WO2015074234A1 - 一种设备的开机方法、装置及终端设备 - Google Patents

一种设备的开机方法、装置及终端设备 Download PDF

Info

Publication number
WO2015074234A1
WO2015074234A1 PCT/CN2013/087649 CN2013087649W WO2015074234A1 WO 2015074234 A1 WO2015074234 A1 WO 2015074234A1 CN 2013087649 W CN2013087649 W CN 2013087649W WO 2015074234 A1 WO2015074234 A1 WO 2015074234A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
trigger signal
sensor
microprocessor
terminal device
Prior art date
Application number
PCT/CN2013/087649
Other languages
English (en)
French (fr)
Inventor
钟光华
朱雄伟
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to CN201380077956.5A priority Critical patent/CN105359058A/zh
Priority to PCT/CN2013/087649 priority patent/WO2015074234A1/zh
Publication of WO2015074234A1 publication Critical patent/WO2015074234A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping

Definitions

  • the present invention relates to the field of power-on processing, and more particularly to a method, apparatus, and terminal device for booting a device. Background technique
  • terminal devices such as mobile phones have been widely used in people's daily lives.
  • mobile phones or other terminal devices usually set physical buttons to perform human-machine interaction, such as booting, inputting, and the like.
  • a physical switch button is usually set to start the terminal device. Even if the terminal device is provided with a touch screen, a physical switch button is set to perform the boot operation, and the physical button generally needs to be occupied. A certain space, and a complex mechanical structure.
  • the physical button in order to solve the problem that the physical button is required to perform human-computer interaction in the prior art, the physical button generally needs to occupy a certain space and the mechanical structure is complicated.
  • the present invention provides a booting method for the device, and the technical solution is as follows:
  • a first aspect of the present application provides a method for booting a device, where the method is applied to a terminal device, and the method includes:
  • the microprocessor receives the trigger signal collected by the sensor
  • the microprocessor acquires a state of an application processor, where the state of the application processor includes a sleep state, a working state, or a shutdown state;
  • the microprocessor When the state of the application processor is a shutdown state, the microprocessor sends a power-on signal to the power management unit according to the received trigger signal, where the power-on signal is used to enable the power management unit to enable the power source
  • the management unit supplies power to the application processor.
  • the microprocessor After receiving the trigger signal collected by the sensor, the microprocessor further includes:
  • the microprocessor determines whether the trigger signal is a false trigger signal according to the received trigger signal
  • the trigger signal is not a false trigger signal, it is determined that the trigger signal is a reliable power-on signal.
  • the microprocessor After receiving the trigger signal collected by the sensor, the microprocessor further includes:
  • the microprocessor determines whether the trigger signal is a jitter signal according to the received trigger signal.
  • the determining whether the trigger signal is a jitter signal includes:
  • the microprocessor cancels the jitter signal.
  • the microprocessor receives the trigger signal collected by the sensor, and includes at least one of the following: the microprocessor receives a pressure signal collected by a stress sensor, and the stress sensor is disposed on the terminal device;
  • the microprocessor receives a capacitance change signal collected by a capacitance sensor, and the capacitance sensor is disposed on the terminal device;
  • the microprocessor receives an acceleration signal collected by an acceleration sensor, and the acceleration sensor is disposed on the terminal device.
  • the microprocessor determines, according to the received trigger signal, whether the trigger signal is a false trigger signal Number, including at least one of the following:
  • the trigger signal received by the microprocessor is a pressure signal, determining whether the magnitude of the pressure signal satisfies a first preset condition, the first preset condition being greater than or equal to a preset pressure value; When the magnitude of the stress signal satisfies the first preset condition, the pressure signal is not a false trigger signal;
  • the microprocessor When the microprocessor is a capacitance change signal according to the received trigger signal, determining whether the size of the capacitance change signal satisfies a second preset condition, where the second preset condition is greater than or equal to a preset capacitance change value. ;
  • the capacitance change signal is not a false trigger signal
  • the microprocessor When the microprocessor is an acceleration signal according to the received trigger signal, it is determined whether the magnitude of the acceleration value satisfies a third preset condition, and the third preset condition is greater than or equal to a preset acceleration value;
  • a second aspect of the present invention provides an apparatus for booting a device, including a receiver, a processor, and a transmitter;
  • the receiver acquires a state of an application processor and transmits the state of the application processor to the processor;
  • the processor sends a power-on signal to the power management unit by using the transmitter according to the received trigger signal, where the power-on signal is used to enable the power management unit to The power management unit is caused to supply power to the application processor.
  • the processor includes a false trigger signal determining unit:
  • the erroneous trigger signal determining unit is configured to determine whether the trigger signal is a false trigger signal according to the received trigger signal, and if the trigger signal is not a false trigger signal, determine that the trigger signal is a reliable power-on signal.
  • the processor includes a jitter determination unit
  • the jitter determining unit is configured to determine, according to the received trigger signal, whether the trigger signal is a jitter signal, and the jitter determining unit includes:
  • a time judging module configured to determine, according to the received trigger signal, that the trigger signal duration is greater than or equal to a preset time, and when the trigger signal duration is less than the preset time, determining that the trigger signal is a jitter signal The microprocessor cancels the jitter signal.
  • the receiver includes at least one of the following receiving units;
  • the receiver includes at least one of the following receiving units;
  • a first receiving unit configured to receive a pressure signal collected by the stress sensor, where the stress sensor is disposed on the terminal device;
  • a second receiving unit configured to receive a capacitance change signal collected by the capacitive sensor, where the capacitive sensor is disposed on the terminal device;
  • a third receiving unit configured to receive an acceleration signal collected by the acceleration sensor, where the acceleration sensor is disposed on the terminal device.
  • the erroneous trigger signal judging unit includes at least one erroneous trigger signal judging module: the first erroneous trigger signal judging module is configured to: when the received trigger signal is a pressure signal, determine whether the magnitude of the pressure signal satisfies the first pre- Setting a condition, the first preset condition is greater than or equal to the pre- a pressure value, when the magnitude of the stress signal satisfies a first preset condition, the pressure signal is not a false trigger signal;
  • the second false trigger signal determining module is configured to: when the received trigger signal is a capacitance change signal, determine whether the size of the capacitance change signal meets a second preset condition, where the second preset condition is greater than or equal to a preset a capacitance change value, when the capacitance change value satisfies a second preset condition, the capacitance change signal is not a false trigger signal;
  • the third false trigger signal determining module is configured to determine, when the received trigger signal is an acceleration signal, whether the magnitude of the acceleration value satisfies a third preset condition, where the third preset condition is greater than or equal to a preset acceleration a value, when the acceleration value satisfies a third preset condition, the acceleration signal is not a false trigger signal.
  • a third aspect of the present invention provides a terminal device, including a sensor, an application processor, a power management unit, and a microprocessor;
  • the sensor collects a trigger signal and sends the trigger signal to the microprocessor; the microprocessor receives a trigger signal collected by the sensor, and acquires a state of the application processor, where the application processor The state includes a sleep state, a working state, or a shutdown state; and when the state of the application processor is a shutdown state, the microprocessor sends a power-on signal to the power management unit according to the received trigger signal;
  • the power management unit is configured to receive a power-on signal and supply power to the application processor, where the application processor is configured to receive a power-on signal.
  • the microprocessor is also used for controlling
  • the microprocessor is also used to: Determining, according to the received trigger signal, whether the trigger signal is a jitter signal,
  • the determining whether the trigger signal is a jitter signal comprises:
  • the microprocessor Determining, according to the received trigger signal, that the trigger signal duration is greater than or equal to a preset time; when the trigger signal duration is less than the preset time, determining that the trigger signal is a jitter signal, the microprocessor The jitter signal is eliminated.
  • the sensor includes: a stress sensor, the stress sensor is configured to collect a pressure signal, and the stress sensor is disposed on the terminal device;
  • the sensor includes: a capacitance sensor, the capacitance sensor is configured to collect a capacitance change signal, and the capacitance sensor is disposed on the terminal device;
  • the sensor includes an acceleration sensor for collecting an acceleration signal, and the acceleration sensor is disposed on the terminal device.
  • the erroneous trigger signal judging unit includes at least one erroneous trigger signal judging module: the microprocessor is further configured to: when the received trigger signal is a pressure signal, determine whether the magnitude of the pressure signal satisfies the first preset a condition that the first preset condition is greater than or equal to a preset pressure value, and when the magnitude of the stress signal satisfies a first preset condition, the pressure signal is not a false trigger signal;
  • the microprocessor is further configured to: when the received trigger signal is a capacitance change signal, determine whether the size of the capacitance change signal meets a second preset condition, where the second preset condition is greater than or equal to a preset a capacitance change value, when the capacitance change value satisfies a second preset condition, the capacitance change signal is not a false trigger signal;
  • the microprocessor is further configured to: when the received trigger signal is an acceleration signal, determine whether the magnitude of the acceleration value satisfies a third preset condition, where the third preset condition is greater than or equal to a preset acceleration value. And when the acceleration value satisfies a third preset condition, the acceleration signal is not a false trigger signal.
  • the terminal device in the embodiment of the present invention includes a sensor, a microprocessor (Micro Control Unit), a power management unit, and an application processor.
  • the state of the application processor includes a sleep state, a working state, or a shutdown state. When the application processor is in the shutdown state, the terminal device is in a shutdown state.
  • the method provided by the embodiment of the present invention can keep the microprocessor and the sensor in a working state regardless of the state of the application processor. Therefore, even if the state of the application processor is the shutdown state, the microprocessor can acquire the sensor acquisition.
  • the trigger signal is sent to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor.
  • the booting method provided by the embodiment of the present invention can start the corresponding application of the terminal device without setting a physical button. Since the terminal device does not have complicated physical buttons, the terminal device reserves more. With a lot of space, the above-mentioned reserved space can be saved to realize the slimness of the terminal device.
  • FIG. 1 is a flowchart of a method for booting a device according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for booting a device according to another embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for booting a device according to another embodiment of the present invention.
