WO2015074571A1 - 交流永磁开关磁阻电动机 - Google Patents

交流永磁开关磁阻电动机 Download PDF

Info

Publication number
WO2015074571A1
WO2015074571A1 PCT/CN2014/091693 CN2014091693W WO2015074571A1 WO 2015074571 A1 WO2015074571 A1 WO 2015074571A1 CN 2014091693 W CN2014091693 W CN 2014091693W WO 2015074571 A1 WO2015074571 A1 WO 2015074571A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
permanent magnet
magnetic
permanent magnets
salient pole
Prior art date
Application number
PCT/CN2014/091693
Other languages
English (en)
French (fr)
Inventor
戴珊珊
朱石柱
应展烽
冯凯
万萌
Original Assignee
戴珊珊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310584450.5A external-priority patent/CN103560633B/zh
Priority claimed from CN201310584522.6A external-priority patent/CN103595213A/zh
Application filed by 戴珊珊 filed Critical 戴珊珊
Priority to EP14864866.0A priority Critical patent/EP3073621B1/en
Priority to US15/038,082 priority patent/US10541593B2/en
Priority to JP2016532082A priority patent/JP6687521B2/ja
Priority to KR1020167016366A priority patent/KR20160087882A/ko
Priority to KR1020187009378A priority patent/KR101894211B1/ko
Publication of WO2015074571A1 publication Critical patent/WO2015074571A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/18Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having horse-shoe armature cores

