WO2015072382A1 - Communication control device for use in vehicle - Google Patents

Communication control device for use in vehicle Download PDF

Info

Publication number
WO2015072382A1
WO2015072382A1 PCT/JP2014/079405 JP2014079405W WO2015072382A1 WO 2015072382 A1 WO2015072382 A1 WO 2015072382A1 JP 2014079405 W JP2014079405 W JP 2014079405W WO 2015072382 A1 WO2015072382 A1 WO 2015072382A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
transmission
cycle
communication control
control device
Prior art date
Application number
PCT/JP2014/079405
Other languages
French (fr)
Japanese (ja)
Inventor
松岡大輔
Original Assignee
Ntn株式会社
松岡大輔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 松岡大輔 filed Critical Ntn株式会社
Publication of WO2015072382A1 publication Critical patent/WO2015072382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • H04L12/4035Bus networks with centralised control, e.g. polling in which slots of a TDMA packet structure are assigned based on a contention resolution carried out at a master unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle

Definitions

  • the present invention relates to a vehicle communication control apparatus for controlling an in-vehicle LAN network in vehicles such as electric cars, hybrid cars, and engine cars, and more particularly to transmission control of a plurality of types of messages transmitted from individual ECUs.
  • a vehicle such as an automobile is generally provided with a plurality of ECUs (electronic control units).
  • ECUs electronic control units
  • main ECU that performs coordinated control of the entire vehicle
  • ECU that is provided as a control unit of an inverter device
  • brake ECU a brake ECU
  • transmission ECU and the like.
  • various types of data are communicated by a bus-type in-vehicle LAN network, and each data is transmitted as a message according to a communication protocol.
  • the in-vehicle LAN network there may occur a collision of messages to be transmitted, that is, an overlap of transmission times between messages.
  • a standard of the in-vehicle LAN network there are a CAN standard and a FlexRay (registered trademark) standard. In these standards, processing when a transmission collision occurs between a plurality of ECUs is defined. In the CAN standard, arbitration is performed according to the priority of the ID included in the message. In the FlexRay standard, it is specified that communication within a communication cycle is time-division controlled using a clock synchronized between ECUs. There has also been a proposal for strictly managing time division in time division (for example, Patent Document 1).
  • Patent Document 2 it is proposed to set and adjust the transmission timing.
  • Patent Document 3 the transmission timing is divided as much as possible.
  • Patent Document 2 In the method for setting / adjusting the transmission timing in Patent Document 2, a unit for performing the setting / adjustment is provided, so that the apparatus becomes complicated.
  • Patent Document 3 although the transmission timing is divided as much as possible according to the transmission period, collision avoidance cannot be sufficiently performed.
  • a message transmitted at a cycle of 10 ms is always 100 ms once every 10 ms. Will collide with a message to be sent at a period of.
  • a vehicle communication control apparatus includes a plurality of ECUs 11 to 14 mounted on a vehicle and an in-vehicle LAN network 20 that connects these ECUs 11 to 14 so as to be able to transmit and receive each other.
  • a vehicle communication control device for controlling the transmission timing of the message of At least one of the plurality of ECUs 11 to 14 is A plurality of types of data having different data generation sources are grouped for each transmission cycle to be transmitted, and a message generating means 33 for generating a message including the data for each group; Transmission timing control means 34 for controlling transmission timing so as to transmit each of these messages in a predetermined short cycle or a predetermined long cycle longer than this short cycle, wherein the long cycle sets the transmission timing Transmission timing control means comprising a period obtained by multiplying a reference unit time by a prime number.
  • the reference unit time is, for example, a clock cycle used for causing each ECU to function in synchronization.
  • the message is divided into a short cycle group and a long cycle group according to the type of message, collision of transmission timing is reduced. Furthermore, since the long cycle is a cycle composed of a period obtained by multiplying a transmission reference unit time by a prime number, the possibility of collision between a short cycle message and a long cycle message is further reduced.
  • data that needs to be transmitted at regular intervals can be transmitted at regular intervals by being transmitted as short-cycle messages.
  • data that can be transmitted without being transmitted at regular intervals can be transmitted so that transmission timings do not collide as much as possible if they are transmitted as long-cycle messages.
  • the at least one ECU further performs transmission collision prediction time processing means (hereinafter, referred to as “prediction process”) when a collision between the transmission timing of the short cycle message and the transmission timing of the long cycle message is predicted. It is preferable to include 35 (simply referred to as “processing means”).
  • the processing means 35 may delay the transmission timing of the long-cycle message among the messages predicted to collide with each other only for the timing when the collision is predicted to occur. Instead of the delay, the transmission timing may be preceded.
  • the transmission cycle is known for both the short cycle and the long cycle, the time when the transmission timing collides can be calculated. Thus, by predicting the timing of collision in advance and delaying or preceding the transmission timing in that case, the possibility of collision of the transmission timing can be reduced. Since the transmission timing is delayed or preceded only when a collision is predicted, the transmission delay or advance can be minimized.
  • the processing unit 35 stops the transmission of a long-period message among the messages predicted to collide with each other only at the timing at which the collision is predicted to occur. May be.
  • the collision of transmission timing can be avoided by predicting the collision in advance and stopping the transmission of one of the two messages for which the collision is predicted. Since the transmission of one of the two messages predicted to collide is eliminated, it is possible to avoid affecting the entire in-vehicle LAN network, unlike the case where transmission delay or advance is performed.
  • Data transmitted between ECUs includes data of a kind that does not affect the control of the vehicle even if transmission is stopped once or several times, such as temperature data for abnormality determination, etc. It is desirable for the entire in-vehicle LAN network to stop transmission of data when a collision is predicted.
  • the processing unit 35 determines the message transmission timing according to the priority set for each message. It is also possible to perform processing for shifting or canceling transmission.
  • the processing of delay, preceding and cancellation performed by the processing means 35 described above is processing when a short-cycle message and a long-cycle message collide, but transmission timing conflicts between long-cycle messages. Is predicted, it is preferable to set a priority for each message and perform processing according to the set priority. By determining which data is included in which priority message according to the priority of data, various types of data can be transmitted without delay, precedence, or cancellation according to necessity.
  • the processing unit 35 shifts or transmits the message transmission timing when a collision between the transmission cycle of the short cycle message and the transmission timing of the long cycle message is predicted between different ECUs. You may have the function to perform the process to cancel.
  • transmission can be performed so that the transmission timings do not collide as much as possible and the delay can be made as small as possible between the plurality of ECUs.
  • the in-vehicle LAN network may be a communication network compliant with the CAN standard.
  • the CAN standard has a processing function when a message collision occurs. Therefore, even if the transmission timing control unit 34 or the processing unit 35 avoids a collision of transmission timing, even if a collision occurs, it can be dealt with using the standard collision processing function of the CAN standard. Yes.
  • the in-vehicle LAN network may be a communication network conforming to the FlexRay standard.
  • the FlexRay standard also has a processing function when a message collision occurs. Therefore, like the CAN standard, it is possible to cope with the standard collision processing function of the standard.
  • the vehicle may have an electric motor 5 as a travel drive source, and the short-cycle message may include detection data of the rotation speed of the electric motor 5.
  • the detection data of the number of revolutions of the electric motor 5 will affect the control of the vehicle running if there is a transmission timing shift or missing message. On the other hand, the effect of collision avoidance of message transmission of the vehicle communication control device is more excellent.
  • the electric motor 5 constitutes an in-wheel motor drive device 4, and the message generation means 33 and the transmission timing control means 34 are provided in an ECU 12 provided in an inverter device 10 having an inverter 9 that applies AC power to the electric motor. It is also possible to target a message that is provided and sent to the main ECU 11 that gives a drive command to the ECU 12 of the inverter device 10.
  • the left and right wheels are independently driven by the electric motors 5, so that a delay in control of the electric motors 5 affects the running stability.
  • the effect of avoiding the collision of messages by the vehicle communication control device is more excellent.
  • FIG. 1 shows a conceptual configuration of an electric vehicle which is a vehicle provided with the vehicle communication control device.
  • a vehicle body 1 includes left and right wheels 2 and 2 that are front wheels, and left and right wheels 3 and 3 that are rear wheels.
  • the left and right wheels 2 and 2 which are front wheels are steered wheels and driven wheels.
  • the left and right wheels 3, 3 which are rear wheels are driven to travel by in-wheel motor driving devices 4, 4, respectively.
  • Each in-wheel motor drive device 4 includes an electric motor 5, a wheel bearing 6, and a speed reducer 7 that decelerates the rotation of the electric motor 5 and transmits it to the rotating wheels of the wheel bearing 6.
  • Each electric motor 5 is composed of an AC motor such as a synchronous motor, and is driven by an AC current obtained by converting the DC current of the battery 8 into AC by each inverter 9.
  • Each inverter 9 has a regeneration function.
  • a plurality of ECUs (electric control units) 11 to 14 are provided in the vehicle body 1 as a control system.
  • the main ECU 11 is means for performing cooperative control and overall control of the entire vehicle.
  • the main ECU 11 has means (not shown) for generating and sending a drive command and a regenerative braking command to the ECU 12 of the inverter device 10 according to the depression amount of an accelerator pedal and a brake pedal (both not shown). Yes.
  • the main ECU 11 has means (not shown) for performing posture control, safety control, and the like.
  • the inverter device 10 includes the inverter 9 and an ECU 12 that controls the motor by controlling the inverter 9.
  • This ECU 12 performs phase control of each electric motor 5 by using a detection signal of a rotation angle sensor 15 provided in the electric motor 5 in accordance with commands for driving and regenerating each electric motor 5 given from the main ECU 11. It has a function to improve efficiency.
  • two inverters 9 and one ECU 12 constitute one inverter device 10.
  • each inverter 9 may be provided with an ECU 12 and two inverter devices may be provided. .
  • the brake ECU 13 is a means for controlling a friction brake (not shown) such as a mechanical type or a hydraulic type provided on each of the wheels 2 and 3 according to the operation amount of the brake pedal.
  • a friction brake such as a mechanical type or a hydraulic type provided on each of the wheels 2 and 3 according to the operation amount of the brake pedal.
  • One other ECU 14 is shown as a representative.
  • the other ECU 14 may be a steering control ECU or an ECU that performs other specific control.
  • the plurality of ECUs 11 to 14 mounted on the vehicle are connected by an in-vehicle LAN network 20 that serially communicates so as to be able to transmit and receive each other.
  • This in-vehicle LAN network 20 is a bus type in which the ECUs 11 to 14 are connected equally to a bus 20a. In this example, it is a LAN network compliant with the CAN (Control Area Network) standard.
  • the bus 20a is composed of, for example, an H (high) line and an L (low) line.
  • the in-vehicle LAN network 20 may be a LAN network conforming to the FlexRay (registered trademark) standard, or may be of another type.
  • the ECUs 11 to 14 have communication controllers 21 to 24, respectively.
  • the communication controllers 21 to 24 are connected to the bus 20a.
  • the communication controllers 21 to 24 are means for controlling communication in accordance with a set communication protocol.
  • the communication controllers 21 to 24 and the in-vehicle LAN network 20 such as the bus 20a are used in this embodiment.
  • A is configured.
  • the communication controllers 21 to 24 each have a transmission unit 31 and a reception unit 32.
  • the transmission unit 31 sends a message with a destination to the bus 20a.
  • the receiving unit 32 receives a message addressed to itself.
  • the communication controllers 21 to 24 perform transmission / reception timing control in synchronization with a synchronization pulse which is a clock generated every unit time serving as a reference.
  • the communication controller 22 in the ECU 12 of the inverter device 10 has a message generation means 33, a transmission timing control means 34, and a transmission collision prediction time processing means (hereinafter simply referred to as “ 35 ”(referred to as“ processing means ”).
  • the communication controller 21 of the main ECU 11 has the same configuration as the communication controller 22 shown in the block diagram.
  • the other ECUs 13 and 14 may have the same configuration as the communication controller 22 shown in the block diagram or other configurations.
  • the message generating means 33 in the block diagram is a message in which a plurality of types of data having different data generation sources are grouped for each transmission cycle to be transmitted, and the data is collected (including data) for each group. Is generated.
  • the data generation source is, for example, a rotation angle sensor 15, an ammeter 16, a thermometer 17, and a voltmeter 18 provided for the electric motor 5.
  • Each set of messages may have a plurality of types of data or only one type.
  • Fig. 7 shows an example of the message.
  • This message M has a format according to the CAN standard, and includes a start-of-frame Ma, an articulation field Mb indicating priority, a control field Mc indicating the length of the subsequent data field Md, a data field Md, a CRC field Me, It consists of an AKC field Mf and an end-of-frame Mg.
  • the number of bits for each field is shown in the figure.
  • each data is applied to the array with a predetermined data length (number of bits) in the data field Md.
  • the data arrangement in the data field Md is determined in advance.
  • the 1st to 8th bits are for the motor temperature
  • the 9th to 16th bits are for the motor voltage
  • the 17th to 24th bits are for the control voltage. It is decided. Thereby, a plurality of types of data are collected and transmitted in one message M.
  • the transmission cycle consists of two or more types. That is, it consists of two types of short cycle (a given threshold or a shorter cycle) and long cycle (a cycle longer than the given threshold), or in addition to these other cycles Also have.
  • a short cycle and two types of long cycles (a cycle longer than the threshold value, a given threshold value different from the threshold value or a shorter cycle time)
  • a total of three examples with a period longer than a given threshold will be described.
  • the short-cycle data (data to be transmitted in a short cycle) is data that needs to be transmitted at regular intervals among the data for controlling the running of the vehicle. For example, the motor rotation speed detected by the rotation angle sensor 15 Or a detected torque value obtained from the current value detected by the ammeter 16.
  • the long-cycle data (data that may be transmitted in a long cycle) is data that does not cause trouble in the vehicle travel control even if it is not transmitted at a short interval or a constant interval.
  • the cycle data is the motor voltage detected by the voltmeter 17, and the second long cycle (cycle longer than the first long cycle) data is the motor temperature data detected by the thermometer 18. .
  • the message generation unit 33 groups a plurality of types of data for each transmission cycle to be transmitted, and generates a message M in which the data is collected for each group.
  • ECU12 of the inverter apparatus 10 acquires directly the control voltage value from a sensor etc., a motor current value, and a motor voltage value instead of CAN communication. Thereafter, in order to transmit data from the ECU 12 of the inverter device 10 to the main ECU 11, the data is arranged in the data arrangement determined in advance in the data field of the message, and the message is transmitted.
  • the transmission timing control means 34 in FIG. 1 is a means for performing basic transmission timing control, so that each message is transmitted at a predetermined short period or a predetermined long period longer than this short period. It is means for controlling transmission timing. In this example, transmission timing is controlled in a total of three types of cycles, the short cycle and the two types of long cycles.
  • the transmission timing control means 34 sets the long cycle to a unit time that is a reference for transmission timing setting, that is, a cycle consisting of a period obtained by multiplying a synchronization pulse (clock) by a prime number.
  • a unit time that is a reference for transmission timing setting
  • the first long period is 53 ms
  • the second long period is 103 ms.
  • the short period may not be composed of a period obtained by multiplying the synchronization pulse (clock) by a prime number, and is 10 ms here.
  • the transmission cycle of the long cycle message is set to a cycle composed of a period obtained by multiplying the synchronization pulse by a prime number, thereby reducing the possibility of collision of transmission timings of the short cycle message and the long cycle message. To do.
  • the transmission cycle is merely a period obtained by multiplying the unit time by a prime number, the possibility of message collision can be reduced while the transmission timing control unit 34 has a simple configuration.
  • the processing means 35 is a means for performing a predetermined process when a collision between the transmission timing of the short cycle message and the transmission timing of the long cycle message is predicted. Collisions are the occurrence of overlapping times in message transmission. The collision can be predicted based on a calculation based on the known period and the time required for transmitting the message.
  • Examples of processing performed by the processing means 35 may be any of transmission timing delay (FIG. 3), transmission timing preceding (FIG. 4), and transmission suspension (FIG. 5). If a collision between long-cycle messages is predicted, the processing unit 35 performs a priority transmission process (FIG. 6).
  • the transmission timing delay will be described with reference to FIGS.
  • the short cycle message transmitted at 10 ms intervals and the cross-correlation pattern transmitted at 53 ms intervals or 103 ms intervals are shown in FIG. 2 by setting the long cycle to a period obtained by multiplying a unit time by a prime number as described above.
  • the possibility of a collision is reduced, but a collision occurs once in several times.
  • the message ML1i of the first long cycle (hereinafter sometimes referred to as “medium cycle”) transmitted at 53 ms intervals collides with the short-cycle message MSi as indicated by the broken line. If it is predicted, the transmission timing of the long-period message ML1i is delayed by the set time, as indicated by the black portion in FIG. The set time is longer than the time required for transmitting the short-cycle message MSi. Therefore, messages do not collide with each other. And it is set as short as possible in the range which does not collide like this.
  • the transmission timing of the long-period message ML1i is advanced by the set time.
  • the set time is longer than the time required for transmitting the long-period message ML1i. Therefore, messages do not collide with each other. And it is set as short as possible in the range which does not collide like this.
  • the long-cycle message is set by the set time as shown by the black portion in FIG.
  • the transmission timing of ML2j is advanced. Also in this case, the set time is longer than the time required for transmitting the long-period message ML2j. Therefore, messages do not collide with each other. And it is set as short as possible in the range which does not collide like this.
  • the message transmission tag may be shifted or transmitted. Perform the process to cancel.
  • the first long-cycle message ML1i has a higher priority.
  • the first long-period message ML1i is preferentially transmitted without changing the transmission period, and the transmission of the second long-period message ML2i is delayed by a set time.
  • the second long-period message ML2i having a lower priority may be preceded or canceled.
  • FIG. 8 shows the flow of processing when the processing means 35 performs transmission delay.
  • This figure shows the collision process between the short-cycle message MS (FIG. 3) and one of the two types of long-cycle messages ML1 and ML2, and the first long-cycle (medium Period) and the second long-period message ML2, the same processing is performed only by changing the numerical value.
  • the symbol “ * ” in the figure indicates that there is a value in the case of a medium period and a value in the case of a long period. This also applies to FIGS. 9 to 11 below.
  • the number of times that the reference unit time has elapsed is always counted, and in the determination step S1, the counter value CNT * is compared with the counter threshold value CNT * THR .
  • the counter threshold value CNT * THR is a collision prediction timing.
  • a predetermined addition time ⁇ t is added to the transmission interval initial setting time TIM * (S5), and the counter value CNT * is reset to zero. (S6), transmission is performed in the transmission cycle (after TIM * ) (S4). In this case, transmission of the long-cycle messages ML1 and ML2 to be processed in the figure is delayed by the addition time ⁇ t.
  • FIG. 9 shows the flow of processing when the processing means 35 performs transmission advance.
  • the transmission interval initial setting time TIM * is decremented by a predetermined addition time ⁇ t in step S5A.
  • Other processes are the same as those in the case of the transmission delay in FIG.
  • FIG. 10 shows the flow of processing when the processing means 35 performs transmission cancellation.
  • the counter value CNT * and counter threshold CNT * THR at decision step R1 does not exceed the counter threshold CNT * THR, the counter value CNT * by adding only 1 (R2), transmission (R3) And return to the decision step R1.
  • the counter threshold value CNT * THR is exceeded in the determination step R1, the counter value is reset to zero (R4), the transmission of the long-cycle messages ML1 and ML2 to be processed is stopped, and the determination step R1 is repeated.
  • FIG. 11 shows the flow of processing when the processing means 35 performs priority transmission.
  • the counter value PCNT * of the reference unit time is compared with the counter threshold value PCNT * THR .
  • the counter value PCNT * in this case is a value of a counter different from the counter value CNT * in FIGS.
  • the transmission interval initial setting time TIM1 (53 ms in the example of FIG. 6) and TIM2 (103 ms in the example of FIG. 6) of the medium cycle and the long cycle are respectively Add “0" (keep the same value) (Q2, Q3). Also, the counter value PCNT is incremented by 1 (Q4). Thereafter, periodic transmission (Q5, Q6) of the messages M1, M2 of each long cycle is performed. Thereafter, the processing from step Q1 is repeated.
  • the transmission interval initial setting time TIM1 for the higher priority in this example, the middle period (the same value is maintained).
  • the transmission interval initial setting time TIM2 for the lower priority (second long cycle) is added by a predetermined addition time ⁇ t (Q8).
  • the counter value PCNT is reset to zero (S6), and the transmission processing of each message M1, M2 is performed in the transmission cycle (TIM1, TIM2) after the addition processing.
  • the adjustment of the collision timing and the adjustment by the collision prediction between the types of transmission data transmitted from any one ECU has been described.
  • the ECU 12 of the inverter device 10 The communication controller 22 and the communication controller 21 of the main ECU 11 may perform adjustment of collision timing and adjustment by collision prediction in the same manner as described above.
  • both the transmission timing control means 34 in the communication controller 22 of the ECU 12 of the inverter device 10 and the transmission timing control means (not shown) in the communication controller 21 of the main ECU 11 have a mutual short cycle.
  • the message transmission cycle may be shifted, and the long-cycle message transmission cycle may be set so as to be shifted from each other and to have a period formed by multiplying a unit time by a prime number as described above.
  • the processing means 35 performs transmission delay, transmission precedence, transmission suspension, or priority transmission based on the collision prediction. You may make it do. In that case, the processing means 35 of each of the communication controllers 21 and 22 makes the collision between the short-cycle message transmitted from the ECUs 11 and 12 to which the communication controller 21 and 22 belong and the long-cycle message transmitted from the other ECUs 11 and 12. Prediction is performed, and each of the above processes is performed. However, for priority transmission, the processing means 35 of each communication controller 21, 22 is between a long cycle message transmitted from the ECU 11, 12 to which the communication controller 21, its own belongs, and a long cycle message transmitted from another ECU 11, 12. Priority transmission processing based on the collision prediction is performed.
  • the transmission unit 31 performs the transmission enabling process in the case of a message collision due to a transmission delay due to the priority according to the CAN standard.
  • the present invention has been described with respect to the case where the present invention is applied to an electric vehicle equipped with an in-wheel motor drive device.
  • the present invention relates to a single-motor electric vehicle, a hybrid vehicle that uses both an electric motor and an engine, and an engine.
  • the present invention can also be applied to a driving automobile or the like.
  • the vehicle travel control When the vehicle has the electric motor 5 as a travel drive source, if there is a transmission timing shift or a missing message in the detection data of the rotational speed of the electric motor 5, the vehicle travel control will be affected.
  • the effect of avoiding the collision of messages by using the vehicle communication control device of each embodiment is more excellent.
  • the left and right wheels are driven independently by the electric motor 5, so that a delay in control of the electric motor 5 affects the running stability. Therefore, the effect of avoiding the collision of messages by using the vehicle communication control device of each embodiment is more excellent.

