WO2015072419A1 - Ophthalmic device and method for controlling same - Google Patents

Ophthalmic device and method for controlling same Download PDF

Info

Publication number
WO2015072419A1
WO2015072419A1 PCT/JP2014/079697 JP2014079697W WO2015072419A1 WO 2015072419 A1 WO2015072419 A1 WO 2015072419A1 JP 2014079697 W JP2014079697 W JP 2014079697W WO 2015072419 A1 WO2015072419 A1 WO 2015072419A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
image
examined
imaging
alignment
Prior art date
Application number
PCT/JP2014/079697
Other languages
French (fr)
Japanese (ja)
Inventor
内田 浩治
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2015072419A1 publication Critical patent/WO2015072419A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0083Apparatus for testing the eyes; Instruments for examining the eyes provided with means for patient positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/156Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking
    • A61B3/158Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking of corneal reflection

Definitions

  • the present invention relates to an ophthalmologic apparatus for measuring an eye to be examined and a control method thereof.
  • Alignment of the ophthalmologic apparatus with respect to the eye to be examined is performed based on information on a position detection index extracted from an image obtained by an image sensor. At this time, it is necessary to separate an index image to be used for the above-described alignment from an inappropriate image such as noise or ghost in the image obtained by the image sensor.
  • IOL intraocular lens
  • IOL insertion eyes an eye to be examined
  • Patent Document 1 proposes a technique for easily and accurately determining the suitability of a multifocal intraocular lens. Specifically, in the ophthalmologic apparatus described in Patent Document 1 below, a technique is disclosed that makes it possible to compare the acquired size information of the multifocal intraocular lens and the size of the pupil detected by the pupil detection means. .
  • the ophthalmologic apparatus when the ophthalmologic apparatus is positioned with respect to the eye to be examined in a situation where a wide variety of IOLs are increasing, the projected light flux of the alignment index is reflected by the IOL, and a ghost is generated. May be misdetected and positioning may be difficult.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a mechanism that can perform relative alignment between an eye to be examined and an ophthalmic apparatus with high accuracy.
  • An ophthalmologic apparatus of the present invention is an ophthalmologic apparatus that measures an eye to be examined, an illuminating means that illuminates the eye to be examined, an imaging means that images the eye to be examined illuminated by the illuminating means, and the imaging means Extracting means for extracting a cornea reflection image reflected by the cornea of the eye to be examined from an image obtained by imaging by the method, and determining whether an intraocular lens is inserted in the eye based on the cornea reflection image And a positioning unit that changes a relative positioning method between the eye to be examined and the ophthalmologic apparatus according to a result of the determination unit.
  • the present invention also includes a control method using the above-described ophthalmologic apparatus.
  • the relative alignment between the eye to be examined and the ophthalmic apparatus can be performed with high accuracy.
  • FIG. 1 It is an external view which shows an example of schematic structure of the ophthalmologic apparatus which concerns on embodiment of this invention. It is a schematic diagram which shows an example of arrangement
  • FIG. 1 It is a figure which shows embodiment of this invention and shows an example of the image formation state of the bright spot image in case the eye to be examined is an IOL insertion eye. It is a figure which shows embodiment of this invention and shows an example of the reflective ghost image by IOL of the alignment projection light beam. It is a figure which shows embodiment of this invention and shows an example of the imaging state of the bright spot image of the anterior ocular illumination light source in case the eye to be examined is an IOL insertion eye. It is a figure which shows embodiment of this invention and shows an example of the imaging state of the bright spot image of the anterior ocular illumination light source in case the eye to be examined is an IOL insertion eye.
  • FIG. 1 It is a block diagram which shows an example of the system configuration
  • FIG. 13 is a flowchart illustrating an example of a processing procedure according to a modified example after it is determined that the eye to be examined is an IOL insertion eye in Step S103 illustrated in FIG. 12 (S103 / NO). It is a figure for demonstrating the corneal ring image detection process of step S301 shown in FIG.
  • FIG. 1 is an external view showing an example of a schematic configuration of an ophthalmologic apparatus according to an embodiment of the present invention.
  • the ophthalmologic apparatus shown in FIG. 1 is an apparatus that performs measurement of the eye E of the subject H (specifically, measurement of the eye refractive power and the corneal curvature radius of the eye E in the present embodiment).
  • the ophthalmologic apparatus shown in FIG. 1 has a base portion 100 having a chin rest 112 that receives the jaw of a subject H, a drive unit 120 and an operation unit 130 provided on the base unit 100, and is mounted on the drive unit 120.
  • the measuring unit 110 is configured.
  • the base portion 100 is provided with an eye position fixing mechanism for fixing the position of the eye E of the subject H.
  • the eye position fixing mechanism to be examined has a chin rest 112, a chin rest motor 113, and a face rest frame (not shown).
  • the subject H measures the eye E
  • the subject H places his / her chin on the chin rest 112 and pushes the forehead to a forehead receiving portion of a face receiving frame (not shown) fixed to the base portion 100.
  • the face of the subject H can be fixed, and the position of the eye E can be fixed.
  • the chin rest 112 can be adjusted in the Y-axis direction by the chin rest motor 113 according to the size of the face of the subject H.
  • the drive unit 120 has a drive mechanism corresponding to each axis in order to move (drive) the measurement unit 110 in the XYZ directions.
  • drive the drive mechanism in each axial direction will be described.
  • the frame 102 is movable in the left-right direction (hereinafter referred to as “X-axis direction (X direction)”) with respect to the base unit 100 (or the subject H).
  • the drive mechanism in the X-axis direction includes an X-axis motor 103 fixed on the base portion 100, a feed screw (not shown) connected to the output shaft of the X-axis motor 103, and the feed screw on the X-axis direction. And a nut (not shown) fixed to the frame 102.
  • the X-axis motor 103 rotates, the frame 102 moves in the X-axis direction via a feed screw (not shown) and a nut (not shown).
  • the frame 106 is movable in the vertical direction (hereinafter referred to as “Y-axis direction (Y direction)”) with respect to the frame 102.
  • the drive mechanism in the Y-axis direction is movable in the Y-axis direction on the Y-axis motor 104 fixed on the frame 102, the feed screw 105 connected to the output shaft of the Y-axis motor 104, and the feed screw 105. It has a nut 114 fixed to the frame 106. As the Y-axis motor 104 rotates, the frame 106 moves in the Y-axis direction via the feed screw 105 and the nut 114.
  • the frame 107 is movable in the front-rear direction (hereinafter referred to as “Z-axis direction (Z direction)”) with respect to the frame 106.
  • the drive mechanism in the Z-axis direction includes a Z-axis motor 108 fixed to the frame 107, a feed screw 109 connected to the output shaft of the Z-axis motor 108, and a movement on the feed screw 109 in the Z-axis direction.
  • a nut 115 fixed to 106 is provided. As the Z-axis motor 108 rotates, the frame 107 moves in the Z-axis direction via the feed screw 109 and the nut 115.
  • a measuring unit 110 is fixed on the frame 107.
  • the measurement unit 110 includes an optical system for performing inspection, observation, imaging, measurement, and the like of the eye E of the subject H.
  • a light source unit 111 for performing automatic alignment and measurement of the eye E is provided on the subject H side of the measurement unit 110.
  • an LCD monitor 116 which is a display member for the examiner to observe the subject eye E and the like, is provided.
  • the LCD monitor 116 can display measurement results and the like.
  • an operation unit 130 including a joystick 101 On the base unit 100, an operation unit 130 including a joystick 101 is provided.
  • the joystick 101 is an operation member for aligning the measuring unit 110 with respect to the eye E.
  • the examiner operates the joystick 101 to instruct the driving direction, driving amount, driving speed, etc. of the driving unit 120, etc., and aligns the position of the measuring unit 110 with the eye E to be examined and observed. , Take pictures, etc.
  • FIG. 2 is a schematic diagram showing an example of an arrangement of an optical system including an eye refractive power measurement optical system inside the measurement unit 110 shown in FIG.
  • a lens 202 On the optical path 01 from the measurement light source (eye refractive power measurement light source) 201 that irradiates light having a wavelength of about 880 nm to the eye E, a lens 202, a diaphragm 203 almost conjugate with the pupil Ep of the eye E, and a hole are provided.
  • a mirror 204, a lens 205, and a dichroic mirror 206 that totally reflects visible light from the eye E side and partially reflects a light beam having a wavelength of about 880 nm are sequentially arranged.
  • a stop 207 having an annular slit substantially conjugate with the pupil Ep of the eye E, a light beam spectroscopic prism 208, a lens 209, and an image sensor 210 are sequentially arranged. It is installed.
  • the optical system related to the optical path 01 and the optical path 02 described above is an eye refractive power measuring optical system.
  • the light beam emitted from the measurement light source 201 is primarily focused in front of the lens 205 by the lens 202 while being focused by the diaphragm 203, and passes through the lens 205 and the dichroic mirror 206 to be inspected by the eye E.
  • the center of the pupil Ep is projected.
  • the luminous flux forms an image on the fundus oculi Er, and the reflected light enters the lens 205 again through the center of the pupil Ep.
  • the light beam incident on the lens 205 is reflected around the perforated mirror 204 after passing through the lens 205.
  • This reflected light beam is pupil-separated by a stop 207 substantially conjugate with the pupil Ep of the eye E, and is projected as a ring image on the light receiving surface of the image sensor 210.
  • this ring image becomes a predetermined circle, and the curvature of the circle is small for the myopic eye, and the curvature of the circle is large for the hyperopic eye.
  • the ring image becomes an ellipse, and the angle formed by the horizontal axis and the major axis of the ellipse becomes the astigmatism axis angle.
  • the eye refractive power is obtained based on the elliptic coefficient.
  • a fixation target projecting optical system and an alignment light receiving optical system that shares anterior eye portion observation and alignment detection of the eye E are arranged.
  • a lens 211 On the optical path 03 of the fixation target projection optical system, a lens 211, a dichroic mirror 212, a lens 213, a folding mirror 214, a lens 215, a fixation target 216, and a fixation target light source 217 are sequentially arranged.
  • the projected light flux of the fixed fixation target light source 217 illuminates the fixation target 216 from the back side, and the fundus Er of the eye E to be examined via the lens 215, the folding mirror 214, the lens 213, and the dichroic mirror 212. Projected on.
  • the lens 215 can be moved in the optical axis direction by a fixation guidance motor (not shown) in order to perform diopter guidance of the eye E and realize a cloud state.
  • an alignment light receiving optical system is configured in the optical path 04 in the reflection direction of the dichroic mirror 212.
  • an alignment prism diaphragm 223 driven by an alignment prism diaphragm insertion / extraction solenoid (not shown: 411 in FIG. 11), a lens 218, and a diaphragm 219 driven by a diaphragm insertion / extraction solenoid (not shown: 412 in FIG. 11).
  • the image sensor 220 is sequentially arranged.
  • FIG. 3 is a diagram showing an example of the structure of the alignment prism diaphragm 223 shown in FIG.
  • the alignment prism diaphragm 223 is provided with three openings 223a, 223b, and 223c in a disk-shaped diaphragm plate.
  • alignment prisms 301a and 301b that transmit light beams only in the vicinity of a wavelength of 880 nm are attached to the lens 218 side of the openings 223b and 223c at both ends, respectively.
  • Anterior eye illumination light sources 221a and 221b that irradiate light having a wavelength of about 780 nm are disposed obliquely in front of the anterior eye portion of the eye E to be examined.
  • the light beam of the anterior segment image of the eye E illuminated by the anterior illumination light sources 221a and 221b passes through the dichroic mirror 206, the lens 211, the dichroic mirror 212, and the central aperture 223a of the alignment prism diaphragm 223, and the image sensor 220.
  • An image is formed on the light receiving sensor surface.
  • the light source for alignment detection is also used as the measurement light source 201 for measuring eye refractive power.
  • a translucent diffusion plate 222 is inserted into the optical path 01 by a diffusion plate insertion / removal solenoid (not shown: 410 in FIG. 11).
  • the position where the diffusion plate 222 is inserted is the primary image formation position by the lens (projection lens) 202 of the measurement light source 201 described above, and is inserted at the focal position of the lens 205.
  • an image of the measurement light source 201 is once formed on the diffusion plate 222, which becomes a secondary light source and is projected from the lens 205 toward the eye E as a thick parallel light beam. This thick parallel light beam will be described in detail later as an alignment projection light beam.
  • FIG. 4 is a schematic diagram showing an example of the arrangement of the optical system including the corneal curvature radius measuring optical system inside the measuring unit 110 shown in FIG.
  • the same reference numerals are given to the same components as those shown in FIG.
  • corneal curvature radius light sources 224a and 224b for irradiating light having a wavelength of about 780 nm are disposed inside the anterior illumination light sources 221a and 221b.
  • the corneal curvature radius light sources 224a and 224b irradiate the eye E with a diffused light beam through the diffusion plates 225a and 225b, respectively.
  • FIG. 4 only two corneal curvature light sources 224a and 224b are shown, but actually, the corneal curvature light source is arranged in an annular shape (ring shape) around the optical path 01.
  • the ring light source projects a ring-shaped light beam onto the eye E.
  • the ring-shaped light beam irradiated from this corneal curvature radius light source and reflected by the cornea Ec of the eye E is reflected by the dichroic mirror 206, passes through the lens 211, is reflected by the dichroic mirror 212, is converged by the lens 218, and is stopped.
  • the image sensor 220 receives light as a ring image (corneal ring image) through the opening 219. At this time, the alignment prism diaphragm 223 is removed from the optical path 04.
  • the light beams from the anterior illumination light sources 221a and 221b and the corneal curvature radius light sources 224a and 224b are directed to the image sensor 220, but the aperture 219 is disposed at a position where the light beams from the corneal curvature radius light sources converge.
  • the luminous flux of the eye illumination light source is reduced and received.
  • the corneal curvature radius of the eye E is obtained using a known conversion formula based on the ring image received by the image sensor 220.
  • the ring image received by the image sensor 220 becomes an ellipse, and corneal astigmatism can also be measured.
  • FIG. 5 is a diagram illustrating an example of a cross section of the eye E according to the embodiment of the present invention.
  • FIG. 5 shows a cornea Ec, a pupil Ep, and a lens El of the eye E.
  • the parallel light beam that is thick toward the eye E is refracted by the cornea Ec and forms a bright spot image P ⁇ b> 1 in the vicinity of about 1 ⁇ 2 of the radius of curvature.
  • the imaged light flux is returned to the measurement optical system of the ophthalmologic apparatus, a part of which is reflected again by the dichroic mirror 206, is reflected by the dichroic mirror 212 through the lens 211, and the opening 223a of the alignment prism diaphragm 223. Then, the light passes through the alignment prisms 301a and 301b, is converged by the lens 218, and forms an image on the image sensor 220.
  • a light beam having a wavelength of 780 nm or more of the anterior eye illumination light sources 221a and 221b passes.
  • the reflected light beam of the anterior segment image illuminated by the anterior illumination light sources 221a and 221b follows the observation optical system in the same manner as the path of the reflected light beam of the cornea Ec, and passes through the opening 223a of the alignment prism diaphragm 223.
  • the image is formed on the image sensor 220 by the lens 218. Further, the light beam transmitted through the alignment prism 301a is refracted downward, and the light beam transmitted through the alignment prism 301b is refracted upward.
  • FIG. 6 is a diagram showing an example of an image obtained by the image sensor 220 shown in FIG.
  • FIG. 6A shows an image in a case where the eye refractive power measurement optical system is properly aligned in the three-dimensional directions of up and down, left and right, and front and rear.
  • the light beam is separated into three by the alignment prism diaphragm 223.
  • the bright spot images P1 refracted in the vertical direction by the alignment prisms 301a and 301b are vertically aligned. Are lined up.
  • the measurement unit 110 When the measurement unit 110 is displaced in the left-right direction with respect to the eye E, the three bright spot images are shifted in the left-right direction together.
  • FIG. 6C shows an image when the measuring unit 110 is appropriate for the working distance direction with respect to the eye E, but is slightly shifted to the nose side.
  • FIG. 6D shows an image when the measuring unit 110 is slightly shifted in the working distance direction with respect to the eye E and the left and right direction is also slightly shifted to the nose side.
  • the position of the bright spot image P1 can be detected and the measuring unit 110 can be aligned with the subject eye E.
  • a cataract operation is performed, and the subject eye E inserts an IOL.
  • an insertion eye it is known that a ghost of a bright spot image for alignment occurs.
  • the mechanism is as follows.
  • FIG. 7 shows an embodiment of the present invention, and is a diagram showing an example of an image formation state of a bright spot image when the eye E to be examined is an IOL insertion eye.
  • FIGS. 7A and 7B show reflection images of the eye E on the cornea Ec.
  • FIG. 7A only the lens El shown in FIG. 5 is replaced with the IOL, and the light beam refracted by the cornea Ec forms a bright spot image P1 in the vicinity of about 1 ⁇ 2 of the radius of curvature.
  • FIG. 7B shows a case where the alignment is slightly shifted to the nose side, and the light beam refracted by the cornea Ec is slightly shifted to the nose side to form an image (P1 ′).
