WO2015074454A1 - 一种气流引导式定向原位静电喷涂装置及其应用 - Google Patents

一种气流引导式定向原位静电喷涂装置及其应用 Download PDF

Info

Publication number
WO2015074454A1
WO2015074454A1 PCT/CN2014/086377 CN2014086377W WO2015074454A1 WO 2015074454 A1 WO2015074454 A1 WO 2015074454A1 CN 2014086377 W CN2014086377 W CN 2014086377W WO 2015074454 A1 WO2015074454 A1 WO 2015074454A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
electrostatic spraying
nozzle
spraying device
situ
Prior art date
Application number
PCT/CN2014/086377
Other languages
English (en)
French (fr)
Inventor
姜凯
龙云泽
陈照军
沈国震
陈帅
盛琛皓
Original Assignee
姜凯
龙云泽
陈照军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 姜凯, 龙云泽, 陈照军 filed Critical 姜凯
Publication of WO2015074454A1 publication Critical patent/WO2015074454A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0003Details of inhalators; Constructional features thereof with means for dispensing more than one drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/006Sprayers or atomisers specially adapted for therapeutic purposes operated by applying mechanical pressure to the liquid to be sprayed or atomised
    • A61M11/007Syringe-type or piston-type sprayers or atomisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M13/00Insufflators for therapeutic or disinfectant purposes, i.e. devices for blowing a gas, powder or vapour into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/02Inhalators with activated or ionised fluids, e.g. electrohydrodynamic [EHD] or electrostatic devices; Ozone-inhalators with radioactive tagged particles

