRモデルで算出された内部誘起電圧とに基づいて、前記仮想の同期発電機の出力電流に相当する電流指令値を算出する発電機モデルと、前記発電機モデルで算出された電流指令値をPWM信号に変換して前記系統側電力変換器へ出力するPWM変換部とを備え、前記ガバナモデルは、角速度指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の角速度の偏差を算出する角速度偏差算出部と、前記偏差に一次遅れ演算を施し、この一次遅れ演算を施した値を前記偏差から減算し、その値を出力するフィルタ部と、有効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する有効電力の偏差を算出する有効電力偏差算出部と、前記有効電力偏差算出部で算出した偏差に所定のゲインを掛けてかつ一次遅れ演算を施した値を出力する演算部と、前記演算部の出力から前記フィルタ部の出力を減算する減算器と、前記減算器の出力を積分して前記内部相差角を算出する積分器と有するようにしてもよい。 The system controller includes a governor model for calculating an internal phase difference angle of the virtual synchronous generator, a deviation of reactive power output to the power system by the system power converter with respect to a reactive power command value, and an output voltage An AVR model for calculating an internal induced voltage of the virtual synchronous generator based on a deviation of an AC voltage output to the power supply system from the system-side power converter with respect to a command value, and an internal calculated by the governor model A generator model that calculates a current command value corresponding to an output current of the virtual synchronous generator based on the phase difference angle and the internal induced voltage calculated by the AVR model, and the generator model that is calculated by the generator model A PWM converter that converts a current command value into a PWM signal and outputs the PWM signal to the grid-side power converter, and the governor model is configured so that the grid-side power converter for the angular velocity command value An angular velocity deviation calculator that calculates the angular velocity deviation of the AC voltage output to the power supply system, and a filter that performs a first-order lag calculation on the deviation, subtracts the value obtained by the first-order lag calculation from the deviation, and outputs the value. An active power deviation calculating unit that calculates a deviation of the active power that the grid-side power converter outputs to the power system with respect to an active power command value, and a predetermined gain for the deviation calculated by the active power deviation calculating unit. A calculation unit that outputs a value obtained by multiplying and performing a first-order lag calculation, a subtractor that subtracts the output of the filter unit from the output of the calculation unit, and calculates the internal phase difference angle by integrating the output of the subtractor You may make it have an integrator to do.
 この構成によれば、電源系統から電動発電機へ電力供給が行われている場合に、定常状態においてはフィルタ部の出力が零となり、有効電力指令値に追従した有効電力の供給が可能となる。また、有効電力指令値の変更等の過渡時においては、フィルタ部の出力が零から変動するので、電源系統に接続された他の発電機等との負荷分担を行うことができる。 According to this configuration, when power is supplied from the power supply system to the motor generator, the output of the filter unit becomes zero in a steady state, and active power can be supplied following the active power command value. . In addition, during a transition such as a change in the active power command value, the output of the filter unit varies from zero, so it is possible to share the load with other generators connected to the power supply system.
 前記フィルタ部は、前記一次遅れ演算を施した値が所定の制限範囲内となるよう制限する制限手段を有するよう構成されていてもよい。 The filter unit may be configured to include a limiting unit that limits a value obtained by performing the first-order lag calculation to be within a predetermined limit range.
 この構成によれば、電源系統から電動発電機へ電力供給が行われている場合に、定常状態においても、制限手段の制限範囲を超えた部分の角速度の偏差がフィルタ部から出力されるので、電源系統に接続された他の発電機等との負荷分担を行うことができる。 According to this configuration, when power is supplied from the power supply system to the motor generator, even in a steady state, the angular velocity deviation of the portion exceeding the limit range of the limiter is output from the filter unit. Load sharing with other generators connected to the power supply system can be performed.
 前記系統側制御器は、外部から有効電力指令値が入力され、この有効電力指令値に応じた有効電力が、前記蓄電装置から前記電源系統へ、または、前記蓄電装置から前記電源系統へ供給されるように前記系統側電力変換器を制御するよう構成され、前記回転機側制御器は、前記系統側制御器に入力される前記有効電力指令値が入力され、この有効電力指令値に応じた有効電力と、前記所定電圧に対する前記蓄電装置の計測電圧の偏差に応じた有効電力とを合算した有効電力が、前記電動発電機から前記蓄電装置へ、または、前記蓄電装置から前記電動発電機へ供給されるように前記回転機側電力変換器を制御するよう構成されていてもよい。 The system-side controller receives an active power command value from the outside, and active power corresponding to the active power command value is supplied from the power storage device to the power supply system or from the power storage device to the power supply system. The system-side power converter is configured to be controlled, and the rotating machine-side controller is input with the active power command value input to the system-side controller, and according to the active power command value The active power obtained by adding the active power and the active power corresponding to the deviation of the measured voltage of the power storage device with respect to the predetermined voltage is from the motor generator to the power storage device, or from the power storage device to the motor generator. You may be comprised so that the said rotary machine side power converter may be controlled so that it may be supplied.
 この構成によれば、系統側制御器に入力される有効電力指令値が回転機側制御器にも入力されるので、蓄電装置の電圧が所定電圧となるようにフィードフォワード制御され、蓄電装置の電圧の所定電圧からの変動を小さく抑えることが可能になる。 According to this configuration, since the active power command value input to the system controller is also input to the rotating machine controller, feedforward control is performed so that the voltage of the power storage device becomes a predetermined voltage, and the power storage device It becomes possible to suppress the fluctuation of the voltage from the predetermined voltage.
 本発明は、以上に説明した構成を有し、電力変換装置の運転状態や、例えば電動発電機に直接または間接的に連結されたメインエンジンの運転状態や、系統の電源構成にかかわらず、電源系統の周波数および電圧の安定化を図ることができる電力変換装置を提供することができるという効果を奏する。 The present invention has the above-described configuration, regardless of the operation state of the power conversion device, the operation state of the main engine directly or indirectly connected to the motor generator, or the power supply configuration of the system. There is an effect that it is possible to provide a power conversion device capable of stabilizing the frequency and voltage of the system.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
図1は、本発明の実施形態に係る電力変換装置が適用されるシステムの一例を示す概略ブロック図である。FIG. 1 is a schematic block diagram illustrating an example of a system to which a power conversion device according to an embodiment of the present invention is applied. 図2は、本発明の実施形態に係る電力変換装置のより具体的な適用例を示す概略ブロック図である。FIG. 2 is a schematic block diagram illustrating a more specific application example of the power conversion device according to the embodiment of the present invention. 図3は、図1、図2に示す電力変換装置の系統側制御器の機能ブロック図である。FIG. 3 is a functional block diagram of the system controller of the power conversion device shown in FIGS. 1 and 2. 図4は、図1、図2に示す電力変換装置の回転機側変換装置の詳細を示すブロック図である。FIG. 4 is a block diagram illustrating details of the rotating machine side conversion device of the power conversion device illustrated in FIGS. 1 and 2. 図5は、仮想発電機の1相分の等価回路における内部誘起電圧と出力電圧と出力電流との関係を表すフェーザ図である。FIG. 5 is a phasor diagram showing the relationship among the internal induced voltage, the output voltage, and the output current in the equivalent circuit for one phase of the virtual generator.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、本発明は、以下の実施形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted. Further, the present invention is not limited to the following embodiment.
 (実施形態)
 〔全体構成〕
 図1は本発明の実施形態に係る電力変換装置が適用されるシステムの一例を示す概略ブロック図である。
(Embodiment)
〔overall structure〕
FIG. 1 is a schematic block diagram illustrating an example of a system to which a power conversion device according to an embodiment of the present invention is applied.
 本実施形態の電力変換装置1は、交流電路である交流電源系統(母線)2と電動発電機3との間に接続されている。交流電源系統2には、少なくとも1つの電力負荷4と、少なくとも1つの原動機発電機5とが接続されている。また、交流電源系統2には、商用電力系統6が接続されていてもよいし、二次電池等の蓄電設備(図示せず)が接続されていてもよい。このように、電力変換装置1が接続される交流電源系統2は、商用電力系統6と連系をしていてもよいし、商用電力系統6と連系をしていない自立電源系統であってもよい。 The power conversion device 1 according to the present embodiment is connected between an AC power supply system (bus) 2 that is an AC circuit and a motor generator 3. The AC power supply system 2 is connected to at least one power load 4 and at least one prime mover generator 5. Moreover, the commercial power system 6 may be connected to the AC power supply system 2, and a power storage facility (not shown) such as a secondary battery may be connected. As described above, the AC power supply system 2 to which the power conversion device 1 is connected may be connected to the commercial power system 6 or may be an independent power supply system that is not connected to the commercial power system 6. Also good.
 ここで、電動発電機3の機械軸3aには、モータ、フライホイール、クランク軸、原動機、減速機、増速機、車輪、プロペラ等のいずれかが接続される。なお、電動発電機3は、同期機(同期電動発電機)でもよいし、誘導機(誘導電動発電機)でもよい。 Here, any one of a motor, a flywheel, a crankshaft, a prime mover, a speed reducer, a speed increaser, a wheel, a propeller, and the like is connected to the mechanical shaft 3a of the motor generator 3. The motor generator 3 may be a synchronous machine (synchronous motor generator) or an induction machine (induction motor generator).
 また、電力変換装置1、電力負荷4、原動機発電機5及び商用電力系統6の各々には、異常等が生じたときに、交流電源系統2から切り離す遮断器S1,S4,S5,S6が設けられてあってもよい。 Each of the power converter 1, the power load 4, the prime mover generator 5, and the commercial power system 6 is provided with circuit breakers S1, S4, S5, and S6 that are disconnected from the AC power supply system 2 when an abnormality or the like occurs. You may have been.
 図2は、本実施形態の電力変換装置1のより具体的な適用例を示す概略ブロック図である。 FIG. 2 is a schematic block diagram showing a more specific application example of the power conversion device 1 of the present embodiment.
 この場合、交流電源系統2(以下、「電源系統2」と記載)は、船舶内における電源系統であり、通常、電源系統2には、例えばディーゼル発電機からなる発電機7が運転されることによって、船内の電力負荷4に電力が供給される。また、図示されていないが、図1と同様の遮断機(S1等)が設けられてあってもよい。 In this case, the AC power supply system 2 (hereinafter referred to as “power supply system 2”) is a power supply system in the ship, and the power supply system 2 is normally operated with a generator 7 made of, for example, a diesel generator. Thus, electric power is supplied to the electric power load 4 in the ship. Moreover, although not shown in figure, the same circuit breaker (S1 etc.) as FIG. 1 may be provided.
 ここでは、電動発電機3の機械軸3aには減速機8の主軸が連結されている。図示していないが、この減速機8は、例えば、船舶のメインエンジン(原動機)に連結されるとともに、船舶を推進させるプロペラに連結されており、メインエンジンおよび/または電動発電機3の動力によってプロペラを回転させるようになっている。 Here, the main shaft of the speed reducer 8 is connected to the mechanical shaft 3 a of the motor generator 3. Although not shown, the speed reducer 8 is connected to, for example, a main engine (prime mover) of the ship and is connected to a propeller that propels the ship, and is driven by the power of the main engine and / or the motor generator 3. The propeller is rotated.
 電力変換装置1は、電源系統2と電動発電機3との間に設けられ、電源系統2に接続された系統側変換装置101と、電動発電機3に接続された回転機側変換装置102と、蓄電装置103とを備えている。蓄電装置103は、系統側変換装置101と回転機側変換装置102とを接続する直流配線104の配線間に接続されている。蓄電装置103としては、コンデンサが例示されているが、2次電池でもよい。 The power conversion device 1 is provided between the power supply system 2 and the motor generator 3, and is connected to the power supply system 2. The power conversion device 101 is connected to the motor generator 3, and the rotating machine side conversion device 102 is connected to the motor generator 3. The power storage device 103 is provided. The power storage device 103 is connected between the wirings of the DC wiring 104 that connects the system side conversion device 101 and the rotating machine side conversion device 102. As the power storage device 103, a capacitor is illustrated, but a secondary battery may be used.
 系統側変換装置101は、系統側電力変換器11と、これを制御する系統側制御器12と、系統側三相の各相(r相、s相、t相)の電圧Vr,Vs,Vtを検出する電圧センサ(電圧測定用PT)を用いた電圧検出部13と、系統側三相の各相(r相、s相、t相)の電流ir,is,itを検出する電流センサ(電流測定用PC)を用いた電流検出部14とを備えている。電圧検出部13で検出される系統側三相電圧Vr,Vs,Vtと、電流検出部14で検出される系統側三相電流ir,is,itとは、系統側制御器12に入力される。図1では、電圧検出部13及び電流検出部14の図示を省略している。 The system-side converter 101 includes a system-side power converter 11, a system-side controller 12 that controls the system-side power converter 11, and voltages Vr, Vs, Vt of each of the three phases (r-phase, s-phase, t-phase) A voltage detection unit 13 using a voltage sensor (voltage measurement PT) for detecting current, and a current sensor for detecting currents ir, is, it of each of the three phases (r phase, s phase, t phase) of the system side A current detection unit 14 using a current measurement PC). The system side three-phase voltages Vr, Vs, Vt detected by the voltage detector 13 and the system side three-phase currents ir, is, it detected by the current detector 14 are input to the system controller 12. . In FIG. 1, the voltage detection unit 13 and the current detection unit 14 are not shown.
 また、回転機側変換装置102は、系統側電力変換器11と直流配線104で接続された回転機側電力変換器16と、これを制御する回転機側制御器17と、蓄電装置104の正負両端子間の直流電圧VDCを検出する電圧検出部18とを備えている。電圧検出部18で検出される直流電圧VDCは、回転機側制御器17に入力される。図1では、電圧検出部18の図示を省略している。 Further, the rotating machine side conversion device 102 includes a rotating machine side power converter 16 connected to the system side power converter 11 by the DC wiring 104, a rotating machine side controller 17 that controls the rotating machine side power converter 16, and the positive and negative of the power storage device 104. And a voltage detector 18 for detecting a DC voltage V DC between both terminals. The DC voltage VDC detected by the voltage detection unit 18 is input to the rotating machine side controller 17. In FIG. 1, the voltage detector 18 is not shown.
 系統側制御器12及び回転機側制御器17は、それぞれ、FPGA(field-programmable gate array)、PLC(programmable logic controller)、マイクロコントローラ等の制御装置で構成されている。なお、系統側制御器12と回転機側制御器17とが共通(単一)の制御装置で構成されていてもよい。 The system-side controller 12 and the rotating machine-side controller 17 are each configured by a control device such as an FPGA (field-programmable gate array), a PLC (programmable logic controller), or a microcontroller. The system controller 12 and the rotating machine controller 17 may be configured by a common (single) controller.
 また、系統側制御器12及び回転機側制御器17には、外部の上位制御系である統括制御装置9から、後述の有効電力指令値Pなどの電力変換装置1の運転状態を変更するための指令等が入力される。 In addition, the system controller 12 and the rotating machine controller 17 change the operating state of the power converter 1 such as an active power command value P * , which will be described later, from the general control device 9 which is an external host control system. A command or the like is input.
 〔系統側変換装置101の詳細〕
 系統側電力変換器11は、例えば、それぞれ逆並列接続されたダイオードを備えた6個のスイッチング素子により構成されている。この電力変換器11は、半導体素子で形成され、各スイッチング素子には例えばIGBTが用いられる。
[Details of system side converter 101]
The system side power converter 11 includes, for example, six switching elements each including a diode connected in antiparallel. The power converter 11 is formed of a semiconductor element, and for example, an IGBT is used for each switching element.
 系統側制御器12は、上記それぞれのスイッチング素子の制御端子(例えばIGBTのゲート端子)に入力される制御信号(PWM信号)を電力変換器11へ出力し、各スイッチング素子をオンオフ動作させることにより、電力変換器11をインバータあるいはコンバータとして機能させる。 The system-side controller 12 outputs a control signal (PWM signal) input to the control terminal of each of the switching elements (for example, the gate terminal of the IGBT) to the power converter 11 to turn each switching element on and off. The power converter 11 is caused to function as an inverter or a converter.
 次に、系統側制御器12の構成について詳述する。図3は、系統側制御器12の機能ブロック図である。なお、以下では、加算器、減算器及び加減算器を区別せずに、加減算器と記載する(図4の説明においても同様)。 Next, the configuration of the system controller 12 will be described in detail. FIG. 3 is a functional block diagram of the system controller 12. Hereinafter, an adder, a subtracter, and an adder / subtractor are not distinguished from each other and are referred to as an adder / subtractor (the same applies to the description of FIG. 4).
 系統側制御器12は、PWM変換部20と、発電機モデル30と、AVRモデル40及びガバナモデル50を有する発電機制御モデル65と、PLL演算部61と、dq変換部62、63と、電圧実効値演算部64とを備えている。これらは、系統側制御器12が、それに内蔵されるプログラムが実行されることにより実現される機能である。 The system-side controller 12 includes a PWM conversion unit 20, a generator model 30, a generator control model 65 having an AVR model 40 and a governor model 50, a PLL calculation unit 61, dq conversion units 62 and 63, a voltage An effective value calculation unit 64 is provided. These are functions realized by the system-side controller 12 executing a program built therein.
 この系統側制御器12は、系統側電力変換器11が電源系統2に対して仮想の同期発電機(以下、「仮想発電機」ともいう)として動作するよう電力変換器11を制御するように構成されている。 The system-side controller 12 controls the power converter 11 so that the system-side power converter 11 operates as a virtual synchronous generator (hereinafter also referred to as “virtual generator”) with respect to the power supply system 2. It is configured.
 発電機モデル30は、電動機としての動作も可能にした同期発電機本体をモデル化したものである。発電機制御モデル65は、同期発電機の機能を所定の演算パラメータを用いてモデル化した制御モデル(演算ブロック)である。発電機制御モデル65は、同期発電機を制御するガバナ及びAVRをそれぞれモデル化した制御モデルであり、ガバナモデル及びAVRモデルを含むものであればよい。また、発電機モデル30としては、周知のものを用いることができ、例えばParkモデル等を用いることができる。 The generator model 30 is a model of a synchronous generator body that can also operate as an electric motor. The generator control model 65 is a control model (calculation block) in which the function of the synchronous generator is modeled using predetermined calculation parameters. The generator control model 65 is a control model in which a governor and an AVR that control the synchronous generator are modeled, and any model that includes the governor model and the AVR model may be used. Moreover, as the generator model 30, a well-known thing can be used, for example, a Park model etc. can be used.
 PLL演算部61は、電圧検出部13で検出される系統側三相電圧Vr,Vs,Vtを用いて、系統側電圧の位相θ及び角速度ωを算出する、位相及び角速度演算部である。このPLL演算部61は、三相電圧Vr,Vs,Vtから、線間電圧を算出し、これらの値を用いてPLL演算等を行い、系統側電圧の位相θ及び角速度ωを算出する。このようなPLL演算部61は、例えば、先述の特許文献2(特開2012-130146号公報)等に開示されており周知であるので、ここでの詳細は省略する。 The PLL calculation unit 61 is a phase and angular velocity calculation unit that calculates the phase θ and the angular velocity ω of the system side voltage using the system side three-phase voltages Vr, Vs, and Vt detected by the voltage detection unit 13. The PLL calculation unit 61 calculates a line voltage from the three-phase voltages Vr, Vs, and Vt, performs PLL calculation using these values, and calculates the phase θ and the angular velocity ω of the system side voltage. Such a PLL calculation unit 61 is disclosed in, for example, the above-mentioned Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-130146) and the like, and is well-known, and details thereof are omitted here.
 dq変換部62には、電圧検出部13で検出された系統側三相電圧(電力変換器11の出力電圧)Vr,Vs,Vtと、PLL演算部61で算出された系統側電圧位相θとが入力される。そして、dq変換部62は、系統側電圧位相θを用いて、三相電圧Vr,Vs,Vtをdq変換し当該電圧のd軸成分V及びq軸成分Vを算出する。 The dq converter 62 includes a system-side three-phase voltage (output voltage of the power converter 11) Vr, Vs, Vt detected by the voltage detector 13 and a system-side voltage phase θ calculated by the PLL calculator 61. Is entered. Then, the dq conversion unit 62 performs dq conversion on the three-phase voltages Vr, Vs, and Vt using the system-side voltage phase θ, and calculates the d-axis component V d and the q-axis component V q of the voltage.
 また、dq変換部63には、電流検出部14で検出された系統側三相電流(電力変換器11の出力電流)ir,is,itと、PLL演算部61で算出された系統側電圧位相θとが入力される。そして、dq変換部63は、系統側電圧位相θを用いて、三相電流ir,is,itをdq変換し当該電流のd軸成分i及びq軸成分iを算出する。 Further, the dq conversion unit 63 includes a system-side three-phase current (output current of the power converter 11) ir, is, it detected by the current detection unit 14 and a system-side voltage phase calculated by the PLL calculation unit 61. θ is input. Then, dq converting section 63 uses the mains voltage phase theta, three-phase currents ir, IS, and dq convert it to calculate the d-axis component i d and the q-axis component i q of the current.
 また、電圧実効値演算部64は、系統側電圧実効値Vを、dq変換部62において算出されるV,Vから次式を用いて算出する。 Moreover, the voltage effective value calculating unit 64 calculates the system side voltage effective value V g from V q and V d calculated by the dq conversion unit 62 using the following equation.
Figure JPOXMLDOC01-appb-M000001
 