Definitions

  • the invention relates to a switched reluctance motor, in particular to a high power density switched reluctance motor, and an AC permanent magnet synergistic reluctance motor capable of utilizing a combination of a permanent magnet flux and a field flux.
  • the electric motor is a large-volume and wide-ranging product. Its coverage covers all fields of the national economy such as industry and agriculture, transportation, aerospace, military industry, defense, commercial families, etc. It has become an important part of most mechanical transmission methods and industrial modernization. basis. The merits of motor performance will directly affect the protection of national economic benefits, energy consumption and ecological environment. Therefore, the pursuit of an efficient, low-cost, stable and reliable, easy to control, and low-cost excellent motor has become the goal of the world's motor research institutions and experts, engineering and technical personnel. Despite the emergence of rare earth permanent magnet materials, permanent magnet motors have been rapidly developed in various fields, but many of the potentials of permanent magnet energy have not been fully exploited.
  • Switched reluctance motors are a type of motor that has developed rapidly in recent years and is used more and more widely.
  • the concept of the traditional switched reluctance motor has been continuously broken, and the mechanical structure and drive control mechanism of the conventional switched reluctance motor have been continuously improved and innovated.
  • the "independent excitation salient pole pair” structure is disclosed for the first time, and the "independent excitation salient pole pair” is combined with the "rotor core salient pole pair" or the "rotor permanent magnet salient pole pair” to form A new type of motor with unique structure has created a new world of this type of motor.
  • the new type of motor has the structure that all the coils of the original permanent magnet motor share a magnetic circuit, and is changed to the self-independent "excitation salient pole pair" unit structure of each coil, and the "excitation salient pole pairs" are independent from each other and magnetically isolated from each other. Without interference, each coil can be independently controlled by the commutation, thus greatly shortening the magnetic circuit, reducing the interference and magnetic flux leakage of the shared magnetic circuit, and improving power density and equipment utilization.
  • One object of the present invention is to provide a novel switched reluctance motor that combines a stator having an "independent excitation salient pole pair" with a rotor having a cantilever support structure to compress the axial length of the rotor of the motor Inch to suit the size of the motor installation for specific applications.
  • a second object of the present invention is to provide a reluctance motor having a composite excitation salient pole pair structure, which is designed by combining a permanent magnet and a component thereof with an independent excitation salient pole pair on the stator to make the permanent magnet and its components
  • the magnetic flux can be absorbed into the excitation magnetic flux of the excitation salient pole pair on the stator, which acts on the rotor to form a permanent magnet synergy, which causes the motor to generate a larger rotational moment.
  • the third object of the present invention is to provide an excitation control method for a reluctance motor having a composite excitation salient pole pair structure for a stator.
  • a first technical solution of the present invention is: an AC permanent magnet switched reluctance motor comprising a stator and a rotor, the stator being composed of a plurality of excitation salient pole pairs, and a plurality of excitation salient pole pairs are balanced.
  • the ground is fixed to the stator seat, the pair of excitation salient poles is composed of a laminated core and an excitation coil, and the pair of excitation salient poles are magnetically isolated from each other, and each pair of excitation salient poles is controlled by an independent excitation coil, which is characterized by:
  • the pair of excitation salient poles is composed of a "C-shaped" laminated core, the excitation coils, the port faces of the two salient poles of the "C-shaped" laminated core are opposite, the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent The magnet is formed, the center of the rotor bracket is fixed to the rotating shaft, and the outer edge of the rotor bracket is fixed with a plurality of permanent magnets, and the permanent magnets are equally spaced on the outer edge of the rotor bracket, and the magnetic polarities of the adjacent permanent magnets on the same rotating surface are different.
  • the permanent magnets fixed to the outer edge of the rotor bracket can sequentially pass between the two port faces of the respective pairs of excitation salient poles on the stator, and the two magnetic pole faces of the respective permanent magnets and the respective excitations
  • An air gap is formed between the salient pole surface of the port, when the permanent magnets are located at the respective salient pole of the field between two ports faces, is formed between the permanent magnet and the excitation of a salient pole with an air gap of a closed magnetic circuit.
  • the rotor bracket is composed of a disc and a cylinder, and one end edge of the cylinder is fixedly connected with the outer edge of the disc to form a “bowl-shaped” whole body, and the center of the disc is fixedly connected with the rotating shaft, and the circle is
  • the disk plane is perpendicular to the axis of the rotating shaft, the axis of the cylinder coincides with the axis of the rotating shaft, a plurality of permanent magnets are equally fixed at the other end edge of the cylinder, and the magnetic polarities of adjacent permanent magnets on the same rotating surface are different, and the rotating shaft
  • all the permanent magnets fixed to one end edge of the cylinder can pass between the stator excitation salient poles, and an air gap is formed between the two magnetic pole faces of the respective permanent magnets and the port faces of the excitation salient pole pairs.
  • the rotor bracket is composed of a disc and a cylinder, and the inner wall of the middle portion of the cylinder is fixedly connected with the outer edge of the disc to form a "two-dimensional open bowl shape of the same bottom", and the center and the rotation of the disc
  • the shaft is fixedly connected, the plane of the disc is perpendicular to the axis of the rotating shaft, the axis of the cylinder coincides with the axis of the rotating shaft, and a plurality of permanent magnets are uniformly fixed at the end edges of the cylinder, and the magnetic polarities of adjacent permanent magnets on the same rotating surface
  • the plurality of excitation salient pole pairs are divided into two groups, which are respectively arranged on two sides of the rotor support, and the two ports of all the excitation salient pole pairs are opposite to each other on the surface.
  • the rotor bracket is composed of a disc and a flanged cylinder, and the inner wall of the middle portion of the flanged cylinder is fixedly connected with the outer edge of the disc to form a “two-sided bowl bottom fold in the same bottom”.
  • the center of the disc is fixedly connected with the rotating shaft.
  • the plane of the disc is perpendicular to the axis of the rotating shaft, and the axis of the cylinder coincides with the axis of the rotating shaft.
  • the hemming surface of the inner flanged cylinder is perpendicular to the axis of the rotating shaft, and the permanent magnet is divided into Two groups are uniformly fixed at the flanges at both ends of the flanged cylinder, and the magnetic polarities of the adjacent permanent magnets on the same rotating surface are different, and the plurality of excitation salient poles are divided into two groups and are placed in the rotor.
  • the bracket disc On both sides of the bracket disc, the two port faces of all pairs of excitation salient poles are opposite to each other.
  • all the permanent magnets fixed on the folded edges of the flanges with the flanged cylinders can be all from the sides of the disc.
  • the port faces of the "excited salient pole pairs" pass between each other, and an air gap is formed between the two pole faces of the permanent magnet and the port faces of the pair of excitation salient poles.
  • the number of excitation salient pole pairs on the stator is N
  • the number of permanent magnets or "permanent magnet salient pole pairs" on the rotor is M
  • M is an even number greater than or equal to 2
  • N is a natural number greater than or equal to 2
  • k is an even number
  • the ratio of M/N is not a positive integer.
  • the pair of excitation salient poles is composed of a "C-shaped" laminated core, one or two exciting coils, one or two permanent magnet assemblies.
  • a permanent magnet the two salient poles of the "C-shaped" laminated core face opposite, the exciting coil is wound around the periphery of the "C-shaped" laminated core, and the two magnetic pole faces of the permanent magnet assembly are arranged Fixing the laminated section of the laminated core, the permanent magnet is embedded in the gap of the laminated core, and the two magnetic pole faces of the permanent magnet are arranged close to the laminated section of the laminated core core, forever There is a gap between the side of the magnet and the laminated core, and the winding direction of the exciting coil is such that when the exciting coil inputs an exciting current, the direction of the exciting magnetic flux generated by the laminated core and the permanent magnet of the attached permanent magnet component or permanent magnet The magnetic flux direction is the same.
  • the excitation magnetic flux can force the closed permanent magnetic flux to open, so that the permanent magnetic flux is merged into the main circuit of the excitation magnetic flux, on the laminated core port surface.
  • Port surface and stator The port faces of the dry excitation salient pole pairs can be aligned one by one. When facing, the composite excitation magnetic field of the excitation salient pole to the port surface forms the shortest closed magnetic loop through the air air gap and the permanent magnet.
  • the pair of excitation salient poles is composed of a "C-shaped" laminated core, an exciting coil, and a permanent magnet assembly, the "C-shaped” "The two salient poles of the laminated core are opposite each other, and the exciting coil is wound around the periphery of the "C-shaped” laminated core.
  • the magnetic pole S and the magnetic pole N of the permanent magnet assembly respectively cross the exciting coil, and the magnetic pole S of the permanent magnet assembly And the magnetic pole N is closely attached to the laminated section of the "C-shaped" laminated core;
  • the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the rotor bracket is composed of a disc and a cylinder. One end edge of the cylinder is fixedly connected with the outer edge of the disc to form a "bowl-shaped" whole body. The center is fixedly connected with the rotating shaft, the plane of the disk is perpendicular to the axis of the rotating shaft, the axis of the cylinder is coincident with the axis of the rotating shaft, and a plurality of permanent magnets are uniformly fixed at the other end edge of the cylinder, and the magnetic polarities of adjacent permanent magnets are different.
  • the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the rotor bracket is composed of a disc and a cylinder, and the inner wall of the middle portion of the cylinder is fixedly connected with the outer edge of the disc to form a "two-dimensional open bowl shape with the same bottom. "Integrally, the center of the disc is fixedly connected with the rotating shaft. The plane of the disc is perpendicular to the axis of the rotating shaft. The axis of the cylinder coincides with the axis of the rotating shaft.
  • the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the rotor bracket is composed of a disc and a cylinder, and the inner wall of the middle portion of the cylinder is fixedly connected with the outer edge of the disc to form a "two-dimensional open bowl shape with the same bottom. "Integrally, the center of the disc is fixedly connected with the rotating shaft. The plane of the disc is perpendicular to the axis of the rotating shaft. The axis of the cylinder coincides with the axis of the rotating shaft.
  • the rotor support is composed of a disc and a flanged cylinder, and the inner wall of the middle portion of the flanged cylinder is fixedly connected with the outer edge of the disc to form a whole body of the same bottom bi-directional bowl, and the center of the disc is
  • the rotating shaft is fixedly connected, the plane of the disc is perpendicular to the axis of the rotating shaft, the axis of the cylinder coincides with the axis of the rotating shaft, the hemming surface of the inner flanged cylinder is perpendicular to the axis of the rotating shaft, and the permanent magnets are divided into two groups and are fixedly balanced.
  • the plurality of excitation salient pole pairs are divided into two groups, which are respectively placed on both sides of the rotor support disc, and all the excitation salient pole pairs
  • the two port faces are opposite to each other.
  • the pair of excitation salient poles is composed of a "C-shaped" laminated core, a set of exciting coils and two permanent magnets, the stack The upper and lower parallel frames of the core are respectively notched, and the two permanent magnets are respectively embedded in the upper frame notch and the lower frame notch, and the permanent magnet N magnetic pole surface embedded in the upper frame notch is closely attached to the laminated iron in the clockwise direction.
  • the core, the S magnetic pole surface is closely attached to the laminated core in the counterclockwise direction, and the permanent magnet N magnetic pole surface embedded in the lower frame notch is in clockwise direction to the laminated core, and the S magnetic extreme edge thereof a counterclockwise direction is closely attached to the laminated core, a gap exists between the sides of the two permanent magnets and the laminated core, and the exciting coil is wound around the vertical frame of the laminated core;
  • the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the rotor bracket is composed of a disc and a cylinder. One end edge of the cylinder is fixedly connected with the outer edge of the disc to form a "bowl-shaped" whole body. The center is fixedly connected with the rotating shaft, the plane of the disk is perpendicular to the axis of the rotating shaft, the axis of the cylinder is coincident with the axis of the rotating shaft, and a plurality of permanent magnets are uniformly fixed at the other end edge of the cylinder, and the magnetic polarities of adjacent permanent magnets are different.
  • the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the rotor bracket is composed of a disc and a cylinder, and the inner wall of the middle portion of the cylinder is fixedly connected with the outer edge of the disc to form a “two-way opening at the same bottom”.
  • the bowl shape is integral, the center of the disc is fixedly connected with the rotating shaft, the plane of the disc is perpendicular to the axis of the rotating shaft, the axis of the cylinder is coincident with the axis of the rotating shaft, and a plurality of permanent magnets are uniformly fixed at the end edges of the cylinder, and the same end
  • the magnetic polarities of adjacent permanent magnets are different, and the magnetic polarities of adjacent permanent magnets of different end sides are the same.
  • the plurality of excitation salient pole pairs are divided into two groups, which are respectively placed on both sides of the rotor support disc, and all the excitation salient pole pairs The two ports are opposite to each other.
  • the pair of excitation salient poles is composed of a "C-shaped" laminated core, two exciting coils and a permanent magnet, the laminated sheet
  • the vertical frame of the iron core is notched, and a permanent magnet is embedded in the gap of the frame.
  • the magnetic pole N of the permanent magnet is closely attached to the laminated core, and the S magnetic pole end faces downwardly against the laminated core, and the permanent magnet
  • the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the rotor bracket is composed of a disc and a cylinder. One end edge of the cylinder is fixedly connected with the outer edge of the disc to form a "bowl-shaped" whole body. The center is fixedly connected with the rotating shaft, the plane of the disk is perpendicular to the axis of the rotating shaft, the axis of the cylinder is coincident with the axis of the rotating shaft, and a plurality of permanent magnets are uniformly fixed at the other end edge of the cylinder, and the magnetic polarities of adjacent permanent magnets are different.
  • the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the rotor bracket is composed of a disc and a cylinder, and the inner wall of the middle portion of the cylinder is fixedly connected with the outer edge of the disc to form a “two-way opening at the same bottom”.
  • the bowl shape is integral, the center of the disc is fixedly connected with the rotating shaft, the plane of the disc is perpendicular to the axis of the rotating shaft, the axis of the cylinder is coincident with the axis of the rotating shaft, and a plurality of permanent magnets are uniformly fixed at the end edges of the cylinder, and the same end.
  • the magnetic polarities of adjacent permanent magnets are different, and the magnetic polarities of adjacent permanent magnets of different end sides are the same, and the plurality of excitation convexities
  • the pole pair is divided into two groups, which are placed on both sides of the rotor bracket disc. The two ports of all pairs of excitation salient poles are opposite to each other.
  • a second technical solution of the present invention is: an AC permanent magnet switched reluctance motor comprising a stator and a rotor, the stator being composed of a plurality of excitation salient pole pairs, and a plurality of excitation salient pole pairs are balanced.
  • the ground is fixed to the stator seat, the pair of excitation salient poles is composed of a laminated core and an excitation coil, and the pair of excitation salient poles are magnetically isolated from each other, and each pair of excitation salient poles is controlled by an independent excitation coil, which is characterized by:
  • the pair of excitation salient poles is composed of a "U-shaped" laminated core, the excitation coils, the port faces of the "U-shaped" laminated cores are oriented in the same direction, and the rotor is composed of a rotating shaft, a rotor bracket, and a plurality of permanent magnets.
  • the center of the rotor bracket is fixed to the rotating shaft.
  • the rotor bracket is in the shape of a disc.
  • the permanent magnets are symmetrical axes of the axis of the rotating shaft.
  • the inner and outer rings are disposed on one side of the magnetic disc, and the inner ring is a permanent magnet.
  • the spacing between the two is equal, and the spacing between the permanent magnets of the outer ring is also equal.
  • the magnetic polarities of two adjacent pairs of permanent magnets on the same rotating surface are different, and the distance between each salient pole of the permanent magnet and the salient pole of the stator is the same as the distance between the salient poles of the stator excitation pole and the salient pole.
  • each pair of permanent magnet salient poles on the side of the disc sweeps through the pairs of excitation salient poles on the stator in turn, and each of the permanent magnet salient poles faces the two port faces of the two port faces and the respective excitation salient poles.
  • Forming an air gap therebetween when any one of the permanent magnet salient poles on the rotor pairs the two port faces and any one of the excitation salient poles on the stator to face each other, the permanent magnet salient pole pairs and the excitation salient poles A shortest magnetic circuit is formed.
  • the rotor bracket is in the shape of a disc, and the plurality of permanent magnets are symmetrical axes of the axis of the rotating shaft, and the inner and outer rings are disposed on two sides of the magnetically permeable disc, and the inner ring permanent magnets are mutually
  • the spacing between the outer rings is equal, and the spacing between the outer ring permanent magnets is also equal. Due to the magnetic conduction of the disk, the inner ring permanent magnets and the outer ring permanent magnets disposed on the same line form a permanent magnet salient pole pair.
  • the magnetic polarities of two adjacent permanent magnet salient poles on the same rotating surface are different, and the distance between each salient pole of the permanent magnet salient pole is the same as the distance between the salient poles of the stator excitation salient pole and the salient pole.
  • the "U-shaped" excitation salient poles are divided into two groups, which are placed on both sides of the rotor support disc. When the rotating shaft rotates, the pairs of permanent magnet salient poles on the two sides of the disc are sequentially swept through the stator.
  • Each pair of excitation salient poles, and an air gap is formed between the port surface of each permanent magnet salient pole pair and each excitation salient pole pair port surface, when two port faces of the permanent magnet salient pole pair on the rotor and the stator When any one of the excitation salient poles coincides with the two port faces, a permanent magnetic circuit is formed between the pair of permanent magnet salient poles and the pair of excitation salient poles.
  • the number of excitation salient pole pairs on the stator is N
  • the number of permanent magnets or "permanent magnet salient pole pairs" on the rotor is M
  • M is an even number greater than or equal to 2
  • N is a natural number greater than or equal to 2
  • k is an even number
  • the ratio of M/N is not a positive integer.
  • the pair of excitation salient poles is composed of a "U-shaped" laminated core, one or two exciting coils, one or two permanent magnet assemblies.
  • a permanent magnet the two salient pole ports of the "U-shaped" laminated core face in the same direction, and the exciting coil is wound around the periphery of the "U-shaped" laminated core, the two magnetic poles of the permanent magnet assembly
  • the surface is placed in close contact with the laminated section of the laminated core, the permanent magnet is embedded in the laminated core core notch, and the two magnetic pole faces of the permanent magnet are arranged in close contact with the laminated core core notch.
  • the cross section, the side of the permanent magnet and the laminated core have a gap, and the winding direction of the exciting coil is such that when the exciting coil inputs an exciting current, the direction of the exciting magnetic flux generated by the laminated core and the attached permanent magnet component or permanent magnet The direction of the permanent magnetic flux is the same.
  • the excitation flux can force the closed permanent magnetic flux to open, so that the permanent magnetic flux is merged into the main circuit of the excitation flux, in the laminated iron.
  • the core port surface forms a composite excitation magnetic potential;
  • the rotor is composed of a rotating shaft, a rotor bracket and a permanent magnet.
  • the center of the rotor bracket is fixed to the rotating shaft, and a plurality of permanent magnets are uniformly fixed on the rotor bracket, and magnetic polarities of adjacent permanent magnets are different.
  • the magnetic port surface of several permanent magnets on the rotor support and the port faces of the plurality of excitation salient poles on the stator can be aligned one by one.
  • the composite excitation magnetic field of the excitation salient pole to the port surface passes through the air air gap. Forms the shortest closed magnetic circuit with the permanent magnet.
  • the pair of excitation salient poles is composed of a "U-shaped" laminated core, a set of exciting coils and a permanent magnet assembly, the "U”
  • the two salient pole ports of the "shaped" core are oriented in the same direction, and the exciting coil is wound around the periphery of the "U-shaped” laminated core frame, and the magnetic pole S and the magnetic pole N of the permanent magnet assembly are respectively disposed across the exciting coil.
  • the magnetic pole S and the magnetic pole N of the permanent magnet assembly are in close contact with the "U-shaped" laminated core laminated section;
  • the rotor support is disc-shaped, and a plurality of permanent magnets are symmetrical axes of the axis of the rotating shaft, and are divided into an inner ring and an outer ring. It is disposed on one side of the magnetic conductive disc, the inner ring permanent magnets are equally spaced from each other, and the outer ring permanent magnets are equally spaced from each other.
  • the inner ring disposed on the same radial line is forever
  • the magnet and the outer ring permanent magnet form a permanent magnet salient pole pair, and the magnetic polarities of the adjacent two permanent magnet salient pole pairs are different, and the distance between each permanent magnet salient pole pair and the salient poles is opposite to the stator excitation salient pole pair The distance between the salient poles is the same.
  • each pair of permanent magnet salient poles on the side of the disc sweeps through the pairs of excitation salient poles on the stator, and the end faces of the pairs of permanent magnet salient poles and the respective excitation salient poles Forming an air gap between the port faces, when the permanent magnet salient pole pairs coincide with the magnetic port faces of the excitation salient pole pairs, a closed magnetic circuit with an air gap is formed between the pair of permanent magnet salient poles and the pair of excitation salient poles;
  • the rotor support is in the shape of a disk, and the plurality of permanent magnets are symmetrical about the axis of the rotating shaft, and the inner and outer rings are disposed on two sides of the magnetically permeable disk, and the permanent magnets of the inner ring are equally spaced from each other.
  • the outer ring permanent magnets are equally spaced from each other. Due to the magnetic conduction of the disk, the inner ring permanent magnets and the outer ring permanent magnets disposed on the same line form a permanent magnet salient pole pair, and the adjacent two permanent magnet protrusions The magnetic polarity of the pole pair is different.
  • each salient pole of the permanent magnet and the salient pole of the permanent magnet is the same as the distance between the salient poles of the stator excitation pole and the salient pole.
  • each of the two sides of the disc rotates.
  • the pair of permanent magnet salient poles sweeps through the pairs of excitation salient poles on the stator in turn, and an air gap is formed between the end faces of the pairs of permanent magnet salient poles and the surface of each of the excitation salient poles.
  • the excitation salient pole pair is composed of a "U-shaped" laminated core, two sets of exciting coils, and two permanent magnet assemblies,
  • the two salient pole ports of the U-shaped laminated core face in the same direction, and the exciting coil is wound around the two parallel frames of the "U-shaped" laminated core, and the magnetic pole S and the magnetic pole N of the two permanent magnet assemblies are respectively set.
  • the spanning coil is crossed, and the magnetic poles S and the magnetic poles N of the two permanent magnet assemblies are in close contact with the "U-shaped" laminated core stack section;
  • the rotor bracket has a disc shape, and a plurality of permanent magnets have a symmetry axis with a rotation axis, and the inner and outer rings are disposed on one side of the magnetic disc, and the inner ring permanent magnets are equally spaced from each other, and the outer ring is always The spacing between the magnets is also equal. Due to the magnetic conduction of the disc, the inner ring permanent magnets and the outer ring permanent magnets disposed on the same radial line form a permanent magnet salient pole pair, and the adjacent two permanent magnet salient pole pairs The magnetic polarities are different, and the distance between each salient pole of the permanent magnet and the salient poles is the same as the distance between the salient poles of the stator excitation pole and the salient poles.
  • each permanent magnet salient pole pair on the side of the disc Sweeping each pair of excitation salient poles on the stator in turn, and forming an air gap between the end faces of each pair of permanent magnet salient poles and the respective excitation salient poles, and the magnetic port surface of the pair of excitation salient poles When coincident, a closed magnetic circuit with an air gap is formed between the pair of permanent magnet salient poles and the pair of excitation salient poles;
  • the rotor support is in the shape of a disk, and the plurality of permanent magnets are symmetrical about the axis of the rotating shaft, and the inner and outer rings are disposed on two sides of the magnetically permeable disk, and the permanent magnets of the inner ring are equally spaced from each other.
  • the outer ring permanent magnets are equally spaced from each other. Due to the magnetic conduction of the disk, the inner ring permanent magnets and the outer ring permanent magnets disposed on the same line form a permanent magnet salient pole pair, and the adjacent two permanent magnet protrusions The magnetic polarity of the pole pair is different.
  • each salient pole of the permanent magnet and the salient pole of the permanent magnet is the same as the distance between the salient poles of the stator excitation pole and the salient pole.
  • each of the two sides of the disc rotates.
  • the pair of permanent magnet salient poles sweeps through the pairs of excitation salient poles on the stator in turn, and an air gap is formed between the end faces of the pairs of permanent magnet salient poles and the surface of each excitation salient pole, when the permanent magnet salient pole pairs and the excitation salient poles
  • a closed magnetic circuit with an air gap is formed between the pair of permanent magnet salient poles and the pair of excitation salient poles.
  • an excitation control method for an alternating current permanent magnet switched reluctance motor is provided.
  • the stator of the alternating current permanent magnet switched reluctance motor is composed of a stator base and a plurality of composite excitation salient pole pairs.
  • a plurality of composite excitation salient poles are uniformly fixed to the stator base, and the composite excitation salient poles are magnetically isolated from each other, and each composite excitation salient pole pair unit is excitedly controlled by an independent excitation coil, and the composite excitation salient pole pair is composed of one "C-shaped" or "U-shaped” laminated core, one or two excitation coils, one or two permanent magnet assemblies or permanent magnets, two salient port faces of the "C-shaped" laminated core
  • the two salient pole ports of the "U-shaped" laminated core face in the same direction, and the exciting coil is wound around the periphery of the "C-shaped" or "U-shaped” laminated core, and the two poles of the permanent magnet assembly are pressed Setting a laminated section closely adjacent to the laminated core, the permanent magnet is embedded in the laminated core core notch, the two poles of the permanent magnet are arranged to be in close contact with the laminated section of the laminated core, and the permanent magnet side is There is a gap
  • the port faces of the pair of excitation salient poles on the port surface and the stator can be aligned one by one.
  • the composite excitation magnetic field of the excitation salient pole to the port surface forms the shortest closed magnetic circuit through the air air gap and the permanent magnet, and is characterized by:
  • the excitation control method is to excite the excitation coil of the composite excitation salient pole pair on the stator by a square wave or a square wave unidirectional pulse current or a positive and negative alternating pulse current to ensure each pulse Excitation flux density of the current generated in the magnetic circuit in the permanent magnet assembly is not less than the same
  • the magnetic flux density formed in the first loop so that the exciting magnetic flux generated by the exciting current of the exciting coil forces the original static permanent magnetic flux in the exciting core disposed in parallel with it to change the closing direction and superimpose the electric excitation excitation flux.
  • the composite excitation magnetic potential can pass through the air gap and pass through the permanent magnet or permanent magnet salient pole on the rotor support Yes, a new closed magnetic circuit is formed.
  • This new closed magnetic circuit is the shortest magnetic circuit required for the reluctance motor rotor to obtain the rotational torque.
  • the invention skillfully optimizes the stator with "independent excitation salient pole pair” and the rotor with cantilever support structure, which not only retains the characteristics of "independent excitation salient pole pair", that is, the independent excitation of each group of excitation coils.
  • a "excitation salient pole pair”, each "excitation salient pole pair” is independent of each other, magnetically isolated from each other, and does not interfere with each other.
  • Each group of excitation coils can be independently controlled by commutation, so that each "excitation salient pole pair on the stator" "The permanent magnet on the rotor constitutes an annular closed magnetic circuit, which greatly shortens the magnetic circuit, reduces the interference and magnetic flux leakage of the shared magnetic circuit, and improves power density and equipment utilization.
  • the rotor of the invention adopts a unique cantilever bracket structure, which cooperates with the stator "independent excitation salient pole pair", on the one hand, the force arm of the rotor force point and the rotation shaft is increased, so that the rotation shaft is larger.
  • the rotating torque on the other hand improves the dynamic balance of the rotor, especially the double suspension frame structure of the rotor.
  • the invention firstly proposed the concept of "permanent magnet synergistic effect” reluctance motor, and skillfully designed the integrated structure of "permanent magnet” and stator “excitation salient pole pair” to form a composite excitation salient pole pair, so that the " Composite excitation salient pole pair" Under the electric excitation of the excitation coil, the inherent magnetic flux of the permanent magnet can be transferred into the excitation flux loop, thereby realizing the superimposed magnetic flux of the electric excitation flux and the permanent magnet flux simultaneously with the excitation current.
  • the amount of magnetic flux can greatly increase the magnetic induction intensity in the air gap of the motor, increase the torque, and make the motor have high torque at low speed. It is important for the motor for vehicles (electric bicycles, electric vehicles, etc.).
  • the indicator which enables the vehicle to increase the reaction speed and controllability, save energy and improve the vehicle's endurance.
  • the invention fully utilizes the magnetic isolation between the "composite excitation salient pole pairs" on the stator, does not interfere with each other, and is independently controlled by the independent excitation coils, thereby greatly shortening the magnetic circuit and reducing the shared magnetic Road interference and magnetic flux leakage improve power density and equipment utilization.
  • the control method for the first-order scanning commutation of the "excitation salient pole pair" winding of the invention is as follows: during the rotation of the rotor, the permanent magnets fixed on the rotor bracket scan the individual "excitation salient pole pairs” salient poles on the stator one by one, according to the design The parameters are controlled to control the random commutation of the "independent excitation salient pole pair” unit windings, and the magnetic polarity of the original salient poles is changed, so that each permanent magnet on the rotor support is always at its adjacent stator "excitation salient pole pair” convex
  • the pole's "pre-suction and push-back" double magnetic force greatly increases the torque and at the same time achieves extremely high torque stability.
  • the invention firstly converts the independent magnetic flux reversal method of "independent excitation salient pole pair": when the reversing winding magnetic circuit is in the high magnetoresistance state, the winding is current commutated, and the inductance of the winding is small, so The time coefficient of the motor is very small, which greatly increases the speed of commutation, and provides a new method for increasing the speed and power of the motor.
  • the laminated core of the composite excitation salient pole pair of the invention also adopts the latest international frontier soft magnetic material, namely nanocrystalline strip material, with the unique seamless structure design and processing technology, so as to make high magnetic permeability and high efficiency.
  • the new material with low energy consumption and energy saving is applied to the laminated iron core of the motor, which greatly improves the efficiency of the motor, thereby creating a precedent for applying the seamless joint of the nanocrystalline material to the laminated core of the motor.
  • the invention adopts a unique hollow block type and modular structure design.
  • the whole structure and magnetic circuit of the traditional motor are decomposed into modular and modular unit components, and the combination of primary forming as the main processing means and automatic flow-through production process greatly improves labor productivity, reduces production cost, and saves Raw materials.
  • the rotor bracket and air stator structure design originally created by the invention constitutes an inner circulation cooling mode, which significantly improves the cooling efficiency of the motor and solves the problem of long-disturbing permanent magnets being subjected to thermal demagnetization.