Definitions

  • the invention relates to the technical field of medical equipment, in particular to an air-guided oriented in-situ electrostatic spraying device which utilizes electrospinning technology combined with airflow guiding to realize fixed-point, orientation and in-situ precise spraying of liquid medicine and medical biological material directly at a target. . Background technique
  • Electrostatic spraying is a method of orienting a solution to be sprayed with a large amount of static charge under the action of a high-voltage electrostatic electric field force to form a charged jet, thereby realizing coating of the solution on the surface of the target object.
  • Electrostatic spraying is mainly in the form of electrostatic spray and electrospinning.
  • electrostatic spray is mainly used for atomization of non-filamentous liquids such as water or water solution or paint. It is mainly used for spray application of crops and shell painting of automobiles, home appliances and instruments; electrospinning is electrostatic atomization of polymer fluids.
  • the special form using a volatile organic solvent to prepare a solution with a certain viscosity, the electrostatic field generated by the high-voltage electrostatic generator, so that the solution is atomized at the nozzle, the material is not a tiny droplet, but a polymer microjet, jet It is cleaved, stretched, and solvent volatilized in air, and finally solidified into fibers and deposited on the target collector.
  • the atomized droplets or fibers can be greatly generated on the target object.
  • the spray area even applied to the back of the target object, produces a ring-wrap effect.
  • the ring-packaging effect leads to inaccurate coating, and the liquid is applied to the undesired area, which not only causes waste of the drug, but also most of the charged drugs when the wound is located deep in the body cavity. Will be adsorbed to the surface of the organ closer to the nozzle, resulting in a Faraday cage effect, unable to effectively coat the wound.
  • the ring-packaging effect and the Faraday cage effect hinder the development of electrostatic spraying technology in the medical field.
  • biomedical dressings can be divided into in vitro dressings and in vivo dressings.
  • the in vitro dressing mainly includes burns and dressings, hemostatic and anti-inflammatory dressings, bandages and the like.
  • the dressing in the body mainly refers to the surgical isolation membrane, especially for the operation of the anti-adhesion isolation of the cardiovascular and vascular organs.
  • electrospinning has been widely researched and applied. In terms of medical hemostasis, the electrospun nanofiber membrane not only has gas permeability but also provides an effective barrier protection structure.
  • the pore size distribution can be controlled to be small enough to block the invasion of bacteria, and the surface of the wet wound can be uniformly adhered to prevent dehydration. It is therefore very suitable for use as a skin dressing and artificial skin.
  • the electrospun fiber membrane has an ultra-high specific surface area, and can carry a large number of beneficial components including antibacterial drugs, which is beneficial to promote healing and tissue regeneration of damaged parts.
  • electrospun fibers can also be made into masks, which are added to the fibers by electrospinning.
  • the fiber membranes not only have excellent adsorption, The cleaning effect and the contact with the skin can transfer the beneficial factors to the human body stably and evenly, which is beneficial to the absorption and transportation of human tissues.
  • Electrospinning can be divided into solution electrospinning and melt electrospinning. Compared to solution electrospinning, melt electrospinning requires no solvent, low cost, and high production efficiency, and is suitable for some polymers without suitable solvents at room temperature. However, for melt electrospinning, the polymer melt has high viscosity and poor conductivity. Usually, a relatively high electric field strength is required to be spun, and the jet is rapidly solidified in the process of spinning, and the whipling process is inhibited, resulting in a fiber diameter. Micron level. Dalton et al.
  • melt spinning has safe and non-toxic properties and can be applied in the field of biomedicine.
  • Alpha-cyanoacrylate medical glue approved by the US Food and Drug Administration for human hemostasis.
  • the direct application of the medical glue to the wound or the application method of the wound to the wound the formation of the hemostatic membrane is poor, uneven, and easy to break, especially for a relatively complex, large-area wound, can not achieve reliable hemostasis purposes, Even severe postoperative wound bleeding and bleeding occurred.
  • the prior application CN 201320741232.3 designed an air-guided oriented in-situ electrostatic spraying device, which can electrospin ⁇ -cyanoacrylate medical glue into micro-nano fibers and accurately and uniformly deposit on the wound surface to form a dense film under airflow guidance. , thus achieving rapid hemostasis in seconds to ten seconds, making surgery faster and safer.
  • the object of the present invention is to provide an airflow-guided directional in-situ electrostatic spraying device, thereby overcoming the shortcomings of the above-mentioned electrostatic spraying technology in the medical field, and seeking a kind of drug and medical biological material directly in the human body wound target.
  • the pharmaceutical and medical biomaterials include powders, two-component or multi-component gels, which enable simultaneous spraying of one or more liquids, gases, and solids.
  • An air-guided directional in-situ electrostatic spraying device comprises a control box, a liquid supply system, an inlet pipe, a spray gun handle, a spray head, a gas flow conduit and a high-voltage wire, wherein the control box is provided with a high-voltage power source and an air pump, wherein: The nozzle is disposed at the front end of the spray gun handle, and a metal needle is disposed in the spray head; the metal needle communicates with the liquid supply system through the liquid inlet tube; the wall of the metal needle passes through the high voltage wire and the positive electrode of the high voltage power supply in the control box In the spray head, a space formed between the outer wall of the metal needle and the inner wall of the spray head is an air flow passage, and the air flow passage is connected to the air flow duct through the handle of the spray gun, and the air flow duct is connected to the air pump; the material to be sprayed is supplied by the liquid supply system Provided, through the inlet pipe into the metal needle, by the control box Control the voltage
  • the above electrostatic spraying device also has a disinfecting and sterilizing device for filtering, disinfecting and sterilizing the material to be sprayed (especially the liquid medicine) to ensure the safety and medicinal function of the liquid.
  • the electrostatic spraying device may further include a thermal insulation sleeve, and the liquid inlet tube is disposed in the thermal insulation sleeve.
  • the above-mentioned nozzle is also provided with an integrated sensing system, including a distance sensing system, a temperature and humidity sensing system and a high-speed imaging system, respectively, having independent measuring nozzles and processing target distance, ambient temperature and humidity monitoring, and electrostatic spraying process high-speed imaging.
  • the functions, their respective work do not interfere with each other, and the unified processing is processed by the computer.
  • the computer as an auxiliary system can monitor the working state and dynamic parameters of electrostatic spraying in real time, which is of great help to data collection and processing during spraying and timely adjustment of more favorable process parameters.
  • the liquid inlet tube is a polytetrafluoroethylene tube
  • the air flow conduit is a silica gel air flow conduit
  • the heat insulating sleeve is composed of an outer layer of polyvinyl chloride and an inner layer of asbestos insulation.
  • the present invention designs three different types of electrostatic spraying devices from different angles: 1. Solvent-free in-situ electrostatic spraying device, which uses airflow to guide the spraying of the drug solution The droplet moves in the direction of the airflow, so that the drug can be fixed, oriented, and accurately deposited in situ at the target.
  • the preferred spray material includes materials with special "blood effect” and self-assembly characteristics under certain conditions, such as ⁇ -cyanoacrylic acid. N-butyl ester, ⁇ -cyanoacrylate n-octyl ester, urethane acrylate and peptide self-assembling materials; 2. Hot-dissolved electrospinning device, which is mainly used for spinning with medical solvents such as water, ethanol or acetone.
  • the spraying material selectable comprises a natural polymer material such as gelatin, hyaluronic acid, sodium alginate, chitosan and cellulose acetate, Silk fibroin, collagen, etc., as well as other functional materials such as polyethylene glycol, polyvinyl alcohol, polymethyl propyl a hydroxyethyl ester and a water-soluble polypeptide (such as polylysine, polyaspartic acid, etc.), and a mixture of two or more of the above materials; 3.
  • a natural polymer material such as gelatin, hyaluronic acid, sodium alginate, chitosan and cellulose acetate, Silk fibroin, collagen, etc.
  • other functional materials such as polyethylene glycol, polyvinyl alcohol, polymethyl propyl a hydroxyethyl ester and a water-soluble polypeptide (such as polylysine, polyaspartic acid, etc.), and a mixture of two or more of the above materials; 3.
  • alternative spray materials include, but are not limited to, polyesters, such as Polylactic acid (PLA), polylactic acid-glycolic acid (PLGA), polycaprolactone (PCL), polyglycolic acid (PGA), polyhydroxyphthalic acid ester (PHA), polyurethane, aromatic polyester, Polyesteramide, polypropylene (PP), polyethylene terephthalate (PET), polyethylene naphthalate, etc.; aliphatic polyanhydrides, such as polysebacic anhydride, polyadipate, Polydodoic anhydride or the like; and a mixture of two or more of the above materials and active additives such as polyethylene oxide (PEO), polyethylene glycol (PEG), polyvinyl alcohol (PVA
  • the first type a solvent-free in-situ electrostatic spraying device, which is a syringe pump as the above-mentioned liquid supply system, and a syringe pump can be set in the control Inside the box, the material to be sprayed is added to the syringe pump, and the flow rate of the syringe pump is controlled by the control box.
  • a solvent-free in-situ electrostatic spraying device which is a syringe pump as the above-mentioned liquid supply system, and a syringe pump can be set in the control Inside the box, the material to be sprayed is added to the syringe pump, and the flow rate of the syringe pump is controlled by the control box.
  • the control box is provided with a socket for inserting the liquid inlet pipe, a socket for inserting the air flow conduit, a socket for plugging the high voltage wire connecting the positive electrode of the high voltage power supply and the nozzle, and a voltage for adjusting the voltage of the high voltage power supply.
  • the negative pole of the high voltage power supply in the control box is grounded.
  • the above solvent-free in-situ electrostatic spray device can have both in-situ electrostatic spray and electrospinning functions.
  • the second type: the hot-melt spinning device is a liquid supply system, a temperature control system, a pressurizing system and an electric stirring system as the liquid supply system, and the material to be sprayed and the solvent are added to the liquid reservoir, and the temperature is passed through The control system and the electric stirring system dissolve the material to be sprayed sufficiently, and the temperature of the solution is kept constant and uniform.
  • the solution to be sprayed is squeezed into the inlet pipe through the pressurizing system until the metal needle is injected.
  • the temperature control system may include a heating spiral coil and a temperature sensor surrounding the reservoir.
  • the heating spiral coil is connected to the control box through a wire, and is controlled by a temperature adjustment knob on the control box, and the temperature sensor monitors the current temperature of the solution in the liquid reservoir in real time, and realizes a constant temperature function through feedback and automatic adjustment.
  • the electric stirring system may be composed of a small rotating electric machine and a stirring head connected thereto, wherein the stirring head is located in the liquid reservoir, immersed in the heating and holding solution to be sprayed, and the solution in the liquid reservoir is heated uniformly by stirring.
  • the pressurization system utilizes a pneumatic diaphragm pump that uses compressed gas as a power source to provide sufficient external pressure to the reservoir to squeeze the solution out of the nozzle.
  • the spray speed can be actively adjusted by the amount of external pressure provided.
  • the selected compressed gas may be nitrogen, argon, carbon dioxide, air, or the like.