 また、図示していないが、系統側制御器12は、電力算出部を有し、この電力算出部では、系統側三相電圧Vr,Vs,Vt及び電流ir,is,itに基づく系統側へ出力される有効電力P及び無効電力Qを算出し、有効電力Pをガバナモデル50へ与え、無効電力QをAVRモデル40へ与える。ここで、電力算出部は、例えば、以下の式によって系統側有効電力P及び無効電力Qを算出するようにしてもよい。
Figure JPOXMLDOC01-appb-M000001

Moreover, although not shown in figure, the system side controller 12 has an electric power calculation part, and in this electric power calculation part, to the system side based on system side three-phase voltage Vr, Vs, Vt and electric current ir, is, it. The active power P and reactive power Q to be output are calculated, the active power P is given to the governor model 50, and the reactive power Q is given to the AVR model 40. Here, the power calculation unit may calculate the grid-side active power P and the reactive power Q by the following equations, for example.
Figure JPOXMLDOC01-appb-M000002
 
 また、ガバナモデル50は、外部(統括制御装置9)から入力される有効電力指令値Pに対する有効電力Pの偏差と、ガバナの速度垂下特性を持たせる制御と、角速度指令値ωに対するPLL演算部61で算出された角速度ωの偏差とに基づいて、仮想発電機の内部相差角δを算出する。なお、角速度指令値ωは、外部(統括制御装置9)から入力されてもよいし、あるいはガバナモデル50の内部に持っていてもよい。角速度指令値ωは、例えば周波数60Hzに相当する所定の角速度(角速度基準値)であり、上記速度垂下特性は、例えば定格有効電力出力時、周波数60Hzの5%に相当する周波数低下を有する。
Figure JPOXMLDOC01-appb-M000002