  • FIG. 1 is a schematic view showing the structure of a "C-shaped" single-coil excitation salient pole of the present invention (the magnetic pole port is face-to-face opposite).
  • FIG. 2 is a schematic view showing the structure of a "C-shaped" single-coil excitation salient pole pair of the present invention.
  • FIG. 3 is a schematic view showing the structure of a single-sided cantilever rotor holder and a permanent magnet of the present invention.
  • Figure 4 is a cross-sectional view showing the structure of the single-sided cantilever rotor holder and the permanent magnet of the present invention (cross-sectional view taken along line A-A of Figure 3).
  • Figure 5 is a schematic view showing the appearance of a single-sided cantilever rotor holder and a permanent magnet structure of the present invention.
  • Fig. 6 is a perspective view showing the structure of a single cantilever rotor support motor according to a first embodiment of the present invention.
  • FIG. 7 is a schematic view showing the structure of a single cantilever rotor support motor according to a first embodiment of the present invention.
  • Fig. 8 is a cross-sectional view showing the structure of a single cantilever rotor holder motor according to a first embodiment of the present invention (cross-sectional view taken along line B-B of Fig. 7).
  • Figure 9 is a schematic view showing the structure of a double-sided cantilever rotor holder and a permanent magnet of the present invention.
  • Figure 10 is a cross-sectional view showing the structure of the double-sided cantilever rotor holder and the permanent magnet of the present invention (cross-sectional view taken along line C-C of Figure 9).
  • Figure 11 is a perspective view showing the structure of the double-sided cantilever rotor holder and the permanent magnet of the present invention.
  • Figure 12 is a perspective view showing the structure of a double cantilever rotor support motor according to a second embodiment of the present invention.
  • Figure 13 is a schematic view showing the structure of a double cantilever rotor support motor according to a second embodiment of the present invention.
  • Figure 14 is a cross-sectional view showing the structure of a double cantilever rotor support motor according to a second embodiment of the present invention (cross-sectional view taken along line D-D of Figure 13).
  • Figure 15 is a schematic view showing the structure of the double-sided cantilever rotor support and the permanent magnet misalignment according to the third embodiment of the present invention.
  • Fig. 16 is a perspective view showing the appearance of a double-sided cantilever rotor support and a permanent magnet misalignment structure according to a third embodiment of the present invention.
  • Figure 17 is a schematic view showing the structure of a double-sided cantilever with a flanged rotor holder and a permanent magnet according to the present invention.
  • Figure 18 is a cross-sectional view showing the structure of the double-sided cantilever belt flanged rotor holder and the permanent magnet of the present invention (cross-sectional view taken along line E-E of Figure 17).
  • Fig. 19 is a schematic view showing the appearance of a double-sided cantilever belt flanged rotor bracket and a permanent magnet structure according to the present invention.
  • Figure 22 is a perspective view showing the structure of a double cantilever with a flanged rotor support motor according to a fourth embodiment of the present invention.
  • Figure 21 is a schematic view showing the structure of a double cantilever with a flanged rotor support motor according to a fourth embodiment of the present invention.
  • Figure 22 is a cross-sectional view showing the structure of a double cantilever with a flanged rotor holder motor according to a fourth embodiment of the present invention (cross-sectional view taken along line F-F of Figure 21).
  • Figure 23 is a schematic view showing the structure of the "U-shaped" single-coil excitation salient pole of the present invention (the magnetic pole port faces face in the same direction).
  • Figure 24 is a perspective view showing the structure of a "U-shaped" single-coil excitation salient pole pair of the present invention.
  • Figure 25 is a schematic view showing the structure of a disc-shaped rotor holder and a permanent magnet according to a fifth embodiment of the present invention (a permanent magnet is disposed on one side of the disc-shaped rotor holder).
  • Fig. 26 is a cross-sectional view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a fifth embodiment of the present invention (cross-sectional view taken along line G-G of Fig. 25).
  • Fig. 27 is a perspective view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a fifth embodiment of the present invention.
  • Figure 29 is a fifth embodiment of the present invention, a disc-shaped rotor bracket is provided with a permanent magnet electric motor on one side
  • Fig. 30 is a cross-sectional view showing the structure of a permanent magnet motor provided on one side of a disk-shaped rotor holder according to a fifth embodiment of the present invention (H-H sectional view of Fig. 29;
  • Figure 31 is a schematic view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a sixth embodiment of the present invention.
  • the disc-shaped rotor bracket is provided with permanent magnets on both sides).
  • Figure 32 is a cross-sectional view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a sixth embodiment of the present invention (cross-sectional view taken along line I-I of Figure 31).
  • Figure 33 is a schematic view showing the appearance of a disk-shaped rotor holder and a permanent magnet according to a sixth embodiment of the present invention.
  • Fig. 34 is a perspective view showing the structure of a motor of a "U-shaped" single-coil excitation salient pole pair and a disc-shaped rotor holder provided with permanent magnets on both sides of the present invention.
  • Figure 35 is a schematic view showing the structure of a motor of a sixth embodiment of the present invention.
  • Figure 36 is a cross-sectional view showing the structure of a motor according to a sixth embodiment of the present invention (cross-sectional view taken along line J-J of Figure 35).
  • Figure 37 is a schematic view showing the structure of the excitation salient pole pair of the "U-shaped" double-coil series excitation of the present invention (the magnetic pole port faces face in the same direction, and the L1 coil forwardly enters the excitation current).
  • Figure 38 is a schematic view showing the structure of the excitation salient pole pair of the "U-shaped" double-coil series excitation of the present invention (the magnetic pole port faces face in the same direction, and the L2 coil reversely enters the excitation current)
  • 39 is a schematic structural view of a switched reluctance motor in which a "U-shaped" double-coil series excitation excitation salient pole pair and a disc-shaped rotor bracket are provided with a permanent magnet on one side of the embodiment of the present invention.
  • Figure 40 is a cross-sectional view showing the structure of a motor of the seventh embodiment of the present invention (cross-sectional view taken along line K-K of Figure 3941).
  • Figure 41 is a schematic view showing the structure of a seventh embodiment of the present invention.
  • Figure 42 is a schematic view showing the appearance of a single-coil excited composite excitation salient pole of the present invention (the magnetic pole port is face-to-face opposite).
  • 43 is a schematic view showing the structure of a "C-shaped" laminated core and an exciting coil of a single-coil excited composite excitation salient pole according to the present invention.
  • Figure 44 is a schematic view showing the structure of a single cantilever rotor holder and a permanent magnet of the present invention.
  • Figure 45 is a cross-sectional view showing the structure of a single cantilever rotor holder and a permanent magnet of the present invention (cross-sectional view taken along line A-A of Figure 44).
  • Figure 46 is a perspective view showing the structure of a single cantilever rotor holder and a permanent magnet of the present invention.
  • Figure 47 is a perspective view showing the structure of a single cantilever unipolar permanent magnet multi-effect reluctance motor according to a ninth embodiment of the present invention.
  • FIG. 48 is a schematic structural view of a single cantilever unipolar permanent magnet synergistic reluctance motor according to Embodiment 9 of the present invention.
  • Figure 49 is a cross-sectional view showing the structure of a single cantilever unipolar permanent magnet multi-effect reluctance motor according to a ninth embodiment of the present invention (cross-sectional view taken along line B-B of Figure 48).
  • Figure 50 is a schematic view showing the structure of a double cantilever rotor holder and a permanent magnet of the present invention.
  • Figure 51 is a cross-sectional view showing the structure of the double cantilever rotor holder and the permanent magnet of the present invention (cross-sectional view taken along line C-C of Figure 50).
  • Figure 52 is a perspective view showing the structure of the double cantilever rotor holder and the permanent magnet of the present invention.
  • Figure 53 is a perspective view showing the structure of a unipolar permanent magnet multi-effect reluctance motor of a double cantilever rotor support according to a tenth embodiment of the present invention.
  • Figure 54 is a structural schematic view showing a unipolar permanent magnet synergistic reluctance motor of a double cantilever rotor support according to a tenth embodiment of the present invention.
  • Figure 55 is a cross-sectional view showing the structure of a double-cantilever rotor support unipolar permanent magnet multi-effect reluctance motor according to a tenth embodiment of the present invention (cross-sectional view taken along line D-D of Figure 54).
  • Figure 56 is a schematic view showing the structure of the double cantilever rotor support and the permanent magnet misalignment according to the eleventh embodiment of the present invention.
  • Fig. 57 is a perspective view showing the structure of a double cantilever rotor holder and a permanent magnet misalignment structure according to an eleventh embodiment of the present invention.
  • Figure 58 is a schematic view showing the structure of the double-coil bipolar composite excitation salient pole pair of the present invention (the magnetic pole port is face-to-face opposite).
  • Figure 59 is a schematic view showing the structure of a "C-shaped" laminated core and an exciting coil in the double-coil bipolar composite excitation salient pole pair of the present invention.
  • Figure 60 is a schematic view showing the structure of a single cantilever bipolar permanent magnet synergistic reluctance motor according to a twelfth embodiment of the present invention.
  • Figure 61 is a cross-sectional view showing the structure of a single cantilever bipolar permanent magnet synergistic reluctance motor according to a twelfth embodiment of the present invention (cross-sectional view taken along line E-E of Fig. 60).
  • Figure 62 is a perspective view showing the structure of a single cantilever bipolar permanent magnet synergistic reluctance motor according to a twelfth embodiment of the present invention.
  • Figure 63 is a perspective view showing the structure of a double cantilever bipolar permanent magnet synergistic reluctance motor according to a thirteenth embodiment of the present invention.
  • Figure 64 is a schematic view showing the structure of a single-coil bipolar composite excitation salient pole pair of the present invention, that is, two permanent magnets are embedded in the laminated core core notch (the magnetic pole port face is opposite to the surface).
  • Figure 65 is a schematic view showing the structure of a "C-shaped" laminated core, a permanent magnet and an exciting coil of a single-coil bipolar composite excitation salient pole pair according to the present invention.
  • Figure 66 is a schematic view showing the structure of a single cantilever bipolar permanent magnet synergistic reluctance motor according to a fourteenth embodiment of the present invention.
  • Figure 67 is a cross-sectional view showing the structure of a single cantilever bipolar permanent magnet multi-effect reluctance motor according to a fourteenth embodiment of the present invention (cross-sectional view taken along line F-F of Figure 66)
  • Figure 68 is a schematic external view of a single cantilever bipolar permanent magnet synergistic reluctance motor according to a fourteenth embodiment of the present invention.
  • 69 is a schematic view showing the structure of a double-coil series-excited unipolar composite excitation salient pole pair structure, in which a permanent magnet is embedded in a laminated core core gap (magnetic pole port face-down)
  • Figure 70 is a schematic view showing the structure of a "C-shaped" laminated core, a permanent magnet, and a series double coil in a dual-coil series-excited unipolar composite excitation salient pole pair of the present invention.
  • Figure 71 is a schematic view showing the structure of a single-coil excited unipolar composite excitation salient pole pair of the present invention (the magnetic pole port faces face in the same direction).
  • Figure 72 is a schematic view showing the structure of a single-coil excited unipolar composite excitation salient pole pair "U-shaped" laminated core and exciting coil of the present invention.
  • Figure 73 is a schematic view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a fifteenth embodiment of the present invention.
  • Figure 74 is a cross-sectional view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a fifteenth embodiment of the present invention (cross-sectional view taken along line G-G of Figure 73).
  • Figure 75 is a perspective view showing the appearance of a disk-shaped rotor holder and a permanent magnet according to a fifteenth embodiment of the present invention.
  • Figure 76 is a perspective view showing the structure of a unipolar permanent magnet synergistic reluctance motor in which a permanent magnet is arranged on one side of a disk-shaped rotor holder according to a fifteenth embodiment of the present invention.
  • Fig. 77 is a structural schematic view showing a unipolar permanent magnet synergistic reluctance motor in which a permanent magnet is arranged on one side of a disk-shaped rotor holder according to a fifteenth embodiment of the present invention.
  • FIG. 78 is a unipolar permanent body in which a permanent magnet is arranged on one side of a disk-shaped rotor holder according to a fifteenth embodiment of the present invention.
  • a cross-sectional view of the structure of the magnetic synergistic reluctance motor cross-sectional view in the H-H direction of Fig. 77).
  • Figure 79 is a schematic view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a sixteenth embodiment of the present invention.
  • Figure 80 is a cross-sectional view showing the structure of a disk-shaped rotor holder and a permanent magnet according to a sixteenth embodiment of the present invention (cross-sectional view taken along line I-I of Figure 79).
  • Figure 81 is a perspective view showing the appearance of a disk-shaped rotor holder and a permanent magnet according to a sixteenth embodiment of the present invention.
  • FIG. 82 is a schematic view showing the appearance of a unipolar permanent magnet synergistic reluctance motor provided with permanent magnets on both sides of a disk-shaped rotor holder according to Embodiment 17 of the present invention.
  • Figure 83 is a structural schematic view of a unipolar permanent magnet synergistic reluctance motor in which a permanent magnet is disposed on both sides of a disk-shaped rotor holder according to a seventeenth embodiment of the present invention.
  • Figure 84 is a cross-sectional view showing the structure of a unipolar permanent magnet synergistic reluctance motor in which a permanent magnet is disposed on both sides of a disk-shaped rotor holder according to a seventeenth embodiment of the present invention (cross-sectional view taken along line J-J of Fig. 83).
  • Fig. 85 is a schematic view showing a polarity state of the composite excitation of the double-coil excited bipolar composite excitation salient pole according to the present invention (the magnetic pole port faces face in the same direction).
  • Figure 86 is a schematic view showing another polarity state of the composite excitation by the two-coil excited bipolar excitation salient pole of the present invention.
  • 87 is a structural schematic view of a bipolar permanent magnet synergistic reluctance motor in which a permanent magnet is disposed on one side of a disk-shaped rotor support according to an eighteenth embodiment of the present invention.
  • Figure 88 is a cross-sectional view showing the structure of a bipolar permanent magnet synergistic reluctance motor in which a permanent magnet is disposed on one side of a disk-shaped rotor holder according to an eighteenth embodiment of the present invention (Fig. 87 is a cross-sectional view taken along the line K-K).
  • 89 is a schematic view showing the appearance of a bipolar permanent magnet synergistic reluctance motor provided with permanent magnets on one side of a disk-shaped rotor support according to an eighteenth embodiment of the present invention.
  • Figure 90 is a perspective view showing the structure of a bipolar permanent magnet synergistic reluctance motor in which a permanent magnet is disposed on both sides of a disk-shaped rotor holder according to a nineteenth embodiment of the present invention.
  • Figure 91 is a structural schematic view showing a bipolar permanent magnet synergistic reluctance motor in which a permanent magnet is disposed on both sides of a disk-shaped rotor holder according to a nineteenth embodiment of the present invention.
  • Figure 92 is a cross-sectional view showing the structure of a bipolar permanent magnet synergistic reluctance motor in which a permanent magnet is disposed on both sides of a disk-shaped rotor holder according to a nineteenth embodiment of the present invention (Fig. 91 is a cross-sectional view taken along the line L-L).
  • 11 is a "C-shaped" laminated core
  • 12 is an exciting coil
  • 13 is a permanent magnet
  • 14 is a cylinder
  • 15 is a disk
  • 16 is a rotating shaft
  • 17 is a stator seat
  • 18 is a bearing.
  • 21a is a "C-shaped" laminated piece Iron core
  • 21b is a "C-shaped” laminated core
  • 22a is an excitation coil
  • 22b is an excitation coil
  • 23a is a permanent magnet
  • 23b is a permanent magnet
  • 24 is a cylinder
  • 25 is a disc
  • 26 is a rotating shaft
  • 27 Is a stator seat
  • 28 is a bearing
  • 33a is a permanent magnet
  • 33b is a permanent magnet
  • 34 is a cylinder
  • 35 is a disc
  • 36 is a rotating shaft
  • 41a is a "C-shaped” laminated core
  • 41b is a "C-shaped” Laminated core
  • 42a is the excitation coil
  • 42b is the excitation coil
  • 43a is the permanent magnet
  • 43b is the permanent magnet
  • 44 is the cylinder with the hem
  • 45 is the disc
  • 46 is the rotating shaft
  • 47 is the stator seat
  • 48 Is a bearing
  • 111 is a "C-shaped" laminated core
  • 112 is an exciting coil
  • 113 is a permanent magnet
  • 114 is a cylinder
  • 115 is a disk
  • 116 is a rotating shaft
  • 117 is a stator seat
  • 118 is a bearing.
  • 119 is a permanent magnet
  • 120 is a magnetizer
  • 123a is a permanent magnet
  • 123b is a permanent magnet
  • 124b is a permanent magnet
  • 124 is a cylinder
  • 125 is a disc
  • 126 is a rotating shaft
  • 127 is a stator seat
  • 128 is a bearing
  • 129a is a permanent magnet
  • 129b Is a permanent magnet
  • 130a is a magnetizer
  • 130b is a magnetizer
  • 133a is a permanent magnet
  • 133b is a permanent magnet
  • 133b is a permanent magnet
  • 134 is a cylinder
  • 135 is a disc
  • 136 is a rotating shaft
  • 141 is a "C-shaped" laminated core.
  • 142 is an excitation coil
  • 143 is a magnetizer
  • 144 is a permanent magnet
  • 144 is a permanent magnet
  • 145 is a permanent magnet
  • 146 is a cylinder
  • 147 is a disc
  • 148 is a rotating shaft
  • 149 is an exciting coil
  • 150 is a stator seat
  • 151 is a C-shaped "Laminated core
  • 152 is the excitation coil
  • 153 is the permanent magnet
  • 154 is the gap between the permanent magnet and the laminated core
  • 155 is the permanent magnet
  • 156 is the cylinder
  • 157 is the disc
  • 158 is the rotating shaft
  • 159 is a bearing
  • 160 is a stator seat
  • 161 is a "C-shaped" laminated core
  • 162 is an exciting coil
  • 163 is a permanent magnet
  • 164 is a permanent magnet and a laminated core.
  • the gap, 165 is the excitation coil
  • 171 is the "U-shaped" laminated core
  • 172 is the excitation coil
  • 173 is the permanent magnet
  • 174 is the magnetizer
  • 175 is the permanent magnet
  • 176 is the permanent magnet
  • 177 is the disc
  • 178 It is a rotating shaft
  • 179 is a bearing
  • 180 is a stator seat
  • 181a is a "U-shaped” laminated core
  • 181b is a "U-shaped” laminated core
  • 182a is an exciting coil
  • 182b is an exciting coil
  • 185a is a permanent magnet.
  • 185b is a permanent magnet
  • 186a is a permanent magnet
  • 186b is a permanent magnet
  • 186b is a permanent magnet
  • 187 is a stator seat
  • 188 is a rotating shaft
  • 191 is a "U-shaped" laminated core
  • 192 is an exciting coil
  • 193 is a permanent magnet
  • 194 is a magnetizer.
  • 195 is a permanent magnet
  • 196 is a permanent magnet
  • 197 is a disc
  • 198 is a rotating shaft
  • 199 is a stator seat
  • 201a is a "U-shaped” laminated core
  • 201b is a "U-shaped laminated iron”
  • the core 202a is an exciting coil
  • 202b is an exciting coil
  • 205a is a permanent magnet
  • 205b is a permanent magnet
  • 206a is a permanent magnet
  • 206b is a permanent magnet
  • 207 is a circular disc
  • 208 is a rotating shaft
  • 209 is a stator seat.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • an AC permanent magnet switched reluctance motor is provided which is provided with a "C-shaped" single-coil excitation salient pole pair and a rotor is composed of a single-sided cantilever bracket, and its structure and outer shape are as shown in FIG. 6-8.
  • the stator of the embodiment is composed of a stator base 17 and four "C-shaped” excitation salient pole pairs, and four "C-shaped” excitation salient pole pairs are respectively arranged on the upper, lower, left and right sides, and there are ninety-corner centers between each other. The gap between the corners.
  • the "C-shaped” field salient pole pair is composed of a "C-shaped” laminated core 11 and an exciting coil 12, and the exciting coil 12 is wound around the middle periphery of the laminated core 11, as shown in Fig. 1, "C-shaped” stack
  • the two ports of the core are opposite on the surface, and the two port faces are curved.
  • the magnetic polarity N is immediately present at the upper port surface of the "C-shaped" excitation salient pole pair.
  • the magnetic pole S is immediately present at the lower port face of the "C-shaped" excitation salient pole pair, as shown in Fig. 2, when the excitation coil inputs a negative excitation current, at the upper port face of the "C-shaped” excitation salient pole pair
  • the magnetic polarity S is immediately present while the magnetic pole N is immediately present at the lower port face of the "C-shaped” field salient pole pair.
  • the rotor of this embodiment is composed of a rotating shaft 16 and a single-sided cantilever rotor support.
  • the single-sided cantilever rotor support is composed of a disk 15 and a cylinder 14.
  • the center of the disk 15 is fixed integrally with the rotating shaft 16, and the disk 15 is perpendicular to the plane.
  • the axis of the cylinder 14 coincides with the axis of the rotating shaft, and one end edge of the cylinder 14 is fixedly coupled with the circular disk 15 to form a one-side cantilever structure rotor support, and the other end edge of the cylinder 14 is fixed at equal intervals.
  • the action mechanism and the drive control mode of the embodiment are: when the forward excitation current is applied to the excitation coil 12 of the "C-shaped" excitation salient pole pair above the stator, the upper port surface of the "C-shaped” excitation salient pole pair is presented. N pole magnetism, the lower port surface exhibits S pole magnetism, and the "C-shaped” field salient pole pair generates magnetic attraction force to the permanent magnet 13 having the outer cross section magnetic polarity S on the rotor cantilever and the inner cross section magnetic polarity N.
  • the "C-shaped" excitation salient pole pair will also have a magnetic polarity of N on the outer section of the rotor cantilever and a magnetic polarity of the inner section.
  • the "C-shaped” excitation salient pole forms a rotational moment on the rotor under the action mechanism of "attracting the rear permanent magnet and repelling the front permanent magnet", when attracted to the permanent
  • the excitation magnetic potential of the "C-shaped” excitation salient pole pair passes through the air gap above the permanent magnet, and the permanent magnet 13.
  • the air gap of the arc surface below the permanent magnet forms a closed magnetic circuit with a relatively small magnetic reluctance.
  • the motor drive control device immediately Changing the excitation current direction of the "C-shaped” excitation salient pole to the excitation coil, and introducing a negative excitation current, so that the magnetic polarity of the "C-shaped” excitation salient pole changes to the upper and lower port faces, that is, the upper port surface exhibits an S pole Magnetically, the lower port surface exhibits N-pole magnetism.
  • the "C-shaped" excitation salient pole pair will continue to repeat the action of "sucking and pushing forward".
  • the six permanent magnets on the rotor cantilever bracket have two "C-shaped” excitation convexs for every 30 degree central angle of rotation of the rotating shaft.
  • the pole pair is aligned with two permanent magnets, that is, the permanent magnet is located between the upper and lower port faces of the "C-shaped" field salient pole pair, thereby achieving continuous torque output of the rotor.
  • the rotor bracket of the motor of the embodiment adopts a single-side cantilever structure, which greatly compresses the axial dimension of the conventional switched reluctance motor.
  • the unique drive control mode of the embodiment effectively eliminates the negative of the conventional switched reluctance motor. Torque, the performance of the motor is further improved.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • an AC permanent magnet switched reluctance motor is provided which is provided with a "C-shaped" single-coil excitation salient pole pair and a rotor composed of a double-sided cantilever bracket.
  • the outer shape and structure are as shown in FIGS. 12-14.
  • the rotor of this embodiment is composed of a rotating shaft 26 and a double-sided cantilever rotor support.
  • the double-sided cantilever rotor support is composed of a disk 25 and a cylinder 24.
  • the center of the disk 25 is fixed integrally with the rotating shaft, and the disk 25 is perpendicular to the surface.
  • the axis of the cylinder 25 coincides with the axis of the rotating shaft 26, and the one-half position of the cylinder 24 is fixedly connected with the disk 25 to form a double-sided cantilever structure rotor bracket, and the two ends of the cylinder 24 are respectively respectively waited
  • Six permanent magnets are fixed at intervals, and the permanent magnets at both ends of the cylinder 24 are symmetrical with the disk 25, that is, the permanent magnet 23a of the left end edge of the cylinder 24 and the permanent magnet 23b of the right end edge of the cylinder 24 are symmetric with the disk 25.
  • the magnetic polarity of the permanent magnet is set as shown in Fig. 11.
  • the central angle between the radial centerlines of each permanent magnet differs by sixty degrees, and the magnetic polarities of two adjacent permanent magnets are different.
  • the arc of the two pole faces is identical to the arc of the two port faces of the "C-shaped" field salient pole pair.
  • the structural features of the "C-shaped" excitation salient poles on the stator are the same as those in the first embodiment.
  • the stator "C-shaped" excitation salient pole pairs of the present embodiment are eight, four are a group, and the rotor discs 24 are symmetrically arranged in groups, as shown in FIG. 13 and FIG.
  • the "C-shaped" excitation salient poles on both sides of the rotor support are identical to the interaction mechanism of the permanent magnets on the rotor.
  • the "C-shaped” excitation salient poles on both sides of the rotor support are also fully synchronized with the commutation timing of the excitation current in the excitation coil. The effect is similar to the connection of the rotating shafts of the motors of the two embodiments.
  • the rotor of the embodiment adopts a double cantilever bracket structure, the dynamic balance is enhanced, the output torque is increased, and the axial dimension of the motor is limited.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • another AC permanent magnet switched reluctance motor is provided which is provided with a "C-shaped" single-coil excitation salient pole pair and a rotor is composed of a double-sided cantilever bracket, and a "C-shaped” excitation salient pole pair on the stator"
  • the structure and setting position are the same as those in the second embodiment, and can be seen in the accompanying drawings 13-14.
  • the rotor of this embodiment is composed of a rotating shaft 36 and a double-sided cantilever rotor support.
  • the double-sided cantilever rotor support is composed of a disk 35 and a cylinder 34.
  • the center of the disk 35 is fixed integrally with the rotating shaft 36, and the disk surface is perpendicular to Rotating the axis of the shaft 36, the axis of the cylinder 34 coincides with the axis of the rotating shaft 36, and one-half of the position of the cylinder 34 is fixedly connected with the disk to form a double-sided cantilever structure rotor support, and the two ends of the cylinder 34 are equally spaced
  • There are six permanent magnets fixed the central angle difference between the radial centerlines of the six permanent magnets is sixty degrees, and the magnetic polarities of the adjacent two permanent magnets are different, and the six left edges of the cylinder 34 are set for six permanent
  • the magnet is offset from the six permanent magnets disposed at the right end edge of the cylinder by an angle of thirty
  • the two ends of the double-sided cantilever bracket are provided with permanent magnets at a 30-degree central angle of the misalignment, so that the "C-shaped" excitation salient poles disposed on opposite sides of the rotor support are reversing the electric excitation current in the excitation coil.
  • the timing is also staggered, so that the motor of the present embodiment has a smaller step angle, thereby further improving the smoothness of the rotor rotation.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • another AC permanent magnet switched reluctance motor is provided, which is provided with a "C-shaped" single-coil excitation salient pole pair and a rotor composed of a double-sided cantilever bracket.
  • the outer shape and structure are as shown in Figs. 20-22. .
  • the "C-shaped" field salient pole pair on the stator in this embodiment is the same as the first embodiment, as shown in FIG. 1 and FIG. 2.
  • the eight "C-shaped" excitation salient pole pairs are divided into two groups, which are respectively disposed on both sides of the rotor support disc and are evenly arranged on the stator base, as shown in FIG. 22, all "C-shaped”
  • the excitation salient pole pair lamination core 41a and the "C-shaped” excitation salient pole face the left and right sides of the two magnetic port faces of the laminated core 41b.
  • the rotor holder is composed of a disk 45 and a flanged cylinder 44.
  • the inner wall of the central portion of the flanged cylinder 44 is fixedly connected to the outer edge of the disk 45 to form a
  • the center of the disc 45 is fixedly connected with the rotating shaft 46.
  • the plane of the disc 45 is perpendicular to the axis of the rotating shaft 46, and the axis of the flanged cylinder 44 coincides with the axis of the rotating shaft 46.
  • the hemming surface of the hemming cylinder 44 is perpendicular to the axis of the rotating shaft 46, and the twelve permanent magnets are divided into two groups, which are symmetrically fixed symmetrically at the flanges at both ends of the flanged cylinder, and are on the same rotating surface.
  • the magnetic polarities of two adjacent permanent magnets are different, as shown in FIG.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a switched reluctance motor which is provided with a "U-shaped" single-coil excitation salient pole pair and a permanent magnet body on one side of the rotor support disc, and its structure and outer shape are as shown in FIGS. 28-30.
  • the stator of the embodiment is composed of a stator seat and four "U-shaped” excitation salient pole pairs, and four "U-shaped” excitation salient pole pairs are respectively arranged on the upper, lower, left and right sides, and there are ninety-corner central angles between each other. difference.
  • Each "U-shaped" field salient pole pair is comprised of a "U-shaped” laminated core 51, a set of exciting coils 52, as shown in Figures 23 and 24, the "U-shaped” laminated core 51.
  • the two salient pole ports face in the same direction.
  • the rotor support of this embodiment is a disc 55.
  • the twelve permanent magnets are symmetrical axes with the axis of the rotating shaft, and the inner and outer rings are disposed on one side of the magnetic conductive disc 55, and the inner permanent magnets are spaced apart from each other. Equally, the outer ring permanent magnets are equally spaced from each other. As shown in FIG. 25 and FIG. 27, since the disk 55 is magnetically guided, the inner ring permanent magnet 54 and the outer ring permanent magnet are disposed on the same line.
  • each pair of permanent magnet salient poles on the side of the disc sequentially sweeps through the respective excitations on the stator.
  • Magnetic salient pole pairs, and the port faces of the pairs of permanent magnet salient poles and the respective excitation salient poles form an air gap between the port faces, when any one of the permanent magnet salient poles on the rotor pairs the two port faces and any one of the excitation protrusions on the stator
  • a shortest magnetic circuit is formed between the pair of permanent magnet salient poles and the pair of excitation salient poles.
  • a switched reluctance motor which is provided with a "U-shaped" single-coil excitation salient pole pair and a permanent magnet body on both sides of the rotor support disc, and its appearance and structure are as shown in FIG. 34-36. .
  • the stator of the present embodiment is composed of a stator base and eight "U-shaped" excitation salient pole pairs. As shown in Fig. 34 and Fig. 36, eight "U-shaped" excitation salient pole pairs are divided into two groups, which are respectively placed in the rotor. On both sides of the bracket disc, each set of four "U-shaped" excitation salient pole pairs are respectively arranged on the upper, lower, left and right sides, and there is a gap of 90 degree angles between the two.
  • the rotor support of the embodiment is a disc 65.
  • the twenty-four permanent magnets are symmetrical axes with the axis of the rotating shaft 66.
  • the inner and outer rings are disposed on two sides of the magnetic conductive disc 65, and the inner ring permanent magnets are mutually The intervals are equal, and the outer ring permanent magnets are equally spaced from each other. Since the disk 65 is magnetically guided, the inner ring permanent magnet 64a and the outer ring permanent magnet 63a disposed on the same line form a permanent magnet salient pole pair.
  • six permanent magnet salient pole pairs are formed on one side of the magnetic conductive disc 65, and the magnetic polarities of the adjacent two permanent magnet salient pole pairs are different, as shown in FIG.
  • the distance between each of the permanent magnet salient poles and the salient poles is the same as the distance between the stator excitation salient poles and the salient poles of the laminated core.
  • each pair of permanent magnet salient poles on both sides of the disc 65 sequentially sweeps each pair of excitation salient poles on the stator, and the port faces of the pairs of the permanent magnet salient poles and the respective excitation salient poles face the port surface Forming an air gap therebetween, when any one of the permanent magnet salient poles on the rotor pairs the two port faces and any one of the excitation salient poles on the stator to face each other, the permanent magnet salient pole pairs and the excitation salient poles A shortest magnetic circuit is formed.
  • the "U-shaped" excitation salient poles on both sides of the rotor support disc of the present embodiment are identical to the interaction mechanism and the timing of the permanent magnet salient pole pairs on both sides of the disc, and the U-shape on both sides of the rotor support disc "The excitation timing of the exciting current in the excitation coil is also completely synchronized. The effect is similar to the two motor shafts of the fifth embodiment. The dynamic balance is enhanced and the output torque is increased. The axial dimension of the motor is The increase is limited.
  • the permanent magnet salient poles on both sides of the rotor support disk 65 can be shifted from each other to the radial center line.
  • the thirty-degree central angle setting that is, the radial centerline of the six permanent magnet salient pole pairs on the left side of the rotor bracket disc and the radial centerline of the six permanent magnet salient pole pairs on the right side of the rotor bracket disc are thirty.
  • the degree of center angle dislocation makes the motor of the embodiment have a smaller step angle, thereby further improving the smoothness of the rotation of the rotor.
  • a switched reluctance motor which is provided with a "U-shaped" double-coil excitation salient pole pair and a permanent magnet body is arranged on one side of the rotor support disc, and its structure and outer shape are as shown in FIG. 39-41.
  • the stator of the embodiment is composed of a stator seat and four "U-shaped” excitation salient pole pairs, and four "U-shaped” excitation salient pole pairs are respectively arranged on the upper, lower, left and right sides, and there are ninety-corner central angles between each other. difference.