  • the control box is provided with a socket for inserting the airflow conduit, a socket for plugging the high voltage wire connecting the positive pole of the high voltage power supply with the nozzle, a voltage adjusting knob for adjusting the voltage of the high voltage power supply, and a gas flow for adjusting the airflow of the air pump.
  • the negative pole of the high voltage power supply in the control box is grounded.
  • the above-described hot-melt spinning device is suitable for a material which requires dissolution by a medical solvent such as water, ethanol or acetone, and further performs electrospinning.
  • the third type The melt spinning device is a feeding system, a melting heating system and a hydraulic system as a liquid supply system, wherein the hydraulic system is a power system, and the material to be sprayed is fed into the melt chamber of the melting heating system by the feeding system. After melting by the molten heating system, the hydraulic system is pushed into the inlet pipe and then injected into the metal needle.
  • the feeding system comprises a feeding hopper, a feed speed adjusting rod, a feed conveying passage and a screen, wherein: the screen is arranged at the outlet of the feeding hopper, capable of filtering out relatively large particles or static electricity Agglomeration caused by agglomeration; feed rate adjustment rod is set at the outlet of the feed hopper to control the feed rate; and the feed delivery passage is connected to the molten heating system.
  • a dryer may also be disposed in the feed hopper to dehumidify the raw material.
  • the feeding hopper can also increase the irradiation sterilizing device of the material, and the photolysis and denaturation of the bacterial protein can be caused to death by ultraviolet sterilizing, thereby achieving the purpose of disinfecting the medical biological material.
  • the irradiation device adopts a 6Q Co cobalt source, and the radiation disinfection dose is 25 kGy to meet medical requirements.
  • the hydraulic system adopts a gear pump structure, including a cylinder, a tubing, a gear pump, a rotating electrical machine, a hydraulic electrical system, and the like.
  • the gear pump can change the volume of the sealing cylinder to change the pressure, and the hydraulic oil is sucked from the sealing cylinder through the oil pipe, thereby converting the pressure energy generated by the hydraulic oil into mechanical energy acting on the piston, so that the force at both ends of the piston is unbalanced, driving The piston moves forward. Since the piston is fixed on the rotating screw, the rotating screw is driven to move forward, so that the melt is continuously extruded from the nozzle into the inlet pipe. At the same time, the rotating electric machine supplies energy and controls the torque and speed of the screw to transport the material forward from the feeding system.
  • the melt heating system includes a melt chamber, a heating coil surrounding the melt chamber, a rotating screw within the melt chamber, and a filter membrane and nozzle disposed at the junction of the melt chamber and the inlet tube.
  • a heating coil surrounding the melt chamber
  • a rotating screw within the melt chamber
  • a filter membrane and nozzle disposed at the junction of the melt chamber and the inlet tube.
  • the solid transport zone transports the solid polymer material; the melt zone compresses the material and heats the material; the melt transport zone mixes the molten material and delivers it quantitatively to the nozzle.
  • Thermocouples are required for temperature monitoring in each temperature zone. The temperature of the melt itself can be measured by embedding the probe in the cavity to ensure precise control of the melt temperature. Further, at the nozzle, a filter membrane is also provided for removing unmelted particles or impurities larger than several micrometers.
  • the control box is provided with a socket for inserting the airflow conduit, a socket for plugging the high voltage wire connecting the positive pole of the high voltage power supply with the nozzle, a voltage adjusting knob for adjusting the voltage of the high voltage power supply, and a gas flow for adjusting the airflow of the air pump.
  • the negative pole of the high voltage power supply in the control box is grounded.
  • the above melt spinning device is suitable for electrospinning in a molten state by a suitable melting point biomaterial (such as PLA, PLGA, PCL, polyanhydride, etc.) which does not require a solvent, and is deposited in situ.
  • a suitable melting point biomaterial such as PLA, PLGA, PCL, polyanhydride, etc.
  • the heating temperature required for melt extrusion and the screw extrusion speed are related to the type of polymer material, the molecular weight, and the fluidity of the melt itself. Maintaining a suitable temperature, the material melt can have excellent rheology, which is more conducive to melt extrusion, while avoiding material degradation caused by excessive temperature.
  • the present invention also proposes a coaxial electrospinning device.
  • the coaxial electrospinning device is a reasonable integration and comprehensive application of the above three electrospinning devices, and the main improvement is in the nozzle.
  • the device adopts a coaxial spinning nozzle, and an external needle and an internal needle are arranged in the nozzle, which are respectively connected with two inlet pipes, and the other end of the inlet pipe is respectively connected to the inner and outer liquid supply systems,
  • the liquid supply system can adopt one or several preparation methods of solventless electrostatic spraying, hot solution electrospinning and melt electrospinning, respectively, and simultaneously electrospin the two spinning materials to form a coaxial structure.
  • the composite of different functional materials can be realized, such as ⁇ -cyanoacrylate n-octyl ester as the outer hemostatic material, and PLGA as the inner layer modified material, the coaxial structural fiber can have both hemostatic function and good toughness. Ensure that the coating material does not fall off easily.
  • the coaxial electrospinning device breaks through the limitations of the type of spinning material and can electrospin a polymer which is difficult to electrospin directly into a fiber membrane.
  • the present invention also designs a side-by-side dual nozzle and a separate dual nozzle.
  • the parallel double nozzle is a jet-like structure in which two parallel fibers are simultaneously excited by a parallel jet, and a parallel beam is fused during the spraying process to obtain a bundle structure in which a plurality of fibers are connected to each other.
  • the split double nozzle is formed by further increasing the distance between the needles on the basis of the parallel double nozzle.
  • Each needle can be connected to the same or a different liquid supply system through the inlet tube.
  • the sprayed fiber membrane can have the functional properties of each component, and thus has a variety of hemostatic functions.
  • two kinds of medical biological materials can be simultaneously sprayed into a composite structural fiber membrane or a plurality of medical biological materials to be sequentially sprayed into a multi-layer structural fiber membrane.
  • a double-spray nozzle is used to sequentially spray hyaluronic acid and PLGA on the wound surface to form a double layer.
  • the fibrous membrane and the outer layer PLGA toughness fiber membrane can improve the brittleness of the inner hyaluronic acid fiber membrane, and more effectively realize the combination of functions such as hemostasis, bacteriostasis and anti-adhesion of tissues and organs.
  • the beneficial effects of the present invention are:
  • the air spray channel formed between the spray head and the metal needle used in the invention is connected to the air pump through the air flow conduit, and the air flow can guide the liquid medicine to be sprayed to move along the airflow direction, thereby functioning as an orientation function, and can also weaken the ring-packaging effect. And the Faraday cage effect acts as a restraint to achieve fixed-point orientation and precise spraying.
  • the polymer melt Due to the electrostatic adsorption, the polymer melt has a large amount of static charge. It is only necessary to spray the liquid directly on the wound surface to form a firm bond with the wound surface to form a stable and effective protective layer, and the spray liquid will not be sprayed. Splash occurs, the utilization rate is high, and the treatment effect is better.
  • the invention has a filtering, disinfecting and sterilizing device, which can effectively protect the wound from infection.
  • the electrospun fiber membrane not only has good gas permeability, but also filters out almost all bacteria and dust in the air to prevent wound infection, which makes it more advantageous in medical hemostasis and first aid applications. Treated wounds tend to heal well without scarring.
  • the melt spinning device integrates the heating device, the liquid storage device, the conveying device, the nozzle device and the heat preservation system to improve the stability and continuity of the spraying, and the rotary screw pressing device can continuously and effectively melt the melt. Out, the efficiency of melt spinning is improved.
  • the sprayed fiber membrane has a higher temperature at the same time, which can better burn the wound surface and is more conducive to blood coagulation and hemostasis.
  • the invention can meet the requirements of special materials and special properties nanofiber membranes of single materials or composite materials, and realize powder, gas and liquid by improving into more complicated needle forms such as coaxial, side-by-side, multi-needle systems and the like. Processing in the form of single or multiple different physical states.
  • the device of the invention has the characteristics of orientation, real-time and in-situ micro-nano spraying, and the prepared micro-nano material is suitable for various uses: medical hemostasis such as clinical operation hemostasis, burn wound dressing, hemostatic anti-inflammatory sterilization dressing, medical bandage, Surgical sutures, vascular organ anti-adhesion surgical isolation membranes; tissue engineering aspects such as tissue scaffolds, tissue fillers, artificial skin, wound dressings for skin regeneration, drug loading and targeted controlled release; cosmetic fields such as mask making and skin Care.
  • medical hemostasis such as clinical operation hemostasis, burn wound dressing, hemostatic anti-inflammatory sterilization dressing, medical bandage, Surgical sutures, vascular organ anti-adhesion surgical isolation membranes
  • tissue engineering aspects such as tissue scaffolds, tissue fillers, artificial skin, wound dressings for skin regeneration, drug loading and targeted controlled release
  • cosmetic fields such as mask making and skin Care.
  • the present invention opens up a new way to study the potential of adherent hemostatic materials, which can solve the problem of surgical safety and postoperative rehabilitation to control wound bleeding; the innovative concept and the real-time combination of surgical hemostasis technology, and the application of reliable hemostasis technology treatment.
  • the device of the invention can simultaneously change the application mode of the current traditional medical materials, and can fully guarantee the adhesion and safety of the biomedical materials, and realize the reconstruction of the continuous integrity of the substantial organs.
  • FIG. 1 is a schematic view showing the structure of a solventless in-situ electrospinning apparatus of Embodiment 1.
  • Fig. 2 is a schematic view showing two electrostatic spraying states of the embodiment 1.
  • Embodiment 3 is a schematic view showing the principle of oriented in-situ deposition of Embodiment 1.
  • Figure 4 is an optical photograph (a) of the electrospun fiber of Example 1 and an optical photograph (b) of the fiber membrane after water surface polymerization.
  • Figure 5 is a schematic view showing the structure of a hot-melt spinning apparatus of Example 2.
  • Figure 6 is an optical photograph of different electrospun fibers prepared in Example 2, wherein (a) is a gelatin/polyethylene glycol electrospun fiber, and (b) is a sodium alginate/polyvinyl alcohol electrospun fiber.
  • Figure 7 is a schematic view showing the structure of a melt spinning apparatus of Example 3.
  • Figure 8 is a schematic view showing the structure of a feeding system of the melt spinning apparatus of Example 3.
  • Figure 9 is a schematic view showing the structure of a melt heating system of the melt spinning apparatus of Example 3.
  • Figure 10 is a schematic view showing the structure of a coaxial electrospinning device of Embodiment 4.
  • Figure 11 is a schematic view showing the structure of the parallel type double nozzle of the present invention.
  • Figure 12 is a schematic view showing the structure of the split type double nozzle of the present invention.
  • Example 1 Solvent-free in situ electrospinning device and application thereof
  • the solventless in-situ electrospinning device of the present embodiment comprises: a control box 1, a heat insulating sleeve 6, a liquid inlet tube 8, a spray gun handle 9, a rotatable spray head 10, a high voltage lead 14 and a gas flow conduit.
