WO2015074242A1 - 提高测量稳定性的方法和装置 - Google Patents

提高测量稳定性的方法和装置 Download PDF

Info

Publication number
WO2015074242A1
WO2015074242A1 PCT/CN2013/087673 CN2013087673W WO2015074242A1 WO 2015074242 A1 WO2015074242 A1 WO 2015074242A1 CN 2013087673 W CN2013087673 W CN 2013087673W WO 2015074242 A1 WO2015074242 A1 WO 2015074242A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
subframe
configuration information
measurement
pilot
Prior art date
Application number
PCT/CN2013/087673
Other languages
English (en)
French (fr)
Inventor
孙书琪
彭晶波
沈乐乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380002527.1A priority Critical patent/CN103843386B/zh
Priority to PCT/CN2013/087673 priority patent/WO2015074242A1/zh
Publication of WO2015074242A1 publication Critical patent/WO2015074242A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications, and more particularly to a method and apparatus for improving measurement stability. Background technique
  • a user equipment uses a reference signal (Reference Signal, RS) transmitted by a base station to perform channel measurement.
  • Reference Signal Reference Signal
  • each subframe is composed of several OFDM symbols, each symbol is divided into several resource units in the frequency domain, and the RS is distributed in some resource units of some symbols ( Resource Element, RE).
  • the protocol specifies that the RE of the RS of different cells has a shift (Shift) in the frequency domain; that is, when the UE uses the RS for measurement, the same RE of some neighboring cells is used to transmit data. Therefore, it will be interfered by the data transmission power of these neighboring areas; when there is no data to be transmitted in these neighboring areas, the UE will not be interfered by the measurement.
  • Embodiments of the present invention provide a method and apparatus for improving measurement stability to solve the problem of insufficient measurement stability in the prior art.
  • a method for improving measurement stability includes: configuring, by a base station, use of a resource unit RE in a resource block RB corresponding to a current subframe; and determining, by the base station, a current subframe according to the configuration result.
  • the unused REs of the RBs; the base station transmits a padding sequence on all or part of the unused REs, and the REs that are not used and the REs in which the pilots occupy occupy the same symbol in the time domain.
  • the current subframe is any subframe to be sent by the base station.
  • the method further includes: determining, by the base station, the current subframe before determining an unused RE in the RB corresponding to the current subframe.
  • the determining, by the base station, the current subframe may include: acquiring, by the base station, first configuration information of a measurement subframe of a neighboring cell of the current cell; and determining, by the base station, a location of the measurement subframe according to the first configuration information of the measurement subframe; The base station determines, according to the location of the measurement subframe, the current subframe corresponding to the location of the measurement subframe in the current cell.
  • the method further includes: acquiring, by the base station, second configuration information of a measurement subframe of a neighboring cell of the current cell, where the The second configuration information is the same configuration information as the first configuration information, or the second configuration information is different from the first configuration information.
  • the base station determines, according to the second configuration information, the RB corresponding to the measurement subframe.
  • the transmitting sequence of the base station may be: the base station sends a padding sequence on the partially unused RE, and the partially unused E corresponds to the measurement subframe.
  • the positions of the REs in which the pilots in the RB are located are the same.
  • the padding sequence A cell specific reference signal CRS or a pseudo random sequence is included.
  • the base station is Transmitting the padding sequence on all or part of the unused REs specifically includes: the base station transmitting the padding sequence on the RE of all or part of unused REs with the power of transmitting the data signal or the power of transmitting the CRS.
  • a method for improving measurement stability includes: receiving, by a UE, configuration information sent by a base station, where the configuration information indicates a resource unit RE where a pilot station is sent to the UE, where the UE receives the base station; a subframe to be transmitted; the UE determines, according to the configuration information, an RE in which the pilot is located in the subframe; and the UE performs channel measurement on the RE where the pilot is located, where the UE is subjected to channel measurement when the channel is measured.
  • Interference of the frame, and the subframe of the neighboring cell has a padding sequence on all or part of the unused REs, and the all or part of unused REs are REs that are not configured for use by the base station of the neighboring cell, and the part is not The RE used and the RE in which the pilot is located occupy the same symbol in the time domain.
  • the specific implementation is as follows:
  • the RE that is not used in the part is the same as the location of the RE where the pilot is located.
  • the padding sequence includes a cell-specific reference signal CRS or a pseudo-random sequence.
  • the specific implementation is: The transmission power of the data signal or the transmission power of the CRS.
  • a device for improving measurement stability which is located at a base station side, and includes: a configuration unit, configured to configure, for use, a resource unit RE in a resource block RB corresponding to a current subframe; And determining, by the configuration result of the configuration unit, an unused RE in the RB corresponding to the current subframe; and sending, for transmitting, on all or part of the unused RE, the padding sequence, the part of the unused RE
  • the RE with the pilot occupies the same symbol in the time domain.
  • the current subframe is any subframe to be sent by the base station of the device.
  • the apparatus further includes an acquiring unit, where the acquiring unit is configured to acquire first configuration information of a measurement subframe of a neighboring cell of the current cell, where the determining unit is further configured to: The current subframe is determined before determining an unused RE in the RB corresponding to the current subframe.
  • the determining unit is specifically configured to: determine, according to the first configuration information acquired by the acquiring unit, a location of the measurement subframe, and determine a location of the measurement subframe in the current cell according to the location of the measurement subframe Corresponding to the current subframe.
  • the acquiring unit is further configured to acquire second configuration information of a measurement subframe of a neighboring cell of the current cell, where the second The configuration information is the same configuration information as the first configuration information, or the second configuration information is different from the first configuration information.
  • the determining unit is further configured to: according to the second configuration information acquired by the acquiring unit, Determining an RE in which the pilot in the RB corresponding to the measurement subframe is located; the sending unit is specifically configured to send a padding sequence on the partially unused RE, and the part of the unused RE and the RB corresponding to the measurement subframe The position of the RE where the pilot is located is the same.
  • the filling sequence A cell specific reference signal CRS or a pseudo random sequence is included.
  • the sending unit is specifically configured to send a padding sequence on the RE that transmits the data signal or the power of the CRS transmitted on all or part of the unused REs.
  • a device for improving measurement stability which is located at a user equipment UE side, and includes: a receiving unit, configured to receive configuration information sent by a base station, where the configuration information indicates a pilot that is sent by the base station to the UE a resource unit RE; the receiving unit is further configured to receive a subframe sent by the base station; a determining unit, configured to determine, according to the configuration information, an RE where the pilot in the subframe is located; and a measuring unit, configured to be in the pilot
  • the RE is located, and the channel measurement is performed by the measurement unit, where the measurement unit is interfered by the subframe of the neighboring cell, and the subframe of the neighboring cell has a padding sequence on all or part of the unused RE, the all or A part of the unused RE is an RE that is not configured for use by the base station of the neighboring cell, and the RE that is not used by the part and the RE where the pilot is located occupy the same symbol in the time domain.
  • the specific implementation is as follows:
  • the RE that is not used in the part is the same as the location of the RE where the pilot is located.
  • the specific implementation is: the padding sequence includes a cell-specific reference signal CRS or a pseudo-random sequence.
  • the specific implementation is: The transmission power of the data signal or the transmission power of the CRS.
  • the UE when the UE performs channel measurement, it will be interfered by the neighboring cell, and the neighboring cell may have data transmission on the RE corresponding to the pilot at different times, or there may be no data transmission, which may result in unstable measurement.
  • the padding sequence is sent in such a manner that when there is data and no data is transmitted, stable interference is generated to the neighboring cell.
  • the base station sends a padding sequence on the RE that occupies the same symbol in the RE time domain where the pilot is located in the current subframe, or sends a padding sequence on all unused REs in the current subframe, so that the neighboring area
  • the UE performs measurement, even if there is no data transmission on the RE corresponding to the pilot, there is a padding sequence transmission, so that the UE in the neighboring cell can receive the stable interference source of the current cell, and obtain a stable measurement result.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of resource usage of an RB according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of resource usage of another RB according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for improving measurement stability according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of another method for improving measurement stability according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for improving measurement stability according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another apparatus for improving measurement stability according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another apparatus for improving measurement stability according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another apparatus for improving measurement stability according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a user equipment which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, may be portable Mobile, pocket-sized, handheld, computer-built or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional NodeB) in LTE,
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • Resource Element The smallest unit of time-frequency resources, occupying 1 symbol in the time domain and occupying 1 subcarrier in the frequency domain.
  • RB Resource Block
  • a time-frequency resource block includes 12 subcarriers in the frequency domain and 14 symbols in the time domain.
  • FIG. 2 is a schematic diagram of resource usage of an RB according to an embodiment of the present invention. As shown in Figure 2, the time-frequency resource block includes 12*14 REs.
  • Reference Signal Also known as a pilot signal, it is a known signal that is provided by the originator to the receiver for channel estimation or channel measurement. For example, Cell-specific Reference Signal (CRS), UE-specific Reference Signal (UE-specific RS), and User-State Information Reference Signal (CSI-RS) ), and many more.
  • CRS Cell-specific Reference Signal
  • UE-specific RS UE-specific Reference Signal
  • CSI-RS User-State Information Reference Signal
  • FIG. 1 is a schematic diagram of an example of a scenario in which an embodiment of the present invention is applicable.
  • FIG. 1 can be a scenario for an LTE system.
  • base station 120 is a neighboring base station of base station 110.
  • the signal transmitted by base station 110 can cover area C1.
  • the signal transmitted by base station 120 can cover area R1, and UE 130 is located at the intersection of areas C1 and R1.
  • CQI channel quality indicator
  • CRS Cell-specific Reference Signal
  • the UE 130 measures the channel quality indicator (CQI) according to the Cell-specific Reference Signal (CRS) transmitted by the base station 110, it is subject to signal interference from the base station 120.
  • CRS Cell-specific Reference Signal
  • the base station 120 may transmit a signal on the same RE as the RE1, which may affect the measurement of the UE 130.
  • the base station 120 may also not transmit a signal on the same RE as the E1, and does not affect the measurement of the UE 130 at this time. . Due to these two possibilities, the UE 130 has a problem of measurement instability when performing channel measurement based on CRS.
  • FIG. 1 described above is that the measurement of the UE is affected by the neighboring base station, in actual applications, the measurement of the UE may be affected by the neighboring cell of the same base station.
  • the interference source that affects the measurement of the UE is not limited to one, and may be two or more.
  • the reference signal sent by the base station 110 may be a CRS or other reference signal, which is not limited herein.
  • the method and the base station according to the embodiment of the present invention are described by taking the scenario shown in FIG. 1 as an example.
  • a solution is to enable the base station 120 capable of interfering with the UE 130 to always maintain signal transmission on the same RE as the RE1, so that the UE 130 is subjected to a stable interference source, thereby obtaining stability. Measurement results.
  • FIG. 2 is a schematic diagram of resource usage of an RB according to an embodiment of the present invention.
  • the black filled square in Figure 2 represents the RE used to transmit the pilot signal
  • the vertical filled square represents the RE used to transmit the data signal
  • the white filled square represents the unused RE.
  • the symbol of the reference signal is known.
  • the protocol states that in the case of two antenna ports, the reference signal occupies 4 symbols in one RB.
  • the reference symbols are on the 4th, 4th, 7th, and 11th symbols.
  • the reference signal is on the sixth symbols of 0, 1, 4, 7, 8, and 11.
  • the reference signal may have different pilot configurations, but for base stations, this configuration is known.
  • FIG. 3 is a schematic diagram of resource usage of another RB according to an embodiment of the present invention.
  • the black filled square in Figure 3 represents the RE used to transmit the pilot signal
  • the vertical filled square represents the E used to transmit the data signal
  • the white filled square represents the unused RE.
  • the RB of FIG. 2 belongs to the A cell
  • the RB of FIG. 3 belongs to the B cell, and the two RBs occupy the same time-frequency resource.
  • the user of the A cell performs measurement according to the pilot signal, it may be interfered by the signal of the B cell.
  • cell B may transmit a data signal at the same resource location, or may not transmit any signal, which may result in a cell.
  • the UE measurement of A is unstable.
  • FIG. 4 is a flowchart of a method for improving measurement stability according to an embodiment of the present invention.
  • the method of Figure 4 is performed by a base station and includes the following steps:
  • the base station configures the use of the RE in the RB corresponding to the current subframe.
  • the time-frequency resource occupied by the pilot needs to be configured, and then the configuration information is sent to the UE by using the high-layer signaling (for example, RRC signaling), and the UE can know the guide according to the configuration information.
  • the high-layer signaling for example, RRC signaling
  • the base station determines, according to the configuration result, an unused RE in the RB corresponding to the current subframe. After completing the configuration of using the RE in the RB corresponding to the current subframe, the base station may determine the current sub-sub An unused RE in the RB corresponding to the frame.
  • the unused RE refers to an RE that has not been used to transmit a signal after completing the configuration of the use of the RE in the RB corresponding to the current subframe.
  • the base station sends a padding sequence on all or part of the unused REs.
  • the RE that is not used in this part and the RE where the pilot is located occupy the same symbol in the time domain.