Abstract

This invention provides a communication control device (A) for use in a vehicle. Said communication control device (A) for use in a vehicle has a simple architecture and makes it such that vehicle-control data that needs to be transmitted at fixed intervals can be transmitted with a fixed period and other data can be transmitted with minimal delay and as few transmission-timing collisions as possible. This communication control device (A) for use in a vehicle is provided with the following: a message generation means (33) that divides a plurality of types of data into groups, with one group for each transmission period in which said data is to be transmitted, and generates a data-containing message for each group; and a transmission-timing control means (34) that controls transmission timing so as to transmit each message in either a short period or a long period. The length of each long period is equal to a prime number times a unit length of time. If a collision is predicted between short-period message transmission timing and long-period message transmission timing, the transmission timing is delayed.

Description

車両用通信制御装置Vehicle communication control device 関連出願Related applications
 本出願は、2013年11月18日出願の特願2013-237557の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2013-237557 filed on Nov. 18, 2013, the entire contents of which are hereby incorporated by reference as part of the present application.
 この発明は、電気自動車、ハイブリッドカー、エンジン車等の車両における車載LAN網を制御する車両用通信制御装置に関し、特に、個々のECUから送信する複数種類のメッセージの送信制御に関する。 The present invention relates to a vehicle communication control apparatus for controlling an in-vehicle LAN network in vehicles such as electric cars, hybrid cars, and engine cars, and more particularly to transmission control of a plurality of types of messages transmitted from individual ECUs.
 自動車等の車両では、一般的に複数のECU(電子制御ユニット)が備えられる。例えば、電気自動車の場合、車両全体の協調制御を行うメインECUや、インバータ装置の制御部として設けられるECUがあり、その他、ブレーキECU、変速ECU等がある。これら複数のECU間では、各種データの通信がバス型の車載LAN網により行われ、各データは、通信プロトコルに従ったメッセージとして送信される。 A vehicle such as an automobile is generally provided with a plurality of ECUs (electronic control units). For example, in the case of an electric vehicle, there are a main ECU that performs coordinated control of the entire vehicle, an ECU that is provided as a control unit of an inverter device, and a brake ECU, a transmission ECU, and the like. Between these ECUs, various types of data are communicated by a bus-type in-vehicle LAN network, and each data is transmitted as a message according to a communication protocol.
 車載LAN網では、送信するメッセージの衝突、すなわちメッセージ同士の送信時間の重なりが生じることがある。車載LAN網の規格としては、CAN規格やFlexRay(登録商標)規格がある。これらの規格では、複数のECUの相互間で送信の衝突が生じた場合の処理が定められている。CAN規格では、メッセージに含まれるIDの優先度に応じて調停を行うことようにしている。FlexRay規格では、各ECU間で同期するクロックを用いて、通信サイクル内の通信を時分割制御することが規定されている。また、時分割の時間管理を厳密に行う提案もなされている(例えば、特許文献1)。 In the in-vehicle LAN network, there may occur a collision of messages to be transmitted, that is, an overlap of transmission times between messages. As a standard of the in-vehicle LAN network, there are a CAN standard and a FlexRay (registered trademark) standard. In these standards, processing when a transmission collision occurs between a plurality of ECUs is defined. In the CAN standard, arbitration is performed according to the priority of the ID included in the message. In the FlexRay standard, it is specified that communication within a communication cycle is time-division controlled using a clock synchronized between ECUs. There has also been a proposal for strictly managing time division in time division (for example, Patent Document 1).
 また、特許文献2では、送信タイミングを設定、調整することが提案されている。特許文献3では、送信タイミングを極力分けている。 In Patent Document 2, it is proposed to set and adjust the transmission timing. In Patent Document 3, the transmission timing is divided as much as possible.
特表2004-536538号公報Special table 2004-536538 gazette 特開2007-184833号公報JP 2007-184833 A WO2011/062128号公報WO2011 / 062128
 メッセージが衝突する場合の処理として、上記の優先度で処理する方法では、優先度の低いECUは送信の機会が得られ難いという問題がある。時分割を厳密に行う方法は、接続されるECUの登録の必要など、管理が煩雑になる。 As a process when messages collide, in the method of processing with the above priority, there is a problem that it is difficult for an ECU with a low priority to obtain a transmission opportunity. The method of strictly performing time division requires complicated management such as the necessity of registering the connected ECU.
 特許文献2の送信タイミングを設定・調整する方法では、その設定・調整を行うユニットを設けるため、装置が複雑になる。特許文献3では、送信タイミングを送信周期に応じて極力分けているが、十分に衝突回避を行うことができない。簡易な数値例で説明すると、10msの周期で送信するメッセージのグループと100msの周期で送信するメッセージのグループとに分けていた場合、10msの周期で送信するメッセージが、必ず10回に1回100msの周期で送信するメッセージと衝突することになる。 In the method for setting / adjusting the transmission timing in Patent Document 2, a unit for performing the setting / adjustment is provided, so that the apparatus becomes complicated. In Patent Document 3, although the transmission timing is divided as much as possible according to the transmission period, collision avoidance cannot be sufficiently performed. In the case of a simple numerical example, when a message group transmitted at a cycle of 10 ms is divided into a message group transmitted at a cycle of 100 ms, a message transmitted at a cycle of 10 ms is always 100 ms once every 10 ms. Will collide with a message to be sent at a period of.
 車両を制御するデータには、例えば、モータの回転数、モータ温度、電圧など、種々のものがある。このうちモータ回転数の検出値は、メッセージの衝突により送信が行えなかった場合、車両の走行への影響が大きい。特に、左右の車輪を独立にモータで駆動するインホイールモータ駆動装置を搭載した車両や、スリップ制御のために左右のモータを独立して制御する形式では、モータ制御の遅れが生じると走行の安定性に影響する。 There are various types of data for controlling the vehicle, such as the number of revolutions of the motor, the motor temperature, and the voltage. Among these, the detected value of the motor rotation speed has a great influence on the running of the vehicle when transmission cannot be performed due to a collision of messages. In particular, in vehicles equipped with an in-wheel motor drive device that independently drives the left and right wheels with a motor, and in a type in which the left and right motors are independently controlled for slip control, the stability of travel is reduced when a motor control delay occurs. Affects sex.
 この発明の目的は、車両を制御するデータのうち、一定間隔で送信する必要のあるデータは一定周期で送信でき、かつ一定間隔で送信しなくても可能なデータについては、出来るだけ送信タイミングが衝突せず、かつ遅延等が可能な限り小さくできるように送信できる簡易な構成の車両用通信制御装置を提供することである。 It is an object of the present invention to transmit data that needs to be transmitted at regular intervals among data for controlling a vehicle, and for data that can be transmitted without regular intervals, transmission timing is as much as possible. It is an object of the present invention to provide a vehicular communication control device having a simple configuration capable of transmitting so as not to collide and to make delay or the like as small as possible.
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, description will be made with reference to the reference numerals of the embodiments.
 この発明の一構成に係る車両用通信制御装置は、車両に搭載された複数のECU11~14と、これらECU11~14を相互に送受信可能に接続する車載LAN網20とを備え、このLAN網へのメッセージの送信タイミングを制御する車両用通信制御装置であって、
 前記複数のECU11~14のうちの少なくとも一つのECUが、
  データ発生源が互いに異なる複数種類のデータを、送信しようとする送信周期毎に組分けし、各組毎に、データを含めたメッセージを生成するメッセージ生成手段33と、
  これら各メッセージを、所定の短周期またはこの短周期よりも長い所定の長周期で送信するように、送信タイミングを制御する送信タイミング制御手段34であって、前記長周期が、送信タイミングを設定する基準となる単位時間に素数を乗じた期間からなる、送信タイミング制御手段とを備える。
A vehicle communication control apparatus according to one configuration of the present invention includes a plurality of ECUs 11 to 14 mounted on a vehicle and an in-vehicle LAN network 20 that connects these ECUs 11 to 14 so as to be able to transmit and receive each other. A vehicle communication control device for controlling the transmission timing of the message of
At least one of the plurality of ECUs 11 to 14 is
A plurality of types of data having different data generation sources are grouped for each transmission cycle to be transmitted, and a message generating means 33 for generating a message including the data for each group;
Transmission timing control means 34 for controlling transmission timing so as to transmit each of these messages in a predetermined short cycle or a predetermined long cycle longer than this short cycle, wherein the long cycle sets the transmission timing Transmission timing control means comprising a period obtained by multiplying a reference unit time by a prime number.
 なお、前記基準となる単位時間は、例えば、各ECUを同期して機能させるために使用されるクロックの周期等である。 The reference unit time is, for example, a clock cycle used for causing each ECU to function in synchronization.
 この構成によると、メッセージの種類によってメッセージを短周期のグループと長周期のグループとに分けるため、送信タイミングの衝突が少なくなる。さらに、前記長周期は送信基準の単位時間に素数を乗じた期間からなる周期としたため、短周期のメッセージと長周期のメッセージとの衝突の可能性がより一層低減する。車両を制御するデータのうち、一定間隔で送信する必要のあるデータは、短周期のメッセージとして送信することで、一定周期で送信できる。一方、一定間隔で送信しなくても可能なデータについては、長周期のメッセージとして送信すれば、出来るだけ送信タイミングが衝突しないように送信できる。このため、衝突時に長周期のメッセージの送信につき遅延等の処理を施しても、遅延等が可能な限り小さくできるように送信できる。また、長周期のメッセージの送信周期を単位時間に素数を乗じた期間からなる周期で送信するため、構成が簡素で管理も簡単である。 According to this configuration, since the message is divided into a short cycle group and a long cycle group according to the type of message, collision of transmission timing is reduced. Furthermore, since the long cycle is a cycle composed of a period obtained by multiplying a transmission reference unit time by a prime number, the possibility of collision between a short cycle message and a long cycle message is further reduced. Of the data for controlling the vehicle, data that needs to be transmitted at regular intervals can be transmitted at regular intervals by being transmitted as short-cycle messages. On the other hand, data that can be transmitted without being transmitted at regular intervals can be transmitted so that transmission timings do not collide as much as possible if they are transmitted as long-cycle messages. For this reason, even if processing such as a delay is performed for transmission of a long-cycle message at the time of collision, transmission can be performed so that the delay can be minimized. In addition, since the transmission cycle of a long cycle message is transmitted in a cycle comprising a period obtained by multiplying a unit time by a prime number, the configuration is simple and the management is easy.
 なお、送信タイミングの衝突も、メッセージの衝突も、メッセージ同士の送信時間が重なって生じる。 Note that both transmission timing collisions and message collisions occur due to overlapping transmission times of messages.