  • FIG. 4 is a structural diagram of a microprocessor according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of an apparatus for booting a device according to another embodiment of the present invention.
  • FIG. 6 is a structural diagram of an apparatus for booting a device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic flowchart of a device booting method.
  • the booting method is applied to a terminal device.
  • the terminal device may be a mobile phone, a PAD, or the like.
  • the mobile terminal device includes at least a microprocessor, and the method includes: Step 110: The microprocessor receives a trigger signal collected by the sensor.
  • Step 120 The microprocessor acquires a state of the application processor, and the state of the application processor includes a sleep state, a working state, or a shutdown state.
  • Step 130 When the state of the application processor is the shutdown state, the microprocessor sends a power-on signal to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor. .
  • the terminal device in the embodiment of the present invention includes a sensor, a microprocessor (Micro Control Unit), a power management unit, and an application processor.
  • the state of the application processor includes a sleep state, a working state, or a shutdown state. When the application processor is in the shutdown state, the terminal device is in a shutdown state.
  • the method provided by the embodiment of the present invention can keep the microprocessor and the sensor in a working state regardless of the state of the application processor. Therefore, even if the state of the application processor is the shutdown state, the microprocessor can acquire the sensor acquisition.
  • the trigger signal is sent to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor.
  • the booting method provided by the embodiment of the present invention can start the corresponding application of the terminal device without setting a physical button. Since the terminal device does not have complicated physical buttons, the terminal device reserves more. With a lot of space, the above-mentioned reserved space can be saved to realize the slimness of the terminal device.
  • FIG. 2 is a schematic flowchart of a method for booting a device. The method is applied to a terminal device, where the terminal device includes at least a micro processing. , methods include:
  • Step 210 The microprocessor receives the trigger signal collected by the sensor.
  • the microprocessor receives the pressure signal collected by the stress sensor, and the stress sensor is disposed on the terminal device; or, the microprocessor receives the capacitance change signal collected by the capacitance sensor, and the capacitance sensor is disposed on the terminal device; or, the microprocessor receives the acceleration sensor to collect The acceleration signal, the acceleration sensor is set on the terminal device.
  • a pressure sensor is disposed on the casing of the terminal device, and the microprocessor receives the pressure signal on the pressure sensor to determine whether the pressure value satisfies a preset pressure value. When the pressure signal satisfies the preset pressure value, the pressure signal is a trigger signal.
  • a capacitance sensor may be further disposed, and a capacitance sensor is disposed on the casing of the terminal device, and the microprocessor receives the capacitance change signal on the capacitance sensor to determine whether the value of the capacitance change signal satisfies a preset value. When the preset value is satisfied, the capacitance change signal is a trigger signal.
  • a specific signal acquisition area can be set on the casing of the terminal device, and a pressure sensor or a capacitance sensor for detecting the trigger signal is disposed on the signal acquisition area, for example, a specific power signal acquisition area can be set on the casing of the terminal device.
  • the trigger signal collected on the power signal collection area is used to start the power of the terminal device; or, the terminal device may be provided with a touch screen, the touch screen is provided with a pressure sensor or a capacitive sensor, and the trigger signal may be a signal detected on the touch screen. If a specific power signal acquisition area can be set on the touch screen, the trigger signal collected on the power signal acquisition area is used to start the power of the terminal device.
  • an acceleration sensor may be disposed on the casing of the terminal device, and the microprocessor receives the acceleration value on the acceleration sensor to determine whether the acceleration value satisfies a preset value, and when the acceleration value satisfies a preset value.
  • the acceleration value signal is a trigger signal.
  • Step 220 The microprocessor determines, according to the received trigger signal, whether the trigger signal is a false trigger signal; if the trigger signal is not a false trigger signal, determining that the trigger signal is a reliable power-on signal.
  • the trigger signal received by the microprocessor is a pressure signal
  • the pressure signal is not a false trigger signal
  • the microprocessor determines whether the size of the capacitance change signal satisfies the second preset condition according to the received trigger signal, and the second preset condition is greater than or equal to the preset capacitance change. Value, when the capacitance change value satisfies the second preset condition, the capacitance change signal is not the false trigger signal; or, when the microprocessor is the acceleration signal according to the received trigger signal, it is determined whether the magnitude of the acceleration value satisfies the third preset condition, The third preset condition is greater than or equal to the preset acceleration value. When the acceleration value satisfies the third preset condition, the acceleration signal is not a false trigger signal.
  • the first preset condition, the second preset condition, and the third preset condition may be set according to actual needs, and are not limited herein.
  • Step 230 The microprocessor acquires the state of the application processor, and the state of the application processor includes a sleep state, a working state, or a shutdown state.
  • Step 240 When the state of the application processor is the shutdown state, the microprocessor sends a power-on signal to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor. .
  • the microcontroller when the above determination is a false trigger signal, can be connected to the left and right hand sensors, and the left and right hand sensors are used to detect whether the left or right hand holds the terminal device such as a mobile phone, when the pressure sensor or the capacitive sensor
  • the microprocessor may detect whether the terminal device is in a handheld state according to the trigger signal, and if it is in the handheld state, send a power-on signal to the power management unit to perform a power-on operation, or, when the application processor is in a sleep state, A wake-up signal is sent to the power management unit to perform a wake-up operation, and if it is not in a handheld state, it is considered to be a false trigger.
  • the microcontroller can also be connected to the acceleration sensor.
  • the microprocessor detects whether it is a hand-held posture through the acceleration sensor, and if so, performs a power-on or wake-up operation, if not, It is considered to be a false trigger.
  • the microcontroller can also be connected to an acceleration sensor, a gyroscope, a compass, when the data of the three sensors all conform to a certain gesture, such as picking up a photographing posture or a posture suddenly picked up from the desktop. It is considered to be a reliable power-on signal, and the power-on operation is performed. If it is not met, it is considered to be a false trigger.
  • the microcontroller can also be connected to the MIC (microphone) and the speaker.
  • the microprocessor emits a sound to inform the user if the user responds with a voice or responds with other sensors.
  • the terminal device only starts or wakes up, and if not, it is considered to be a false trigger.
  • the microcontroller can also be connected to the touch screen, when the strokes on the touch screen conform to the preset strokes
  • the terminal device is turned on or awake, it is also possible to combine the acceleration sensor or the left and right hand sensors to confirm whether the hand is in a normal posture, and if not, it is considered to be a false trigger.
  • the microcontroller is connected to the audio codec (Codec).
  • Codec the audio codec
  • the terminal device performs the power-on or wake-up operation. If not, it is considered to be a false trigger.
  • the terminal device in the embodiment of the present invention includes a sensor, a microprocessor (Micro Control Unit), a power management unit, and an application processor.
  • the state of the application processor includes a sleep state, a working state, or a shutdown state. When the application processor is in the shutdown state, the terminal device is in a shutdown state.
  • the method provided by the embodiment of the present invention can keep the microprocessor and the sensor in a working state regardless of the state of the application processor. Therefore, even if the state of the application processor is the shutdown state, the microprocessor can acquire the sensor acquisition.
  • the trigger signal is sent to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor.
  • the booting method provided by the embodiment of the present invention can start the corresponding application of the terminal device without setting a physical button. Since the terminal device does not have complicated physical buttons, the terminal device reserves more. With a lot of space, the above-mentioned reserved space can be saved to realize the slimness of the terminal device.
  • the terminal device can be prepared without a reserved button opening, so the terminal device is a completely closed device, and the device can achieve waterproof effect.
  • FIG. 3 shows a flowchart of a device booting method.
  • the method is applied to a terminal device.
  • the terminal device includes at least a microprocessor, and the method includes:
  • Step 310 The microprocessor receives the trigger signal collected by the sensor.
  • the trigger signal may be a pressure signal collected by the sensor, a capacitance change signal, an acceleration signal, or the like.
  • the microprocessor receives the pressure signal collected by the stress sensor, and the stress sensor is disposed on the terminal device; or, the microprocessor receives the capacitance change signal collected by the capacitance sensor, and the capacitance sensor is disposed on the terminal device; or, the microprocessor receives the acceleration sensor to collect The acceleration signal, the acceleration sensor is set on the terminal device.
  • a pressure sensor is disposed on the casing of the terminal device, and the microprocessor receives the pressure signal on the pressure sensor to determine whether the pressure value satisfies a preset pressure value, and when the pressure signal meets the preset pressure When the value is, the pressure signal is the trigger signal.
  • a capacitance sensor may be further disposed, and a capacitance sensor is disposed on the casing of the terminal device, and the microprocessor receives the capacitance change signal on the capacitance sensor to determine whether the value of the capacitance change signal satisfies a preset value. When the preset value is satisfied, the capacitance change signal is a trigger signal.
  • a specific signal acquisition area can be set on the casing of the terminal device, and a pressure sensor or a capacitance sensor for detecting the trigger signal is disposed on the signal acquisition area, for example, a specific power signal acquisition area can be set on the casing of the terminal device.
  • the trigger signal collected on the power signal collection area is used to start the power of the terminal device; or, the terminal device may be provided with a touch screen, the touch screen is provided with a pressure sensor or a capacitive sensor, and the trigger signal may be a signal detected on the touch screen. If a specific power signal acquisition area can be set on the touch screen, the trigger signal collected on the power signal acquisition area is used to start the power of the terminal device.
  • an acceleration sensor may be disposed on the casing of the terminal device, and the microprocessor receives the acceleration value on the acceleration sensor to determine whether the acceleration value satisfies a preset value, and when the acceleration value satisfies a preset value.
  • the acceleration value signal is a trigger signal.
  • Step 320 The microprocessor determines, according to the received trigger signal, whether the trigger signal is a false trigger signal; if the trigger signal is not a false trigger signal, determining that the trigger signal is a reliable power-on signal.
  • the trigger signal When determining whether the trigger signal is a false trigger, it can be determined whether the trigger signal is continuously detected within a predetermined time. If not, the trigger signal is a false trigger. If yes, the detected trigger signal is not a false trigger signal.
  • a specific power signal acquisition area can be set on the casing or the touch screen of the terminal device. If the obtained trigger signal is a signal on the power signal acquisition area, such as a pressure signal on the pressure sensor, It is determined that the trigger signal is a power trigger signal, and if the trigger signal is determined to be not a false trigger, the trigger signal is obtained as a reliable power-on signal.