  • the IOL since the material is different from the original crystalline lens El, it is known from experience that more reflection components are generated on the front side and the rear side of the IOL than the crystalline lens El.
  • FIG. 7 (c) and 7 (d) show only the light beam that has been totally reflected and transmitted and refracted on the front side of the IOL in FIG. 7 (a). Since the reflected light beam on the front side of the IOL becomes divergent light, the light beam returning to the dichroic mirror 206 of the measurement unit 110 is small and does not appear as a ghost.
  • the transmitted refraction component is imaged at the position P2, but since the position is far away from the cornea Ec and the pupil Ep of the eye E, the light flux returned to the measurement unit 110 is normally It is not reflected on the image sensor 220 at the working distance for alignment.
  • FIG. 7C the transmitted refraction component is imaged at the position P2, but since the position is far away from the cornea Ec and the pupil Ep of the eye E, the light flux returned to the measurement unit 110 is normally It is not reflected on the image sensor 220 at the working distance for alignment.
  • FIGS. 7 (e) and 7 (f) show only the light beam that has been totally reflected and transmitted and refracted on the rear surface side of the IOL.
  • a reflected image is formed near the apex of the cornea Ec (P3), and this is reflected on the image sensor 220.
  • the reflected image is formed by shifting to the ear side (P3 ').
  • the image is further shifted to the nose side, the image is further shifted to the ear side, and the projected light beam is kicked to the pupil Ep, so that the bright spot image becomes distorted and becomes thin and appears on the image sensor 220.
  • FIG. 8 shows an embodiment of the present invention and is a diagram showing an example of a reflected ghost image by the IOL of the alignment projection light beam.
  • FIG. 8A shows an image shown on the image sensor 220 when aligned at an approximately appropriate position.
  • FIG. 8 (a) shows a corneal reflection image P1 and a reflection ghost image P3 'based on the IOL.
  • the reflected ghost image P3 'by the IOL often appears obliquely on the ear side or the lower part of the eye E to be examined because the IOL is slightly decentered or tilted.
  • FIG. 8B shows an image reflected on the image sensor 220 when the measuring unit 110 is shifted to the nose side of the eye E with respect to the eye E.
  • the reflected ghost image P3 'by the IOL is separated from the cornea reflected image P1.
  • FIG. 8C shows an image reflected on the image sensor 220 when a part of the projected light beam is kicked by the pupil Ep.
  • the reflected ghost image P3 'by the IOL appears in a distorted and bright spot image.
  • the generation of the reflected ghost image by the IOL when performing alignment with the alignment projection light beam has been described above.
  • alignment detection is performed using the cornea reflection images of the anterior illumination light sources 221a and 221b. It is also known to do. In this case as well, a reflected ghost image is generated by the IOL.
  • FIG. 9 shows an embodiment of the present invention and is a diagram showing an example of an image formation state of bright spot images of the anterior illumination light sources 221a and 221b when the eye E is an IOL insertion eye.
  • FIG. 9A shows a position state in which the eye E and the measuring unit 110 are substantially in the vertical and horizontal directions.
  • the light beam emitted from the anterior illumination light source 221a is transmitted and refracted by the cornea Ec of the eye E to form a bright spot image R1.
  • a part of the transmitted and refracted light beam is reflected on the rear surface side of the IOL, but since the light source is located away from the measurement optical axis, most of the light beam is kicked by the pupil Ep. Then, a slight light beam is reflected on the rear side and imaged at the bright spot P4.
  • the light beam emitted from the anterior illumination light source 221b is also refracted and imaged by the cornea Ec of the eye E to be a bright spot image R2.
  • the light beam emitted from the anterior illumination light source 221b and not kicked to the pupil Ep is reflected and imaged on the rear surface side of the IOL in the same manner as the anterior illumination light source 221a.
  • the imaging position is symmetrical with respect to the bright spot P4 and the optical axis, but is omitted in FIG.
  • the image shown on the image sensor 220 in the state where the position of the measuring unit 110 in the vertical and horizontal directions is almost appropriate is as shown in FIG.
  • the IOL reflected ghost image by the anterior eye illumination light source is picked up only by the bright spot image R2 from the measurement unit 110 side by overlapping the bright spot P4 and the bright spot image R2. Reflected on element 220.
  • FIG. 10 shows an embodiment of the present invention, and is a diagram showing an example of an image formation state of bright spot images of the anterior illumination light sources 221a and 221b when the eye E to be examined is an IOL insertion eye.
  • FIG. 10A shows a state in which the measurement unit 110 is shifted to the nose side with respect to the eye E to be examined.
  • FIG. 10A when all the light beams emitted from the anterior illumination light source 221a are transmitted and refracted into the pupil Ep, they are reflected by the rear surface of the IOL and imaged at the position P4 '. Since this shifts to the optical axis as compared with FIG. 9A, as shown in FIG. 10B, a bright spot image P4 'is reflected in the imaging element 220 in the pupil Ep.
  • the light beam irradiated from the anterior illumination light source 221b is transmitted and refracted by the cornea Ec of the eye E, and almost all of the light beam is kicked by the pupil Ep and does not reach the rear surface of the IOL.
  • the anterior eye illumination light source image R ⁇ b> 2 ′ is reflected on the image sensor 220 so as to overlap the iris of the eye E to be examined.
  • FIG. 11 is a block diagram showing an example of a system configuration of the ophthalmologic apparatus according to the embodiment of the present invention.
  • the same reference numerals are given to the same configurations as those shown in FIGS. 1, 2, and 4.
  • the system control unit 401 controls the entire system of the ophthalmologic apparatus according to the present embodiment.
  • Input from the joystick 101 for positioning the measuring unit 110 with respect to the eye E is input to the system control unit 401 via the X, Z axis tilt angle input unit 402 and the Y axis encoder input unit. Is done.
  • the measurement start switch 404 is arranged on the joystick 101 so as to input a measurement start signal to the system control unit 401.
  • information from the operation panel 405, various position sensors 406, and left / right encoder input unit 407 is input to the system control unit 401.
  • An image signal is input to the system control unit 401 from the image pickup device 210 that is an image pickup unit, and the system control unit 401 extracts the above-described ring image and calculates a spherical power, an astigmatism power, an astigmatic axis angle, and the like.
  • an image signal from the image sensor 220 that is an imaging unit is also input to the system control unit 401, and the system control unit 401 similarly extracts a ring image and calculates a corneal curvature radius and the like.
  • the system control unit 401 is configured to accept input of an anterior ocular segment image, an alignment bright spot, and the like from the anterior ocular illumination light sources 221a and 221b.
  • a real-time image at the time of alignment is displayed on the LCD monitor 116 via an image processing circuit (not shown) of the system control unit 401.
  • the solenoid drive circuit 409 drives the diffusion plate insertion / extraction solenoid 410, the alignment prism diaphragm insertion / extraction solenoid 411, and the diaphragm insertion / extraction solenoid 412 based on a command from the system control unit 401.
  • the diffusion plate 222, the alignment prism diaphragm 223, and the diaphragm 219 are driven.
  • the light source driving circuit 413 is an illuminating unit that illuminates the eye E based on a command from the system control unit 401, and includes a measurement light source 201, anterior eye illumination light sources 221a and 221b, a fixation target light source 217, and a corneal curvature.
  • the radial light sources 224a and 224b are respectively driven.
  • the motor drive circuit 414 drives the chin rest motor 113, the X-axis motor 103, the Y-axis motor 104, and the Z-axis motor 108 based on a command from the system control unit 401.
  • FIG. 12 is a flowchart showing an example of a processing procedure in the method for controlling the ophthalmologic apparatus according to the embodiment of the present invention.
  • the examiner When the subject H places his / her chin on the chin rest 112 (S101), the examiner operates the joystick 101 so that the subject's eye E is reflected on the observation screen of the LCD monitor 116.
  • the system control unit 401 detects this and performs a process of starting measurement.
  • step S103 the system control unit 401 determines whether the eye E is not an IOL insertion eye.
  • step S103 If it is determined in step S103 that the eye E is not an IOL insertion eye (a healthy eye) (S103 / YES), the process proceeds to step S104.
  • step S104 the system control unit 401 performs alignment using the alignment bright spot image. Specifically, in step S104, the system control unit 401 determines that the three alignment bright spot images are vertically aligned as described above with reference to FIG. 6 and the predetermined position at the center of the image sensor 220 is appropriate. Judged as a position. In step S104, when the alignment bright spot image is not at an appropriate position, the system control unit 401 calculates the amount of positional deviation, and for example, sets the measurement section 110 so that the alignment bright spot image is at an appropriate position. Positioning is performed by controlling driving in the XYZ directions.
  • step S107 the system control unit 401 performs kerato measurement.
  • step S108 the system control unit 401 performs reflex measurement.
  • step S108 the process of the flowchart shown in FIG.
  • step S103 If the result of determination in step S103 is that the eye E is an IOL insertion eye (S103 / NO), the process proceeds to step S105.
  • step S105 the system control unit 401 performs processing for detecting the pupil Ep of the eye E to be examined.
  • FIG. 13 is a diagram for explaining the pupil detection processing in step S105 shown in FIG.
  • the anterior segment image as shown in FIG. 13A is binarized with a predetermined value (predetermined level). Then, as shown in FIG. 13B, the edge portion of the pupil Ep becomes clear by using the contrast difference, and the pupil Ep can be detected.
  • step S106 the system control unit 401 performs positioning by driving the measurement unit 110 in the XY directions, for example, so that the center position of the pupil Ep detected in step S105 is an appropriate position.
  • step S106 the process proceeds to step S107, and the system control unit 401 drives the corneal curvature radius light sources 224a and 224b and performs kerato measurement (measurement of corneal curvature radius).
  • step S108 the system control unit 401 drives the measurement light source (eye refractive power measurement light source) 201 and performs reflex measurement (eye refractive power measurement). Then, when the process of step S108 ends, the process of the flowchart shown in FIG. 12 ends.
  • FIG. 14 is a flowchart illustrating an example of a detailed processing procedure in the IOL insertion eye determination process in step S103 illustrated in FIG.
  • step S201 the system control unit 401 turns on the anterior eye illumination light sources 221a and 221b and turns off the measurement light source 201 that is an alignment light source, and displays an image of the eye E on the image sensor 220. Let's take an image.
  • the system control unit 401 extracts a cornea reflection image reflected by the cornea Ec of the eye E from the image captured by the image sensor 220. That is, since the image captured by the image sensor 220 is an image based on the luminous flux of only the anterior illumination light sources 221a and 221b, the extracted cornea reflection image is also based on the luminous flux of only the anterior illumination light sources 221a and 221b. It becomes.
  • FIG. 15 is a diagram for explaining the cornea reflection image extraction processing in step S201 shown in FIG.
  • FIG. 15A is an example of an image captured by the image sensor 220.
  • FIGS. 15B and 15C are examples of images obtained by binarizing the image shown in FIG. 15A with a predetermined value (predetermined level).
  • predetermined level a predetermined value
  • FIG. 15B and FIG. 15C bright spots that are equal to or higher than a predetermined value (a predetermined level or higher) are shown. By detecting this bright spot, a cornea reflection image can be extracted.
  • step S203 the system control unit 401 calculates the amount of deviation from the appropriate position of the images by the anterior ocular illumination light sources 221a and 221b based on the cornea reflection image extracted in step S201. Then, the system control unit 401 performs positioning by driving and controlling the measurement unit 110 in the XYZ directions, for example, according to the calculated deviation amount.
  • the subsequent step S204 is a step for performing further detailed alignment.
  • step S204 the system control unit 401 turns off the anterior illumination light sources 221a and 221b and turns on the measurement light source 201, which is an alignment light source, and displays the image of the eye E on the image sensor 220. Let's take an image.
  • the system control unit 401 extracts a cornea reflection image reflected by the cornea Ec of the eye E from the image captured by the image sensor 220. That is, since the image captured by the image sensor 220 is an image based on the light flux of only the measurement light source 201 as the alignment light source, the extracted corneal reflection image is also based on the alignment bright spot image.
  • FIG. 16 is a diagram for explaining the cornea reflection image extraction processing in step S204 shown in FIG.
  • FIG. 16A is an example of an image captured by the image sensor 220.
  • FIGS. 16B and 16C are examples of images obtained by binarizing the image shown in FIG. 16A with a predetermined value (predetermined level).
  • predetermined level a predetermined value
  • FIG. 16B and FIG. 16C bright spots that are equal to or higher than a predetermined value (a predetermined level or higher) are shown. By detecting this bright spot, a cornea reflection image can be extracted.
  • Step S205 is a step of determining whether the eye E is an IOL insertion eye from the alignment bright spot image.
  • the process proceeds to step S105 in FIG. To do. That is, as shown in FIG. 16C, when the number n of bright spots is n ⁇ 3, the process proceeds to step S105 in FIG. 12, pupil detection is performed, and then in step S106, the pupil center is appropriate. Alignment is performed in the XY direction so as to obtain a correct position.
  • step S206 the system control unit 401 drives the measurement unit 110 by a predetermined amount in the X direction, for example.
  • the driving direction may be moved to the ear side of the eye E (right side with respect to the eye E) in the case of FIG. 15B from the generation mechanism of the reflected ghost image by the IOL.
  • FIG. 15B since the measurement unit 110 is displaced to the nasal side (left side) with respect to the eye E, a reflected ghost image (P4 ') due to the IOL is generated.
  • step S207 After driving in the X direction in step S206, subsequently, in step S207, the system control unit 401, like step S201, an anterior ocular illumination image (corneal reflection image) based on the luminous fluxes of only the anterior ocular illumination light sources 221a and 221b. ).
  • step S209 the system control unit 401 calculates the distance between two anterior eye illumination images (corneal reflection images) and performs measurement. At this time, since the interval between the two anterior eye illumination images changes depending on the working distance between the eye E and the measuring unit 110, it can be confirmed if the working distance is determined in advance.
  • step S210 the system control unit 401 calculates a deviation amount between the distance between the two anterior ocular illumination images (corneal reflection images) measured in step S209 and the appropriate working distance. Then, the system control unit 401 performs alignment by driving and controlling the measurement unit 110 in the Z direction, for example, according to the calculated deviation amount.
  • step S210 When the processing in step S210 is completed, the process proceeds to step S105 in FIG. 12, pupil detection is performed, and then in step S106, alignment is performed in the XY directions so that the pupil center is in an appropriate position.
  • FIG. 17 is a flowchart illustrating an example of a processing procedure according to the modification example after it is determined that the eye E to be examined is an IOL insertion eye in Step S103 illustrated in FIG. 12 (S103 / NO).
  • step S103 in FIG. 12 when it is determined in step S103 in FIG. 12 that the eye E is an IOL insertion eye (S103 / NO), the process proceeds to step S301 in FIG.
  • step S301 the system control unit 401 performs processing for detecting a corneal ring image.
  • the corneal ring image is a ring image based on the luminous flux from the ring light sources including the corneal curvature radius light sources 224a and 224b.
  • the corneal ring image has a predetermined value higher than the light amount at the time of kerato measurement in step S107 in FIG. It is obtained by turning on the corneal curvature radius light source with the amount of light.
  • FIG. 18 is a diagram for explaining the corneal ring image detection process in step S301 shown in FIG.
  • FIG. 18A is an example of an image captured by the image sensor 220 by turning on the corneal curvature light sources 224a and 224b under the above-described conditions.
  • a corneal ring image Q1 is shown.
  • step S301 only the corneal ring image Q1 ′ shown in FIG. 18B is obtained by binarizing the image shown in FIG. 18A with a predetermined value (predetermined level) and using the contrast difference. Can be detected.
  • step S302 the system control unit 401 obtains the ring center position of the corneal ring image detected in step S301, and calculates the amount of deviation from the appropriate position in the XY direction. Then, the system control unit 401 performs drive control of the measurement unit 110 in the XY directions, for example, according to the calculated deviation amount, and performs alignment at an appropriate position.
  • step S302 When the processing in step S302 is completed, the process proceeds to step S107 in FIG.
  • the eye E illuminated by the measurement light source 201 which is one of the illumination means, is imaged, and the cornea Ec of the eye E is obtained from the image obtained by the imaging.
  • the reflected cornea reflection image is extracted (S204 in FIG. 14).
  • the relative positioning method between the eye E and the ophthalmologic apparatus is changed according to the result of the determination (S104 in FIG. 12 and S105 and S106 in FIG. 12, or S104 in FIG. 12).
  • the present invention can also be realized by executing the following processing.
  • software that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, etc.) of the system or apparatus reads the program. It is a process to be executed.
  • This program and a computer-readable recording medium storing the program are included in the present invention.