Further, the governor model 50 includes a control for giving a deviation of the active power P with respect to the active power command value P * input from the outside (the overall control device 9), a governor speed drooping characteristic, and a PLL for the angular speed command value ω * . Based on the deviation of the angular velocity ω calculated by the calculator 61, the internal phase difference angle δ of the virtual generator is calculated. The angular velocity command value ω * may be input from the outside (the overall control device 9) or may be held inside the governor model 50. The angular velocity command value ω * is a predetermined angular velocity (angular velocity reference value) corresponding to, for example, a frequency of 60 Hz, and the velocity drooping characteristic has a frequency drop corresponding to 5% of the frequency of 60 Hz, for example, when a rated active power is output.
 具体的には、ガバナモデル50において、加減算器51は、有効電力指令値Pから有効電力Pを減算して偏差を算出し、この偏差をドループブロック52へ出力する。ドループブロック52は、加減算器51の出力に対しガバナの速度垂下特性に応じて所定の演算が施された値(例えば実定数のゲインKgdを掛けたもの)をローパスフィルタ部53へ出力する。ローパスフィルタ部53は、ドループブロック52の出力に一次遅れを付与して、これを加減算器54へ出力する。一次遅れを付与する理由は、有効電力偏差に対する応答が過敏になることを防止するためである。 Specifically, in the governor model 50, the adder / subtractor 51 calculates a deviation by subtracting the active power P from the active power command value P * , and outputs the deviation to the droop block 52. The droop block 52 outputs a value obtained by multiplying the output of the adder / subtractor 51 by a predetermined calculation according to the speed drooping characteristic of the governor (for example, a value obtained by multiplying a real constant gain K gd ) to the low-pass filter unit 53. The low-pass filter unit 53 gives a first-order lag to the output of the droop block 52 and outputs this to the adder / subtractor 54. The reason for giving the first-order lag is to prevent the response to the active power deviation from becoming sensitive.
 一方、加減算器55では、角速度指令値ωからPLL演算部61で算出された角速度ωを減算して角速度偏差を算出し、これをハイパスフィルタ部56へ出力する。 On the other hand, the adder / subtracter 55 calculates an angular velocity deviation by subtracting the angular velocity ω calculated by the PLL calculation unit 61 from the angular velocity command value ω * , and outputs this to the high-pass filter unit 56.
 ハイパスフィルタ部56へ入力された角速度偏差は、上下限リミッタ57と加減算器59へ入力される。入力された角速度偏差は、上下限リミッタ57により、上限値(例えば、0×2π)及び下限値(例えば、-2×2π)が定められた制限範囲内に制限され、一時遅れフィルタ部58へ入力される。そして、一時遅れフィルタ部58で一次遅れが付与されて加減算器59に入力される。加減算器59では、加減算器55から出力される角速度偏差から、一時遅れフィルタ部58の出力を減算し、その減算値を加減算器54へ出力する。 The angular velocity deviation input to the high-pass filter unit 56 is input to the upper / lower limiter 57 and the adder / subtractor 59. The input angular velocity deviation is limited by the upper / lower limiter 57 within the limit range in which the upper limit value (for example, 0 × 2π) and the lower limit value (for example, −2 × 2π) are determined, and is sent to the temporary delay filter unit 58. Entered. Then, a first-order delay is given by the temporary delay filter unit 58 and is input to the adder / subtractor 59. The adder / subtractor 59 subtracts the output of the temporary delay filter unit 58 from the angular velocity deviation output from the adder / subtractor 55 and outputs the subtraction value to the adder / subtractor 54.
 加減算器54では、ローパスフィルタ部53の出力から加減算器59の出力(=ハイパスフィルタ部56の出力)を減算し、この減算値が積分器60へ入力され、積分器60で積分されて内部相差角δが算出される。この内部相差角δが、発電機モデル30へ出力される。 The adder / subtractor 54 subtracts the output of the adder / subtractor 59 (= the output of the high pass filter unit 56) from the output of the low pass filter unit 53, and this subtraction value is input to the integrator 60, integrated by the integrator 60, and the internal phase difference. The angle δ is calculated. The internal phase difference angle δ is output to the generator model 30.
 AVRモデル40は、無効電力指令値Qに対する無効電力Qの偏差と、AVRの電圧垂下特性を持たせる制御と、電圧実効値指令値V (以下、「出力電圧指令値V 」ともいう)と、系統側電圧実効値Vとに基づいて、内部誘起電圧Eを算出する。なお、無効電力指令値Qは外部(統括制御装置9)から入力される。出力電圧指令値V は、外部(統括制御装置9)から入力されてもよいし、あるいはAVRモデル40の内部に持っていてもよい。出力電圧指令値V は、例えば202Vの所定値(交流電圧基準値)である。また、電圧実効値演算部64から系統側電圧実効値Vが入力される。 The AVR model 40 includes a control of giving a deviation of the reactive power Q with respect to the reactive power command value Q * , a voltage drooping characteristic of the AVR, a voltage effective value command value V g * (hereinafter, “output voltage command value V g * ”). And the internal induced voltage E f is calculated based on the system side voltage effective value V g . The reactive power command value Q * is input from the outside (the overall control device 9). The output voltage command value V g * may be input from the outside (the overall control device 9) or may be held inside the AVR model 40. The output voltage command value V g * is, for example, a predetermined value (AC voltage reference value) of 202V. Further, the system side voltage effective value V g is input from the voltage effective value calculation unit 64.
 具体的には、AVRモデル40において、加減算器41は、無効電力指令値Qから無効電力Qを減算した値(無効電力偏差)をドループブロック42へ出力する。ドループブロック42は、加減算器41の出力に対しAVRの垂下特性に応じて所定の演算が施された値(例えば実定数のゲインKadを掛けたもの)をローパスフィルタ部43へ出力する。ローパスフィルタ部43は、ドループブロック42の出力に一次遅れを付与して、これを加減算器44へ出力する。一次遅れを付与する理由は、無効電力偏差に対する応答が過敏になることを防止するためである。 Specifically, in the AVR model 40, the adder / subtractor 41 outputs a value (reactive power deviation) obtained by subtracting the reactive power Q from the reactive power command value Q * to the droop block 42. The droop block 42 outputs, to the low-pass filter unit 43, a value obtained by multiplying the output of the adder / subtractor 41 by a predetermined calculation according to the drooping characteristic of the AVR (for example, a product of a real constant gain K ad ). The low-pass filter unit 43 gives a first-order delay to the output of the droop block 42 and outputs this to the adder / subtractor 44. The reason for giving the first-order lag is to prevent the response to the reactive power deviation from becoming sensitive.
 一方、出力電圧指令値V が加減算器44に入力される。加減算器44は、ローパスフィルタ部43の出力と出力電圧指令値V とを加算し、更にその加算値から系統側電圧実効値Vを減算した値(無効電力偏差を加味した電圧偏差)を、PI制御ブロック45へ出力する。PI制御ブロック45は、加減算器44の出力に比例積分補償を行って内部誘起電圧Eを算出し、これを発電機モデル30へ出力する。 On the other hand, the output voltage command value V g * is input to the adder / subtractor 44. The adder / subtractor 44 adds the output of the low-pass filter unit 43 and the output voltage command value V g *, and further subtracts the system side voltage effective value V g from the added value (voltage deviation taking into account the reactive power deviation). Is output to the PI control block 45. The PI control block 45 performs proportional-integral compensation on the output of the adder / subtractor 44 to calculate the internal induced voltage E f and outputs it to the generator model 30.
 発電機モデル30は、仮想発電機として同期発電機を模擬している。ここで、仮想発電機は、仮想発電機の界磁による内部誘起電圧Eと、仮想発電機の内部インピーダンス(電機子の巻線リアクタンスx及び巻線抵抗r)と、仮想発電機の出力電圧V(複素電圧ベクトル)及び出力電流I(複素電流ベクトル)と、を用いてモデル化される。 The generator model 30 simulates a synchronous generator as a virtual generator. Here, the virtual generator includes an internal induced voltage E f due to the field of the virtual generator, an internal impedance of the virtual generator (winding reactance x and winding resistance r of the armature), and an output voltage of the virtual generator. It is modeled using V g (complex voltage vector) and output current I (complex current vector).
 図5は、仮想発電機の1相分の等価回路における内部誘起電圧Eと出力電圧Vと出力電流(電流指令値I)との関係を表すフェーザ図である。 FIG. 5 is a phasor diagram showing the relationship among the internal induced voltage E f , the output voltage V g, and the output current (current command value I * ) in the equivalent circuit for one phase of the virtual generator.
 発電機モデル30は、ガバナモデル50で算出された内部相差角δと、AVRモデル40で算出された内部誘起電圧Eと、dq変換部62で算出された出力電圧のd軸成分V及びq軸成分Vと、所与の内部インピーダンスr,xとに基づいて、仮想発電機の出力電流の指令値I(q軸電流指令値i 及びd軸電流指令値i )を算出する。 The generator model 30 includes an internal phase difference angle δ calculated by the governor model 50, an internal induced voltage E f calculated by the AVR model 40, a d-axis component V d of the output voltage calculated by the dq converter 62, and Based on the q-axis component V q and the given internal impedances r and x, the command value I * (the q-axis current command value i q * and the d-axis current command value i d * ) of the virtual generator output current Is calculated.
 より具体的には、発電機モデル30において、演算部31は、内部相差角δからsinδを求めて乗算器32へ出力し、乗算器32では、sinδと内部誘起電圧Eとの乗算値Eを算出する。さらに加減算器33は、乗算値Eからq軸成分Vを減算し、その減算値ΔV(=Esinδ-V)を演算部36へ出力する。 More specifically, in the generator model 30, the calculation unit 31 obtains sin δ from the internal phase difference angle δ and outputs it to the multiplier 32, and the multiplier 32 multiplies the value E by the sin δ and the internal induced voltage E f. q is calculated. Further subtractor 33 subtracts the q-axis component V q from the multiplier values E q, and outputs to the subtraction value ΔV q (= E f sinδ- V q) the operation unit 36.
 また、演算部31は、内部相差角δからcosδを求めて乗算器34へ出力し、乗算器34では、cosδと内部誘起電圧Eとの乗算値Eを算出する。さらに加減算器35は、乗算値Eからd軸成分Vを減算し、その減算値ΔV(=Ecosδ-V)を演算部36へ出力する。 Further, the calculation unit 31 calculates cos δ from the internal phase difference angle δ and outputs it to the multiplier 34, and the multiplier 34 calculates a multiplication value E d of cos δ and the internal induced voltage E f . Further subtractor 35 subtracts the d-axis component V d from the multiplier value E d, and outputs to the subtraction value ΔV d (= E f cosδ- V d) an arithmetic unit 36.
 そして、演算部36によって、q軸電流指令値i 及びd軸電流指令値i が算出される。 Then, the calculation unit 36 calculates the q-axis current command value i q * and the d-axis current command value i d * .
 すなわち、発電機モデル30では、以下の関係式を用いて、q軸電流指令値i 及びd軸電流指令値i が算出され、PWM変換部20へ出力される。 That is, in the generator model 30, the q-axis current command value i q * and the d-axis current command value i d * are calculated and output to the PWM conversion unit 20 using the following relational expression.
Figure JPOXMLDOC01-appb-M000003
 