  • Step 330 The microprocessor determines, according to the received trigger signal, whether the trigger signal is a jitter signal. Wherein, determining whether the trigger signal is a jitter signal comprises:
  • the microprocessor determines that the trigger signal duration is greater than or equal to the preset time; when the trigger signal duration is less than the preset time, determining that the trigger signal is a jitter signal, and the microprocessor cancels the jitter signal.
  • step 320 and step 330 is not limited, that is, the receiving may be first determined. Whether the trigger signal is a jitter signal, if not, continue to determine whether the signal is a false trigger signal.
  • Step 340 The microprocessor acquires the state of the application processor, and the state of the application processor includes a sleep state, a working state, or a shutdown state.
  • Step 350 When the state of the application processor is the shutdown state, the microprocessor sends a power-on signal to the power management unit according to the received trigger signal, where the power-on signal is used to enable the power management unit to enable the power management unit to supply power to the application processor. .
  • a power management unit (PMU) is disposed on the terminal device, and when the power management unit receives a reliable power-on signal, the power of the terminal device is started.
  • the application microprocessor AP of the terminal device can be directly activated according to the trigger signal.
  • the terminal device in the embodiment of the present invention includes a sensor, a microprocessor (Micro Control Unit), a power management unit, and an application processor.
  • the state of the application processor includes a sleep state, a working state, or a shutdown state. When the application processor is in the shutdown state, the terminal device is in a shutdown state.
  • the method provided by the embodiment of the present invention can keep the microprocessor and the sensor in a working state regardless of the state of the application processor. Therefore, even if the state of the application processor is the shutdown state, the microprocessor can acquire the sensor acquisition.
  • the trigger signal is sent to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor.
  • the booting method provided by the embodiment of the present invention can start the corresponding application of the terminal device without setting a physical button. Since the terminal device does not have complicated physical buttons, the terminal device reserves more. With a lot of space, the above-mentioned reserved space can be saved to realize the slimness of the terminal device.
  • the terminal device can be prepared without a reserved button opening, so the terminal device is a completely closed device, and the device can achieve waterproof effect.
  • the embodiment of the present invention can determine whether the obtained trigger signal is a reliable power-on signal, and if yes, perform a corresponding power-on step, and if not, the trigger signal is not performed.
  • Reason can effectively avoid the misoperation of the trigger signal.
  • the trigger signal may also be a standby wake-up signal or a shutdown signal.
  • the microprocessor starts the power of the terminal device according to the standby wake-up signal.
  • the microprocessor when the terminal device is in the standby state, the microprocessor, after determining that the trigger signal is a reliable shutdown signal, turns off the power of the terminal device according to the shutdown signal.
  • an embodiment of the present invention provides a device for booting a device, including a receiver U110, a processor U120, and a transmitter U130.
  • the microprocessor is connected to the sensor U200, the application processor U300, and the power management unit U400.
  • the receiver U110 receives the trigger signal collected by the sensor U200, and transmits the trigger signal to the processor U120;
  • Receiver U110 obtains the state of the application processor U300, and transmits the state of the application processor U300 to the processor U120;
  • the processor U120 acquires the state of the application processor U300, and the state of the application processor U300 includes a sleep state, a working state, or a shutdown state;
  • the processor U120 sends a power-on signal to the power management unit U400 through the transmitter U130 according to the received trigger signal, and the power-on signal is used to turn on the power management unit U400, so that the power management unit U400 Power is applied to the application processor U300.
  • the terminal device in the embodiment of the present invention includes a sensor, a microprocessor (Micro Control Unit), a power management unit, and an application processor.
  • the state of the application processor includes a sleep state, a working state, or a shutdown state. When the application processor is in a shutdown state, the terminal device is in a shutdown state.
  • the method provided by the embodiment of the present invention can keep the microprocessor and the sensor in a working state regardless of the state of the application processor. Therefore, even if the state of the application processor is the shutdown state, the microprocessor can acquire the sensor acquisition.
  • the trigger signal is sent to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor.
  • the booting method provided by the embodiment of the present invention can start the corresponding application of the terminal device without setting a physical button. Since the terminal device does not have complicated physical buttons, the terminal device reserves more. More space, save the space reserved above The terminal equipment is now thin and light.
  • the processor U120 includes a false trigger signal determining unit U121, and a false trigger signal determining unit U121, configured to determine, according to the received trigger signal, whether the trigger signal is falsely triggered. Signal, if the trigger signal is not a false trigger signal, it is determined that the trigger signal is a reliable power-on signal.
  • the processor U120 includes a jitter determining unit U122, and the jitter determining unit is configured to determine, according to the received trigger signal, whether the trigger signal is a jitter signal;
  • Unit including a time judging module;
  • a time judging module configured to determine, according to the received trigger signal, that the trigger signal duration is greater than or equal to a preset time, and when the trigger signal duration is less than the preset time, determining that the trigger signal is a jitter signal The microprocessor cancels the jitter signal.
  • the receiver U110 includes at least one receiving unit
  • a first receiving unit configured to receive a pressure signal collected by the stress sensor, where the stress sensor is disposed on the terminal device;
  • a second receiving unit configured to receive a capacitance change signal collected by the capacitive sensor, where the capacitive sensor is disposed on the terminal device;
  • a third receiving unit configured to receive an acceleration signal collected by the acceleration sensor, where the acceleration sensor is disposed on the terminal device.
  • the false trigger signal determining unit U121 includes at least one of the following false trigger signal determining modules:
  • the first false trigger signal determining module is configured to: when the received trigger signal is a pressure signal, determine whether the magnitude of the pressure signal meets a first preset condition, where the first preset condition is greater than or equal to a preset pressure a value, when the magnitude of the stress signal satisfies a first preset condition, the pressure signal is not a false trigger signal;
  • the second false trigger signal determining module is configured to: when the received trigger signal is a capacitance change signal, determine whether the size of the capacitance change signal meets a second preset condition, where the second preset condition is greater than or equal to a preset a capacitance change value, when the capacitance change value satisfies a second preset condition, the capacitance change signal is not a false trigger signal;
  • the third false trigger signal determining module is configured to determine, when the received trigger signal is an acceleration signal, whether the magnitude of the acceleration value satisfies a third preset condition, where the third preset condition is greater than or equal to a preset acceleration a value, when the acceleration value satisfies a third preset condition, the acceleration signal is not a false trigger signal.
  • an embodiment of the present invention provides a terminal device, including a sensor U200, an application processor U300, and a power management unit U400.
  • the terminal device is further provided with a microprocessor U100, and the microprocessor U100 and the sensor U200 and the power management unit respectively.
  • U400 is connected; the microprocessor U100 includes a receiver U110, a processor U120, and a transmitter U130.
  • the sensor U200 collects a trigger signal and sends a trigger signal to the microprocessor U100.
  • the microprocessor U100 receives the trigger signal collected by the sensor U200 and acquires an application processor.
  • the state of the U300, the state of the application processor U300 includes a sleep state, a working state, or a shutdown state; and when the state of the application processor U300 is the shutdown state, the microprocessor U100 sends a boot to the power management unit U400 according to the received trigger signal.
  • the power management unit U400 is configured to receive a power-on signal and supply power to the application processor U300.
  • the application processor U300 is configured to receive a power-on signal.
  • the terminal device in the embodiment of the present invention includes a sensor, a microprocessor (Micro Control Unit), a power management unit, and an application processor.
  • the state of the application processor includes a sleep state, a working state, or a shutdown state. When the application processor is in a shutdown state, the terminal device is in a shutdown state.
  • the method provided by the embodiment of the present invention can keep the microprocessor and the sensor in a working state regardless of the state of the application processor. Therefore, even if the state of the application processor is the shutdown state, the microprocessor can acquire the sensor acquisition.
  • the trigger signal is sent to the power management unit according to the received trigger signal, and the power-on signal is used to turn on the power management unit, so that the power management unit supplies power to the application processor.
  • the booting method provided by the embodiment of the present invention can be started without setting a physical button. Since the terminal device does not have complicated physical buttons, the terminal device reserves more space, and the space reserved for the terminal device can be realized.
  • the microprocessor is also used for controlling
  • the received trigger signal it is determined whether the trigger signal is a false trigger signal. If the trigger signal is not a false trigger signal, it is determined that the trigger signal is a reliable power-on signal.
  • the microprocessor is also used to:
  • Determining whether the trigger signal is a jitter signal includes:
  • the microprocessor cancels the jitter signal.
  • the sensor includes: a stress sensor, a stress sensor for collecting a pressure signal, and a stress sensor disposed on the terminal device;
  • the sensor includes: a capacitive sensor, the capacitive sensor is used to collect a capacitance change signal, and the capacitive sensor is disposed on the terminal device;
  • the sensor includes: an acceleration sensor, an acceleration sensor for collecting an acceleration signal, and an acceleration sensor disposed on the terminal device.
  • the microprocessor is further configured to: when the received trigger signal is a pressure signal, determine whether the magnitude of the pressure signal satisfies a first preset condition, and the first preset condition is greater than or equal to a preset pressure value, when the magnitude of the stress signal When the first preset condition is met, the pressure signal is not a false trigger signal;
  • the microprocessor is further configured to: when the received trigger signal is a capacitance change signal, determine whether the size of the capacitance change signal satisfies a second preset condition, and the second preset condition is greater than or equal to a preset capacitance change value, when the capacitor When the change value satisfies the second preset condition, the capacitance change signal is not a false trigger signal;
  • the microprocessor is further configured to: when the received trigger signal is an acceleration signal, determine whether the magnitude of the acceleration value satisfies a third preset condition, and the third preset condition is greater than or equal to a preset acceleration value, when the acceleration value satisfies the first When the three preset conditions are met, the acceleration signal is not a false trigger signal.
  • modules in the apparatus in the embodiment may be distributed in the apparatus of the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Abstract