  • the UE when the UE performs channel measurement, it will be interfered by the neighboring cell, and the neighboring cell may have data transmission on the RE corresponding to the pilot at different times, or there may be no data transmission, which may result in unstable measurement.
  • the padding sequence is sent in such a manner that when there is data and no data is transmitted, stable interference is generated to the neighboring cell.
  • the base station sends a padding sequence on the RE that occupies the same symbol in the RE time domain where the pilot is located in the current subframe, or sends a padding sequence on all unused REs in the current subframe, so that the neighboring area
  • the UE performs measurement, even if there is no data transmission on the RE corresponding to the pilot, there is a padding sequence transmission, so that the UE in the neighboring cell can receive the stable interference source of the current cell, and obtain a stable measurement result.
  • the current subframe is any subframe to be sent by the base station. That is, any subframe to be sent by the base station is fully padded, so that the interference to the neighboring area is stable, so as to improve the accuracy of UE measurement in the neighboring cell.
  • This method is simple and suitable for any version of UE.
  • the base station does not limit a certain subframe to be a measurement subframe, and the UE can perform channel measurement on any subframe. Therefore, full padding of any subframe is a simple way to keep the interference to the neighboring cell stable to improve the accuracy of UE measurements in the neighboring cell.
  • the base station may sequence all unused REs in symbols 0 to 13 in the RB, and then send a padding sequence.
  • the base station does not need to acquire the information of the measurement subframes of other neighboring cells, for example, the location information, the RE where the pilot is located, etc., so that the user of the neighboring cell can obtain a stable interference source of the local cell, thereby Get a stable measurement.
  • any subframe may be used. Partially fill, specifically full column fill. That is, fill the column where the pilot is located.
  • the base station may be filled in the RBs in which the pilots are not used in the RBs corresponding to the subframes. Since the symbol of the pilot is specified by the protocol, it is related to the antenna of the base station, and the base station It is easy to determine the symbol to which the pilot needs to be transmitted based on its own number of antennas. Taking FIG. 3 as an example, the base station can know that the symbols of the pilots are 0, 4, 7, and 11, and the base station can sequence all the unused REs in the symbols 0, 4, 7, and 11 in the RB, and then Send a fill sequence.
  • the base station does not need to acquire the information of the measurement subframes of other neighboring cells, such as the location information, the RE where the pilot is located, etc., so that the user of the neighboring cell can obtain a stable interference source of the local cell, thereby obtaining A stable measurement result.
  • the base station may configure the measurement subframe, for example, send configuration information to the UE through high layer signaling, where the configuration information includes location information of the measurement subframe (for example, a measurement subframe set, or measurement) Subframe transmission period, etc.).
  • the current cell can obtain the information of the measurement subframe of the neighboring cell through interaction with the neighboring cell, thereby performing full frame filling or full column filling in the current subframe corresponding to the measurement subframe position. Even, you can get the measurement sub-frame further
  • the position information of the RE is thus filled only in the position corresponding to the RE in the measurement subframe in the current subframe. Specifically, please refer to the description of Embodiment 3 below.
  • the interaction between the current cell and the neighboring cell can be understood as two in one base station.
  • the interaction between entities for example, when the control entity of the current cell and the neighboring cell is located on different baseband boards, may be the interaction between the two baseband boards; when located on different processors of a baseband board, it may be two processes. Interaction between devices; even two cores of one processor, or interaction between two functional units.
  • the embodiment of the invention does not impose any limitation.
  • the base station where the current cell is located needs to interact with the base station where the neighboring cell is located, for example, through the interaction of the X2 interface, and obtain the configuration of the measurement subframe of the neighboring cell by the base station, thereby knowing Measure information about subframes.
  • the foregoing current subframe is not one subframe, but one subframe corresponding to the measurement subframe position of the neighboring cell. Therefore, in the third embodiment of the present invention, before the step 402, the foregoing method may further include: The base station determines the above current subframe. Specifically, the base station determines that the current subframe is implemented as: the base station acquires first configuration information of a measurement subframe of a neighboring cell of the current cell; and the base station determines the measurement subframe according to the first configuration information of the measurement subframe The base station determines, according to the location of the measurement subframe, the current subframe corresponding to the location of the measurement subframe in the current cell.
  • the first configuration information of the measurement subframe may include measuring location information of the subframe, for example, measuring a subframe set, or measuring a transmission period of the subframe, etc., and the base station may determine the location of the measurement subframe according to the first configuration information.
  • the base station can directly obtain the base station according to the configuration of the base station.
  • the first configuration information of the measurement subframe of the neighboring cell of the current cell is taken, and then the information about the current subframe of the current cell is determined. If the neighboring cell of the current cell does not belong to the same base station as the current cell, the base station may pass
  • the X2 interface exchanges high-level configuration information to obtain first configuration information of the neighboring cell of the current cell.
  • the manner of filling may include two types: one mode, after the base station determines the current subframe, the full subframe may be filled in the RB corresponding to the current subframe, and the specific filling manner is similar to the first embodiment of the present invention. I will not repeat them here. In another mode, after the base station determines the current subframe, the REs in the RB corresponding to the current subframe may be used for the sequence of the REs in the RBs in the current RB, and the specific filling manner is similar to the second embodiment of the present invention. This will not be repeated here.
  • the base station can obtain the location of the measurement subframe of the neighboring cell of the current cell, and send the padding sequence on the RB corresponding to the current subframe corresponding to the measurement subframe, which greatly reduces the number of REs to be filled. Improve the efficiency of the base station.
  • the method may further include: the base station acquiring second configuration information of the measurement subframe of the neighboring cell of the current cell; the base station determining, according to the second configuration information, where the pilot in the RB corresponding to the measurement subframe is located RE.
  • the base station transmitting the padding sequence on all or part of the unused REs may be implemented as: the base station sends a padding sequence on the partially unused RE, and the part of the unused RE and the measurement subframe
  • the locations of the REs in which the pilots in the corresponding RBs are located are the same.
  • the second configuration information may carry information about an RE for transmitting a pilot signal in a measurement subframe of a neighboring cell of the current cell, where the second configuration information is the same configuration information as the first configuration information, or The second configuration information is different from the first configuration information.
  • the base station may first determine a current subframe for transmitting a padding sequence, where the current subframe and the measurement subframe of the neighboring cell are subframes at the same time. For the manner of determining the current subframe, reference may be made to Embodiment 3 of the present invention, and details are not described herein again. After determining the current subframe, the base station may also acquire second configuration information of the measurement subframe of the neighboring cell of the current cell. The second configuration information may carry information of the RE for transmitting the pilot signal in the measurement subframe of the neighboring cell of the current cell.
  • the first configuration information and the second configuration information are different contents of the same configuration information, that is, the base station can acquire the location information of the measurement subframe of the neighboring cell of the current cell and the measurement subframe internal guide at one time.
  • the frequency is the information of the RE.
  • the first configuration information is different from the second configuration information, that is, the base station needs to separately acquire the location information of the measurement subframe of the neighboring cell of the current cell and measure the intra-subframe pilot.
  • Information about the RE If the current cell and the neighboring cell belong to the same base station, the base station may directly obtain the second configuration information of the measurement subframe of the neighboring cell of the current cell according to the configuration of the base station, and further determine the current subframe information of the current cell.
  • the base station can exchange the high-level configuration information through the X2 interface, so as to obtain the second configuration information of the neighboring cell of the current cell.
  • the base station obtains the RE for transmitting the pilot signal in the measurement subframe of the neighboring cell of the current cell
  • the corresponding RE may be found in the RB corresponding to the current subframe, and if the corresponding RE is not used yet, the corresponding The fill sequence is sent on the RE.
  • the unused RE has the same location as the RE in which the pilot in the RB corresponding to the measurement subframe is located.
  • the base station can obtain the location of the RE of the pilot of the neighboring cell of the current cell, and send the padding sequence to the corresponding RE in the RB corresponding to the current subframe, which greatly reduces the stability of the measurement.
  • the number of REs that need to be filled further reduces interference to neighbors.
  • the padding sequence comprises a CRS or a pseudo-random sequence.
  • the base station may perform the padding by using a pseudo-random sequence, a CRS, or other sequence, which is not limited by the embodiment of the present invention.
  • the sending, by the base station, the padding sequence on all or part of the unused REs is implemented by: the base station transmitting the padding sequence by using the power of the data signal or the power of sending the CRS on all or part of the unused REs. .
  • the base station may send a padding sequence using the power of the transmitting data signal, or send a padding sequence using the power of the CRS, or use another power to send the padding sequence, so that the neighboring cell of the current cell The user gets a stable source of interference.
  • the base station can transmit the padding sequence using the power of the transmitted data signal.
  • the sending, by the base station, the padding sequence on all or part of unused REs is implemented as follows: if all or part of the unused RBs to which the REs belong are not yet allocated, the base station uses the UE to be scheduled on the RB. The sending of the padding sequence is implemented.
  • the base station may schedule the UE on the RB to achieve the effect of filling the sequence.
  • the time-frequency resource block may include resources occupied by CRS, control signals, or synchronization signals, and the like, and unused E.
  • the UE may randomly select one UE for scheduling, and the purpose of the scheduling is only to implement the filling of the resources in the time-frequency resource block, and the base station schedules the user on the time-frequency resource block, and one of the effects is that the time-frequency is An unused RE on the resource block sends a padding sequence. That is, the base station schedules the user on the time-frequency resource block to enable the padding sequence to be sent on the E that the time-frequency resource block is not used.
  • the base station schedules users it can choose to fill with CRS, pseudo-random sequence or other sequence as Padding.
  • the base station schedules the transmission power of the user, and can use the power of transmitting the CRS, the power of transmitting data or other predetermined power, and the like.
  • the UE in the neighboring cell can also receive the stable interference source of the current cell in the current subframe, so that the UE in the neighboring cell can obtain a stable measurement result.
  • FIG. 5 is a flow chart of another method for improving measurement stability according to an embodiment of the present invention.
  • the method of FIG. 5 is performed by the UE, and includes the following steps:
  • the UE receives configuration information sent by the base station.
  • the configuration information indicates an RE where the pilot that the base station sends to the UE is located.
  • the UE receives a subframe sent by the base station.
  • the UE determines, according to the configuration information, an RE where the pilot in the subframe is located.
  • the UE may determine the RE where the pilot is located in the subframe according to the configuration information sent by the base station.
  • the UE performs channel measurement on the RE where the pilot is located.
  • the UE is interfered by the subframe of the neighboring cell when performing channel measurement, and the subframe of the neighboring cell has a padding sequence on all or part of unused REs, and all or part of the unused RE is the neighboring zone.
  • the base station is not configured with the used RE, and the RE that is not used in the part and the RE where the pilot is located occupy the same symbol in the time domain.
  • the UE when the UE performs channel measurement, it will be interfered by the neighboring cell, and the neighboring cell may have data transmission on the RE corresponding to the pilot at different times, or there may be no data transmission, which may result in unstable measurement.
  • the base station in the neighboring cell when the UE performs channel measurement, the base station in the neighboring cell sends a padding sequence in the subframe in which the UE performs measurement and the RE occupying the same symbol in the RE time domain where the pilot is located, or performs measurement in the UE.
  • the padding sequence is sent on all unused REs in the subframe, so that the UE can receive a stable interference source in the neighboring cell, and obtain a stable measurement result.
  • the partially unused RE is the same as the RE where the pilot is located.
  • the padding sequence comprises a cell specific reference signal CRS or a pseudo random sequence.
  • the padding sequence may also be other sequences, which are not limited herein.
  • the transmit power of the padding sequence is the transmit power of the data signal or the transmit power of the CRS.
  • the transmit power of the padding sequence may also be other powers, which is not limited herein.
  • the method for transmitting the interference source of the neighboring cell received by the UE may be referred to the specific embodiment shown in FIG. 4 and the embodiment 1-5 of the present invention. .
  • FIG. 6 is a schematic structural diagram of an apparatus 600 for improving measurement stability according to an embodiment of the present invention.
  • the device 600 is located at the base station side, and may include: a configuration unit 601, a determining unit 602, and a sending unit 603.
  • the configuration unit 601 is configured to configure the use of the resource unit RE in the resource block RB corresponding to the current subframe.
  • the determining unit 602 is configured to determine, according to the configuration result of the configuration unit 601, an unused RE in the RB corresponding to the current subframe;
  • the sending unit 603 is configured to send a padding sequence on all or part of unused REs, where the unused RE and the RE where the pilot is located occupy the same symbol in the time domain.
  • the UE when the UE performs channel measurement, it will be interfered by the neighboring cell, and the neighboring cell may have data transmission on the RE corresponding to the pilot at different times, or there may be no data transmission, which may result in unstable measurement.