Abstract

Provided is a structure that can highly precisely perform the relative positioning of a subject eye and an ophthalmic device. Imaging is performed of the subject eye illuminated by a measurement light source, and the cornea reflection image reflected by the cornea of the subject eye (E) is extracted from the image obtained by the imaging. Also, it is determined (S103) whether or not an intraocular lens (IOL) is inserted in the subject eye on the basis of the cornea reflection, and the method for relative positioning of the ophthalmic device and the subject eye is altered (S104; S105 and S106) in accordance with the determination results.

Description

眼科装置及びその制御方法Ophthalmic apparatus and control method thereof
 本発明は、被検眼の測定を行う眼科装置及びその制御方法に関するものである。 The present invention relates to an ophthalmologic apparatus for measuring an eye to be examined and a control method thereof.
 従来から、被検眼の測定を行う眼科装置が使用されている。 Conventionally, an ophthalmologic apparatus for measuring an eye to be examined has been used.
 この眼科装置の被検眼に対する位置合わせは、撮像素子で得た画像から位置検出指標を抽出し、その位置検出指標の情報に基づいて行うようになってきている。この際、撮像素子で得た画像において、上述した位置合わせに使用すべき指標像とノイズやゴースト等の不適切な像とを分離する必要がある。 Alignment of the ophthalmologic apparatus with respect to the eye to be examined is performed based on information on a position detection index extracted from an image obtained by an image sensor. At this time, it is necessary to separate an index image to be used for the above-described alignment from an inappropriate image such as noise or ghost in the image obtained by the image sensor.
 また、近年、多くの高齢者等が白内障の手術を行い、偽水晶体となる眼内レンズ(Intraocular lens:以下、必要に応じて「IOL」と称する)を挿入した被検眼(以下、必要に応じて「IOL挿入眼」と称する)が増えてきている。また、IOLの種類も年々増加している。 Further, in recent years, many elderly people have performed cataract surgery, and an eye to be examined (hereinafter referred to as “IOL” if necessary) into an intraocular lens (hereinafter referred to as “IOL”) that becomes a pseudo crystalline lens. (Hereinafter referred to as “IOL insertion eyes”). In addition, the types of IOLs are increasing year by year.
 従来技術として、例えば、下記の特許文献1には、多焦点眼内レンズの適否判定を精度良く、容易に行う技術が提案されている。具体的に、下記の特許文献1に記載の眼科装置では、取得された多焦点眼内レンズのサイズ情報と瞳孔検出手段によって検出された瞳孔の大きさとを比較可能にする技術が開示されている。 As a conventional technique, for example, the following Patent Document 1 proposes a technique for easily and accurately determining the suitability of a multifocal intraocular lens. Specifically, in the ophthalmologic apparatus described in Patent Document 1 below, a technique is disclosed that makes it possible to compare the acquired size information of the multifocal intraocular lens and the size of the pupil detected by the pupil detection means. .
特開2011-229842号公報JP 2011-229842 A
 しかしながら、従来においては、多種多様なIOLが増えていく状況で被検眼に対して眼科装置を位置合わせする際に、アライメント用指標の投影光束がIOLで反射してゴーストが発生し、アライメント用指標を誤検出して位置合わせが困難になることがあった。 However, conventionally, when the ophthalmologic apparatus is positioned with respect to the eye to be examined in a situation where a wide variety of IOLs are increasing, the projected light flux of the alignment index is reflected by the IOL, and a ghost is generated. May be misdetected and positioning may be difficult.
 本発明は、このような問題点に鑑みてなされたものであり、被検眼と眼科装置との相対的な位置合わせを高精度に行える仕組みを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a mechanism that can perform relative alignment between an eye to be examined and an ophthalmic apparatus with high accuracy.
 本発明の眼科装置は、被検眼の測定を行う眼科装置であって、前記被検眼を照明する照明手段と、前記照明手段で照明された前記被検眼の撮像を行う撮像手段と、前記撮像手段による撮像により得られた画像から前記被検眼の角膜で反射した角膜反射像を抽出する抽出手段と、前記角膜反射像に基づいて、前記被検眼に眼内レンズが挿入されているか否かを判断する判断手段と、前記判断手段の結果に応じて、前記被検眼と当該眼科装置との相対的な位置合わせの手法を変更する位置合わせ手段とを有する。 An ophthalmologic apparatus of the present invention is an ophthalmologic apparatus that measures an eye to be examined, an illuminating means that illuminates the eye to be examined, an imaging means that images the eye to be examined illuminated by the illuminating means, and the imaging means Extracting means for extracting a cornea reflection image reflected by the cornea of the eye to be examined from an image obtained by imaging by the method, and determining whether an intraocular lens is inserted in the eye based on the cornea reflection image And a positioning unit that changes a relative positioning method between the eye to be examined and the ophthalmologic apparatus according to a result of the determination unit.
 また、本発明は、上述した眼科装置による制御方法を含む。 The present invention also includes a control method using the above-described ophthalmologic apparatus.
 本発明によれば、被検眼と眼科装置との相対的な位置合わせを高精度に行うことができる。 According to the present invention, the relative alignment between the eye to be examined and the ophthalmic apparatus can be performed with high accuracy.
本発明の実施形態に係る眼科装置の概略構成の一例を示す外観図である。It is an external view which shows an example of schematic structure of the ophthalmologic apparatus which concerns on embodiment of this invention. 図1に示す測定部の内部の眼屈折力測定光学系を含む光学系の配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning of the optical system containing the eye refractive power measurement optical system inside the measurement part shown in FIG. 図2に示すアライメントプリズム絞りの構造の一例を示す図である。It is a figure which shows an example of the structure of the alignment prism stop shown in FIG. 図1に示す測定部の内部の角膜曲率半径測定光学系を含む光学系の配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning of the optical system containing the cornea curvature radius measurement optical system inside the measurement part shown in FIG. 本発明の実施形態を示し、被検眼の断面の一例を示す図である。It is a figure which shows embodiment of this invention and shows an example of the cross section of the eye to be examined. 図2に示す撮像素子で得られた画像の一例を示す図である。It is a figure which shows an example of the image obtained with the image pick-up element shown in FIG. 本発明の実施形態を示し、被検眼がIOL挿入眼の場合における輝点像の結像状態の一例を示す図である。It is a figure which shows embodiment of this invention and shows an example of the image formation state of the bright spot image in case the eye to be examined is an IOL insertion eye. 本発明の実施形態を示し、アライメント投影光束のIOLによる反射ゴースト像の一例を示す図である。It is a figure which shows embodiment of this invention and shows an example of the reflective ghost image by IOL of the alignment projection light beam. 本発明の実施形態を示し、被検眼がIOL挿入眼の場合における前眼照明光源の輝点像の結像状態の一例を示す図である。It is a figure which shows embodiment of this invention and shows an example of the imaging state of the bright spot image of the anterior ocular illumination light source in case the eye to be examined is an IOL insertion eye. 本発明の実施形態を示し、被検眼がIOL挿入眼の場合における前眼照明光源の輝点像の結像状態の一例を示す図である。It is a figure which shows embodiment of this invention and shows an example of the imaging state of the bright spot image of the anterior ocular illumination light source in case the eye to be examined is an IOL insertion eye. 本発明の実施形態に係る眼科装置のシステム構成の一例を示すブロック図である。It is a block diagram which shows an example of the system configuration | structure of the ophthalmologic apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る眼科装置の制御方法における処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence in the control method of the ophthalmologic apparatus which concerns on embodiment of this invention. 図12に示すステップS105の瞳孔検出処理を説明するための図である。It is a figure for demonstrating the pupil detection process of step S105 shown in FIG. 図12に示すステップS103のIOL挿入眼判断処理における詳細な処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the detailed process sequence in the IOL insertion eye determination process of step S103 shown in FIG. 図14に示すステップS201の角膜反射像抽出処理を説明するための図である。It is a figure for demonstrating the cornea reflection image extraction process of step S201 shown in FIG. 図14に示すステップS204の角膜反射像抽出処理を説明するための図である。It is a figure for demonstrating the cornea reflection image extraction process of step S204 shown in FIG. 図12に示すステップS103において被検眼がIOL挿入眼であると判断(S103/NO)された後の変形例に係る処理手順の一例を示すフローチャートである。13 is a flowchart illustrating an example of a processing procedure according to a modified example after it is determined that the eye to be examined is an IOL insertion eye in Step S103 illustrated in FIG. 12 (S103 / NO). 図17に示すステップS301の角膜リング像検出処理を説明するための図である。It is a figure for demonstrating the corneal ring image detection process of step S301 shown in FIG.
 以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。なお、以下に示す本発明の実施形態においては、本発明に係る眼科装置の一例として、眼屈折力及び角膜曲率半径を測定する眼科装置について説明を行う。 Hereinafter, embodiments (embodiments) for carrying out the present invention will be described with reference to the drawings. In the following embodiments of the present invention, an ophthalmologic apparatus that measures eye refractive power and corneal curvature radius will be described as an example of an ophthalmologic apparatus according to the present invention.
 図1は、本発明の実施形態に係る眼科装置の概略構成の一例を示す外観図である。 FIG. 1 is an external view showing an example of a schematic configuration of an ophthalmologic apparatus according to an embodiment of the present invention.
 図1に示す眼科装置は、被検者Hの被検眼Eの測定(具体的に、本実施形態では被検眼Eの眼屈折力及び角膜曲率半径等の測定)を行う装置である。この図1に示す眼科装置は、被検者Hの顎を受ける顎受け112を有するベース部100と、ベース部100上に設けられた駆動部120及び操作部130と、駆動部120上に取り付けられた測定部110を含み構成されている。 The ophthalmologic apparatus shown in FIG. 1 is an apparatus that performs measurement of the eye E of the subject H (specifically, measurement of the eye refractive power and the corneal curvature radius of the eye E in the present embodiment). The ophthalmologic apparatus shown in FIG. 1 has a base portion 100 having a chin rest 112 that receives the jaw of a subject H, a drive unit 120 and an operation unit 130 provided on the base unit 100, and is mounted on the drive unit 120. The measuring unit 110 is configured.
 (ベース部100)
 ベース部100には、被検者Hの被検眼Eの位置を固定するための被検眼位置固定機構が設けられている。被検眼位置固定機構は、顎受け112と、顎受けモータ113と、顔受けフレーム(不図示)を有して構成されている。被検者Hは、被検眼Eの測定を行う際に、顎受け112上に顎を乗せ、且つ、ベース部100に固定されている顔受けフレーム(不図示)の額受け部分に額を押し当てることで、被検者Hの顔を固定し、被検眼Eの位置を固定させることができる。また、顎受け112は、被検者Hの顔のサイズ等に応じて、顎受けモータ113によりY軸方向に調整可能となっている。
(Base part 100)
The base portion 100 is provided with an eye position fixing mechanism for fixing the position of the eye E of the subject H. The eye position fixing mechanism to be examined has a chin rest 112, a chin rest motor 113, and a face rest frame (not shown). When the subject H measures the eye E, the subject H places his / her chin on the chin rest 112 and pushes the forehead to a forehead receiving portion of a face receiving frame (not shown) fixed to the base portion 100. By applying, the face of the subject H can be fixed, and the position of the eye E can be fixed. The chin rest 112 can be adjusted in the Y-axis direction by the chin rest motor 113 according to the size of the face of the subject H.
 (駆動部120)
 駆動部120は、測定部110をXYZ方向に移動(駆動)させるため、それぞれの軸に応じた駆動機構を有している。以下、各軸方向における駆動機構について説明する。
(Driver 120)
The drive unit 120 has a drive mechanism corresponding to each axis in order to move (drive) the measurement unit 110 in the XYZ directions. Hereinafter, the drive mechanism in each axial direction will be described.
 <X軸方向(X方向)の駆動機構>
 フレーム102は、ベース部100(或いは被検者H)に対して左右方向(以下、「X軸方向(X方向)」と称する)に移動可能である。X軸方向の駆動機構は、ベース部100上に固定されたX軸モータ103と、当該X軸モータ103の出力軸に連結された送りねじ(不図示)と、当該送りねじ上をX軸方向に移動可能でフレーム102に固定されたナット(不図示)を有して構成されている。X軸モータ103の回転により、送りねじ(不図示)、ナット(不図示)を介してフレーム102がX軸方向に移動する。
<Drive mechanism in X-axis direction (X direction)>
The frame 102 is movable in the left-right direction (hereinafter referred to as “X-axis direction (X direction)”) with respect to the base unit 100 (or the subject H). The drive mechanism in the X-axis direction includes an X-axis motor 103 fixed on the base portion 100, a feed screw (not shown) connected to the output shaft of the X-axis motor 103, and the feed screw on the X-axis direction. And a nut (not shown) fixed to the frame 102. As the X-axis motor 103 rotates, the frame 102 moves in the X-axis direction via a feed screw (not shown) and a nut (not shown).
 <Y軸方向(Y方向)の駆動機構>
 フレーム106は、フレーム102に対して上下方向(以下、「Y軸方向(Y方向)」と称する)に移動可能である。Y軸方向の駆動機構は、フレーム102上に固定されたY軸モータ104と、当該Y軸モータ104の出力軸に連結された送りねじ105と、送りねじ105上をY軸方向に移動可能でフレーム106に固定されたナット114を有して構成されている。Y軸モータ104の回転により、送りねじ105、ナット114を介してフレーム106がY軸方向に移動する。
<Driving mechanism in the Y-axis direction (Y direction)>
The frame 106 is movable in the vertical direction (hereinafter referred to as “Y-axis direction (Y direction)”) with respect to the frame 102. The drive mechanism in the Y-axis direction is movable in the Y-axis direction on the Y-axis motor 104 fixed on the frame 102, the feed screw 105 connected to the output shaft of the Y-axis motor 104, and the feed screw 105. It has a nut 114 fixed to the frame 106. As the Y-axis motor 104 rotates, the frame 106 moves in the Y-axis direction via the feed screw 105 and the nut 114.
 <Z軸方向(Z方向)の駆動機構>
 フレーム107は、フレーム106に対して前後方向(以下、「Z軸方向(Z方向)」と称する)に移動可能である。Z軸方向の駆動機構は、フレーム107に固定されたZ軸モータ108と、当該Z軸モータ108の出力軸に連結された送りねじ109と、送りねじ109上をZ軸方向に移動可能でフレーム106に固定されたナット115を有して構成されている。Z軸モータ108の回転により、送りねじ109、ナット115を介してフレーム107がZ軸方向に移動する。
<Drive mechanism in the Z-axis direction (Z direction)>
The frame 107 is movable in the front-rear direction (hereinafter referred to as “Z-axis direction (Z direction)”) with respect to the frame 106. The drive mechanism in the Z-axis direction includes a Z-axis motor 108 fixed to the frame 107, a feed screw 109 connected to the output shaft of the Z-axis motor 108, and a movement on the feed screw 109 in the Z-axis direction. A nut 115 fixed to 106 is provided. As the Z-axis motor 108 rotates, the frame 107 moves in the Z-axis direction via the feed screw 109 and the nut 115.
 (測定部110)
 フレーム107上には、測定部110が固定されている。
(Measurement unit 110)
A measuring unit 110 is fixed on the frame 107.
 測定部110は、被検者Hの被検眼Eの検査、観察、撮影、測定などを行うための光学系等を備えている。測定部110の被検者H側には、被検眼Eのオートアライメントや測定を行うための光源ユニット111が設けられている。また、測定部110の被検者H側とは反対側には、検者が被検眼Eの観察等をするための表示部材であるLCDモニタ116が設けられている。このLCDモニタ116には、測定結果等を表示することができるようになっている。 The measurement unit 110 includes an optical system for performing inspection, observation, imaging, measurement, and the like of the eye E of the subject H. A light source unit 111 for performing automatic alignment and measurement of the eye E is provided on the subject H side of the measurement unit 110. Further, on the side opposite to the subject H side of the measuring unit 110, an LCD monitor 116, which is a display member for the examiner to observe the subject eye E and the like, is provided. The LCD monitor 116 can display measurement results and the like.
 (操作部130)
 ベース部100上には、ジョイスティック101を含む操作部130が設けられている。ジョイスティック101は、被検眼Eに対して測定部110の位置合わせするための操作部材である。検者は、ジョイスティック101を操作することにより、駆動部120等の駆動方向、駆動量、駆動速度などを指示し、測定部110の位置を被検眼Eに対してアライメント等して、検査、観察、撮影などを行う。
(Operation unit 130)
On the base unit 100, an operation unit 130 including a joystick 101 is provided. The joystick 101 is an operation member for aligning the measuring unit 110 with respect to the eye E. The examiner operates the joystick 101 to instruct the driving direction, driving amount, driving speed, etc. of the driving unit 120, etc., and aligns the position of the measuring unit 110 with the eye E to be examined and observed. , Take pictures, etc.
 図2は、図1に示す測定部110の内部の眼屈折力測定光学系を含む光学系の配置の一例を示す模式図である。 FIG. 2 is a schematic diagram showing an example of an arrangement of an optical system including an eye refractive power measurement optical system inside the measurement unit 110 shown in FIG.
 波長880nm程度の光を照射する測定用光源(眼屈折力測定用光源)201から被検眼Eに至る光路01上には、レンズ202、被検眼Eの瞳孔Epとほぼ共役な絞り203、孔あきミラー204、レンズ205、被検眼E側からの可視光を全反射し波長880nm程度の光束を一部反射するダイクロイックミラー206が順次配設されている。 On the optical path 01 from the measurement light source (eye refractive power measurement light source) 201 that irradiates light having a wavelength of about 880 nm to the eye E, a lens 202, a diaphragm 203 almost conjugate with the pupil Ep of the eye E, and a hole are provided. A mirror 204, a lens 205, and a dichroic mirror 206 that totally reflects visible light from the eye E side and partially reflects a light beam having a wavelength of about 880 nm are sequentially arranged.
 また、孔あきミラー204の反射方向の光路02上には、被検眼Eの瞳孔Epとほぼ共役で円環状のスリットを備えた絞り207、光束分光プリズム208、レンズ209、撮像素子210が順次配設されている。 Further, on the optical path 02 in the reflection direction of the perforated mirror 204, a stop 207 having an annular slit substantially conjugate with the pupil Ep of the eye E, a light beam spectroscopic prism 208, a lens 209, and an image sensor 210 are sequentially arranged. It is installed.
 上述した光路01及び光路02に係る光学系が眼屈折力測定光学系である。 The optical system related to the optical path 01 and the optical path 02 described above is an eye refractive power measuring optical system.