本发明实施例提供一种设备的开机方法,方法应用于终端设备,方法包括:微处理器接收传感器采集的触发信号;所述微处理器获取应用处理器的状态,所述应用处理器的状态包括休眠状态、工作状态或关机状态;当所述应用处理器的状态为关机状态时,所述微处理器根据接收的触发信号,向电源管理单元发送开机信号,所述开机信号用于开启所述电源管理单元,以使得所述电源管理单元向所述应用处理器供电。本发明提供的方法不需要设置物理按键也可以启动终端设备相应的应用,由于该终端设备没有复杂的物理按键,因此终端设备预留有更多的空间,节省上述预留的空间即可实现终端设备的轻薄化。本发明实施例还提供一种微控制器和终端设备。

Description

一种设备的开机方法、 装置及终端设备 技术领域
本发明涉及开机处理领域, 更具体地说, 涉及一种设备的开机方法、 装置 及终端设备。 背景技术
随着科学技术的不断发展,手机等终端设备已经被广泛应用在人们的曰常 生活中。通常的, 手机或者其他终端设备通常都会设置物理按键来进行人机交 互, 进行开机、 输入等操作。
在传统的开机方式中,通常会设置一个物理开关按键来进行终端设备的开 机, 即使是设置有触摸屏的终端设备,也会设置一个物理的开关按键来进行开 机操作, 而物理按键一般都需要占用一定的空间, 并有复杂的机械结构。
显然,在现有的开机方式中, 终端设备上设置的物理按键不利于终端设备 做薄, 做小。 发明内容
有鉴于此, 为了解决现有技术中需要设置物理按键来进行人机交互, 物理 按键一般都需要占用一定的空间并且机械结构复杂的问题,本发明提供一种设 备的开机方法, 技术方案如下:
本申请的第一方面提供了一种设备的开机方法, 所述方法应用于终端设 备, 所述方法包括:
微处理器接收传感器采集的触发信号;
所述微处理器获取应用处理器的状态 ,所述应用处理器的状态包括休眠状 态、 工作状态或关机状态;
当所述应用处理器的状态为关机状态时,所述微处理器根据接收的触发信 号,向电源管理单元发送开机信号 ,所述开机信号用于开启所述电源管理单元 , 以使得所述电源管理单元向所述应用处理器供电。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述微处理器接收传感器采集的触发信号之后, 还包括:
所述微处理器根据接收的触发信号, 判断所述触发信号是否为误触发信 号;
如果所述触发信号不是误触发信号 ,则确定所述触发信号为可靠的开机信 号。
结合第一方面或者第一方面的第一种实现方式,在第一方面的第二种可能 的实现方式中,
所述微处理器接收传感器采集的触发信号之后, 还包括:
所述微处理器根据接收的触发信号 , 判断所述触发信号是否为抖动信号; 所述判断所述触发信号是否为抖动信号, 包括:
根据微处理器根据接收的触发信号,确定所述触发信号持续时间大于或等 于预设时间;
当所述触发信号持续时间小于所述预设时间时,则确定所述触发信号为抖 动信号, 所述微处理器消除所述抖动信号。
结合第一方面, 或者第一方面的第一种实现方式, 或者第一方面的第二种 实现方式, 在第一方面的第三种可能的实现方式中,
所述微处理器接收所述传感器采集的触发信号, 包括以下至少一种: 所述微处理器接收应力传感器采集的压力信号,所述应力传感器设置在所 述终端设备上;
或,
所述微处理器接收电容传感器采集的电容变化信号,所述电容传感器设置 在所述终端设备上;
或,
所述微处理器接收加速度传感器采集的加速度信号,所述加速度传感器设 置在所述终端设备上。
结合第一方面的第一种实现方式, 在第一方面的第四种可能的实现方式 中,
所述微处理器根据接收的触发信号, 判断所述触发信号是否为误触发信 号, 包括以下至少一种:
当所述微处理器接收的触发信号为压力信号时,判断所述压力信号的大小 是否满足第一预设条件, 所述第一预设条件为大于或等于预设的压力值; 当所述应力信号的大小满足第一预设条件时,所述压力信号不是误触发信 号;
或,
当所述微处理器根据接收的触发信号为电容变化信号时,判断所述电容变 化信号的大小是否满足第二预设条件,所述第二预设条件为大于或等于预设的 电容变化值;
当所述电容变化值满足第二预设条件时,所述电容变化信号不是误触发信 号;
或,
当所述微处理器根据接收的触发信号为加速度信号时,判断所述加速度值 的大小是否满足第三预设条件,所述第三预设条件为大于或等于预设的加速度 值;
当所述加速度值满足第三预设条件时, 所述加速度信号不是误触发信号。 本发明第二方面提供了一种设备开机的装置, 包括接收器、 处理器、 发送 器;
所述接收器接收传感器采集到触发信号;
所述接收器获取应用处理器的状态,并将所述应用处理器的状态传输给所 述处理器;
所述处理器获取所述应用处理器的状态,所述应用处理器的状态包括休眠 状态、 工作状态或关机状态;
当所述应用处理器的状态为关机状态时, 所述处理器根据接收的触发信 号,通过所述发送器向电源管理单元发送开机信号, 所述开机信号用于开启所 述电源管理单元, 以使得所述电源管理单元向所述应用处理器供电。
结合第二方面, 在第二方面的第一种可能的实现方式中,
所述处理器包括误触发信号判断单元: 所述误触发信号判断单元, 用于根据接收的触发信号,判断所述触发信号 是否为误触发信号,如果所述触发信号不是误触发信号, 则确定所述触发信号 为可靠的开机信号。
结合第二方面或者第二方面的第一种实现方式,在第二方面的第二种可能 的实现方式中,
所述处理器包括抖动判断单元;
所述抖动判断单元, 用于根据接收的触发信号, 判断所述触发信号是否为 抖动信号; 所述抖动判断单元, 包括:
时间判断模块, 用于根据接收的触发信号,确定所述触发信号持续时间大 于或等于预设时间, 当所述触发信号持续时间小于所述预设时间时, 则确定所 述触发信号为抖动信号, 所述微处理器消除所述抖动信号。
结合第二方面, 或者第二方面的第一种实现方式, 或者第二方面的第二种 实现方式, 在第二方面的第三种可能的实现方式中,
所述接收器包括以下至少一种接收单元;
所述接收器包括以下至少一种接收单元;
第一接收单元, 用于接收应力传感器采集的压力信号, 所述应力传感器设 置在所述终端设备上;
或,
第二接收单元, 用于接收电容传感器采集的电容变化信号, 所述电容传感 器设置在所述终端设备上;
或,
第三接收单元, 用于接收加速度传感器采集的加速度信号, 所述加速度传 感器设置在所述终端设备上。
结合第二方面的第一种实现方式, 在第二方面的第四种可能的实现方式 中,
所述误触发信号判断单元包括以下至少一种误触发信号判断模块: 第一误触发信号判断模块, 用于当接收的触发信号为压力信号时, 判断所 述压力信号的大小是否满足第一预设条件,所述第一预设条件为大于或等于预 设的压力值, 当所述应力信号的大小满足第一预设条件时, 所述压力信号不是 误触发信号;
或,
第二误触发信号判断模块, 用于当接收的触发信号为电容变化信号时, 判 断所述电容变化信号的大小是否满足第二预设条件,所述第二预设条件为大于 或等于预设的电容变化值, 当所述电容变化值满足第二预设条件时, 所述电容 变化信号不是误触发信号;
或,
第三误触发信号判断模块, 用于当接收的触发信号为加速度信号时, 判断 所述加速度值的大小是否满足第三预设条件,所述第三预设条件为大于或等于 预设的加速度值, 当所述加速度值满足第三预设条件时, 所述加速度信号不是 误触发信号。
本发明的第三方面提供一种终端设备, 包括传感器、 应用处理器、 电源管 理单元、 微处理器;
所述传感器采集触发信号, 并向所述微处理器发送所述触发信号; 所述微处理器接收所述传感器采集的触发信号,并获取所述应用处理器的 状态, 所述应用处理器的状态包括休眠状态、 工作状态或关机状态; 并当所述 应用处理器的状态为关机状态时, 所述微处理器根据接收的触发信号, 向所述 电源管理单元发送开机信号;
所述电源管理单元, 用于接收开机信号, 并向所述应用处理器供电; 所述应用处理器, 用于接收开机信号。
结合第三方面, 在第三方面的第一种可能的实现方式中,
所述微处理器还用于 ,
根据接收的触发信号, 判断所述触发信号是否为误触发信号,如果所述触 发信号不是误触发信号, 则确定所述触发信号为可靠的开机信号。
结合第三方面或者第一方面的第一种实现方式,在第三方面的第二种可能 的实现方式中,
所述微处理器还用于: 根据接收的触发信号, 判断所述触发信号是否为抖动信号,
所述判断所述触发信号是否为抖动信号包括:
根据接收的触发信号, 确定所述触发信号持续时间大于或等于预设时间; 当所述触发信号持续时间小于所述预设时间时,则确定所述触发信号为抖 动信号, 所述微处理器消除所述抖动信号。
结合第三方面, 或者第三方面的第一种实现方式, 或者第三方面的第二种 实现方式, 在第一方面的第三种可能的实现方式中,
所述传感器包括: 应力传感器, 所述应力传感器用于采集压力信号, 所述 应力传感器设置在所述终端设备上;
或,
所述传感器包括: 电容传感器, 所述电容传感器用于采集电容变化信号, 所述电容传感器设置在所述终端设备上;
或,
所述传感器包括:加速度传感器,所述加速度传感器用于采集加速度信号, 所述加速度传感器设置在所述终端设备上。
结合第三方面、第三方面的第一种实现方式、第三方面的第二种实现方式、 第三方面的第三种实现方式, 在第三方面的第四种可能的实现方式中,
所述误触发信号判断单元包括以下至少一种误触发信号判断模块: 所述微处理器,还用于当接收的触发信号为压力信号时, 判断所述压力信 号的大小是否满足第一预设条件,所述第一预设条件为大于或等于预设的压力 值, 当所述应力信号的大小满足第一预设条件时, 所述压力信号不是误触发信 号;
或,
所述微处理器,还用于当接收的触发信号为电容变化信号时, 判断所述电 容变化信号的大小是否满足第二预设条件,所述第二预设条件为大于或等于预 设的电容变化值, 当所述电容变化值满足第二预设条件时, 所述电容变化信号 不是误触发信号;
或, 所述微处理器,还用于当接收的触发信号为加速度信号时, 判断所述加速 度值的大小是否满足第三预设条件,所述第三预设条件为大于或等于预设的加 速度值, 当所述加速度值满足第三预设条件时, 所述加速度信号不是误触发信 号。