  • the padding sequence is sent in such a manner that when there is data and no data is transmitted, stable interference is generated to the neighboring cell.
  • the base station sends a padding sequence on the RE that occupies the same symbol in the RE time domain where the pilot is located in the current subframe, or sends a padding sequence on all unused REs in the current subframe, so that the neighboring area
  • the UE performs measurement, even if there is no data transmission on the RE corresponding to the pilot, there is a padding sequence transmission, so that the UE in the neighboring cell can receive the stable interference source of the current cell, and obtain a stable measurement result.
  • the current subframe is any subframe to be sent by the base station where the device 600 is located.
  • the above apparatus 600 may further include an obtaining unit 604.
  • the obtaining unit 604 is configured to acquire first configuration information of the measurement subframe of the neighboring cell of the current cell.
  • the determining unit 602 is further configured to determine the current subframe before determining the RE that is not used in the RB corresponding to the current subframe.
  • the determining unit 602 is configured to determine, according to the first configuration information acquired by the acquiring unit, a location of the measurement subframe, and determine, according to the location of the measurement subframe, The current subframe in the current cell corresponding to the location of the measurement subframe.
  • the obtaining unit 604 is further configured to acquire second configuration information of the measurement subframe of the neighboring cell of the current cell.
  • the determining unit 602 is further configured to determine, according to the second configuration information acquired by the acquiring unit, an RE in which the pilot in the RB corresponding to the measurement subframe is located.
  • the sending unit is specifically configured to send a padding sequence on the partially unused RE, and the RE of the part that is not used is the same as the location of the RE where the pilot in the RB corresponding to the measurement subframe is located.
  • the second configuration information is used to indicate the RE where the pilot of the neighboring cell of the current cell is located, and the second configuration information is the same configuration as the first configuration information. The information, or the second configuration information is different from the first configuration information.
  • the padding sequence comprises a CRS or a pseudo-random sequence.
  • the foregoing apparatus 600 may be filled with a pseudo-random sequence, a CRS, or other sequence, which is not limited by the embodiment of the present invention.
  • the sending unit 603 is specifically configured to send, on all or part of unused REs, a padding sequence by sending power of the data signal or transmitting power of the CRS.
  • the foregoing apparatus 600 may send a padding sequence by using a power of transmitting a data signal, or send a padding sequence by using a power of transmitting a CRS, or send a padding sequence by using another power, so that a neighboring cell of the current cell is used.
  • the UE in the zone gets a stable source of interference.
  • the above apparatus 600 can transmit a padding sequence using the power of the transmitted data signal. Most of the interference received by the UE is from the data signal, and the transmit sequence of the power transmitted by the data signal enables the UE to obtain a relatively optimal stable measurement result.
  • the above apparatus 600 can also perform the method of FIG. 4 and implement the functions of the base station in the specific embodiment shown in FIG. 4 and the embodiment 1-5 of the present invention, which will not be further described herein.
  • the sending unit in this embodiment may be a transmitter or a transceiver of the base station.
  • the configuration unit may be a separately set processor, or may be integrated in a processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called by one of the base stations and executes the above. Track the function of the task creation unit.
  • the implementation of the determination unit is the same as the configuration unit and can be integrated with the configuration unit or independently.
  • the obtaining unit may be integrated with the determining unit, or may be separately set, and when the current cell and the neighboring cell are located at different base stations, the acquiring unit may acquire the configuration information of the neighboring cell through the interface circuit of the base station (for example, the X2 interface circuit).
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated configurations configured to implement embodiments of the present invention. Circuit.
  • FIG. 7 is a schematic structural diagram of an apparatus 700 for improving measurement stability according to an embodiment of the present invention.
  • the device 700 is located at the UE side, and may include: a receiving unit 701, a determining unit 702, and a measuring unit 703.
  • the receiving unit 701 is configured to receive configuration information sent by the base station.
  • the configuration information indicates the RE of the pilot that the base station sends to the UE.
  • the receiving unit 701 is further configured to receive a subframe sent by the base station.
  • the determining unit 702 is configured to determine, according to the configuration information, a subframe received by the receiving unit 701 The RE where the pilot is located.
  • a measuring unit 703 can be used to perform channel measurement at the RE where the pilot is located.
  • the measurement unit is interfered by the subframe of the neighboring cell when performing the channel measurement, and the subframe of the neighboring cell has a padding sequence on all or part of the unused E, and the all or part of the unused RE is the neighbor.
  • the base station of the area is not configured with the used RE, and the part of the unused RE and the RE where the pilot is located occupy the same symbol in the time domain.
  • the UE when the UE performs channel measurement, it will be interfered by the neighboring cell, and the neighboring cell may have data transmission on the RE corresponding to the pilot at different times, or there may be no data transmission, which may result in unstable measurement.
  • the base station in the neighboring cell when the foregoing device 700 performs channel measurement, the base station in the neighboring cell sends a padding sequence in the subframe in which the device 700 performs measurement and the RE that occupies the same symbol in the RE time domain where the pilot is located, or The device 700 transmits a padding sequence on all unused REs in the measured subframe, so that the above device 700 can receive a stable interference source in the neighboring cell, and obtain a stable measurement result.
  • the partially unused RE is the same as the RE where the pilot is located.
  • the padding sequence comprises a cell specific reference signal CRS or a pseudo random sequence.
  • the padding sequence may also be other sequences, which are not limited herein.
  • the transmit power of the padding sequence is the transmit power of the data signal or the transmit power of the CRS.
  • the transmit power of the padding sequence may also be other powers, which is not limited herein.
  • the method for transmitting the interference source of the neighboring cell received by the device 700 can refer to the specific embodiment shown in FIG. 4 and the embodiment 1-5 of the present invention. This will not be repeated here.
  • FIG. 8 is a schematic structural diagram of an apparatus 800 for improving measurement stability according to an embodiment of the present invention.
  • the device 800 is located at the base station side and may include: a processor 802, a memory 803, a transmitter 801, and a receiver 804.
  • Bus 806 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one bidirectional arrow is used in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • transmitter 801 and receiver 804 can be coupled to antenna 805.
  • the memory 803 is configured to store a program.
  • the program may include program code, the process The sequence code includes computer operating instructions.
  • Memory 803 can include read only memory and random access memory and provides instructions and data to processor 802.
  • the memory 803 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 802 is configured to execute a program stored in the memory 803, configured to configure the use of the resource unit RE in the resource block RB corresponding to the current subframe, and determine, according to the configuration result, the unused RE in the RB corresponding to the current subframe. And transmitting a padding sequence on all or part of unused REs, wherein the RE that is not used and the RE in which the pilot is located occupy the same symbol in the time domain.
  • Processor 802 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 802 or an instruction in the form of software.
  • the processor 802 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-to-use programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-to-use programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in a decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 803, and the processor 802 reads the information in the memory 803 and combines the hardware to complete the steps of the above method.
  • the UE when the UE performs channel measurement, it may be interfered by the neighboring cell, and the neighboring cell may have data transmission on the RE corresponding to the pilot at different times, or there may be no data transmission, which may result in unstable measurement.
  • the padding sequence is sent in such a manner that when there is data and no data is transmitted, stable interference is generated to the neighboring cell.
  • the base station sends a padding sequence on the RE that occupies the same symbol in the RE time domain where the pilot is located in the current subframe, or sends a padding sequence on all unused REs in the current subframe, so that the neighboring area
  • the current subframe is any subframe to be sent by the device 800.
  • the processor 802 is further configured to determine the current subframe before determining an unused RE in the RB corresponding to the current subframe. The determining, by the processor 802, the first configuration information of the measurement subframe of the neighboring cell of the current cell, and determining the location of the measurement subframe according to the first configuration information, and determining the location of the measurement subframe. The current subframe corresponding to the location of the measurement subframe in the current cell is determined according to the location of the measurement subframe.
  • the processor 802 is further configured to acquire second configuration information of the measurement subframe of the neighboring cell of the current cell, and determine the RE of the pilot in the B corresponding to the measurement subframe, and pass the second configuration information.
  • the transmitter 801 transmits a padding sequence on the partially unused RE, and the part of the unused RE is the same as the location of the RE in which the pilot in the RB corresponding to the measurement subframe is located.
  • the second configuration information is used to indicate the RE where the pilot of the neighboring cell of the current cell is located, and the second configuration information is the same configuration information as the first configuration information, or the second configuration information and the first configuration. Information is different configuration information.
  • the padding sequence comprises a CRS or a pseudo-random sequence.
  • the foregoing device 800 may be filled with a pseudo-random sequence, a CRS, or other sequence, which is not limited in the embodiment of the present invention.
  • the processor 802 may send the padding sequence by using the transmitter 801 on all or part of the unused REs to transmit the power of the data signal or the power of the CRS.
  • the foregoing apparatus 800 may send a padding sequence using the power of the transmitted data signal, or send a padding sequence using the power of the CRS, or use another power to send the padding sequence, so that the current cell neighbor
  • the UE in the zone gets a stable source of interference.
  • the above apparatus 800 can transmit a padding sequence using the power of the transmitted data signal. Most of the interference received by the UE is from the data signal, and the transmission of the padding sequence with the power of the transmitted data signal enables the UE to obtain a relatively optimal stable measurement result.
  • the processor 802 may implement the sending of the padding sequence by scheduling the UE on the time-frequency resource block.
  • the time-frequency resource block is a time-frequency resource required for scheduling the UE.
  • the above apparatus 800 can also perform the method of FIG. 4 and implement the functions of the base station in the specific embodiment shown in FIG. 4 and the embodiment 1-5 of the present invention, and the embodiments of the present invention are not described herein again.
  • FIG. 9 is a schematic structural diagram of an apparatus 900 for improving measurement stability according to an embodiment of the present invention.
  • the device 900 is located on the UE side and may include: a processor 902, a memory 903, a transmitter 901, and a receiver 904.
  • Bus 906 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one bidirectional arrow is used in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • transmitter 901 and receiver 904 can be coupled to antenna 905.
  • the memory 903 is used to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • Memory 903 can include read only memory and random access memory and provides instructions and data to processor 902.
  • the memory 903 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 902 is configured to execute a program stored in the memory 903, configured to receive configuration information sent by the base station by using the receiver 904, where the configuration information indicates an RE where the pilot sent by the base station is sent to the UE, and the base station sends the received by the receiver 904.
  • Sub-frame determining, according to the configuration information, the RE where the pilot in the subframe received by the receiver 904 is located; and performing channel measurement on the RE where the pilot is located, where the measuring unit is subjected to channel measurement when receiving the channel Interference of the frame, and the subframe of the neighboring cell has a padding sequence on all or part of unused REs, and the all or part of unused REs are REs that are not configured for use by the base station of the neighboring cell, and the part is not The RE used and the RE in which the pilot is located occupy the same symbol in the time domain.
  • Processor 902 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 902 or an instruction in a form of software.
  • the processor 902 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a logic block diagram.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read only memory, programmable read only memory or Wipe the programmable memory, registers, etc. in the mature storage medium of the field.
  • the storage medium is located in the memory 903, and the processor 902 reads the information in the memory 903 and completes the steps of the above method in combination with the hardware.
  • the UE when the UE performs channel measurement, it will be interfered by the neighboring cell, and the neighboring cell may have data transmission on the RE corresponding to the pilot at different times, or there may be no data transmission, which may result in unstable measurement.
  • the base station in the neighboring cell when the foregoing device 700 performs channel measurement, the base station in the neighboring cell sends a padding sequence in the subframe in which the device 700 performs measurement and the RE that occupies the same symbol in the RE time domain where the pilot is located, or The device 700 transmits a padding sequence on all unused REs in the measured subframe, so that the above device 700 can receive a stable interference source in the neighboring cell, and obtain a stable measurement result.
  • the partially unused RE is the same as the RE where the pilot is located.
  • the padding sequence comprises a cell specific reference signal CRS or a pseudo random sequence.
  • the padding sequence may also be other sequences, which are not limited herein.
  • the transmit power of the padding sequence is the transmit power of the data signal or the transmit power of the CRS.
  • the transmit power of the padding sequence may also be other powers, which is not limited herein.
  • the method for transmitting the interference source of the neighboring cell received by the foregoing device 900 may refer to the specific embodiment shown in FIG. 4 of the present invention and the embodiment 1-5 of the present invention. Let me repeat.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例提供一种保持稳定测量的方法和基站,该方法包括:基站对当前子帧对应的资源块RB中的资源单元RE的使用进行配置;该基站根据配置结果确定当前子帧对应的RB中未被使用的RE;该基站在全部或部分未被使用的RE上,发送填充序列,该部分未被使用的RE与导频所在的RE在时域上占据同一个符号。本发明实施例中,通过在当前子帧中与导频所在的RE时域上占据同一个符号的RE上发送填充序列,或者在当前子帧中全部未使用的RE上发送填充序列,使得邻区的UE在当前子帧能够受到当前小区稳定的干扰源,从而使得邻区的UE能够得到稳定的测量结果。