 ここで、測定用光源201から発せられた光束は、絞り203で光束が絞られつつ、レンズ202によりレンズ205の手前で1次結像され、レンズ205、ダイクロイックミラー206を透過して被検眼Eの瞳孔Epの中心に投光される。そして、その光束は眼底Erで結像され、その反射光は瞳孔Epの中心を通って再びレンズ205に入射する。レンズ205に入射した光束は、レンズ205を透過後に孔あきミラー204の周辺で反射する。この反射した光束は、被検眼Eの瞳孔Epと略共役な絞り207で瞳分離され、撮像素子210の受光面にリング像として投影される。この際、被検眼Eが正視眼であれば、このリング像は所定の円になり、近視眼では円の曲率が小さく、遠視眼では円の曲率が大きくなる。また、被検眼Eに乱視がある場合にはリング像は楕円になり、水平軸と楕円の長軸でなす角度が乱視軸角度となる。そして、本実施形態に係る眼科装置では、この楕円の係数を基に眼屈折力を求める。 Here, the light beam emitted from the measurement light source 201 is primarily focused in front of the lens 205 by the lens 202 while being focused by the diaphragm 203, and passes through the lens 205 and the dichroic mirror 206 to be inspected by the eye E. The center of the pupil Ep is projected. Then, the luminous flux forms an image on the fundus oculi Er, and the reflected light enters the lens 205 again through the center of the pupil Ep. The light beam incident on the lens 205 is reflected around the perforated mirror 204 after passing through the lens 205. This reflected light beam is pupil-separated by a stop 207 substantially conjugate with the pupil Ep of the eye E, and is projected as a ring image on the light receiving surface of the image sensor 210. At this time, if the eye E is a normal eye, this ring image becomes a predetermined circle, and the curvature of the circle is small for the myopic eye, and the curvature of the circle is large for the hyperopic eye. When the subject eye E has astigmatism, the ring image becomes an ellipse, and the angle formed by the horizontal axis and the major axis of the ellipse becomes the astigmatism axis angle. In the ophthalmologic apparatus according to the present embodiment, the eye refractive power is obtained based on the elliptic coefficient.
 一方、ダイクロイックミラー206の反射方向には、固視標投影光学系と、被検眼Eの前眼部観察とアライメント検出が共用されるアライメント受光光学系が配設されている。 On the other hand, in the reflection direction of the dichroic mirror 206, a fixation target projecting optical system and an alignment light receiving optical system that shares anterior eye portion observation and alignment detection of the eye E are arranged.
 固視標投影光学系の光路03上には、レンズ211、ダイクロイックミラー212、レンズ213、折り返しミラー214、レンズ215、固視標216、固視標光源217が順次配設されている。 On the optical path 03 of the fixation target projection optical system, a lens 211, a dichroic mirror 212, a lens 213, a folding mirror 214, a lens 215, a fixation target 216, and a fixation target light source 217 are sequentially arranged.
 固視誘導時に、点灯された固視標光源217の投影光束は、固視標216を裏側から照明し、レンズ215、折り返しミラー214、レンズ213、ダイクロイックミラー212を介して被検眼Eの眼底Erに投影される。なお、レンズ215は、被検眼Eの視度誘導を行い、雲霧状態を実現するために、固視誘導モータ(不図示)により光軸方向に移動できるようになっている。 At the time of fixation fixation, the projected light flux of the fixed fixation target light source 217 illuminates the fixation target 216 from the back side, and the fundus Er of the eye E to be examined via the lens 215, the folding mirror 214, the lens 213, and the dichroic mirror 212. Projected on. Note that the lens 215 can be moved in the optical axis direction by a fixation guidance motor (not shown) in order to perform diopter guidance of the eye E and realize a cloud state.
 また、ダイクロイックミラー212の反射方向の光路04には、アライメント受光光学系が構成されている。光路04上には、アライメントプリズム絞り挿抜ソレノイド(不図示:図11の411)により駆動されるアライメントプリズム絞り223、レンズ218、絞り挿抜ソレノイド(不図示:図11の412)により駆動される絞り219、撮像素子220が順次配設されている。このアライメント受光光学系によって、被検眼Eの前眼部観察とアライメント検出を行うことができる。 Further, an alignment light receiving optical system is configured in the optical path 04 in the reflection direction of the dichroic mirror 212. On the optical path 04, an alignment prism diaphragm 223 driven by an alignment prism diaphragm insertion / extraction solenoid (not shown: 411 in FIG. 11), a lens 218, and a diaphragm 219 driven by a diaphragm insertion / extraction solenoid (not shown: 412 in FIG. 11). The image sensor 220 is sequentially arranged. By this alignment light receiving optical system, it is possible to observe the anterior segment of the eye E and to detect alignment.
 図3は、図2に示すアライメントプリズム絞り223の構造の一例を示す図である。 FIG. 3 is a diagram showing an example of the structure of the alignment prism diaphragm 223 shown in FIG.
 アライメントプリズム絞り223には、円盤状の絞り板に、3つの開口部223a,223b,223cが設けられている。また、両端の開口部223b及び223cのレンズ218側には、それぞれ、波長880nm付近のみの光束を透過するアライメントプリズム301a及び301bが貼付されている。 The alignment prism diaphragm 223 is provided with three openings 223a, 223b, and 223c in a disk-shaped diaphragm plate. In addition, alignment prisms 301a and 301b that transmit light beams only in the vicinity of a wavelength of 880 nm are attached to the lens 218 side of the openings 223b and 223c at both ends, respectively.
 ここで、再び、図2の説明に戻る。 Here, we return to the explanation of FIG. 2 again.
 被検眼Eの前眼部の斜め前方には、波長780nm程度の光を照射する前眼照明光源221a及び221bが配置されている。前眼照明光源221a及び221bによって照明された被検眼Eの前眼部像の光束は、ダイクロイックミラー206、レンズ211、ダイクロイックミラー212、アライメントプリズム絞り223の中央の開口部223aを介して撮像素子220の受光センサ面に結像する。 Anterior eye illumination light sources 221a and 221b that irradiate light having a wavelength of about 780 nm are disposed obliquely in front of the anterior eye portion of the eye E to be examined. The light beam of the anterior segment image of the eye E illuminated by the anterior illumination light sources 221a and 221b passes through the dichroic mirror 206, the lens 211, the dichroic mirror 212, and the central aperture 223a of the alignment prism diaphragm 223, and the image sensor 220. An image is formed on the light receiving sensor surface.
 アライメント検出のための光源は、眼屈折力測定用の測定用光源201と兼用されている。アライメント時には、拡散板挿抜ソレノイド(不図示:図11の410)により、半透明の拡散板222が光路01に挿入される。この際、拡散板222が挿入される位置は、上述した測定用光源201のレンズ(投影レンズ)202による一次結像位置であり、且つ、レンズ205の焦点位置に挿入される。これにより、測定用光源201の像が拡散板222上に一旦結像して、それが二次光源となりレンズ205から被検眼Eに向かって太い光束の平行光束として投影される。この太い平行光束は、アライメント用投影光束として、後ほど詳しく説明する。 The light source for alignment detection is also used as the measurement light source 201 for measuring eye refractive power. At the time of alignment, a translucent diffusion plate 222 is inserted into the optical path 01 by a diffusion plate insertion / removal solenoid (not shown: 410 in FIG. 11). At this time, the position where the diffusion plate 222 is inserted is the primary image formation position by the lens (projection lens) 202 of the measurement light source 201 described above, and is inserted at the focal position of the lens 205. As a result, an image of the measurement light source 201 is once formed on the diffusion plate 222, which becomes a secondary light source and is projected from the lens 205 toward the eye E as a thick parallel light beam. This thick parallel light beam will be described in detail later as an alignment projection light beam.
 図4は、図1に示す測定部110の内部の角膜曲率半径測定光学系を含む光学系の配置の一例を示す模式図である。図4において、図2に示す構成と同様の構成については同じ符号を付している。 FIG. 4 is a schematic diagram showing an example of the arrangement of the optical system including the corneal curvature radius measuring optical system inside the measuring unit 110 shown in FIG. In FIG. 4, the same reference numerals are given to the same components as those shown in FIG.
 図4において、前眼照明光源221a及び221bの内側に、波長780nm程度の光を照射する角膜曲率半径光源224a及び224bが配設されている。そして、角膜曲率半径光源224a及び224bは、それぞれ、拡散板225a及び225bを介して、被検眼Eに拡散光束を照射する。ここで、図4では、角膜曲率半径光源224a及び224bは2つしか図示されていないが、実際には角膜曲率半径光源は、光路01を中心に円環状(リング状)に配設されており、被検眼Eに対してリング状の光束を投影するリング光源である。 4, corneal curvature radius light sources 224a and 224b for irradiating light having a wavelength of about 780 nm are disposed inside the anterior illumination light sources 221a and 221b. The corneal curvature radius light sources 224a and 224b irradiate the eye E with a diffused light beam through the diffusion plates 225a and 225b, respectively. Here, in FIG. 4, only two corneal curvature light sources 224a and 224b are shown, but actually, the corneal curvature light source is arranged in an annular shape (ring shape) around the optical path 01. The ring light source projects a ring-shaped light beam onto the eye E.
 この角膜曲率半径光源から照射され、被検眼Eの角膜Ecで反射したリング状の光束は、ダイクロイックミラー206で反射し、レンズ211を通り、ダイクロイックミラー212で反射し、レンズ218で収束して絞り219の開口部を通り、撮像素子220においてリング像(角膜リング像)として受光される。このとき、アライメントプリズム絞り223は、光路04から外される。この際、前眼照明光源221a及び221bと角膜曲率半径光源224a及び224bによる光束が撮像素子220に向かうが、当該角膜曲率半径光源の光束が収束する位置に絞り219が配置されるため、当該前眼照明光源の光束は少なくなって受光される。そして、本実施形態に係る眼科装置では、撮像素子220で受光されたリング像に基づいて、既に知られている換算式を用いて被検眼Eの角膜曲率半径を求める。この際、被検眼Eに角膜乱視がある場合には、撮像素子220で受光されたリング像が楕円になり、角膜乱視も計測することができる。 The ring-shaped light beam irradiated from this corneal curvature radius light source and reflected by the cornea Ec of the eye E is reflected by the dichroic mirror 206, passes through the lens 211, is reflected by the dichroic mirror 212, is converged by the lens 218, and is stopped. The image sensor 220 receives light as a ring image (corneal ring image) through the opening 219. At this time, the alignment prism diaphragm 223 is removed from the optical path 04. At this time, the light beams from the anterior illumination light sources 221a and 221b and the corneal curvature radius light sources 224a and 224b are directed to the image sensor 220, but the aperture 219 is disposed at a position where the light beams from the corneal curvature radius light sources converge. The luminous flux of the eye illumination light source is reduced and received. Then, in the ophthalmologic apparatus according to the present embodiment, the corneal curvature radius of the eye E is obtained using a known conversion formula based on the ring image received by the image sensor 220. At this time, if the eye E has corneal astigmatism, the ring image received by the image sensor 220 becomes an ellipse, and corneal astigmatism can also be measured.
 次に、このような眼屈折力と角膜曲率半径を測定する眼科装置において、アライメント用投影光を用いたアライメント検出に関して詳しく説明する。 Next, in the ophthalmologic apparatus for measuring the eye refractive power and the corneal curvature radius, the alignment detection using the alignment projection light will be described in detail.
 図5は、本発明の実施形態を示し、被検眼Eの断面の一例を示す図である。 FIG. 5 is a diagram illustrating an example of a cross section of the eye E according to the embodiment of the present invention.
 図5において、紙面の上部が被検眼Eの鼻側であり、紙面の下部が被検眼Eの耳側になる。図5には、被検眼Eの角膜Ec、瞳孔Ep、水晶体Elが示されている。被検眼Eに向かって太い光束の平行光束は、図4に示すように角膜Ecで屈折し、曲率半径の約1/2付近で輝点像P1を形成する。結像された光束は、眼科装置の測定光学系に戻され、再び、ダイクロイックミラー206でその一部が反射し、レンズ211を介してダイクロイックミラー212で反射し、アライメントプリズム絞り223の開口部223a及びアライメントプリズム301a,301bを透過し、レンズ218に収斂されて撮像素子220に結像する。 In FIG. 5, the upper part of the paper is the nose side of the eye E, and the lower part of the paper is the ear side of the eye E. FIG. 5 shows a cornea Ec, a pupil Ep, and a lens El of the eye E. As shown in FIG. 4, the parallel light beam that is thick toward the eye E is refracted by the cornea Ec and forms a bright spot image P <b> 1 in the vicinity of about ½ of the radius of curvature. The imaged light flux is returned to the measurement optical system of the ophthalmologic apparatus, a part of which is reflected again by the dichroic mirror 206, is reflected by the dichroic mirror 212 through the lens 211, and the opening 223a of the alignment prism diaphragm 223. Then, the light passes through the alignment prisms 301a and 301b, is converged by the lens 218, and forms an image on the image sensor 220.
 図3に示すアライメントプリズム絞り223の中心の開口部223aは、前眼照明光源221a及び221bの波長780nm以上の光束が通るようになっている。このため、前眼照明光源221a及び221bにより照明された前眼部像の反射光束は、角膜Ecの反射光束の経路と同様に観察光学系を辿り、アライメントプリズム絞り223の開口部223aを介して、レンズ218によって撮像素子220に結像される。また、アライメントプリズム301aを透過した光束は下方向に屈折し、アライメントプリズム301bを透過した光束は上方向に屈折する。 In the center opening 223a of the alignment prism diaphragm 223 shown in FIG. 3, a light beam having a wavelength of 780 nm or more of the anterior eye illumination light sources 221a and 221b passes. For this reason, the reflected light beam of the anterior segment image illuminated by the anterior illumination light sources 221a and 221b follows the observation optical system in the same manner as the path of the reflected light beam of the cornea Ec, and passes through the opening 223a of the alignment prism diaphragm 223. The image is formed on the image sensor 220 by the lens 218. Further, the light beam transmitted through the alignment prism 301a is refracted downward, and the light beam transmitted through the alignment prism 301b is refracted upward.
 図6は、図2に示す撮像素子220で得られた画像の一例を示す図である。 FIG. 6 is a diagram showing an example of an image obtained by the image sensor 220 shown in FIG.
 図6(a)は、眼屈折力測定光学系が、上下、左右、前後の3次元方向で適正に位置合わせされている場合の画像を示す。上述したように、アライメントプリズム絞り223により光束は3つに分離され、図6(a)に示す場合には、アライメントプリズム301a,301bで上下方向に屈折された輝点像P1が縦に一列に並んでいる。 FIG. 6A shows an image in a case where the eye refractive power measurement optical system is properly aligned in the three-dimensional directions of up and down, left and right, and front and rear. As described above, the light beam is separated into three by the alignment prism diaphragm 223. In the case shown in FIG. 6A, the bright spot images P1 refracted in the vertical direction by the alignment prisms 301a and 301b are vertically aligned. Are lined up.
 ここで、もし、作動距離方向(Z方向)に位置ずれがある場合には、図6(b)に示すように、上下の輝点像が左右方向にずれる。 Here, if there is a displacement in the working distance direction (Z direction), the upper and lower bright spot images are shifted in the left-right direction as shown in FIG.
 被検眼Eに対して測定部110が左右方向に位置ずれしている場合には、3つの輝点像が一緒に左右方向にずれる。 When the measurement unit 110 is displaced in the left-right direction with respect to the eye E, the three bright spot images are shifted in the left-right direction together.
 図6(c)は、被検眼Eに対して測定部110が作動距離方向については適正であるが、やや鼻側にずれている場合の画像を示している。また、図6(d)は、被検眼Eに対して測定部110が作動距離方向についてややずれており、また、左右方向もやや鼻側にずれている場合の画像を示している。 FIG. 6C shows an image when the measuring unit 110 is appropriate for the working distance direction with respect to the eye E, but is slightly shifted to the nose side. FIG. 6D shows an image when the measuring unit 110 is slightly shifted in the working distance direction with respect to the eye E and the left and right direction is also slightly shifted to the nose side.
 被検眼Eが健常眼であれば、輝点像P1の位置を検出して、測定部110を被検眼Eに位置合わせできるが、例えば白内障の手術を行い、被検眼EがIOLを挿入したIOL挿入眼である場合には、アライメント用の輝点像のゴーストが発生することが知られている。その仕組みは、以下のようになる。 If the subject eye E is a healthy eye, the position of the bright spot image P1 can be detected and the measuring unit 110 can be aligned with the subject eye E. For example, a cataract operation is performed, and the subject eye E inserts an IOL. In the case of an insertion eye, it is known that a ghost of a bright spot image for alignment occurs. The mechanism is as follows.
 図7は、本発明の実施形態を示し、被検眼EがIOL挿入眼の場合における輝点像の結像状態の一例を示す図である。 FIG. 7 shows an embodiment of the present invention, and is a diagram showing an example of an image formation state of a bright spot image when the eye E to be examined is an IOL insertion eye.
 図7(a)、図7(b)は、被検眼Eの角膜Ecにおける反射像を示す。具体的に、図7(a)は、図5に示す水晶体ElがIOLに替わっただけで、角膜Ecで屈折した光束は曲率半径の約1/2付近で輝点像P1を形成する。また、図7(b)は、やや鼻側にアライメントがずれた場合を示しており、角膜Ecで屈折した光束はやや鼻側にずれて結像される(P1’)。しかしながら、IOLの場合には、本来の水晶体Elとは材質が異なるため、IOLの前面側と後面側で反射成分が水晶体Elよりも多く発生することが経験によりわかっている。 FIGS. 7A and 7B show reflection images of the eye E on the cornea Ec. Specifically, in FIG. 7A, only the lens El shown in FIG. 5 is replaced with the IOL, and the light beam refracted by the cornea Ec forms a bright spot image P1 in the vicinity of about ½ of the radius of curvature. FIG. 7B shows a case where the alignment is slightly shifted to the nose side, and the light beam refracted by the cornea Ec is slightly shifted to the nose side to form an image (P1 ′). However, in the case of the IOL, since the material is different from the original crystalline lens El, it is known from experience that more reflection components are generated on the front side and the rear side of the IOL than the crystalline lens El.
 図7(c)、図7(d)は、図7(a)のIOLの前面側で全反射と透過屈折された光束のみを示している。IOLの前面側の反射光束は、発散光になるので、測定部110のダイクロイックミラー206に戻る光束は少なく、ゴーストとなって現れることはない。図7(c)では、透過屈折成分はP2の位置に結像さるが、被検眼Eの角膜Ecや瞳孔Epよりもかなり離れた位置であるので、測定部110に戻された光束は、通常アライメントする場合の作動距離では撮像素子220には映らない。図7(d)は、鼻側にずれた位置を示すが、太いアライメント投影光束は、一部、瞳孔Epに蹴られて残光が結像される(P2’)ので、測定部110に戻された光束がさらに少なくなるため、撮像素子220には映らない。 7 (c) and 7 (d) show only the light beam that has been totally reflected and transmitted and refracted on the front side of the IOL in FIG. 7 (a). Since the reflected light beam on the front side of the IOL becomes divergent light, the light beam returning to the dichroic mirror 206 of the measurement unit 110 is small and does not appear as a ghost. In FIG. 7C, the transmitted refraction component is imaged at the position P2, but since the position is far away from the cornea Ec and the pupil Ep of the eye E, the light flux returned to the measurement unit 110 is normally It is not reflected on the image sensor 220 at the working distance for alignment. FIG. 7 (d) shows a position shifted to the nose side, but the thick alignment projection light beam is partially kicked by the pupil Ep and an afterglow image is formed (P2 ′). Since the emitted light flux is further reduced, it is not reflected on the image sensor 220.
