WO2015071998A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2015071998A1
WO2015071998A1 PCT/JP2013/080823 JP2013080823W WO2015071998A1 WO 2015071998 A1 WO2015071998 A1 WO 2015071998A1 JP 2013080823 W JP2013080823 W JP 2013080823W WO 2015071998 A1 WO2015071998 A1 WO 2015071998A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel mos
wiring layer
metal wiring
mos transistors
mos transistor
Prior art date
Application number
PCT/JP2013/080823
Other languages
French (fr)
Japanese (ja)
Inventor
舛岡 富士雄
正通 浅野
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
舛岡 富士雄
正通 浅野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 舛岡 富士雄, 正通 浅野 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2013/080823 priority Critical patent/WO2015071998A1/en
Publication of WO2015071998A1 publication Critical patent/WO2015071998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Definitions

  • the present invention relates to a semiconductor device.
  • Non-Patent Document 1 it is necessary to completely separate the N-well region for forming the PMOS and the P-type silicon substrate (or P-well region) for forming the NMOS, In addition, the N-well region and the P-type silicon substrate each need a body terminal for applying a potential, which is a factor of increasing the area.
  • SGT Surrounding Gate Transistor
  • FIG. 18, FIG. 19a, FIG. 19b, FIG. 19c, FIG. 19d, and FIG. 20 show circuit diagrams and layout diagrams of static memory cells (hereinafter referred to as SRAM cells) using conventional SGTs. Details are described in Patent Document 4 and International Publication No. 2009/096465, which will be briefly described below.
  • FIG. 18 is a circuit diagram of an SRAM cell.
  • Qp1 and Qp2 are P-channel MOS transistors (hereinafter referred to as PMOS transistors)
  • Qn1, Qn2, Qn3 and Qn4 are N-channel MOS transistors (hereinafter referred to as NMOS transistors)
  • BL is a bit.
  • a line, BLB is an inverted bit line
  • WL is a word line (row selection line)
  • Vcc is a power supply
  • Vss is a reference power supply.
  • FIG. 19a shows a plan view of a layout in which the SRAM cell of FIG. 19b is a cross-sectional view in the direction of cut line AA ′ in FIG. 19a
  • FIG. 19a shows a plan view of a layout in which the SRAM cell of FIG. 19b is a cross-sectional view in the direction of cut line AA ′ in FIG. 19a, FIG.
  • 19c is a cross-sectional view in the direction of cut line BB ′ in FIG. 19a
  • FIG. 19d is a cut line in FIG.
  • a cross-sectional view in the direction CC ′ is shown.
  • 19a, the NMOS transistor Qn2, the PMOS transistor Qp2 and the NMOS transistor Qn4 of the SRAM cell of FIG. 18 are in the first row (upper row in the figure), and the NMOS transistor Qn3, the PMOS transistor Qp1 and the NMOS transistor Qn1 are in the second row (see FIG. 19a).
  • Planar silicon layers 2pa, 2pb, 2na, 2nb, 2nc, and 2nd are formed on an insulating film such as a buried oxide film layer (BOX) 1 formed on the substrate, and 2pa and 2pb are p + by impurity implantation or the like, respectively.
  • the diffusion layers, 2na, 2nb, 2nc, and 2nd are each composed of an n + diffusion layer.
  • 3 is a silicide layer formed on the surface of the planar silicon layer (2pa, 2pb, 2na, 2nb, 2nc, 2nd), which connects the planar silicon layers 2nc, 2pb, 2nd, and 2nb, 2pa, 2na is connected.
  • 4n1, 4n2 are n-type silicon pillars
  • 4p1, 4p2, 4p3, 4p4 are p-type silicon pillars
  • 5 is a gate insulating film surrounding the silicon pillars
  • 4n1, 4n2, 4p1, 4p2, 4p3, 4p4 6 is a gate electrode
  • 6a Reference numerals 6b, 6c, and 6d denote gate wirings.
  • P + diffusion layers 7p1, 7p2 are formed on the uppermost portions of the silicon pillars 4n1, 4n2, respectively by impurity implantation
  • n + diffusion layers 7n1, 7n2, 7n3 are formed on the uppermost portions of the silicon pillars 4p1, 4p2, 4p3, 4p4, respectively.
  • 7n4 are formed by impurity implantation or the like.
  • 8 is a silicon nitride film for protecting the gate insulating film 5
  • 9p1, 9p2, 9n1, 9n2, 9n3, and 9n4 are silicides connected to p + diffusion layers 7p1, 7p2, n + diffusion layers 7n1, 7n2, 7n3, and 7n4, respectively.
  • Layers 10p1, 10p2, 10n1, 10n2, 10n3, 10n4 include silicide layers 9p1, 9p2, 9n1, 9n2, 9n3, 9n4 and wirings 13c, 13g, 13a, 13f, 13e, 13h of the first metal wiring layer.
  • 11a is a contact for connecting the gate wiring 6a and the wiring 13b of the first metal wiring layer
  • 11b is a contact for connecting the gate wiring 6b and the wiring 13d of the first metal wiring layer
  • 11c is a gate wiring 6c.