本发明实施例中的终端设备包括传感器、 微处理器 (Micro Control Unit) , 电源管理单元, 以及应用处理器。 应用处理器的状态包括休眠状态、 工作状态 或关机状态, 当应用处理器处于关机状态时, 终端设备即为关机状态。 本发明 实施例提供的方法, 不论应用处理器处于何种状态,微处理器以及传感器均可 以一直处于工作状态, 因此, 即使应用处理器的状态为关机状态, 微处理器也 可以获取传感器采集的触发信号,并根据接收的触发信号向电源管理单元发送 开机信号, 开机信号用于开启电源管理单元, 以使得电源管理单元向应用处理 器供电。 因此, 在应用处理器处于关机状态时, 本发明实施例提供的开机方法 不需要设置物理按键也可以启动终端设备相应的应用,由于该终端设备没有复 杂的物理按键, 因此终端设备预留有更多的空间, 节省上述预留的空间即可实 现终端设备的轻薄化。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种设备开机的方法流程图;
图 2为本发明另一实施例提供的一种设备开机的方法流程图;
图 3为本发明另一实施例提供的设备开机的方法流程图;
图 4为本发明实施例提供的微处理器的一种结构图;
图 5为本发明另一实施例提供的设备开机的装置结构图;
图 6为本发明另一实施例提供的设备开机的装置结构图;
图 7为本发明实施例提供的终端设备的一种结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例公开了一种设备开机方法, 参见图 1 , 图 1示出了设备开机 方法的一种流程示意图, 开机方法应用于终端设备, 在本发明中, 终端设备可 以为手机、 PAD等移动终端设备, 该终端设备至少包括微处理器, 方法包括: 步骤 110: 微处理器接收传感器采集的触发信号。
步骤 120: 微处理器获取应用处理器的状态, 应用处理器的状态包括休眠 状态、 工作状态或关机状态。
步骤 130: 当应用处理器的状态为关机状态时, 微处理器根据接收的触发 信号, 向电源管理单元发送开机信号, 开机信号用于开启电源管理单元, 以使 得电源管理单元向应用处理器供电。
本发明实施例中的终端设备包括传感器、 微处理器 (Micro Control Unit) , 电源管理单元, 以及应用处理器。 应用处理器的状态包括休眠状态、 工作状态 或关机状态, 当应用处理器处于关机状态时, 终端设备即为关机状态。 本发明 实施例提供的方法, 不论应用处理器处于何种状态,微处理器以及传感器均可 以一直处于工作状态, 因此, 即使应用处理器的状态为关机状态, 微处理器也 可以获取传感器采集的触发信号,并根据接收的触发信号向电源管理单元发送 开机信号, 开机信号用于开启电源管理单元, 以使得电源管理单元向应用处理 器供电。 因此, 在应用处理器处于关机状态时, 本发明实施例提供的开机方法 不需要设置物理按键也可以启动终端设备相应的应用,由于该终端设备没有复 杂的物理按键, 因此终端设备预留有更多的空间, 节省上述预留的空间即可实 现终端设备的轻薄化。
本发明另一实施例公开了一种设备开机的方法, 参见图 2, 图 2示出了设 备开机方法的流程示意图, 方法应用于终端设备, 该终端设备至少包括微处理 器, 方法包括:
步骤 210: 微处理器接收传感器采集的触发信号。
微处理器接收应力传感器采集的压力信号, 应力传感器设置在终端设备 上; 或, 微处理器接收电容传感器采集的电容变化信号, 电容传感器设置在终 端设备上; 或, 微处理器接收加速度传感器采集的加速度信号, 加速度传感器 设置在终端设备上。
终端设备的机壳上设置有压力传感器,微处理器接收压力传感器上的压力 信号, 判断压力值是否满足预先设置的压力值, 当压力信号满足预先设置压力 值时,压力信号为触发信号。在本发明其他实施例中,还可以设置电容传感器, 在终端设备的机壳上设置电容传感器,微处理器接收电容传感器上的电容变化 信号,判断电容变化信号的值是否满足预先设置的值,当满足预先设置的值时, 电容变化信号为触发信号。可以在终端设备的机壳上设置一特定的信号采集区 域,信号采集区域上设置有用于检测触发信号的压力传感器或电容传感器, 如 可以在终端设备的机壳上设置一特定的电源信号采集区域,电源信号采集区域 上采集到的触发信号用于启动终端设备的电源; 或者, 该终端设备上可以设置 有触摸屏,触摸屏设置有压力传感器或电容传感器,触发信号可以是触摸屏上 检测到的信号,如可以在触摸屏上设置一特定的电源信号采集区域, 电源信号 采集区域上采集到的触发信号用于启动终端设备的电源。
在本发明的其他实施例中, 终端设备的机壳上还可以设置有加速度传感 器,微处理器接收加速度传感器上的加速度值, 判断加速度值是否满足预先设 置的数值, 当加速度值满足预先设置数值时, 加速度值信号为触发信号。
步骤 220: 微处理器根据接收的触发信号, 判断触发信号是否为误触发信 号; 如果触发信号不是误触发信号, 则确定触发信号为可靠的开机信号。
当微处理器接收的触发信号为压力信号时,判断压力信号的大小是否满足 第一预设条件, 第一预设条件为大于或等于预设的压力值, 当应力信号的大小 满足第一预设条件时, 压力信号不是误触发信号;
或,微处理器根据接收的触发信号为电容变化信号时, 判断电容变化信号 的大小是否满足第二预设条件, 第二预设条件为大于或等于预设的电容变化 值, 当电容变化值满足第二预设条件时, 电容变化信号不是误触发信号; 或,微处理器根据接收的触发信号为加速度信号时, 判断加速度值的大小 是否满足第三预设条件, 第三预设条件为大于或等于预设的加速度值, 当加速 度值满足第三预设条件时 , 加速度信号不是误触发信号。
其中, 第一预设条件、 第二预设条件、 第三预设条件可以根据实际需要设 定, 在此不做限定。
步骤 230: 微处理器获取应用处理器的状态, 应用处理器的状态包括休眠 状态、 工作状态或关机状态。
步骤 240: 当应用处理器的状态为关机状态时, 微处理器根据接收的触发 信号, 向电源管理单元发送开机信号, 开机信号用于开启电源管理单元, 以使 得电源管理单元向应用处理器供电。
在本发明的其他实施例中,在上述判断是否为误触发信号时,微控制器可 以与左右手传感器连接,左右手传感器用于检测是左手还是右手握持手机等终 端设备, 当压力传感器或者电容传感器采集到触发信号后,微处理器可以根据 触发信号检测终端设备是否是手持状态,如果是手持状态, 则向电源管理单元 发送开机信号, 进行开机操作, 或者, 在应用处理器处于休眠状态时, 向电源 管理单元发送唤醒信号,进行唤醒操作,如果不是手持状态,则认为是误触发。
进一步的,微控制器还可以与加速度传感器连接, 当压力传感器或者电容 传感器采集到触发信号后, 微处理器通过加速度传感器检测是否是手持姿态, 如果是,则进行开机或者唤醒操作,如果不是, 则认为是误触发。更进一步的, 微控制器还可以连接加速度传感器器、 陀螺仪、 指南针, 当三个传感器的数据 均符合某种手势的时候, 如拿起拍照的姿势或者从桌面上突然拿起的姿势时, 则认为是可靠的开机信号, 进行开机操作, 如果不符合, 则认为是误触发。
另外, 微控制器还可以与 MIC ( microphone, 麦克风)和扬声器连接, 当 压力传感器或者电容传感器采集到触发信号后, 微处理器发出声音以通知用 户,如果用户用语音响应或者通过其他传感器响应后, 终端设备才进行开机或 者唤醒操作, 如果不是, 则认为是误触发。
微控制器还可以与触摸屏连接, 当触摸屏上的笔画符合预先设置的笔画 时, 终端设备才进行开机或者唤醒操作, 另外, 还可以结合加速度传感器或者 左右手传感器来确认是否为手握正常姿态, 如果不是, 则认为是误触发。
微控制器连接音频编译码器(Codec ), 当声纹是按照预定的声纹发生时, 终端设备才进行开机或者唤醒操作, 如果不是, 则认为是误触发。
本发明实施例中的终端设备包括传感器、 微处理器 (Micro Control Unit) , 电源管理单元, 以及应用处理器。 应用处理器的状态包括休眠状态、 工作状态 或关机状态, 当应用处理器处于关机状态时, 终端设备即为关机状态。 本发明 实施例提供的方法, 不论应用处理器处于何种状态,微处理器以及传感器均可 以一直处于工作状态, 因此, 即使应用处理器的状态为关机状态, 微处理器也 可以获取传感器采集的触发信号,并根据接收的触发信号向电源管理单元发送 开机信号, 开机信号用于开启电源管理单元, 以使得电源管理单元向应用处理 器供电。 因此, 在应用处理器处于关机状态时, 本发明实施例提供的开机方法 不需要设置物理按键也可以启动终端设备相应的应用,由于该终端设备没有复 杂的物理按键, 因此终端设备预留有更多的空间, 节省上述预留的空间即可实 现终端设备的轻薄化。
进一步的, 由于没有物理按键, 所以该终端设备在制备时可以不用预留按 键开口,因此该终端设备为一个完全封闭的设备,该设备可以达到防水的效果。
本发明实施例公开了一种设备开机方法, 参见图 3 , 图 3示出了设备开机 方法的一种流程图, 方法应用于终端设备, 该终端设备至少包括微处理器, 方 法包括:
步骤 310: 微处理器接收传感器采集的触发信号。
触发信号可以是传感器采集的压力信号、 电容变化信号、 加速度信号等。 微处理器接收应力传感器采集的压力信号,应力传感器设置在终端设备上;或, 微处理器接收电容传感器采集的电容变化信号, 电容传感器设置在终端设备 上; 或, 微处理器接收加速度传感器采集的加速度信号, 加速度传感器设置在 终端设备上。
终端设备的机壳上设置有压力传感器,微处理器接收压力传感器上的压力 信号, 判断压力值是否满足预先设置的压力值, 当压力信号满足预先设置压力 值时,压力信号为触发信号。在本发明其他实施例中,还可以设置电容传感器, 在终端设备的机壳上设置电容传感器,微处理器接收电容传感器上的电容变化 信号,判断电容变化信号的值是否满足预先设置的值,当满足预先设置的值时, 电容变化信号为触发信号。可以在终端设备的机壳上设置一特定的信号采集区 域,信号采集区域上设置有用于检测触发信号的压力传感器或电容传感器, 如 可以在终端设备的机壳上设置一特定的电源信号采集区域,电源信号采集区域 上采集到的触发信号用于启动终端设备的电源; 或者, 该终端设备上可以设置 有触摸屏,触摸屏设置有压力传感器或电容传感器,触发信号可以是触摸屏上 检测到的信号,如可以在触摸屏上设置一特定的电源信号采集区域, 电源信号 采集区域上采集到的触发信号用于启动终端设备的电源。
在本发明的其他实施例中, 终端设备的机壳上还可以设置有加速度传感 器,微处理器接收加速度传感器上的加速度值, 判断加速度值是否满足预先设 置的数值, 当加速度值满足预先设置数值时, 加速度值信号为触发信号。
步骤 320: 微处理器根据接收的触发信号, 判断触发信号是否为误触发信 号; 如果触发信号不是误触发信号, 则确定触发信号为可靠的开机信号。