 図7(e)、図7(f)は、IOLの後面側で全反射と透過屈折された光束のみを示している。図7(e)では、角膜Ecの頂点付近に反射像が結像され(P3)、これが撮像素子220に映ってしまう。また、図7(f)のようにアライメントが鼻側にずれた場合には、耳側にずれて反射像が結像される(P3’)。さらに鼻側にずれると、さらに耳側にずれて結像され、また瞳孔Epに投影光束が蹴られるので、輝点像はいびつになり、薄くなって撮像素子220に映る。 FIGS. 7 (e) and 7 (f) show only the light beam that has been totally reflected and transmitted and refracted on the rear surface side of the IOL. In FIG. 7E, a reflected image is formed near the apex of the cornea Ec (P3), and this is reflected on the image sensor 220. When the alignment is shifted to the nose side as shown in FIG. 7F, the reflected image is formed by shifting to the ear side (P3 '). When the image is further shifted to the nose side, the image is further shifted to the ear side, and the projected light beam is kicked to the pupil Ep, so that the bright spot image becomes distorted and becomes thin and appears on the image sensor 220.
 図8は、本発明の実施形態を示し、アライメント投影光束のIOLによる反射ゴースト像の一例を示す図である。 FIG. 8 shows an embodiment of the present invention and is a diagram showing an example of a reflected ghost image by the IOL of the alignment projection light beam.
 図8(a)は、ほぼ適正位置にアライメントした場合の撮像素子220に映った画像を示す。この図8(a)には、角膜反射像P1、IOLによる反射ゴースト像P3’が示されている。この場合、IOLによる反射ゴースト像P3’は、IOLがやや偏心したり傾いたりしていることで、被検眼Eの耳側やや下部に斜めに映る場合が多い。 FIG. 8A shows an image shown on the image sensor 220 when aligned at an approximately appropriate position. FIG. 8 (a) shows a corneal reflection image P1 and a reflection ghost image P3 'based on the IOL. In this case, the reflected ghost image P3 'by the IOL often appears obliquely on the ear side or the lower part of the eye E to be examined because the IOL is slightly decentered or tilted.
 図8(b)は、被検眼Eに対して測定部110が被検眼Eの鼻側にずれている場合の撮像素子220に映った画像を示す。この場合、IOLによる反射ゴースト像P3’は、角膜反射像P1から離れてくる。 FIG. 8B shows an image reflected on the image sensor 220 when the measuring unit 110 is shifted to the nose side of the eye E with respect to the eye E. In this case, the reflected ghost image P3 'by the IOL is separated from the cornea reflected image P1.
 図8(c)は、投影光束の一部が瞳孔Epに蹴られた場合の撮像素子220に映った画像を示す。この場合、IOLによる反射ゴースト像P3’は、いびつに且つ輝点像が薄くなって映る。 FIG. 8C shows an image reflected on the image sensor 220 when a part of the projected light beam is kicked by the pupil Ep. In this case, the reflected ghost image P3 'by the IOL appears in a distorted and bright spot image.
 以上、アライメント投影光束による位置合わせを行う場合のIOLによる反射ゴースト像の発生について説明したが、より広いアライメント検出を行う場合には、前眼照明光源221a,221bの角膜反射像を使ってアライメント検出を行うことも知られている。この場合も同様に、IOLによる反射ゴースト像が発生する。 The generation of the reflected ghost image by the IOL when performing alignment with the alignment projection light beam has been described above. However, when performing wider alignment detection, alignment detection is performed using the cornea reflection images of the anterior illumination light sources 221a and 221b. It is also known to do. In this case as well, a reflected ghost image is generated by the IOL.
 図9は、本発明の実施形態を示し、被検眼EがIOL挿入眼の場合における前眼照明光源221a,221bの輝点像の結像状態の一例を示す図である。 FIG. 9 shows an embodiment of the present invention and is a diagram showing an example of an image formation state of bright spot images of the anterior illumination light sources 221a and 221b when the eye E is an IOL insertion eye.
 図9(a)は、被検眼Eと測定部110の上下左右方向に位置はほぼ適正な位置状態を示す。図9(a)において、前眼照明光源221aから照射された光束は、被検眼Eの角膜Ecで透過屈折して結像し輝点像R1となる。この際、透過屈折した一部の光束は、IOLの後面側で反射されるが、測定光軸から離れたところに光源があるため、大分部は瞳孔Epに蹴られてしまう。そして、わずかな光束は後面側で反射され、輝点P4で結像される。また、前眼照明光源221bから照射された光束も、同様に、被検眼Eの角膜Ecで透過屈折して結像し輝点像R2となる。この際、前眼照明光源221bから照射され瞳孔Epに蹴られなかった光束は、前眼照明光源221aと同様にIOLの後面側で反射され結像される。結像位置は、輝点P4と光軸に対して対称な位置になるが、図9(a)では省略している。 FIG. 9A shows a position state in which the eye E and the measuring unit 110 are substantially in the vertical and horizontal directions. In FIG. 9A, the light beam emitted from the anterior illumination light source 221a is transmitted and refracted by the cornea Ec of the eye E to form a bright spot image R1. At this time, a part of the transmitted and refracted light beam is reflected on the rear surface side of the IOL, but since the light source is located away from the measurement optical axis, most of the light beam is kicked by the pupil Ep. Then, a slight light beam is reflected on the rear side and imaged at the bright spot P4. Similarly, the light beam emitted from the anterior illumination light source 221b is also refracted and imaged by the cornea Ec of the eye E to be a bright spot image R2. At this time, the light beam emitted from the anterior illumination light source 221b and not kicked to the pupil Ep is reflected and imaged on the rear surface side of the IOL in the same manner as the anterior illumination light source 221a. The imaging position is symmetrical with respect to the bright spot P4 and the optical axis, but is omitted in FIG.
 このように、測定部110の上下左右方向に位置はほぼ適正な位置状態での撮像素子220に映る画像は図9(b)のようになる。そして、前眼照明光源によるIOL反射ゴースト像は、図9(a)で示されるように、測定部110側からは、輝点P4と輝点像R2が重なって、輝点像R2だけが撮像素子220に映る。 In this way, the image shown on the image sensor 220 in the state where the position of the measuring unit 110 in the vertical and horizontal directions is almost appropriate is as shown in FIG. Then, as shown in FIG. 9A, the IOL reflected ghost image by the anterior eye illumination light source is picked up only by the bright spot image R2 from the measurement unit 110 side by overlapping the bright spot P4 and the bright spot image R2. Reflected on element 220.
 図10は、本発明の実施形態を示し、被検眼EがIOL挿入眼の場合における前眼照明光源221a,221bの輝点像の結像状態の一例を示す図である。 FIG. 10 shows an embodiment of the present invention, and is a diagram showing an example of an image formation state of bright spot images of the anterior illumination light sources 221a and 221b when the eye E to be examined is an IOL insertion eye.
 図10(a)は、測定部110が被検眼Eに対して鼻側にずれた状態を示す。図10(a)において、前眼照明光源221aから照射された光束がすべて瞳孔Ep内に透過屈折されるとIOL後面で反射され、P4’の位置に結像される。これは、図9(a)に比べて光軸にずれるため、図10(b)のように、瞳孔Ep内に輝点像P4’となって撮像素子220に映る。また、前眼照明光源221bから照射された光束は、被検眼Eの角膜Ecで透過屈折し、ほぼ光束のすべてが瞳孔Epで蹴られIOL後面まで達しない。図10(b)のように、被検眼Eの虹彩の上に重なって前眼照明光源像R2’が撮像素子220に映る。 FIG. 10A shows a state in which the measurement unit 110 is shifted to the nose side with respect to the eye E to be examined. In FIG. 10A, when all the light beams emitted from the anterior illumination light source 221a are transmitted and refracted into the pupil Ep, they are reflected by the rear surface of the IOL and imaged at the position P4 '. Since this shifts to the optical axis as compared with FIG. 9A, as shown in FIG. 10B, a bright spot image P4 'is reflected in the imaging element 220 in the pupil Ep. Further, the light beam irradiated from the anterior illumination light source 221b is transmitted and refracted by the cornea Ec of the eye E, and almost all of the light beam is kicked by the pupil Ep and does not reach the rear surface of the IOL. As illustrated in FIG. 10B, the anterior eye illumination light source image R <b> 2 ′ is reflected on the image sensor 220 so as to overlap the iris of the eye E to be examined.
 図11は、本発明の実施形態に係る眼科装置のシステム構成の一例を示すブロック図である。図11において、図1、図2及び図4に示す構成と同様の構成については、同じ符号を付している。 FIG. 11 is a block diagram showing an example of a system configuration of the ophthalmologic apparatus according to the embodiment of the present invention. In FIG. 11, the same reference numerals are given to the same configurations as those shown in FIGS. 1, 2, and 4.
 システム制御部401は、本実施形態に係る眼科装置のシステム全体を制御するものである。 The system control unit 401 controls the entire system of the ophthalmologic apparatus according to the present embodiment.
 被検眼Eに対して測定部110の位置合わせをするためのジョイスティック101からの入力は、X、Z軸傾倒角度入力部402、Y軸エンコーダー入力部の各デバイスを介してシステム制御部401に入力される。また、測定開始スイッチ404は、ジョイスティック101に配置され、測定開始信号をシステム制御部401に入力するようになっている。この他に、操作パネル405、各種位置センサ406、左右エンコーダー入力部407からの情報がシステム制御部401に入力されるようになっている。 Input from the joystick 101 for positioning the measuring unit 110 with respect to the eye E is input to the system control unit 401 via the X, Z axis tilt angle input unit 402 and the Y axis encoder input unit. Is done. The measurement start switch 404 is arranged on the joystick 101 so as to input a measurement start signal to the system control unit 401. In addition, information from the operation panel 405, various position sensors 406, and left / right encoder input unit 407 is input to the system control unit 401.
 撮像手段である撮像素子210からはシステム制御部401に画像信号が入力され、システム制御部401は、上述したリング像を抽出し、球面度数や、乱視度数、乱視軸角度等を算出する。撮像手段である撮像素子220からの画像信号も同様にシステム制御部401に入力され、システム制御部401は、同様にリング像を抽出して、角膜曲率半径等を算出する。 An image signal is input to the system control unit 401 from the image pickup device 210 that is an image pickup unit, and the system control unit 401 extracts the above-described ring image and calculates a spherical power, an astigmatism power, an astigmatic axis angle, and the like. Similarly, an image signal from the image sensor 220 that is an imaging unit is also input to the system control unit 401, and the system control unit 401 similarly extracts a ring image and calculates a corneal curvature radius and the like.
 また、アライメント時には、システム制御部401は、上述した前眼照明光源221a及び221bによる前眼部像の画像とアライメント輝点等の入力を受け付けるようになっている。アライメント時のリアルタイムの画像は、システム制御部401の画像処理回路(不図示)を介してLCDモニタ116に表示される。 Further, at the time of alignment, the system control unit 401 is configured to accept input of an anterior ocular segment image, an alignment bright spot, and the like from the anterior ocular illumination light sources 221a and 221b. A real-time image at the time of alignment is displayed on the LCD monitor 116 via an image processing circuit (not shown) of the system control unit 401.
 また、ソレノイド駆動回路409は、システム制御部401の指令に基づいて、拡散板挿抜ソレノイド410、アライメントプリズム絞り挿抜ソレノイド411、絞り挿抜ソレノイド412を駆動する。そして、これらの駆動により、拡散板222、アライメントプリズム絞り223、絞り219が駆動する。 Further, the solenoid drive circuit 409 drives the diffusion plate insertion / extraction solenoid 410, the alignment prism diaphragm insertion / extraction solenoid 411, and the diaphragm insertion / extraction solenoid 412 based on a command from the system control unit 401. By these driving operations, the diffusion plate 222, the alignment prism diaphragm 223, and the diaphragm 219 are driven.
 また、光源駆動回路413は、システム制御部401の指令に基づいて、被検眼Eを照明する照明手段である、測定用光源201、前眼照明光源221a及び221b、固視標光源217、角膜曲率半径光源224a及び224bをそれぞれ駆動する。 The light source driving circuit 413 is an illuminating unit that illuminates the eye E based on a command from the system control unit 401, and includes a measurement light source 201, anterior eye illumination light sources 221a and 221b, a fixation target light source 217, and a corneal curvature. The radial light sources 224a and 224b are respectively driven.
 また、モータ駆動回路414は、システム制御部401の指令に基づいて、顎受けモータ113、X軸モータ103、Y軸モータ104、Z軸モータ108を駆動する。 Further, the motor drive circuit 414 drives the chin rest motor 113, the X-axis motor 103, the Y-axis motor 104, and the Z-axis motor 108 based on a command from the system control unit 401.
 次に、このような構成を有する眼科装置の制御方法について説明を行う。 Next, a method for controlling an ophthalmologic apparatus having such a configuration will be described.
 図12は、本発明の実施形態に係る眼科装置の制御方法における処理手順の一例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of a processing procedure in the method for controlling the ophthalmologic apparatus according to the embodiment of the present invention.
 被検者Hが顎台112に顎を載せると(S101)、検者は、被検眼EがLCDモニタ116の観察画面で映るようにジョイスティック101を操作する。 When the subject H places his / her chin on the chin rest 112 (S101), the examiner operates the joystick 101 so that the subject's eye E is reflected on the observation screen of the LCD monitor 116.
 そして、検者がLCDモニタ116の観察画面を確認して、測定開始スイッチ404を押すと、システム制御部401はこれを検知し、測定を開始する処理を行う。 Then, when the examiner confirms the observation screen of the LCD monitor 116 and presses the measurement start switch 404, the system control unit 401 detects this and performs a process of starting measurement.
 続いて、ステップS103において、システム制御部401は、被検眼EがIOL挿入眼ではないか否かを判断する。 Subsequently, in step S103, the system control unit 401 determines whether the eye E is not an IOL insertion eye.
 ステップS103の判断の結果、被検眼EがIOL挿入眼ではない(健常眼である)場合には(S103/YES)、ステップS104に進む。 If it is determined in step S103 that the eye E is not an IOL insertion eye (a healthy eye) (S103 / YES), the process proceeds to step S104.
 ステップS104に進むと、システム制御部401は、アライメント輝点像による位置合わせを行う。具体的に、ステップS104では、システム制御部401は、図6を用いて上述したように3つのアライメント輝点像が縦に一列に並び、且つ、撮像素子220の中心の所定位置あれば適正な位置であると判断する。ステップS104において、システム制御部401は、アライメント輝点像が適正な位置ではない場合には、その位置ずれ量を算出し、アライメント輝点像が適正な位置になるように、例えば測定部110をXYZ方向に駆動制御して、位置合わせを行う。 In step S104, the system control unit 401 performs alignment using the alignment bright spot image. Specifically, in step S104, the system control unit 401 determines that the three alignment bright spot images are vertically aligned as described above with reference to FIG. 6 and the predetermined position at the center of the image sensor 220 is appropriate. Judged as a position. In step S104, when the alignment bright spot image is not at an appropriate position, the system control unit 401 calculates the amount of positional deviation, and for example, sets the measurement section 110 so that the alignment bright spot image is at an appropriate position. Positioning is performed by controlling driving in the XYZ directions.
 アライメント輝点像が適正な位置となると、続いて、ステップS107において、システム制御部401は、ケラト測定を行う。 When the alignment bright spot image is at an appropriate position, subsequently, in step S107, the system control unit 401 performs kerato measurement.
 続いて、ステップS108において、システム制御部401は、レフ測定を行う。 Subsequently, in step S108, the system control unit 401 performs reflex measurement.
 そして、ステップS108の処理が終了すると、図12に示すフローチャートの処理を終了する。 Then, when the process of step S108 is completed, the process of the flowchart shown in FIG.
 また、ステップS103の判断の結果、被検眼EがIOL挿入眼である場合には(S103/NO)、ステップS105に進む。 If the result of determination in step S103 is that the eye E is an IOL insertion eye (S103 / NO), the process proceeds to step S105.
 ステップS105に進むと、システム制御部401は、被検眼Eの瞳孔Epを検出する処理を行う。 In step S105, the system control unit 401 performs processing for detecting the pupil Ep of the eye E to be examined.
 図13は、図12に示すステップS105の瞳孔検出処理を説明するための図である。ステップS105では、図13(a)に示すような前眼部画像を所定値(所定レベル)で2値化処理する。そうすると、図13(b)に示すように、コントラスト差を利用することで瞳孔Epのエッジ部が明確になり、瞳孔Epを検出することができる。 FIG. 13 is a diagram for explaining the pupil detection processing in step S105 shown in FIG. In step S105, the anterior segment image as shown in FIG. 13A is binarized with a predetermined value (predetermined level). Then, as shown in FIG. 13B, the edge portion of the pupil Ep becomes clear by using the contrast difference, and the pupil Ep can be detected.
 続いて、ステップS106において、システム制御部401は、ステップS105で検出した瞳孔Epの中心位置が適正な位置になるように、例えば測定部110をXY方向に駆動制御して、位置合わせを行う。 Subsequently, in step S106, the system control unit 401 performs positioning by driving the measurement unit 110 in the XY directions, for example, so that the center position of the pupil Ep detected in step S105 is an appropriate position.
 このように、瞳孔Epの中心位置で位置合わせを行う場合には、被検眼Eの測定光が虹彩に蹴られず、測定エラーを軽減させる効果がある。 Thus, when alignment is performed at the center position of the pupil Ep, the measurement light of the eye E is not kicked by the iris, and there is an effect of reducing measurement errors.
 ステップS106の処理が終了すると、ステップS107に進み、システム制御部401は、角膜曲率半径光源224a及び224b等を駆動させ、ケラト測定(角膜曲率半径の測定)を行う。 When the process of step S106 is completed, the process proceeds to step S107, and the system control unit 401 drives the corneal curvature radius light sources 224a and 224b and performs kerato measurement (measurement of corneal curvature radius).
 続いて、ステップS108において、システム制御部401は、測定用光源(眼屈折力測定用光源)201等を駆動させ、レフ測定(眼屈折力測定)を行う。
そして、ステップS108の処理が終了すると、図12に示すフローチャートの処理を終了する。
Subsequently, in step S108, the system control unit 401 drives the measurement light source (eye refractive power measurement light source) 201 and performs reflex measurement (eye refractive power measurement).
Then, when the process of step S108 ends, the process of the flowchart shown in FIG. 12 ends.
 次に、図12のステップS103におけるIOL挿入眼判断処理の詳細な処理手順について説明する。 Next, a detailed processing procedure of the IOL insertion eye determination process in step S103 of FIG. 12 will be described.
 図14は、図12に示すステップS103のIOL挿入眼判断処理における詳細な処理手順の一例を示すフローチャートである。 FIG. 14 is a flowchart illustrating an example of a detailed processing procedure in the IOL insertion eye determination process in step S103 illustrated in FIG.