Description

提高测量稳定性的方法和装置 技术领域
本发明涉及通信领域, 更具体地, 涉及一种提高测量稳定性的方法和装 置。 背景技术
在无线通信的系统中, 用户设备(UE, User Equipment )利用基站发射 的参考信号(Reference Signal, RS )来进行信道测量。 在 UE或基站的时频 域资源中, 每个子帧(Subframe )由若干个 OFDM符号组成, 每个符号在频 域上划分成若干个资源单元, RS分布在某些符号的某些资源单元( Resource Element, RE )上。
为了提高 UE测量的有效性, 协议中规定不同小区的 RS所在的 RE在 频域上存在移位( Shift ); 也就是 UE在利用 RS作测量时, 一些邻区的相同 RE是用来发送数据的, 因而会受到这些邻区的数据发射功率的干扰; 当这 些邻区没有数据要发送时, UE做测量就不会受到它们的干扰。
这样导致 UE测量时受到的干扰会随时间产生波动, 测量结果也会相应 波动, 难以保持测量的稳定性。 发明内容
本发明实施例提供了一种提高测量稳定性的方法和装置, 以解决现有技 术中测量稳定性不足的问题。
第一方面, 提出了一种提高测量稳定性的方法, 该方法包括: 基站对当 前子帧对应的资源块 RB中的资源单元 RE的使用进行配置; 该基站根据配 置结果, 确定当前子帧对应的 RB 中未被使用的 RE; 该基站在全部或部分 未被使用的 RE上, 发送填充序列, 该部分未被使用的 RE与导频所在的 RE 在时域上占据同一个符号。
结合第一方面, 在第一种可能的实现方式中, 该当前子帧为该基站待发 送的任一子帧。
结合第一方面, 在第二种可能的实现方式中, 该方法还包括: 该基站在 确定当前子帧对应的 RB中未被使用的 RE之前, 确定该当前子帧。 其中, 该基站确定该当前子帧具体可包括: 该基站获取当前小区的邻区的测量子帧 的第一配置信息; 该基站根据该测量子帧的第一配置信息, 确定该测量子帧 的位置; 该基站根据该测量子帧的位置, 确定该当前小区中与该测量子帧的 位置对应的该当前子帧。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 该方法还包括: 该基站获取该当前小区的邻区的测量子帧的第二配置信息, 其中该第二配置信息与该第一配置信息为同一个配置信息,或者该第二配置 信息与该第一配置信息为不同的配置信息; 该基站根据该第二配置信息, 确 定该测量子帧对应的 RB 中导频所在的 RE。 该基站在全部或部分未被使用 的 RE上, 发送填充序列具体可包括: 该基站在部分未被使用的 RE上, 发 送填充序列, 且该部分未被使用的 E与该测量子帧对应的 RB中导频所在 的 RE的位置相同。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三 种可能的实现方式中任一种可能的实现方式, 在第四种可能的实现方式中, 该填充序列包括小区特定参考信号 CRS或伪随机序列。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第四 种可能的实现方式中任一种可能的实现方式, 在第五种可能的实现方式中, 该基站在全部或部分未被使用的 RE上发送填充序列具体包括: 该基站在全 部或部分未被使用的 RE上,以发送数据信号的功率或发送 CRS的功率发送 填充序列。
第二方面, 提出了一种提高测量稳定性的方法, 该方法包括: UE接收 基站发送的配置信息, 该配置信息指示基站发送给该 UE的导频所在的资源 单元 RE; 该 UE接收该基站发送的子帧; 该 UE根据该配置信息, 确定该子 帧中导频所在的 RE; 该 UE在该导频所在的 RE, 进行信道测量, 其中, 该 UE进行信道测量时受到邻区的子帧的干扰, 且该邻区的子帧在全部或部分 未被使用的 RE上具有填充序列, 该全部或部分未使用的 RE为该邻区的基 站未配置使用的 RE,且该部分未被使用的 RE与该导频所在的 RE在时域上 占据同一个符号。
结合第二方面, 在第一种可能的实现方式中, 具体实现为: 该部分未被 使用的 RE与该导频所在的 RE的位置相同。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实 现方式中, 具体实现为: 该填充序列包括小区特定参考信号 CRS或伪随机 序列。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 具体实现为: 该填充序列 的发送功率为数据信号的发送功率或 CRS的发送功率。
第三方面, 提出了一种提高测量稳定性的装置, 位于基站侧, 该装置包 括: 配置单元, 用于对当前子帧对应的资源块 RB中的资源单元 RE的使用 进行配置; 确定单元, 用于根据配置单元的配置结果, 确定当前子帧对应的 RB中未被使用的 RE; 发送单元, 用于在全部或部分未被使用的 RE上, 发 送填充序列, 该部分未被使用的 RE与导频所在的 RE在时域上占据同一个 符号。
结合第三方面, 在第一种可能的实现方式中, 该当前子帧为所述装置所 在基站待发送的任一子帧。
结合第三方面, 在第二种可能的实现方式中, 该装置还包括获取单元, 该获取单元用于获取当前小区的邻区的测量子帧的第一配置信息; 该确定单 元还用于在确定当前子帧对应的 RB中未被使用的 RE之前确定该当前子帧。 该确定单元具体用于: 根据该获取单元获取的该第一配置信息, 确定该测量 子帧的位置, 并才艮据该测量子帧的位置, 确定该当前小区中与该测量子帧的 位置对应的该当前子帧。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 该获取单元还用于获取该当前小区的邻区的测量子帧的第二配置信息, 其中 该第二配置信息与该第一配置信息为同一个配置信息, 或者该第二配置信息 与该第一配置信息为不同的配置信息; 该确定单元还用于根据该获取单元获 取的该第二配置信息, 确定该测量子帧对应的 RB 中导频所在的 RE; 该发 送单元具体用于在部分未被使用的 RE上, 发送填充序列, 且该部分未被使 用的 RE与该测量子帧对应的 RB中导频所在的 RE的位置相同。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第三 种可能的实现方式中任一种可能的实现方式, 在第四种可能的实现方式中, 该填充序列包括小区特定参考信号 CRS或伪随机序列。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第四 种可能的实现方式中任一种可能的实现方式, 在第五种可能的实现方式中, 所述发送单元具体用于在全部或部分未被使用的 RE上, 以发送数据信号的 功率或发送 CRS的功率发送填充序列。
第四方面, 提出了一种提高测量稳定性的装置, 位于用户设备 UE侧, 该装置包括: 接收单元, 用于接收基站发送的配置信息, 其中该配置信息指 示基站发送给该 UE的导频所在的资源单元 RE; 该接收单元还用于接收该 基站发送的子帧; 确定单元, 用于根据该配置信息, 确定该子帧中导频所在 的 RE; 测量单元, 用于在该导频所在的 RE, 进行信道测量, 其中, 该测量 单元进行信道测量时受到邻区的子帧的干扰,且该邻区的子帧在全部或部分 未被使用的 RE上具有填充序列, 该全部或部分未使用的 RE为该邻区的基 站未配置使用的 RE,且该部分未被使用的 RE与该导频所在的 RE在时域上 占据同一个符号。
结合第四方面, 在第一种可能的实现方式中, 具体实现为: 该部分未被 使用的 RE与该导频所在的 RE的位置相同。
结合第四方面或第四方面的第一种可能的实现方式,在第二种可能的实 现方式中, 具体实现为: 该填充序列包括小区特定参考信号 CRS或伪随机 序列。
结合第四方面或第四方面的第一种可能的实现方式或第四方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 具体实现为: 该填充序列 的发送功率为数据信号的发送功率或 CRS的发送功率。
目前, UE在进行信道测量时, 会受到邻区的干扰, 而邻区在不同时刻 在导频对应的 RE上可能有数据发送, 也可能没有数据发送, 从而导致测量 不稳定。 本发明实施例通过发送填充序列的方式, 使得其在有数据和无数据 发送时, 均对邻区产生稳定的干扰。 具体, 基站在当前子帧中与导频所在的 RE时域上占据同一个符号的 RE上发送填充序列, 或者在当前子帧中全部 未使用的 RE上发送填充序列, 这样, 邻区中的 UE在进行测量时, 即使导 频对应的 RE上没有数据发送, 也会有填充序列发送, 从而使得邻区的 UE 在能够收到当前小区稳定的干扰源, 得到稳定的测量结果。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的一种应用场景示意图。
图 2是本发明实施例提供的一个 RB的资源使用示意图。
图 3是本发明实施例提供的另一个 RB的资源使用示意图。
图 4是本发明实施例提供的一种提高测量稳定性的方法流程图。
图 5是本发明实施例提供的另一种提高测量稳定性的方法流程图。
图 6是本发明实施例提供的一种提高测量稳定性的装置的结构示意图。 图 7是本发明实施例提供的另一种提高测量稳定性的装置的结构示意 图。
图 8是本发明实施例提供的再一种提高测量稳定性的装置的结构示意 图。
图 9是本发明实施例提供的再一种提高测量稳定性的装置的结构示意 图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为了方便理解本发明实施例,首先在此介绍本发明实施例描述中会引入 的几个要素。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通讯系 统 ( GSM, Global System of Mobile communication ), 码分多址 ( CDMA, Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务 ( GPRS , General Packet Radio Service ), 长期演进 ( LTE, Long Term Evolution )等。
用户设备 ( UE , User Equipment ) , 也可称之为移动终端 ( Mobile Terminal ),移动用户设备等, 可以经无线接入网(例如, RAN, Radio Access Network ) 与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移 动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携 式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入 网交换语言和 /或数据。
基站,可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ),还可以是 LTE中的演进型基站( eNB 或 e-NodeB, evolutional NodeB ), 本发明并不限定, 但为描述方便, 下述实 施例以 eNB为例进行说明。
资源单元(Resource Element, RE ): 时频资源的最小单位, 在时域上占 据 1个符号, 在频域上占据 1个子载波。
时频资源块( Resource Block, RB ): 调度用户时所需的最小资源单位。 LTE中, 一个时频资源块在频域上包括 12个子载波, 在时域上包括 14个符 号。 图 2是本发明实施例一个 RB的资源使用示意图。 如图 2所示, 该时频 资源块包括 12*14个 RE。
参考信号 (Reference Signal, RS ): 也叫导频信号, 是由发端提供给接 收端用于信道估计或信道测量的一种已知信号。 例如, 小区特定参考信号 ( Cell-specific Reference Signal , CRS )、 用户专用参考信号 ( UE- Specific Reference Signal, UE-specific RS )、 用户状态信息参考信号 ( Channel- State Information - Reference Signal , CSI-RS ), 等等。
图 1是可应用本发明实施例的场景的一个例子的示意图。