 上記関係式のうち、i の算出式とi の算出式とによる演算が、演算部36で行われる。この発電機モデル30は、電流フィードバック制御の指令値を演算する制御モデルとして構成されている。
Figure JPOXMLDOC01-appb-M000003

Of the above relational expressions, the calculation unit 36 performs an operation based on the calculation formula of i q * and the calculation formula of i d * . The generator model 30 is configured as a control model for calculating a command value for current feedback control.
 次に、PWM変換部20は、発電機モデル30で算出された電流指令値(i 、i )と電源系統2へ出力される交流電流のフィードバック値(i、i)との偏差を零にするための電圧指令値を算出し、この電圧指令値をPWM信号に変換して系統側電力変換器11へ出力する。すなわち、発電機モデル30で演算された出力電流の指令値I(i 、i )に対応する電流を出力するよう電力変換器11を制御する。具体的には、PWM変換部20は、加減算器21、22と、PI制御ブロック23、24と、dq逆変換部25と、PWM信号生成部26とを含む。 Next, the PWM conversion unit 20 calculates the current command value (i q * , i d * ) calculated by the generator model 30 and the feedback value (i q , i d ) of the alternating current output to the power supply system 2. The voltage command value for making the deviation of zero is calculated, and the voltage command value is converted into a PWM signal and output to the system side power converter 11. That is, the power converter 11 is controlled to output a current corresponding to the command value I * (i q * , i d * ) of the output current calculated by the generator model 30. Specifically, the PWM conversion unit 20 includes adders / subtractors 21 and 22, PI control blocks 23 and 24, a dq inverse conversion unit 25, and a PWM signal generation unit 26.
 加減算器21は、発電機モデル30から入力されるd軸電流指令値i から、dq変換部63から入力される出力電流のd軸成分iを減算してd軸誤差電流を算出し、これをPI制御ブロック23(d軸電流制御器)に出力する。PI制御ブロック23は、d軸誤差電流に比例積分補償を施してd軸電圧指令値V を算出し、これをdq逆変換部25に出力する。 Subtracter 21, from the generator model 30 d-axis current command value is input from the i d *, calculates d-axis error current by subtracting the d-axis component i d of the output current inputted from the dq conversion section 63 This is output to the PI control block 23 (d-axis current controller). The PI control block 23 performs proportional integral compensation on the d-axis error current to calculate a d-axis voltage command value V d *, and outputs this to the dq inverse conversion unit 25.
 一方、加減算器22は、発電機モデル30から入力されるq軸電流指令値i から、dq変換部63から入力される出力電流のq軸成分iを減算してq軸誤差電流を算出し、これをPI制御ブロック24(q軸電流制御器)に出力する。PI制御ブロック24は、q軸誤差電流に比例積分補償を施してq軸電圧指令値V を算出し、これをdq逆変換部25に出力する。 On the other hand, the adder / subtracter 22 subtracts the q-axis component i q of the output current input from the dq converter 63 from the q-axis current command value i q * input from the generator model 30 to obtain the q-axis error current. This is calculated and output to the PI control block 24 (q-axis current controller). The PI control block 24 performs proportional integral compensation on the q-axis error current to calculate a q-axis voltage command value V q *, and outputs this to the dq inverse conversion unit 25.
 dq逆変換部25は、系統側電圧位相θを用いて、d軸電圧指令値V 及びq軸電圧指令値V をdq逆変換して、系統側三相電圧出力指令値Vr,Vs,Vtを生成し、これをPWM信号生成部26に出力する。 The dq reverse conversion unit 25 performs dq reverse conversion of the d-axis voltage command value V d * and the q-axis voltage command value V q * using the system-side voltage phase θ, and the system-side three-phase voltage output command value Vr *. , Vs * , Vt * are generated and output to the PWM signal generator 26.
 PWM信号生成部26は、この三相電圧出力指令値Vr,Vs,VtをPWM信号に変換して、これを系統側電力変換器11に出力する。これにより、電力変換器11の出力電流が、発電機モデル30で演算されたd軸電流指令値i 及びq軸電流指令値i に対応する電流になるようにフィードバック制御される。 The PWM signal generation unit 26 converts the three-phase voltage output command values Vr * , Vs * , and Vt * into a PWM signal and outputs the PWM signal to the system-side power converter 11. Thus, feedback control is performed so that the output current of the power converter 11 becomes a current corresponding to the d-axis current command value i d * and the q-axis current command value i q * calculated by the generator model 30.
 〔回転機側変換装置102の詳細〕
 図4は、回転機側変換装置102の詳細を示すブロック図である。
[Details of the rotating machine side conversion device 102]
FIG. 4 is a block diagram showing details of the rotating machine side conversion device 102.
 回転機側電力変換器16は、3つの単相インバータ16x、16y、16zにより構成され、各相の単相インバータ16x、16y、16zは、それぞれ逆並列接続されたダイオードを備えた4個のスイッチング素子により構成されている。この電力変換器16は、半導体素子で形成され、各スイッチング素子には例えばIGBTが用いられる。各々の単相インバータ16x、16y、16zは、その各々の直流部に、蓄電装置103の両極端子と接続された直流配線104が接続されている。 The rotating machine side power converter 16 is configured by three single- phase inverters 16x, 16y, and 16z, and each of the single- phase inverters 16x, 16y, and 16z of each phase has four switching units each including a diode connected in antiparallel. It is comprised by the element. The power converter 16 is formed of a semiconductor element, and for example, an IGBT is used for each switching element. Each of the single- phase inverters 16x, 16y, and 16z has a DC wiring 104 connected to the bipolar terminals of the power storage device 103 connected to each DC portion thereof.
 また、単相インバータ16x、16y、16zの出力線(交流側配線)は、電動発電機3に接続されており、各出力線の電流値(各相の電流ix、iy、iz)が電流センサ19x、19y、19zによって検出され、回転機側制御器17のdq変換部87へ入力される。 The output lines (AC side wiring) of the single- phase inverters 16x, 16y, and 16z are connected to the motor generator 3, and the current values (currents ix, iy, and iz of each phase) of the output lines are current sensors. Detected by 19x, 19y, and 19z and input to the dq converter 87 of the rotating machine side controller 17.
 電動発電機3が同期電動発電機の場合には、磁極位置センサが設けられている。この磁極位置センサで検出される磁極位置(角度)θMG1は、回転機側制御器17のdq変換部87及びdq逆変換部88へ入力される。また、角速度算出部(図示せず)により、磁極位置(角度)θMG1から電動発電機3の機械角速度ωrm_MG1が算出され、その機械角速度ωrm_MG1は、回転機側制御器17の演算部74,75及び換算部(図示せず)へ入力される。この換算部に入力された機械角速度ωrm_MG1は、電気角速度ωre_MG1に換算されて干渉成分補正回路80の乗算器82へ入力される。 When the motor generator 3 is a synchronous motor generator, a magnetic pole position sensor is provided. The magnetic pole position (angle) θ MG1 detected by this magnetic pole position sensor is input to the dq converter 87 and the dq reverse converter 88 of the rotating machine side controller 17. Further, the angular velocity calculating section (not shown), the calculated mechanical angular ωrm_MG1 of the motor generator 3 from the magnetic pole position (angle) theta MG1, the mechanical angular ωrm_MG1, the operating section 74 and 75 of the rotary-side controller 17 And a conversion unit (not shown). The mechanical angular velocity ωrm_MG1 input to the conversion unit is converted to an electrical angular velocity ωre_MG1 and input to the multiplier 82 of the interference component correction circuit 80.
 また、電動発電機3が誘導電動発電機の場合には、角速度センサが設けられている。この角速度センサで検出される機械角速度ωrm_MG1が演算部74,75へ入力される。また、機械角速度ωrm_MG1は、図示しない換算部によって、電気角速度ωre_MG1に換算されて乗算器82へ入力される。また、図示しない算出部によって、機械角速度ωrm_MG1から磁極位置(角度)θMG1が算出されて、dq変換部87及びdq逆変換部88へ入力される。 In addition, when the motor generator 3 is an induction motor generator, an angular velocity sensor is provided. The mechanical angular velocity ωrm_MG1 detected by the angular velocity sensor is input to the calculation units 74 and 75. The mechanical angular velocity ωrm_MG1 is converted into an electrical angular velocity ωre_MG1 by a conversion unit (not shown) and input to the multiplier 82. In addition, a magnetic pole position (angle) θ MG1 is calculated from the mechanical angular velocity ωrm_MG1 by a calculation unit (not shown) and input to the dq conversion unit 87 and the dq inverse conversion unit 88.
 回転機側制御器17は、単相インバータ16x、16y、16zのそれぞれのスイッチング素子の制御端子(例えばIGBTのゲート端子)に入力されるPWM信号(PWM_X_cmd, PWM_Y_cmd, PWM_Z_cmd )を出力し、各スイッチング素子をオンオフ動作させることにより、電力変換器16をインバータあるいはコンバータとして機能させる。 The rotating machine side controller 17 outputs PWM signals (PWM_X_cmd, PWM_Y_cmd, PWM_Z_cmd) that are input to the control terminals (for example, the gate terminals of the IGBT) of the switching elements of the single- phase inverters 16x, 16y, and 16z. The power converter 16 functions as an inverter or a converter by turning on and off the element.
 次に、回転機側制御器17の構成について詳述する。図4では、回転機側制御器17の機能ブロックが示されている。直流電圧VDCは、図2の電圧検出部18から入力される蓄電装置104の計測電圧である。直流電圧設定値V DCは、回転機側制御器17に予め保持(記憶)されている。また、回転機側制御器17に入力される有効電力指令値Pは、図3の系統側制御器12に入力される有効電力指令値Pと同じものであり、外部(統括制御装置9)から入力される。 Next, the configuration of the rotating machine side controller 17 will be described in detail. FIG. 4 shows functional blocks of the rotating machine side controller 17. The DC voltage VDC is a measurement voltage of the power storage device 104 input from the voltage detection unit 18 of FIG. The DC voltage set value V * DC is held (stored) in advance in the rotating machine side controller 17. Moreover, the active power command value P * is input to the rotation-side controller 17 is the same as the active power command value P * is input to the mains controller 12 of FIG. 3, the external (integration control apparatus 9 ).
 回転機側制御器17のdq変換部87は、磁極位置(角度)θMG1を用いて、電流センサ19x、19y、19zによって検出されるX相、Y相、Z相の電流ix、iy、izをdq変換して、出力電流のq軸成分i_MG1及びd軸成分i_MG1を算出し、これらを干渉成分補正回路80へ出力するとともに、q軸成分i_MG1を加減算器78へ出力し、d軸成分i_MG1を加減算器76へ出力する。 The dq converter 87 of the rotating machine side controller 17 uses the magnetic pole position (angle) θ MG1 to detect the X-phase, Y-phase, and Z-phase currents ix, iy, and iz detected by the current sensors 19x, 19y, and 19z. And qq component i q _MG1 and d axis component i d _MG1 of the output current are calculated and output to the interference component correction circuit 80, and the q axis component i q _MG1 is output to the adder / subtractor 78. The d-axis component i d _MG1 is output to the adder / subtractor 76.
 干渉成分補正回路80では、乗算器82が、電動発電機3の電気角速度ωre_MG1と、d軸インダクタンス81(所定値L)とを乗算し、その値を乗算器83,84へ出力する。乗算器83では、乗算器82の出力値とq軸成分i_MG1とを乗算し、その値を加減算器85へ出力する。一方、乗算器84では、乗算器82の出力値とd軸成分i_MG1とを乗算し、その値を加減算器86へ出力する。 In the interference component correction circuit 80, the multiplier 82 multiplies the electric angular velocity ωre_MG1 of the motor generator 3 by the d-axis inductance 81 (predetermined value L d ), and outputs the value to the multipliers 83 and 84. Multiplier 83 multiplies the output value of multiplier 82 by q-axis component i q _MG1 and outputs the value to adder / subtractor 85. On the other hand, the multiplier 84 multiplies the output value of the multiplier 82 by the d-axis component i d _MG1, and outputs the value to the adder / subtractor 86.
 そして、加減算器85で、後述のPI制御ブロック77の出力値(補正前のd軸電圧指令値)に乗算器83の出力値を加算するとともに、加減算器86で、後述のPI制御ブロック79の出力値(補正前のq軸電圧指令値)から乗算器84の出力値を減算することで、d軸電流値及びq軸電流値に応じた相互干渉成分が補償されたd軸電圧指令値V _MG1及びq軸電圧指令値V _MG1を算出するようにしている。 The adder / subtracter 85 adds the output value of the multiplier 83 to the output value of the PI control block 77 described later (d-axis voltage command value before correction), and the adder / subtractor 86 adds the output value of the PI control block 79 described later. By subtracting the output value of the multiplier 84 from the output value (q-axis voltage command value before correction), the d-axis voltage command value V in which the mutual interference component corresponding to the d-axis current value and the q-axis current value is compensated. and to calculate the d * _MG1 and q-axis voltage command value V q * _MG1.