 まず、ステップS201において、システム制御部401は、前眼照明光源221a及び221bをONし、且つ、アライメント光源である測定用光源201をOFFにした状態で、撮像素子220に被検眼Eの画像を撮像させる。次いで、システム制御部401は、撮像素子220で撮像した画像から、被検眼Eの角膜Ecで反射した角膜反射像を抽出する。即ち、撮像素子220で撮像された画像は、前眼照明光源221a及び221bのみの光束に基づく画像であるため、抽出される角膜反射像も、前眼照明光源221a及び221bのみの光束に基づくものとなる。 First, in step S201, the system control unit 401 turns on the anterior eye illumination light sources 221a and 221b and turns off the measurement light source 201 that is an alignment light source, and displays an image of the eye E on the image sensor 220. Let's take an image. Next, the system control unit 401 extracts a cornea reflection image reflected by the cornea Ec of the eye E from the image captured by the image sensor 220. That is, since the image captured by the image sensor 220 is an image based on the luminous flux of only the anterior illumination light sources 221a and 221b, the extracted cornea reflection image is also based on the luminous flux of only the anterior illumination light sources 221a and 221b. It becomes.
 図15は、図14に示すステップS201の角膜反射像抽出処理を説明するための図である。 FIG. 15 is a diagram for explaining the cornea reflection image extraction processing in step S201 shown in FIG.
 図15(a)は、撮像素子220で撮像された画像の一例である。図15(b)及び図15(c)は、図15(a)に示す画像を所定値(所定レベル)で2値化した画像の一例である。図15(b)及び図15(c)には、所定値以上(所定レベル以上)の輝点が示されている。この輝点を検出することで、角膜反射像を抽出することができる。 FIG. 15A is an example of an image captured by the image sensor 220. FIGS. 15B and 15C are examples of images obtained by binarizing the image shown in FIG. 15A with a predetermined value (predetermined level). In FIG. 15B and FIG. 15C, bright spots that are equal to or higher than a predetermined value (a predetermined level or higher) are shown. By detecting this bright spot, a cornea reflection image can be extracted.
 続いて、ステップS202において、システム制御部401は、ステップS201で抽出した角膜反射像の輝点の数nがn=2であるか否かを判断する。 Subsequently, in step S202, the system control unit 401 determines whether the number n of bright spots of the cornea reflection image extracted in step S201 is n = 2.
 ステップS202の判断の結果、ステップS201で抽出した角膜反射像の輝点の数nがn=2である場合には(S202/YES)、ステップS203に進む。 If the number n of bright spots in the cornea reflection image extracted in step S201 is n = 2 as a result of the determination in step S202 (S202 / YES), the process proceeds to step S203.
 ステップS203に進むと、システム制御部401は、ステップS201で抽出した角膜反射像に基づいて前眼照明光源221a及び221bによる画像の適正な位置とのずれ量を算出する。そして、システム制御部401は、算出したずれ量に応じて、例えば測定部110をXYZ方向に駆動制御して、位置合わせを行う。 In step S203, the system control unit 401 calculates the amount of deviation from the appropriate position of the images by the anterior ocular illumination light sources 221a and 221b based on the cornea reflection image extracted in step S201. Then, the system control unit 401 performs positioning by driving and controlling the measurement unit 110 in the XYZ directions, for example, according to the calculated deviation amount.
 続くステップS204は、さらに詳細な位置合わせを行うためのステップとなる。 The subsequent step S204 is a step for performing further detailed alignment.
 ステップS204に進むと、システム制御部401は、前眼照明光源221a及び221bをOFFし、且つ、アライメント光源である測定用光源201をONにした状態で、撮像素子220に被検眼Eの画像を撮像させる。次いで、システム制御部401は、撮像素子220で撮像した画像から、被検眼Eの角膜Ecで反射した角膜反射像を抽出する。即ち、撮像素子220で撮像された画像は、アライメント光源である測定用光源201のみの光束に基づく画像であるため、抽出される角膜反射像も、アライメント輝点像に基づくものとなる。 In step S204, the system control unit 401 turns off the anterior illumination light sources 221a and 221b and turns on the measurement light source 201, which is an alignment light source, and displays the image of the eye E on the image sensor 220. Let's take an image. Next, the system control unit 401 extracts a cornea reflection image reflected by the cornea Ec of the eye E from the image captured by the image sensor 220. That is, since the image captured by the image sensor 220 is an image based on the light flux of only the measurement light source 201 as the alignment light source, the extracted corneal reflection image is also based on the alignment bright spot image.
 図16は、図14に示すステップS204の角膜反射像抽出処理を説明するための図である。 FIG. 16 is a diagram for explaining the cornea reflection image extraction processing in step S204 shown in FIG.
 図16(a)は、撮像素子220で撮像された画像の一例である。図16(b)及び図16(c)は、図16(a)に示す画像を所定値(所定レベル)で2値化した画像の一例である。図16(b)及び図16(c)には、所定値以上(所定レベル以上)の輝点が示されている。この輝点を検出することで、角膜反射像を抽出することができる。 FIG. 16A is an example of an image captured by the image sensor 220. FIGS. 16B and 16C are examples of images obtained by binarizing the image shown in FIG. 16A with a predetermined value (predetermined level). In FIG. 16B and FIG. 16C, bright spots that are equal to or higher than a predetermined value (a predetermined level or higher) are shown. By detecting this bright spot, a cornea reflection image can be extracted.
 続くステップS205は、被検眼EがIOL挿入眼であるのかをアライメント輝点像で判断するステップとなる。 Subsequent step S205 is a step of determining whether the eye E is an IOL insertion eye from the alignment bright spot image.
 ステップS205に進むと、システム制御部401は、ステップS204で抽出した角膜反射像(アライメント輝点像)の輝点の数nがn=3であるか否かを判断する。 In step S205, the system control unit 401 determines whether the number n of bright spots in the cornea reflection image (alignment bright spot image) extracted in step S204 is n = 3.
 ステップS205の判断の結果、ステップS204で抽出した角膜反射像(アライメント輝点像)の輝点の数nがn=3である場合には(S205/YES)、図12のステップS104に遷移する。即ち、図16(c)に示すように輝点の数nがn=3である場合には、図12のステップS104に進み、アライメント輝点像による位置合わせを行う。 If the number n of bright spots in the cornea reflection image (alignment bright spot image) extracted in step S204 is n = 3 as a result of the determination in step S205 (S205 / YES), the process proceeds to step S104 in FIG. . That is, as shown in FIG. 16C, when the number n of bright spots is n = 3, the process proceeds to step S104 in FIG. 12 to perform alignment using the alignment bright spot image.
 一方、ステップS205の判断の結果、ステップS204で抽出した角膜反射像(アライメント輝点像)の輝点の数nがn=3でない場合には(S205/NO)、図12のステップS105に遷移する。即ち、図16(c)に示すように輝点の数nがn≠3である場合には、図12のステップS105に進み、瞳孔検出が行われ、その後、ステップS106において、瞳孔中心が適正な位置になるようにXY方向に位置合わせを行う。 On the other hand, if the number n of bright spots in the cornea reflection image (alignment bright spot image) extracted in step S204 is not n = 3 as a result of the determination in step S205 (S205 / NO), the process proceeds to step S105 in FIG. To do. That is, as shown in FIG. 16C, when the number n of bright spots is n ≠ 3, the process proceeds to step S105 in FIG. 12, pupil detection is performed, and then in step S106, the pupil center is appropriate. Alignment is performed in the XY direction so as to obtain a correct position.
 また、ステップS202の判断の結果、ステップS201で抽出した角膜反射像の輝点の数nがn=2でない場合には(S202/NO)、ステップS206に進む。 If the number n of bright spots in the cornea reflection image extracted in step S201 is not n = 2 as a result of the determination in step S202 (S202 / NO), the process proceeds to step S206.
 ステップS206に進むと、システム制御部401は、例えば測定部110をX方向に所定量だけ駆動させる。ここで、駆動させる方向は、IOLによる反射ゴースト像の発生メカニズムから、図15(b)の場合には、被検眼Eの耳側(被検眼Eに対して右側)に移動するとよい。図15(b)の場合には、測定部110が被検眼Eに対して鼻側(左側)にずれているため、IOLによる反射ゴースト像(P4’)が発生している。 In step S206, the system control unit 401 drives the measurement unit 110 by a predetermined amount in the X direction, for example. Here, the driving direction may be moved to the ear side of the eye E (right side with respect to the eye E) in the case of FIG. 15B from the generation mechanism of the reflected ghost image by the IOL. In the case of FIG. 15B, since the measurement unit 110 is displaced to the nasal side (left side) with respect to the eye E, a reflected ghost image (P4 ') due to the IOL is generated.
 ステップS206でX方向駆動を行った後、続いて、ステップS207において、システム制御部401は、ステップS201と同様に、前眼照明光源221a及び221bのみの光束に基づく前眼照明像(角膜反射像)を抽出する。 After driving in the X direction in step S206, subsequently, in step S207, the system control unit 401, like step S201, an anterior ocular illumination image (corneal reflection image) based on the luminous fluxes of only the anterior ocular illumination light sources 221a and 221b. ).
 続いて、ステップS208において、システム制御部401は、ステップS207で抽出した前眼照明像(角膜反射像)の輝点の数nがn=2であるか否かを判断する。 Subsequently, in step S208, the system control unit 401 determines whether or not the number n of bright spots in the anterior ocular illumination image (corneal reflection image) extracted in step S207 is n = 2.
 ステップS208の判断の結果、ステップS207で抽出した前眼照明像(角膜反射像)の輝点の数nがn=2でない場合には(S208/NO)、ステップS206に戻り、再度、ステップS206以降の処理を行う。 If the number n of bright spots in the anterior ocular illumination image (corneal reflection image) extracted in step S207 is not n = 2 as a result of the determination in step S208 (S208 / NO), the process returns to step S206, and again in step S206. Perform the following processing.
 一方、ステップS208の判断の結果、ステップS207で抽出した前眼照明像(角膜反射像)の輝点の数nがn=2である場合には(S208/YES)、ステップS209に進む。例えば、図15(c)に示すように前眼照明像(角膜反射像)の輝点の数nがn=2となれば、ステップS209に進む。 On the other hand, if the number n of bright spots of the anterior ocular illumination image (corneal reflection image) extracted in step S207 is n = 2 (S208 / YES), the process proceeds to step S209. For example, as shown in FIG. 15C, if the number n of bright spots in the anterior ocular illumination image (corneal reflection image) is n = 2, the process proceeds to step S209.
 ステップS209に進むと、システム制御部401は、2つの前眼照明像(角膜反射像)の間隔距離を算出して測定を行う。この際、2つの前眼照明像の間隔は、被検眼Eと測定部110の作動距離によって変化するため、適正な作動距離であるかを予め決めておけば確認できる。 In step S209, the system control unit 401 calculates the distance between two anterior eye illumination images (corneal reflection images) and performs measurement. At this time, since the interval between the two anterior eye illumination images changes depending on the working distance between the eye E and the measuring unit 110, it can be confirmed if the working distance is determined in advance.
 続いて、ステップS210において、システム制御部401は、ステップS209で測定した2つの前眼照明像(角膜反射像)の間隔距離と適正な作動距離とのずれ量を算出する。そして、システム制御部401は、算出したずれ量に応じて、例えば測定部110をZ方向に駆動制御して、位置合わせを行う。 Subsequently, in step S210, the system control unit 401 calculates a deviation amount between the distance between the two anterior ocular illumination images (corneal reflection images) measured in step S209 and the appropriate working distance. Then, the system control unit 401 performs alignment by driving and controlling the measurement unit 110 in the Z direction, for example, according to the calculated deviation amount.
 このステップS210の処理が終了すると、図12のステップS105に遷移し、瞳孔検出が行われ、その後、ステップS106において、瞳孔中心が適正な位置になるようにXY方向に位置合わせを行う。 When the processing in step S210 is completed, the process proceeds to step S105 in FIG. 12, pupil detection is performed, and then in step S106, alignment is performed in the XY directions so that the pupil center is in an appropriate position.
 上述した図12のフローチャートの説明では、被検眼EがIOL挿入眼である場合には(S103/NO)、ステップS105で瞳孔検出し、その後、XY方向の位置合わせ、ケラト測定及びレフ測定(S106~S108)を行うものであった。 In the description of the flowchart of FIG. 12 described above, when the eye E is an IOL insertion eye (S103 / NO), pupil detection is performed in step S105, and then alignment in the XY directions, kerato measurement, and reflex measurement (S106). To S108).
 まれに、被検眼Eの虹彩の一部を切除したりして瞳孔Epがいびつである場合には、ケラト測定のリング像でアライメントすることも可能である。 In rare cases, when a portion of the iris of the eye E is cut off and the pupil Ep is distorted, it is possible to align with a ring image of kerato measurement.
 図17は、図12に示すステップS103において被検眼EがIOL挿入眼であると判断(S103/NO)された後の変形例に係る処理手順の一例を示すフローチャートである。 FIG. 17 is a flowchart illustrating an example of a processing procedure according to the modification example after it is determined that the eye E to be examined is an IOL insertion eye in Step S103 illustrated in FIG. 12 (S103 / NO).
 本変形例では、図12のステップS103において被検眼EがIOL挿入眼であると判断された場合には(S103/NO)、図17のステップS301に進む。 In this modification, when it is determined in step S103 in FIG. 12 that the eye E is an IOL insertion eye (S103 / NO), the process proceeds to step S301 in FIG.
 ステップS301に進むと、システム制御部401は、角膜リング像を検出する処理を行う。この際、角膜リング像は、角膜曲率半径光源224a及び224bを含むリング光源からの光束に基づくリング像であり、ステップS301では、図12のステップS107におけるケラト測定時の光量よりも高い所定値の光量で当該角膜曲率半径光源を点灯して得られるものである。 In step S301, the system control unit 401 performs processing for detecting a corneal ring image. At this time, the corneal ring image is a ring image based on the luminous flux from the ring light sources including the corneal curvature radius light sources 224a and 224b. In step S301, the corneal ring image has a predetermined value higher than the light amount at the time of kerato measurement in step S107 in FIG. It is obtained by turning on the corneal curvature radius light source with the amount of light.
 図18は、図17に示すステップS301の角膜リング像検出処理を説明するための図である。 FIG. 18 is a diagram for explaining the corneal ring image detection process in step S301 shown in FIG.
 図18(a)は、上述した条件で角膜曲率半径光源224a及び224bを点灯させることにより、撮像素子220で撮像された画像の一例である。この図18(a)には、角膜リング像Q1が示されている。 FIG. 18A is an example of an image captured by the image sensor 220 by turning on the corneal curvature light sources 224a and 224b under the above-described conditions. In FIG. 18A, a corneal ring image Q1 is shown.
 ステップS301の処理では、図18(a)に示す画像を所定値(所定レベル)で2値化処理し、コントラスト差を利用することで、図18(b)に示す角膜リング像Q1’のみを検出することができる。 In the process of step S301, only the corneal ring image Q1 ′ shown in FIG. 18B is obtained by binarizing the image shown in FIG. 18A with a predetermined value (predetermined level) and using the contrast difference. Can be detected.
 続いて、ステップS302において、システム制御部401は、ステップS301で検出した角膜リング像のリング中心位置を求め、XY方向の適正な位置とのずれ量を算出する。そして、システム制御部401は、算出したずれ量に応じて、例えば測定部110をXY方向に駆動制御して、適正な位置に位置合わせを行う。 Subsequently, in step S302, the system control unit 401 obtains the ring center position of the corneal ring image detected in step S301, and calculates the amount of deviation from the appropriate position in the XY direction. Then, the system control unit 401 performs drive control of the measurement unit 110 in the XY directions, for example, according to the calculated deviation amount, and performs alignment at an appropriate position.
 ステップS302の処理が終了すると、図12のステップS107に遷移する。 When the processing in step S302 is completed, the process proceeds to step S107 in FIG.
 以上説明した本実施形態に係る眼科装置では、照明手段の1つである測定用光源201で照明された被検眼Eの撮像を行い、当該撮像により得られた画像から被検眼Eの角膜Ecで反射した角膜反射像を抽出するようにしている(図14のS204)。そして、本実施形態に係る眼科装置では、前記角膜反射像に基づいて被検眼EにIOL(眼内レンズ)が挿入されているか否かを判断し(図14のS205,図12のS103)、当該判断の結果に応じて被検眼Eと当該眼科装置との相対的な位置合わせの手法を変更するようにしている(図12のS104と図12のS105及びS106、或いは、図12のS104と図17のS301及びS302)。 In the ophthalmologic apparatus according to the present embodiment described above, the eye E illuminated by the measurement light source 201, which is one of the illumination means, is imaged, and the cornea Ec of the eye E is obtained from the image obtained by the imaging. The reflected cornea reflection image is extracted (S204 in FIG. 14). In the ophthalmologic apparatus according to the present embodiment, it is determined whether an IOL (intraocular lens) is inserted in the eye E based on the cornea reflection image (S205 in FIG. 14, S103 in FIG. 12), The relative positioning method between the eye E and the ophthalmologic apparatus is changed according to the result of the determination (S104 in FIG. 12 and S105 and S106 in FIG. 12, or S104 in FIG. 12). S301 and S302 in FIG.
 かかる構成によれば、被検眼EにIOLが挿入されている場合であっても、IOLによる反射ゴースト像を除外した上で被検眼と眼科装置との相対的な位置合わせを行うことができる。これにより、アライメント用指標を誤検出ことを抑制することができるため、被検眼と眼科装置との相対的な位置合わせを高精度に行うことができる。 According to such a configuration, even when the IOL is inserted into the eye E, it is possible to perform relative alignment between the eye to be examined and the ophthalmologic apparatus after removing the reflected ghost image by the IOL. Accordingly, it is possible to suppress erroneous detection of the alignment index, and thus it is possible to perform relative alignment between the eye to be examined and the ophthalmologic apparatus with high accuracy.
 (その他の実施形態)
 また、本発明は、以下の処理を実行することによっても実現される。
(Other embodiments)
The present invention can also be realized by executing the following processing.
 即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行する処理である。 That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, etc.) of the system or apparatus reads the program. It is a process to be executed.
 このプログラム及び当該プログラムを記憶したコンピュータ読み取り可能な記録媒体は、本発明に含まれる。 This program and a computer-readable recording medium storing the program are included in the present invention.
 なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 Note that the above-described embodiments of the present invention are merely examples of implementation in practicing the present invention, and the technical scope of the present invention should not be construed as being limited thereto. It is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
  本願は、2013年11月14日提出の日本国特許出願特願2013-236136を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2013-236136 filed on November 14, 2013, the entire contents of which are incorporated herein by reference.
100 ベース部
101 ジョイスティック
102 フレーム
103 X軸モータ
104 Y軸モータ
105 送りねじ
106 フレーム
107 フレーム
108 Z軸モータ
109 送りねじ
110 測定部
111 光源ユニット
112 顎受け
113 顎受けモータ
114 ナット
115 ナット
116 LCDモニタ
120 駆動部
130 操作部
H 被検者
E 被検眼
DESCRIPTION OF SYMBOLS 100 Base part 101 Joystick 102 Frame 103 X-axis motor 104 Y-axis motor 105 Feed screw 106 Frame 107 Frame 108 Z-axis motor 109 Feed screw 110 Measuring part 111 Light source unit 112 Jaw holder 113 Jaw holder motor 114 Nut 115 Nut 116 LCD monitor 120 Drive unit 130 Operation unit H Subject E Subject eye