  • control box 1 is equipped with a sterilization and sterilization device 1-1, a syringe pump 1-2, an air pump 1-3 and a high-voltage power source 1-4; a rotatable nozzle 10 is disposed at the front end of the spray gun handle 9;
  • the utility model is disposed in the thermal insulation sleeve 6 and connected to the metal needle 7 disposed in the nozzle 10 through the spray gun handle 9; the air flow conduit 15 is connected to the air pump 1-3 at the end, and the other end is connected to the end of the spray gun handle 9.
  • the control box 1 is further provided with a power switch 2, a voltage adjustment knob for adjusting various parameters, an air flow adjustment knob 4, a syringe pump flow rate adjustment knob 5, and a display screen on which parameters are displayed.
  • the sterilization and disinfection device 1-1 can filter, disinfect and sterilize the sprayed liquid to ensure the safety and medicinal function of the liquid; the syringe pump 1-2 can adjust the liquid through the syringe pump flow adjustment knob 5 Speed, which in turn controls the speed of the spray.
  • the lumen of the metal needle 7 disposed in the nozzle 10 and connected to the inlet pipe 8 is connected to the high voltage wire 14, and the other end of the high voltage wire 14 is connected to the positive electrode of the high voltage power source; the inner wall of the nozzle 10 and the metal capillary (metal needle) 7)
  • the annular duct space formed between the outer walls is an air flow passage, and the air pump 1-3 generates a gas flow having a certain pressure to communicate with the air flow passage through the air flow duct 15, so that the airflow in the air pump 1-3 can flow from the spray head 10
  • the channel is ejected.
  • the air-guided in-situ electrostatic spray device provides precise control of the deposition range and deposition location with the aid of airflow.
  • the principle of directional in-situ deposition is shown in Fig. 3.
  • the water surface in the culture dish is used as the collecting substrate. After the air pump is turned on, the airflow is blown to the water surface through the nozzle, and the water flows around the air to form a small hole, indicating the airflow.
  • Auxiliary can not only help achieve precise spray and directional deposition, but also effectively clean the surface of the collection substrate.
  • the main structure of the hot-dissolved electrospinning apparatus of the present embodiment further includes a temperature control system, a pressurizing system 18, and Electric stirring system 17.
  • the temperature control system includes a heating coil-I 20, a temperature sensor 16, a heating coil wire 24 connected to the control box, and a temperature adjustment knob 25 on the control box.
  • the heating coil-1 20 is surrounded by the high temperature resistant liquid reservoir 22, and the heating coil-1 20 is connected to the control box 1 through the heating coil wire 24, and the temperature adjusting knob 25 can adjust the required heating temperature, and the temperature sensor 16 can be The current temperature is monitored in real time, and the constant temperature function is achieved through feedback and automatic adjustment.
  • the electric stirring system 17 includes a small rotating electrical machine and a stirring turbine.
  • the stirring head is immersed in a high temperature solution to be sprayed, and the solution is kept heated evenly by stirring.
  • the pressurization system 18 utilizes a pneumatic diaphragm pump that uses compressed gas as a power source to provide sufficient pressure to the reservoir 22 to dissolve The liquid is extruded from the nozzle 23, and the spraying speed can be adjusted by the amount of air pressure supplied.
  • the selected compressed gas may be nitrogen, argon, air, carbon dioxide, or the like.
  • the solution to be sprayed is first added to the reservoir 22, the power switch 2 is turned on, and the temperature control system and the electric stirring system 17 start working. Adjust the temperature adjustment knob 25 (control temperature range is about 50-400 degrees Celsius), air flow adjustment knob 4 (flow rate is about 5-20 liters / minute), voltage adjustment knob 3 (controllable voltage up to 30 kV), It can be adjusted to different parameters as needed. After the temperature is stable, turn on the pressurization system 18, hold the spray gun handle 9, and point the spray head 10 at the target object to start spraying. After the spray is finished, adjust the pressurization system 18 and the temperature adjustment knob. 25, the voltage adjustment knob 3, the airflow adjustment knob 4 to the minimum, and finally turn off the power switch 2.
  • control temperature range is about 50-400 degrees Celsius
  • air flow adjustment knob 4 flow rate is about 5-20 liters / minute
  • voltage adjustment knob 3 controllable voltage up to 30 kV
  • the hot-dissolved electrospinning of gelatin/polyethylene glycol is taken as an example to illustrate the process of hot-dissolved electrospinning as follows:
  • Adjust the temperature adjustment knob 25 (temperature setting is 60 °C), airflow adjustment knob 4 (flow rate is 10 liters/min), voltage adjustment knob 3 (voltage is set to 20 kV); after the temperature is stable, turn on Pressing system 18, holding the handle of the spray gun 9, the spray head 10 is aimed at the target object to start spraying, and the spraying time is 1 minute, and the gelatin/polyethylene glycol fiber is gradually deposited into a film. After spraying, adjust the pressurization system 18, temperature adjustment knob 25, voltage adjustment knob 3, airflow adjustment knob 4 to the minimum, and finally turn off the power switch 2.
  • Figure 6 shows an optical photograph of (a) gelatin/polyethylene glycol electrospun fibers and (b) sodium alginate/polyvinyl alcohol electrospun fibers prepared by a hot-dissolving electrospinning apparatus.
  • Example 3 Melt electrospinning device and its application
  • the main structure of the molten electrospinning apparatus of the present embodiment has an addition system 27, a melting heating system 28 and a hydraulic system in addition to the basic arrangement described above for the solventless in situ electrospinning apparatus. 30.
  • the feed system 27 includes a feed hopper 27-1, a feed rate adjusting rod 27-2, a feed conveying passage 27-3, and a screen 27-6.
  • the feed hopper 27-1 is provided with a dryer 27-5 (see Fig. 9), which can dehumidify the raw material; the feed speed can be controlled by adjusting the feed speed adjusting rod 27-2; the feeding system 27 passes
  • the channel coupling tube 27-4 is coupled to the melt heating system 28 to continuously supply the material to the apparatus for continuous spraying.
  • the screen 27-6 is capable of filtering out relatively large particles or agglomeration due to electrostatic agglomeration.
  • the pipeline of the feeding system can be connected to the ground wire to make the current flow, or an antistatic agent such as talc powder or micro-silica gel can be added before the material is sieved. And other materials such as sodium decyl sulfate.
  • the hydraulic system 30 employs a gear pump structure including a cylinder, an oil pipe 30-3, a gear pump 30-1, a rotary electric machine 30-2, a hydraulic electric system 26, and the like, see Figs. 7 and 9.
  • the gear pump can change the volume of the sealing cylinder to change the pressure, and the hydraulic oil is sucked from the sealing cylinder through the oil pipe 30-3, thereby converting the pressure energy generated by the hydraulic oil into mechanical energy acting on the piston 30-4, so that the piston 30- 4
  • the force at both ends is unbalanced, and the driving piston 30-4 moves forward. Since the piston 30-4 is fixed on the rotating screw 32, the rotating screw 32 is driven to move forward, so that the melt is continuously injected from the nozzle. Inlet tube 6.
  • energy is supplied by the rotary electric machine 30-2 and the torque and rotational speed of the screw 32 are controlled to transport the material forward from the feed system 27.
  • the melt heating system 28 includes a melt chamber, and a heating coil-II 31 surrounding the melt chamber, a rotating screw 32 in the melt chamber, and a junction between the melt chamber and the inlet tube 8. Filter membrane 33.
  • the rotation of the rotary electric machine 30-2 drives the rotary screw 32 to rotate, so that the melt is forced forward by the pressure;
  • the control box 1 has an adjustment knob 25 for controlling the heating temperature and a screw rotation speed adjustment knob 29.
  • the screw speed adjustment knob 29 allows precise control of the melt extrusion flow to control the stability of the spray flow.
  • the melt heating system 28 When spraying, first turn on the power switch 2, adjust the temperature adjustment knob 25 (control temperature range 50-400 ° C), the melt heating system 28 will preheat the melt chamber.
  • the hydraulic system 30 is turned on, the raw material is added through the feeding system 27, the feed speed adjusting rod 27-2 is adjusted to control the feeding speed, and the screw speed adjusting knob 29 is adjusted (the controllable speed range is 0.5-10 rpm), until the raw material is sufficient
  • the melt is extruded out of the melt chamber under the push of the hydraulic system 30, and after filtering the impurity particles through the filter membrane, the nozzle is injected into the inlet pipe 8 to adjust the voltage adjustment knob 3 (the controllable voltage is up to 60) KV), air flow adjustment knob 4 (controllable flow range 5-20 l / min), hand gun handle 9, the nozzle 10 is aimed at the target object to start spraying.
  • the above parameters can be adjusted to the optimal parameters as needed.
  • the PCL has completely changed to a molten state, and finally the melt is conveyed to the liquid storage zone, and the high temperature melt is pushed out of the nozzle 23 into the liquid inlet pipe 8 by the hydraulic system 30.
  • the screw speed is adjusted.
  • the knob 29 needs to be appropriately adjusted until the spinning can be smoothly performed continuously.
  • Example 4 Coaxial electrospinning device
  • the coaxial electrospinning device of the embodiment includes: a control box 1, an inner layer liquid supply system 40, an outer layer liquid supply system 41, an inlet pipe and a heat insulating sleeve 6, and a gas flow conduit 15, High-voltage wire 14, hand-held spray gun handle 9, coaxial spinning nozzle 39.
  • the coaxial spinning nozzle 39 includes an inner needle and an outer needle, and is respectively connected to two inlet pipes, and the other ends of the two inlet pipes are respectively connected to the inner liquid supply system 40 and the outer liquid supply system 41.
  • Both the inner layer supply system 40 and the outer layer supply system 41 are provided with heating and holding systems, and the same or different static spinning methods can be selected as needed. Under the continuous advancement of the syringe pump propulsion units 42, 43, the liquid medicine is gradually ejected from the nozzle into the inlet pipe, thereby being ejected from the coaxial spinning nozzle 39 to form a coaxial structure.
  • the inner layer liquid supply system 40 is prepared by hot solution electrospinning
  • the outer layer liquid supply system 41 is prepared by solventless electrospinning.
  • spraying first add the two required raw materials to the syringe pump, turn on the power switch 2, and adjust the temperature adjustment knob 25, the airflow adjustment knob 4, the voltage adjustment knob 3, and the injection pump flow rate adjustment knob 5, respectively.
  • hand gun handle 9 aiming at the target object to start spraying, when the inner and outer layers of liquid flow out from the respective inlet tubes at a suitable flow rate, the outer spinning liquid covers the inner layer of spinning liquid to form a
  • the multi-fluid composite fine stream is ejected from the coaxial spinning nozzle and deposited as a multi-component composite coaxial fiber membrane.
  • the present invention also designs a parallel dual nozzle and a separate dual nozzle.
  • the parallel type double nozzle is shown in FIG. 11 by simultaneously jetting two parallel side-by-side needles 44, and the parallel jets are fused during the spraying process, thereby obtaining a bundle structure in which a plurality of fibers are connected to each other.
  • the split double nozzle is as shown in FIG. 12, and further increases the distance between the two needles on the basis of the parallel double nozzle to become a separate needle 45.
  • each needle is connected to the liquid supply system through a liquid inlet pipe to pass the corresponding fluid, and each needle is connected to the positive electrode of the high-voltage power source, and the spraying process is similar to that of coaxial electrospinning.
  • Suitable materials include medical natural polymer materials, synthetic polymer materials, organic and inorganic small molecules, ceramics, metals, etc.; optional materials include liquids, gases, solid powders, gels, etc.; Or multiple composites.
  • the above-mentioned side-by-side, separate double-nozzle and multi-head arrangement devices are also suitable for the compounding of dual active components and multiple active components, such as fibrin glue (components A and B), silicone rubber (components A and B). ) and gel (two-component or multi-component) and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