  • each "U-shaped" field salient pole pair is composed of a "U-shaped” laminated core 71, two sets of exciting coils 72, and the exciting coils L1 and L2 are wound respectively.
  • the upper and lower frames of the U-shaped laminated core, the exciting coils L1 and L2 are connected in series, and the port faces of the two salient poles of the "U-shaped" laminated core face in the same direction.
  • the rotor support of this embodiment is a disc 75.
  • the twelve permanent magnets are symmetrical axes with the axis of the rotating shaft 76, and the inner and outer rings are disposed on one side of the magnetic conductive disc 75, and the inner ring permanent magnets are mutually The intervals are equal, and the outer ring permanent magnets are equally spaced from each other.
  • the inner ring permanent magnet 74 and the outer ring permanent magnet 73 disposed on the same line form a permanent magnet salient pole pair, adjacent
  • the magnetic polarities of the two permanent magnet salient pole pairs are different, as shown in FIG. 25 and FIG. 27, the distance between each salient pole of the permanent magnet salient pole and the salient pole of the stator "U-shaped" excitation salient pole The distance between the poles is the same.
  • each pair of permanent magnet salient poles on the side of the disc 75 sequentially sweeps through the respective "U-shaped" exciting salient pole pairs on the stator, and the port faces of the respective permanent magnet salient pole pairs and the respective excitation salient pole pairs An air gap is formed between the port faces.
  • the permanent magnet salient pole pair and the excitation convex A shortest magnetic circuit is formed between the pole pairs.
  • the excitation salient pole of the embodiment has a shape of a laminated core of "U-shaped", The two port faces face in the same direction, and the other difference is that in this embodiment, the excitation currents in different directions are respectively input into the series excitation coils L1 and L2 to change the magnetic polarity of the excitation salient pole to the port surface, and the embodiment First, the magnetic polarity of the excitation salient pole to the port surface is changed by changing the direction of the excitation current of the same excitation coil.
  • a switched reluctance motor which is provided with a "U-shaped" double-coil excitation salient pole pair on the stator and a permanent magnet on both sides of the rotor support disc.
  • the structure of this embodiment is similar to that of the sixth embodiment, except that a "U-shaped" double-coil excitation salient pole pair is disposed on the stator.
  • the change in the magnetic polarity of the "U-shaped" double-coil excitation salient pole pair provided on the stator of the present embodiment is achieved by alternately applying excitation currents to the coils L1 and L2, as shown in Figs. 37 and 38.
  • the number of pairs of excitation salient poles on the stator is four, and the number of pairs of permanent magnets or permanent magnets on the rotor is six, but
  • the technical solution of the present invention is not limited to the relationship between the number of the stator excitation salient poles and the number of rotor permanent magnets or permanent magnet salient poles. According to the actual size of the motor and the rated power, a plurality of proportional relationship selections can be made.
  • the number of excitation salient pole pairs on the stator is N
  • the number of permanent magnets or "permanent magnet salient pole pairs" on the rotor is M
  • N is a natural number greater than or equal to 2
  • k is an even number
  • k takes a natural number
  • the ratio of M/N is not a positive integer.
  • the motor of the above-mentioned second, third, fourth and sixth embodiments of the present invention is a symmetric coupling structure of the first, fifth and seventh embodiments, so that the stator excitation salient pole pair and the rotor permanent magnet or permanent magnet salient pole pair are also followed.
  • the law of quantity is a symmetric coupling structure of the first, fifth and seventh embodiments.
  • a unipolar permanent magnet synergistic reluctance motor using a single-sided cantilever bracket and a composite excitation salient pole pair is shown in the embodiment, and its structure and shape are as shown in FIGS. 47-49.
  • the stator of the embodiment is composed of a stator base 117 and four "composite excitation salient pole pairs", and four “composite excitations”
  • the magnetic salient pole pairs are respectively disposed on the upper, lower, left and right sides, and there is a gap of 90 degree centroids between each other.
  • the "composite excitation salient pole pair” consists of a "C-shaped” laminated core 111, an exciting coil 112 and a permanent magnet.
  • the components 119, 120 are constructed. As shown in Fig. 43, the two ports of the "C-shaped laminated core" are face-to-face opposite, and the two port faces are curved.
  • the rotor of this embodiment is composed of a rotating shaft and a single-sided cantilever rotor support.
  • the single-sided cantilever rotor support is further composed of a disk 115 and a cylinder 114, as shown in Figs. 44-46, forming a "single-mouth bowl" rotor bracket.
  • the center of the disc is fixed integrally with the rotating shaft 116.
  • the disc surface is perpendicular to the rotation axis, the axis of the cylinder coincides with the axis of the rotating shaft, and one end edge of the cylinder is fixedly connected with the disc to form a single-sided cantilever structure rotor bracket.
  • the other end edge of the cylinder is fixed with six permanent magnets 113 at equal intervals, and the magnetic polarity of the permanent magnets is set as shown in Fig. 44, and there is a difference of 60 degree center angle between the radial center lines of each permanent magnet. And the magnetic polarities of the two adjacent permanent magnets are different, and the arc of the two magnetic pole faces of each permanent magnet is the same as the arc of the two-port surface of the "C-shaped" laminated core of the composite excitation salient pole pair, and is fixed when the rotating shaft rotates.
  • the permanent magnets at the end of the rotor support can sequentially pass between the ports of the respective pairs of composite excitation salient poles on the stator, and there is a gap between the two magnetic pole faces of each permanent magnet and the two port faces of the respective "C-shaped" laminated cores. The same air gap.
  • the driving mechanism of this embodiment is that when the excitation current is applied to the excitation coil of the pair of composite excitation salient poles above the stator, the upper port surface of the "C"-shaped laminated core 111 of the pair of composite excitation salient poles exhibits N-pole magnetic properties. The lower port surface exhibits S pole magnetism. At this moment, the magnetic potential of the upper and lower port faces of the "C-shaped" laminated core is the excitation flux of the excitation coil of the composite excitation salient pole and the permanent magnet assembly. Composite superposition of magnetic flux.
  • the composite excitation salient pole pair generates magnetic attraction force to the permanent magnet 113 having the outer cross-section magnetic polarity S on the rotor cantilever and the inner cross-section magnetic polarity N, and the rotational torque formed on the rotor is S, when the outer cross-section magnetic polarity is S,
  • the permanent magnet 113 having the inner side magnetic polarity N is located between the upper and lower port faces of the "C-shaped" laminated core of the pair of composite exciting salient poles, as shown in FIG. 49, the composite of the composite excitation salient pole pairs
  • the magnetic flux forms a magnetoresistance through the air gap above the permanent magnet, the permanent magnet, and the air gap under the arc of the permanent magnet. A relatively small closed magnetic circuit.
  • the motor driving device interrupts the excitation current of the composite excitation salient pole to the excitation coil, so that the composite excitation salient pole pair
  • the magnetic polarity of the upper and lower port faces of the C-shaped laminated core disappears.
  • the permanent magnet between the composite excitation salient poles and the "C-shaped" laminated core port is no longer subjected to the magnetic attraction of the composite excitation salient pole pair. To avoid the formation of negative torque.
  • the permanent magnet When the outer surface magnetic pole has a magnetic polarity of N and the inner cross section has a magnetic polarity S, the permanent magnet is transferred between the composite excitation salient pole and the "C" laminated core port, because the composite excitation salient pole is in the excitation coil The excitation current is zero, the composite excitation salient pole does not generate a repulsive force thereto, and the negative torque is also avoided.
  • the outer cross section has a magnetic polarity N and the inner cross section has a magnetic polarity S
  • the permanent magnet deviates from the composite excitation convex.
  • the motor driving device immediately inputs the exciting current to the exciting coil to the exciting coil, so that the composite exciting salient poles "C-shaped” laminated core
  • the composite excitation magnetic potential is re-formed between the ports. Since the magnetic polarity of the port on the "C"-shaped laminated core is N and the magnetic polarity of the lower port is S, the “same-sex repellent" of the permanent magnet just deviating from the aligned position is formed.
  • the magnetic repulsive force at the same time, the composite excitation salient pole pair also forms a magnetic attraction force to the rotating permanent magnets.
  • the excitation coils of the respective composite excitation salient pole pairs are also independent, so the above-mentioned action of the composite excitation salient pole pair and the permanent magnet on the rotor and The mechanism of action applies to any other composite excitation salient pole pair on the stator.
  • the motor drive device controls the on-off of the excitation coil current by the composite excitation salient poles on the stator in real time, so that each composite excitation salient pole pair is always in the work state of “before suction and push”.
  • the six permanent magnets on the rotor cantilever bracket have two composite excitation salient pole pairs and the rotor bracket for every 30 degree central angle of rotation of the rotating shaft.
  • the two permanent magnets are aligned, that is, the permanent magnets are located between the upper and lower port faces of the composite excitation salient pole pair, thereby achieving continuous rotation of the rotor, and the motor rotating shaft outputs continuous torque.
  • the motor ingeniously merges the permanent magnet energy inherent in the permanent magnet assembly into the two-port surface of the "C-shaped" laminated core of the excitation salient pole, so that the magnetic energy of the permanent magnet can also participate in the permanent magnet on the rotor. During the work process, the motor energy efficiency is further improved.
  • This embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a double-sided cantilever bracket and the stator composite excitation salient pole pair is unipolar, and its outer shape and structure are as shown in FIGS. 53-55.
  • This embodiment is a special case of the ninth embodiment, that is, the coupling of the motors of the two embodiments is given. Structure.
  • a double-sided cantilever rotor support is used, and the structure thereof is as shown in FIG. 50-52.
  • the magnetic poles of adjacent permanent magnets on the same side of the bracket and on the same rotating surface are different, and are located on both sides of the bracket and at the same central angle.
  • the two permanent magnets in position have the same magnetic polarity.
  • the eight composite excitation salient pole pairs of the motor stator are divided into two groups, and the discs in the rotor bracket are symmetric surfaces, and are located on the left and right sides of the disc, and are completely symmetrical and balanced.
  • This embodiment improves the output power of the motor and correspondingly increases the synergistic effect of the magnetic energy of the permanent magnet.
  • another type of permanent magnet synergistic reluctance motor having a double-sided cantilever bracket and a stator composite excitation salient pole pair is unipolar, and the structure and arrangement position of the composite excitation salient pole pair on the stator are the same as the embodiment.
  • Ten see Figures 54-55).
  • the difference between this embodiment and the tenth embodiment is that the arrangement rules of the permanent magnets on the double-sided cantilever bracket are different.
  • the radial centerlines of the six permanent magnets on one side of the cantilever bracket are mutually There is still a difference of sixty degrees of central angle, and the magnetic polarities of two adjacent permanent magnets are different, but the six permanent magnets at one end of the cantilever bracket are not at the same central angular position as the six permanent magnets at the other end of the cantilever bracket.
  • the ⁇ center angle is shifted from each other.
  • the radial center line of the permanent magnet 133a and the radial center line of the permanent magnet 133b are misaligned by a central angle of thirty degrees.
  • the permanent magnets at both ends of the rotor cantilever bracket are offset by thirty degrees, the permanent magnets on the rotor cantilever bracket are aligned with the composite excitation salient pole pairs on the stator for every 15 degrees of rotation of the rotating shaft 136, and the stator
  • the working process and the action mechanism of each of the composite excitation salient pole pairs and the respective permanent magnets on the rotor and the control method of the motor driving device are the same as those in the ninth embodiment, and the description thereof will not be repeated here.
  • the permanent magnets are disposed at the opposite ends of the double-sided suspension wall bracket at a 30-degree central angle, so that the commutation timing of the electric excitation current in the excitation coil of the pair of composite excitation salient poles on the left and right sides of the rotor bracket is also staggered.
  • the present embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a single-sided cantilever bracket and the stator composite excitation salient pole pair is a double-coil excited bipolar, and its outer shape and structure are as shown in FIGS. 60-62.
  • the stator of the present embodiment is composed of a stator base 150 and four "composite excitation salient pole pairs", and four “composite excitation salient pole pairs” are respectively disposed on the upper, lower, left and right sides, and there is a gap of 90 degree central angle between each other.
  • Each composite excitation salient pole pair is comprised of a "C-shaped" laminated core 141, two sets of field coils 142 and two permanent magnet assemblies 143, 144, as shown in Figures 58 and 59, which are "C-shaped"
  • the two salient poles of the laminated core are opposite each other on the face and the two port faces are curved.
  • the two sets of excitation coils are respectively wound around two parallel frames of the "C-shaped" laminated core, and the magnetic poles S and the magnetic poles N of the two permanent magnet assemblies respectively span the two sets of exciting coils, and the magnetic poles S of the two permanent magnet assemblies
  • the magnetic pole N is in close contact with the "C-shaped" laminated core stack section.
  • the rotor of this embodiment is composed of a rotating shaft and a single-sided cantilever rotor support.
  • the magnetic polarity of the permanent magnets is set as shown in Figure 44, and there are six between the radial centerlines of each permanent magnet.
  • the difference between the ten-degree central angle and the magnetic polarity of the adjacent two permanent magnets is the same, and the curvature of the two magnetic pole faces of each permanent magnet is the same as the arc of the two-port surface of the "C-shaped" laminated core of the composite excitation salient pole pair.
  • the permanent magnets fixed at the end of the rotor bracket can sequentially pass between the ports of the respective pairs of composite excitation salient poles on the stator, and the two magnetic pole faces of the permanent magnets and the "C-shaped" laminated cores of the respective permanent magnets There is an air gap between the two port faces Gap.
  • the driving mechanism of this embodiment is that when the exciting current is applied to the exciting coil L1 and the exciting coil L2 of the pair of composite exciting salient poles in turn, the upper and lower ports of the "C-shaped" laminated core of the composite exciting salient pole pair The magnetic polarity of the surface changes to form a bipolar composite excitation salient pole pair.
  • the excitation coil L1 inputs the excitation current
  • the upper port surface of the "C-shaped" laminated core of the composite excitation salient pole exhibits a composite N-pole magnetic potential
  • the lower port surface exhibits a composite S-pole magnetic potential, as shown in FIG.
  • the composite excitation salient pole pair generates a magnetic attraction force to the permanent magnet 145 having the outer cross-section magnetic polarity S on the rotor cantilever and the inner cross-section magnetic polarity N
  • the composite excitation salient pole pair can also be the cantilever of the rotor
  • the upper side magnetic pole has a magnetic polarity of N
  • the inner side magnetic pole has a magnetic polarity of S.
  • the permanent magnet generates a magnetic thrust.
  • the composite excitation salient pole acts on the mechanism of “attracting the rear permanent magnet while repelling the front permanent magnet”. The rotational moment formed by the rotor.
  • the permanent magnet having the outer cross section magnetic polarity S and the inner cross section magnetic polarity N is located between the upper and lower port faces of the "C-shaped laminated core" of the composite excitation salient pole pair, as shown in FIG.
  • the composite magnetic flux of the composite excitation salient pole pair passes through the air gap of the arc surface above the permanent magnet, the permanent magnet, and the air gap of the arc surface below the permanent magnet to form a closed magnetic circuit with relatively small magnetic reluctance, in the permanent magnet and composite
  • the excitation salient pole is aligned on the surface of the "C-shaped" laminated core, and the motor drive device interrupts the excitation current of the composite excitation salient pole to the excitation coil L1, and starts to input the excitation of the composite excitation salient pole to the excitation coil L2.
  • the current causes the magnetic excitation polarity of the composite excitation salient pole to change on the upper and lower port faces of the "C-shaped" laminated core, which is due to the inversion of the magnetic polarity of the composite excitation salient pole, so that the composite excitation salient pole pair
  • the permanent magnet is attracted by the "alignment moment", and the permanent magnet is repulsively changed to "alignment moment".
  • the reason for the negative excitation torque of the composite excitation salient pole is effectively avoided, and on the other hand, the complex Always in the field of the salient poles for power state "pushed forward after the suck" the.
  • each of the composite excitation salient pole pairs is magnetically isolated from each other, and the excitation coils of the respective composite excitation salient pole pairs are also independent. Therefore, the above-mentioned composite excitation salient pole pair acts on the permanent magnets on the rotor.
  • the process and mechanism of action apply to any other composite excitation salient pole pair on the stator.
  • the motor drive device controls the switching of the exciting coils L1 and L2 currents by the composite excitation salient poles on the stator in real time, so that each composite excitation salient pole pair is always in the working state of "before suction and push".
  • the six permanent magnets on the rotor cantilever bracket have two composite excitation salient pole pairs and two permanents for every 30 degree central angle of rotation of the rotating shaft.
  • the magnets are aligned, that is, the permanent magnets are located between the upper and lower port faces of the pair of composite excitation salient poles, so that the rotating shaft of the motor has a continuous torque output.
  • the motor of the present embodiment subtly merges the permanent magnet energy inherent to the permanent magnet assembly into the excitation convex
  • the two-port face of the "C-shaped" laminated core enables the magnetic energy of the permanent magnet to participate in the work of the permanent magnet on the rotor.
  • the excitation current is input in the L1 coil and the L2 coil. In the case of each composite excitation salient pole is always in the work state of "before the suction and push", thus extending the work time, thereby further improving the energy efficiency of the motor.
  • the present embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a double-sided cantilever bracket and the stator composite excitation salient pole pair is a double coil excitation bipolar, and its outer shape is as shown in FIG.
  • This embodiment is a special case of the twelfth embodiment, that is, the coaxial combination structure of the motors given in the two embodiments.
  • a double-sided cantilever rotor support is used, and the structure thereof is as shown in FIG. 50-52.
  • the magnetic poles of adjacent permanent magnets on the same rotating surface of the bracket have different magnetic polarities.
  • the eight composite excitation salient poles on the stator of the motor are divided into two groups, and the discs in the rotor bracket are symmetric surfaces, are located on both sides of the disc, and are completely symmetrical and balanced.
  • This embodiment improves the output power of the motor and correspondingly increases the synergistic effect of the magnetic energy of the permanent magnet.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • the present embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a single-sided cantilever bracket and the stator composite excitation salient pole pair is a single-coil excited bipolar, and its structure and shape are as shown in FIGS. 66-68.
  • the stator is composed of a stator base 160 and four "composite excitation salient pole pairs", and four “composite excitation salient pole pairs” are respectively disposed on the upper, lower, left and right sides, and there is a gap of 90 degree central angle between each other.
  • the composite excitation salient pole pair of the present embodiment is composed of a "C-shaped" laminated core 151, an exciting coil 152 and two permanent magnets 153. As shown in Fig. 64 and Fig. 65, the exciting coil 152 is wound around the laminated sheet.
  • the vertical frame between the upper and lower frames of the iron core 151, the upper and lower parallel frames of the laminated core are respectively notched, and the two permanent magnets 153 are respectively embedded in the gaps of the upper frame and the lower frame, and the gap of the upper frame is always
  • the magnetic pole N of the magnet 153 is in close contact with the laminated core in a clockwise direction, and the magnetic pole S thereof is closely attached to the laminated core in the counterclockwise direction.
  • the permanent magnetic pole N of the lower frame notch is closely attached to the stack in the clockwise direction.
  • the magnetic pole S is tight in the counterclockwise direction Adhered to the laminated core, there is a gap 154 between the sides of the two permanent magnets and the laminated core, and the two ports of the "C-shaped" laminated core are opposite to each other on the surface, and the two port faces are curved.
  • the upper port surface of the "C-shaped" laminated core When the excitation coil inputs the forward excitation current, the upper port surface of the "C-shaped" laminated core exhibits an N-pole magnetic potential, the lower port surface exhibits an S-pole magnetic potential, and at the same time, due to the electrical excitation, the permanent magnetic flux at the upper frame notch Into the magnetic potential of the upper and lower port faces of the "C-shaped" laminated core, a composite superposition of the permanent magnetic flux and the exciting magnetic flux is formed; when the exciting coil inputs the reverse excitation current, the "C-shaped" laminated core The upper port surface exhibits an S pole magnetic potential, and the lower port surface exhibits an N-pole magnetic potential.
  • the permanent magnet flux at the lower frame notch is merged into the magnetic field of the "C-shaped" laminated core and the lower port surface.
  • a composite superposition of the permanent magnetic flux and the exciting magnetic flux is formed.
  • the rotor of this embodiment is as shown in Figs. 44-46.
  • the magnetic polarity of the permanent magnet is set as shown in Fig. 44, and there is a difference of sixty degrees of central angle between the radial centerlines of each permanent magnet, and two adjacent The magnetic polarities of the permanent magnets are different, and the arc of the two magnetic pole faces of each permanent magnet is identical to the arc of the two-port surface of the "C-shaped" laminated core of the composite excitation salient pole pair, and is fixed at the end of the rotor bracket when the rotating shaft rotates.
  • the permanent magnets can sequentially pass between the ports of the respective pairs of composite excitation salient poles on the stator, and the two magnetic pole faces of the permanent magnets have the same air gap between the two port faces of the respective "C-shaped" laminated cores. .
  • the driving mechanism of this embodiment is that when the direction of the exciting current of the exciting coil of the pair of composite excitation salient poles is alternately changed, the magnetic polarity of the upper and lower port faces of the "C-shaped" laminated core of the pair of composite exciting salient poles A change occurs to form a bipolar composite excitation salient pole pair.
  • the excitation coil inputs the forward excitation current, the upper port surface of the "C-shaped" laminated core 151 of the composite excitation salient pole pair exhibits a composite N-pole magnetic potential, and the lower port surface exhibits a composite S-pole magnetic potential, as shown in the drawing.
  • the composite excitation salient pole pair generates a magnetic attraction force to a permanent magnet 155 having an outer cross-section magnetic polarity S on the rotor cantilever and an inner cross-section magnetic polarity N, and the composite excitation salient pole pair is also
  • the permanent magnet on the rotor cantilever has a magnetic polarity of N
  • the inner magnet has a magnetic polarity of S
  • the composite excitation has a magnetic thrust force under the action mechanism of “attracting the rear permanent magnet and repelling the front permanent magnet”.
  • the rotational moment formed by the rotor, when the outer section magnetic polarity is S When the permanent magnet with the magnetic polarity N of the inner section is located between the upper and lower port faces of the "C-shaped" laminated core of the pair of composite excitation salients, the composite magnetic flux of the pair of composite excitation salient poles passes through the upper surface of the permanent magnet
  • the air gap, the permanent magnet, and the air gap under the arc of the permanent magnet form a closed magnetic circuit with a relatively small magnetic reluctance, on the port surface of the "C-shaped laminated core" of the permanent magnet and the composite excitation salient pole Aligning the moment, the motor driving device changes the direction of the excitation excitation current of the composite excitation salient pole, so that the magnetic excitation polarity of the upper and lower port faces of the "C-shaped" laminated core is reversed due to the composite excitation salient pole.
  • each of the composite excitation salient pole pairs is magnetically isolated from each other, and the excitation coils of the respective composite excitation salient pole pairs are also independent. Therefore, the above-mentioned composite excitation salient pole pair acts on the permanent magnets on the rotor.
  • the process and mechanism of action apply to any other composite excitation salient pole pair on the stator.
  • the motor drive device controls the switching of the excitation coil current direction by the composite excitation salient poles on the stator in real time, so that each composite excitation salient pole pair is always in the work state of “before the suction and push”. Since there are four composite excitation salient pole pairs on the stator base of the embodiment, the six permanent magnets on the rotor cantilever bracket have two composite excitation salient pole pairs and two permanents for every 30 degree central angle of rotation of the rotating shaft. The magnets are aligned, that is, the permanent magnets are located between the upper and lower port faces of the composite excitation salient pole pair, so that the motor rotating shaft has a continuous torque output.
  • a permanent magnet synergistic reluctance motor in which the rotor is a single-sided cantilever bracket and the stator composite excitation salient pole pair is a double coil excitation unipolar.
  • the composite excitation salient pole pair in the embodiment is composed of a "C-shaped" laminated core 161, two excitation coils 162, 165 and a permanent magnet 163, as attached.
  • the vertical border of the laminated core 161 is notched, and a permanent magnet 163 is embedded in the notch of the frame, and the magnetic pole N of the permanent magnet N faces upwardly against the laminated core, and the S magnetic pole end faces downward.
  • Attached to the laminated core there is a gap 164 between the side of the permanent magnet and the laminated core, and the two exciting coils are respectively wound around the outer edges of the upper and lower frames of the "C-shaped" laminated core.
  • the two exciting coils of the composite excitation salient pole pair are in a series state. As shown in FIG. 70, the two exciting coils are wound in such a manner that the direction of the exciting magnetic flux in the electrically excited state and the permanent magnet of the permanent magnet 163. The magnetic flux direction is the same.
  • the N-pole magnetism is formed on the port surface of the "C-shaped" laminated core
  • the S-pole magnetism is formed on the lower port surface, which is also partially closed due to electrical excitation.
  • the magnetic field lines of the permanent magnets are opened, and the permanent magnet flux changes direction and merges into the field magnetic flux to form a composite excitation magnetic potential between the upper and lower port faces of the laminated core.
  • This embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a single-sided cantilever bracket and the stator composite excitation salient pole pair is unipolar, and its structure and shape are as shown in FIGS. 76-78.
  • the stator is composed of a stator base 180 and four "composite excitation salient pole pairs", and four “composite excitation salient pole pairs” are respectively disposed on the upper, lower, left and right sides, and there is a gap of 90 degree central angle between each other.
  • the composite excitation salient pole pair of the present embodiment is composed of a "U-shaped" laminated core, an exciting coil and a permanent magnet assembly, as shown in Fig. 71 and Fig.
  • the "U-shaped" laminated core The two salient pole ports face in the same direction, the excitation coil is wound around the periphery of the "U-shaped" laminated core frame, the magnetic pole S and the magnetic pole N of the permanent magnet assembly respectively span the excitation coil, and the magnetic pole S and the magnetic pole of the permanent magnet assembly N is in close contact with the "C-shaped" laminated core laminate section.
  • the rotor of this embodiment is as shown in Figs. 73-75.
  • the rotor support is in the shape of a disk.
  • the twelve permanent magnets are arranged on the one side of the magnetically permeable disk with the axis of rotation axis as the axis of symmetry.
  • Six permanent magnets are arranged at The inner ring and the six permanent magnets are disposed on the outer ring, the inner ring permanent magnets are equally spaced from each other, and the outer ring permanent magnets are equally spaced from each other. Since the disk 177 is magnetically guided, it is disposed on the same line.
  • the ring permanent magnet 176 and the outer ring permanent magnet 75 form a permanent magnet salient pole pair, the magnetic polarities of the adjacent two permanent magnet salient pole pairs are different, and the distance between each permanent magnet salient pole pair and the salient poles and the stator excitation The salient pole has the same distance between the salient poles.
  • each permanent magnet salient pole pair is composed of two permanent magnets and a magnetically conductive disc. Composition. As shown in FIG. 78, the composite excitation salient pole on the stator faces the magnetic potential between the salient poles of the "U-shaped" laminated core 171 through the air gap, The disc outer ring permanent magnet 175, the magnetic conductive disc 177, the disc inner ring permanent magnet 176, and the air gap form a closed magnetic circuit.
  • the present embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a double-sided cantilever bracket and the stator composite excitation salient pole pair is a single coil excitation unipolar, and its structure and shape are as shown in FIGS. 82-84.
  • the two sides of the rotor magnetic disk of the present embodiment are respectively provided with twelve permanent magnets, as shown in FIGS. 79-81, the twelve permanent magnets on each side are symmetrical axes of the axis of the rotating shaft, and are divided into inner ring and outer ring.
  • the ring is arranged, the inner ring permanent magnets are equally spaced from each other, and the outer ring permanent magnets are equally spaced from each other. Due to the magnetic conduction of the disk, the inner ring permanent magnet 186a and the outer ring permanent magnet are disposed on the same line.
  • 185a constitutes a permanent magnet salient pole pair
  • the magnetic polarities of two adjacent pairs of permanent magnet salient poles are different
  • the distance between each salient pole of the permanent magnet salient pole and the salient pole of the stator and the salient pole of the stator The distance is the same.
  • stator composite excitation salient pole pairs are eight or four in total, and are placed on both sides of the rotor disc, as shown in FIG. 82 and FIG.
  • This embodiment is a special case of the sixteenth embodiment, that is, the coaxial merging structure of the motor given in the sixteenth embodiment.
  • the present embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a single-sided cantilever bracket and the stator composite excitation salient pole pair is a double-coil bipolar, and its structure and shape are as shown in FIGS. 87-89.
  • the composite excitation salient pole pair structure on the stator of the present embodiment is as shown in FIG. 85 and FIG. 86.
  • the two salient pole ports of the U-shaped laminated core 191 face in the same direction, and the two sets of excitation coils 192 respectively Around the two parallel frames of the "U-shaped" laminated core, the magnetic poles S and the magnetic poles N of the two permanent magnet assemblies respectively straddle the exciting coil, and the magnetic poles S and the magnetic poles N of the two permanent magnet assemblies are closely attached to the "U" Shaped laminated core laminate section.
  • FIG. 85 The composite excitation salient pole pair structure on the stator of the present embodiment is as shown in FIG. 85 and FIG. 86.
  • the exciting coil L1 when the exciting coil L1 is supplied with the exciting current, the exciting coil L2 is not energized with the exciting current, and the permanent magnet magnetic flux line of the permanent magnet assembly that is connected across the L1 is partially or completely opened, and is excited to the excitation. In the flux loop, the permanent magnet assembly across the ends of L2 still maintains its permanent magnet closed magnetic loop.
  • the salient pole port surface and the lower salient port surface above the "U-shaped" laminated core exhibit a composite magnetic potential of a permanent magnet magnetic potential and an exciting magnetic potential.
  • the "U-shaped" laminated iron The salient pole port surface above the core appears as an S pole, and the lower salient pole port surface appears as an N pole.
  • the rotor disc and the permanent magnet of this embodiment are arranged as shown in Figs. 69-71.
  • the present embodiment provides a permanent magnet synergistic reluctance motor in which the rotor is a double-sided cantilever bracket and the stator composite excitation salient pole pair is a double coil excitation bipolar, and its outer shape and structure are as shown in FIGS. 90-92. .
  • This embodiment is a special case of the eighteenth embodiment.
  • the difference from the eighteenth embodiment is that twelve permanent magnets are disposed on each side of the rotor magnetically permeable disk, and each of the permanent magnets is provided in the same form, that is, two embodiments. Ten gives the combined structure of the motor.
  • stator composite excitation salient pole pairs are eight or four in total, and are placed on both sides of the rotor disc, as shown in FIG. 90 and FIG.
  • the number of composite excitation salient poles on the stator is only four, and the number of permanent magnets or permanent magnet salient pole pairs on the corresponding rotor bracket is six.
  • the technical solution of the present invention is not limited to this "four-six" combination structure.
  • the number of composite excitation salient pole pairs on the stator is N
  • the number of permanent magnets or "permanent magnet salient pole pairs" on the rotor is M
  • M is a natural number greater than or equal to 2
  • k is an even number
  • N is an even number
  • k takes a natural number
  • the ratio of M/N is not a positive integer.
  • the structure is simple, reliable, low price, energy saving, especially suitable for popularizing general power machinery, industrial and agricultural, commercial, living household appliances, can also improve the quality and performance of products and equipment.