 このような干渉成分補正回路80を設けることはよく知られており、上記構成に限られるものではない。 It is well known to provide such an interference component correction circuit 80 and is not limited to the above configuration.
 次に、d軸電流指令値演算部75は、機械角速度ωrm_MG1に応じたd軸電流指令値i _MG1を算出し、これを加減算器76へ出力する。例えば、機械角速度ωrm_MG1が所定値(「a」とする)以下の場合はd軸電流指令値i _MG1を0とし、所定値aを超えた場合には、弱め磁束を考慮してd軸電流指令値i _MG1を所定の値b(b<0)として出力する。また、機械角速度ωrm_MG1が所定値aを超えた場合には、その超えた程度に応じたd軸電流指令値i _MG1を出力するようにしてもよい。 Next, the d-axis current command value calculation unit 75 calculates a d-axis current command value i d * _MG 1 corresponding to the mechanical angular velocity ωrm_MG 1, and outputs this to the adder / subtractor 76. For example, when the mechanical angular velocity ωrm_MG1 is equal to or lower than a predetermined value (“a”), the d-axis current command value i d * _MG1 is set to 0. When the mechanical angular velocity ωrm_MG1 exceeds the predetermined value a, the d-axis is taken into consideration. The current command value i d * _MG1 is output as a predetermined value b (b <0). Further, when the mechanical angular velocity ωrm_MG1 exceeds the predetermined value a, the d-axis current command value i d * _MG1 corresponding to the degree of the excess may be output.
 加減算器76は、d軸電流指令値i _MG1から、dq変換部87から入力される出力電流のd軸成分i_MG1を減算してd軸誤差電流を算出し、これをPI制御ブロック77(d軸電流制御器)に出力する。PI制御ブロック77は、このd軸誤差電流に比例積分補償を施して、これを加減算器85に出力する。加減算器85では、PI制御ブロック77の出力値(補正前のd軸電圧指令値)に乗算器83の出力値を加算し、この値(d軸電圧指令値V _MG1)をdq逆変換部88に出力する。 The adder / subtractor 76 calculates the d-axis error current by subtracting the d-axis component i d _MG1 of the output current input from the dq conversion unit 87 from the d-axis current command value i d * _MG1, and calculates it as a PI control block. 77 (d-axis current controller). The PI control block 77 performs proportional-integral compensation on the d-axis error current and outputs it to the adder / subtractor 85. The adder / subtracter 85 adds the output value of the multiplier 83 to the output value of the PI control block 77 (d-axis voltage command value before correction), and inversely converts this value (d-axis voltage command value V d * _MG1) to dq. To the unit 88.
 次に、q軸電流指令値演算部70は、加減算器71とPI制御ブロック72と加減算器73とq軸電流補正値演算部74とで構成されている。 Next, the q-axis current command value calculation unit 70 includes an adder / subtractor 71, a PI control block 72, an adder / subtractor 73, and a q-axis current correction value calculation unit 74.
 加減算器71では、直流電圧設定値V DCから直流電圧VDCを減算して誤差電圧を算出し、これをPI制御ブロック72(直流電圧制御器)に出力する。PI制御ブロック72は、この誤差電圧に比例積分補償を施して、これを加減算器73に出力する。 The adder-subtracter 71, and calculates an error voltage by subtracting the DC voltage V DC from DC voltage setting value V * DC, and outputs it to the PI control block 72 (DC voltage controller). The PI control block 72 performs proportional-integral compensation on this error voltage and outputs it to the adder / subtractor 73.
 一方、q軸電流補正値演算部74は、電動発電機3の機械角速度ωrm_MG1を電気角速度ωre_MG1に換算し、これを用いて有効電力指令値Pからq軸電流補正値となる有効電流指令値を算出し、これを加減算器73へ出力する。具体的には、次式によって有効電流指令値(q軸電流補正値)を算出する。 On the other hand, the q-axis current correction value calculation unit 74 converts the mechanical angular speed ωrm_MG1 of the motor generator 3 into the electrical angular speed ωre_MG1, and uses this to convert the active power command value P * into an active current command value that becomes a q-axis current correction value. Is output to the adder / subtractor 73. Specifically, the effective current command value (q-axis current correction value) is calculated by the following equation.
 有効電流指令値=k×P/ωre_MG1   (kは所定の係数)
 加減算器73では、PI制御ブロック72の出力値(補正前q軸電流指令値)と、演算部74からの有効電流指令値(q軸電流補正値)とを加算してq軸電流指令値i _MG1を算出し、これを加減算器78へ出力する。
Effective current command value = k × P * / ωre_MG1 (k is a predetermined coefficient)
The adder / subtracter 73 adds the output value (pre-correction q-axis current command value) of the PI control block 72 and the effective current command value (q-axis current correction value) from the calculation unit 74 to add the q-axis current command value i. q * _MG1 is calculated and output to the adder / subtractor 78.
 このように、q軸電流指令値i _MG1の生成において、系統側制御器12に入力される有効電力指令値Pが入力され、その値が加味されたq軸電流指令値i _MG1が生成されるので、蓄電装置104の電圧が設定値V DCとなるようにフィードフォワード制御され、蓄電装置104の電圧変動を極力小さくすることができる。 Thus, in the generation of the q-axis current command value i q * _MG1, the active power command value P * input to the system-side controller 12 is input, and the q-axis current command value i q * is added to that value . Since _MG1 is generated, feedforward control is performed so that the voltage of the power storage device 104 becomes the set value V * DC, and the voltage fluctuation of the power storage device 104 can be minimized.
 なお、q軸電流補正値演算部74及び加減算器73を設けずに、PI制御ブロック72の出力値をそのままq軸電流指令値i _MG1として、加減算器78へ出力するようにしてもよい。この場合も、蓄電装置104の計測電圧VDCが一定電圧(V DC)となるように制御されるが、q軸電流補正値演算部74及び加減算器73を設けた方が、計測電圧VDC(蓄電装置104の電圧)の変動をより小さくでき、好ましい。 The output value of the PI control block 72 may be output to the adder / subtractor 78 as it is as the q-axis current command value i q * _MG1 without providing the q-axis current correction value calculation unit 74 and the adder / subtractor 73. . Also in this case, the measurement voltage V DC of the power storage device 104 is controlled to be a constant voltage (V * DC ). The fluctuation of DC (the voltage of the power storage device 104) can be made smaller, which is preferable.
 次に、加減算器78は、q軸電流指令値i _MG1から、dq変換部87から入力される出力電流のq軸成分i_MG1を減算してq軸誤差電流を算出し、これをPI制御ブロック79(q軸電流制御器)に出力する。PI制御ブロック79は、このq軸誤差電流に比例積分補償を施して、これを加減算器86に出力する。加減算器86では、PI制御ブロック79の出力値(補正前のq軸電圧指令値)から乗算器83の出力値を減算し、この値(q軸電圧指令値V _MG1)をdq逆変換部88に出力する。 Next, the adder / subtractor 78 subtracts the q-axis component i q _MG1 of the output current input from the dq converter 87 from the q-axis current command value i d * _MG1, and calculates the q-axis error current. Output to the PI control block 79 (q-axis current controller). The PI control block 79 performs proportional-integral compensation on the q-axis error current and outputs it to the adder / subtractor 86. The adder / subtracter 86 subtracts the output value of the multiplier 83 from the output value of the PI control block 79 (q-axis voltage command value before correction), and inversely converts this value (q-axis voltage command value V q * _MG1) to dq. To the unit 88.
 次に、dq逆変換部88では、電動発電機3の磁極位置(角度)θMG1を用いて、d軸電圧指令値V _MG1及びq軸電圧指令値V _MG1をdq逆変換して、三相(X相、Y相、Z相)の電圧出力指令値Vx_MG1,Vy_MG1,Vz_MG1を生成し、これを各相のPWM信号生成部89x、89y、89zに出力する。 Next, the dq reverse conversion unit 88 performs dq reverse conversion on the d-axis voltage command value V d * _MG1 and the q-axis voltage command value V q * _MG1 using the magnetic pole position (angle) θ MG1 of the motor generator 3. The three-phase (X phase, Y phase, Z phase) voltage output command values Vx * _MG1, Vy * _MG1, Vz * _MG1 are generated and output to the PWM signal generators 89x, 89y, 89z of the respective phases. To do.
 PWM信号生成部89x、89y、89zは、各々のインバータ16x、16y、16zの直流部の電圧VDCx、VDCy、VDCzを利用して、電圧出力指令値Vx_MG1,Vy_MG1,Vz_MG1に応じたPWM信号PWM_X_cmd, PWM_Y_cmd, PWM_Z_cmd を生成し、これを単相インバータ16x、16y、16zに出力する。これにより、電力変換器16の出力電流が、d軸電流指令値i _MG1及びq軸電流指令値i _MG1に対応する電流になるようにフィードバック制御される。 The PWM signal generators 89x, 89y, 89z use the voltages V DCx , V DCy , V DCz of the DC parts of the inverters 16x, 16y, 16z, respectively, to output the voltage output command values Vx * _MG1, Vy * _MG1, Vz. * PWM signals PWM_X_cmd, PWM_Y_cmd, and PWM_Z_cmd corresponding to _MG1 are generated and output to the single- phase inverters 16x, 16y, and 16z. Thereby, feedback control is performed so that the output current of the power converter 16 becomes a current corresponding to the d-axis current command value i d * _MG1 and the q-axis current command value i q * _MG1.
 〔電力変換装置1の動作〕
 次に、電力変換装置1の動作の一例を説明する。ここでは、図2に示すように、電源系統2が船内の電源系統である場合について説明する。
[Operation of power conversion device 1]
Next, an example of operation | movement of the power converter device 1 is demonstrated. Here, as shown in FIG. 2, the case where the power supply system 2 is an inboard power supply system will be described.
 まず、減速機8がメインエンジンとプロペラに連結され、メインエンジンの動力によって減速機8を介してプロペラが回転し、減速機8と連結された電動発電機3の機械軸3aが回転している場合を説明する。 First, the speed reducer 8 is connected to the main engine and the propeller, the propeller is rotated via the speed reducer 8 by the power of the main engine, and the mechanical shaft 3a of the motor generator 3 connected to the speed reducer 8 is rotating. Explain the case.
 まず、電動発電機3が発電機運転モードで運転されているとき、電力変換装置1においては、回転機側電力変換器16がコンバータとして機能し、系統側電力変換器11がインバータとして機能する運転状態(第1の運転状態)となる。このとき、系統側制御機12の制御により、そのときの有効電力指令値Pと系統側電圧角速度ω(電源系統2の周波数)とに応じた有効電力が系統側電力変換器11から電源系統2へ供給される。また、そのときの無効電力指令値Qと系統側電圧実効値V(電源系統2の電圧)とに応じた無効電力が系統側電力変換器11から電源系統2へ供給される。 First, when the motor generator 3 is operated in the generator operation mode, in the power conversion device 1, the rotating machine side power converter 16 functions as a converter, and the system side power converter 11 functions as an inverter. State (first operating state). At this time, under the control of the system side controller 12, the active power corresponding to the active power command value P * and the system side voltage angular velocity ω (frequency of the power system 2) is supplied from the system side power converter 11 to the power system. 2 is supplied. In addition, reactive power corresponding to the reactive power command value Q * and the system side voltage effective value V g (voltage of the power system 2) at that time is supplied from the system side power converter 11 to the power system 2.
 この場合、系統側電圧角速度ωに応じて、電源系統2に接続された他の発電機(例えば発電機7)やドループを持った他の電力変換装置(図示せず)と負荷分担できる。 In this case, the load can be shared with another generator (for example, the generator 7) connected to the power supply system 2 or another power converter (not shown) having a droop according to the system side voltage angular velocity ω.
 また、電源系統2に接続された他の発電機(例えば発電機7)を停止させることもできる。したがって、発電機7の不慮の運転停止が発生した場合でも、電源系統2への給電が可能になる。つまり、船内の電源系統2を電力変換装置1からの給電のみで自立運転させることができる。この場合、出力電力は電源系統2に接続された全ての負荷4の消費電力と等しくなる。また、有効電力負荷や無効電力負荷の変動に対し、ドループ設定に応じて定常偏差は残るが、電源系統2の周波数(角速度)および電圧を設定値(角速度指令値ω、出力電圧指令値V )の近傍に保持することができる。なお、偏差の大きさはドループなどの設定によって調節することができる。 Moreover, the other generator (for example, generator 7) connected to the power supply system 2 can also be stopped. Therefore, even when an unexpected operation stop of the generator 7 occurs, power can be supplied to the power supply system 2. That is, the power system 2 in the ship can be operated independently only by the power supply from the power conversion device 1. In this case, the output power becomes equal to the power consumption of all the loads 4 connected to the power supply system 2. In addition, the steady-state deviation remains depending on the droop setting for fluctuations in the active power load and reactive power load, but the frequency (angular velocity) and voltage of the power supply system 2 are set values (angular velocity command value ω * , output voltage command value V g * ). The magnitude of the deviation can be adjusted by setting such as droop.