在判断触发信号是否为误触发时,可以判断在规定的时间内是否持续检测 到触发信号, 如果否, 则触发信号为误触发, 如果是, 则检测到的触发信号不 是误触发的信号。
由上述论述的可知,可以在终端设备的机壳或触摸屏上设置一特定的电源 信号采集区域,如果获取到的触发信号为该电源信号采集区域上的信号,如压 力传感器上的压力信号, 则判断该触发信号为电源触发信号,加之上述判断出 该触发信号不是误触发, 则可以得到触发信号为可靠的开机信号。
步骤 330:微处理器根据接收的触发信号,判断触发信号是否为抖动信号。 其中, 判断触发信号是否为抖动信号, 包括:
根据微处理器根据接收的触发信号,确定触发信号持续时间大于或等于预 设时间; 当触发信号持续时间小于预设时间时, 则确定触发信号为抖动信号, 微处理器消除抖动信号。
其中, 步骤 320与步骤 330的顺序不做限定, 也就是说, 可以先判断接收 到的触发信号是不是抖动信号, 如果不是则继续判断该信号是否是误触发信 号。
步骤 340: 微处理器获取应用处理器的状态, 应用处理器的状态包括休眠 状态、 工作状态或关机状态。
步骤 350: 当应用处理器的状态为关机状态时, 微处理器根据接收的触发 信号, 向电源管理单元发送开机信号, 开机信号用于开启电源管理单元, 以使 得电源管理单元向应用处理器供电。
终端设备上设置有电源管理单元( Power Management Unit, PMU ), 当电 源管理单元接受到可靠的开机信号后, 启动终端设备的电源。
进一步的, 在启动终端设备的电源后, 启动终端设备的应用微处理器 AP
( Application Processor )。
需要说明的是, 当终端设备处于开机状态时, 可以根据触发信号直接启动 终端设备的应用微处理器 AP。
本发明实施例中的终端设备包括传感器、 微处理器 (Micro Control Unit) , 电源管理单元, 以及应用处理器。 应用处理器的状态包括休眠状态、 工作状态 或关机状态, 当应用处理器处于关机状态时, 终端设备即为关机状态。 本发明 实施例提供的方法, 不论应用处理器处于何种状态,微处理器以及传感器均可 以一直处于工作状态, 因此, 即使应用处理器的状态为关机状态, 微处理器也 可以获取传感器采集的触发信号,并根据接收的触发信号向电源管理单元发送 开机信号, 开机信号用于开启电源管理单元, 以使得电源管理单元向应用处理 器供电。 因此, 在应用处理器处于关机状态时, 本发明实施例提供的开机方法 不需要设置物理按键也可以启动终端设备相应的应用,由于该终端设备没有复 杂的物理按键, 因此终端设备预留有更多的空间, 节省上述预留的空间即可实 现终端设备的轻薄化。
进一步的, 由于没有物理按键, 所以该终端设备在制备时可以不用预留按 键开口,因此该终端设备为一个完全封闭的设备,该设备可以达到防水的效果。
进一步的,本发明实施例可以判断出获取的触发信号是否为可靠的开机信 号, 如果是, 则进行相应的电源启动步骤, 如果不是, 则不对触发信号进行处 理, 可以有效的避免触发信号的误操作。
需要补充的是, 上述实施例以开机为例进行说明, 在其他实施例中, 触发 信号还可以为待机唤醒信号或关机信号。 当终端设备处于待机状态时, 上述微 处理器在判断上述触发信号为可靠的待机唤醒信号后 ,根据待机唤醒信号启动 终端设备的电源。 或者, 当终端设备处于待机状态时, 上述微处理器在判断上 述触发信号为可靠的关机信号后, 根据关机信号关闭终端设备的电源。
参见图 4, 本发明实施例提供一种设备开机的装置, 包括接收器 U110、 处理器 U120、 发送器 U130。 该微处理器分别与传感器 U200、 应用处理器 U300、 电源管理单元 U400连接。
接收器 U110接收传感器 U200采集的触发信号, 并将触发信号传输给处 理器 U120;
接收器 U110获取应用处理器 U300的状态, 并将应用处理器 U300的状 态传输给处理器 U120;
处理器 U120获取应用处理器 U300的状态, 应用处理器 U300的状态包 括休眠状态、 工作状态或关机状态;
当应用处理器 U300的状态为关机状态时, 处理器 U120根据接收的触发 信号, 通过发送器 U130向电源管理单元 U400发送开机信号, 开机信号用于 开启电源管理单元 U400,以使得电源管理单元 U400向应用处理器 U300供电。
本发明实施例中的终端设备包括传感器、 微处理器 (Micro Control Unit) , 电源管理单元, 以及应用处理器。 应用处理器的状态包括休眠状态、 工作状态 或关机状态, 当应用处理器处于关机状态时, 终端设备即为关机状态。 本发明 实施例提供的方法, 不论应用处理器处于何种状态,微处理器以及传感器均可 以一直处于工作状态, 因此, 即使应用处理器的状态为关机状态, 微处理器也 可以获取传感器采集的触发信号,并根据接收的触发信号向电源管理单元发送 开机信号, 开机信号用于开启电源管理单元, 以使得电源管理单元向应用处理 器供电。 因此, 在应用处理器处于关机状态时, 本发明实施例提供的开机方法 不需要设置物理按键也可以启动终端设备相应的应用,由于该终端设备没有复 杂的物理按键, 因此终端设备预留有更多的空间, 节省上述预留的空间即可实 现终端设备的轻薄化。
进一步的, 在本发明的其他实施例中, 参见图 5, 上述处理器 U120包括 误触发信号判断单元 U121 ,误触发信号判断单元 U121 , 用于根据接收的触发 信号, 判断触发信号是否为误触发信号, 如果触发信号不是误触发信号, 则确 定触发信号为可靠的开机信号。
进一步的, 在本发明的其他实施例中, 参见图 6, 上述处理器 U120包括 抖动判断单元 U122; 抖动判断单元, 用于根据接收的触发信号, 判断所述触 发信号是否为抖动信号; 抖动判断单元, 包括时间判断模块;
时间判断模块, 用于根据接收的触发信号,确定所述触发信号持续时间大 于或等于预设时间, 当所述触发信号持续时间小于所述预设时间时, 则确定所 述触发信号为抖动信号, 所述微处理器消除所述抖动信号。
进一步的, 在本发明的其他实施例中, 上述接收器 U110包括以下至少一 种接收单元;
第一接收单元, 用于接收应力传感器采集的压力信号, 所述应力传感器设 置在所述终端设备上;
或,
第二接收单元, 用于接收电容传感器采集的电容变化信号, 所述电容传感 器设置在所述终端设备上;
或,
第三接收单元, 用于接收加速度传感器采集的加速度信号, 所述加速度传 感器设置在所述终端设备上。
进一步的, 在本发明的其他实施例中, 上述误触发信号判断单元 U121包 括以下至少一种误触发信号判断模块:
第一误触发信号判断模块, 用于当接收的触发信号为压力信号时, 判断所 述压力信号的大小是否满足第一预设条件,所述第一预设条件为大于或等于预 设的压力值, 当所述应力信号的大小满足第一预设条件时, 所述压力信号不是 误触发信号;
或, 第二误触发信号判断模块, 用于当接收的触发信号为电容变化信号时, 判 断所述电容变化信号的大小是否满足第二预设条件,所述第二预设条件为大于 或等于预设的电容变化值, 当所述电容变化值满足第二预设条件时, 所述电容 变化信号不是误触发信号;
或,
第三误触发信号判断模块, 用于当接收的触发信号为加速度信号时, 判断 所述加速度值的大小是否满足第三预设条件,所述第三预设条件为大于或等于 预设的加速度值, 当所述加速度值满足第三预设条件时, 所述加速度信号不是 误触发信号。
参见图 7、 本发明实施例提供一种终端设备, 包括传感器 U200、 应用处 理器 U300、 电源管理单元 U400; 终端设备还设置有微处理器 U100, 微处理 器 U100分别与传感器 U200、 电源管理单元 U400连接; 微处理器 U100包括 接收器 U110、 处理器 U120、 发送器 U130。
传感器 U200采集触发信号, 并向微处理器 U100发送触发信号; 微处理器 U100接收传感器 U200 采集的触发信号, 并获取应用处理器
U300的状态, 应用处理器 U300的状态包括休眠状态、 工作状态或关机状态; 并当应用处理器 U300的状态为关机状态时, 微处理器 U100根据接收的触发 信号, 向电源管理单元 U400发送开机信号;
电源管理单元 U400, 用于接收开机信号, 并向应用处理器 U300供电; 应用处理器 U300, 用于接收开机信号。
本发明实施例中的终端设备包括传感器、 微处理器 (Micro Control Unit) , 电源管理单元, 以及应用处理器。 应用处理器的状态包括休眠状态、 工作状态 或关机状态, 当应用处理器处于关机状态时, 终端设备即为关机状态。 本发明 实施例提供的方法, 不论应用处理器处于何种状态,微处理器以及传感器均可 以一直处于工作状态, 因此, 即使应用处理器的状态为关机状态, 微处理器也 可以获取传感器采集的触发信号,并根据接收的触发信号向电源管理单元发送 开机信号, 开机信号用于开启电源管理单元, 以使得电源管理单元向应用处理 器供电。 因此, 在应用处理器处于关机状态时, 本发明实施例提供的开机方法 不需要设置物理按键也可以启动终端设备相应的应用,由于该终端设备没有复 杂的物理按键, 因此终端设备预留有更多的空间, 节省上述预留的空间即可实 现终端设备的轻薄化。
进一步的, 在本发明的其他实施例中,
微处理器还用于 ,
根据接收的触发信号, 判断触发信号是否为误触发信号,如果触发信号不 是误触发信号, 则确定触发信号为可靠的开机信号。
进一步的, 在本发明的其他实施例中,
微处理器还用于:
根据接收的触发信号, 判断触发信号是否为抖动信号,
判断触发信号是否为抖动信号包括:
根据接收的触发信号, 确定触发信号持续时间大于或等于预设时间; 当触发信号持续时间小于预设时间时, 则确定触发信号为抖动信号,微处 理器消除抖动信号。
进一步的, 在本发明的其他实施例中,
传感器包括: 应力传感器, 应力传感器用于采集压力信号, 应力传感器设 置在终端设备上;
或,
传感器包括: 电容传感器, 电容传感器用于采集电容变化信号, 电容传感 器设置在终端设备上;
或,
传感器包括: 加速度传感器, 加速度传感器用于采集加速度信号, 加速度 传感器设置在终端设备上。
进一步的, 在本发明的其他实施例中,
微处理器,还用于当接收的触发信号为压力信号时, 判断压力信号的大小 是否满足第一预设条件, 第一预设条件为大于或等于预设的压力值, 当应力信 号的大小满足第一预设条件时, 压力信号不是误触发信号;