图 1可以为 LTE系统的一个场景。在图 1中,基站 120是基站 110的相 邻基站, 基站 110发送的信号能够覆盖区域 C1 , 基站 120发送的信号能够 覆盖区域 Rl , UE 130位于区域 C1与 R1的交集处。 当 UE 130根据基站 110 发送的小区特定参考信号 (Cell-specific Reference Signal, CRS ) 来测量信 道质量( Channel quality indicator, CQI ) 时, 会受到来自基站 120的信号干 扰。 不妨假设 UE 130在测量 CRS所使用的 RE为 RE1。 基站 120可能在与 RE1相同的 RE上发送信号, 此时会对 UE 130的测量造成影响; 基站 120 也可能在与 E1相同的 RE上不发送信号, 此时不会对 UE 130的测量造成 影响。 由于存在这两种可能性, 导致 UE 130在基于 CRS进行信道测量时存 在测量不稳定的问题。
应注意, 虽然上述图 1描述的是 UE的测量受到相邻基站的影响, 但是 在实际应用中, 还可以是 UE的测量受到同一基站相邻小区的影响。 同时, 对 UE的测量造成影响的干扰源也不局限于 1个, 可以是两个或更多个。 另 夕卜, 基站 110发送的参考信号可以是 CRS , 或者是其它参考信号, 本发明实 施例在此并不作限制。 本发明实施例中, 以图 1所示的场景为例, 对本发明 实施例的方法和基站进行描述。
为保证 UE 130的稳定测量, 一种解决方式, 让能够对 UE 130进行干扰 的基站 120在与 RE1相同的 RE上始终保持信号发射, 这样 UE 130就会受 到一个稳定的干扰源, 从而得到稳定的测量结果。
图 2是本发明实施例一个 RB的资源使用示意图。 图 2中黑色填充的方 格表示用于发送导频信号的 RE, 竖线填充的方格表示用于发送数据信号的 RE, 白色填充的方格表示未使用的 RE。 一个 RB资源中, 参考信号所在的 符号是已知的。 例如, 协议规定, 在两天线端口的情况下, 参考信号在一个 RB中占据 4个符号。 如图 2所示, 参考符号在第 0、 4、 7、 11共 4个符号 上。 又例如, 在四天线的情况下, 参考信号在第 0、 1、 4、 7、 8、 11共 6个 符号上。 当然, 根据不同的天线配置, 参考信号可能存在不同的导频配置, 但对于基站来说, 该配置是已知的。
图 3是本发明实施例另一个 RB的资源使用示意图。 图 3中黑色填充的 方格表示用于发送导频信号的 RE, 竖线填充的方格表示用于发送数据信号 的 E,白色填充的方格表示未使用的 RE。不妨假设图 2的 RB属于 A小区, 图 3的 RB属于 B小区, 两个 RB占用相同的时频资源。 则当 A小区的用户 根据导频信号进行测量时, 有可能受到 B小区的信号干扰。 例如,小区 A在 图 2中所示的 i=0, k=9的 RE上发送导频信号, 而小区 B在同样的资源位 置可以发送数据信号, 也可以不发送任何信号, 这将导致小区 A的 UE测量 不稳定。
图 4是本发明实施例提供的一种提高测量稳定性的方法流程图。 图 4的 方法由基站执行, 包括如下步骤:
401 , 基站对当前子帧对应的 RB中的 RE的使用进行配置。
基站在向 UE发送导频之前, 需要先对导频所占的时频资源进行配置, 而后通过高层信令(例如, RRC信令)将配置信息发送给 UE, UE根据该 配置信息可以知道导频所在的 RE位置,从而在相应的 RE上进行信道测量。 该配置过程为本领域技术人员所熟知, 本发明实施例在此不再赘述。
402, 该基站根据配置结果, 确定当前子帧对应的 RB中未被使用的 RE。 当完成对当前子帧对应的 RB中的 RE的使用配置后,基站可确定当前子 帧对应的 RB中未被使用的 RE。 该未被使用的 RE指完成对当前子帧对应的 RB中的 RE的使用配置后尚未被用于发送信号的 RE。
403 , 该基站在全部或部分未被使用的 RE上, 发送填充序列。
其中, 该部分未被使用的 RE与导频所在的 RE在时域上占据同一个符号。 目前, UE在进行信道测量时, 会受到邻区的干扰, 而邻区在不同时刻 在导频对应的 RE上可能有数据发送, 也可能没有数据发送, 从而导致测量 不稳定。 本发明实施例通过发送填充序列的方式, 使得其在有数据和无数据 发送时, 均对邻区产生稳定的干扰。 具体, 基站在当前子帧中与导频所在的 RE时域上占据同一个符号的 RE上发送填充序列, 或者在当前子帧中全部 未使用的 RE上发送填充序列, 这样, 邻区中的 UE在进行测量时, 即使导 频对应的 RE上没有数据发送, 也会有填充序列发送, 从而使得邻区的 UE 在能够收到当前小区稳定的干扰源, 得到稳定的测量结果。
可选地, 当前子帧为该基站待发送的任一子帧。 也就是基站对待发送的 任一子帧都进行满填充, 从而使得其对邻区的干扰保持稳定, 以提高邻区中 UE测量的准确性。 这种方式简单, 且适用于任一版本的 UE。 例如, 在 R8 和 R9版本中,基站不限定某一个子帧是测量子帧, UE可以在任一子帧上进 行信道测量。 因此, 对任一子帧进行满填充, 是一种简单的使得其对邻区的 干扰保持稳定, 以提高邻区中 UE测量的准确性的方式。
具体, 在本发明实施例 1中, 基站对当前子帧对应的 RB中的 RE的使用 进行配置之后, 可在任一个子帧对应的 RB中所有未使用的 RE都进行序列 填充。 以图 3为例,基站可对该 RB中符号 0至 13中所有未被使用的 RE进 行序列填充, 然后发送填充序列。 本发明实施例中, 基站不需要获取其它相 邻小区的测量子帧的信息, 例如: 位置信息、 导频所在的 RE等, 就能使得 相邻小区的用户得到本小区稳定的干扰源, 从而得到一个稳定的测量结果。
虽然, 以上实施例 1的任一子帧的满填充方式, 是一种简单的方式, 但 其虽然干扰稳定, 但是干扰本身却增加了, 为了进一步减少对邻区的干扰, 可以在任一子帧进行部分填充, 具体为满列填充。 也就是说, 将导频所在的 列填满。
具体, 在本发明实施例 2中, 基站对当前子帧对应的 RB中的 RE的使用 进行配置之后, 可在任一个子帧对应的 RB中导频所在符号未使用的 RE进 行序列填充。 由于导频所在的符号是协议规定的, 与基站的天线相关, 基站 很容易根据自身的天线数确定需要发送导频的符号。 以图 3为例, 基站可知 道导频所在的符号为 0、 4、 7、 11 , 进而基站可对该 RB中符号 0、 4、 7、 11 中所有未被使用的 RE进行序列填充, 然后发送填充序列。本发明实施例中, 基站不需要获取其它相邻小区的测量子帧的信息, 例如位置信息、 导频所在 的 RE等, 就能使得相邻小区的用户得到本小区稳定的干扰源, 从而得到一 个稳定的测量结果。
在 R10及以后的协议版本中, 基站可以对测量子帧进行配置, 例如, 通 过高层信令向 UE发送配置信息,该配置信息中包括测量子帧的位置信息(例 如测量子帧集, 或者测量子帧的发送周期等)。 如此, 当前小区便可以通过 与邻区的交互, 获取邻区的测量子帧的信息, 从而在与测量子帧位置对应的 当前子帧中进行满帧填充或满列填充。 甚至, 可以进一步获得测量子帧中
RE的位置信息, 从而仅在当前子帧中与测量子帧中的 RE对应的位置进行 填充。 具体, 请参照以下实施例 3的描述。
另外, 需要说明的是, 如果当前小区与邻区位于同一基站, 该基站可以 直接获取到邻区的测量子帧的信息, 那么当前小区与邻区之间的交互, 可以 理解为一个基站中两个实体之间的交互,例如当前小区与邻区的控制实体位 于不同的基带板时, 可以是两个基带板之间的交互; 位于一个基带板的不同 处理器上时, 可以是两个处理器之间的交互; 甚至是一个处理器的两个核, 或者两个功能单元之间的交互。 本发明实施例不做任何限制。 当然, 如果当 前小区与邻区位于不同基站时, 当前小区所在的基站需要与邻区所在的基站 进行交互, 例如通过 X2口进行交互, 获得基站对邻区的测量子帧的配置, 从而得知测量子帧的相关信息。
此时, 以上当前子帧并不是任一子帧, 而是与邻区的测量子帧位置对应 的一个子帧, 因此, 本发明实施例 3中, 在步骤 402之前, 以上方法还可以 包括: 该基站确定以上当前子帧。具体地,该基站确定该当前子帧可实现为: 该基站获取当前小区的邻区的测量子帧的第一配置信息; 该基站根据该测量 子帧的第一配置信息, 确定该测量子帧的位置; 该基站根据该测量子帧的位 置, 确定该当前小区中与该测量子帧的位置对应的该当前子帧。 测量子帧的 第一配置信息, 可包括测量子帧的位置信息, 例如, 测量子帧集, 或者测量 子帧的发送周期等, 基站可根据第一配置信息确定测量子帧的位置。
如果当前小区与邻区属于相同的基站, 则基站可直接根据基站的配置获 取当前小区的邻区的测量子帧的第一配置信息, 进而确定当前小区的当前子 帧的信息。 如果当前小区的邻区与当前小区不属于同一个基站, 基站可通过
X2接口等交互高层配置信息, 从而得到当前小区的邻区的第一配置信息。 填充的方式可以包括两种: 一种方式, 当基站确定当前子帧后, 可在当前子 帧对应的 RB中满子帧进行填充, 具体填充方式与本发明实施例 1类似, 本 发明实施例在此不再赘述。 另一种方式, 当基站确定当前子帧后, 可在当前 子帧对应的 RB中导频所在符号未使用的 RE进行序列填充, 具体填充方式 与本发明实施例 2类似, 本发明实施例在此不再赘述。 本发明实施例中, 基 站可得到当前小区的邻区的测量子帧的位置, 并在该测量子帧对应的当前子 帧对应的 RB上发送填充序列, 大大减少了需要填充的 RE的数量, 提高了 基站的效率。
进一步地, 该方法还可以包括: 该基站获取该当前小区的邻区的测量子 帧的第二配置信息; 该基站根据该第二配置信息, 确定该测量子帧对应的 RB中导频所在的 RE。 此时, 该基站在全部或部分未被使用的 RE上发送填 充序列可实现为: 该基站在部分未被使用的 RE上, 发送填充序列, 且该部 分未被使用的 RE与该测量子帧对应的 RB中导频所在的 RE的位置相同。 其中, 该第二配置信息中可携带当前小区的邻区的测量子帧中用于发送导频 信号的 RE的信息, 该第二配置信息与该第一配置信息为同一个配置信息, 或者该第二配置信息与该第一配置信息为不同的配置信息。
本发明实施例 4中, 基站可先确定用于发送填充序列的当前子帧, 该当 前子帧与邻区的测量子帧为相同时刻的子帧。确定当前子帧的方式可参考本 发明实施例 3 , 本发明实施例在此不再赘述。 在确定当前子帧之后, 基站还 可获取该当前小区的邻区的测量子帧的第二配置信息。该第二配置信息中可 携带当前小区的邻区的测量子帧中用于发送导频信号的 RE的信息。 一种方 式, 该第一配置信息与该第二配置信息为同一个配置信息的不同内容, 也就 是说,基站可一次获取当前小区的邻区的测量子帧的位置信息及测量子帧内 导频所在 RE的信息。 另一种方式, 该第一配置信息与该第二配置信息不同 的两条配置信息, 也就是说, 基站需要分别获取当前小区的邻区的测量子帧 的位置信息和测量子帧内导频所在 RE的信息。 如果当前小区与邻区属于相 同的基站, 则基站可直接根据基站的配置获取当前小区的邻区的测量子帧的 第二配置信息, 进而确定当前小区的当前子帧的信息。 如果当前小区的邻区 与当前小区不属于同一个基站, 基站可通过 X2接口等交互高层配置信息, 从而得到当前小区的邻区的第二配置信息。 当基站得到当前小区的邻区的测 量子帧中用于发送导频信号的 RE, 可在当前子帧对应的 RB 中查找出对应 的 RE , 如果该对应的 RE尚未被使用, 则在该对应的 RE上发送填充序列。 显然, 该未被使用的 RE与该测量子帧对应的 RB中导频所在的 RE的位置 相同。 本发明实施例中, 基站可得到当前小区的邻区的导频的 RE的位置, 并在当前子帧对应的 RB中对应的 RE发送填充序列, 在提高测量稳定性的 基础上, 大大减少了需要填充的 RE的数量, 进一步减少了对邻区的干扰。
可选地, 该填充序列包括 CRS或伪随机序列。 本发明实施例中, 在进 行序列填充时, 基站可使用伪随机序列、 CRS或其它序列进行填充, 本发明 实施例对此并不作限制。
可选地, 该基站在全部或部分未被使用的 RE上发送填充序列具体实现 为: 该基站在全部或部分未被使用的 RE上, 以发送数据信号的功率或发送 CRS的功率发送填充序列。 本发明实施例中, 在进行序列填充时, 基站可使 用发送数据信号的功率发送填充序列, 或者使用发送 CRS 的功率发送填充 序列, 或者使用其它功率发送填充序列, 以使得当前小区的邻区的用户得到 一个稳定的干扰源。优选地,基站可使用发送数据信号的功率发送填充序列。
可选地, 该基站在全部或部分未被使用的 RE上发送填充序列具体实现 为: 如果全部或部分未被使用的 RE所属的 RB尚未被分配, 则该基站通过 在该 RB上调度 UE以实现该填充序列的发送。
本发明实施例 5 , 如果当前小区对应的 RB 中用于发送填充序列的 RE 所在的 RB尚未被分配, 则基站可在该 RB上调度 UE以达到填充序列的效 果。 当该时频资源块未被分配, 该时频资源块上可包括被 CRS、 控制信号或 同步信号等占用的资源和未被使用的 E。 基站调度 UE时, 可随机选择一 个 UE进行调度, 其调度的目的只是为了实现对时频资源块内资源的填充, 基站在该时频资源块上调度用户, 其中的一个效果就是在该时频资源块上未 被使用的 RE发送填充序列。 也就是说, 基站在该时频资源块上调度用户能 够实现在该时频资源块未被使用的 E上发送填充序列。 基站调度用户时, 可选择以 CRS、 伪随机序列或其它序列作为 Padding进行填充。 基站调度用 户的发射功率, 可釆用发射 CRS 的功率、 发射数据的功率或其它预定的功 率, 等等。 本发明实施例中, 通过调度 UE, 也可使得邻区的 UE在当前子帧能够 收到当前小区稳定的干扰源,从而使得邻区的 UE能够得到稳定的测量结果。