Claims (8)

  1.  被検眼の測定を行う眼科装置であって、
     前記被検眼を照明する照明手段と、
     前記照明手段で照明された前記被検眼の撮像を行う撮像手段と、
     前記撮像手段による撮像により得られた画像から前記被検眼の角膜で反射した角膜反射像を抽出する抽出手段と、
     前記角膜反射像に基づいて、前記被検眼に眼内レンズが挿入されているか否かを判断する判断手段と、
     前記判断手段の結果に応じて、前記被検眼と当該眼科装置との相対的な位置合わせの手法を変更する位置合わせ手段と
    を有することを特徴とする眼科装置。
    An ophthalmic apparatus for measuring an eye to be examined,
    Illuminating means for illuminating the eye to be examined;
    Imaging means for imaging the eye to be examined illuminated by the illumination means;
    Extraction means for extracting a cornea reflection image reflected by the cornea of the eye to be examined from an image obtained by imaging by the imaging means;
    Determination means for determining whether an intraocular lens is inserted in the eye to be examined based on the cornea reflection image;
    An ophthalmic apparatus comprising: an alignment unit that changes a relative alignment method between the eye to be examined and the ophthalmic apparatus according to a result of the determination unit.
  2.  前記照明手段は、前記被検眼の前眼部を照明する前眼照明光源を含んでおり、
     前記位置合わせ手段は、前記判断手段において前記被検眼に眼内レンズが挿入されていると判断された場合、前記前眼照明光源で前記被検眼の前眼部が照明された状態で前記撮像手段による撮像により得られた前眼部画像から前記被検眼の瞳孔を検出し、当該検出した瞳孔の位置に基づいて前記被検眼と当該眼科装置との相対的な位置合わせを行うことを特徴とする請求項1に記載の眼科装置。
    The illumination means includes an anterior eye illumination light source that illuminates the anterior eye portion of the eye to be examined,
    When the determination unit determines that an intraocular lens is inserted in the eye to be examined, the imaging unit is configured to illuminate an anterior segment of the eye with the anterior illumination light source. Detecting the pupil of the eye to be inspected from the anterior eye image obtained by imaging, and performing a relative alignment between the eye to be examined and the ophthalmologic apparatus based on the position of the detected pupil The ophthalmic apparatus according to claim 1.
  3.  前記位置合わせ手段は、前記前眼部画像を所定値で2値化処理し、コントラスト差を利用して、前記被検眼の瞳孔を検出することを特徴とする請求項2に記載の眼科装置。 3. The ophthalmologic apparatus according to claim 2, wherein the alignment unit binarizes the anterior eye image with a predetermined value and detects a pupil of the eye to be examined using a contrast difference.
  4.  前記照明手段は、前記被検眼の角膜をリング状に照明するリング光源を含んでおり、
     前記位置合わせ手段は、前記判断手段において前記被検眼に眼内レンズが挿入されていると判断された場合、前記リング光源で前記被検眼の角膜が照明された状態で前記撮像手段による撮像により得られた画像からリング像を検出し、当該検出したリング像の中心位置に基づいて前記被検眼と当該眼科装置との相対的な位置合わせを行うことを特徴とする請求項1に記載の眼科装置。
    The illumination means includes a ring light source that illuminates the cornea of the eye to be examined in a ring shape,
    The positioning means is obtained by imaging by the imaging means in a state where the cornea of the eye to be examined is illuminated by the ring light source when the judging means judges that an intraocular lens is inserted in the eye to be examined. The ophthalmic apparatus according to claim 1, wherein a ring image is detected from the obtained image, and relative alignment between the eye to be examined and the ophthalmic apparatus is performed based on a center position of the detected ring image. .
  5.  前記位置合わせ手段は、前記リング光源で前記被検眼の角膜が照明された状態で前記撮像手段による撮像により得られた画像を所定値で2値化処理し、コントラスト差を利用して、前記リング像を検出することを特徴とする請求項4に記載の眼科装置。 The positioning means binarizes an image obtained by imaging by the imaging means in a state where the cornea of the eye to be examined is illuminated by the ring light source, and uses the contrast difference to binarize the ring. The ophthalmologic apparatus according to claim 4, wherein an image is detected.
  6.  前記被検眼と前記撮像手段との間に絞りを更に有し、
     前記位置合わせ手段は、前記判断手段において前記被検眼に眼内レンズが挿入されていないと判断された場合、前記絞りを介して前記撮像手段による撮像により得られた画像から前記絞りに基づく輝点像を検出し、当該輝点像の位置に基づいて前記被検眼と当該眼科装置との相対的な位置合わせを行うことを特徴とする請求項1乃至5のいずれか1項に記載の眼科装置。
    A diaphragm further between the eye to be examined and the imaging means;
    When the determining unit determines that an intraocular lens is not inserted into the eye to be examined, the alignment unit determines a bright spot based on the aperture from an image obtained by imaging by the imaging unit via the aperture The ophthalmologic apparatus according to claim 1, wherein an image is detected and relative alignment between the eye to be examined and the ophthalmologic apparatus is performed based on a position of the bright spot image. .
  7.  前記位置合わせ手段は、少なくとも、当該眼科装置を左右方向に係るX方向に駆動させて、前記位置合わせを行うことを特徴とする請求項1乃至6のいずれか1項に記載の眼科装置。 The ophthalmic apparatus according to any one of claims 1 to 6, wherein the alignment unit performs the alignment by driving the ophthalmologic apparatus in an X direction related to a left-right direction.
  8.  被検眼の測定を行う眼科装置の制御方法であって、
     照明手段で照明された前記被検眼の撮像を行う撮像ステップと、
     前記撮像ステップによる撮像により得られた画像から前記被検眼の角膜で反射した角膜反射像を抽出する抽出ステップと、
     前記角膜反射像に基づいて、前記被検眼に眼内レンズが挿入されているか否かを判断する判断ステップと、
     前記判断ステップの結果に応じて、前記被検眼と前記眼科装置との相対的な位置合わせの手法を変更する位置合わせステップと
    を有することを特徴とする眼科装置の制御方法。
    A method for controlling an ophthalmologic apparatus for measuring an eye to be examined,
    An imaging step of imaging the eye to be examined illuminated by the illumination means;
    An extraction step of extracting a cornea reflection image reflected by the cornea of the eye to be examined from an image obtained by imaging in the imaging step;
    A determination step of determining whether an intraocular lens is inserted into the eye to be examined based on the cornea reflection image;
    An ophthalmologic apparatus control method comprising: an alignment step of changing a relative alignment technique between the eye to be examined and the ophthalmologic apparatus according to a result of the determination step.
PCT/JP2014/079697 2013-11-14 2014-11-10 Ophthalmic device and method for controlling same WO2015072419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-236136 2013-11-14
JP2013236136A JP2015093160A (en) 2013-11-14 2013-11-14 Ophthalmic apparatus and method for controlling the same