或, 微处理器,还用于当接收的触发信号为电容变化信号时, 判断电容变化信 号的大小是否满足第二预设条件,第二预设条件为大于或等于预设的电容变化 值, 当电容变化值满足第二预设条件时, 电容变化信号不是误触发信号;
或,
微处理器,还用于当接收的触发信号为加速度信号时, 判断加速度值的大 小是否满足第三预设条件, 第三预设条件为大于或等于预设的加速度值, 当加 速度值满足第三预设条件时 , 加速度信号不是误触发信号。 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 简单, 相关之处参见方法部分说明即可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模 块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述 分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多 个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个 子模块。
本领域普通技术人员可以理解上述实施例方法中的全部或部分处理是可 以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存 储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求 种设备的开机方法, 其特征在于, 所述方法应用于终端设备, 所述
Figure imgf000021_0001
所述微处理器获取应用处理器的状态,所述应用处理器的状态包括休眠状 态、 工作状态或关机状态;
当所述应用处理器的状态为关机状态时,所述微处理器根据接收的触发信 号,向电源管理单元发送开机信号 ,所述开机信号用于开启所述电源管理单元 , 以使得所述电源管理单元向所述应用处理器供电。
2、 根据权利要求 1所述的方法, 其特征在于, 所述微处理器接收传感器 采集的触发信号之后, 还包括:
所述微处理器根据接收的触发信号, 判断所述触发信号是否为误触发信 号;
如果所述触发信号不是误触发信号,则确定所述触发信号为可靠的开机信 号。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述微处理器接收传 感器采集的触发信号之后, 还包括:
所述微处理器根据接收的触发信号 , 判断所述触发信号是否为抖动信号; 所述判断所述触发信号是否为抖动信号, 包括:
根据微处理器根据接收的触发信号,确定所述触发信号持续时间大于或等 于预设时间;
当所述触发信号持续时间小于所述预设时间时,则确定所述触发信号为抖 动信号, 所述微处理器消除所述抖动信号。
4、 根据权利要求 1-3任一所述的方法, 其特征在于, 所述微处理器接收 所述传感器采集的触发信号, 包括以下至少一种:
所述微处理器接收应力传感器采集的压力信号,所述应力传感器设置在所 述终端设备上; 或,
所述微处理器接收电容传感器采集的电容变化信号,所述电容传感器设置 在所述终端设备上;
或,
所述微处理器接收加速度传感器采集的加速度信号,所述加速度传感器设 置在所述终端设备上。
5、 根据权利要求 2所述的方法, 其特征在于, 所述微处理器根据接收的 触发信号, 判断所述触发信号是否为误触发信号, 包括以下至少一种:
当所述微处理器接收的触发信号为压力信号时,判断所述压力信号的大小 是否满足第一预设条件, 所述第一预设条件为大于或等于预设的压力值; 当所述应力信号的大小满足第一预设条件时,所述压力信号不是误触发信 号;
或,
当所述微处理器根据接收的触发信号为电容变化信号时,判断所述电容变 化信号的大小是否满足第二预设条件,所述第二预设条件为大于或等于预设的 电容变化值;
当所述电容变化值满足第二预设条件时,所述电容变化信号不是误触发信 号;
或,
当所述微处理器根据接收的触发信号为加速度信号时,判断所述加速度值 的大小是否满足第三预设条件,所述第三预设条件为大于或等于预设的加速度 值;
当所述加速度值满足第三预设条件时, 所述加速度信号不是误触发信号。
6、 一种设备开机的装置, 其特征在于, 包括接收器、 处理器、 发送器; 所述接收器接收传感器采集到触发信号;
所述接收器获取应用处理器的状态,并将所述应用处理器的状态传输给所 述处理器;
所述处理器获取所述应用处理器的状态,所述应用处理器的状态包括休眠 状态、 工作状态或关机状态;
当所述应用处理器的状态为关机状态时, 所述处理器根据接收的触发信 号,通过所述发送器向电源管理单元发送开机信号, 所述开机信号用于开启所 述电源管理单元, 以使得所述电源管理单元向所述应用处理器供电。
7、 根据权利要求 6所述的装置, 其特征在于, 所述处理器包括误触发信 号判断单元:
所述误触发信号判断单元, 用于根据接收的触发信号, 判断所述触发信号 是否为误触发信号,如果所述触发信号不是误触发信号, 则确定所述触发信号 为可靠的开机信号。
8、 根据权利要求 6或 7所述的装置, 其特征在于, 所述处理器包括抖动 判断单元;
所述抖动判断单元, 用于根据接收的触发信号, 判断所述触发信号是否为 抖动信号; 所述抖动判断单元, 包括:
时间判断模块, 用于根据接收的触发信号,确定所述触发信号持续时间大 于或等于预设时间, 当所述触发信号持续时间小于所述预设时间时, 则确定所 述触发信号为抖动信号, 所述微处理器消除所述抖动信号。
9、 根据权利要求 6-8任一所述的装置, 其特征在于, 所述接收器包括以 下至少一种接收单元;
第一接收单元, 用于接收应力传感器采集的压力信号, 所述应力传感器设 置在所述终端设备上;
或,
第二接收单元, 用于接收电容传感器采集的电容变化信号, 所述电容传感 器设置在所述终端设备上;
或,
第三接收单元, 用于接收加速度传感器采集的加速度信号, 所述加速度传 感器设置在所述终端设备上。
10、 根据权利要求 7所述的装置, 其特征在于, 所述误触发信号判断单元 包括以下至少一种误触发信号判断模块: 第一误触发信号判断模块, 用于当接收的触发信号为压力信号时, 判断所 述压力信号的大小是否满足第一预设条件,所述第一预设条件为大于或等于预 设的压力值, 当所述应力信号的大小满足第一预设条件时, 所述压力信号不是 误触发信号;
或,
第二误触发信号判断模块, 用于当接收的触发信号为电容变化信号时, 判 断所述电容变化信号的大小是否满足第二预设条件,所述第二预设条件为大于 或等于预设的电容变化值, 当所述电容变化值满足第二预设条件时, 所述电容 变化信号不是误触发信号;
或,
第三误触发信号判断模块, 用于当接收的触发信号为加速度信号时, 判断 所述加速度值的大小是否满足第三预设条件,所述第三预设条件为大于或等于 预设的加速度值, 当所述加速度值满足第三预设条件时, 所述加速度信号不是 误触发信号。
11、 一种终端设备, 其特征在于, 包括传感器、 应用处理器、 电源管理单 元、 微处理器;
所述传感器采集触发信号, 并向所述微处理器发送所述触发信号; 所述微处理器接收所述传感器采集的触发信号,并获取所述应用处理器的 状态, 所述应用处理器的状态包括休眠状态、 工作状态或关机状态; 并当所述 应用处理器的状态为关机状态时, 所述微处理器根据接收的触发信号, 向所述 电源管理单元发送开机信号;
所述电源管理单元, 用于接收开机信号, 并向所述应用处理器供电; 所述应用处理器, 用于接收开机信号。
12、 根据权利要求 11所述的终端设备, 其特征在于, 所述微处理器还用 于 ,
根据接收的触发信号, 判断所述触发信号是否为误触发信号,如果所述触 发信号不是误触发信号, 则确定所述触发信号为可靠的开机信号。
13、 根据权利要求 11或 12所述的终端设备, 其特征在于, 所述微处理器 还用于:
根据接收的触发信号, 判断所述触发信号是否为抖动信号,
所述判断所述触发信号是否为抖动信号包括:
根据接收的触发信号, 确定所述触发信号持续时间大于或等于预设时间; 当所述触发信号持续时间小于所述预设时间时,则确定所述触发信号为抖 动信号, 所述微处理器消除所述抖动信号。
14、 根据权利要求 11-13任一所述的终端设备, 其特征在于,
所述传感器包括: 应力传感器, 所述应力传感器用于采集压力信号, 所述 应力传感器设置在所述终端设备上;
或,
所述传感器包括: 电容传感器, 所述电容传感器用于采集电容变化信号, 所述电容传感器设置在所述终端设备上;
或,
所述传感器包括:加速度传感器,所述加速度传感器用于采集加速度信号, 所述加速度传感器设置在所述终端设备上。
15、 根据权利要求 11-14中任一所述的终端设备, 其特征在于,
所述微处理器,还用于当接收的触发信号为压力信号时, 判断所述压力信 号的大小是否满足第一预设条件,所述第一预设条件为大于或等于预设的压力 值, 当所述应力信号的大小满足第一预设条件时, 所述压力信号不是误触发信 号;
或,
所述微处理器,还用于当接收的触发信号为电容变化信号时, 判断所述电 容变化信号的大小是否满足第二预设条件,所述第二预设条件为大于或等于预 设的电容变化值, 当所述电容变化值满足第二预设条件时, 所述电容变化信号 不是误触发信号;
或,
所述微处理器,还用于当接收的触发信号为加速度信号时, 判断所述加速 度值的大小是否满足第三预设条件,所述第三预设条件为大于或等于预设的加 速度值, 当所述加速度值满足第三预设条件时, 所述加速度信号不是误触发信 号。
PCT/CN2013/087649 2013-11-22 2013-11-22 一种设备的开机方法、装置及终端设备 WO2015074234A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380077956.5A CN105359058A (zh) 2013-11-22 2013-11-22 一种设备的开机方法、装置及终端设备
PCT/CN2013/087649 WO2015074234A1 (zh) 2013-11-22 2013-11-22 一种设备的开机方法、装置及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087649 WO2015074234A1 (zh) 2013-11-22 2013-11-22 一种设备的开机方法、装置及终端设备