一种气流引导式定向原位静电喷涂装置,包括控制箱、供液系统、进液管、喷枪手柄、喷头、气流导管和高压导线,控制箱内设有高压电源和气泵,其中:喷头设置在喷枪手柄前端,在喷头内设有金属针头;金属针头通过进液管与供液系统相连通,其管壁则通过高压导线与高压电源的正级相连接;在喷头内,金属针头的外壁和喷头的内壁之间形成气流通道,该气流通道通过喷枪手柄与气流导管相连通,而气流导管又与气泵连接;待喷涂材料由供系统提供,通过进液管进入金属针头中,由控制箱控制高压电源的电压和气泵的气流大小,实现气流引导的定向原位静电喷涂。该装置可广泛应用于医疗止血、战伤急救、组织工程和美容化妆品、工业喷涂领域。

Description

一种气流引导式定向原位静电喷涂装置及其应用
技术领域
本发明涉及医疗器材技术领域, 特别涉及一种利用静电纺丝技术结合气流引导来实现药 液及医用生物材料直接在目标处定点、 定向、 原位精确喷涂的气流引导式定向原位静电喷涂 装置。 背景技术
静电喷涂是一种使带大量静电荷的待喷涂溶液在高压静电电场力的作用下定向运动, 形 成带电射流, 从而实现溶液在目标物体表面涂覆的方法。 静电喷涂主要有静电喷雾和静电纺 丝两种形式。 其中, 静电喷雾主要用于对水或水溶液或油漆等无成丝性液体的雾化, 主要用 于农作物喷雾施药和汽车、 家电、 仪表的外壳喷漆; 静电纺丝是高分子流体静电雾化的特殊 形式, 利用易挥发的有机溶剂配制具有一定黏度的溶液, 通过高压静电发生器产生静电场, 使溶液在喷口处雾化分裂出的物质不是微小液滴, 而是聚合物微小射流, 射流在空气中经劈 裂、 拉伸、 溶剂挥发过程, 最终固化成纤维, 沉积在目标收集极上。
静电喷涂过程中, 由于电场线的发散性分布, 以及带有大量同种静电荷雾化液滴或电纺 纤维的相互排斥作用, 会使雾化液滴或纤维在目标物体上产生很大的喷涂区域, 甚至会涂覆 至目标物体的背面, 即产生环包效应。 当静电喷涂技术用于医疗领域时, 环包效应会导致涂 覆不精确, 药液涂覆到不需要的区域, 不仅造成药物的浪费, 而且当创面位于体腔内深部时, 带电的药物大部分会被吸附到离喷口更近的脏器表面上, 产生法拉第笼效应, 无法对创面进 行有效涂覆。 环包效应和法拉第笼效应阻碍了静电喷涂技术在医疗领域的发展。
随着生物敷料的发展和需要, 敷料材料和结构必须适用人体组织修复的需要。 通常生物 医用敷料可以分为体外敷料和体内敷料。 其中, 体外敷料主要包括烧烫伤敷料、 止血消炎敷 料、 绷带等。 体内敷料主要指手术隔离膜, 特别是应用于心胸血管器官防粘连隔离的手术。 静电纺丝作为一种简单、 高效的纳米纤维膜制备方法, 已被广泛地研究开发和应用。 在医疗 止血方面, 静电纺丝纳米纤维膜既具有透气性能又能提供有效的屏障保护结构, 其孔径分布 可以控制到足够小以阻挡细菌的入侵, 并且在湿润的伤口表面可以均匀黏附防止脱水, 因而 非常适合用作皮肤敷料和人工皮肤。 此外, 电纺纤维膜还具有超高的比表面积, 可以大量携 载包括抗菌药物在内的多种有益成分, 有利于促进受损部位的愈合和组织再生。在美容行业, 电纺纤维还可制作成面膜, 通过电纺将有益成分添加到纤维中, 纤维膜不仅具有优异吸附、 清洁作用, 同时与皮肤接触可以将有益因子稳定均匀地传递给人体, 利于人体组织的吸收和 运输。
静电纺丝可分为溶液静电纺丝和熔体静电纺丝。 相对于溶液静电纺丝, 熔体静电纺丝无 需溶剂、 成本低、 生产效率高, 适用于一些室温下没有合适溶剂的聚合物。 但是对于熔体电 纺, 聚合物熔体黏度高、 导电性差, 通常需要比较高的电场强度才能纺丝, 而且纺丝过程中 射流遇冷迅速固化, 鞭动过程受到抑制, 导致纤维直径多在微米级别。 Dalton等(Dalton et al, Biomacromolecules, 2006, 7:686) 以纤维原细胞作为目标接收物体, 将聚合物纤维直接熔融电 纺到细胞上, 进行细胞培养后发现没有引起细胞死亡, 而且纤维原细胞沿着电纺纤维轴向生 长。 实验证明, 熔体纺丝具有安全无毒的特性, 可应用于生物医学领域。
α-氰基丙烯酸酯医用胶, 已被美国食品和药物管理局批准应用于人体止血。 但是, 直接 将医用胶普通雾化或涂抹于伤口的给药方式, 形成的止血膜结合力差、 不均匀、 易破裂, 特 别是对于比较复杂、 面积较大的伤口, 不能达到可靠止血目的, 甚至发生严重的术后创面渗 血和出血。 此外, 将医用胶喷涂于伤口的方式也存在一些弊端, 特别是腹腔内手术, 喷涂过 程可控性差, 容易导致周围组织广泛的严重黏连, 术后引起肠梗阻, 再次手术极其困难。 在 先申请 CN 201320741232.3设计了一种气流引导式定向原位静电喷涂装置, 可以将 α-氰基丙 烯酸酯医用胶电纺成微纳米纤维, 并在气流导向下精确均匀沉积到伤口表面形成致密薄膜, 从而在几秒至十几秒内实现迅速止血, 让手术变得更快更安全。 发明内容
本发明的目的在于, 提供一种气流引导式定向原位静电喷涂装置, 从而克服上述静电喷 涂技术在医疗领域应用的缺点, 寻求一种能够用于各种药物及医用生物材料直接在人体创面 目标处定点、 定向、 原位精确喷涂的方法。 所述药物及医用生物材料包括粉末、 双组分或多 组分凝胶, 可实现液体、 气体、 固体单一或多种复合同时喷涂。
本发明的技术方案是:
一种气流引导式定向原位静电喷涂装置, 包括控制箱、 供液系统、 进液管、 喷枪手柄、 喷头、 气流导管和高压导线, 所述控制箱内设有高压电源和气泵, 其中: 所述喷头设置在喷 枪手柄前端, 在喷头内设有金属针头; 该金属针头通过进液管与供液系统相连通; 该金属针 头的管壁则通过高压导线与控制箱内的高压电源的正极相连接; 在喷头内, 金属针头的外壁 和喷头的内壁之间形成的空间为气流通道, 该气流通道通过喷枪手柄与气流导管相连通, 而 气流导管又与气泵连接; 待喷涂材料由供液系统提供, 通过进液管进入金属针头, 由控制箱 控制高压电源的电压和气泵的气流大小, 实现气流引导的定向原位静电喷涂。
上述静电喷涂装置还拥有消毒灭菌装置, 用于对待喷涂材料 (特别是药液) 进行过滤、 消毒和杀菌, 以确保药液的安全和药用功能。
上述静电喷涂装置, 进一步可以包括一保温套管, 所述进液管套装在该保温套管内。 上述喷头上还设有集成传感系统, 包括距离传感系统、温湿度传感系统及高速成像系统, 分别具备独立的测量喷头与处理目标物距离、 周围环境温湿度监测、 静电喷涂过程高速成像 的功能, 其各自工作时互不干扰, 统一由计算机收集处理数据。 这里的计算机作为辅助系统 可实时监控静电喷涂的工作状态和动态参数, 对喷涂时的数据收集与处理以及及时调整更有 利的工艺参数有重要的帮助。
优选的, 所述进液管为聚四氟乙烯管; 所述气流导管为硅胶气流导管; 所述保温套管由 聚氯乙烯外层和石棉保温内层构成。 在上述气流引导式定向原位静电喷涂装置的基础上, 本发明从不同角度出发设计了三种 不同类型的静电喷涂装置: 1. 无溶剂原位静电喷涂装置, 该装置利用气流引导喷涂药物液滴 沿气流方向运动, 从而实现药物在目标处定点、 定向、 原位精确沉积, 优先选择的喷涂材料 包括在一定条件下具有特殊 "血效应"和自组装特性的材料, 如 α-氰基丙烯酸正丁酯、 α-氰 基丙烯酸正辛酯、 聚氨酯丙烯酸酯和多肽自组装材料等; 2. 热溶静电纺丝装置, 该装置主要 是利用水、 乙醇或丙酮等医用溶剂而实施的纺丝过程, 可实现药液加热的静电纺丝装置, 在 优选实施方案中可选择的喷涂材料包括天然高分子材料, 如明胶、 透明质酸、 海藻酸钠、 壳 聚糖和纤维素乙酸酯、 丝素蛋白、 胶原蛋白等, 以及其他功能材料, 如聚乙二醇、 聚乙烯醇、 聚甲基丙烯酸羟乙酯和水溶性多肽(如聚赖氨酸、聚天冬氨酸等), 以及上述的两种或多种材 料的混合物; 3. 熔融静电纺丝装置, 无需溶剂, 而是利用聚合物本体的适宜熔点性质, 利用 熔融加热设备使聚合物保持在熔融状态下但不发生降解从而实施的静电纺丝, 在优选实施方 案中可选择的喷涂材料包括但不限于:聚酯类,如聚乳酸(PLA)、聚乳酸-羟基乙酸(PLGA)、 聚己内酯 (PCL)、 聚乙醇酸 (PGA)、 聚羟基垸酸酯 (PHA)、 聚氨基甲酸酯、 芳香族聚酯、 聚酯酰胺、 聚丙烯 (PP)、 聚对苯二甲酸乙二醇酯 (PET)、 聚萘二甲酸乙二醇酯等; 脂肪族 聚酸酐类, 如聚癸二酸酐、 聚己二酸酐、 聚十二酸酐等; 以及上述材料与活性添加剂如聚环 氧乙垸 (PEO)、 聚乙二醇 (PEG)、 聚乙烯醇 (PVA) 的两种或多种的混合物。
第一种: 无溶剂原位静电喷涂装置, 是由注射泵作为上述供液系统, 注射泵可设于控制 箱内, 待喷涂材料加入到注射泵中, 由控制箱控制注射泵的流速。
所述控制箱上设置有用来插接进液管的插口、 用来插接气流导管的插口、 用来插接连接 高压电源正极与喷头的高压导线的插口、 用来调节高压电源电压大小的电压调节旋钮、 用来 调节气泵气流大小的气流调节旋钮、 用来调节注射泵流速大小的注射泵流速调节旋钮。 所述 控制箱内的高压电源的负极接地。
根据喷涂溶液性质的不同, 上述无溶剂原位静电喷涂装置可以同时具有定向原位静电喷 雾和静电纺丝两种功能。 第二种: 热溶纺丝装置, 是由贮液器及其温控系统、 加压系统和电动搅拌系统作为所述 供液系统, 将待喷涂材料与溶剂加入到贮液器中, 通过温控系统和电动搅拌系统使待喷涂材 料溶解充分, 溶液温度维持恒定均匀, 待喷涂溶液通过加压系统挤入进液管, 直至注入金属 针头。
进一步的, 所述温控系统可以包括围绕耐贮液器的加热螺旋线圈和温度传感器。 所述加 热螺旋线圈两端通过导线连接控制箱, 由控制箱上的温度调节旋钮调控, 而温度传感器实时 监控贮液器中溶液的当前温度, 通过反馈和自动调节实现温度恒定功能。
所述电动搅拌系统可以由小型旋转电机和与之相连的搅拌头组成, 其中搅拌头位于贮液 器内, 浸入加热保温待喷涂溶液中, 通过搅拌保持贮液器中溶液受热均匀。
所述加压系统是利用气动隔膜泵, 采用压缩气体为动力源, 来给贮液器提供足够的外界 压力从而使溶液从喷嘴挤出, 喷涂速度可由提供的外压大小来主动调节。 所选压缩气体可以 是氮气、 氩气、 二氧化碳、 空气等。
所述控制箱上设置有用来插接气流导管的插口、 用来插接连接高压电源正极与喷头的高 压导线的插口、 用来调节高压电源电压大小的电压调节旋钮、 用来调节气泵气流大小的气流 调节旋钮、 用来调节温控系统温度高低的温度调节旋钮。 所述控制箱内的高压电源的负极接 地。
上述热溶纺丝装置适用于需要用水、 乙醇或丙酮等医用溶剂进行溶解, 进而实施静电纺 丝的材料。 第三种: 熔融纺丝装置, 是由进料系统、 熔融加热系统和液压系统作为供液系统, 其中 液压系统为动力系统, 由进料系统将待喷涂材料送入熔融加热系统的熔体腔中, 通过熔融加 热系统熔融后, 在液压系统的推动下进入进液管, 再注入金属针头。 进一步的, 所述进料系统包括进料斗、 进料速度调节杆、 进料输送通道和筛网, 其中: 筛网设置在进料斗出口处, 能够过滤掉颗粒比较大的物料或因静电团聚而引起的结块; 进料 速度调节杆设置在进料斗出口处, 控制进料速度; 进料输送通道连通熔融加热系统。 所述进 料斗内还可设置干燥器, 为原料除湿。 所述进料斗内还可增加材料的辐照消毒装置, 通过紫 外线的杀菌作用, 使菌体蛋白发生光解、 变性, 直至死亡, 达到为医用生物材料消毒的目的。 所述辐照装置采用 6QCo钴源, 辐射消毒剂量为 25kGy即可满足医疗需求。