 前記少なくとも一つのECUが、さらに、前記短周期のメッセージの送信タイミングと前記長周期のメッセージの送信タイミングとの衝突が予測される場合に、所定の処理を行う送信衝突予測時処理手段(以下、単に「処理手段」と称する)35を備えることが好ましい。 The at least one ECU further performs transmission collision prediction time processing means (hereinafter, referred to as “prediction process”) when a collision between the transmission timing of the short cycle message and the transmission timing of the long cycle message is predicted. It is preferable to include 35 (simply referred to as “processing means”).
 前記処理手段35は、衝突が生じることが予測されるタイミングについてのみ、互いの衝突が予測されるメッセージのうちの、長周期のメッセージの送信タイミングを遅延させても良い。遅延の代わりに、送信タイミングを先行させても良い。 The processing means 35 may delay the transmission timing of the long-cycle message among the messages predicted to collide with each other only for the timing when the collision is predicted to occur. Instead of the delay, the transmission timing may be preceded.
 短周期および長周期の双方とも、送信周期は既知であるため、送信タイミングが衝突するときを計算で求めることができる。このように衝突するタイミングを予め予測して、その場合に送信タイミングを遅延または先行させることで、送信タイミングの衝突の可能性を小さくできる。送信タイミングを遅延または先行せるのは、衝突が予測されたときのみであるため、送信の遅延や先行を最小限にできる。 Since the transmission cycle is known for both the short cycle and the long cycle, the time when the transmission timing collides can be calculated. Thus, by predicting the timing of collision in advance and delaying or preceding the transmission timing in that case, the possibility of collision of the transmission timing can be reduced. Since the transmission timing is delayed or preceded only when a collision is predicted, the transmission delay or advance can be minimized.
 前記処理手段35を設けた場合に、この処理手段35は、前記衝突を生じることが予測されるタイミングについてのみ、互いの衝突が予測されるメッセージのうちの、長周期のメッセージの送信を中止しても良い。 In the case where the processing unit 35 is provided, the processing unit 35 stops the transmission of a long-period message among the messages predicted to collide with each other only at the timing at which the collision is predicted to occur. May be.
 衝突を予め予測し、衝突が予測される2つのメッセージのうちの一方のメッセージの送信を中止することで、送信タイミングの衝突を回避することができる。衝突が予測される2つのメッセージのうちの一方のメッセージの送信自体を無くすため、送信の遅延や先行を行わせる場合と異なり、車載LAN網の全体に影響を与えることが回避できる。ECU間で送信するデータには、例えば異常判定等のための温度のデータなど、送信が何度かに一度くらいは中止しても車両の制御に影響がない種類のデータもあり、このようなデータについては衝突が予測される場合に送信を中止することが、車載LAN網の全体について望ましい。 The collision of transmission timing can be avoided by predicting the collision in advance and stopping the transmission of one of the two messages for which the collision is predicted. Since the transmission of one of the two messages predicted to collide is eliminated, it is possible to avoid affecting the entire in-vehicle LAN network, unlike the case where transmission delay or advance is performed. Data transmitted between ECUs includes data of a kind that does not affect the control of the vehicle even if transmission is stopped once or several times, such as temperature data for abnormality determination, etc. It is desirable for the entire in-vehicle LAN network to stop transmission of data when a collision is predicted.
 前記処理手段35は、前記長周期のメッセージが複数存在し、長周期のメッセージ同士の送信タイミングの衝突が予測される場合には、メッセージごとに設定された優先度に応じて、メッセージの送信タイミングをずらすかまたは送信を中止する処理を行うようにしても良い。 When there are a plurality of the long-cycle messages and a collision between transmission timings of the long-cycle messages is predicted, the processing unit 35 determines the message transmission timing according to the priority set for each message. It is also possible to perform processing for shifting or canceling transmission.
 先に述べた、処理手段35が行う遅延、先行および中止の処理は、短周期のメッセージと長周期のメッセージとの衝突が生じる場合の処理であるが、長周期のメッセージ同士の送信タイミングの衝突が予測される場合は、メッセージごとに優先度を設定しておき、その設定した優先度に従って処理を行うことが好ましい。データの優先度に従って、どのデータをどの優先度のメッセージに含ませるかを定めることで、各種データを必要性に応じて、遅れ、先行、中止を生じることなく送信することができる。 The processing of delay, preceding and cancellation performed by the processing means 35 described above is processing when a short-cycle message and a long-cycle message collide, but transmission timing conflicts between long-cycle messages. Is predicted, it is preferable to set a priority for each message and perform processing according to the set priority. By determining which data is included in which priority message according to the priority of data, various types of data can be transmitted without delay, precedence, or cancellation according to necessity.
 前記処理手段35は、互いに異なるECUの間で、前記短周期のメッセージの送信タイミングと前記長周期のメッセージの送信タイミングとの衝突が予測される場合に、メッセージの送信タイミングをずらすかまたは送信を中止する処理を行う機能を有しても良い。 The processing unit 35 shifts or transmits the message transmission timing when a collision between the transmission cycle of the short cycle message and the transmission timing of the long cycle message is predicted between different ECUs. You may have the function to perform the process to cancel.
 この場合、複数のECUの相互間で、出来るだけ送信タイミングが衝突せず、かつ遅延が可能な限り小さくできるように送信することができる。 In this case, transmission can be performed so that the transmission timings do not collide as much as possible and the delay can be made as small as possible between the plurality of ECUs.
 前記車載LAN網が、CAN規格に準拠する通信網であっても良い。CAN規格では、メッセージの衝突が生じた場合の処理機能がある。そのため、前記送信タイミング制御手段34や処理手段35で送信タイミングの衝突を回避するようにしたとしても衝突が生じる場合があっても、CAN規格が持つ標準の衝突時の処理機能を用いて対処が行える。 The in-vehicle LAN network may be a communication network compliant with the CAN standard. The CAN standard has a processing function when a message collision occurs. Therefore, even if the transmission timing control unit 34 or the processing unit 35 avoids a collision of transmission timing, even if a collision occurs, it can be dealt with using the standard collision processing function of the CAN standard. Yes.
 前記車載LAN網が、FlexRay規格に準拠する通信網であっても良い。FlexRay規格においても、メッセージの衝突が生じた場合の処理機能がある。そのため、CAN規格と同様に、規格が持つ標準の衝突時の処理機能を用いて対処が行える。 The in-vehicle LAN network may be a communication network conforming to the FlexRay standard. The FlexRay standard also has a processing function when a message collision occurs. Therefore, like the CAN standard, it is possible to cope with the standard collision processing function of the standard.
 前記車両が、走行駆動源として電気モータ5を有し、前記短周期のメッセージが、前記電気モータ5の回転数の検出データを含んでも良い。 The vehicle may have an electric motor 5 as a travel drive source, and the short-cycle message may include detection data of the rotation speed of the electric motor 5.
 電気モータ5の回転数の検出データは、送信タイミングのずれやメッセージの抜けがあると、車両の走行の制御に影響する。これに対して、前記車両用通信制御装置のメッセージ送信の衝突回避の効果がより優れて発揮される。 The detection data of the number of revolutions of the electric motor 5 will affect the control of the vehicle running if there is a transmission timing shift or missing message. On the other hand, the effect of collision avoidance of message transmission of the vehicle communication control device is more excellent.
 前記電気モータ5がインホイールモータ駆動装置4を構成し、前記メッセージ生成手段33および送信タイミング制御手段34は、前記電気モータに交流電力を印加するインバータ9を有するインバータ装置10に備えられたECU12に設けられて、このインバータ装置10のECU12に駆動命令を与えるメインECU11に送信するメッセージを対象としても良い。 The electric motor 5 constitutes an in-wheel motor drive device 4, and the message generation means 33 and the transmission timing control means 34 are provided in an ECU 12 provided in an inverter device 10 having an inverter 9 that applies AC power to the electric motor. It is also possible to target a message that is provided and sent to the main ECU 11 that gives a drive command to the ECU 12 of the inverter device 10.
 インホイールモータ駆動装置4を搭載した車両では、左右の車輪を独立に各電気モータ5で駆動するため、電気モータ5の制御の遅れが生じると走行の安定性に影響する。これに対して、前記車両用通信制御装置のメッセージの衝突回避の効果がより優れて発揮される。 In a vehicle equipped with the in-wheel motor drive device 4, the left and right wheels are independently driven by the electric motors 5, so that a delay in control of the electric motors 5 affects the running stability. On the other hand, the effect of avoiding the collision of messages by the vehicle communication control device is more excellent.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る車両用通信制御装置の概念構成を示すブロック図である。 図1の車両用通信制御装置の各メッセージの送信タイミングの概要を示す説明図である。 図1の車両用通信制御装置による送信タイミング遅延の処理例を示す説明図である。 図1の車両用通信制御装置による送信タイミング先行の処理例を示す説明図である。 図1の車両用通信制御装置による送信中止の処理例を示す説明図である。 図1の車両用通信制御装置による優先送信の処理例を示す説明図である。 図1の車両用通信制御装置によるメッセージのデータ概要を示す説明図である。 図1の車両用通信制御装置による送信タイミング遅延の処理例を示す流れ図である。 図1の車両用通信制御装置による送信タイミング先行の処理例を示す流れ図である。 図1の車両用通信制御装置による送信中止の処理例を示す説明図である。 図1の車両用通信制御装置による優先送信の処理例を示す説明図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is a block diagram which shows the conceptual structure of the communication control apparatus for vehicles which concerns on one Embodiment of this invention. It is explanatory drawing which shows the outline | summary of the transmission timing of each message of the communication control apparatus for vehicles of FIG. It is explanatory drawing which shows the process example of the transmission timing delay by the vehicle communication control apparatus of FIG. It is explanatory drawing which shows the example of a transmission timing advance process by the vehicle communication control apparatus of FIG. It is explanatory drawing which shows the example of a process of transmission cancellation by the vehicle communication control apparatus of FIG. It is explanatory drawing which shows the process example of the priority transmission by the vehicle communication control apparatus of FIG. It is explanatory drawing which shows the data outline | summary of the message by the communication control apparatus for vehicles of FIG. It is a flowchart which shows the process example of the transmission timing delay by the vehicle communication control apparatus of FIG. It is a flowchart which shows the example of a transmission timing advance process by the vehicle communication control apparatus of FIG. It is explanatory drawing which shows the example of a process of transmission cancellation by the vehicle communication control apparatus of FIG. It is explanatory drawing which shows the process example of the priority transmission by the vehicle communication control apparatus of FIG.