Abstract

一种交流永磁开关磁阻电动机,该电动机定子座上均衡地设置若干"C形"或"U形"励磁凸极对或复合励磁凸极对,复合励磁凸极对在励磁电流激励下,其永磁磁通汇入到励磁磁通主回路中,形成复合励磁磁势,该电动机转子支架上等间距地固定若干永磁体,且在同一旋转面上相邻永磁体的磁极性相异,转动轴旋转时,转子支架上各个永磁体的两个磁极面能依次与定子上各个励磁凸极对的两个端口面正对,并形成一个具有气隙的闭合磁回路。该电动机的结构设计缩短了闭合磁路,降低了共用磁路的干扰和漏磁,提高功率密度和设备利用率,同时,复合励磁磁势可使电动机气隙中的磁感强度进一步提高,扭矩增大,使电动机在低转速时就有很高的扭矩。

Description

交流永磁开关磁阻电动机 技术领域
本发明涉及一种开关磁阻电动机,尤其是一种高功率密度的开关磁阻电动机,以及一种能将永磁磁通与励磁磁通复合利用的交流永磁增效磁阻电动机。
背景技术
电动机是一种量大、面广的产品,它的覆盖面遍及工农业、交通业、航空航天、军工国防、商业家庭等国民经济的各个领域,已成为绝大多数机械传动方式和工业现代化的重要基础。电机性能的优劣,将直接关系到国民经济效益、能耗和生态环境的保护。因此,追求一种高效、低耗、平稳可靠、易控制、而又价低的优异电机已成为世界各国电机研究机构及专家、工程技术人员为之奋斗追求的目标。虽然稀土永磁材料的出现,永磁电机在各个领域中得到飞速的发展,但是永磁能的许多潜能还未能得到充分挖掘的应用。
开关磁阻电动机是近期技术发展迅速、使用越来越广泛的一种电动机类型。传统开关磁阻电动机的概念被不断地突破,传统开关磁阻电动机的机械结构和驱动控制机理也得以不断地改进和创新。中国专利申请CN102214979A和CN102299604A中,首次公开了“独立励磁凸极对”结构,并将“独立励磁凸极对”与“转子铁芯凸极对”或“转子永磁凸极对”结合,形成了结构独特的新型电动机,开创了此类型电动机的一片崭新天地。如何在此类型电动机的定子励磁凸极对单元再增添永磁体,使永磁体固有的磁能量得到充分利用,这将成为该类型电动机的新探索和新突破。此新型电动机将原来永磁电动机所有线圈共用一个磁路的结构,改为各线圈自行独立的“励磁凸极对”单元结构,各“励磁凸极对”之间相互独立、相互磁隔离,互不干扰,各线圈可以自行独立换流控制,这样,大大的缩短了磁路,降低了共用磁路的干扰和漏磁,提高功率密度和设备利用率。此类新型电动机将日益成为开关磁阻电动机中的新宠儿和佼佼者。如何在此类新型电动机结构原理基础之上,设计并研制出适合各种类型的实用电动机,以适应不同应用场合之需要,这正是摆在电动机设计者和生产企业面前的新课题。
发明内容
本发明的目的之一是提供一种结构新颖的开关磁阻电动机,将具有“独立励磁凸极对”的定子与具有悬臂支架结构的转子相结合,压缩电动机转子的轴向尺 寸,以适应特定场合对电动机安装尺寸的要求。
本发明的目的之二是提供一种定子采用复合励磁凸极对结构的磁阻电动机,通过将永磁体及其组件与定子上的独立励磁凸极对进行组合设计,使永磁体及其组件的磁通量能汇入到定子上励磁凸极对的励磁磁通量中,共同作用于转子,形成永磁增效,使电动机产生更大的旋转力矩。
本发明的目的之三是针对定子采用复合励磁凸极对结构的磁阻电动机,提供一种激励控制方法,
为实现上述第一个发明目的,本发明的第一技术方案是:一种交流永磁开关磁阻电动机,其构成包括定子、转子,定子由若干励磁凸极对构成,若干励磁凸极对均衡地固定于定子座,励磁凸极对由叠片铁芯和励磁线圈构成,励磁凸极对相互之间彼此磁隔离,每个励磁凸极对由独立的励磁线圈激励控制,其特征在于:所述励磁凸极对由“C形”叠片铁芯、励磁线圈构成,该“C形”叠片铁芯两个凸极的端口面相对,所述转子由转动轴、转子支架、和若干永磁体构成,转子支架的中心与转动轴固定,转子支架的外沿固定有若干永磁体,永磁体等间距地设置在转子支架外沿,且在同一旋转面上相邻永磁体的磁极性相异,转动轴旋转时,固定于转子支架外沿的永磁体能依次从定子上的各个励磁凸极对的两个端口面之间通过,且各个永磁体的两个磁极面与各个励磁凸极对的端口面之间形成气隙,当永磁体分别位于各个励磁凸极对两个端口面之间时,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路。
在上述第一技术方案中,所述转子支架由圆盘和圆筒构成,圆筒一端边缘与圆盘外沿固定连接,形成一个“碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒另一端边缘处,且在同一旋转面上相邻永磁体的磁极性相异,转动轴旋转时,固定于圆筒一端边缘的全部永磁体均能从定子励磁凸极对端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙。
在上述第一技术方案中,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且在同一旋转面上相邻永磁体的磁极性相异, 所述若干励磁凸极对分为两组,分置于转子支架两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的两个端口面之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙。
在上述第一技术方案中,所述转子支架由圆盘和带折边圆筒构成,带折边圆筒中部内壁沿与圆盘外沿固定连接,形成一个“同底双向碗口内折边”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,带内折边圆筒的折边面垂直于转动轴轴线,永磁体分为两组、均衡地固定在带折边圆筒两端的折边处,且在同一旋转面上相邻永磁体的磁极性相异,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面左右相对,转动轴旋转时,固定于带折边圆筒两端折边上的全部永磁体均能从圆盘两侧所有“C形”励磁凸极对的端口面之间通过,且永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙。
在上述第一技术方案中,所述定子上励磁凸极对的数量为N,转子上永磁体或“永磁凸极对”的数量为M,N和M满足关系式M=kN,该关系式中,M为大于等于2的偶数,N为大于等于2的自然数,当N为奇数,k取偶数,当N为偶数,k取自然数,且M/N之比不是正整数。
为实现本发明的第二个发明目的,在上述第一技术方案中,所述励磁凸极对由一个“C形”叠片铁芯、一个或两个励磁线圈、一个或两个永磁体组件或永磁体构成,所述“C形”叠片铁芯的两个凸极端口面相对、励磁线圈绕于“C形”叠片铁芯外围,所述永磁体组件的两个磁极面按设定紧贴于叠片铁芯的叠层断面,所述永磁体嵌入到叠片铁芯缺口中,永磁体的两个磁极面按设定紧贴于叠片铁芯缺口的叠层断面,永磁体侧面与叠片铁芯存在间隙,励磁线圈的绕制方向使得当该励磁线圈输入激励电流时,该叠片铁芯产生的励磁磁通方向与所附着的永磁体组件或永磁体的永磁磁通方向一致,当励磁线圈输入足够强的激励电流,励磁磁通能迫使闭合的永磁磁通打开,使永磁磁通汇入到励磁磁通主回路中,在叠片铁芯端口面形成复合励磁磁势;所述转子由转动轴、转子支架和永磁体构成,转子支架中心与转动轴固定,若干永磁体均衡地固定在转子支架上,且相邻永磁体的磁极性相异,转动轴旋转时,转子支架上若干永磁体的磁端口面与定子上若 干励磁凸极对的端口面能逐个正对,正对时,励磁凸极对端口面的复合励磁磁势经空气气隙和永磁体形成最短闭合磁回路。
为实现本发明的第二个发明目的,在上述第一技术方案中,所述励磁凸极对由一个“C形”叠片铁芯、一个励磁线圈、一个永磁体组件构成,该“C形”叠片铁芯的两个凸极端口面相对,励磁线圈绕于“C形”叠片铁芯外围,永磁体组件的磁极S和磁极N分别跨过励磁线圈,且永磁体组件的磁极S和磁极N紧贴于“C形”叠片铁芯的叠层断面;
所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒一端边缘与圆盘外沿固定连接,形成一个“碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒另一端边缘处,且相邻永磁体的磁极性相异,转动轴旋转时,固定于圆筒一端边缘的全部永磁体均能从定子励磁凸极对端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
或者,转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且同一端边相邻永磁体的磁极性相异,不同端边相邻永磁体的磁极性相同,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
或者,转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且同一端边相邻永 磁体的磁极性相异,不同端边永磁相互之间存在圆心偏差角度α,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
或者,所述转子支架由圆盘和带折边圆筒构成,带折边圆筒中部内壁沿与圆盘外沿固定连接,形成一个“同底双向碗口内折边”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,带内折边圆筒的折边面垂直于转动轴轴线,永磁体分为两组、均衡地固定在带折边圆筒两端的折边处,且相邻永磁体的磁极性相异,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面左右相对,转动轴旋转时,固定于带折边圆筒两端折边上的全部永磁体均能从圆盘两侧所有“C形”励磁凸极对的端口面之间通过,且永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙。
为实现本发明的第二个发明目的,在上述第一技术方案中,所述励磁凸极对由一个“C形”叠片铁芯、一组励磁线圈和两个永磁体构成,所述叠片铁芯上、下平行边框分别开有缺口,两个永磁体分别嵌入在上边框缺口和下边框缺口中,嵌入上边框缺口的永磁体N磁极端面沿顺时针方向紧贴于叠片铁芯,其S磁极端面沿逆时针方向紧贴于叠片铁芯,同样的,嵌入下边框缺口的永磁体N磁极端面顺时针方向紧贴于叠片铁芯,其S磁极端面沿逆时针方向紧贴于叠片铁芯,两个永磁体侧面与叠片铁芯之间存在空隙,所述励磁线圈绕于叠片铁芯竖直边框;
所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒一端边缘与圆盘外沿固定连接,形成一个“碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒另一端边缘处,且相邻永磁体的磁极性相异,转动轴旋转时,固定于圆筒一端边缘的全部永磁体均能从定子励磁凸极对端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气 隙的闭合磁回路;
或者,所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且同一端边相邻永磁体的磁极性相异,不同端边相邻永磁体的磁极性相同,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路。
为实现本发明的第二个发明目的,在上述第一技术方案中,所述励磁凸极对由一个“C形”叠片铁芯、两个励磁线圈和一个永磁体构成,所述叠片铁芯竖直边框开有缺口,一个永磁体嵌入在该边框缺口中,永磁体N磁极端面向上紧贴于叠片铁芯,其S磁极端面向下紧贴于叠片铁芯,永磁体侧面与叠片铁芯之间存在空隙,两个励磁线圈分别绕于该“C形”叠片铁芯的上、下边框外围;
所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒一端边缘与圆盘外沿固定连接,形成一个“碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒另一端边缘处,且相邻永磁体的磁极性相异,转动轴旋转时,固定于圆筒一端边缘的全部永磁体均能从定子励磁凸极对端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
或者,所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且同一端边相邻永磁体的磁极性相异,不同端边相邻永磁体的磁极性相同,所述若干励磁凸 极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路。
为实现上述第一个发明目的,本发明的第二技术方案是:一种交流永磁开关磁阻电动机,其构成包括定子、转子,定子由若干励磁凸极对构成,若干励磁凸极对均衡地固定于定子座,励磁凸极对由叠片铁芯和励磁线圈构成,励磁凸极对相互之间彼此磁隔离,每个励磁凸极对由独立的励磁线圈激励控制,其特征在于:所述励磁凸极对由“U形”叠片铁芯、励磁线圈构成,该“U形”叠片铁芯的端口面朝向同一方向,所述转子由转动轴、转子支架、和若干永磁体构成,转子支架的中心与转动轴固定,所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的一个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,在同一个旋转面上相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对两个端口面与各个励磁凸极对两个端口面之间形成气隙,当转子上任何一个永磁凸极对两个端口面与定子上任何一个励磁凸极对两个端口面正对重合时,该永磁凸极对与该励磁凸极对之间即形成了一个最短磁回路。
在上述第二技术方案中,所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的两个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,在同一个旋转面上相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,所述若干“U形”励磁凸极对分为两组,分置于转子支架圆盘的两侧,转动轴旋转时,圆盘两个侧面上的各个永磁凸极对依次扫过定子 上的各个励磁凸极对,且各个永磁凸极对的端口面与各个励磁凸极对端口面之间形成气隙,当转子上任何一个永磁凸极对的两个端口面与定子上任何一个励磁凸极对两个端口面正对重合时,,该永磁凸极对与该励磁凸极对之间形成了一个最短磁回路。
在上述第二技术方案中,所述定子上励磁凸极对的数量为N,转子上永磁体或“永磁凸极对”的数量为M,N和M满足关系式M=kN,该关系式中,M为大于等于2的偶数,N为大于等于2的自然数,当N为奇数,k取偶数,当N为偶数,k取自然数,且M/N之比不是正整数。
为实现本发明的第二个发明目的,在上述第二技术方案中,所述励磁凸极对由一个“U形”叠片铁芯、一个或两个励磁线圈、一个或两个永磁体组件或永磁体构成,所述“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于或“U形”叠片铁芯外围,所述永磁体组件的两个磁极面按设定紧贴于叠片铁芯的叠层断面,所述永磁体嵌入到叠片铁芯缺口中,永磁体的两个磁极面按设定紧贴于叠片铁芯缺口的叠层断面,永磁体侧面与叠片铁芯存在间隙,励磁线圈的绕制方向使得当该励磁线圈输入激励电流时,该叠片铁芯产生的励磁磁通方向与所附着的永磁体组件或永磁体的永磁磁通方向一致,当励磁线圈输入足够强的激励电流,励磁磁通能迫使闭合的永磁磁通打开,使永磁磁通汇入到励磁磁通主回路中,在叠片铁芯端口面形成复合励磁磁势;
所述转子由转动轴、转子支架和永磁体构成,转子支架中心与转动轴固定,若干永磁体均衡地固定在转子支架上,且相邻永磁体的磁极性相异,
转动轴旋转时,转子支架上若干永磁体的磁端口面与定子上若干励磁凸极对的端口面能逐个正对,正对时,励磁凸极对端口面的复合励磁磁势经空气气隙和永磁体形成最短闭合磁回路。
为实现本发明的第二个发明目的,在上述第二技术方案中,所述励磁凸极对由一个“U形”叠片铁芯、一组励磁线圈和一个永磁体组件构成,该“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于“U形”叠片铁芯边框外围,永磁体组件的磁极S和磁极N分别按设定跨过励磁线圈,且永磁体组件的磁极S和磁极N紧贴于“U形”叠片铁芯叠层断面;
所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈 设置于导磁圆盘的一个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端面与各个励磁凸极对端口面之间形成气隙,当永磁凸极对与励磁凸极对的磁端口面相重合时,永磁凸极对与励磁凸极对之间形成一个具气隙的闭合磁回路;
或者,所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的两个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘两个侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端面与各个励磁凸极对端口面之间形成气隙。
为实现本发明的第二个发明目的,在上述第二技术方案中,所述励磁凸极对由一个“U形”叠片铁芯、两组励磁线圈和两个永磁体组件构成,该“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于“U形”叠片铁芯两条平行边框外围,两个永磁体组件的磁极S和磁极N分别按设定跨过励磁线圈,且两个永磁体组件的磁极S和磁极N紧贴于“U形”叠片铁芯叠层断面;
所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的一个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端面与各个励磁凸极对端口面之间形成气隙,当永磁凸极对与励磁凸极对的磁端口面相重合时,永磁凸极对与励磁凸极对之间形成一个具气隙的闭合磁回路;
或者,所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的两个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘两个侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端面与各个励磁凸极对端口面之间形成气隙,当永磁凸极对与励磁凸极对的磁端口面相重合时,永磁凸极对与励磁凸极对之间形成一个具气隙的闭合磁回路。
为实现本发明的第三个发明目的,提供了一种交流永磁开关磁阻电动机的激励控制方法,该交流永磁开关磁阻电动机的定子由定子座和若干复合励磁凸极对单元构成,若干复合励磁凸极对单元均衡地固定于定子座,复合励磁凸极对单元彼此之间磁隔离,每个复合励磁凸极对单元由独立励磁线圈激励控制,所述复合励磁凸极对由一个“C形”或“U形”叠片铁芯、一个或两个励磁线圈、一个或两个永磁体组件或永磁体构成,所述“C形”叠片铁芯的两个凸极端口面相对、所述“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于“C形”或“U形”叠片铁芯外围,所述永磁体组件的两极按设定紧贴于叠片铁芯的叠层断面,所述永磁体嵌入到叠片铁芯缺口中,永磁体的两极按设定紧贴于叠片铁芯的叠层断面,永磁体侧面与叠片铁芯存在间隙,励磁线圈的绕制方向使得当该励磁线圈输入电流时,该叠片铁芯产生的励磁磁通方向与所附着的永磁体组件或永磁体的永磁磁通方向一致,当励磁线圈输入足够强的激励电流,励磁磁通能迫使闭合的永磁磁通打开,使永磁磁通汇入到励磁磁通主回路中,在叠片铁芯端口面形成复合励磁磁势;所述转子由转动轴、转子支架和永磁体构成,转子支架中心与转动轴固定,若干永磁体均衡地固定在转子支架上,且相邻永磁体的磁极性相异,转动轴旋转时,转子支架上若干永磁体的磁端口面与定子上若干励磁凸极对的端口面能逐个正对,正对时,励磁凸极对端口面的复合励磁磁势经空气气隙和永磁体形成最短闭合磁回路,其特征在于:所述激励控制方法是,以方波或近似方波的单向脉冲电流或正负交变的脉冲电流激励定子上复合励磁凸极对的励磁线圈,确保每个脉冲电流在磁回路中产生的励磁磁通密度不小于永磁体组件在同 一回路中所形成的磁通密度,这样,励磁线圈激励电流所产生的励磁磁通会迫使与它并联设置的励磁铁芯中原来静态的永磁磁通改变闭合方向,与电激励励磁通叠加复合,从而在复合励磁凸极对的两个凸极端口面形成磁极性相异的复合励磁磁势,该复合励磁磁势能穿过气隙,并通过转子支架上的永磁体或永磁凸极对,形成新的闭合磁回路,这种新的闭合磁回路正是磁阻电动机转子获得转动力矩所需要的最短磁回路,电动机转子旋转时,当转子支架上的任何一个永磁体或任何一个永磁凸极对的径向中心线与定子上任何一个复合励磁凸极对的径向中心线相重合对齐时,该复合励磁凸极对的励磁线圈中原有电流方向的电流将关闭至零,此时,改变或控制已重合转子凸极对径向中心线与相邻的定子励磁绕组凸极对的径向中心线之间夹角范围内电流换向导通的角度(即改变转子凸极中心与旋转方向的下一个励磁凸极对中心线之间的换向开通的角度坐标,或是改变在重合中心线与相邻绕组励磁凸极对径向中心线之间的夹角范围内的换向导通的前后时间)即可以实现控制电动机转子与定子之间气隙内的转矩大小,以达到既可以控制电机的转速、又可以达到充分利用永磁增效节能效果。
本发明的优点是:
1、本发明巧妙地将具有“独立励磁凸极对”的定子与具有悬臂支架结构的转子进行优化设计,既保留了“独立励磁凸极对”的特质,即各组励磁线圈自行独立的激励一个“励磁凸极对”,各“励磁凸极对”之间相互独立、相互磁隔离,互不干扰,各组励磁线圈可以自行独立换流控制,这样,定子上的各个“励磁凸极对”与转子上永磁体构成环形闭合磁路,从而大大的缩短了磁路,降低了共用磁路的干扰和漏磁,提高功率密度和设备利用率。
2、本发明转子采用了独特的悬臂支架结构,该转子支架结构与定子“独立励磁凸极对”配合,一方面增加了转子受力点与转动轴的力臂,从而使转动轴获得更大的旋转力矩,另一方面提升了转子的动平衡性能,尤其是转子采用的是双悬臂支架结构。
3、本发明率先提出了“永磁增效”磁阻电动机概念,并巧妙地设计出了“永磁体”与定子“励磁凸极对”一体化结构,形成复合励磁凸极对,使得该“复合励磁凸极对”在励磁线圈的电激励作用下,永磁体固有的磁通量能汇入到励磁磁通回路中,从而实现用激励电流同时获取电励磁磁通和永磁体磁通的叠加磁通 量,该叠加磁通量可使电动机气隙中的磁感强度大大的提高,扭矩增大,使电机在低转速时就有很高的扭矩,是车用电机(电动助力车、电动汽车等)的重要指标,它可使车辆提高反应速度和可控性,节省电能,提高车辆的续航能力。
4、本发明充分利用了定子上“复合励磁凸极对”之间相互磁隔离,互不干扰,并由独立励磁线圈自行独立换流控制,这样,大大的缩短了磁路,降低了共用磁路的干扰和漏磁,提高功率密度和设备利用率。
5、本发明首创“励磁凸极对”绕组逐个扫描换流的控制方法:转子旋转过程中,转子支架上固定的永磁体对定子上各个独立“励磁凸极对”凸极逐个扫描,按设定的参数来控制“独立励磁凸极对”单元绕组随机换流,变换原有凸极的磁极性,使转子支架上的每一个永磁体始终处其相邻的定子“励磁凸极对”凸极的“前吸后推“的双重磁作用力之中,从而大大的提高了转矩,同时还获得极高的转矩平稳性。
6、本发明首创“独立励磁凸极对”独立磁链反转的换向方法:利用换向绕组磁回路处于高磁阻状态时,对绕组进行电流换向,绕组的电感量很小,因此电机的时间系数很小,大大的提高了换流的速度,为提高电机的转速和功率提供了新的方法。
7、本发明复合励磁凸极对中的叠片铁芯还采用国际最新前沿软磁材料,即纳米晶带材,以独创的无接缝结构设计和加工工艺,使高磁导率、高效率、低耗节能的新型材料应用于电机的叠片铁芯,大大提高电机的效率,从而开创了将纳米晶材料无接缝应用于电机叠片铁芯之先河。
8、本发明采用了独特的空心积木式、模块化结构设计。将传统电机的整体结构和磁路,分解为积木式、模块化的单元构件,以一次成形为主要加工手段和自动流水作业的生产工艺相结合,大幅度的提高劳动生产率,降低生产成本,节约原材料。
9、本发明所独创的转子支架、空气定子结构设计,构成内循环的冷却方式,显著提高了电机的冷却效率,解决了长期困扰的永磁体受热退磁的难题。
附图说明
图1是本发明“C形”单线圈励磁凸极对结构示意图(磁极端口面上下相对)。
图2是本发明“C形”单线圈励磁凸极对结构外观示意图。
图3是本发明单侧悬臂转子支架和永磁体结构示意图。
图4是本发明单侧悬臂转子支架和永磁体结构剖视图(图3的A-A方向剖视)。
图5是本发明单侧悬臂转子支架和永磁体结构外观示意图。