图 5是本发明实施例提高测量稳定性的另一方法流程图。 图 5 的方法 UE执行, 包括如下步骤:
501 , UE接收基站发送的配置信息。
其中, 该配置信息指示基站发送给该 UE的导频所在的 RE。
502 , 该 UE接收该基站发送的子帧。
503 , 该 UE 艮据该配置信息, 确定该子帧中导频所在的 RE。
该 UE在接收到基站发送的子帧后, 可根据基站发送的配置信息确定该 子帧中导频所在的 RE。
504, 该 UE在该导频所在的 RE, 进行信道测量。
其中, 该 UE进行信道测量时受到邻区的子帧的干扰, 且该邻区的子帧 在全部或部分未被使用的 RE上具有填充序列, 该全部或部分未使用的 RE 为该邻区的基站未配置使用的 RE, 且该部分未被使用的 RE与该导频所在 的 RE在时域上占据同一个符号。
目前, UE在进行信道测量时, 会受到邻区的干扰, 而邻区在不同时刻 在导频对应的 RE上可能有数据发送, 也可能没有数据发送, 从而导致测量 不稳定。 本发明实施例中, 该 UE进行信道测量时, 邻区的基站在 UE进行 测量的子帧中与导频所在的 RE时域上占据同一个符号的 RE上发送填充序 列, 或者在 UE进行测量的子帧中全部未使用的 RE上发送填充序列, 因而 UE能够收到邻区稳定的干扰源, 得到稳定的测量结果。
可选地, 该部分未被使用的 RE与该导频所在的 RE的位置相同。
可选地, 该填充序列包括小区特定参考信号 CRS或伪随机序列。 当然, 该填充序列还可以是其它序列, 本发明实施例在此不作限制。
可选地, 该填充序列的发送功率为数据信号的发送功率或 CRS 的发送 功率。 当然, 该填充序列的发送功率还可以是其它功率, 本发明实施例在此 不作限制。
另外, 本发明实施例中 UE接收到的邻区的干扰源的发送方式, 可参考 本发明图 4所示的具体实施例及本发明实施例 1-5 , 本发明实施例在此不再 赘述。
图 6是本发明实施例提供的一种提高测量稳定性的装置 600的结构示意 图。 该装置 600位于基站侧, 可包括: 配置单元 601、 确定单元 602和发送 单元 603。
配置单元 601 , 用于对当前子帧对应的资源块 RB中的资源单元 RE的 使用进行配置。
确定单元 602, 用于根据配置单元 601的配置结果, 确定当前子帧对应 的 RB中未被使用的 RE;
发送单元 603 , 用于在全部或部分未被使用的 RE上, 发送填充序列, 该部分未被使用的 RE与导频所在的 RE在时域上占据同一个符号。
目前, UE在进行信道测量时, 会受到邻区的干扰, 而邻区在不同时刻 在导频对应的 RE上可能有数据发送, 也可能没有数据发送, 从而导致测量 不稳定。 本发明实施例通过发送填充序列的方式, 使得其在有数据和无数据 发送时, 均对邻区产生稳定的干扰。 具体, 基站在当前子帧中与导频所在的 RE时域上占据同一个符号的 RE上发送填充序列, 或者在当前子帧中全部 未使用的 RE上发送填充序列, 这样, 邻区中的 UE在进行测量时, 即使导 频对应的 RE上没有数据发送, 也会有填充序列发送, 从而使得邻区的 UE 在能够收到当前小区稳定的干扰源, 得到稳定的测量结果。
可选地, 作为一个实施例, 该当前子帧为该装置 600所在基站待发送的 任一子帧。
可选地, 作为另一个实施例, 以上装置 600还可包括获取单元 604。 其 中, 获取单元 604用于获取当前小区的邻区的测量子帧的第一配置信息。 确 定单元 602还用于在确定当前子帧对应的 RB中未被使用的 RE之前, 确定 该当前子帧。 具体地, 在用于确定该当前子帧的过程中, 确定单元 602用于 根据该获取单元获取的该第一配置信息, 确定该测量子帧的位置, 并根据该 测量子帧的位置, 确定该当前小区中与该测量子帧的位置对应的该当前子 帧。
进一步地,获取单元 604还用于获取该当前小区的邻区的测量子帧的第 二配置信息。 确定单元 602还用于根据该获取单元获取的该第二配置信息, 确定该测量子帧对应的 RB 中导频所在的 RE。 发送单元具体用于在部分未 被使用的 RE上, 发送填充序列, 且该部分未被使用的 RE与该测量子帧对 应的 RB中导频所在的 RE的位置相同。 该第二配置信息用于指示当前小区 的邻区的导频所在的 RE, 该第二配置信息与该第一配置信息为同一个配置 信息, 或者该第二配置信息与该第一配置信息为不同的配置信息。 可选地, 该填充序列包括 CRS或伪随机序列。 本发明实施例中, 在进 行序列填充时,以上装置 600可使用伪随机序列、 CRS或其它序列进行填充, 本发明实施例对此并不作限制。
可选地, 发送单元 603具体用于在全部或部分未被使用的 RE上, 以发 送数据信号的功率或发送 CRS 的功率发送填充序列。 本发明实施例中, 在 进行序列填充时, 以上装置 600可使用发送数据信号的功率发送填充序列, 或者使用发送 CRS的功率发送填充序列, 或者使用其它功率发送填充序列, 以使得当前小区的邻区的 UE得到一个稳定的干扰源。优选地,以上装置 600 可使用发送数据信号的功率发送填充序列。 UE测量时受到的干扰大部分是 来自数据信号, 才用发送数据信号的功率发送填充序列能够使得 UE取得一 个相对最优的稳定测量结果。
以上装置 600还可执行图 4的方法,并实现基站在图 4所示的具体实施 例及本发明实施例 1-5中的功能, 本发明实施例在此不再赘述。
需要说明的是, 本实施例中的发送单元可以为基站的发射机或收发机。 配置单元可以为单独设立的处理器,也可以集成在基站的某一个处理器中实 现, 此外, 也可以以程序代码的形式存储于基站的存储器中, 由基站的某一 个处理器调用并执行以上跟踪任务建立单元的功能。确定单元的实现同配置 单元, 且可以与配置单元集成在一起, 也可以独立实现。 获取单元可以与确 定单元集成在一起, 也可以单独设置, 且当当前小区与邻区位于不同的基站 时, 获取单元可以通过基站的接口电路(例如, X2接口电路)获取到邻区 的配置信息。 这里所述的处理器可以是一个中央处理器(Central Processing Unit , CPU ) , 或者是特定集成电路 ( Application Specific Integrated Circuit , ASIC ), 或者是被配置成实施本发明实施例的一个或多个集成电路。
图 7是本发明实施例提供的一种提高测量稳定性的装置 700的结构示意 图。 该装置 700位于 UE侧, 可包括: 接收单元 701、 确定单元 702和测量 单元 703。
接收单元 701 , 可用于接收基站发送的配置信息。 其中, 该配置信息指 示基站发送给该 UE的导频所在的 RE。
接收单元 701还可用于接收该基站发送的子帧。
确定单元 702, 可用于根据该配置信息, 确定接收单元 701接收的子帧 中导频所在的 RE。
测量单元 703 , 可用于在该导频所在的 RE, 进行信道测量。 其中, 该测 量单元进行信道测量时受到邻区的子帧的干扰,且该邻区的子帧在全部或部 分未被使用的 E上具有填充序列, 该全部或部分未使用的 RE为该邻区的 基站未配置使用的 RE,且该部分未被使用的 RE与该导频所在的 RE在时域 上占据同一个符号。
目前, UE在进行信道测量时, 会受到邻区的干扰, 而邻区在不同时刻 在导频对应的 RE上可能有数据发送, 也可能没有数据发送, 从而导致测量 不稳定。 本发明实施例中, 以上装置 700进行信道测量时, 邻区的基站在装 置 700进行测量的子帧中与导频所在的 RE时域上占据同一个符号的 RE上 发送填充序列, 或者在以上装置 700进行测量的子帧中全部未使用的 RE上 发送填充序列, 因而以上装置 700能够收到邻区稳定的干扰源, 得到稳定的 测量结果。
可选地, 该部分未被使用的 RE与该导频所在的 RE的位置相同。
可选地, 该填充序列包括小区特定参考信号 CRS或伪随机序列。 当然, 该填充序列还可以是其它序列, 本发明实施例在此不作限制。
可选地, 该填充序列的发送功率为数据信号的发送功率或 CRS 的发送 功率。 当然, 该填充序列的发送功率还可以是其它功率, 本发明实施例在此 不作限制。
另夕卜,本发明实施例中以上装置 700接收到的邻区的干扰源的发送方式, 可参考本发明图 4所示的具体实施例及本发明实施例 1-5 , 本发明实施例在 此不再赘述。
图 8是本发明实施例提供的一种提高测量稳定性的装置 800的结构示意 图。 该装置 800位于基站侧, 可包括: 处理器 802、 存储器 803、 发射器 801 和接收器 804。
处理器 802、 存储器 803、 发射器 801和接收器 804通过总线 806相互 连接。 总线 806可以是 ISA总线、 PCI总线或 EISA总线等。 所述总线可以 分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 8中仅用一个双向 箭头表示, 但并不表示仅有一根总线或一种类型的总线。 具体的应用中, 发 射器 801和接收器 804可以耦合到天线 805。
存储器 803 , 用于存放程序。 具体地, 程序可以包括程序代码, 所述程 序代码包括计算机操作指令。存储器 803可以包括只读存储器和随机存取存 储器, 并向处理器 802提供指令和数据。 存储器 803可能包含高速 RAM存 储器, 也可能还包括非易失性存储器(non-volatile memory ), 例如至少一个 磁盘存储器。
处理器 802, 执行存储器 803所存放的程序, 用于对当前子帧对应的资 源块 RB中的资源单元 RE的使用进行配置, 并根据配置结果确定当前子帧 对应的 RB中未被使用的 RE, 并在全部或部分未被使用的 RE上, 发送填充 序列, 其中该部分未被使用的 RE与导频所在的 RE在时域上占据同一个符 号。
上述如本发明图 4所示实施例及本发明实施例 1-5中任一实施例揭示的 基站执行的方法可以应用于处理器 802中, 或者由处理器 802实现。 处理器 802可能是一种集成电路芯片, 具有信号的处理能力。 在实现过程中, 上述 方法的各步骤可以通过处理器 802中的硬件的集成逻辑电路或者软件形式的 指令完成。 上述的处理器 802可以是通用处理器、 数字信号处理器(DSP )、 专用集成电路 ( ASIC ), 现成可编程门阵列 (FPGA )或者其他可编程逻辑 器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行本发 明实施例中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器 或者该处理器也可以是任何常规的处理器等。 结合本发明实施例所公开的方 法的步骤可以直接体现为硬件译码处理器执行完成, 或者用译码处理器中的 硬件及软件模块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读 存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成 熟的存储介质中。 该存储介质位于存储器 803 , 处理器 802读取存储器 803 中的信息, 结合其硬件完成上述方法的步骤。
目前, UE在进行信道测量时, 会受到邻区的干扰, 而邻区在不同时刻 在导频对应的 RE上可能有数据发送, 也可能没有数据发送, 从而导致测量 不稳定。 本发明实施例通过发送填充序列的方式, 使得其在有数据和无数据 发送时, 均对邻区产生稳定的干扰。 具体, 基站在当前子帧中与导频所在的 RE时域上占据同一个符号的 RE上发送填充序列, 或者在当前子帧中全部 未使用的 RE上发送填充序列, 这样, 邻区中的 UE在进行测量时, 即使导 频对应的 RE上没有数据发送, 也会有填充序列发送, 从而使得邻区的 UE 在能够收到当前小区稳定的干扰源, 得到稳定的测量结果。 可选地, 作为一个实施例, 该当前子帧为该装置 800所在待发送的任一 子帧。
可选地, 作为另一个实施例, 处理器 802还用于在确定当前子帧对应的 RB中未被使用的 RE之前, 确定该当前子帧。 在确定该当前子帧的过程中, 处理器 802具体用于获取当前小区的邻区的测量子帧的第一配置信息, 并根 据该第一配置信息, 确定该测量子帧的位置, 并才艮据该测量子帧的位置, 确 定该当前小区中与该测量子帧的位置对应的该当前子帧。