 この発明の第1の実施形態を図面と共に説明する。図1は、この車両用通信制御装置を備えた車両である電気自動車の概念構成を示す。この車両は、車体1に前輪である左右の車輪2,2と、後輪である左右の車輪3,3が備える。前輪である左右の車輪2,2は転舵輪でかつ従動輪である。後輪である左右の車輪3,3は、それぞれインホイールモータ駆動装置4,4により走行駆動される。各インホイールモータ駆動装置4は、電気モータ5と、車輪用軸受6と、前記電気モータ5の回転を減速して前記車輪用軸受6の回転輪に伝達する減速機7とでなる。各電気モータ5は、同期モータ等の交流モータからなり、バッテリ8の直流電流を各インバータ9により交流に変換した交流電流により駆動される。各インバータ9は回生機能を有している。 A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a conceptual configuration of an electric vehicle which is a vehicle provided with the vehicle communication control device. In this vehicle, a vehicle body 1 includes left and right wheels 2 and 2 that are front wheels, and left and right wheels 3 and 3 that are rear wheels. The left and right wheels 2 and 2 which are front wheels are steered wheels and driven wheels. The left and right wheels 3, 3 which are rear wheels are driven to travel by in-wheel motor driving devices 4, 4, respectively. Each in-wheel motor drive device 4 includes an electric motor 5, a wheel bearing 6, and a speed reducer 7 that decelerates the rotation of the electric motor 5 and transmits it to the rotating wheels of the wheel bearing 6. Each electric motor 5 is composed of an AC motor such as a synchronous motor, and is driven by an AC current obtained by converting the DC current of the battery 8 into AC by each inverter 9. Each inverter 9 has a regeneration function.
 制御系および通信系を説明する。制御系として複数のECU(電気制御ユニット)11~14が車体1に設けられている。これらのうちのメインのECU11は、車両全体の協調制御,統括制御を行う手段である。メインのECU11は、アクセルペダルやブレーキペダル(いずれも図示せず)の踏み込み量に応じてインバータ装置10のECU12へ駆動指令や回生制動指令を生成して送る手段(図示せず)を有している。また、メインのECU11は、姿勢制御、安全制御等を行う手段(図示せず)を有している。 Explain the control system and communication system. A plurality of ECUs (electric control units) 11 to 14 are provided in the vehicle body 1 as a control system. Of these, the main ECU 11 is means for performing cooperative control and overall control of the entire vehicle. The main ECU 11 has means (not shown) for generating and sending a drive command and a regenerative braking command to the ECU 12 of the inverter device 10 according to the depression amount of an accelerator pedal and a brake pedal (both not shown). Yes. Further, the main ECU 11 has means (not shown) for performing posture control, safety control, and the like.
 インバータ装置10は、前記インバータ9と、このインバータ9の制御によってモータ制御を行うECU12とで構成される。このECU12は、メインのECU11から与えられた各電気モータ5の駆動および回生等の指令に従い、電気モータ5に設けられた回転角センサ15の検出信号を用いて、各電気モータ5の位相制御により効率化を図る機能を有している。図示の例では、2台のインバータ9と1台のECU12とで1台のインバータ装置10を構成しているが、各インバータ9に個別にECU12を設けて2台のインバータ装置を設けても良い。 The inverter device 10 includes the inverter 9 and an ECU 12 that controls the motor by controlling the inverter 9. This ECU 12 performs phase control of each electric motor 5 by using a detection signal of a rotation angle sensor 15 provided in the electric motor 5 in accordance with commands for driving and regenerating each electric motor 5 given from the main ECU 11. It has a function to improve efficiency. In the illustrated example, two inverters 9 and one ECU 12 constitute one inverter device 10. However, each inverter 9 may be provided with an ECU 12 and two inverter devices may be provided. .
 ブレーキ用のECU13は、ブレーキペダルの操作量に応じ、各車輪2,3に設けられた機械式,油圧式等の摩擦ブレーキ(図示せず)の制御を行う手段である。その他のECU14は、代表して一つ示している。その他のECU14としては、ステアリング制御ECUや、その他の特定の制御を行うECUであってもよい。 The brake ECU 13 is a means for controlling a friction brake (not shown) such as a mechanical type or a hydraulic type provided on each of the wheels 2 and 3 according to the operation amount of the brake pedal. One other ECU 14 is shown as a representative. The other ECU 14 may be a steering control ECU or an ECU that performs other specific control.
 通信系を説明する。車両に搭載された前記複数のECU11~14は、相互に送受信可能にシリアル通信する車載LAN網20で接続されている。この車載LAN網20は、バス20aに各ECU11~14が平等に接続されたバス型である。この例ではCAN(コントロール・エリア・ネットワーク)規格に準拠したLAN網である。バス20aは、例えばH(ハイ)線とL(ロー)線とでなる。前記車載LAN網20は、この他に、FlexRay(登録商標)規格に準拠したLAN網であっても、またはさらに他の形式であっても良い。 Explain the communication system. The plurality of ECUs 11 to 14 mounted on the vehicle are connected by an in-vehicle LAN network 20 that serially communicates so as to be able to transmit and receive each other. This in-vehicle LAN network 20 is a bus type in which the ECUs 11 to 14 are connected equally to a bus 20a. In this example, it is a LAN network compliant with the CAN (Control Area Network) standard. The bus 20a is composed of, for example, an H (high) line and an L (low) line. In addition to this, the in-vehicle LAN network 20 may be a LAN network conforming to the FlexRay (registered trademark) standard, or may be of another type.
 各ECU11~14は、それぞれ通信コントローラ21~24を有する。これら通信コントローラ21~24を介してバス20aに接続されている。通信コントローラ21~24は、設定された通信プロトコルに従って通信の制御を行う手段であり、これら通信コントローラ21~24と、バス20a等の車載LAN網20とで、この実施形態の車両用通信制御装置Aが構成される。 The ECUs 11 to 14 have communication controllers 21 to 24, respectively. The communication controllers 21 to 24 are connected to the bus 20a. The communication controllers 21 to 24 are means for controlling communication in accordance with a set communication protocol. The communication controllers 21 to 24 and the in-vehicle LAN network 20 such as the bus 20a are used in this embodiment. A is configured.
 通信コントローラ21~24は、それぞれ送信部31と受信部32とを有する。送信部31は、バス20aへ宛先付きのメッセージを送り出す。受信部32は、自己宛のメッセージを受信する。通信コントローラ21~24は、基準となる単位時間毎に発生するクロックである同期パルスにより同期して送受のタイミング制御が行われる。 The communication controllers 21 to 24 each have a transmission unit 31 and a reception unit 32. The transmission unit 31 sends a message with a destination to the bus 20a. The receiving unit 32 receives a message addressed to itself. The communication controllers 21 to 24 perform transmission / reception timing control in synchronization with a synchronization pulse which is a clock generated every unit time serving as a reference.
 インバータ装置10のECU12における通信コントローラ22は、図1に拡大してブロック図で概念構成を示すように、メッセージ生成手段33、送信タイミング制御手段34、および送信衝突予測時処理手段(以下、単に「処理手段」と称する)35を有している。この実施形態では、メインのECU11の通信コントローラ21も上記ブロック図で示す通信コントローラ22と同様の構成を有している。これに対し、他の各ECU13,14は、上記ブロック図で示す通信コントローラ22と同様の構成であっても、他の構成であっても良い。 The communication controller 22 in the ECU 12 of the inverter device 10 has a message generation means 33, a transmission timing control means 34, and a transmission collision prediction time processing means (hereinafter simply referred to as “ 35 ”(referred to as“ processing means ”). In this embodiment, the communication controller 21 of the main ECU 11 has the same configuration as the communication controller 22 shown in the block diagram. On the other hand, the other ECUs 13 and 14 may have the same configuration as the communication controller 22 shown in the block diagram or other configurations.
 上記ブロック図のメッセージ生成手段33は、データ発生源が互いに異なる複数種類のデータを、送信しようとする送信周期毎に組分けし、各組毎に、データを纏めた(データを含めた)メッセージを生成する。前記データ発生源は、例えば電気モータ5に対して設けられた回転角センサ15、電流計16、温度計17、電圧計18である。各組のメッセージは、データを複数種類有していても、また1種類だけであっても良い。 The message generating means 33 in the block diagram is a message in which a plurality of types of data having different data generation sources are grouped for each transmission cycle to be transmitted, and the data is collected (including data) for each group. Is generated. The data generation source is, for example, a rotation angle sensor 15, an ammeter 16, a thermometer 17, and a voltmeter 18 provided for the electric motor 5. Each set of messages may have a plurality of types of data or only one type.
 図7にメッセージの一例を示す。このメッセージMは、CAN規格によるフォーマットであり、スタートオブフレームMa、優先度を示すアートビレーションフィールドMb、この後に続くデータフィールドMdの長さを示すコントロールフィールドMc、データフィールドMd、CRCフィールドMe、AKCフィールドMf、およびエンドオブフレームMgからなる。各フィールドのビット数は図内に示されている。一つのメッセージMに複数種類のデータを含める場合は、各データをデータフィールドMdにそれぞれ予め定められたデータ長(ビット数)で、配列に当てはめる。データフィールドMd内は、この例では予めデータの配置が決められており、例えば、1bit目~8bit目はモータ温度用、9bit目~16bit目はモータ電圧用、17bit目~24bit目は制御電圧用と決められている。これにより、複数種類のデータが一つのメッセージMに纏められて送信される。 Fig. 7 shows an example of the message. This message M has a format according to the CAN standard, and includes a start-of-frame Ma, an articulation field Mb indicating priority, a control field Mc indicating the length of the subsequent data field Md, a data field Md, a CRC field Me, It consists of an AKC field Mf and an end-of-frame Mg. The number of bits for each field is shown in the figure. When a plurality of types of data are included in one message M, each data is applied to the array with a predetermined data length (number of bits) in the data field Md. In this example, the data arrangement in the data field Md is determined in advance. For example, the 1st to 8th bits are for the motor temperature, the 9th to 16th bits are for the motor voltage, and the 17th to 24th bits are for the control voltage. It is decided. Thereby, a plurality of types of data are collected and transmitted in one message M.
 前記送信周期は2種類以上からなる。すなわち、短周期(所与のしきい値またはそれよりも短い周期)と長周期(前記所与のしきい値よりも長い周期)との2種類からなるか、またはこれらに加えてその他の周期も有する。ここでは、短周期と、2種類の長周期(前記しきい値よりも長い周期であって、前記しきい値とは別の所与のしきい値またはそれよりも短い周期と、この別の所与のしきい値よりも長い周期)との合計3種類の例につき説明する。短周期のデータ(短周期で送信されるべきデータ)は、車両の走行を制御するデータのうち、一定間隔で送信する必要があるデータであり、例えば回転角センサ15で検出されたモータ回転数や、電流計16で検出された電流値から得られるトルク検出値である。長周期のデータ(長周期で送信されてもよいデータ)は、短い間隔または一定間隔で送信しなくても車両の走行制御上で支障をきたさないデータであり、この例では、第1の長周期のデータは、電圧計17で検出されたモータ電圧であり、第2の長周期(第1の長周期よりも長い周期)のデータは、温度計18で検出されたモータ温度のデータである。メッセージ生成手段33は、このように複数種類のデータを、送信されようとする送信周期毎に組分けし、各組毎に、データを纏めたメッセージMを生成する。 The transmission cycle consists of two or more types. That is, it consists of two types of short cycle (a given threshold or a shorter cycle) and long cycle (a cycle longer than the given threshold), or in addition to these other cycles Also have. Here, a short cycle and two types of long cycles (a cycle longer than the threshold value, a given threshold value different from the threshold value or a shorter cycle time) A total of three examples with a period longer than a given threshold will be described. The short-cycle data (data to be transmitted in a short cycle) is data that needs to be transmitted at regular intervals among the data for controlling the running of the vehicle. For example, the motor rotation speed detected by the rotation angle sensor 15 Or a detected torque value obtained from the current value detected by the ammeter 16. The long-cycle data (data that may be transmitted in a long cycle) is data that does not cause trouble in the vehicle travel control even if it is not transmitted at a short interval or a constant interval. In this example, the first long data The cycle data is the motor voltage detected by the voltmeter 17, and the second long cycle (cycle longer than the first long cycle) data is the motor temperature data detected by the thermometer 18. . In this way, the message generation unit 33 groups a plurality of types of data for each transmission cycle to be transmitted, and generates a message M in which the data is collected for each group.
 なお、インバータ装置10のECU12は、センサ等からの制御電圧値、モータ電流値、モータ電圧値を、CAN通信ではなく直接取得する。その後、インバータ装置10のECU12からメインECU11へデータを送信するために、メッセージのデータフィールド内の前記のように予め定められたデータ配列通りにデータを配置し、メッセージを送信する。 In addition, ECU12 of the inverter apparatus 10 acquires directly the control voltage value from a sensor etc., a motor current value, and a motor voltage value instead of CAN communication. Thereafter, in order to transmit data from the ECU 12 of the inverter device 10 to the main ECU 11, the data is arranged in the data arrangement determined in advance in the data field of the message, and the message is transmitted.