图6是本发明实施例一,单悬臂转子支架电动机结构外观示意图。
图7是本发明实施例一,单悬臂转子支架电动机结构示意图。
图8是本发明实施例一,单悬臂转子支架电动机结构剖视图(图7的B-B方向剖视)。
图9是本发明双侧悬臂转子支架和永磁体结构示意图。
图10是本发明双侧悬臂转子支架和永磁体结构剖视图(图9的C-C方向剖视)。
图11是本发明双侧悬臂转子支架和永磁体结构外观示意图。
图12是本发明实施例二,双悬臂转子支架电动机结构外观示意图。
图13是本发明实施例二,双悬臂转子支架电动机结构示意图。
图14是本发明实施例二,双悬臂转子支架电动机结构剖视图(图13的D-D方向剖视)。
图15是本发明实施例三,双侧悬臂转子支架和永磁体错位设置结构示意图。
图16是本发明实施例三,双侧悬臂转子支架和永磁体错位设置结构外观示意图。
图17是本发明双侧悬臂带折边转子支架和永磁体结构示意图。
图18是本发明双侧悬臂带折边转子支架和永磁体结构剖视图(图17的E-E方向剖视)。
图19是本发明双侧悬臂带折边转子支架和永磁体结构外观示意图。
图22是本发明实施例四,双悬臂带折边转子支架电动机结构外观示意图。
图21是本发明实施例四,双悬臂带折边转子支架电动机结构示意图。
图22是本发明实施例四,双悬臂带折边转子支架电动机结构剖视图(图21的F-F方向剖视)。
图23是本发明“U形”单线圈励磁凸极对结构示意图(磁极端口面朝向同一方向)。
图24是本发明“U形”单线圈励磁凸极对结构外观示意图。
图25是本发明实施例五,圆盘形转子支架及永磁体结构示意图(圆盘形转子支架单侧面设置永磁体)。
图26是本发明实施例五,圆盘形转子支架及永磁体结构剖视图(图25的G-G方向剖视图)。
图27是本发明实施例五,圆盘形转子支架及永磁体结构外观示意图。
图28本发明实施例五,圆盘形转子支架单侧面设置永磁体电动机结构外观
示意图。图29是本发明实施例五,圆盘形转子支架单侧面设置永磁体电动
机结构示意图。
图30是本发明实施例五,圆盘形转子支架单侧面设置永磁体电动机结构剖视图(图29的H-H剖视图。
图31是本发明实施例六,圆盘形转子支架及永磁体结构示意图。(圆盘形转子支架双侧面设置永磁体)。
图32是本发明实施例六,圆盘形转子支架及永磁体结构剖视图(图31的I-I方向剖视图)。
图33是本发明实施例六,圆盘形转子支架及永磁体外观结构示意图。
图34是本发明实施例六,“U形”单线圈励磁凸极对、圆盘形转子支架双侧面设置永磁体的电动机结构外观示意图。
图35是本发明实施例六的电动机结构示意图。
图36是本发明实施例六的电动机结构剖视图(图35的J-J方向剖视图)。
图37是本发明“U形”双线圈串联激励的励磁凸极对结构示意图(磁极端口面朝向同一方向,L1线圈正向通入激励电流)。
图38是本发明“U形”双线圈串联激励的励磁凸极对结构示意图(磁极端口面朝向同一方向,L2线圈反向通入激励电流)
图39是本发明实施例七“U形”双线圈串联激励励磁凸极对、圆盘形转子支架单侧面设置永磁体的开关磁阻电动机结构示意图。
图40是本发明实施例七电动机结构剖视图(图3941的K-K方向剖视图)。
图41是本发明实施例七的结构外观示意图。
图42是本发明单线圈激励复合励磁凸极对外观示意图(磁极端口面上下相对)。
图43是本发明单线圈激励复合励磁凸极对“C形”叠片铁芯及励磁线圈结构示意图。
图44是本发明单悬臂转子支架和永磁体结构示意图。
图45是本发明单悬臂转子支架和永磁体结构剖视图(图44的A-A方向剖视)。
图46是本发明单悬臂转子支架和永磁体结构外观示意图。
图47是本发明实施例九,单悬臂单极性永磁增效磁阻电动机结构外观示意图。
图48是本发明实施例九,单悬臂单极性永磁增效磁阻电动机结构示意图。
图49是本发明实施例九,单悬臂单极性永磁增效磁阻电动机结构剖视图(图48的B-B方向剖视)。
图50是本发明双悬臂转子支架和永磁体结构示意图。
图51是本发明双悬臂转子支架和永磁体结构剖视图(图50的C-C方向剖视)。
图52是本发明双悬臂转子支架和永磁体结构外观示意图。
图53是本发明实施例十,双悬臂转子支架单极性永磁增效磁阻电动机结构外观示意图。
图54是本发明实施例十,双悬臂转子支架单极性永磁增效磁阻电动机结构示意图。
图55是本发明实施例十,双悬臂转子支架单极性永磁增效磁阻电动机结构剖视图(图54的D-D方向剖视)。
图56是本发明实施例十一,双悬臂转子支架和永磁体错位设置结构示意图。
图57是本发明实施例十一,双悬臂转子支架和永磁体错位设置结构外观示意图。
图58是本发明双线圈双极性复合励磁凸极对结构外观示意图(磁极端口面上下相对)。
图59是本发明双线圈双极性复合励磁凸极对中,“C形”叠片铁芯及励磁线圈结构示意图。
图60是本发明实施例十二,单悬臂双极性永磁增效磁阻电动机结构示意图。
图61是本发明实施例十二,单悬臂双极性永磁增效磁阻电动机结构剖视图(图60的E-E方向剖视)。
图62是本发明实施例十二,单悬臂双极性永磁增效磁阻电动机结构外观示意图。
图63是本发明实施例十三,双悬臂双极性永磁增效磁阻电动机结构外观示意图。
图64是本发明的一种单线圈双极性的复合励磁凸极对结构外观示意图,即将两个永磁体嵌入在叠片铁芯缺口中(磁极端口面上下相对)。
图65是本发明的一种单线圈双极性的复合励磁凸极对的“C形”叠片铁芯、永磁体及励磁线圈结构示意图。
图66是本发明实施例十四,单悬臂双极性永磁增效磁阻电动机结构示意图。
图67是本发明实施例十四,单悬臂双极性永磁增效磁阻电动机结构剖视图(图66的F-F方向剖视)
图68是本发明实施例十四,单悬臂双极性永磁增效磁阻电动机外示意图。
图69是本发明的一种双线圈串联激励单极性的复合励磁凸极对结构外观示意图,即将一个永磁体嵌入在叠片铁芯缺口中(磁极端口面上下相对)
图70是本发明双线圈串联激励单极性的复合励磁凸极对中的“C形”叠片铁芯、永磁体、串联双线圈结构示意图。
图71是本发明的一种单线圈激励单极性复合励磁凸极对结构外观示意图(磁极端口面朝向同一方向)。
图72是本发明的一种单线圈激励单极性复合励磁凸极对“U形”叠片铁芯及励磁线圈结构示意图。
图73是本发明实施例十五,圆盘形转子支架及永磁体结构示意图。
图74是本发明实施例十五,圆盘形转子支架及永磁体结构剖视图(图73的G-G方向剖视图)。
图75是本发明实施例十五,圆盘形转子支架及永磁体外观结构示意图。
图76是本发明实施例十五,圆盘形转子支架单侧面设置永磁体的单极性永磁增效磁阻电动机结构外观示意图。
图77是本发明实施例十五,圆盘形转子支架单侧面设置永磁体的单极性永磁增效磁阻电动机结构示意图。
图78是本发明实施例十五,圆盘形转子支架单侧面设置永磁体的单极性永 磁增效磁阻电动机结构剖视图(图77的H-H方向剖视图)。
图79是本发明实施例十六,圆盘形转子支架及永磁体结构示意图。
图80是本发明实施例十六,圆盘形转子支架及永磁体结构剖视图(图79的I-I方向剖视图)。
图81是本发明实施例十六,圆盘形转子支架及永磁体外观示意图。
图82是本发明实施例十七,圆盘形转子支架双侧面设置永磁体的单极性永磁增效磁阻电动机外观示意图。
图83是本发明实施例十七,圆盘形转子支架双侧面设置永磁体的单极性永磁增效磁阻电动机结构示意图。
图84是本发明实施例十七,圆盘形转子支架双侧面设置永磁体的单极性永磁增效磁阻电动机结构剖视图(图83的J-J方向剖视图)。
图85是本发明双线圈激励双极性复合励磁凸极对复合励磁一种极性状态示意图(磁极端口面朝向同一方向)。
图86是本发明双线圈激励双极性励磁凸极对复合励磁另一种极性状态示意图。
图87是本发明实施例十八,圆盘形转子支架单侧面设置永磁体的双极性永磁增效磁阻电动机结构示意图。
图88是本发明实施例十八,圆盘形转子支架单侧面设置永磁体的双极性永磁增效磁阻电动机结构剖视图(图87是K-K方向剖视图)。
图89是本发明实施例十八,圆盘形转子支架单侧面设置永磁体的双极性永磁增效磁阻电动机外观结构示意图。
图90是本发明实施例十九,圆盘形转子支架双侧面设置永磁体的双极性永磁增效磁阻电动机结构外观示意图。
图91是本发明实施例十九,圆盘形转子支架双侧面设置永磁体的双极性永磁增效磁阻电动机结构示意图。
图92是本发明实施例十九,圆盘形转子支架双侧面设置永磁体的双极性永磁增效磁阻电动机结构剖视图(图91是L-L方向剖视图)。
以上附图中,11是“C形”叠片铁芯,12是励磁线圈,13是永磁体,14是圆筒,15是圆盘,16是转动轴,17是定子座,18是轴承,21a是“C形”叠片 铁芯,21b是“C形”叠片铁芯,22a是励磁线圈,22b是励磁线圈,23a是永磁体,23b是永磁体,24是圆筒,25是圆盘,26是转动轴,27是定子座,28是轴承,33a是永磁体,33b是永磁体,34是圆筒,35是圆盘,36是转动轴,41a是“C形”叠片铁芯,41b是“C形”叠片铁芯,42a是励磁线圈,42b是励磁线圈,43a是永磁体,43b是永磁体,44是带折边的圆筒,45是圆盘,46是转动轴,47是定子座,48是轴承,51是“U形”叠片铁芯,52是励磁线圈,53是永磁体,54是永磁体,55是圆盘,56是转动轴,57是定子座,58是轴承,61a是“U形”叠片铁芯,61b“U形”叠片铁芯,62a是励磁线圈,62b励磁线圈,63a是永磁体,63b是永磁体,64a是永磁体,64b是永磁体,65是圆盘,66是转动轴,67是定子座,68是轴承,71是“U形”叠片铁芯,72是励磁线圈,73是永磁体,74是永磁体,75是圆盘,76是转动轴,77是定子座,78是轴承。
以上附图中,111是“C形”叠片铁芯,112是励磁线圈,113是永磁体,114是圆筒,115是圆盘,116是转动轴,117是定子座,118是轴承,119是永磁体,120是导磁体,123a是永磁体,123b是永磁体,124是圆筒,125是圆盘,126是转动轴,127是定子座,128是轴承,129a是永磁体,129b是永磁体,130a是导磁体,130b是导磁体,133a是永磁体,133b是永磁体,134是圆筒,135是圆盘,136是转动轴,141是“C形”叠片铁芯,142是励磁线圈,143是导磁体,144是永磁体,145是永磁体,146是圆筒,147是圆盘,148是转动轴,149是励磁线圈,150是定子座,151是“C形”叠片铁芯,152是励磁线圈,153是永磁体,154是永磁体与叠片铁芯之间的空隙,155是永磁体,156是圆筒,157是圆盘,158是转动轴,159是轴承,160是定子座,161是“C形”叠片铁芯,162是励磁线圈,163是永磁体,164是永磁体与叠片铁芯之间的空隙,165是励磁线圈,171是“U形”叠片铁芯,172是励磁线圈,173是永磁体,174是导磁体,175是永磁体,176是永磁体,177是圆盘,178是转动轴,179是轴承,180是定子座,181a是“U形”叠片铁芯,181b是“U形”叠片铁芯,182a是励磁线圈,182b是励磁线圈,185a是永磁体,185b是永磁体,186a是永磁体,186b是永磁体,187是定子座,188是转动轴,191是“U形”叠片铁芯,192是励磁线圈,193是永磁体,194是导磁体,195是永磁体,196是永磁体,197是圆盘,198是转动轴,199是定子座,201a是“U形”叠片铁芯,201b是“U形叠片铁 芯,202a是励磁线圈,202b是励磁线圈,205a是永磁体,205b是永磁体,206a是永磁体,206b是永磁体,207是圆盘,208是转动轴,209是定子座。
具体实施方式
实施例一:
本实施例给出一种定子上设置“C形”单线圈励磁凸极对、转子由单侧悬臂支架构成的交流永磁开关磁阻电动机,其结构与外形如附图6-8所示。
本实施例定子由定子座17和四个“C形”励磁凸极对构成,四个“C形”励磁凸极对分别设置于上、下、左、右,相互之间存在九十角圆心角的差距。“C形”励磁凸极对”由“C形”叠片铁芯11和励磁线圈12构成,励磁线圈12绕于叠片铁芯11中部外围,如附图1所示,“C形”叠片铁芯的两个端口面上下相对,且两个端口面呈弧形面,当励磁线圈输入正向激励电流,在“C形”励磁凸极对的上端口面处立即呈现磁极性N,同时在“C形”励磁凸极对的下端口面处立即呈现磁极S,如附图2所示,当励磁线圈输入负向激励电流,在“C形”励磁凸极对的上端口面处立即呈现磁极性S,同时在“C形”励磁凸极对的下端口面处立即呈现磁极N。
本实施例的转子由转动轴16和单侧悬臂转子支架构成,单侧悬臂转子支架又由圆盘15和圆筒14构成,圆盘15中心与转动轴16固定为一体,圆盘15平面垂直于转动轴16轴线,圆筒14的轴线与转动轴轴线重合,圆筒14的一端边沿与圆盘15固定连接,形成单侧悬壁结构转子支架,圆筒14的另一端边沿等间隔的固定有六个永磁体13,而永磁体13的磁极性设置如附图3所示,每个永磁体之间有六十度圆心角的差距,且在同一旋转面上相邻两个永磁体的磁极性相异,各永磁体两磁极面的弧度与“C形”励磁凸极对的两端口面的弧度一致,转动轴16转动时,各永磁体的两个磁极端口面与各“C形”励磁凸极对的叠片铁芯11上下端口面之间存在间隙相同的空气间隙。
本实施例的作用机制及驱动控制方式是,当定子上方的“C形”励磁凸极对的励磁线圈12中通入正向激励电流,该“C形”励磁凸极对的上端口面呈现N极磁性,下端口面呈现S极磁性,该“C形”励磁凸极对即会对转子悬臂上的外侧断面磁极性为S、内侧断面磁极性为N的永磁体13产生磁吸引力,同时,该“C形”励磁凸极对还会对转子悬臂上的外侧断面磁极性为N、内侧断面磁极性 为S的永磁体产生磁推力,该“C形”励磁凸极对在这种“吸引后方永磁体的同时又排斥前方永磁体”的作用机制下,对转子形成旋转力矩,当被吸引的永磁体位于该“C形”励磁凸极对的上下端口面之间时,如附图8所示,“C形”励磁凸极对的励磁磁势经永磁体上方弧面的气隙、永磁体13、以及永磁体下方弧面的气隙,形成一个磁阻相对较小的闭合磁回路,在永磁体13与“C形”励磁凸极对的端口面上下对齐的同时,电动机驱动控制装置立即改变该“C形”励磁凸极对励磁线圈的激励电流方向,通入负向激励电流,使该“C形”励磁凸极对上下端口面的磁极性发生改变,即上端口面呈现S极磁性,下端口面呈现N极磁性,此时,该“C形”励磁凸极对又会继续重复“吸后推前”的作用过程。由于本实施例定子座上有四个“C形”励磁凸极对,转子悬臂支架上的六个永磁体,转动轴每旋转三十度圆心角,就会有两个“C形”励磁凸极对与两个永磁体对齐,即永磁体位于“C形”励磁凸极对的上下两个端口面之间,从而实现转子的连续转矩输出。
本实施例电动机的转子支架采用单侧悬臂结构,大大压缩了传统开关磁阻电动机的轴向尺寸,另外,本实施例特有的驱动控制方式,有效地消除了传统开关磁阻电动机难以克服的负扭矩,使电动机的效能得到进一步提高。
实施例二:
本实施例给出一种定子上设置“C形”单线圈励磁凸极对、转子由双侧悬臂支架构成的交流永磁开关磁阻电动机,其外形与结构如附图12-14所示。
本实施例的转子由转动轴26和双侧悬臂转子支架构成,双侧悬臂转子支架又由圆盘25和圆筒24构成,圆盘25中心与转动轴固定为一体,圆盘25面垂直于转动轴26轴线,圆筒25的轴线与转动轴26轴线重合,圆筒24二分之一位置与圆盘25固定连接,形成双侧悬壁结构转子支架,圆筒24的两端边沿分别等间隔的固定有六个永磁体,圆筒24两端的永磁体以圆盘25为对称面,即圆筒24左端边沿的永磁体23a与圆筒24右端边沿的永磁体23b以圆盘25为对称面,永磁体的磁极性设置如附图11所示,每个永磁体的径向中心线之间圆心角相差有六十度,且相邻两个永磁体的磁极性相异,各永磁体两磁极面的弧度与“C形”励磁凸极对的两端口面的弧度一致,转动轴转动时,各永磁体的两个磁极面与各“C形”励磁凸极对的两端口面之间存在间隙相同的空气间隙。
本实施例中,定子上“C形”励磁凸极对结构特点与实施例一相同。区别在于,本实施例定子“C形”励磁凸极对为八个,四个为一组,且以转子圆盘24为对称面分组对称设置,如附图13和附图14所示。转子支架两侧的“C形”励磁凸极对与转子上永磁体的相互作用机制完成相同,转子支架两侧的“C形”励磁凸极对励磁线圈中激励电流的换向时机也完全同步,其效果类似两台实施例一形式的电动机转动轴连接为一体。
由于本实施例的转子采用了双悬臂支架结构,动平衡性增强,输出力矩增加,而电动机轴向尺寸则增加有限。
实施例三:
本实施例给出另一种定子上设置“C形”单线圈励磁凸极对、转子由双侧悬臂支架构成的交流永磁开关磁阻电动机,其定子上“C形”励磁凸极对”的结构及设置位置同实施例二,可参见附图13-14。
本实施例的转子由转动轴36和双侧悬臂转子支架构成,双侧悬臂转子支架又由圆盘35和圆筒34构成,圆盘35中心与转动轴36固定为一体,圆盘面垂直于转动轴36轴线,圆筒34的轴线与转动轴36轴线重合,圆筒34二分之一位置与圆盘固定连接,形成双侧悬壁结构转子支架,圆筒34的两端边沿分别等间隔的固定有六个永磁体,六个永磁体径向中心线之间圆心角差为六十度,且相邻两个永磁体的磁极性不同,而且,圆筒34左端边沿设置的六个永磁体与圆筒右端边沿设置的六个永磁体之间错位α角三十度,如附图15和附图16所示,永磁体33a径向中心线与永磁体33b径向中心线的圆心角相差三十度。
本实施例中,双侧悬壁支架两端边沿错位三十度圆心角设置永磁体,使得位于转子支架左右两侧相对设置的“C形”励磁凸极对励磁线圈中电激励电流的换向时机也错开,这样使本实施例电动机有较小的步距角,从而进一步提升了转子旋转的平稳度。
实施例四:
本实施例给出另一种定子上设置“C形”单线圈励磁凸极对、转子由双侧悬臂支架构成的交流永磁开关磁阻电动机,其外形与结构如附图20-22所示。
本实施例中定子上的“C形”励磁凸极对结构形式同实施例一,如附图1和附图2所示。
本实施例中,八个“C形”励磁凸极对分为两组,分置于转子支架圆盘两侧,且均衡地设置在定子座上,如附图22所示,所有“C形”励磁凸极对叠片铁芯41a和“C形”励磁凸极对叠片铁芯41b的两个磁端口面横向左右相对。
本实施例中转子支架由圆盘45和带折边圆筒44构成,如附图17和附图19所示,带折边圆筒44中部内壁沿与圆盘45外沿固定连接,形成一个“同底双向碗口内折边”整体,圆盘45中心与转动轴46固定连接,圆盘45平面与转动轴46轴线垂直,带折边圆筒44轴线则与转动轴46轴线重合,带内折边圆筒44的折边面垂直于转动轴46轴线,十二个永磁体分为两组,均衡地对称地固定在带折边圆筒两端的折边处,且在同个一旋转面相邻两个永磁体的磁极性不同,如附图17所示。转动轴46旋转时,固定于带折边圆筒44两端折边上的全部永磁体均能从圆盘两侧所有“C形”励磁凸极对的端口面之间通过,且永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体43a和43b位于励磁凸极对叠片铁芯41a和41b两个端口面之间,永磁体与励磁凸极对之间形成了一个最短磁回路。
本实施例的运转机制和驱动方式同实施例二,在此不重复描述。
实施例五:
本实施例给出一种定子上设置“U形”单线圈励磁凸极对、转子支架圆盘单侧设置永磁体的开关磁阻电动机,其结构及外形如附图28-30所示。
本实施例定子由定子座和四个“U形”励磁凸极对构成,四个“U形”励磁凸极对分别设置于上、下、左、右,相互之间存在九十角圆心角的差距。每个“U形”励磁凸极对由一个“U形”叠片铁芯51、一组励磁线圈52构成,如附图23和附图24所示,该“U形”叠片铁芯51的两个凸极端口面朝向同一方向。
本实施例的转子支架为圆盘55,十二个永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘55的一个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,如附图25和附图27所示,由于圆盘55导磁,设置在同一条径线上的内圈永磁体54与外圈永磁体53组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子“C形”励磁凸极对两凸极之间的距离相同。
转动轴56旋转时,圆盘侧面上的各个永磁凸极对依次扫过定子上的各个励 磁凸极对,且各个永磁凸极对的端口面与各个励磁凸极对端口面之间形成气隙,当转子上任何一个永磁凸极对两个端口面与定子上任何一个励磁凸极对两个端口面正对重合时,该永磁凸极对与该励磁凸极对之间即形成了一个最短磁回路。
本实施例电动机运转机制及驱动控制方式同实施例一,在此不重复描述。
实施例六:
本实施例给出一种定子上设置“U形”单线圈励磁凸极对、转子支架圆盘双侧设置永磁体的开关磁阻电动机,其外观及结构剖视如附图34-36所示。
本实施例定子由定子座和八个“U形”励磁凸极对构成,如附图34和附图36所示,八个“U形”励磁凸极对分为两组,分置于转子支架圆盘的两侧,每组四个“U形”励磁凸极对分别设置于上、下、左、右,相互之间存在九十角圆心角的差距。
本实施例转子支架为圆盘65,二十四个永磁体以转动轴66轴线为对称轴,分内圈和外圈设置于导磁圆盘65的两个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘65导磁,设置在同一条径线上的内圈永磁体64a与外圈永磁体63a组成一个永磁凸极对,这样在导磁圆盘65一个侧面形成六个永磁凸极对,且相邻两个永磁凸极对的磁极性相异,如附图31所示。每个永磁凸极对两凸极之间的距离与定子励磁凸极对叠片铁芯的两凸极之间的距离相同。
转动轴旋转时,圆盘65两个侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端口面与各个励磁凸极对端口面之间形成气隙,当转子上任何一个永磁凸极对两个端口面与定子上任何一个励磁凸极对两个端口面正对重合时,该永磁凸极对与该励磁凸极对之间即形成了一个最短磁回路。
本实施例转子支架圆盘两侧的“U形”励磁凸极对与圆盘两侧面上的永磁凸极对的相互作用机制和作用时机完成相同,转子支架圆盘两侧的“U形”励磁凸极对励磁线圈中激励电流的换向时机也完全同步,其效果类似两台实施例五形式的电动机转动轴连接为一体,动平衡性增强,输出力矩增加,而电动机轴向尺寸则增加有限。
本实施例还可以将转子支架圆盘65两侧的永磁凸极对径向中心线相互错开 三十度圆心角设置,即转子支架圆盘左侧六个永磁凸极对的径向中心线与转子支架圆盘右侧六个永磁凸极对的径向中心线之间有三十度圆心角错位,使本实施例电动机有较小的步距角,从而进一步提升了转子旋转的平稳性。
本实施例电动机运转机制及驱动控制方式同实施例一,在此不重复描述。
实施例七:
本实施例给出一种定子上设置“U形”双线圈励磁凸极对、转子支架圆盘单侧设置永磁体的开关磁阻电动机,其结构及外形如附图39-41所示。
本实施例定子由定子座和四个“U形”励磁凸极对构成,四个“U形”励磁凸极对分别设置于上、下、左、右,相互之间存在九十角圆心角的差距。如附图37和附图38所示,每个“U形”励磁凸极对由一个“U形”叠片铁芯71、两组励磁线圈72构成,励磁线圈L1和L2分别绕制于“U形”叠片铁芯的上边框和下边框,励磁线圈L1和L2串联,该“U形”叠片铁芯两个凸极的端口面朝向同一方向。当励磁线圈L1和L2通入正向激励电流,“U形”励磁凸极对的上方凸极端口面呈现S磁极性,下方凸极端口面呈现N磁极性,如附图37所示。当励磁线圈L1和L2通入反向激励电流,“U形”励磁凸极对的上方凸极端口面呈现N磁极性,下方凸极端口面呈现S磁极性,如附图38所示。这样就可以在“U形”励磁凸极对的两个凸极端口面形成磁极性也交替变化磁势。
本实施例的转子支架为圆盘75,十二个永磁体以转动轴76轴线为对称轴,分内圈和外圈设置于导磁圆盘75的一个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体74与外圈永磁体73组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,如同附图25和附图27所示,每个永磁凸极对两凸极之间的距离与定子“U形”励磁凸极对两凸极之间的距离相同。
转动轴76旋转时,圆盘75侧面上的各个永磁凸极对依次扫过定子上的各个“U形”励磁凸极对,且各个永磁凸极对的端口面与各个励磁凸极对端口面之间形成气隙,当转子上任何一个永磁凸极对两个端口面与定子上任何一个励磁凸极对两个端口面正对重合时,该永磁凸极对与该励磁凸极对之间即形成了一个最短磁回路。
本实施例与实施例一相比较,本实施例励磁凸极对叠片铁芯形状为“U形”、 其两个端口面朝向同一方向,另一个区别在于,本实施例则是分别向串联的励磁线圈L1和L2中通入不同方向激励电流来改变励磁凸极对端口面的磁极性,而实施例一是通过改变同一个励磁线圈激励电流方向来改变励磁凸极对端口面的磁极性。
本实施例电动机运转机制及驱动控制方式类似于实施例一,故在此不重复描述。
实施例八:
本实施例给出一种定子上设置“U形”双线圈励磁凸极对、转子支架圆盘双侧设置永磁体的开关磁阻电动机。
本实施例的结构类似实施例六,区别在于,定子上设置的是“U形”双线圈励磁凸极对。
本实施例定子上设置的“U形”双线圈励磁凸极对的磁极性变化是通过交替向线圈L1和L2中通入激励电流来实现的,如附图37和附图38所示。