所述液压系统采用齿轮泵结构, 包括油缸、 油管、 齿轮泵、 旋转电机、 液压电器系统等。 所述齿轮泵能够改变密封油缸的体积进而改变压强, 通过油管从密封油缸内吸入液压油, 进 而将液压油产生的压力能转换为机械能作用在活塞上, 使得活塞两端作用力不平衡, 驱动活 塞向前运动, 由于活塞固定在旋转螺杆上, 所以会带动旋转螺杆向前运动, 使熔体持续不断 地从喷嘴挤出注入进液管。 同时通过旋转电机提供能量并控制螺杆的扭矩和转速, 使物料从 进料系统向前输送。
所述熔融加热系统包括熔体腔, 围绕熔体腔的加热线圈, 熔体腔内的旋转螺杆, 以及设 置在熔体腔与进液管连接处的过滤网膜和喷嘴。在加热线圈的加热下, 熔体腔内的物料熔融, 旋转电机带动旋转螺杆转动, 同时在液压系统的推动下使熔体受到压力向前挤出, 经过滤网 膜滤除杂质后, 熔体经喷嘴注入进液管。 其中, 在熔体熔融挤出过程中, 将经历 3个温区: 固体输送区、 熔融区和熔体输送区。 固体输送区是进行固态高分子物料的输送; 熔融区是将 压缩物料并使物料受热熔融; 熔体输送区是对熔融物料进行混合, 并定量向喷嘴输送。 每段 温区均需热电偶进行温度的监控, 也可采用腔内埋入探针的方法测量熔体本身的温度, 保证 熔体温度的精确控制。 此外, 在喷嘴处, 还设有过滤网膜, 以用来除去大于几微米的未熔融 颗粒或杂质。
所述控制箱上设置有用来插接气流导管的插口、 用来插接连接高压电源正极与喷头的高 压导线的插口、 用来调节高压电源电压大小的电压调节旋钮、 用来调节气泵气流大小的气流 调节旋钮、 用来控制熔融加热系统加热线圈温度的调节旋钮, 以及用来控制旋转螺杆转速的 调节旋钮。 所述控制箱内的高压电源的负极接地。
上述熔融纺丝装置适用于无需溶剂的适宜熔点生物材料(如 PLA、 PLGA、 PCL、聚酸酐 等) 在熔融状态下进行静电纺丝, 达到原位沉积。 熔体挤出所需加热温度和螺杆挤出速度与 高分子物料的类型、 分子量和熔体本身流动性有关。 保持适宜的温度, 物料熔体可拥有优异 的流变性, 更利于熔体的挤出, 同时能够避免温度过高造成的物料降解。 作为对上述方案的改进, 本发明还提出了一种同轴静电纺丝装置。 所述同轴静电纺丝装 置是对上述三种静电纺丝装置的合理集成和综合应用, 主要改进方面在于喷头。 所述装置采 用同轴纺丝喷头, 在喷头内设置外部针头和内部针头, 它们分别与两个进液管相连, 进液管 的另一端分别连接到内、 外层供液系统上, 这两种供液系统可以分别采用无溶剂静电喷涂、 热溶静电纺丝和熔融静电纺丝的一种或几种制备方法, 进而同时电纺两种纺丝材料形成同轴 结构。 根据需求的不同, 可实现不同功能材料的复合, 如 α-氰基丙烯酸正辛酯作为外层止血 材料、 PLGA作为内层改性材料的同轴结构纤维可同时具备止血功能和良好的韧性, 保证涂 覆材料不会轻易脱落。 同轴电纺装置突破了纺丝材料种类的限制可将一些难以直接电纺的聚 合物电纺成纤维膜。
作为对上述三种装置的改进, 本发明还设计了并列式双喷头和分离式双喷头。 所述并列 式双喷头是通过将两个紧密靠在一起的并列式针头同时进行射流激发, 在喷涂过程中平行射 流融合, 得到多根纤维相互连接的束状结构。 所述分离式双喷头是在并列式双喷头的基础上 进一步增大针头间的距离而成。 每个针头通过进液管可连接相同或不同的供液系统。 通过对 不同纺丝组分的调控, 可使喷涂的纤维膜兼具各组分的功能特性, 从而拥有多元化止血功能。 喷涂时, 可同时喷涂两种医用生物材料成复合结构纤维膜或多种医用生物材料依次喷涂成多 层结构纤维膜, 例如利用分离式双喷头依次在创口表面喷涂透明质酸与 PLGA形成双层纤维 膜, 外层 PLGA韧性纤维膜能够改善内层透明质酸纤维膜的脆性, 更加有效的实现止血、 抑 菌和组织器官防粘连等功能的复合。通过进一步增加并列式或分离式针头的数量(多于两个), 还可以制备三组分及更多组分的纳米纤维膜。 与现有技术相比, 本发明的有益效果是:
1 ) 本发明用来喷涂的喷头与金属针头之间形成气流通道, 通过气流导管与气泵相连通, 气流可以引导待喷涂药液沿气流方向运动, 起到定向功能, 还可以通过削弱环包效应和法拉 第笼效应起到束缚作用, 从而实现定点定向精确喷涂。
2) 由于静电吸附作用, 聚合物熔体带有大量静电荷, 只需将药液直接喷洒在创面, 即可 与创面形成牢固的结合, 形成稳定而有效的保护层, 并且喷涂药液不会发生飞溅, 利用率高, 治疗效果更好。
3 ) 本发明具有过滤、 消毒和灭菌装置, 可以有效保护创面不受感染。 此外, 电纺丝纤维 膜不仅具有良好的透气性能, 还可以滤去空气中的几乎所有的细菌和微尘, 避免伤口发生感 染, 使其在医疗止血、 急救上的应用更有优势。 经过处理的创口往往愈合良好, 不留疤痕。 4) 熔体纺丝装置将加热装置、 贮液装置、 输送装置、 喷头装置、 保温系统集成一体化, 提高了喷涂的稳定性和连续性, 旋转螺杆挤压装置可以持续有效地将熔体挤出, 提高了熔融 纺丝的效率。 喷涂的纤维膜同时具有较高温度, 能够适度烫伤创面更利于凝血、 止血。
5 )本发明可以满足对单一材料或复合材料特殊结构、特殊性能纳米纤维膜的需求, 通过 改进成更为复杂的针头形式如同轴式、 并列式、 多针头体系等实现粉末、 气体、 液体等单一 或多种不同物化状态形式的加工。
本发明的装置具有定向、 实时、 原位的微纳米喷涂特点, 所制备的微纳米材料适用于各 种用途: 医疗止血方面如临床手术止血、 烧烫伤敷料、 止血消炎灭菌敷料、 医用绷带、 手术 缝合线、 血管器官防粘连手术隔离膜; 组织工程方面如组织支架、 组织填充物、 人工皮肤、 用于皮肤再生的伤口敷料、 药物装载和定向控制释放; 化妆品领域如面膜的制作和皮肤的护 理。 特别的, 本发明开创了粘附止血材料的潜能基础研究的新途径, 可解决手术安全与术后 康复控制创面出血难题; 创新的理念与外科止血技术的实时结合, 进行可靠止血技术的应用 与治疗。 利用本发明的装置同时可以改变目前传统医用材料的应用方式, 可充分保障生物医 学材料的粘附力、 安全性, 实现实质性脏器连续完整性的重建。 附图说明
图 1为实施例 1的无溶剂原位静电纺丝装置的结构示意图。
图 2为实施例 1的两种静电喷涂状态示意图。
图 3为实施例 1的定向原位沉积原理示意图。
图 4为实施例 1的电纺纤维的光学照片 (a) 和在水面聚合后纤维膜的光学照片 (b)。 图 5为实施例 2的热溶纺丝装置结构示意图。
图 6为实施例 2制备的不同电纺纤维光学照片,其中(a)为明胶 /聚乙二醇电纺纤维,(b ) 为海藻酸钠 /聚乙烯醇电纺纤维。
图 7为实施例 3的熔融纺丝装置结构示意图。
图 8为实施例 3的熔融纺丝装置的进料系统结构示意图。
图 9为实施例 3的熔融纺丝装置的熔融加热系统结构示意图。
图 10为实施例 4的同轴静电纺丝装置结构示意图。
图 11为本实用新型的并列式双喷头结构示意图。
图 12为本实用新型的分离式双喷头结构示意图。
其中: 1 : 控制箱; 1-1 : 消毒灭菌装置; 1-2: 注射泵; 1-3 : 气泵; 1-4: 高压电源; 2: 电源开关; 3 : 电压调节旋钮; 4: 气流调节旋钮; 5 : 注射泵流速调节旋钮; 6: 保温套管; 7: 金属针头; 8: 进液管; 9: 喷枪手柄; 10: 可旋转式喷头; 11 : 集成传感系统; 11-1 : 计算 机辅助系统; 12: 气流引导下丝束; 13 : 沉积创面; 14: 高压导线; 15 : 气流管道; 16: 温 度传感器; 17: 电动搅拌系统; 18: 加压系统; 19: 腔塞; 20: 加热线圈 -I; 21: 支撑架; 22: 耐高温贮液器; 23 : 喷嘴; 24: 加热线圈导线; 25 : 温度调节旋钮; 26: 液压电器系统; 27: 进料系统; 27-1 : 进料斗; 27-2: 进料速度调节杆; 27-3 : 进料输送通道; 27-4: 通道联 结管; 27-5 : 干燥器; 27-6: 筛网; 28: 熔融加热系统; 29: 螺杆转速调节旋钮; 30: 液压 系统; 30-1 : 齿轮泵; 30-2: 旋转电机; 30-3 : 油管; 30-4: 活塞; 31 : 加热线圈 -II; 32: 旋 转螺杆; 33 : 过滤网膜; 34: 固体输送区; 35 : 冷却料斗区; 36: 迟滞区; 37: 熔融区; 38: 熔体输送区; 39: 同轴纺丝喷头; 40: 内层供液系统; 41 : 外层供液系统; 42: 内层供液系 统的注射泵推进装置; 43 : 外层供液系统的注射泵推进装置; 44: 并列式针头; 45 : 分离式 针头。 具体实施方式
下面结合附图, 通过实施例对本发明作进一步详细说明。
实施例 1 : 无溶剂原位静电纺丝装置及其应用
如图 1所示, 本实施例的无溶剂原位静电纺丝装置包括: 控制箱 1、 保温套管 6、 进液管 8、 喷枪手柄 9、 可旋转式喷头 10、 高压导线 14和气流导管 15, 所述控制箱 1内装有消毒灭 菌装置 1-1、注射泵 1-2、气泵 1-3和高压电源 1-4; 可旋转式喷头 10设置在喷枪手柄 9前端; 进液管 8套装在保温套管 6内, 并穿过喷枪手柄 9与设置在喷头 10内的金属针头 7相连接; 气流导管 15—端连接气泵 1-3, 另一端接在喷枪手柄 9的末端。 所述控制箱 1上还设有电源 开关 2、 用来调节各项参数大小的电压调节旋钮 3、 气流调节旋钮 4、 注射泵流速调节旋钮 5 以及位于其上方显示参数的显示屏。 所述消毒灭菌装置 1-1 可以对待喷涂药液进行过滤、 消 毒和杀菌, 以确保药液的安全和药用功能; 所述注射泵 1-2可通过注射泵流速调节旋钮 5调 节进液速度, 进而控制喷涂的速度。 设置在喷头 10内, 并与进液管 8相连接的金属针头 7的 管腔与高压导线 14相连, 高压导线 14另一端与高压电源正极相连接; 所述喷头 10内壁与金 属毛细管(金属针头 7)外壁之间形成的环形管道空间为气流通道, 气泵 1-3产生具有一定压 力的气流通过气流导管 15与该气流通道相连通, 使气泵 1-3中的气流可以从喷头 10内的气 流通道喷出。
喷涂时, 首先将喷涂药液加入到注射泵 1-2内, 打开电源开关 2, 先后调节气流调节旋钮 4 (流量约为 5-20升 /分钟), 电压调节旋钮 3 (可控电压最高为 30千伏), 注射泵流速调节旋 钮 5 (流量约为 0.05-0.5毫升 /分钟), 可根据需要分别调至不同的参数; 手持喷枪手柄 9, 将 喷头 10对准目标物体开始喷涂, 根据溶液性质的不同, 本装置具有原位静电纺丝喷涂 (图 2 左) 和静电喷雾喷涂 (图 2右) 两种功能, 喷涂结束后, 先后调节注射泵流速调节旋钮 5、 电压调节旋钮 3、 气流调节旋钮 4至最小, 最后关闭电源开关 2。
以 α-氰基丙烯酸正辛酯为例说明无溶剂原位静电喷涂的过程如下:
首先将 α-氰基丙烯酸正辛酯加入到注射泵 1-2内, 打开电源开关 2, 先后调节气流调节 旋钮 4 (流量为 10升 /分钟), 电压调节旋钮 3 (电压为 8千伏), 注射泵流速调节旋钮 5 (流 量为 0.1毫升 /分钟); 手持喷枪手柄 9,将喷头 10对准创面部位 13开始喷涂, 喷涂距离 5cm, 喷涂 20秒后, 观察到在创面部位成功沉积一层 α-氰基丙烯酸正辛酯纤维膜, 喷涂结束。先后 调节注射泵流速调节旋钮 5、 电压调节旋钮 3、气流调节旋钮 4至最小,最后关闭电源开关 2。
本气流引导式原位静电喷涂装置在气流辅助下, 可以实现沉积范围和沉积地点的精确控 制。 其定向原位沉积原理如图 3所示, 以培养皿中的水面作为收集衬底, 打开气泵后, 气流 通过喷头吹向水面, 水在气流挤压下向周围流动形成一小孔洞, 表明气流辅助不仅可以帮助 实现精确喷涂和定向沉积, 还能够有效清洁收集衬底的表面。 当打开高压电源后, α-氰基丙 烯酸正辛酯电纺纤维沉积在孔洞周围的水面上并且迅速聚合形成一层致密的固态自组装膜。 喷涂完成后, 由于致密电纺纤维膜的存在会阻止水的渗透和回流使孔洞保持原状。 如图 4所 示 (a) 电纺纤维的光学照片和 (b ) 在水面聚合后纤维膜的光学照片。 实施例 2: 热溶静电纺丝装置及其应用
如图 5所示, 本实施例的热溶静电纺丝装置主体结构除了上述无溶剂原位静电纺丝装置 所述的基本设置之外, 还增加了一套温控系统、 加压系统 18和电动搅拌系统 17。 所述温控 系统包括加热线圈 -I 20、 温度传感器 16、 与控制箱相连接的加热线圈导线 24和控制箱上的 温度调节旋钮 25。 所述加热线圈 -1 20围绕在耐高温贮液器 22周围, 加热线圈 -1 20两端通过 加热线圈导线 24与控制箱 1连接,温度调节旋钮 25可调节所需加热温度,温度传感器 16可 实时监控当前温度, 通过反馈和自动调节实现温度恒定功能。所述电动搅拌系统 17包括小型 旋转电机和搅拌涡轮。 搅拌头浸入高温待喷涂溶液中, 通过搅拌保持溶液受热均匀。 加压系 统 18是利用气动隔膜泵, 采用压缩气体为动力源来给贮液器 22提供足够的压力, 从而使溶 液从喷嘴 23挤出, 喷涂速度可由提供的气压大小来调节。 所选压缩气体可以是氮气、 氩气、 空气、 二氧化碳等。
喷涂时, 首先将待喷涂溶液加入到贮液器 22内, 打开电源开关 2, 温控系统和电动搅拌 系统 17开始工作。先后调节温度调节旋钮 25 (可控温度范围约为 50-400摄氏度), 气流调节 旋钮 4 (流量约为 5-20升 /分钟), 电压调节旋钮 3 (可控电压最高为 30千伏), 可根据需要分 别调至不同的参数; 待温度稳定后, 开启加压系统 18, 手持喷枪手柄 9, 将喷头 10对准目标 物体开始喷涂, 喷涂结束后, 先后调节加压系统 18、 温度调节旋钮 25、 电压调节旋钮 3、 气 流调节旋钮 4至最小, 最后关闭电源开关 2。
以明胶 /聚乙二醇的热溶静电纺丝为例说明热溶静电纺丝的过程如下:
首先称取 4g明胶和 0.5g聚乙二醇与 10g去离子水混合, 先在室温下静置 30分钟, 然后 在 60°C水浴中加热搅拌 2小时至均一透明状态, 得前驱体溶液。 取适量前驱体溶液注入到贮 液器 22中, 打开电源开关 2, 温控系统和电动搅拌系统 17开始工作。 先后调节温度调节旋 钮 25 (温度设定为 60°C ), 气流调节旋钮 4 (流量为 10升 /分钟), 电压调节旋钮 3 (电压设 定为 20千伏); 待温度稳定后, 开启加压系统 18, 手持喷枪手柄 9, 将喷头 10对准目标物体 开始喷涂, 喷涂时间 1分钟, 明胶 /聚乙二醇纤维逐渐沉积成膜。 喷涂结束后, 先后调节加压 系统 18、 温度调节旋钮 25、 电压调节旋钮 3、 气流调节旋钮 4至最小, 最后关闭电源开关 2。
如图 6所示为利用热溶静电纺丝装置制备的 (a) 明胶 /聚乙二醇电纺纤维和 (b ) 海藻酸 钠 /聚乙烯醇电纺纤维光学照片。 实施例 3 : 熔融静电纺丝装置及其应用
如图 7所示, 本实施例的熔融静电纺丝装置主体结构除了上述无溶剂原位静电纺丝装置 所述的基本设置之外, 还增加了进料系统 27、 熔融加热系统 28和液压系统 30。
如图 8所示, 所述进料系统 27包括进料斗 27-1、 进料速度调节杆 27-2、 进料输送通道 27-3和筛网 27-6。 所述进料斗 27-1 内设有干燥器 27-5 (参见图 9), 可为原料除湿; 通过调 节进料速度调节杆 27-2可控制进料速度; 所述进料系统 27通过通道联结管 27-4与熔融加热 系统 28连接, 能够持续不断地为装置提供原料, 从而实现连续喷涂。 筛网 27-6能够过滤掉 颗粒比较大的物料或因静电团聚而引起的结块。 为防止粉体物料与管壁发生静电吸附或自身 团簇聚集, 可以将进料系统的管道接入地线, 使电流导出, 或者在物料筛分前添加防静电剂, 如滑石粉、 微粉硅胶、 十二垸基硫酸钠等辅料。 所述液压系统 30采用齿轮泵结构, 包括油缸、 油管 30-3、 齿轮泵 30-1、 旋转电机 30-2、 液压电器系统 26等, 参见图 7和图 9。 所述齿轮泵能够改变密封油缸的体积进而改变压强, 通过油管 30-3从密封油缸内吸入液压油, 进而将液压油产生的压力能转换为机械能作用在活 塞 30-4上, 使得活塞 30-4两端作用力不平衡, 驱动活塞 30-4向前运动, 由于活塞 30-4固定 在旋转螺杆 32上, 所以会带动旋转螺杆 32向前运动, 使熔体持续不断地从喷嘴挤出注入进 液管 6。 同时通过旋转电机 30-2提供能量并控制螺杆 32的扭矩和转速, 使物料从进料系统 27向前输送。
如图 9所示, 所述熔融加热系统 28包括熔体腔, 以及围绕熔体腔的加热线圈 -II 31、 熔 体腔内的旋转螺杆 32和设置在熔体腔与进液管 8连接处的过滤网膜 33。 所述旋转电机 30-2 的转动带动旋转螺杆 32转动, 从而使熔体受到压力向前挤出; 所述控制箱 1上有控制加热温 度的调节旋钮 25和螺杆转速调节旋钮 29。螺杆转速调节旋钮 29可使熔体挤出流量精确控制, 从而控制喷涂流量的稳定。
喷涂时, 首先打开电源开关 2, 调节温度调节旋钮 25 (可控温度范围 50-400°C ), 熔融加 热系统 28将对熔体腔进行预热。 开启液压系统 30, 将原料通过进料系统 27加入, 调节进料 速度调节杆 27-2控制进料速度, 调节螺杆转速调节旋钮 29 (可控转速范围 0.5-10转 /分钟), 待原料充分熔融后, 在液压系统 30的推动下熔体被挤压出熔体腔, 经过过滤网膜滤过杂质颗 粒后, 从喷嘴注入进液管 8, 调节电压调节旋钮 3 (可控电压最高为 60千伏), 气流调节旋钮 4 (可控流量范围 5-20升 /分钟), 手持喷枪手柄 9, 将喷头 10对准目标物体开始喷涂。 以上 参数均可根据需要调节至最佳参数。 喷涂结束后, 先后调节温度调节旋钮 25、 螺杆转速调节 旋钮 29、 电压调节旋钮 3、 气流调节旋钮 4至最小, 最后关闭电源开关 2和液压系统 30。
以聚己内酯 (PCL) 的熔融静电纺丝为例说明熔融静电纺丝的过程如下:
首先, 打开电源开关 2, 调节温度调节旋钮 25至 70°C, 预热 5分钟后, 开启液压系统 30, 从进料口 27-1加入 PCL固态原材料, 经过干燥器 27-5干燥后进入固体输送区 34进行预 热, 调节螺杆转速调节旋钮 29至 1转 /分钟, PCL在旋转螺杆 32的挤压压力下逐渐被送入熔 融区 37。 由于 PCL的熔点为 65 °C, 低于熔体腔的加热温度 70°C, 因此 PCL在此区逐渐成为 熔融状态。 熔融流体在旋转螺杆 32的挤压压力下到达熔体输送区 38。 在此区, PCL已完全 变为熔融状态, 最终熔体被输送到贮液区, 在液压系统 30的推动下高温熔体将被挤压出喷嘴 23到达进液管 8中。调节电压调节旋钮 3至 30千伏, 气流调节旋钮 4为 10升 /分钟, 手持喷 枪手柄 9, 对准目标物体开始喷涂, 当 PCL熔体在针头尖端处产生喷射细流后, 螺杆转速调 节旋钮 29需适当调小, 一直到纺丝可以顺利连续进行为止。 喷涂结束后, 先后调节温度调节 旋钮 25、 螺杆转速调节旋钮 29、 电压调节旋钮 3、 气流调节旋钮 4至最小, 最后关闭电源开 关 2和液压系统 30。 实施例 4: 同轴静电纺丝装置
如图 10所示, 本实施例的同轴静电纺丝装置包括: 控制箱 1、 内层供液系统 40、 外层供 液系统 41、 进液管及其保温套管 6、 气流导管 15、 高压导线 14、 手持式喷枪手柄 9、 同轴纺 丝喷头 39。 所述同轴纺丝喷头 39 内包括内部针头和外部针头, 并分别与两个进液管相连, 两个进液管另一端分别连接到内层供液系统 40、 外层供液系统 41 的喷嘴上。 所述内层供液 系统 40和外层供液系统 41均具备加热和保温系统, 可根据需要分别选择相同的或不同的静 电纺丝方法。 在注射泵推进装置 42、 43的持续推进下, 药液逐渐喷出喷嘴进入进液管, 从而 从同轴纺丝喷头 39喷出形成同轴结构。
以内层供液系统 40为热溶静电纺丝制备、外层供液系统 41为无溶剂静电纺丝制备为例。 喷涂时, 首先将两种所需原料加入到注射泵中, 打开电源开关 2, 先后调节温度调节旋钮 25、 气流调节旋钮 4、 电压调节旋钮 3、注射泵流速调节旋钮 5,可根据需要分别调至不同的参数; 手持喷枪手柄 9, 对准目标物体开始喷涂, 当内外层液体以合适的流速从各自的进液管中流 出, 外层纺丝液体包覆着内层纺丝液体, 形成一股多流体复合的细流从同轴纺丝喷头喷出, 沉积为多组分复合的同轴纤维膜。 喷涂结束后, 先后调节注射泵流速调节旋钮 5、 电压调节 旋钮 3、 气流调节旋钮 4、 温度调节旋钮 25至最小, 最后关闭电源开关 2。 除同轴纺丝喷头外, 本发明还设计了并列式双喷头和分离式双喷头。 所述并列式双喷头 如图 11所示, 是通过将两个紧密靠在一起的并列式针头 44同时进行射流激发, 在喷涂过程 中平行射流融合, 从而得到多根纤维相互连接的束状结构。 所述分离式双喷头如图 12所示, 是在并列式双喷头的基础上进一步增大两个针头间的距离而成为分离式针头 45, 在喷涂过程 中, 两股射流均有类似单针头体系电纺的鞭动不稳定性, 但是射流间会发生静电排斥作用, 因此必须调节好针头的空间排布和纺丝参数。 在双喷头体系中, 各个针头分别通过进液管与 供液系统相连以通入相应的流体, 各针头与高压电源正极相连, 喷涂过程与同轴静电纺丝类 似。
上述三种不同装置: 无溶剂原位静电纺丝装置、热溶静电纺丝装置和熔融静电纺丝装置, 所适用材料包括医用天然高分子材料、 合成高分子材料、 有机及无机小分子、 陶瓷、 金属等 材料; 可选择的物质形态涉及液体、 气体、 固体粉末、 凝胶等; 具体实施中可采用单一或多 项复合进行。
上述并列式、 分离式双喷头及多喷头排列装置同样适用于双活性组分及多活性组分的复 配使用, 如纤维蛋白胶 (A、 B组分)、 硅橡胶 (A、 B组分) 及凝胶 (双组分或多组分) 等。