 図1の送信タイミング制御手段34は、基本的な送信タイミングの制御を行う手段であり、前記各メッセージを、所定の短周期、またはこの短周期よりも長い所定の長周期で送信するように、送信タイミングを制御する手段である。この例では、上記の短周期と2種類の長周期との合計3種類の周期で送信タイミングの制御を行う。 The transmission timing control means 34 in FIG. 1 is a means for performing basic transmission timing control, so that each message is transmitted at a predetermined short period or a predetermined long period longer than this short period. It is means for controlling transmission timing. In this example, transmission timing is controlled in a total of three types of cycles, the short cycle and the two types of long cycles.
 送信タイミング制御手段34は、前記長周期を、送信タイミング設定の基準である単位時間、つまり同期パルス(クロック)に素数を乗じた期間からなる周期とする。具体例を挙げると、前記基準となる単位時間が1msであるとして、第1の長周期は53msであり、第2の長周期は103msである。短周期は、同期パルス(クロック)に素数を乗じた期間から構成されなくても良く、ここでは10msである。 The transmission timing control means 34 sets the long cycle to a unit time that is a reference for transmission timing setting, that is, a cycle consisting of a period obtained by multiplying a synchronization pulse (clock) by a prime number. As a specific example, assuming that the reference unit time is 1 ms, the first long period is 53 ms, and the second long period is 103 ms. The short period may not be composed of a period obtained by multiplying the synchronization pulse (clock) by a prime number, and is 10 ms here.
 上記のように長周期のメッセージの送信周期を同期パルスに素数を乗じた期間から構成された周期とすることで、短周期のメッセージと長周期のメッセージとの送信タイミングの衝突の可能性が低減する。また、上記のように送信周期を、単位時間に素数を乗じた期間とするだけであるため、送信タイミング制御手段34が簡易な構成でありながら、メッセージの衝突の可能性を低減できる。 As described above, the transmission cycle of the long cycle message is set to a cycle composed of a period obtained by multiplying the synchronization pulse by a prime number, thereby reducing the possibility of collision of transmission timings of the short cycle message and the long cycle message. To do. In addition, as described above, since the transmission cycle is merely a period obtained by multiplying the unit time by a prime number, the possibility of message collision can be reduced while the transmission timing control unit 34 has a simple configuration.
 処理手段35は、前記短周期のメッセージの送信タイミングと前記長周期のメッセージの送信タイミングとの衝突が予測される場合に、所定の処理を行う手段である。衝突は、メッセージの送信に重なり時間が生じることである。衝突は、各周期とメッセージの送信に要する時間とが既知であれば、これらに基づく計算に基づいて予測できる。 The processing means 35 is a means for performing a predetermined process when a collision between the transmission timing of the short cycle message and the transmission timing of the long cycle message is predicted. Collisions are the occurrence of overlapping times in message transmission. The collision can be predicted based on a calculation based on the known period and the time required for transmitting the message.
 処理手段35が行う処理の例としては、送信タイミングの遅延(図3)、送信タイミングの先行(図4)、送信中止(図5)のいずれであっても良い。なお、長周期のメッセージ同士の衝突が予測される場合、処理手段35が優先送信の処理(図6)を行う。 Examples of processing performed by the processing means 35 may be any of transmission timing delay (FIG. 3), transmission timing preceding (FIG. 4), and transmission suspension (FIG. 5). If a collision between long-cycle messages is predicted, the processing unit 35 performs a priority transmission process (FIG. 6).
 図2および3を参照して、送信タイミングの遅延を説明する。10ms間隔で送信する短周期のメッセージと、53ms間隔または103ms間隔で送信する相互相関パターンとは、上記のように長周期を、単位時間に素数を乗じた期間としたことで、図2に示すように、衝突の可能性は低減するが、何度かに1回は衝突が生じる。 The transmission timing delay will be described with reference to FIGS. The short cycle message transmitted at 10 ms intervals and the cross-correlation pattern transmitted at 53 ms intervals or 103 ms intervals are shown in FIG. 2 by setting the long cycle to a period obtained by multiplying a unit time by a prime number as described above. Thus, the possibility of a collision is reduced, but a collision occurs once in several times.
 この場合に、同図のように、短周期のメッセージMSiに、53ms間隔で送信する第1の長周期(以下、「中周期」と称する場合がある)のメッセージML1iが破線で示すように衝突することが予測される場合、同図に黒塗り部分で示すように、設定時間だけ長周期のメッセージML1iの送信タイミングを遅らせる。前記設定時間は、短周期のメッセージMSiの送信に必要な時間よりも長い。そのため、メッセージ同士は衝突しない。そして、このように衝突しない範囲で出来るだけ短い時間とされる。 In this case, as shown in the figure, the message ML1i of the first long cycle (hereinafter sometimes referred to as “medium cycle”) transmitted at 53 ms intervals collides with the short-cycle message MSi as indicated by the broken line. If it is predicted, the transmission timing of the long-period message ML1i is delayed by the set time, as indicated by the black portion in FIG. The set time is longer than the time required for transmitting the short-cycle message MSi. Therefore, messages do not collide with each other. And it is set as short as possible in the range which does not collide like this.
 同図のように、短周期のメッセージMSiに、103ms間隔で送信する長周期のメッセージML2jが破線で示すように衝突することが予測される場合は、同図に黒塗り部分で示すように、設定時間だけ長周期のメッセージML2jの送信タイミングを遅らせる。この場合も前記設定時間は、短周期のメッセージMSjの送信に必要な時間よりも長い。そのため、メッセージ同士は衝突しない。そして、このように衝突しない範囲で出来るだけ短い時間とされる。 As shown in the figure, when it is predicted that the long-cycle message ML2j transmitted at 103 ms intervals collides with the short-cycle message MSi as shown by the broken line, The transmission timing of the long cycle message ML2j is delayed by the set time. Also in this case, the set time is longer than the time required for transmitting the short-cycle message MSj. Therefore, messages do not collide with each other. And it is set as short as possible in the range which does not collide like this.
 図4を参照して、送信タイミングの先行を説明する。同図のように、短周期のメッセージMSiに、53ms間隔で送信する長周期のメッセージML1iが破線で示すように衝突することが予測される場合は、同図に黒塗り部分で示すように、設定時間だけ長周期のメッセージML1iの送信タイミングを先行させる。前記設定時間は、長周期のメッセージML1iの送信に必要な時間よりも長い。そのため、メッセージ同士は衝突しない。そして、このように衝突しない範囲で出来るだけ短い時間とされる。 Referring to FIG. 4, the preceding transmission timing will be described. As shown in the figure, when it is predicted that the long-cycle message ML1i transmitted at 53 ms intervals collides with the short-cycle message MSi as shown by the broken line, The transmission timing of the long-period message ML1i is advanced by the set time. The set time is longer than the time required for transmitting the long-period message ML1i. Therefore, messages do not collide with each other. And it is set as short as possible in the range which does not collide like this.
 短周期のメッセージMSiに、103ms間隔で送信する長周期のメッセージML2jが破線で示すように衝突することが予測される場合、同図に黒塗り部分で示すように、設定時間だけ長周期のメッセージML2jの送信タイミングを先行させる。この場合も前記設定時間は、長周期のメッセージML2jの送信に必要な時間よりも長い。そのため、メッセージ同士は衝突しない。そして、このように衝突しない範囲で出来るだけ短い時間とされる。 When it is predicted that the long-cycle message ML2j transmitted at 103 ms intervals collides with the short-cycle message MSi as indicated by the broken line, the long-cycle message is set by the set time as shown by the black portion in FIG. The transmission timing of ML2j is advanced. Also in this case, the set time is longer than the time required for transmitting the long-period message ML2j. Therefore, messages do not collide with each other. And it is set as short as possible in the range which does not collide like this.
 図5を参照して、送信の中止を説明する。同図のように、10ms間隔で送信する短周期のメッセージMSiに、53ms間隔で送信する長周期のメッセージML1iが破線で示すように衝突することが予測される場合は、その衝突が予測される周期のメッセージML1iの送信を中止する。 Referring to FIG. 5, the cancellation of transmission will be described. As shown in the figure, when it is predicted that a long-cycle message ML1i transmitted at 53 ms intervals collides with a short-cycle message MSi transmitted at 10 ms intervals as indicated by broken lines, the collision is predicted. The transmission of the periodic message ML1i is stopped.
 短周期のメッセージMSiに、103ms間隔で送信する長周期のメッセージML2jが破線で示すように衝突することが予測される場合も、その衝突が予測される長周期のメッセージML2jの送信を中止する。 When it is predicted that the long-cycle message ML2j transmitted at 103 ms intervals collides with the short-cycle message MSi as indicated by the broken line, the transmission of the long-cycle message ML2j where the collision is predicted is stopped.
 図6に示すように、2種類の長周期のメッセージML1i,ジML2i同士の衝突が予測される場合は、メッセージごとに設定された優先度に応じて、メッセージの送信タイングをずらすかまたは送信を中止する処理を行う。この例では、第1の長周期のメッセージML1iの方が優先度が高く設定されている。衝突が予測される場合、第1の長周期のメッセージML1iは送信周期を変えることなく優先して送信され、第2の長周期のメッセージML2iの送信は設定時間だけ遅延させられる。優先度がより低い第2の長周期のメッセージML2iは、その送信を先行させても、また中止しても良い。 As shown in FIG. 6, when a collision between two types of long-period messages ML1i and diML2i is predicted, depending on the priority set for each message, the message transmission tag may be shifted or transmitted. Perform the process to cancel. In this example, the first long-cycle message ML1i has a higher priority. When a collision is predicted, the first long-period message ML1i is preferentially transmitted without changing the transmission period, and the transmission of the second long-period message ML2i is delayed by a set time. The second long-period message ML2i having a lower priority may be preceded or canceled.
 図8は、送信遅延を処理手段35が行う場合の処理の流れを示す。同図は、短周期のメッセージMS(図3)と、前記2種類のうちの、いずれか一方の長周期のメッセージML1,ML2との衝突の処理について示しており、第1の長周期(中周期)のメッセージML1との衝突と、第2の長周期のメッセージML2との衝突のいずれに対しても、数値が変わるだけで同じ処理を行う。同図の「」の符号は、中周期の場合の値と、長周期との場合の値とがあることを示す。これは、以下の図9~図11においても同様に当てはまる。 FIG. 8 shows the flow of processing when the processing means 35 performs transmission delay. This figure shows the collision process between the short-cycle message MS (FIG. 3) and one of the two types of long-cycle messages ML1 and ML2, and the first long-cycle (medium Period) and the second long-period message ML2, the same processing is performed only by changing the numerical value. The symbol “ * ” in the figure indicates that there is a value in the case of a medium period and a value in the case of a long period. This also applies to FIGS. 9 to 11 below.
 前記基準となる単位時間を経過した回数を常にカウントし、判断ステップS1では、そのカウンタ値CNTとカウンタ閾値CNT THRとを比較する。カウンタ閾値CNT THRは、衝突予測タイミングである。 The number of times that the reference unit time has elapsed is always counted, and in the determination step S1, the counter value CNT * is compared with the counter threshold value CNT * THR . The counter threshold value CNT * THR is a collision prediction timing.
 カウンタ値CNTがカウンタ閾値CNT THRを超えていなければ、送信間隔初期設定時間TIM(図3の例では、53msか103ms)に、「0」だけ加算(同じ値を維持)し(S2)、カウンタ値CNTを1だけ加算(インクリメント)する(S3)。この後、送信(S4)を行い、前記ステップS1からの処理を繰り返す。 If the counter value CNT * does not exceed the counter threshold value CNT * THR , “0” is added to the transmission interval initial setting time TIM * (53 ms or 103 ms in the example of FIG. 3) (the same value is maintained) (S2 The counter value CNT * is incremented by 1 (S3). Thereafter, transmission (S4) is performed, and the processing from step S1 is repeated.