本实施例电动机运转机制及驱动控制方式类似于实施例一,故在此不重复描述。
为了描述方式,本发明上述实施例一、五、七所给出电动机中,定子上的励磁凸极对个数为四个,转子上永磁体或永磁凸极对个数为六个,但本发明技术方案并不限于此定子励磁凸极对个数与转子永磁体或永磁凸极个数之例关系,根据电动机实际尺寸和额定功率的要求,可以做出多种比例关系的选择。设定:定子上励磁凸极对的数量为N,转子上永磁体或“永磁凸极对”的数量为M,N和M满足关系式M=kN,该关系式中,M为大于等于2的偶数,N为大于等于2的自然数,当N为奇数,k取偶数,当N为偶数,k取自然数,且M/N之比不是正整数。本发明上述实施例二、三、四、六所给出电动机是实施例一、五、七的对称连轴结构,故也遵从上述定子励磁凸极对与转子永磁体或永磁凸极对的数量规律。
实施例九:
本实施例给出一种转子采用单侧悬臂支架、定子采用复合励磁凸极对的单极性永磁增效磁阻电动机,其结构及外形如附图47-49所示。
本实施例定子由定子座117和四个“复合励磁凸极对”构成,四个“复合励 磁凸极对”分别设置于上下左右,相互之间存在九十度圆心角的差距。“复合励磁凸极对”由一个“C形”叠片铁芯111、一个励磁线圈112和一个永磁体组件119、120构成,如附图43所示,“C形叠片铁芯”的两个端口面上下相对,且两个端口面呈弧形面。当励磁线圈输入激励电流为零,在“C形”叠片铁芯的上、下端口面处均不呈现磁极性,而永磁体组件的两磁极经“C形”叠片铁芯的部分段形成闭合永磁磁通,当励磁线圈输入激励电流,会在“C形”叠片铁芯的上端口面处立即呈现磁极性N,同时在“C形”叠片铁芯的下端口面处立即呈现磁极S,如附图42所示。与此同时,由于激励电流的作用,永磁体组件原来静态闭合的磁力线被打开,此时,在“C形”叠片铁芯的上、下端口面处形成了永磁励磁和线圈励磁的复合励磁效果。
本实施例的转子由转动轴和单侧悬臂转子支架构成,单侧悬臂转子支架又由圆盘115和圆筒114构成,如附图44-46所示,形成一个“单口碗形”转子支架,圆盘中心与转动轴116固定为一体,圆盘面垂直于转动轴线,圆筒的轴线与转动轴轴线重合,圆筒的一端边沿与圆盘固定连接,形成单侧悬壁结构转子支架,圆筒的另一端边沿等间隔的固定有六个永磁体113,而永磁体的磁极性设置如附图44所示,每个永磁体径向中心线之间有六十度圆心角的差距,且相邻两个永磁体的磁极性不同,各永磁体两磁极面的弧度与复合励磁凸极对的“C形”叠片铁芯的两端口面的弧度一致,转动轴转动时,固定于转子支架末端的永磁体能依次从定子上的各个复合励磁凸极对的端口之间通过,各永磁体的两个磁极面与各“C形”叠片铁芯的两端口面之间存在间隙相同的空气间隙。
本实施例的驱动机制是,当定子上方复合励磁凸极对的励磁线圈中通入激励电流,该复合励磁凸极对的“C”形叠片铁芯111的上端口面呈现N极磁性,下端口面呈现S极磁性,此刻,“C形”叠片铁芯的上、下端口面所呈现的磁势则是该复合励磁凸极对中励磁线圈的励磁磁通与永磁体组件的永磁磁通的复合叠加。该复合励磁凸极对即会对转子悬臂上的外侧断面磁极性为S、内侧断面磁极性为N的永磁体113产生磁吸引力,对转子形成的旋转力矩,当外侧断面磁极性为S、内侧断面磁极性为N的永磁体113位于该复合励磁凸极对的“C形”叠片铁芯上、下端口面之间时,如附图49所示,该复合励磁凸极对的复合磁通量经该永磁体上方弧面的气隙、永磁体、以及永磁体下方弧面的气隙,形成一个磁阻 相对较小的闭合磁回路。在永磁体与复合励磁凸极对“C形”叠片铁芯的端口面上下对齐的同时,电动机驱动装置即中断该复合励磁凸极对励磁线圈的激励电流,使该复合励磁凸极对“C形”叠片铁芯上下端口面的磁极性消失,此刻,位于该复合励磁凸极对“C形”叠片铁芯端口之间永磁体不再受到该复合励磁凸极对的磁吸引力,从而避免负扭矩的形成。当外侧断面磁极性为N、内侧断面磁极性为S的永磁体转至该复合励磁凸极对“C形”叠片铁芯端口之间,由于此时段该复合励磁凸极对励磁线圈中的激励电流为零,该复合励磁凸极对不会对其产生排斥力,也避免了负扭矩的产生,一旦该外侧断面磁极性为N、内侧断面磁极性为S的永磁体偏离该复合励磁凸极对“C形”叠片铁芯端口之间上下对齐位置,电动机驱动装置即刻再次向该复合励磁凸极对励磁线圈输入激励电流,使该复合励磁凸极对“C形”叠片铁芯端口之间重新形成复合励磁磁势,由于“C”形叠片铁芯上端口磁极性为N、下端口磁极性为S,则会对刚刚偏离对齐位置的永磁体形成“同性相斥”的磁排斥力,同时,该复合励磁凸极对还会对旋转而来的永磁体形成“异性相吸”的磁吸引力。由于本实施例中各个复合励磁凸极对相互之间是磁隔离的,各个复合励磁凸极对的励磁线圈也是独立的,所以,上述的复合励磁凸极对与转子上永磁体的作用过程和作用机制适用于定子上其它任何一个复合励磁凸极对。电动机驱动装置实时控制定子上各复合励磁凸极对励磁线圈电流的通断,就能使每个复合励磁凸极对始终处于“吸后推前”的作功状态。由于本实施例定子座上有四个复合励磁凸极对,转子悬臂支架上的六个永磁体,转动轴每旋转三十度圆心角,就会有两个复合励磁凸极对与转子支架上的两个永磁体对齐,即永磁体位于复合励磁凸极对的上下两个端口面之间,从而实现转子的连续旋转,电动机转动轴输出连续转矩。
本实施例电动机将永磁体组件固有的永磁能量巧妙地汇入到励磁凸极对“C形”叠片铁芯的两端口面,使永磁体的磁能量也能参与到对转子上永磁体的作功过程中,从而进一步提升了电动机能效。
实施例十:
本实施例给出一种转子是双侧悬臂支架、定子复合励磁凸极对为单极性的永磁增效磁阻电动机,其外形及结构如附图53-55所示。
本实施例是实施例九的特例,即将两个实施例九所给出电动机的连轴合并结 构。
本实施例采用了双侧悬臂转子支架,其结构如附图50-52所示,位于支架同一侧、同一旋转面上相邻永磁体的磁极性相异,而位于支架两侧、同一圆心角位置的两个永磁体的磁极性相同。
本实施例电动机定子的八个复合励磁凸极对分为两组,以转子支架中的圆盘为对称面,位于圆盘左右两侧,并完全对称且平衡。
本实施例中,定子上各个复合励磁凸极对与转子上各个永磁体之间的作用过程和作用机制以及电动机驱动装置的控制方法与实施例九相同,在此不重复描述。
本实施例提高了电动机的输出功率,相应地也增加了永磁体磁能量的增效效果。
实施例十一:
本实施例给出另一种转子是双侧悬臂支架、定子复合励磁凸极对为单极性的永磁增效磁阻电动机,其定子上复合励磁凸极对的结构及设置位置同实施例十(可参见附图54-55所示)。
本实施例与实施例十的区别在于双侧悬臂支架上永磁体的设置规律不同,如附图56和附图57所示,位于悬臂支架一侧的六个永磁体径向中心线相互之间仍然存在六十度圆心角的差,且相邻两个永磁体的磁极性不同,但位于悬臂支架一端的六个永磁体与位于悬臂支架另一端的六个永磁体不在相同的圆心角位置,相互错开α圆心角度,如附图57中,永磁体133a的径向中心线与永磁体133b的径向中心线之间错位三十度圆心角。
本实施例中,由于转子悬臂支架两端的永磁体错位三十度设置,使得转动轴136每转动十五度,转子悬臂支架上的永磁体就会与定子上复合励磁凸极对对齐,而定子上各个复合励磁凸极对与转子上各个永磁体之间的作用过程和作用机制以及电动机驱动装置的控制方法与实施例九相同,在此不重复描述。
本实施例中,双侧悬壁支架两端边沿错位三十度圆心角设置永磁体,使得位于转子支架左右两侧的复合励磁凸极对的励磁线圈中电激励电流的换向时机也错开,这样使本实施例电动机有较小的步距角,从而进一步提升了转子旋转的平稳性。
实施例十二:
本实施例给出一种转子是单侧悬臂支架、定子复合励磁凸极对为双线圈激励双极性的永磁增效磁阻电动机,其外形及结构如附图60-62所示。
本实施例定子由定子座150和四个“复合励磁凸极对”构成,四个“复合励磁凸极对”分别设置于上下左右,相互之间存在九十度圆心角的差距。每个复合励磁凸极对由一个“C形”叠片铁芯141、两组励磁线圈142和两个永磁体组件143、144构成,如附图58和附图59所示,该“C形”叠片铁芯的两个凸极端口面上下相对,且两个端口面呈弧形面。两组励磁线圈分别绕于“C形”叠片铁芯两条平行边框外围,两个永磁体组件的磁极S和磁极N分别跨过两组励磁线圈,且两个永磁体组件的磁极S和磁极N紧贴于“C形”叠片铁芯叠层断面。
当励磁线圈L1和L2输入激励电流均为零,在“C形”叠片铁芯的上、下端口面处均不呈现磁势,而上、下永磁体组件的两磁极经“C形”叠片铁芯的部分段形成闭合永磁磁通。
当励磁线圈L1输入激励电流,励磁线圈L2激励电流为零时,会在“C形”叠片铁芯内形成磁势,并在“C形”叠片铁芯的上端口面处立即呈现磁极性N,同时在其下端口面处立即呈现磁极S,与此同时,由于激励电流的作用,上方永磁体组件原来静态闭合的磁力线被打开,此时,在“C形”叠片铁芯的上、下端口面处形成了上方永磁体的永磁磁通和L1励磁线圈激励磁通的复合励磁效果。
当励磁线圈L2输入激励电流,励磁线圈L1激励电流为零时,会在“C形”叠片铁芯的上端口面处立即呈现磁极性S,同时在“C形”叠片铁芯的下端口面处立即呈现磁极N,与此同时,由于激励电流的作用,下方永磁体组件原来静态闭合的磁力线被打开,此时,在“C形”叠片铁芯的上、下端口面处形成了下方永磁体的永磁磁通和L2励磁线圈激励磁通的复合励磁效果。
本实施例的转子由转动轴和单侧悬臂转子支架构成,如附图44-46所示,永磁体的磁极性设置如附图44所示,每个永磁体径向中心线之间有六十度圆心角的差距,且相邻两个永磁体的磁极性不同,各永磁体两磁极面的弧度与复合励磁凸极对的“C形”叠片铁芯的两端口面的弧度一致。转动轴转动时,固定于转子支架末端的永磁体能依次从定子上的各个复合励磁凸极对的端口之间通过,各永磁体的两个磁极面与各“C形”叠片铁芯的两端口面之间存在间隙相同的空气间 隙。
本实施例的驱动机制是,当轮流地向复合励磁凸极对的励磁线圈L1和励磁线圈L2通入激励电流,该复合励磁凸极对的“C形”叠片铁芯的上、下端口面的磁极性会发生改变,从而形成双极性的复合励磁凸极对。当励磁线圈L1输入激励电流,复合励磁凸极对的“C形”叠片铁芯的上端口面呈现复合的N极磁势,下端口面呈现复合的S极磁势,如附图61所示,该复合励磁凸极对即会对转子悬臂上的外侧断面磁极性为S、内侧断面磁极性为N的永磁体145产生磁吸引力,同时,该复合励磁凸极对还会对转子悬臂上的外侧断面磁极性为N、内侧断面磁极性为S的永磁体产生磁推力,该复合励磁凸极对在这种“吸引后方永磁体的同时又排斥前方永磁体”的作用机制下,对转子形成的旋转力矩。当外侧断面磁极性为S、内侧断面磁极性为N的永磁体位于该复合励磁凸极对的“C形叠片铁芯”上、下端口面之间时,如附图61所示,该复合励磁凸极对的复合磁通经该永磁体上方弧面的气隙、永磁体、以及永磁体下方弧面的气隙,形成一个磁阻相对较小的闭合磁回路,在永磁体与复合励磁凸极对“C形”叠片铁芯的端口面上下对齐瞬时,电动机驱动装置中断对该复合励磁凸极对励磁线圈L1的激励电流,开始对该复合励磁凸极对励磁线圈L2输入激励电流,使该复合励磁凸极对“C形”叠片铁芯上、下端口面的磁极性翻转改变,正是由于该复合励磁凸极对磁极性的翻转改变,使得该复合励磁凸极对由“对齐瞬时”之前吸引该永磁体,迅速改变为“对齐瞬时”之后排斥该永磁体,一方面,有效地避免了该复合励磁凸极对产生负扭矩的原因,另一方面,使该复合励磁凸极对始终处在“吸后推前”的作功状态。由于,本实施例中各个复合励磁凸极对相互之间是磁隔离的,各个复合励磁凸极对的励磁线圈也是独立的,所以,以上论述的复合励磁凸极对与转子上永磁体的作用过程和作用机制适用于定子上其它任何一个复合励磁凸极对。电动机驱动装置实时控制定子上各复合励磁凸极对励磁线圈L1和L2电流的切换,就能使每个复合励磁凸极对始终处于“吸后推前”的作功状态。由于本实施例定子座上有四个复合励磁凸极对,转子悬臂支架上的六个永磁体,转动轴每旋转三十度圆心角,就会有两个复合励磁凸极对与两个永磁体对齐,即永磁体位于复合励磁凸极对的上下两个端口面之间,从而实现电动机的转动轴有连续转矩输出。
本实施例电动机一方面将永磁体组件固有的永磁能量巧妙地汇入到励磁凸 极对“C形”叠片铁芯的两端口面,使永磁体的磁能量也能参与到对转子上永磁体的作功过程中,另一方面,在L1线圈和L2线圈轮流输入激励电流的情况下,每个复合励磁凸极对始终处在“吸后推前”的作功状态,因而延长了作功时间,从而进一步提升了电动机能效。
实施例十三:
本实施例给出一种转子是双侧悬臂支架、定子复合励磁凸极对为双线圈激励双极性的永磁增效磁阻电动机,其外形如附图63所示。
本实施例是实施例十二的特例,即将两个实施例十二所给出电动机的连轴合并结构。
本实施例采用了双侧悬臂转子支架,其结构如附图50-52所示,支架上同一旋转面上相邻永磁体磁极性相异。
本实施例电动机定子上八个复合励磁凸极对分为两组,以转子支架中的圆盘为对称面,位于圆盘两侧,并完全对称且平衡。
本实施例中,定子上各个复合励磁凸极对与转子上各个永磁体之间的作用过程和作用机制以及电动机驱动装置的控制方法与实施例十二相同,在此不重复描述。
本实施例提高了电动机的输出功率,相应地也增加了永磁体磁能量的增效效果。
实施例十四:
本实施例给出一种转子是单侧悬臂支架、定子复合励磁凸极对为单线圈激励双极性的永磁增效磁阻电动机,其结构和外形如附图66-68所示。
本实施例定子由定子座160和四个“复合励磁凸极对”构成,四个“复合励磁凸极对”分别设置于上下左右,相互之间存在九十度圆心角的差距。本实施例复合励磁凸极对由一个“C形”叠片铁芯151、一个励磁线圈152和两个永磁体153构成,如附图64和附图65所示,励磁线圈152绕于叠片铁芯151上、下边框之间的竖直边框,叠片铁芯上、下平行边框分别开有缺口,两个永磁体153分别嵌入在上边框缺口和下边框缺口中,上边框缺口处永磁体153磁极N沿顺时针方向紧贴于叠片铁芯,其磁极S沿逆时针方向紧贴于叠片铁芯,同样的,下边框缺口处永磁体磁极N沿顺时针方向紧贴于叠片铁芯,其磁极S沿逆时针方向紧 贴于叠片铁芯,两个永磁体侧面与叠片铁芯之间存在空隙154,“C形”叠片铁芯的两个端口面上下相对,且两个端口面呈弧形面。
当励磁线圈没有激励电流输入时,由于“C形”叠片铁芯上边框缺口处永磁体153与下边框缺口处永磁体是同极性相对,因此,“C形”叠片铁芯的两端口面没有磁势形成,而仅在上方永磁体与叠片铁芯之间形成闭合永磁磁通,同理,在下方永磁体与叠片铁芯之间也形成永磁磁通。
当励磁线圈输入正向激励电流,“C形”叠片铁芯的上端口面呈现N极磁势,下端口面呈现S极磁势,同时由于电激励,上边框缺口处永磁体磁通汇入到“C形”叠片铁芯上、下端口面的磁势中,形成永磁磁通与励磁磁通的复合叠加;当励磁线圈输入反向激励电流,“C形”叠片铁芯的上端口面呈现S极磁势,下端口面呈现N极磁势,同时由于电激励,下边框缺口处永磁体磁通汇入到“C形”叠片铁芯上、下端口面的磁势中,形成永磁磁通与励磁磁通的复合叠加。变换励磁线圈激励电流的方向,就可以在“C形”叠片铁芯的上、下端口面获得磁极性变换的复合励磁磁能势。
本实施例的转子如附图44-46所示,永磁体的磁极性设置如附图44所示,每个永磁体径向中心线之间有六十度圆心角的差,且相邻两个永磁体的磁极性不同,各永磁体两磁极面的弧度与复合励磁凸极对的“C形”叠片铁芯的两端口面的弧度一致,转动轴转动时,固定于转子支架末端的永磁体能依次从定子上的各个复合励磁凸极对的端口之间通过,各永磁体的两个磁极面与各“C形”叠片铁芯的两端口面之间存在间隙相同的空气间隙。
本实施例的驱动机制是,当轮流地变换复合励磁凸极对的励磁线圈激励电流的方向,该复合励磁凸极对的“C形”叠片铁芯的上、下端口面的磁极性会发生改变,从而形成双极性的复合励磁凸极对。当励磁线圈输入正向激励电流,复合励磁凸极对的“C形”叠片铁芯151的上端口面呈现复合的N极磁势,下端口面呈现复合的S极磁势,如附图67所示,该复合励磁凸极对即会对转子悬臂上的外侧断面磁极性为S、内侧断面磁极性为N的永磁体155产生磁吸引力,同时,该复合励磁凸极对还会对转子悬臂上的外侧断面磁极性为N、内侧断面磁极性为S的永磁体产生磁推力,该复合励磁凸极对在这种“吸引后方永磁体的同时又排斥前方永磁体”的作用机制下,对转子形成的旋转力矩,当外侧断面磁极性为S、 内侧断面磁极性为N的永磁体位于该复合励磁凸极对的“C形”叠片铁芯上、下端口面之间时,该复合励磁凸极对的复合磁通量经该永磁体上方弧面的气隙、永磁体、以及永磁体下方弧面的气隙,形成一个磁阻相对较小的闭合磁回路,在永磁体与复合励磁凸极对“C形叠片铁芯”的端口面上下对齐瞬时,电动机驱动装置变换该复合励磁凸极对励磁线圈激励电流的方向,使该复合励磁凸极对“C形”叠片铁芯上、下端口面的磁极性翻转改变,正是由于该复合励磁凸极对磁极性的翻转改变,使得该复合励磁凸极对由“对齐瞬时”之前吸引该永磁体,迅速改变为“对齐瞬时”之后排斥该永磁体,一方面,有效地避免了该复合励磁凸极对产生负扭矩,另一方面,使该复合励磁凸极对始终处在“吸后斥前”的作功状态。由于,本实施例中各个复合励磁凸极对相互之间是磁隔离的,各个复合励磁凸极对的励磁线圈也是独立的,所以,以上论述的复合励磁凸极对与转子上永磁体的作用过程和作用机制适用于定子上其它任何一个复合励磁凸极对。电动机驱动装置实时控制定子上各复合励磁凸极对励磁线圈电流方向的切换,就能使每个复合励磁凸极对始终处于“吸后推前”的作功状态。由于本实施例定子座上有四个复合励磁凸极对,转子悬臂支架上的六个永磁体,转动轴每旋转三十度圆心角,就会有两个复合励磁凸极对与两个永磁体对齐,即永磁体位于复合励磁凸极对的上下两个端口面之间,从而实现电动机转动轴有连续转矩输出。
实施例十五:
本实施例给出了一种转子是单侧悬臂支架、定子复合励磁凸极对为双线圈激励单极性的永磁增效磁阻电动机。
本实施例电动机的结构与外形类似于实施例十四,可参见附图67和附图68。
本实施例与实施例十四的区别在于,本实施例中的复合励磁凸极对由一个“C形”叠片铁芯161、两个励磁线圈162、165和一个永磁体163构成,如附图69所示,叠片铁芯161竖直边框开有缺口,一个永磁体163嵌入在该边框缺口中,永磁体N磁极端面向上紧贴于叠片铁芯,其S磁极端面向下紧贴于叠片铁芯,永磁体侧面与叠片铁芯之间存在空隙164,两个励磁线圈分别绕于该“C形”叠片铁芯的上、下边框外围。
本实施例复合励磁凸极对的两个励磁线圈呈串联状态,如附图70所示,两个励磁线圈的绕制方式使得电激励状态下励磁磁通的方向与永磁体163的永磁 磁通方向一致。
当向两个串联的励磁线圈输入激励电流时,即在“C形”叠片铁芯上端口面形成N极磁性,同时在下端口面形成S极磁性,同样是由于电激励,使原来局部闭合永磁体的磁力线被打开,永磁磁通改变方向,汇入到励磁磁通中,在叠片铁芯的上、下端口面之间形成复合励磁磁势。
本实施例中,定子上各个复合励磁凸极对与转子上各个永磁体之间的作用过程和作用机制以及电动机驱动装置的控制方法与实施例九相同,在此不重复描述。
实施例十六:
本实施例给出一种转子是单侧悬臂支架、定子复合励磁凸极对为单极性的永磁增效磁阻电动机,其结构和外形如附图76-78所示。
本实施例定子由定子座180和四个“复合励磁凸极对”构成,四个“复合励磁凸极对”分别设置于上下左右,相互之间存在九十度圆心角的差距。本实施例的复合励磁凸极对由一个“U形”叠片铁芯、一个励磁线圈和一个永磁体组件构成,如附图71和附图72所示,该“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于“U形”叠片铁芯边框外围,永磁体组件的磁极S和磁极N分别跨过励磁线圈,且永磁体组件的磁极S和磁极N紧贴于“C形”叠片铁芯叠层断面。
本实施例的转子如附图73-75所示,转子支架为圆盘形,十二个永磁体以转动轴轴线为对称轴,设置于导磁圆盘的一个侧面,六个永磁体设置在内圈、六个永磁体设置在外圈,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘177导磁,设置在同一条径线上的内圈永磁体176与外圈永磁体75组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且圆盘侧面上的各个永磁凸极对的端面与各个励磁凸极对端口面之间形成气隙。
本实施例与实施例九的主要区别在于,将实施例九转子支架上的永磁体改为“永磁凸极对”,每个永磁凸极对是由两个永磁体和导磁圆盘构成。如附图78所示,定子上的复合励磁凸极对“U形”叠片铁芯171两凸极间的磁势经过气隙、 圆盘外圈永磁体175、导磁圆盘177、圆盘内圈永磁体176、气隙形成一条闭合的磁回路。
本实施例的运转机制及驱动控制方法同实施例九,在此不重复描述。
实施例十七:
本实施例给出一种转子是双侧悬臂支架、定子复合励磁凸极对为单线圈激励单极性的永磁增效磁阻电动机,其结构和外形如附图82-84所示。
本实施例转子导磁圆盘的两个侧面各设置有十二个永磁体,如附图79-81所示,每侧十二个永磁体以转动轴轴线为对称轴,分内圈和外圈设置,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体186a与外圈永磁体185a组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子复合励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘两个侧面上的各个永磁凸极对依次扫过定子上的各个复合励磁凸极对,且各个永磁凸极对的端面与各个复合励磁凸极对端口面之间形成气隙。
本实施例定子复合励磁凸极对共计有八个,四个一组,分置于转子圆盘的两侧,如附图82和附图84所示。
本实施例是实施例十六的特例,即将两个实施例十六所给出电动机的连轴合并结构。
本实施例的运转机制和驱动控制方式同实施例九,在此不重复描述。
实施例十八:
本实施例给出一种转子是单侧悬臂支架、定子复合励磁凸极对为双线圈双极性的永磁增效磁阻电动机,其结构和外形如附图87-89所示。
本实施例定子上的复合励磁凸极对结构如附图85和附图86所示,该“U形”叠片铁芯191的两个凸极端口面朝向同一方向,两组励磁线圈192分别绕于“U形”叠片铁芯两条平行边框外围,两个永磁体组件的磁极S和磁极N分别跨过励磁线圈,且两个永磁体组件的磁极S和磁极N紧贴于“U形”叠片铁芯叠层断面。如附图85所示,当励磁线圈L1通入激励电流,励磁线圈L2没通入激励电流,跨接于L1两端的永磁体组件原来闭合的永磁体磁力线被部分或全部打开,汇入到励磁磁通回路中,而跨接L2两端的永磁体组件则仍然保持其永磁闭合磁回路,此 刻,在该“U形”叠片铁芯上方凸极端口面和下方凸极端口面所呈现的是永磁磁势与励磁磁势的复合磁势,此时,“U形”叠片铁芯上方凸极端口面呈现为S极、下方凸极端口面呈现为N极。同理,如附图86所示,当励磁线圈L2通入激励电流,励磁线圈L1没通入激励电流,“U形”叠片铁芯上方凸极端口面呈现为N极、下方凸极端口面呈现为S极。交替向L1和L2中通入激励电流,就可以在“U形”叠片铁芯上、下方凸极端口面处获得磁极性交替变化的复合励磁磁势。
本实施例转子圆盘及永磁体设置如附图69-71所示。
本实施例的运转机制及驱动控制方式同实施例十二,在此不重复描述。
实施例十九:
本实施例给出了一种转子是双侧悬臂支架、定子复合励磁凸极对为双线圈激励双极性的永磁增效磁阻电动机,其外形和结构如附图90-92所示。
本实施例是实施例十八的特例,与实施例十八的区别在于转子导磁圆盘的两个侧面各设置有十二个永磁体,每侧永磁体设置形式相同,即将两个实施例十所给出电动机的连轴合并结构。
本实施例定子复合励磁凸极对共计有八个,四个一组,分置于转子圆盘的两侧,如附图90和附图92所示。
本实施例的运转机制和驱动控制方式同实施例十一,在此不重复描述。
本发明上述实施例为了描述简单,图示清晰,定子上的复合励磁凸极对个数只取了四个,相应的转子支架上的永磁体或永磁凸极对的个数取六个。但是,本发明技术方案不限于此“四-六”组合结构。若定子上复合励磁凸极对的数量为N,转子上永磁体或“永磁凸极对”的数量为M,N和M满足关系式M=kN,该关系式中,M为大于等于2的偶数,N为大于等于2的自然数,当N为奇数,k取偶数,当N为偶数,k取自然数,且M/N之比不是正整数。
本发明所给出的实际电动机产品具有以下特点及应用领域:
1、重量轻、体积小、扭矩大、可靠、易控,尤其适用于对电动机的体积、重量、功率密度要求较高的场合以及航空国防等安全要求高的场合。
2、无电刷、无火花干扰,体积小、重量轻、寿命长,尤其是采用了安全低电压电源,特别适合用于手持作业电动工具和设备,以及恶劣气候环境中,流动作业使用,可以彻底避免触电伤亡事故的发生。
3、结构简单、可靠、价格低、节能、特别适合普及通用动力机械,工农业、商业、生活家用电器,还可以提升产品、设备的品质和性能。
4、具有在低转速时的大扭矩和宽范围恒扭矩,从而低耗、节能、可以提高车辆的续航能力,特别适合电动助力车、电动汽车作为车辆驱动电机。为电动汽车带来高性能的驱动电机,将会取代现有的交流变频电机,推进电动汽车的快速发展进程,获取很高的经济回报和社会效益。