Claims

权利要求书
1、一种气流引导式定向原位静电喷涂装置, 包括控制箱、供液系统、进液管、喷枪手柄、 喷头、 气流导管和高压导线, 所述控制箱内设有高压电源和气泵, 其中: 所述喷头设置在喷 枪手柄前端, 在喷头内设有金属针头; 该金属针头通过进液管与供液系统相连通; 金属针头 的管壁则通过高压导线与高压电源的正极相连接; 在喷头内, 金属针头的外壁和喷头的内壁 之间形成的空间为气流通道, 该气流通道通过喷枪手柄与气流导管相连通, 而气流导管又与 气泵连接; 待喷涂材料由供液系统提供, 通过进液管进入金属针头, 由控制箱控制高压电源 的电压和气泵的气流大小, 实现气流引导的定向原位静电喷涂。
2、 根据权利要求 1所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述气流引 导式定向原位静电喷涂装置还包括一对待喷涂材料进行消毒和杀菌的消毒灭菌装置。
3、 根据权利要求 1所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述气流引 导式定向原位静电喷涂装置还包括一保温套管, 所述进液管套装在该保温套管内。
4、 根据权利要求 1所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述喷头上 设置有集成传感系统, 该集成传感系统包括: 用于测量喷头与处理目标物距离的距离传感系 统, 用于监测周围环境温湿度的温湿度传感系统, 和, 用于对静电喷涂过程高速成像的高速 成像系统。
5、 根据权利要求 1〜4任一所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所 述供液系统为注射泵。
6、 根据权利要求 5所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述控制箱 上设置有用来插接进液管的插口、 用来插接气流导管的插口、 用来插接高压导线的插口、 用 来调节高压电源电压大小的调节旋钮、 用来调节气泵气流大小的调节旋钮和用来调节注射泵 流速大小的调节旋钮。
7、 根据权利要求 1〜4任一所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所 述供液系统由贮液器及其温控系统、 加压系统和电动搅拌系统组成。
8、 根据权利要求 7所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述温控系 统包括围绕贮液器的加热螺旋线圈和实时监控贮液器中溶液温度的温度传感器; 所述加热螺 旋线圈两端通过导线连接控制箱。
9、 根据权利要求 7所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述加压系 统利用气动隔膜泵, 采用压缩气体为动力源给贮液器提供足够的压力, 从而使贮液器中的物 料从贮液器喷嘴挤出。
10、 根据权利要求 7所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述电动 搅拌系统由小型旋转电机和与之相连的搅拌涡轮组成, 其中搅拌涡轮位于贮液器内。
11、 根据权利要求 7所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述控制 箱上设置有用来插接气流导管的插口、 用来插接高压导线的插口、 用来调节高压电源电压大 小的调节旋钮、用来调节气泵气流大小的调节旋钮和用来调节温控系统温度高低的调节旋钮。
12、 根据权利要求 1〜4任一所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所 述供液系统由进料系统、 熔融加热系统和液压系统组成, 进料系统将待喷涂材料送入熔融加 热系统的熔体腔中, 通过熔融加热系统熔融后, 在液压系统的推动下进入进液管, 再流进金 属针头。
13、 根据权利要求 12所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述进料 系统包括进料斗、 进料速度调节杆、 进料输送通道和筛网, 其中: 筛网设置在进料斗出口处; 进料速度调节杆设置在筛网下方, 控制进料速度; 进料输送通道连通熔融加热系统。
14、 根据权利要求 12所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述熔融 加热系统包括: 熔体腔, 围绕熔体腔的加热线圈, 熔体腔内的旋转螺杆, 控制旋转螺杆的旋 转电机, 以及设置在熔体腔与进液管连接处的过滤网膜和喷嘴; 所述喷嘴连接进液管。
15、 根据权利要求 14所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述控制 箱上设置有用来插接气流导管的插口、 用来插接高压导线的插口、 用来调节高压电源电压大 小的调节旋钮、 用来调节气泵气流大小的调节旋钮、 用来控制熔融加热系统加热线圈温度的 调节旋钮, 以及用来控制旋转螺杆转速的调节旋钮。
16、 根据权利要求 1〜4任一所述的气流引导式定向原位静电喷涂装置, 其特征在于, 在 喷头内设置同轴的外部针头和内部针头, 它们分别与两个进液管相连, 两个进液管的另一端 分别连接外层供液系统和内层供液系统。
17、 根据权利要求 16所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所述外层 供液系统和内层供液系统可以相同或不同, 各自选自权利要求 5、 7和 12所述供液系统中的 一种。
18、 根据权利要求 1〜4任一所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所 述喷头为并列式双喷头或多喷头,即在喷头内设置两个或更多个紧密靠在一起的并列式针头, 每个针头通过进液管连接相同或不同的供液系统。
19、 根据权利要求 1〜4任一所述的气流引导式定向原位静电喷涂装置, 其特征在于, 所 述喷头为分离式双喷头或多喷头, 即在喷头内设置两个或更多个相互分离的针头, 每个针头 通过进液管连接相同或不同的供液系统。
20、 权利要求 1〜19任一所述的气流引导式定向原位静电喷涂装置在医疗止血、 战伤急 救、 组织工程和美容化妆品、 工业喷涂领域的应用。
PCT/CN2014/086377 2013-11-20 2014-09-12 一种气流引导式定向原位静电喷涂装置及其应用 WO2015074454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320741232.3 2013-11-20
CN201320741232.3U CN203564616U (zh) 2013-11-20 2013-11-20 一种气流引导式定向原位静电喷涂装置

Publications (1)

Publication Number Publication Date
WO2015074454A1 true WO2015074454A1 (zh) 2015-05-28

Family

ID=50532383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086377 WO2015074454A1 (zh) 2013-11-20 2014-09-12 一种气流引导式定向原位静电喷涂装置及其应用

Country Status (2)

Country Link
CN (1) CN203564616U (zh)
WO (1) WO2015074454A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200112099A (ko) * 2019-03-20 2020-10-05 한남대학교 산학협력단 대량 출혈을 신속하게 제어할 수 있는 생분해성 고분자를 용액방사에 적용한 지혈 시스템

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611206A (zh) * 2013-11-20 2014-03-05 龙云泽 一种气流引导式定向原位静电喷涂装置
CN203564616U (zh) * 2013-11-20 2014-04-30 龙云泽 一种气流引导式定向原位静电喷涂装置
CN104225738B (zh) * 2014-09-30 2016-08-31 姜凯 一种气流引导式定向原位热溶静电喷涂装置及其应用
CN105170359B (zh) * 2015-08-21 2017-08-29 南京大学 一种程控式静电喷涂装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284133A (en) * 1992-07-23 1994-02-08 Armstrong Pharmaceuticals, Inc. Inhalation device with a dose-timer, an actuator mechanism, and patient compliance monitoring means
US20070240711A1 (en) * 2006-04-17 2007-10-18 Canon Kabushiki Kaisha Liquid ejection device
CN101068623A (zh) * 2004-12-28 2007-11-07 大金工业株式会社 静电喷雾装置
CN103611206A (zh) * 2013-11-20 2014-03-05 龙云泽 一种气流引导式定向原位静电喷涂装置
CN203564616U (zh) * 2013-11-20 2014-04-30 龙云泽 一种气流引导式定向原位静电喷涂装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284133A (en) * 1992-07-23 1994-02-08 Armstrong Pharmaceuticals, Inc. Inhalation device with a dose-timer, an actuator mechanism, and patient compliance monitoring means
CN101068623A (zh) * 2004-12-28 2007-11-07 大金工业株式会社 静电喷雾装置
US20070240711A1 (en) * 2006-04-17 2007-10-18 Canon Kabushiki Kaisha Liquid ejection device
CN103611206A (zh) * 2013-11-20 2014-03-05 龙云泽 一种气流引导式定向原位静电喷涂装置
CN203564616U (zh) * 2013-11-20 2014-04-30 龙云泽 一种气流引导式定向原位静电喷涂装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200112099A (ko) * 2019-03-20 2020-10-05 한남대학교 산학협력단 대량 출혈을 신속하게 제어할 수 있는 생분해성 고분자를 용액방사에 적용한 지혈 시스템
KR102366423B1 (ko) * 2019-03-20 2022-02-22 한남대학교 산학협력단 대량 출혈을 신속하게 제어할 수 있는 생분해성 고분자를 용액방사에 적용한 지혈 시스템

Also Published As

Publication number Publication date
CN203564616U (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
Kong et al. Tailoring micro/nano-fibers for biomedical applications
Sun et al. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization
WO2015074454A1 (zh) 一种气流引导式定向原位静电喷涂装置及其应用
CA3145727C (en) Method and apparatus for accumulating cross-aligned fiber in an electrospinning device
CN1961974B (zh) 可生物降解及吸收的聚合物纳米纤维膜材料及其制备方法和用途
CN101301496B (zh) 放射性核素标记的可生物降解及吸收的高分子超细纤维膜及其制法和用途
US11839732B2 (en) Device, systems, and methods of applying a treatment solution to a treatment site
Gao et al. A portable solution blow spinning device for minimally invasive surgery hemostasis
Anusiya et al. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers
US10995425B2 (en) Method and apparatus for fabricating a multifunction fiber membrane
Duan et al. Polymeric nanofibers for drug delivery applications: a recent review
CN104225736B (zh) 一种熔融静电喷涂装置及其应用
Palanisamy et al. A critical review on starch-based electrospun nanofibrous scaffolds for wound healing application
Chahal et al. Characterization of modified cellulose (MC)/poly (vinyl alcohol) electrospun nanofibers for bone tissue engineering
CN104225738B (zh) 一种气流引导式定向原位热溶静电喷涂装置及其应用
CN204170233U (zh) 一种熔融静电喷涂装置
Sebe et al. Polymers and formulation strategies of nanofibrous systems for drug delivery application and tissue engineering
CN108721680A (zh) 一种聚乳酸/氢溴酸高乌甲素复合纤维及其制备和应用
US20200232122A1 (en) System for nano-coating a substrate
CN204092756U (zh) 一种气流引导式定向原位热溶静电喷涂装置
KR101635032B1 (ko) 이동식 전기방사장치
Gill et al. Synthetic polymer based electrospun scaffolds for wound healing applications
Patel et al. Recent patents on polymeric electrospun nanofibers and their applications in drug delivery
Ragab et al. Recent advances in nanofibers fabrication and their potential applications in wound healing and regenerative medicine
KR20240050484A (ko) 휴대용 스피너 및 사용 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864570

Country of ref document: EP

Kind code of ref document: A1