Publications (1)

Publication Number Publication Date
WO2015072419A1 true WO2015072419A1 (en) 2015-05-21

Family

ID=53057353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079697 WO2015072419A1 (en) 2013-11-14 2014-11-10 Ophthalmic device and method for controlling same

Country Status (2)

Country Link
JP (1) JP2015093160A (en)
WO (1) WO2015072419A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931202B2 (en) * 2016-03-08 2018-04-03 Novartis Ag Dual optic, curvature changing accommodative IOL having a fixed disaccommodated refractive state

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071122A (en) * 1996-06-28 1998-03-17 Nidek Co Ltd Ophthalmological device
JP2007089715A (en) * 2005-09-27 2007-04-12 Nidek Co Ltd Eye refraction measuring apparatus
JP2011136109A (en) * 2009-12-29 2011-07-14 Nidek Co Ltd Apparatus for measuring ocular axial length

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071122A (en) * 1996-06-28 1998-03-17 Nidek Co Ltd Ophthalmological device
JP2007089715A (en) * 2005-09-27 2007-04-12 Nidek Co Ltd Eye refraction measuring apparatus
JP2011136109A (en) * 2009-12-29 2011-07-14 Nidek Co Ltd Apparatus for measuring ocular axial length

Also Published As

Publication number Publication date
JP2015093160A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP4824400B2 (en) Ophthalmic equipment
JP4492847B2 (en) Eye refractive power measuring device
JP6071304B2 (en) Ophthalmic apparatus and alignment method
JP6116122B2 (en) Ophthalmologic apparatus, ophthalmologic control method, and program
JP2008000342A (en) Ophthalmic apparatus
JP6238551B2 (en) Ophthalmic apparatus, control method for ophthalmic apparatus, and program
JP3916482B2 (en) Ophthalmic equipment
JP2013165818A (en) Ophthalmologic apparatus, ophthalmologic control method, and program
JP2008154727A (en) Ophthalmologic apparatus
KR101647287B1 (en) Ophthalmologic apparatus and ophthalmologic method
JP2014079496A (en) Ophthalmologic apparatus and ophthalmologic control method, and program
JP2009112664A (en) Fundus camera
JP2005160549A (en) Fundus camera
JP2013128648A (en) Ophthalmologic apparatus, and ophthalmologic control method, and program
JP6238552B2 (en) Ophthalmic apparatus, control method for ophthalmic apparatus, and program
JP3636917B2 (en) Eye refractive power measurement device
JP2001029316A (en) Ocular refracting power measuring instrument
JP2008154726A (en) Ophthalmologic device
WO2015072419A1 (en) Ophthalmic device and method for controlling same
JP2009112665A (en) Fundus camera
JP2008000343A (en) Ophthalmic apparatus
JP6325856B2 (en) Ophthalmic apparatus and control method
JP2014226369A (en) Ophthalmologic apparatus, and method and program for controlling the same
JP6140947B2 (en) Ophthalmic apparatus and ophthalmic imaging method
JP6077777B2 (en) Ophthalmic apparatus and alignment method of ophthalmic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862681

Country of ref document: EP

Kind code of ref document: A1