Claims (11)

  1. 一种交流永磁开关磁阻电动机,其构成包括定子、转子,定子由若干励磁凸极对构成,若干励磁凸极对均衡地固定于定子座,励磁凸极对由叠片铁芯和励磁线圈构成,励磁凸极对相互之间彼此磁隔离,每个励磁凸极对由独立的励磁线圈激励控制,其特征在于:
    所述励磁凸极对由“C形”叠片铁芯、励磁线圈构成,该“C形”叠片铁芯两个凸极的端口面相对,
    所述转子由转动轴、转子支架、和若干永磁体构成,转子支架的中心与转动轴固定,转子支架的外沿固定有若干永磁体,永磁体等间距地设置在转子支架外沿,且在同一旋转面上相邻永磁体的磁极性相异,
    转动轴旋转时,固定于转子支架外沿的永磁体能依次从定子上的各个励磁凸极对的两个端口面之间通过,且各个永磁体的两个磁极面与各个励磁凸极对的端口面之间形成气隙,当永磁体分别位于各个励磁凸极对两个端口面之间时,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路。
  2. 根据权利要求1所述的交流永磁开关磁阻电动机,其特征在于:
    所述转子支架由圆盘和圆筒构成,圆筒一端边缘与圆盘外沿固定连接,形成一个“碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒另一端边缘处,且在同一旋转面上相邻永磁体的磁极性相异,转动轴旋转时,固定于圆筒一端边缘的全部永磁体均能从定子励磁凸极对端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙;
    或者,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且在同一旋转面上相邻永磁体的磁极性相异,所述若干励磁凸极对分为两组,分置于转子支架两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的两个端口面之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙;
    或者,所述转子支架由圆盘和带折边圆筒构成,带折边圆筒中部内壁沿与圆 盘外沿固定连接,形成一个“同底双向碗口内折边”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,带内折边圆筒的折边面垂直于转动轴轴线,永磁体分为两组、均衡地固定在带折边圆筒两端的折边处,且在同一旋转面上相邻永磁体的磁极性相异,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面左右相对,转动轴旋转时,固定于带折边圆筒两端折边上的全部永磁体均能从圆盘两侧所有“C形”励磁凸极对的端口面之间通过,且永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙。
  3. 根据权利要求1或2所述的交流永磁开关磁阻电动机,其特征在于:所述定子上励磁凸极对的数量为N,转子上永磁体或“永磁凸极对”的数量为M,N和M满足关系式M=kN,该关系式中,M为大于等于2的偶数,N为大于等于2的自然数,当N为奇数,k取偶数,当N为偶数,k取自然数,且M/N之比不是正整数。
  4. 根据权利要求1或2所述的交流永磁开关磁阻电动机,其特征在于:
    所述励磁凸极对由一个“C形”叠片铁芯、一个或两个励磁线圈、一个或两个永磁体组件或永磁体构成,所述“C形”叠片铁芯的两个凸极端口面相对、励磁线圈绕于“C形”叠片铁芯外围,所述永磁体组件的两个磁极面按设定紧贴于叠片铁芯的叠层断面,所述永磁体嵌入到叠片铁芯缺口中,永磁体的两个磁极面按设定紧贴于叠片铁芯缺口的叠层断面,永磁体侧面与叠片铁芯存在间隙,励磁线圈的绕制方向使得当该励磁线圈输入激励电流时,该叠片铁芯产生的励磁磁通方向与所附着的永磁体组件或永磁体的永磁磁通方向一致,当励磁线圈输入足够强的激励电流,励磁磁通能迫使闭合的永磁磁通打开,使永磁磁通汇入到励磁磁通主回路中,在叠片铁芯端口面形成复合励磁磁势;
    所述转子由转动轴、转子支架和永磁体构成,转子支架中心与转动轴固定,若干永磁体均衡地固定在转子支架上,且相邻永磁体的磁极性相异,
    转动轴旋转时,转子支架上若干永磁体的磁端口面与定子上若干励磁凸极对的端口面能逐个正对,正对时,励磁凸极对端口面的复合励磁磁势经空气气隙和永磁体形成最短闭合磁回路。
  5. 根据权利要求4所述的交流永磁开关磁阻电动机,其特征在于:
    所述励磁凸极对由一个“C形”叠片铁芯、一个励磁线圈、一个永磁体组件构成,该“C形”叠片铁芯的两个凸极端口面相对,励磁线圈绕于“C形”叠片铁芯外围,永磁体组件的磁极S和磁极N分别跨过励磁线圈,且永磁体组件的磁极S和磁极N紧贴于“C形”叠片铁芯的叠层断面;
    所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒一端边缘与圆盘外沿固定连接,形成一个“碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒另一端边缘处,且相邻永磁体的磁极性相异,转动轴旋转时,固定于圆筒一端边缘的全部永磁体均能从定子励磁凸极对端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
    或者,所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且同一端边相邻永磁体的磁极性相异,不同端边相邻永磁体的磁极性相同,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
    或者,所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且同一端边相邻永磁体的磁极性相异,不同端边永磁相互之间存在圆心偏差角度α,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧 所有励磁凸极对的端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
    或者,所述转子支架由圆盘和带折边圆筒构成,带折边圆筒中部内壁沿与圆盘外沿固定连接,形成一个“同底双向碗口内折边”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,带内折边圆筒的折边面垂直于转动轴轴线,永磁体分为两组、均衡地固定在带折边圆筒两端的折边处,且相邻永磁体的磁极性相异,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面左右相对,转动轴旋转时,固定于带折边圆筒两端折边上的全部永磁体均能从圆盘两侧所有“C形”励磁凸极对的端口面之间通过,且永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙。
  6. 根据权利要求4所述的交流永磁开关磁阻电动机,其特征在于:
    所述励磁凸极对由一个“C形”叠片铁芯、两个励磁线圈、两个永磁体组件构成,该“C形”叠片铁芯的两个凸极端口面相对,励磁线圈绕于“C形”叠片铁芯外围,确保励磁磁场方向与其并联设置的永磁体组件所形成的磁场方向相同,而两个永磁体组件与在各自设置的并联励磁线圈的励磁作用下所形成的复合磁场方向在同一个闭合磁回路中是相反设置的,永磁体组件的磁极S和磁极N分别跨过励磁线圈,且永磁体组件的磁极S和磁极N紧贴于“C形”叠片铁芯的叠层断面;
    或者,所述励磁凸极对由一个“C形”叠片铁芯、一组励磁线圈和两个永磁体构成,所述叠片铁芯上、下平行边框分别开有缺口,两个永磁体分别嵌入在上边框缺口和下边框缺口中,嵌入上边框缺口的永磁体N磁极端面沿顺时针方向紧贴于叠片铁芯,其S磁极端面沿逆时针方向紧贴于叠片铁芯,同样的,嵌入下边框缺口的永磁体N磁极端面顺时针方向紧贴于叠片铁芯,其S磁极端面沿逆时针方向紧贴于叠片铁芯,两个永磁体侧面与叠片铁芯之间存在空隙,所述励磁线圈绕于叠片铁芯竖直边框;
    或者,所述励磁凸极对由一个“C形”叠片铁芯、两个励磁线圈和一个永磁体构成,所述叠片铁芯竖直边框开有缺口,一个永磁体嵌入在该边框缺口中,永 磁体N磁极端面向上紧贴于叠片铁芯,其S磁极端面向下紧贴于叠片铁芯,永磁体侧面与叠片铁芯之间存在空隙,两个励磁线圈分别绕于该“C形”叠片铁芯的上、下边框外围;
    所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒一端边缘与圆盘外沿固定连接,形成一个“碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒另一端边缘处,且相邻永磁体的磁极性相异,转动轴旋转时,固定于圆筒一端边缘的全部永磁体均能从定子励磁凸极对端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路;
    或者,所述转子由转动轴、转子支架、和若干永磁体构成,所述转子支架由圆盘和圆筒构成,圆筒中部内壁与圆盘外沿固定连接,形成一个“同底双向敞口碗形”整体,圆盘中心与转动轴固定连接,圆盘平面与转动轴轴线垂直,圆筒轴线则与转动轴轴线重合,若干永磁体均衡地固定在圆筒两端边缘处,且同一端边相邻永磁体的磁极性相异,不同端边相邻永磁体的磁极性相同,所述若干励磁凸极对分为两组,分置于转子支架圆盘两侧,所有励磁凸极对的两个端口面上下相对,转动轴旋转时,固定于圆筒两端边缘的全部永磁体均能从圆盘两侧所有励磁凸极对的端口之间通过,且各个永磁体的两个磁极面与励磁凸极对的端口面之间形成气隙,当永磁体位于励磁凸极对两个端口面之间,永磁体与励磁凸极对之间形成一个具有气隙的闭合磁回路。
  7. 一种交流永磁开关磁阻电动机,其构成包括定子、转子,定子由若干励磁凸极对构成,若干励磁凸极对均衡地固定于定子座,励磁凸极对由叠片铁芯和励磁线圈构成,励磁凸极对相互之间彼此磁隔离,每个励磁凸极对由独立的励磁线圈激励控制,
    其特征在于:所述励磁凸极对由“U形”叠片铁芯、励磁线圈构成,该“U形”叠片铁芯的端口面朝向同一方向,
    所述转子由转动轴、转子支架、和若干永磁体构成,转子支架的中心与转动轴固定,所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和 外圈设置于导磁圆盘的一个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,在同一个旋转面上相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对两个端口面与各个励磁凸极对两个端口面之间形成气隙,当转子上任何一个永磁凸极对两个端口面与定子上任何一个励磁凸极对两个端口面正对重合时,该永磁凸极对与该励磁凸极对之间即形成了一个最短磁回路;
    或者,所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的两个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,在同一个旋转面上相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,所述若干“U形”励磁凸极对分为两组,分置于转子支架圆盘的两侧,转动轴旋转时,圆盘两个侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端口面与各个励磁凸极对端口面之间形成气隙,当转子上任何一个永磁凸极对的两个端口面与定子上任何一个励磁凸极对两个端口面正对重合时,,该永磁凸极对与该励磁凸极对之间形成了一个最短磁回路。
  8. 根据权利要求7所述的交流永磁开关磁阻电动机,其特征在于:所述定子上励磁凸极对的数量为N,转子上永磁体或“永磁凸极对”的数量为M,N和M满足关系式M=kN,该关系式中,M为大于等于2的偶数,N为大于等于2的自然数,当N为奇数,k取偶数,当N为偶数,k取自然数,且M/N之比不是正整数。
  9. 根据权利要求7所述的交流永磁开关磁阻电动机,其特征在于:
    所述励磁凸极对由一个“U形”叠片铁芯、一个或两个励磁线圈、一个或两个永磁体组件或永磁体构成,所述“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于或“U形”叠片铁芯外围,所述永磁体组件的两个磁极面按设定紧贴于叠片铁芯的叠层断面,所述永磁体嵌入到叠片铁芯缺口中,永磁体的 两个磁极面按设定紧贴于叠片铁芯缺口的叠层断面,永磁体侧面与叠片铁芯存在间隙,励磁线圈的绕制方向使得当该励磁线圈输入激励电流时,该叠片铁芯产生的励磁磁通方向与所附着的永磁体组件或永磁体的永磁磁通方向一致,当励磁线圈输入足够强的激励电流,励磁磁通能迫使闭合的永磁磁通打开,使永磁磁通汇入到励磁磁通主回路中,在叠片铁芯端口面形成复合励磁磁势;
    所述转子由转动轴、转子支架和永磁体构成,转子支架中心与转动轴固定,若干永磁体均衡地固定在转子支架上,且相邻永磁体的磁极性相异,
    转动轴旋转时,转子支架上若干永磁体的磁端口面与定子上若干励磁凸极对的端口面能逐个正对,正对时,励磁凸极对端口面的复合励磁磁势经空气气隙和永磁体形成最短闭合磁回路。
  10. 根据权利要求9所述的交流永磁开关磁阻电动机,其特征在于:
    所述励磁凸极对由一个“U形”叠片铁芯、一组励磁线圈和一个永磁体组件构成,该“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于“U形”叠片铁芯边框外围,永磁体组件的磁极S和磁极N分别按设定跨过励磁线圈,且永磁体组件的磁极S和磁极N紧贴于“U形”叠片铁芯叠层断面;
    或者,所述励磁凸极对由一个“U形”叠片铁芯、两组励磁线圈和两个永磁体组件构成,该“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于“U形”叠片铁芯两条平行边框外围,两个永磁体组件的磁极S和磁极N分别按设定跨过励磁线圈,且两个永磁体组件的磁极S和磁极N紧贴于“U形”叠片铁芯叠层断面;
    所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的一个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端面与各个励磁凸极对端口面之间形成气隙,当永磁凸极对与励磁凸极对的磁端口面相重合时,永磁凸极对与励磁凸极对之间形成一个具气隙的闭合磁回路;
    或者,所述转子支架为圆盘形,若干永磁体以转动轴轴线为对称轴,分内圈和外圈设置于导磁圆盘的两个侧面,内圈永磁体相互之间的间隔相等,外圈永磁体相互之间的间隔也相等,由于圆盘导磁,设置在同一条径线上的内圈永磁体与外圈永磁体组成一个永磁凸极对,相邻两个永磁凸极对的磁极性相异,每个永磁凸极对两凸极之间的距离与定子励磁凸极对两凸极之间的距离相同,转动轴旋转时,圆盘两个侧面上的各个永磁凸极对依次扫过定子上的各个励磁凸极对,且各个永磁凸极对的端面与各个励磁凸极对端口面之间形成气隙,当永磁凸极对与励磁凸极对的磁端口面相重合时,永磁凸极对与励磁凸极对之间形成一个具气隙的闭合磁回路。
  11. 一种交流永磁开关磁阻电动机的激励控制方法,该交流永磁开关磁阻电动机的定子由定子座和若干复合励磁凸极对单元构成,若干复合励磁凸极对单元均衡地固定于定子座,复合励磁凸极对单元彼此之间磁隔离,每个复合励磁凸极对单元由独立励磁线圈激励控制,所述复合励磁凸极对由一个“C形”或“U形”叠片铁芯、一个或两个励磁线圈、一个或两个永磁体组件或永磁体构成,所述“C形”叠片铁芯的两个凸极端口面相对、所述“U形”叠片铁芯的两个凸极端口面朝向同一方向,励磁线圈绕于“C形”或“U形”叠片铁芯外围,所述永磁体组件的两极按设定紧贴于叠片铁芯的叠层断面,所述永磁体嵌入到叠片铁芯缺口中,永磁体的两极按设定紧贴于叠片铁芯的叠层断面,永磁体侧面与叠片铁芯存在间隙,励磁线圈的绕制方向使得当该励磁线圈输入电流时,该叠片铁芯产生的励磁磁通方向与所附着的永磁体组件或永磁体的永磁磁通方向一致,当励磁线圈输入足够强的激励电流,励磁磁通能迫使闭合的永磁磁通打开,使永磁磁通汇入到励磁磁通主回路中,在叠片铁芯端口面形成复合励磁磁势;所述转子由转动轴、转子支架和永磁体构成,转子支架中心与转动轴固定,若干永磁体均衡地固定在转子支架上,且相邻永磁体的磁极性相异,转动轴旋转时,转子支架上若干永磁体的磁端口面与定子上若干励磁凸极对的端口面能逐个正对,正对时,励磁凸极对端口面的复合励磁磁势经空气气隙和永磁体形成最短闭合磁回路,
    其特征在于:所述激励控制方法是,以方波或近似方波的单向脉冲电流或正负交变的脉冲电流激励定子上复合励磁凸极对的励磁线圈,确保每个脉冲电流在磁回路中产生的励磁磁通密度不小于永磁体组件在同一回路中所形成的磁通密度,这 样,励磁线圈激励电流所产生的励磁磁通会迫使与它并联设置的励磁铁芯中原来静态的永磁磁通改变闭合方向,与电激励励磁通叠加复合,从而在复合励磁凸极对的两个凸极端口面形成磁极性相异的复合励磁磁势,该复合励磁磁势能穿过气隙,并通过转子支架上的永磁体或永磁凸极对,形成新的闭合磁回路,这种新的闭合磁回路正是磁阻电动机转子获得转动力矩所需要的最短磁回路,电动机转子旋转时,当转子支架上的任何一个永磁体或任何一个永磁凸极对的径向中心线与定子上任何一个复合励磁凸极对的径向中心线相重合对齐时,该复合励磁凸极对的励磁线圈中原有电流方向的电流将关闭至零,此时,改变或控制已重合转子凸极对径向中心线与相邻的定子励磁绕组凸极对的径向中心线之间夹角范围内电流换向导通的角度(即改变转子凸极中心与旋转方向的下一个励磁凸极对中心线之间的换向开通的角度坐标,或是改变在重合中心线与相邻绕组励磁凸极对径向中心线之间的夹角范围内的换向导通的前后时间)即可以实现控制电动机转子与定子之间气隙内的转矩大小,以达到既可以控制电机的转速、又可以达到充分利用永磁增效节能效果。
PCT/CN2014/091693 2013-11-20 2014-11-19 交流永磁开关磁阻电动机 WO2015074571A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14864866.0A EP3073621B1 (en) 2013-11-20 2014-11-19 Ac permanent-magnet switched reluctance electric motor
US15/038,082 US10541593B2 (en) 2013-11-20 2014-11-19 AC permanent-magnet switched reluctance motor
JP2016532082A JP6687521B2 (ja) 2013-11-20 2014-11-19 Ac永磁スイッチトリラクタンスモーター
KR1020167016366A KR20160087882A (ko) 2013-11-20 2014-11-19 교류 영구자석 스위치드 릴럭턴스 전동모터
KR1020187009378A KR101894211B1 (ko) 2013-11-20 2014-11-19 교류 영구자석 스위치드 릴럭턴스 전동모터

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310584450.5A CN103560633B (zh) 2013-11-20 2013-11-20 交流永磁增效磁阻电动机
CN201310584522.6 2013-11-20
CN201310584522.6A CN103595213A (zh) 2013-11-20 2013-11-20 交流永磁开关磁阻电动机
CN201310584450.5 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015074571A1 true WO2015074571A1 (zh) 2015-05-28

Family

ID=53178963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091693 WO2015074571A1 (zh) 2013-11-20 2014-11-19 交流永磁开关磁阻电动机

Country Status (5)

Country Link
US (1) US10541593B2 (zh)
EP (1) EP3073621B1 (zh)
JP (1) JP6687521B2 (zh)
KR (2) KR20160087882A (zh)
WO (1) WO2015074571A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030960A1 (en) * 2016-08-11 2018-02-15 Ambroz Milan Motor and generator using both poles of stator coil
CN108288901A (zh) * 2018-02-27 2018-07-17 马小安 一种各相分居式电机
JP2020508635A (ja) * 2017-02-24 2020-03-19 ヴァンデンバーグ, チャド アシュリーVANDENBERG, Chad Ashley 永久磁石オフセットシステム及び方法
CN111566900A (zh) * 2017-11-13 2020-08-21 星转股份有限公司 感应电动机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600542B2 (en) * 2016-12-27 2020-03-24 Chad Ashley Vandenberg Polarity-switching magnet diode
KR101842827B1 (ko) * 2017-02-07 2018-03-28 경성대학교 산학협력단 이중 고정자 Axial Field형 스위치드 릴럭턴스 전동기
RU2727709C2 (ru) * 2018-12-24 2020-07-23 Олег Абрамович Чаусовский Асинхронный электродвигатель поперечного магнитного потока
US11152842B2 (en) * 2019-06-13 2021-10-19 Win Kai Electromagnetic motor and generator
CN114514693A (zh) * 2019-10-11 2022-05-17 国立大学法人京都大学 开关磁阻马达及其控制方法
US20210281136A1 (en) * 2019-12-07 2021-09-09 David Joseph Device for generating electricity while reducing restrictive electromotive forces upon a rotor magnet
KR20230072486A (ko) 2020-09-21 2023-05-24 이브이알 모터스 엘티디. 방사상 플럭스 전기 기계
WO2022229957A1 (en) * 2021-04-27 2022-11-03 Motx Ltd. Switched reluctance electric machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860159A (zh) * 2010-04-13 2010-10-13 深圳市轴心自控技术有限公司 一种新型开关磁阻电机
CN102214979A (zh) 2011-05-10 2011-10-12 戴珊珊 一种转矩增强型开关磁阻电动机
CN102299604A (zh) 2011-07-18 2011-12-28 戴珊珊 交流连续转矩永磁开关磁阻电动机及其激励控制方法
CN102315006A (zh) * 2011-05-10 2012-01-11 戴珊珊 一种永磁增益变压装置
CN102624183A (zh) * 2012-03-27 2012-08-01 山东大学 轴向磁场永磁无刷电机及装配方法
CN102946181A (zh) * 2012-11-26 2013-02-27 王九龙 一种新型电机
CN103560633A (zh) * 2013-11-20 2014-02-05 戴珊珊 交流永磁增效磁阻电动机
CN103595213A (zh) * 2013-11-20 2014-02-19 戴珊珊 交流永磁开关磁阻电动机

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3336011A1 (de) * 1983-10-04 1985-04-18 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnet
JPS60177673U (ja) * 1984-05-02 1985-11-26 日本ビクター株式会社 電動機
JPH07336967A (ja) * 1994-06-03 1995-12-22 Yaskawa Electric Corp 軸方向空隙形同期モータ
US5696419A (en) * 1994-06-13 1997-12-09 Alternative Generation Devices, Inc. High-efficiency electric power generator
WO1999060692A2 (en) * 1998-05-16 1999-11-25 Enertec Korea Co., Ltd. Magnetic circuit for rotating apparatus
US7432623B2 (en) * 2001-03-08 2008-10-07 Apex Drives Laboratories, Inc. Brushless electromechanical machine
EP2061140A3 (en) * 2001-07-09 2011-08-10 Harmonic Drive Systems Inc. Synchronous hybrid electric machine
CN1350357A (zh) * 2001-09-08 2002-05-22 贺雷 环式电机
US6777851B2 (en) * 2001-10-01 2004-08-17 Wavecrest Laboratories, Llc Generator having axially aligned stator poles and/or rotor poles
JP3798677B2 (ja) * 2001-11-06 2006-07-19 アスモ株式会社 ブラシレスモータ
US20060022552A1 (en) * 2004-07-28 2006-02-02 Silicon Valley Micro M Corporation Multi-phase A.C. vehicle motor
JP2007067252A (ja) * 2005-09-01 2007-03-15 Kimiaki Saito ハイブリッド型磁石並びにそれを用いた電動モータ及び発電機
US20080088200A1 (en) * 2006-06-08 2008-04-17 Jonathan Ritchey Poly-phasic multi-coil generator
US20110109185A1 (en) * 2009-11-09 2011-05-12 John T. Sullivan High efficiency magnetic core electrical machine
JP5507967B2 (ja) * 2009-11-09 2014-05-28 株式会社日立製作所 回転電機
CN102184809B (zh) * 2011-03-30 2015-11-25 戴珊珊 电激励永磁开关和电激励永磁开关磁阻电动机及电激励方法
GB2494898B (en) * 2011-09-21 2017-10-25 Cummins Generator Tech Ltd Rotating electrical machine
US20140084715A1 (en) * 2012-09-25 2014-03-27 Defang Yuan Switched Reluctance Motor
US9871427B2 (en) * 2013-03-15 2018-01-16 Ingersoll-Rand Company Stator winding for an electric motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860159A (zh) * 2010-04-13 2010-10-13 深圳市轴心自控技术有限公司 一种新型开关磁阻电机
CN102214979A (zh) 2011-05-10 2011-10-12 戴珊珊 一种转矩增强型开关磁阻电动机
CN102315006A (zh) * 2011-05-10 2012-01-11 戴珊珊 一种永磁增益变压装置
CN102299604A (zh) 2011-07-18 2011-12-28 戴珊珊 交流连续转矩永磁开关磁阻电动机及其激励控制方法
CN102624183A (zh) * 2012-03-27 2012-08-01 山东大学 轴向磁场永磁无刷电机及装配方法
CN102946181A (zh) * 2012-11-26 2013-02-27 王九龙 一种新型电机
CN103560633A (zh) * 2013-11-20 2014-02-05 戴珊珊 交流永磁增效磁阻电动机
CN103595213A (zh) * 2013-11-20 2014-02-19 戴珊珊 交流永磁开关磁阻电动机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030960A1 (en) * 2016-08-11 2018-02-15 Ambroz Milan Motor and generator using both poles of stator coil
JP2020508635A (ja) * 2017-02-24 2020-03-19 ヴァンデンバーグ, チャド アシュリーVANDENBERG, Chad Ashley 永久磁石オフセットシステム及び方法
CN111566900A (zh) * 2017-11-13 2020-08-21 星转股份有限公司 感应电动机
CN108288901A (zh) * 2018-02-27 2018-07-17 马小安 一种各相分居式电机
CN108288901B (zh) * 2018-02-27 2024-04-09 马小安 一种各相分居式电机

Also Published As

Publication number Publication date
US20170104402A1 (en) 2017-04-13
US10541593B2 (en) 2020-01-21
JP2016540478A (ja) 2016-12-22
KR101894211B1 (ko) 2018-08-31
KR20160087882A (ko) 2016-07-22
EP3073621B1 (en) 2020-10-07
KR20180036808A (ko) 2018-04-09
EP3073621A1 (en) 2016-09-28
EP3073621A4 (en) 2017-06-14
JP6687521B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2015074571A1 (zh) 交流永磁开关磁阻电动机
JP2016540478A5 (zh)
WO2017036354A1 (zh) 外转子交流独立励磁的永磁磁阻电动机
US11456631B2 (en) Disc-type three-degree-of-freedom magnetic suspension switched reluctance motor
CN104811011A (zh) 圆筒型横向磁场开关磁链永磁直线电机
CN103560633B (zh) 交流永磁增效磁阻电动机
CN103595213A (zh) 交流永磁开关磁阻电动机
CN104038002B (zh) 一种永磁偏置式混合磁轴承开关磁阻电机
CN108809031B (zh) 一种恒流源励磁的三自由度无轴承开关磁阻电机
US20230006487A1 (en) Three-suspension pole magnetic suspension sheet switched reluctance motor
CN203289210U (zh) 一种混合励磁型定子表面贴装式双凸极电机
CN104836398B (zh) 转子聚磁式双定子横向磁场永磁同步电机
CN100581031C (zh) 横向磁通永磁直线电机
CN206313551U (zh) 一种永磁电机
CN103780040B (zh) 外转子磁桥式横向磁通永磁同步电机
CN112467901B (zh) 一种磁齿轮复合直驱电机及其应用
CN201536282U (zh) 一种具有磁场调节能力的磁通反向电机
CN108880038A (zh) 混合极转子及电机
CN205693465U (zh) 一种高磁阻转矩的永磁电机转子
CN111969819A (zh) 三相聚磁式h型定子横向磁通永磁电机
CN104038003B (zh) 一种混合电励磁磁轴承开关磁阻电机
CN103490586B (zh) 一种用于永磁同步传动装置的平盘型聚磁式磁路结构
CN206353728U (zh) 全载发电装置
CN108808895A (zh) 一种π型混合励磁双凸极电机
CN107834796A (zh) 一种磁通记忆式磁齿轮复合电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167016366

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014864866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15038082

Country of ref document: US