 前記判断ステップS1でカウンタ値CNTがカウンタ閾値CNT THRを超えていれば、送信間隔初期設定時間TIMに所定の加算時間Δtを加算し(S5)、カウンタ値CNTを零にリセットし(S6)、前記送信周期(TIM後)での送信を行う(S4)。この場合は、前記加算時間Δtだけ遅延して、同図の処理対象の長周期のメッセージML1,ML2の送信を行うことになる。 If the counter value CNT * exceeds the counter threshold value CNT * THR in the determination step S1, a predetermined addition time Δt is added to the transmission interval initial setting time TIM * (S5), and the counter value CNT * is reset to zero. (S6), transmission is performed in the transmission cycle (after TIM * ) (S4). In this case, transmission of the long-cycle messages ML1 and ML2 to be processed in the figure is delayed by the addition time Δt.
 図9は、送信先行を処理手段35が行う場合の処理の流れを示す。この場合は、ステップS5Aで所定の加算時間Δtだけ、送信間隔初期設定時間TIMがマイナスされている。その他の処理は、図8の送信遅延の場合の処理と同じである。 FIG. 9 shows the flow of processing when the processing means 35 performs transmission advance. In this case, the transmission interval initial setting time TIM * is decremented by a predetermined addition time Δt in step S5A. Other processes are the same as those in the case of the transmission delay in FIG.
 図10は、送信中止を処理手段35が行う場合の処理の流れを示す。この場合、判断ステップR1でカウンタ値CNTとカウンタ閾値CNT THRとを比較し、カウンタ閾値CNT THRを超えなければ、カウンタ値CNTを1だけ加算して(R2)、送信(R3)を行い、判断ステップR1に戻る。 FIG. 10 shows the flow of processing when the processing means 35 performs transmission cancellation. In this case, compared with the counter value CNT * and counter threshold CNT * THR at decision step R1, does not exceed the counter threshold CNT * THR, the counter value CNT * by adding only 1 (R2), transmission (R3) And return to the decision step R1.
 判断ステップR1で、カウンタ閾値CNT THRを超えていれば、カウンタ値を零にリセットし(R4)、処理対象の長周期のメッセージML1,ML2の送信を中止して判断ステップR1を繰り返す。 If the counter threshold value CNT * THR is exceeded in the determination step R1, the counter value is reset to zero (R4), the transmission of the long-cycle messages ML1 and ML2 to be processed is stopped, and the determination step R1 is repeated.
 図11は優先送信を処理手段35が行う場合の処理の流れを示す。判断ステップQ1では、基準となる単位時間のカウンタ値PCNTとカウンタ閾値PCNT THRとを比較する。この場合のカウンタ値PCNTは、図8~図10におけるカウンタ値CNTとは、別のカウンタの値である。 FIG. 11 shows the flow of processing when the processing means 35 performs priority transmission. In the determination step Q1, the counter value PCNT * of the reference unit time is compared with the counter threshold value PCNT * THR . The counter value PCNT * in this case is a value of a counter different from the counter value CNT * in FIGS.
 カウンタ値PCNTがカウンタ閾値PCNTTHRを超えていなければ、中周期および長周期の送信間隔初期設定時間TIM1(図6の例では、53ms),TIM2(図6の例では、103ms)のそれぞれに、「0」だけ加算(同じ値を維持)する(Q2,Q3)。また、カウンタ値PCNTを1だけ加算する(Q4)。この後、各長周期のメッセージM1,M2の周期送信(Q5,Q6)を行う。この後、前記ステップQ1からの処理を繰り返す。 If the counter value PCNT does not exceed the counter threshold value PCNT THR , the transmission interval initial setting time TIM1 (53 ms in the example of FIG. 6) and TIM2 (103 ms in the example of FIG. 6) of the medium cycle and the long cycle are respectively Add "0" (keep the same value) (Q2, Q3). Also, the counter value PCNT is incremented by 1 (Q4). Thereafter, periodic transmission (Q5, Q6) of the messages M1, M2 of each long cycle is performed. Thereafter, the processing from step Q1 is repeated.
 前記判断ステップQ1でカウンタ値PCNTがカウンタ閾値PCNTTHRを超えていれば、優先度がより高い方(この例では中周期)についての送信間隔初期設定時間TIM1にはゼロだけ加算(同じ値を維持)し(Q7)、優先度がより低い方(第2の長周期)についての送信間隔初期設定時間TIM2には所定の加算時間Δtだけ加算する(Q8)。 If the counter value PCNT exceeds the counter threshold value PCNT THR in the determination step Q1, only zero is added to the transmission interval initial setting time TIM1 for the higher priority (in this example, the middle period) (the same value is maintained). (Q7), the transmission interval initial setting time TIM2 for the lower priority (second long cycle) is added by a predetermined addition time Δt (Q8).
 この後、カウンタ値PCNTを零にリセットし(S6)、前記加算処理後の送信周期(TIM1,TIM2)で各メッセージM1,M2の送信処理を行う。 Thereafter, the counter value PCNT is reset to zero (S6), and the transmission processing of each message M1, M2 is performed in the transmission cycle (TIM1, TIM2) after the addition processing.
 なお、上記の各例は、いずれか一つのECUから送信する種別送信データ間における、衝突タイミングの調整および衝突予測による調整につき説明したが、複数のECUの相互間、例えばインバータ装置10のECU12の通信コントローラ22と、メインのECU11の通信コントローラ21とで、衝突タイミングの調整や衝突予測による調整を上記と同様に行っても良い。 In each of the above-described examples, the adjustment of the collision timing and the adjustment by the collision prediction between the types of transmission data transmitted from any one ECU has been described. However, between the plurality of ECUs, for example, the ECU 12 of the inverter device 10 The communication controller 22 and the communication controller 21 of the main ECU 11 may perform adjustment of collision timing and adjustment by collision prediction in the same manner as described above.
 具体的には、インバータ装置10のECU12の通信コントローラ22における送信タイミング制御手段34と、メインのECU11の通信コントローラ21における送信タイミング制御手段(図示せず)との両方で、相互の、短周期のメッセージの送信周期をずらし、かつ長周期のメッセージの送信周期については、互いにずらし、かつそれぞれ上述のように単位時間に素数を乗じた期間からなる周期となるように設定しても良い。 Specifically, both the transmission timing control means 34 in the communication controller 22 of the ECU 12 of the inverter device 10 and the transmission timing control means (not shown) in the communication controller 21 of the main ECU 11 have a mutual short cycle. The message transmission cycle may be shifted, and the long-cycle message transmission cycle may be set so as to be shifted from each other and to have a period formed by multiplying a unit time by a prime number as described above.
 また、これらインバータ装置10のECU12の通信コントローラ22と、メインのECU11の通信コントローラ21との両方で、処理手段35が、前記の衝突予測に基づく送信遅延、送信先行、送信中止、または優先送信を行うようにしても良い。その場合、各通信コントローラ21,22の処理手段35は、自己の属するECU11,12から送信する短周期のメッセージと、他のECU11,12から送信する長周期のメッセージとの間での、前記衝突予測を行い、前記各処理を行う。ただし、優先送信については、各通信コントローラ21,22の処理手段35は、自己の属するECU11,12から送信する長周期のメッセージと、他のECU11,12から送信する長周期のメッセージとの間で、前記衝突予測に基づく優先送信の処理を行う。 Further, in both the communication controller 22 of the ECU 12 of the inverter device 10 and the communication controller 21 of the main ECU 11, the processing means 35 performs transmission delay, transmission precedence, transmission suspension, or priority transmission based on the collision prediction. You may make it do. In that case, the processing means 35 of each of the communication controllers 21 and 22 makes the collision between the short-cycle message transmitted from the ECUs 11 and 12 to which the communication controller 21 and 22 belong and the long-cycle message transmitted from the other ECUs 11 and 12. Prediction is performed, and each of the above processes is performed. However, for priority transmission, the processing means 35 of each communication controller 21, 22 is between a long cycle message transmitted from the ECU 11, 12 to which the communication controller 21, its own belongs, and a long cycle message transmitted from another ECU 11, 12. Priority transmission processing based on the collision prediction is performed.
 このように、計算に基づき衝突を予測して、予測される場合に、遅延送信、先行送信、中止処理、優先送信等を行わせることで、送信されるメッセージ同士の衝突を予め回避できる。 In this way, when a collision is predicted based on the calculation and predicted, a collision between transmitted messages can be avoided in advance by performing delayed transmission, preceding transmission, cancellation processing, priority transmission, and the like.
 上記のように予め回避の処理を行っても、上記の回避の処理を行わないECUの存在や、複数ECUからの送信等により、車載LAN網20内でのメッセージの衝突が生じる場合があるが、その場合は、CAN規格に従った優先度による送信遅延等で、メッセージの衝突の場合の送信可能化の処理を、送信部31の処理によって行う。 Even if the avoidance process is performed in advance as described above, message collision may occur in the in-vehicle LAN network 20 due to the presence of an ECU that does not perform the avoidance process or transmission from a plurality of ECUs. In this case, the transmission unit 31 performs the transmission enabling process in the case of a message collision due to a transmission delay due to the priority according to the CAN standard.
 このCAN規格に従った優先度による処理で、メッセージの衝突の場合の処理が可能ではあるが、車載LAN網20の全体での遅延等が発生するため、上記実施形態のように、計算に基づき衝突を予測してメッセージの送信自体を調整することで、メッセージの衝突をできるだけ回避する効率的な送信が行える。 Although processing in the case of message collision is possible with processing based on priority according to this CAN standard, a delay or the like in the entire in-vehicle LAN network 20 occurs, and therefore, based on calculation as in the above embodiment. By adjusting the message transmission itself in anticipation of the collision, it is possible to perform efficient transmission that avoids message collision as much as possible.
 なお、前記実施形態は、インホイールモータ駆動装置を備えた電気自動車に適用した場合につき説明したが、この発明は、1モータの電気自動車や、電気モータとエンジンとを併用するハイブリッド型自動車、エンジン駆動の自動車等にも適用することができる。 The above embodiment has been described with respect to the case where the present invention is applied to an electric vehicle equipped with an in-wheel motor drive device. However, the present invention relates to a single-motor electric vehicle, a hybrid vehicle that uses both an electric motor and an engine, and an engine. The present invention can also be applied to a driving automobile or the like.
 前記車両が、走行駆動源として電気モータ5を有する場合は、電気モータ5の回転数の検出データに、送信タイミングのずれやメッセージの抜けがあると、車両の走行の制御に影響するため、前記各実施形態の車両用通信制御装置を用いることによるメッセージの衝突回避の効果がより優れて発揮される。 When the vehicle has the electric motor 5 as a travel drive source, if there is a transmission timing shift or a missing message in the detection data of the rotational speed of the electric motor 5, the vehicle travel control will be affected. The effect of avoiding the collision of messages by using the vehicle communication control device of each embodiment is more excellent.
 また、インホイールモータ駆動装置4を搭載した車両では、左右の車輪を独立に電気モータ5で駆動するため、電気モータ5の制御の遅れが生じると走行の安定性に影響する。そのため、前記各実施形態の車両用通信制御装置を用いることによるメッセージの衝突回避の効果がより優れて発揮される。 Also, in a vehicle equipped with the in-wheel motor drive device 4, the left and right wheels are driven independently by the electric motor 5, so that a delay in control of the electric motor 5 affects the running stability. Therefore, the effect of avoiding the collision of messages by using the vehicle communication control device of each embodiment is more excellent.
1…車体
11~14…ECU
20…車載LAN網
33…メッセージ生成手段
34…送信タイミング制御手段
A…車両用通信制御装置
1 ... Car body 11-14 ... ECU
20 ... In-vehicle LAN network 33 ... Message generation means 34 ... Transmission timing control means A ... Vehicle communication control device