 次に、統括制御装置9から有効電力指令値Pが変更されて電動発電機3が電動機運転モードで運転されるとき、電力変換装置1においては、系統側電力変換器11がコンバータとして機能し、回転機側電力変換器16がインバータとして機能する運転状態(第2の運転状態)となる。このとき、系統側制御機12の制御により、そのときの有効電力指令値Pと系統側電圧角速度ω(電源系統2の周波数)とに応じた有効電力が電源系統2から電動発電機3へ供給される。これにより、減速機8を介してプロペラ主軸に増速方向のトルクを与えることができる。 Next, when the active power command value P * is changed from the overall control device 9 and the motor generator 3 is operated in the motor operation mode, in the power conversion device 1, the system-side power converter 11 functions as a converter. Then, the rotating machine side power converter 16 becomes an operating state (second operating state) in which it functions as an inverter. At this time, the active power corresponding to the active power command value P * and the system-side voltage angular velocity ω (frequency of the power supply system 2) is supplied from the power supply system 2 to the motor generator 3 by the control of the system-side controller 12. Supplied. Thereby, torque in the speed increasing direction can be applied to the propeller main shaft via the speed reducer 8.
 また、船舶が低速航行する場合には、メインエンジンを停止させた状態で、上記のように、電動発電機3を電動機運転モードで運転し、電源系統2からの電力で船舶を航行させることもできる。 Further, when the ship is navigating at low speed, the motor generator 3 is operated in the motor operation mode with the main engine stopped, and the ship is navigated by the electric power from the power supply system 2 as described above. it can.
 以上のように、電力変換装置1が、有効電力を電動発電機3から電源系統2へ供給する第1の運転状態から、有効電力を電源系統2から電動発電機3へ供給する第2の運転状態へ切り替えられる場合や、その逆に切り替えられる場合など、統括制御装置9によって有効電力指令値Pが変更されて運転状態が変更される場合には、有効電力指令値Pが回転機側制御機17にも入力されているので、回転機側制御機17の制御により、蓄電装置103の電圧が設定値V DCとなるようにフィードフォワード制御され、蓄電装置104の電圧変動を極力小さくすることができる。 As described above, the second operation in which the power conversion device 1 supplies the active power from the power supply system 2 to the motor generator 3 from the first operation state in which the active power is supplied from the motor generator 3 to the power supply system 2. when it is switched to the state or the like when it is switched vice versa, when it is changed active power command value P * operating condition is changed by the general control device 9, the active power command value P * is rotary machine side Since it is also input to the controller 17, feedforward control is performed so that the voltage of the power storage device 103 becomes the set value V * DC under the control of the rotating machine side controller 17, and the voltage fluctuation of the power storage device 104 is minimized. can do.
 本実施形態の電力変換装置1では、統括制御装置9によって例えば有効電力指令値Pが変更される等、運転状態が切り替わっても、系統側制御器12は系統側電力変換器11を同一の制御則に基づいて制御し、回転機側制御器17は回転機側電力変換器11を同一の制御則に基づいて制御するよう構成されているので、電力変換装置1全体としても制御則を切り替えることなく同一の制御則に基づいて制御される。 In the power conversion device 1 of the present embodiment, even if the operation state is switched, for example, the active power command value P * is changed by the overall control device 9, the system side controller 12 makes the system side power converter 11 the same. Control is performed based on the control law, and the rotating machine side controller 17 is configured to control the rotating machine side power converter 11 based on the same control law. Therefore, the power conversion apparatus 1 as a whole also switches the control law. Without being controlled based on the same control law.
 例えば、電動発電機3の発電機運転モード及び電動機運転モードの運転モードの切り替えが行われ、電力変換装置1の運転状態が切り替わっても、制御則を変更せずに電力変換装置1の運転が可能になる。また、主発電機(例えば図2の発電機7)の危急停止の場合も、制御則を変更せずに電力変換装置1の運転が可能になる。また、電源系統2が他の電源系統(例えば商用電力系統)と接続されている場合に、他の電源系統と遮断されるときに、あるいは、遮断された状態から他の電源系統に接続されるときにも、制御則を変更せずに電力変換装置1の運転が可能になる。 For example, even when the generator operation mode of the motor generator 3 and the operation mode of the motor operation mode are switched and the operation state of the power conversion device 1 is switched, the operation of the power conversion device 1 can be performed without changing the control law. It becomes possible. Moreover, also in the case of a critical stop of the main generator (for example, the generator 7 in FIG. 2), the power conversion device 1 can be operated without changing the control law. Further, when the power supply system 2 is connected to another power supply system (for example, a commercial power system), the power supply system 2 is connected to the other power supply system when disconnected from the other power supply system or from the disconnected state. Sometimes, the power conversion device 1 can be operated without changing the control law.
 そして、系統側電力変換器11が当該系統側電力変換器11の代わりに仮想発電機が電源系統2に接続されているとみなして電力を電源系統2へ出力するよう制御される。これにより、実際の発電機と同様の周波数制御及び電圧制御を行うことが可能であり、電源系統2に負荷変動などが生じても通常の発電機と協調して自系統の電力品質の安定化を図ることが可能になる。また、電源系統2に他の発電機の運転を必要とせず、系統側電力変換器11のみが発電を行う単独運転が可能となる。 Then, the system-side power converter 11 is controlled to output power to the power supply system 2 on the assumption that the virtual generator is connected to the power supply system 2 instead of the system-side power converter 11. As a result, frequency control and voltage control similar to those of an actual generator can be performed, and even if a load fluctuation occurs in the power supply system 2, the power quality of the own system is stabilized in cooperation with the normal generator. Can be achieved. In addition, the power supply system 2 does not require operation of another generator, and only the system-side power converter 11 can generate a single operation.
 以上のように、電力変換装置1は、その運転状態の変更によって制御則を切り替えることなく常に同一の制御則に基づいて制御され、かつ、電源系統2に対して実際の発電機と同様の周波数制御及び電圧制御を行うので、電力変換装置1の運転状態にかかわらず、また、電源系統2に負荷変動などが生じても、電源系統2の周波数および電圧の安定化を図ることができる。 As described above, the power conversion device 1 is always controlled based on the same control law without switching the control law by changing the operation state, and the power system 2 has the same frequency as the actual generator. Since the control and the voltage control are performed, the frequency and voltage of the power supply system 2 can be stabilized regardless of the operating state of the power conversion apparatus 1 and even if a load fluctuation occurs in the power supply system 2.
 さらに、電動発電機3に接続された回転機側電力変換器16が、蓄電装置103の電圧が直流電圧設定値V DCとなるように動作するよう制御される。これにより、蓄電装置103の電圧が所定電圧V DCに保たれ、系統側電力変換器11による発電機模擬動作の安定化を図ることができる。さらに、系統側制御器12と同じ有効電力指令値Pが回転機側制御器17のq軸電流指令値演算部70に入力されるため、有効電力指令値Pが変更された場合でも蓄電装置103の電圧の変動を極力抑えて設定値V DCの維持を良好に行うことができる。 Further, the rotating machine side power converter 16 connected to the motor generator 3 is controlled so as to operate so that the voltage of the power storage device 103 becomes the DC voltage set value V * DC . Thereby, the voltage of the power storage device 103 is maintained at the predetermined voltage V * DC , and the generator simulation operation by the system-side power converter 11 can be stabilized. Further, since the same active power command value P * as that of the system side controller 12 is input to the q-axis current command value calculation unit 70 of the rotating machine side controller 17, the power storage is performed even when the active power command value P * is changed. It is possible to satisfactorily maintain the set value V * DC while suppressing fluctuations in the voltage of the device 103 as much as possible.
 なお、系統側制御器12のガバナモデル50において、ハイパスフィルタ部56にリミッタ57が無くてもよい。この場合、電源系統2から電動発電機3へ電力供給が行われている場合に、定常状態においてはハイパスフィルタ部56の出力が零となり、有効電力指令値Pが追従した有効電力の供給が可能となる。また、有効電力指令値Pの変更等の過渡時においては、ハイパスフィルタ部56の出力が零から変動するので、電源系統2に接続された他の発電機等との負荷分担を行うことができる。 In the governor model 50 of the system controller 12, the high-pass filter unit 56 may not include the limiter 57. In this case, when power is supplied from the power supply system 2 to the motor generator 3, the output of the high-pass filter unit 56 becomes zero in a steady state, and the active power supplied by the active power command value P * follows. It becomes possible. In addition, during a transition such as a change in the active power command value P * , the output of the high-pass filter unit 56 varies from zero, so that it is possible to share the load with other generators connected to the power supply system 2. it can.
 また、本実施形態のようにハイパスフィルタ部56にリミッタ57がある場合には、電源系統2から電動発電機3へ電力供給が行われている場合に、定常状態においても、リミッタ57の制限範囲を超えた部分の角速度の偏差がハイパスフィルタ部56から出力されるので、電源系統2に接続された他の発電機等との負荷分担を行うことができる。また、電源系統2に接続された他の発電機がトリップするなど喪失した場合においても、リミッタ57の制限範囲を超えた部分の周波数偏差(角速度偏差)をもってガバナドループが機能し、それ以上の系統周波数の低下を抑制するとともに、発電機モデルによって系統周波数を決定し電源系統2の安定化を維持することができる。 Further, when the high-pass filter unit 56 includes the limiter 57 as in the present embodiment, the limit range of the limiter 57 is maintained even in a steady state when power is supplied from the power supply system 2 to the motor generator 3. Since the deviation of the angular velocity in the part exceeding the value is output from the high-pass filter unit 56, it is possible to share the load with other generators connected to the power supply system 2. Even when another generator connected to the power supply system 2 is tripped or lost, the governor loop functions with a frequency deviation (angular velocity deviation) that exceeds the limit range of the limiter 57, and the system frequency beyond that. In addition, the power system 2 can be stabilized by determining the system frequency by the generator model.
 また、ハイパスフィルタ部56が無くてもよい。この場合、加減算器55の出力である角速度の偏差が加減算器54へ入力されるので、常時、電源系統2に接続された他の発電機等との負荷分担を行うことができる。 Further, the high pass filter unit 56 may not be provided. In this case, since the deviation of the angular velocity, which is the output of the adder / subtractor 55, is input to the adder / subtractor 54, the load sharing with other generators connected to the power supply system 2 can be performed at all times.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、電力変換装置の運転状態にかかわらず、電源系統の周波数および電圧の安定化を図ることができる電力変換装置等として有用である。 The present invention is useful as a power converter that can stabilize the frequency and voltage of the power supply system regardless of the operating state of the power converter.
1 電力変換装置
2 交流電源系統
3 電動発電機
11 系統側電力変換器
12 系統側制御器
13 電圧検出部
14 電流検出部
16 回転機側電力変換器
17 回転機側制御器
18 電圧検出部
20 PWM変換部
30 発電機モデル
40 AVRモデル
50 ガバナモデル
51 加減算器(有効電力偏差算出部)
52 ドループブロック(演算部)
53 ローパスフィルタ部(演算部)
54 加減算器(減算器)
55 加減算器(角速度偏差算出部)
56 ハイパスフィルタ部(フィルタ部)
57 上下限リミッタ(制限手段)
58 一時遅れフィルタ部
59 加減算器
60 積分器
101 系統側変換装置
102 回転機側変換装置
103 蓄電装置
104 直流配線
DESCRIPTION OF SYMBOLS 1 Power converter 2 AC power supply system 3 Motor generator 11 System side power converter 12 System side controller 13 Voltage detection part 14 Current detection part 16 Rotation machine side power converter 17 Rotation machine side controller 18 Voltage detection part 20 PWM Conversion unit 30 Generator model 40 AVR model 50 Governor model 51 Adder / subtracter (active power deviation calculation unit)
52 Droop block (calculation unit)
53 Low-pass filter section (calculation section)
54 Adder / Subtracter
55 Adder / Subtractor (Angular Velocity Deviation Calculator)
56 High-pass filter section (filter section)
57 Upper / Lower Limiter (Limiting means)
58 Temporary delay filter unit 59 Adder / Subtractor 60 Integrator 101 System side conversion device 102 Rotating machine side conversion device 103 Power storage device 104 DC wiring