进一步地,处理器 802还用于获取该当前小区的邻区的测量子帧的第二 配置信息,并该第二配置信息,确定该测量子帧对应的 B中导频所在的 RE, 并通过发射器 801在部分未被使用的 RE上, 发送填充序列, 且该部分未被 使用的 RE与该测量子帧对应的 RB中导频所在的 RE的位置相同。 其中, 该第二配置信息用于指示当前小区的邻区的导频所在的 RE, 该第二配置信 息与该第一配置信息为同一个配置信息,或者该第二配置信息与该第一配置 信息为不同的配置信息。
可选地, 该填充序列包括 CRS或伪随机序列。 本发明实施例中, 在进 行序列填充时,以上装置 800可使用伪随机序列、 CRS或其它序列进行填充, 本发明实施例对此并不作限制。
可选地, 处理器 802具体可通过发射器 801 在全部或部分未被使用的 RE上, 以发送数据信号的功率或发送 CRS的功率发送填充序列。 本发明实 施例中, 在进行序列填充时, 以上装置 800可使用发送数据信号的功率发送 填充序列, 或者使用发送 CRS 的功率发送填充序列, 或者使用其它功率发 送填充序列,以使得当前小区的邻区的 UE得到一个稳定的干扰源。优选地, 以上装置 800可使用发送数据信号的功率发送填充序列。 UE测量时受到的 干扰大部分是来自数据信号, 才用发送数据信号的功率发送填充序列能够使 得 UE取得一个相对最优的稳定测量结果。
可选的,如果全部或部分未被使用的 RE所在的时频资源块尚未被分配, 则处理器 802可通过在该时频资源块上调度 UE以实现该填充序列的发送。 其中, 该时频资源块为调度 UE时所需的时频资源。
以上装置 800还可执行图 4的方法, 并实现基站在图 4所示的具体实施 例及本发明实施例 1-5中的功能, 本发明实施例在此不再赘述。
图 9是本发明实施例提供的一种提高测量稳定性的装置 900的结构示意 图。 该装置 900位于 UE侧, 可包括: 处理器 902、 存储器 903、 发射器 901 和接收器 904。
处理器 902、 存储器 903、 发射器 901和接收器 904通过总线 906相互 连接。 总线 906可以是 ISA总线、 PCI总线或 EISA总线等。 所述总线可以 分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 9中仅用一个双向 箭头表示, 但并不表示仅有一根总线或一种类型的总线。 具体的应用中, 发 射器 901和接收器 904可以耦合到天线 905。
存储器 903 , 用于存放程序。 具体地, 程序可以包括程序代码, 所述程 序代码包括计算机操作指令。存储器 903可以包括只读存储器和随机存取存 储器, 并向处理器 902提供指令和数据。 存储器 903可能包含高速 RAM存 储器, 也可能还包括非易失性存储器(non-volatile memory ), 例如至少一个 磁盘存储器。
处理器 902, 执行存储器 903所存放的程序, 用于通过接收器 904接收 基站发送的配置信息, 其中该配置信息指示基站发送给该 UE的导频所在的 RE; 通过接收器 904接收该基站发送的子帧; 根据该配置信息, 确定接收器 904接收的子帧中导频所在的 RE; 并在该导频所在的 RE, 进行信道测量, 其中该测量单元进行信道测量时受到邻区的子帧的干扰,且该邻区的子帧在 全部或部分未被使用的 RE上具有填充序列, 该全部或部分未使用的 RE为 该邻区的基站未配置使用的 RE, 且该部分未被使用的 RE与该导频所在的 RE在时域上占据同一个符号。
上述如本发明图 5中任一实施例揭示的 UE执行的方法可以应用于处理 器 902中, 或者由处理器 902实现。 处理器 902可能是一种集成电路芯片, 具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器 902 中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器 902可以 是通用处理器、 数字信号处理器(DSP )、 专用集成电路(ASIC )、 现成可编 程门阵列 (FPGA )或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处 理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处 理器执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件 模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可 擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存 储器 903 , 处理器 902读取存储器 903中的信息, 结合其硬件完成上述方法 的步骤。
目前, UE在进行信道测量时, 会受到邻区的干扰, 而邻区在不同时刻 在导频对应的 RE上可能有数据发送, 也可能没有数据发送, 从而导致测量 不稳定。 本发明实施例中, 以上装置 700进行信道测量时, 邻区的基站在装 置 700进行测量的子帧中与导频所在的 RE时域上占据同一个符号的 RE上 发送填充序列, 或者在以上装置 700进行测量的子帧中全部未使用的 RE上 发送填充序列, 因而以上装置 700能够收到邻区稳定的干扰源, 得到稳定的 测量结果。
可选地, 该部分未被使用的 RE与该导频所在的 RE的位置相同。
可选地, 该填充序列包括小区特定参考信号 CRS或伪随机序列。 当然, 该填充序列还可以是其它序列, 本发明实施例在此不作限制。
可选地, 该填充序列的发送功率为数据信号的发送功率或 CRS 的发送 功率。 当然, 该填充序列的发送功率还可以是其它功率, 本发明实施例在此 不作限制。
另外,本发明实施例中以上装置 900接收到的邻区的干扰源的发送方式, 可参考本发明图 4所示的具体实施例及本发明实施例 1-5 , 本发明实施例在 此不再赘述。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种提高测量稳定性的方法, 其特征在于, 包括:
基站对当前子帧对应的资源块 RB中的资源单元 RE的使用进行配置; 所述基站根据配置结果, 确定当前子帧对应的 RB中未被使用的 RE; 所述基站在全部或部分未被使用的 RE上, 发送填充序列, 所述部分未 被使用的 RE与导频所在的 RE在时域上占据同一个符号。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述当前子帧为所述基 站待发送的任一子帧。
3、 根据权利要求 1 所述的方法, 其特征在于, 在所述基站确定当前子 帧对应的 RB中未被使用的 RE之前, 还包括:
所述基站确定所述当前子帧, 包括:
所述基站获取当前小区的邻区的测量子帧的第一配置信息;
所述基站根据所述测量子帧的第一配置信息, 确定所述测量子帧的位 置;
所述基站根据所述测量子帧的位置,确定所述当前小区中与所述测量子 帧的位置对应的所述当前子帧。
4、 根据权利要求 3所述的方法, 其特征在于, 所述方法还包括: 所述基站获取所述当前小区的邻区的测量子帧的第二配置信息, 其中所 述第二配置信息与所述第一配置信息为同一个配置信息, 或者所述第二配置 信息与所述第一配置信息为不同的配置信息;
所述基站根据所述第二配置信息, 确定所述测量子帧对应的 RB中导频 所在的 RE;
所述基站在全部或部分未被使用的 RE上, 发送填充序列, 包括: 所述基站在部分未被使用的 RE上, 发送填充序列, 且所述部分未被使 用的 RE与所述测量子帧对应的 RB中导频所在的 RE的位置相同。
5、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述填充序列 包括小区特定参考信号 CRS或伪随机序列。
6、 如权利要求 1至 5任一项所述的方法, 其特征在于, 所述基站在全 部或部分未被使用的 RE上, 发送填充序列, 包括:
所述基站在全部或部分未被使用的 RE上, 以发送数据信号的功率或发 送 CRS的功率发送填充序列。
7、 一种提高测量稳定性的装置, 位于基站侧, 其特征在于, 包括: 配置单元, 用于对当前子帧对应的资源块 RB中的资源单元 RE的使用 进行配置;
确定单元, 用于根据所述配置单元的配置结果, 确定当前子帧对应的 RB中未被使用的 RE;
发送单元, 用于在全部或部分未被使用的 RE上, 发送填充序列, 所述 部分未被使用的 RE与导频所在的 RE在时域上占据同一个符号。
8、 如权利要求 7所述的装置, 其特征在于,
所述当前子帧为所述装置所在基站待发送的任一子帧。
9、 如权利要求 7所述的装置, 其特征在于, 还包括获取单元, 所述获取单元用于获取当前小区的邻区的测量子帧的第一配置信息; 所述确定单元还用于在确定当前子帧对应的 RB中未被使用的 RE之前 确定所述当前子帧,具体用于:根据所述获取单元获取的所述第一配置信息, 确定所述测量子帧的位置, 并才艮据所述测量子帧的位置, 确定所述当前小区 中与所述测量子帧的位置对应的所述当前子帧。
10、 如权利要求 9所述的装置, 其特征在于,
所述获取单元还用于获取所述当前小区的邻区的测量子帧的第二配置 信息, 其中所述第二配置信息与所述第一配置信息为同一个配置信息, 或者 所述第二配置信息与所述第一配置信息为不同的配置信息;
所述确定单元还用于根据所述获取单元获取的所述第二配置信息,确定 所述测量子帧对应的 RB中导频所在的 RE;
所述发送单元具体用于在部分未被使用的 RE上, 发送填充序列, 且所 述部分未被使用的 RE与所述测量子帧对应的 RB中导频所在的 RE的位置 相同。
11、 如权利要求 7至 10任一项所述的装置, 其特征在于, 所述填充序 列包括小区特定参考信号 CRS或伪随机序列。
12、 如权利要求 7至 11任一项所述的装置, 其特征在于, 所述发送单 元具体用于在全部或部分未被使用的 RE上, 以发送数据信号的功率或发送 CRS的功率发送填充序列。
13、 一种提高测量稳定性的方法, 其特征在于, 包括:
用户设备 UE接收基站发送的配置信息, 所述配置信息指示基站发送给 所述 UE的导频所在的资源单元 RE;
所述 UE接收所述基站发送的子帧;
所述 UE 艮据所述配置信息, 确定所述子帧中导频所在的 RE;
所述 UE在所述导频所在的 RE, 进行信道测量, 其中, 所述 UE进行信 道测量时受到邻区的子帧的干扰,且所述邻区的子帧在全部或部分未被使用 的 RE上具有填充序列, 所述全部或部分未使用的 RE为所述邻区的基站未 配置使用的 E,且所述部分未被使用的 RE与所述导频所在的 RE在时域上 占据同一个符号。
14、 如权利要求 13所述的方法, 其特征在于, 所述部分未被使用的 RE 与所述导频所在的 RE的位置相同。
15、 如权利要求 13或 14所述的方法, 其特征在于, 所述填充序列包括 小区特定参考信号 CRS或伪随机序列。
16、 如权利要求 13至 15任一项所述的方法, 其特征在于, 所述填充序 列的发送功率为数据信号的发送功率或 CRS的发送功率。
17、 一种提高测量稳定性的装置, 位于用户设备 UE侧, 其特征在于, 包括:
接收单元, 用于接收基站发送的配置信息, 其中所述配置信息指示基站 发送给所述 UE的导频所在的资源单元 RE;
所述接收单元还用于接收所述基站发送的子帧;
确定单元, 用于根据所述配置信息, 确定所述子帧中导频所在的 RE; 测量单元, 用于在所述导频所在的 RE, 进行信道测量, 其中, 所述测 量单元进行信道测量时受到邻区的子帧的干扰,且所述邻区的子帧在全部或 部分未被使用的 E上具有填充序列, 所述全部或部分未使用的 RE为所述 邻区的基站未配置使用的 RE, 且所述部分未被使用的 RE与所述导频所在 的 RE在时域上占据同一个符号。
18、 如权利要求 17所述的装置, 其特征在于, 所述部分未被使用的 RE 与所述导频所在的 RE的位置相同。
19、 如权利要求 17或 18所述的装置, 其特征在于, 所述填充序列包括 小区特定参考信号 CRS或伪随机序列。
20、 如权利要求 17至 19任一项所述的装置, 其特征在于, 所述填充序 列的发送功率为数据信号的发送功率或 CRS的发送功率。
PCT/CN2013/087673 2013-11-22 2013-11-22 提高测量稳定性的方法和装置 WO2015074242A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002527.1A CN103843386B (zh) 2013-11-22 2013-11-22 提高测量稳定性的方法和装置
PCT/CN2013/087673 WO2015074242A1 (zh) 2013-11-22 2013-11-22 提高测量稳定性的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087673 WO2015074242A1 (zh) 2013-11-22 2013-11-22 提高测量稳定性的方法和装置