Claims (10)

  1.  車両に搭載された複数のECUと、
     これらECUを相互に送受信可能に接続する車載LAN網とを備え、
     このLAN網へのメッセージの送信タイミングを制御する車両用通信制御装置であって、
     前記複数のECUのうちの少なくとも一つのECUが、
      データ発生源が互いに異なる複数種類のデータを、送信しようとする送信周期毎に組分けし、各組毎に、データを含めたメッセージを生成するメッセージ生成手段と、
      これら各メッセージを、所定の短周期またはこの短周期よりも長い所定の長周期で送信するように、送信タイミングを制御する送信タイミング制御手段であって、前記長周期が、送信タイミングを設定する基準となる単位時間に素数を乗じた期間からなる、送信タイミング制御手段とを備えた、車両用通信制御装置。
    A plurality of ECUs mounted on the vehicle;
    It has an in-vehicle LAN network that connects these ECUs so that they can transmit and receive each other,
    A vehicle communication control device for controlling the transmission timing of a message to the LAN network,
    At least one ECU of the plurality of ECUs is
    A plurality of types of data having different data generation sources, grouped for each transmission cycle to be transmitted, and message generating means for generating a message including data for each set;
    Transmission timing control means for controlling the transmission timing so as to transmit each of these messages in a predetermined short cycle or a predetermined long cycle longer than the short cycle, wherein the long cycle is a reference for setting the transmission timing A communication control device for vehicles, comprising a transmission timing control means comprising a period obtained by multiplying a unit time by a prime number.
  2.  請求項1に記載の車両用通信制御装置において、前記少なくとも一つのECUが、さらに、前記短周期のメッセージの送信タイミングと前記長周期のメッセージの送信タイミングとの衝突が予測される場合に、所定の処理を行う処理手段であって、前記衝突が生じることが予測されるタイミングについてのみ、互いの衝突が予測されるメッセージのうちの、長周期のメッセージの送信タイミングを遅延させる、処理手段を備えた、車両用通信制御装置。 2. The vehicle communication control device according to claim 1, wherein the at least one ECU is further predetermined when a collision between the transmission timing of the short cycle message and the transmission timing of the long cycle message is predicted. Processing means for performing the above-described processing, the processing means for delaying the transmission timing of a long-cycle message among the messages predicted to collide with each other only for the timing at which the collision is predicted to occur. In addition, a vehicle communication control device.
  3.  請求項1に記載の車両用通信制御装置において、前記少なくとも一つのECUが、さらに、前記短周期のメッセージの送信タイミングと前記長周期のメッセージの送信タイミングとの衝突が予測される場合に、所定の処理を行う処理手段であって、前記衝突が生じることが予測されるタイミングについてのみ、互いの衝突が予測されるメッセージのうちの、長周期のメッセージの送信タイミングを先行させる、処理手段を備えた、車両用通信制御装置。 2. The vehicle communication control device according to claim 1, wherein the at least one ECU is further predetermined when a collision between the transmission timing of the short cycle message and the transmission timing of the long cycle message is predicted. Processing means for performing the above-described processing, and only for the timing at which the collision is predicted to occur, the processing means is configured to precede the transmission timing of the long-cycle message among the messages predicted to collide with each other. In addition, a vehicle communication control device.
  4.  請求項1に記載の車両用通信制御装置において、前記少なくとも一つのECUが、さらに、前記短周期のメッセージの送信タイミングと前記長周期のメッセージの送信タイミングとの衝突が予測される場合に、所定の処理を行う処理手段であって、前記衝突が生じることが予測されるタイミングについてのみ、互いの衝突が予測されるメッセージのうちの、長周期のメッセージの送信を中止する、処理手段を備えた、車両用通信制御装置。 2. The vehicle communication control device according to claim 1, wherein the at least one ECU is further predetermined when a collision between the transmission timing of the short cycle message and the transmission timing of the long cycle message is predicted. The processing means for performing the above-described processing, the processing means for canceling transmission of a long-period message among the messages predicted to collide with each other only at the timing when the collision is predicted to occur. Vehicle communication control device.
  5.  請求項2ないし請求項4のいずれか1項に記載の車両用通信制御装置において、前記長周期のメッセージが複数存在し、長周期同士のメッセージの送信タイミングの衝突が予測される場合には、前記処理手段は、メッセージごとに設定された優先度に応じて、メッセージの送信タイングをずらすかまたは送信を中止する処理を行う、車両用通信制御装置。 In the vehicle communication control device according to any one of claims 2 to 4, when there are a plurality of the long-cycle messages and a collision of transmission timings of the long-cycle messages is predicted, The vehicular communication control apparatus, wherein the processing means performs a process of shifting a message transmission time or canceling the transmission according to a priority set for each message.
  6.  請求項1ないし請求項5のいずれか1項に記載の車両用通信制御装置において、前記処理手段は、互いに異なるECUの間で、前記短周期のメッセージの送信タイミングと前記長周期のメッセージの送信タイミングとの衝突が予測される場合に、メッセージの送信タイングをずらすかまたは送信を中止する処理を行う機能を有する車両用通信制御装置。 6. The vehicle communication control device according to claim 1, wherein the processing means transmits the short cycle message transmission timing and the long cycle message transmission between different ECUs. A vehicle communication control device having a function of performing processing of shifting a message transmission time or canceling transmission when a collision with timing is predicted.
  7.  請求項1ないし請求項6のいずれか1項に記載の車両用通信制御装置において、前記車載LAN網が、CAN規格に準拠する車両用通信制御装置。 The vehicle communication control device according to any one of claims 1 to 6, wherein the in-vehicle LAN network conforms to a CAN standard.
  8.  請求項1ないし請求項6のいずれか1項に記載の車両用通信制御装置において、前記車載LAN網が、FlexRay規格に準拠する車両用通信制御装置。 The vehicle communication control device according to any one of claims 1 to 6, wherein the in-vehicle LAN network conforms to a FlexRay standard.
  9.  請求項1ないし請求項8のいずれか1項に記載の車両用通信制御装置において、前記車両が、走行駆動源として電気モータを有し、前記短周期のメッセージが、前記電気モータの回転数の検出データを含む車両用通信制御装置。 9. The vehicle communication control device according to claim 1, wherein the vehicle has an electric motor as a travel drive source, and the short-cycle message indicates the rotation speed of the electric motor. A vehicle communication control device including detection data.
  10.  請求項9に記載の車両用通信制御装置において、前記電気モータがインホイールモータ駆動装置を構成し、前記メッセージ生成手段および送信タイミング制御手段は、前記電気モータに交流電力を印加するインバータを有するインバータ装置に備えられたECUに設けられて、このインバータ装置のECUに駆動命令を与えるメインECUに送信するメッセージを対象とする、車両用通信制御装置。 10. The vehicle communication control device according to claim 9, wherein the electric motor constitutes an in-wheel motor drive device, and the message generation means and the transmission timing control means include an inverter that applies AC power to the electric motor. A communication control device for a vehicle, which is provided in an ECU provided in the device and targets a message transmitted to a main ECU that gives a drive command to the ECU of the inverter device.
PCT/JP2014/079405 2013-11-18 2014-11-06 Communication control device for use in vehicle WO2015072382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013237557A JP2015099951A (en) 2013-11-18 2013-11-18 Communication controller for vehicle
JP2013-237557 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015072382A1 true WO2015072382A1 (en) 2015-05-21