Claims (6)

  1.  電源系統と電動発電機との間に接続された電力変換装置であって、
     前記電源系統に接続された系統側変換装置と、
     前記電動発電機に接続された回転機側変換装置と、
     前記系統側変換装置と前記回転機側変換装置とを接続する直流配線に接続された蓄電装置とを備え、
     前記系統側変換装置は、
     前記蓄電装置から入力される直流電力を交流電力に変換して前記電源系統へ出力する第1の系統側変換動作と、前記電源系統から入力される交流電力を直流電力に変換して前記蓄電装置へ出力する第2の系統側変換動作とを択一的に行うよう構成された系統側電力変換器と、
     前記系統側電力変換器が前記電源系統へ出力する交流電圧及び交流電流の計測値を用いて、前記系統側電力変換器の代わりに電動機としての動作も可能にした仮想の同期発電機が前記電源系統に接続されているとみなして前記系統側電力変換器を前記電源系統に対して前記仮想の同期発電機として動作させることにより、同一の制御則に基づいて前記系統側電力変換器に前記第1の系統側変換動作と前記第2の系統側変換動作とを行わせる系統側制御器とを有し、
     前記回転機側変換装置は、
     前記電動発電機から入力される交流電力を直流電力に変換して前記蓄電装置へ出力する第1の回転機側変換動作と、前記蓄電装置から入力される直流電力を交流電力に変換して前記電動発電機へ出力する第2の回転機側変換動作とを択一的に行うよう構成された回転機側電力変換器と、
     同一の制御則に基づいて前記回転機側電力変換器に前記第1の回転機側変換動作と前記第2の回転機側変換動作とを行わせ、かつ前記第1の回転機側変換動作及び前記第2の回転機側変換動作の各々の動作を前記蓄電装置の計測電圧が所定電圧となるように行わせる回転機側制御器とを有する、電力変換装置。
    A power converter connected between a power system and a motor generator,
    A system-side converter connected to the power supply system;
    A rotating machine side converter connected to the motor generator;
    A power storage device connected to a DC wiring connecting the system side conversion device and the rotating machine side conversion device,
    The system side conversion device is:
    A first system side conversion operation for converting DC power input from the power storage device into AC power and outputting the AC power, and AC power input from the power supply system is converted into DC power and the power storage device A grid-side power converter configured to alternatively perform a second grid-side conversion operation to be output to
    A virtual synchronous generator that can operate as an electric motor instead of the system-side power converter using the measured values of the AC voltage and the AC current that the system-side power converter outputs to the power system. By operating the grid-side power converter as the virtual synchronous generator with respect to the power supply system, assuming that the grid-side power converter is connected to the grid, the grid-side power converter is connected to the grid-side power converter based on the same control law. A system-side controller that performs one system-side conversion operation and the second system-side conversion operation;
    The rotating machine side converter is
    A first rotating machine side conversion operation for converting AC power input from the motor generator into DC power and outputting the DC power, and converting DC power input from the power storage device into AC power A rotating machine side power converter configured to alternatively perform a second rotating machine side conversion operation to be output to the motor generator;
    Based on the same control law, the rotating machine side power converter performs the first rotating machine side converting operation and the second rotating machine side converting operation, and the first rotating machine side converting operation and A power converter, comprising: a rotary machine side controller that causes each of the second rotary machine side conversion operations to be performed so that a measurement voltage of the power storage device becomes a predetermined voltage.
  2.  前記系統側制御器は、
     前記仮想の同期発電機の内部相差角を算出するガバナモデルと、
     無効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する無効電力の偏差と、出力電圧指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の偏差とに基づいて、前記仮想の同期発電機の内部誘起電圧を算出するAVRモデルと、
     前記ガバナモデルで算出された内部相差角と、前記AVRモデルで算出された内部誘起電圧とに基づいて、前記仮想の同期発電機の出力電流に相当する電流指令値を算出する発電機モデルと、
     前記発電機モデルで算出された電流指令値と前記電源系統へ出力される交流電流のフィードバック値との偏差を零にするための電圧指令値を算出し、この電圧指令値をPWM信号に変換して前記系統側電力変換器へ出力するPWM変換部とを備え、
     前記ガバナモデルは、
     角速度指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の角速度の偏差を算出し出力する角速度偏差算出部と、
     有効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する有効電力の偏差を算出する有効電力偏差算出部と、
     前記有効電力偏差算出部で算出した偏差に所定のゲインを掛けてかつ一次遅れ演算を施した値を出力する演算部と、
     前記演算部の出力から前記角速度偏差算出部の出力を減算する減算器と、
     前記減算器の出力を積分して前記内部相差角を算出する積分器と
    を有する、請求項1に記載の電力変換装置。
    The system controller is
    A governor model for calculating an internal phase difference angle of the virtual synchronous generator;
    Based on the deviation of the reactive power that the grid-side power converter outputs to the power system with respect to the reactive power command value, and the deviation of the AC voltage that the grid-side power converter outputs to the power system with respect to the output voltage command value An AVR model for calculating an internal induced voltage of the virtual synchronous generator;
    A generator model that calculates a current command value corresponding to the output current of the virtual synchronous generator based on the internal phase difference angle calculated by the governor model and the internal induced voltage calculated by the AVR model;
    A voltage command value for making a deviation between a current command value calculated by the generator model and a feedback value of an alternating current output to the power system zero is calculated, and the voltage command value is converted into a PWM signal. And a PWM converter that outputs to the grid-side power converter,
    The governor model is
    An angular velocity deviation calculating unit that calculates and outputs an angular velocity deviation of an AC voltage output to the power supply system by the grid-side power converter with respect to an angular velocity command value;
    An active power deviation calculating unit that calculates a deviation of active power output to the power supply system by the grid-side power converter with respect to an active power command value;
    A calculator that outputs a value obtained by multiplying the deviation calculated by the active power deviation calculator by a predetermined gain and performing a first-order lag calculation;
    A subtractor for subtracting the output of the angular velocity deviation calculation unit from the output of the calculation unit;
    The power converter according to claim 1, further comprising an integrator that integrates an output of the subtractor to calculate the internal phase difference angle.
  3.  前記系統側制御器は、
     角速度指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の角速度の偏差を算出する角速度偏差算出部と、
     前記偏差に一次遅れ演算を施し、この一次遅れ演算を施した値を前記偏差から減算し、その値を出力するフィルタ部と、
     有効電力指令値に対する有効電力の偏差を算出する有効電力偏差算出部とを有し、
     前記フィルタ部の出力値と前記有効電力偏差算出部で算出した偏差とに基づいて、前記系統側電力変換器を前記電源系統に対して前記仮想の同期発電機として動作させるよう構成された、請求項1に記載の電力変換装置。
    The system controller is
    An angular velocity deviation calculating unit that calculates an angular velocity deviation of an AC voltage output to the power supply system by the grid-side power converter with respect to an angular velocity command value;
    A filter unit that performs a first-order lag calculation on the deviation, subtracts the value subjected to the first-order lag calculation from the deviation, and outputs the value;
    An active power deviation calculating unit that calculates the deviation of the active power with respect to the active power command value;
    The system-side power converter is configured to operate as the virtual synchronous generator for the power supply system based on the output value of the filter unit and the deviation calculated by the active power deviation calculation unit. Item 4. The power conversion device according to Item 1.
  4.  前記系統側制御器は、
     前記仮想の同期発電機の内部相差角を算出するガバナモデルと、
     無効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する無効電力の偏差と、出力電圧指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の偏差とに基づいて、前記仮想の同期発電機の内部誘起電圧を算出するAVRモデルと、
     前記ガバナモデルで算出された内部相差角と、前記AVRモデルで算出された内部誘起電圧とに基づいて、前記仮想の同期発電機の出力電流に相当する電流指令値を算出する発電機モデルと、
     前記発電機モデルで算出された電流指令値と前記電源系統へ出力される交流電流のフィードバック値との偏差を零にするための電圧指令値を算出し、この電圧指令値をPWM信号に変換して前記系統側電力変換器へ出力するPWM変換部とを備え、
     前記ガバナモデルは、
     角速度指令値に対する前記系統側電力変換器が前記電源系統へ出力する交流電圧の角速度の偏差を算出する角速度偏差算出部と、
     前記偏差に一次遅れ演算を施し、この一次遅れ演算を施した値を前記偏差から減算し、その値を出力するフィルタ部と、
     有効電力指令値に対する前記系統側電力変換器が前記電源系統へ出力する有効電力の偏差を算出する有効電力偏差算出部と、
     前記有効電力偏差算出部で算出した偏差に所定のゲインを掛けてかつ一次遅れ演算を施した値を出力する演算部と、
     前記演算部の出力から前記フィルタ部の出力を減算する減算器と、
     前記減算器の出力を積分して前記内部相差角を算出する積分器と
    を有する、請求項1に記載の電力変換装置。
    The system controller is
    A governor model for calculating an internal phase difference angle of the virtual synchronous generator;
    Based on the deviation of the reactive power that the grid-side power converter outputs to the power system with respect to the reactive power command value, and the deviation of the AC voltage that the grid-side power converter outputs to the power system with respect to the output voltage command value An AVR model for calculating an internal induced voltage of the virtual synchronous generator;
    A generator model that calculates a current command value corresponding to the output current of the virtual synchronous generator based on the internal phase difference angle calculated by the governor model and the internal induced voltage calculated by the AVR model;
    A voltage command value for making a deviation between a current command value calculated by the generator model and a feedback value of an alternating current output to the power system zero is calculated, and the voltage command value is converted into a PWM signal. And a PWM converter that outputs to the grid-side power converter,
    The governor model is
    An angular velocity deviation calculating unit that calculates an angular velocity deviation of an AC voltage output to the power supply system by the grid-side power converter with respect to an angular velocity command value;
    A filter unit that performs a first-order lag calculation on the deviation, subtracts the value subjected to the first-order lag calculation from the deviation, and outputs the value;
    An active power deviation calculating unit that calculates a deviation of active power output to the power supply system by the grid-side power converter with respect to an active power command value;
    A calculator that outputs a value obtained by multiplying the deviation calculated by the active power deviation calculator by a predetermined gain and performing a first-order lag calculation;
    A subtractor for subtracting the output of the filter unit from the output of the arithmetic unit;
    The power converter according to claim 1, further comprising an integrator that integrates an output of the subtractor to calculate the internal phase difference angle.
  5.  前記フィルタ部は、前記一次遅れ演算を施した値が所定の制限範囲内となるよう制限する制限手段を有するよう構成されている、請求項3または4に記載の電力変換装置。 The power converter according to claim 3 or 4, wherein the filter unit is configured to include a limiting unit configured to limit a value obtained by performing the first-order lag calculation within a predetermined limit range.
  6.  前記系統側制御器は、
     外部から有効電力指令値が入力され、この有効電力指令値に応じた有効電力が、前記蓄電装置から前記電源系統へ、または、前記蓄電装置から前記電源系統へ供給されるように前記系統側電力変換器を制御するよう構成され、
     前記回転機側制御器は、
     前記系統側制御器に入力される前記有効電力指令値が入力され、この有効電力指令値に応じた有効電力と、前記所定電圧に対する前記蓄電装置の計測電圧の偏差に応じた有効電力とを合算した有効電力が、前記電動発電機から前記蓄電装置へ、または、前記蓄電装置から前記電動発電機へ供給されるように前記回転機側電力変換器を制御するよう構成された、請求項1~5のいずれかに記載の電力変換装置。
     