Publications (1)

Publication Number Publication Date
WO2015074234A1 true WO2015074234A1 (zh) 2015-05-28

Family

ID=53178812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087649 WO2015074234A1 (zh) 2013-11-22 2013-11-22 一种设备的开机方法、装置及终端设备

Country Status (2)

Country Link
CN (1) CN105359058A (zh)
WO (1) WO2015074234A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805987B (zh) * 2018-11-21 2022-05-17 深圳市欢太科技有限公司 一种开机流程控制方法、开机流程控制装置、终端设备及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200830172A (en) * 2007-01-12 2008-07-16 Delta Electronics Inc Voice control system with automatically sound receiving
CN102789178A (zh) * 2012-08-17 2012-11-21 歌尔声学股份有限公司 自动开关机的电子产品和实现电子产品自动开关机的方法
CN102968242A (zh) * 2012-11-12 2013-03-13 中兴通讯股份有限公司 屏幕状态控制方法、装置和触摸屏终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768415B2 (en) * 2006-09-28 2010-08-03 Nike, Inc. Sensor device with persistent low power beacon
US8970501B2 (en) * 2007-01-03 2015-03-03 Apple Inc. Proximity and multi-touch sensor detection and demodulation
CN101997963B (zh) * 2009-08-31 2012-11-28 英华达股份有限公司 可携式通讯装置的电源管理方法以及系统
CN101894036A (zh) * 2010-07-21 2010-11-24 中兴通讯股份有限公司 一种移动终端及其开机方法
CN103019124B (zh) * 2012-12-27 2017-04-05 中兴通讯股份有限公司 一种防止开关误触发的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200830172A (en) * 2007-01-12 2008-07-16 Delta Electronics Inc Voice control system with automatically sound receiving
CN102789178A (zh) * 2012-08-17 2012-11-21 歌尔声学股份有限公司 自动开关机的电子产品和实现电子产品自动开关机的方法
CN102968242A (zh) * 2012-11-12 2013-03-13 中兴通讯股份有限公司 屏幕状态控制方法、装置和触摸屏终端

Also Published As

Publication number Publication date
CN105359058A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
KR101811969B1 (ko) 전자 기기, 전자 기기의 웨이크 업 방법 및 장치
US10667218B2 (en) Method for controlling unlocking and related products
WO2017156718A1 (zh) 工作模式切换方法、无线传感器及系统
CN109712621B (zh) 一种语音交互控制方法及终端
CN105676984B (zh) 可携式电子装置以及其电源控制方法
WO2014134930A1 (zh) 触摸屏解锁方法、触摸屏解锁系统及电子设备
WO2020192449A1 (zh) 一种可穿戴设备及活动数据采集方法
EP3525075B1 (en) Method for lighting up screen of double-screen terminal, and terminal
WO2016045027A1 (zh) 屏幕灵敏度调整方法和移动终端
WO2019120087A1 (zh) 降低功耗的处理方法及移动终端
KR20150021311A (ko) 단말기의 배터리 절약 방법 및 장치
CN102938820A (zh) 手机接近唤醒方法和装置
KR20140027893A (ko) 메인 프로세서를 웨이크 업 하기 위한 초 저전력 장치 및 방법
WO2019184946A1 (zh) 人脸识别控制方法及移动终端
CN109799924B (zh) 防误触控制方法及装置、移动终端、计算机可读存储介质
WO2014117500A1 (zh) 触摸屏终端及其工作方法
US20140191991A1 (en) Responding to a touch input
WO2020043156A1 (zh) 一种亮屏控制方法、装置、移动终端和存储介质
CN110780769A (zh) 一种控制方法、装置、可穿戴设备及介质
WO2023202525A1 (zh) 功能启动方法、用户界面及电子设备
CN106161726A (zh) 一种语音唤醒系统及语音唤醒方法及移动终端
CN105242867A (zh) 一种手机及其控制方法
CN104346482B (zh) 一种采集方法及电子设备
CN109491230A (zh) 一种计时方法和电子设备
CN110691168B (zh) 移动终端的屏幕控制方法、装置及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077956.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897850

Country of ref document: EP

Kind code of ref document: A1