Family

ID=53057318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079405 WO2015072382A1 (en) 2013-11-18 2014-11-06 Communication control device for use in vehicle

Country Status (2)

Country Link
JP (1) JP2015099951A (en)
WO (1) WO2015072382A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113364657A (en) * 2021-05-12 2021-09-07 东风汽车集团股份有限公司 Vehicle data service system and method based on gateway
CN116588015A (en) * 2023-07-14 2023-08-15 北京芯驰半导体科技有限公司 Vehicle control method, vehicle control system, and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748272B1 (en) 2015-12-10 2017-06-27 현대자동차주식회사 Method and apparatus for controlling mass diagnostic communication in vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140499A (en) * 2002-10-16 2004-05-13 Tomy Co Ltd Remote control toy
JP2007184833A (en) * 2006-01-10 2007-07-19 Auto Network Gijutsu Kenkyusho:Kk Communication control unit for vehicle, and communication control system for vehicle
JP2012239143A (en) * 2011-05-13 2012-12-06 Toyota Motor Corp Electronic control unit, on-vehicle network and data transmission method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140499A (en) * 2002-10-16 2004-05-13 Tomy Co Ltd Remote control toy
JP2007184833A (en) * 2006-01-10 2007-07-19 Auto Network Gijutsu Kenkyusho:Kk Communication control unit for vehicle, and communication control system for vehicle
JP2012239143A (en) * 2011-05-13 2012-12-06 Toyota Motor Corp Electronic control unit, on-vehicle network and data transmission method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113364657A (en) * 2021-05-12 2021-09-07 东风汽车集团股份有限公司 Vehicle data service system and method based on gateway
CN116588015A (en) * 2023-07-14 2023-08-15 北京芯驰半导体科技有限公司 Vehicle control method, vehicle control system, and storage medium
CN116588015B (en) * 2023-07-14 2023-11-03 北京芯驰半导体科技有限公司 Vehicle control method, vehicle control system, and storage medium

Also Published As

Publication number Publication date
JP2015099951A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6094439B2 (en) Vehicle control system
US9813525B2 (en) In-vehicle apparatus for signal conversion between ethernet and CAN communication and control method thereof
CN102756732B (en) A kind of adaptive cruise control system of vehicle
AU2013291209B2 (en) Vehicle brake force generation device
US20180257652A1 (en) Vehicle Dynamics Control System in a Motor Vehicle and Electronic Vehicle Dynamics Control Unit for a Vehicle Dynamics Control System
EP3407566A1 (en) Automobile electrical system and isolation system for automobile electrical system
JP2018074257A (en) On-vehicle network system and communication control method in on-vehicle network system
JP5635314B2 (en) Electric vehicle, hybrid vehicle, automobile, automobile brake network system, in-vehicle network system
WO2015072382A1 (en) Communication control device for use in vehicle
KR100871857B1 (en) Network system of in-vehicle and control method thereof
JP2014189121A (en) Power generation control device of hybrid vehicle
JP2015157623A (en) Variable ride height system and method
WO2016186164A1 (en) Electric brake system and electric brake device
US9738177B2 (en) Electric vehicle
US20180056961A1 (en) Brake-by-wire system
US9150118B2 (en) Vehicle driving system and vehicle driving system control method
WO2016117433A1 (en) Abnormality-response control device for electric automobile
JP2017105362A (en) Control system
JP2010028355A (en) Communication management device of on-vehicle network
JP2017200050A (en) Gateway device
US11691520B2 (en) System for an electrically driven vehicle, vehicle having same and method for same
JP3736460B2 (en) Gateway and distributed system using the gateway
CN109747435A (en) Vehicle stability control system, method and electric car
JP5701197B2 (en) Train information management apparatus and train information management method
KR102219603B1 (en) Network system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861868

Country of ref document: EP

Kind code of ref document: A1