    The system controller is
    An active power command value is input from the outside, and the grid-side power is supplied so that active power corresponding to the active power command value is supplied from the power storage device to the power supply system or from the power storage device to the power supply system. Configured to control the transducer,
    The rotating machine side controller is:
    The active power command value input to the system controller is input, and the active power according to the active power command value and the active power according to the deviation of the measured voltage of the power storage device with respect to the predetermined voltage are added together The rotating electric machine-side power converter is configured to be controlled so that the active power thus supplied is supplied from the motor generator to the power storage device or from the power storage device to the motor generator. The power conversion device according to any one of 5.
PCT/JP2014/005812 2013-11-20 2014-11-19 Power conversion device WO2015075923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-239902 2013-11-20
JP2013239902A JP6386718B2 (en) 2013-11-20 2013-11-20 Power converter

Publications (1)

Publication Number Publication Date
WO2015075923A1 true WO2015075923A1 (en) 2015-05-28

Family

ID=53179208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005812 WO2015075923A1 (en) 2013-11-20 2014-11-19 Power conversion device

Country Status (2)

Country Link
JP (1) JP6386718B2 (en)
WO (1) WO2015075923A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3217507A1 (en) * 2016-03-11 2017-09-13 Delta Electronics (Shanghai) Co., Ltd. Secondary control method and apparatus of parallel inverters in micro grid
WO2019092877A1 (en) * 2017-11-13 2019-05-16 株式会社日立製作所 Power conversion device and control method for same
CN110690730A (en) * 2019-10-15 2020-01-14 哈尔滨工程大学 Power and energy control method of hybrid power ship
WO2021029373A1 (en) * 2019-08-09 2021-02-18 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method
WO2022009101A1 (en) * 2020-07-08 2022-01-13 Ramot At Tel-Aviv University Ltd. Virtual synchronous machines with improved voltage and frequency control

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6629077B2 (en) * 2016-01-14 2020-01-15 国立大学法人広島大学 Pseudo-synchronous force-voltage converter and its controller
CN106356884B (en) * 2016-09-09 2019-08-09 许继集团有限公司 It is a kind of based on the grid-connected control method of virtual synchronous machine, apparatus and system
DE102017106213A1 (en) 2017-03-22 2018-09-27 Wobben Properties Gmbh Method for feeding electrical power into an electrical supply network
JP7119732B2 (en) * 2018-08-07 2022-08-17 東京電力ホールディングス株式会社 Solar power system
CN109193810B (en) * 2018-09-06 2022-04-12 易事特集团股份有限公司 Synchronous inverter control method, device and system
JP7292042B2 (en) 2019-02-01 2023-06-16 三菱重工エンジン&ターボチャージャ株式会社 Combined power generation system in isolated operation
CN110048439A (en) * 2019-05-10 2019-07-23 郑州电力高等专科学校 A kind of virtual synchronous generator control method based on line frequency averagely small-signal model
AU2019316537B2 (en) * 2019-08-02 2021-05-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power generation system and plant control device
JPWO2023275937A1 (en) * 2021-06-28 2023-01-05
JP7051028B1 (en) * 2021-09-28 2022-04-08 三菱電機株式会社 Power converter and power conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282871A (en) * 2003-03-14 2004-10-07 Ishikawajima Harima Heavy Ind Co Ltd Output stabilizer and control method therefor for distributed power source
JP2009225599A (en) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd Power converter
WO2013008413A1 (en) * 2011-07-08 2013-01-17 川崎重工業株式会社 Power conversion apparatus directed to combined-cycle power generation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680102B2 (en) * 2006-03-07 2011-05-11 川崎重工業株式会社 Power converter
GB0820699D0 (en) * 2008-11-12 2008-12-17 Ulive Entpr Ltd Static synchronous generators
JP5195464B2 (en) * 2009-01-28 2013-05-08 日産自動車株式会社 Vehicle control device
JP2013046503A (en) * 2011-08-25 2013-03-04 Waseda Univ Power storage system and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282871A (en) * 2003-03-14 2004-10-07 Ishikawajima Harima Heavy Ind Co Ltd Output stabilizer and control method therefor for distributed power source
JP2009225599A (en) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd Power converter
WO2013008413A1 (en) * 2011-07-08 2013-01-17 川崎重工業株式会社 Power conversion apparatus directed to combined-cycle power generation system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3217507A1 (en) * 2016-03-11 2017-09-13 Delta Electronics (Shanghai) Co., Ltd. Secondary control method and apparatus of parallel inverters in micro grid
US9853571B2 (en) 2016-03-11 2017-12-26 Delta Electronics (Shanghai) Co., Ltd. Secondary control method and apparatus of parallel inverters in micro grid
WO2019092877A1 (en) * 2017-11-13 2019-05-16 株式会社日立製作所 Power conversion device and control method for same
WO2021029373A1 (en) * 2019-08-09 2021-02-18 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method
CN114128075A (en) * 2019-08-09 2022-03-01 三菱重工发动机和增压器株式会社 Instruction generation device and instruction generation method
JP7324653B2 (en) 2019-08-09 2023-08-10 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method
CN114128075B (en) * 2019-08-09 2024-03-22 三菱重工发动机和增压器株式会社 Instruction generating device and instruction generating method
CN110690730A (en) * 2019-10-15 2020-01-14 哈尔滨工程大学 Power and energy control method of hybrid power ship
CN110690730B (en) * 2019-10-15 2023-09-29 哈尔滨工程大学 Power and energy control method for hybrid power ship
WO2022009101A1 (en) * 2020-07-08 2022-01-13 Ramot At Tel-Aviv University Ltd. Virtual synchronous machines with improved voltage and frequency control

Also Published As

Publication number Publication date
JP2015100234A (en) 2015-05-28
JP6386718B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6386718B2 (en) Power converter
JP6265826B2 (en) Power converter connected to single-phase system
He et al. Parameter identification of an induction machine at standstill using the vector constructing method
JP6084863B2 (en) Power converter for grid connection
Betin et al. Trends in electrical machines control: Samples for classical, sensorless, and fault-tolerant techniques
Verma et al. Speed sensorless vector controlled induction motor drive using single current sensor
JP5957094B2 (en) Combined power generation system with power conversion device
CN105743414B (en) The change method of power inverter, control device and carrier frequency
JP5408889B2 (en) Power converter
US11271508B2 (en) Power conversion device, motor driving system, and control method
JP6414795B2 (en) Power supply system and control method
CN112087166B (en) Alternating current-direct current hybrid double-fed asynchronous full-electric ship electric propulsion system and control method
JP6795267B1 (en) AC rotating machine control device
Hirase et al. Effects of suppressing frequency fluctuations by parallel operation of virtual synchronous generator in microgrids
Nikpayam et al. An optimized vector control strategy for induction machines during open‐phase failure condition using particle swarm optimization algorithm
Aziz et al. MRAS-based super-twisting sliding-mode observer with DTC of six-phase induction motor for ship propulsion application
ARDJOUN et al. A robust sliding mode control applied to the double fed induction machine
Wei et al. Mitigation of harmonics of DFIGs in DC-microgrids
Lee et al. Test platform development of vessel's power management system using hardware-in-the-loop simulation technique
Ni et al. Cost effective electric ship energy regulation system based on asynchronized synchronous motor
JP6688095B2 (en) Power converter
Silva et al. Rotor flux vector control of DFIG without currents rotor sensor
JP6486682B2 (en) Power converter and control method thereof
JP2019058062A (en) Control circuit operable to control inverter circuit, inverter device including the same, electric power system having inverter device, and control method
Cárdenas Dobson et al. A repetitive control system for four-leg matrix converters feeding non-linear loads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863930

Country of ref document: EP

Kind code of ref document: A1