Publications (1)

Publication Number Publication Date
WO2015074242A1 true WO2015074242A1 (zh) 2015-05-28

Family

ID=50804819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087673 WO2015074242A1 (zh) 2013-11-22 2013-11-22 提高测量稳定性的方法和装置

Country Status (2)

Country Link
CN (1) CN103843386B (zh)
WO (1) WO2015074242A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039530A (zh) * 2017-06-09 2018-12-18 索尼公司 无线通信系统中的装置和方法
CN112187696B (zh) * 2020-10-26 2021-12-28 上海交通大学 帧信号传输方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867457A (zh) * 2010-06-21 2010-10-20 中兴通讯股份有限公司 信道状态信息的处理方法及用户设备
CN102118868A (zh) * 2009-12-31 2011-07-06 中兴通讯股份有限公司 多点协作传输中协作测量集合内小区资源映射方法及系统
CN102130870A (zh) * 2010-01-15 2011-07-20 华为技术有限公司 测量干扰的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118868A (zh) * 2009-12-31 2011-07-06 中兴通讯股份有限公司 多点协作传输中协作测量集合内小区资源映射方法及系统
CN102130870A (zh) * 2010-01-15 2011-07-20 华为技术有限公司 测量干扰的方法及装置
CN101867457A (zh) * 2010-06-21 2010-10-20 中兴通讯股份有限公司 信道状态信息的处理方法及用户设备

Also Published As

Publication number Publication date
CN103843386B (zh) 2018-02-02
CN103843386A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN109151922B (zh) 测量方法、测量配置方法和相关设备
US20210067258A1 (en) Radio Resource Management Measurement Method and Apparatus
US11363575B2 (en) Uplink information sending method and apparatus and uplink information receiving method and apparatus
US10284314B2 (en) Measurements in a wireless system
EP2941066B1 (en) Method and apparatus for transmitting common signal
CN111277356B (zh) 侧行链路质量测量的方法和通信装置
WO2014113961A1 (zh) 用于传输参考信号的方法、基站和用户设备
WO2014019191A1 (zh) 配置参考信号的方法、基站和用户设备
CN105099612A (zh) 一种利用非授权频谱传输的方法和装置
JP2017509191A (ja) 同期及びセル測定用の参照サブフレーム
WO2015024228A1 (zh) 信号测量方法和装置
US11924829B2 (en) Signal reception apparatus and method and communications system
WO2017193338A1 (zh) 传输系统信息的方法、基站和终端
CN111937452A (zh) 通信方法、通信装置和系统
EP2947914A1 (en) Communication method, communication apparatus and communication device
US11044701B2 (en) Communication method and communication apparatus
WO2016106563A1 (zh) 一种测量方法和设备
WO2015074242A1 (zh) 提高测量稳定性的方法和装置
WO2022012396A1 (zh) 一种通信方法及装置
CN115150957A (zh) Bwp切换方法、装置、终端、存储介质及产品
EP3614703B1 (en) Method for transmitting reference signal, terminal and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897931

Country of ref document: EP

Kind code of ref document: A1