  • 12a is a contact connecting the silicide 3 connecting the lower diffusion layers 2nb, 2pa and 2na and the wiring 13d of the first metal wiring layer
  • 12b is a silicide 3 connecting the lower diffusion layers 2nd, 2pb and 2nc. This is a contact for connecting the wiring 13b of the first metal wiring layer.
  • the silicon pillar 4n1, the lower diffusion layer 2pa, the upper diffusion layer 7p1, the gate insulating film 5, and the gate electrode 6 constitute the PMOS transistor Qp1, and the silicon pillar 4n2, the lower diffusion layer 2pb, the upper diffusion layer 7p2, the gate insulating film 5,
  • the gate electrode 6 constitutes the PMOS transistor Qp2, and the silicon pillar 4p1, the lower diffusion layer 2na, the upper diffusion layer 7n1, the gate insulating film 5, and the gate electrode 6 constitute the NMOS transistor Qn1, and the silicon pillar 4p2 and the lower diffusion layer 2nc, the upper diffusion layer 7n2, the gate insulating film 5 and the gate electrode 6 constitute an NMOS transistor Qn2, and the silicon pillar 4p3, the lower diffusion layer 2nb, the upper diffusion layer 7n3, the gate insulating film 5 and the gate electrode 6 constitute an NMOS transistor.
  • Qn3, silicon pillar 4p4, lower diffusion layer 2nd, Part diffusion layer 7N4, the gate insulating film 5, the gate electrode 6 constitute
  • the gate wiring 6a is connected to the gate electrode 6 of the PMOS transistor Qp1 and the NMOS transistor Qn1
  • the gate wiring 6b is connected to the gate electrode 6 of the PMOS transistor Qp2 and the gate electrode 6 of the NMOS transistor Qn2
  • the NMOS transistor Qnn3 A gate line 6c is connected to the gate electrode 6, and a gate line 6d is connected to the gate electrode 6 of the NMOS transistor Qn4.
  • the lower diffusion layers 2pa, 2na, and 2nb become common drains of the PMOS transistors Qp1, Qn1, and Qn3 through the silicide 3, are connected to the wiring 13d of the first metal wiring layer through the contact 12a, and are further connected through the contact 11b.
  • the lower diffusion layers 2pb, 2nc, and 2nd become common drains of the PMOS transistors Qp2, Qn2, and Qn4 through the silicide 3, and are connected to the wiring 13b of the first metal wiring layer through the contact 12b.
  • 11a is connected to the gate electrode 6a.
  • the upper diffusion layers 7p1 and 7p2 which are the sources of the PMOS transistors Qp1 and Qp2 are connected to the wirings 13c and 13g of the first metal wiring layer through the silicide layers 9p1 and 9p2 and the contacts 10p1 and 10p2, respectively. It is connected to the wiring 15a of the second metal wiring layer via the contacts 14p1 and 14p2, and the power supply Vcc is supplied to the wiring 15a of the second metal wiring layer.
  • Upper diffusion layers 7n1 and 7n2 which are sources of NMOS transistors Qn1 and Qn2 are connected to wirings 13a and 13f of the first metal wiring layer via silicide layers 9n1 and 9n2 and contacts 10n1 and 10n2, respectively.
  • the reference power supply Vss is supplied to the wirings 13a and 13f in the wiring layer.
  • the upper diffusion layer 7n3 which is the source of the NMOS transistor Qn3 is connected to the wiring 13e of the first metal wiring layer via the silicide layer 9n3 and the contact 10n3, and further to the wiring 15b of the second metal wiring layer via the contact 14n3. And the wiring 15b of the second metal wiring layer becomes the bit line BL.
  • the upper diffusion layer 7n4 which is the source of the NMOS transistor Qn4 is connected to the wiring 13h of the first metal wiring layer via the silicide layer 9n4 and the contact 10n4, and further to the second metal wiring layer via the contact 14n4.
  • the wiring 15c of the second metal wiring layer connected to the wiring 15c becomes the inverted bit line BLB.
  • the gate electrodes 6 of the NMOS transistors Qn3 and Qn4 are connected to gate wirings 6c and 6d, respectively.
  • the gate wiring 6d is connected to the third metal wiring 17 via the contact 11d, the first metal wiring layer wiring 13j, the contact 14b, the second metal wiring layer wiring 15e, and the contact 16b.
  • the third metal wiring 17 becomes a word line (row selection signal) WL.
  • the gate wiring 6c is connected to the third metal wiring 17 through the contact 11c, the wiring 13i of the first metal wiring layer, the contact 14a, the wiring 15d of the second metal wiring layer, and the contact 16a.
  • the block SRAM surrounded by the thin line frame is a unit cell unit, and the height direction is the dimension Ly1.
  • FIG. 20 shows an SRAM cell array in which SRAM cells are arranged in a matrix.
  • SRAM cells For convenience, four SRAM cells of M (0,0) M (1,0), M (0,1), and M (1,1) are arranged.
  • this SRAM cell can be arranged without gaps with 2 rows and 3 columns as a minimum unit, and an SRAM cell array can be provided with a minimum area.
  • a PMOS transistor and an NMOS transistor are completely separated from each other in structure.
  • Well isolation is not necessary unlike a planar transistor, and a silicon pillar is a floating body.
  • the body terminal for supplying the potential to the well is not necessary, and the layout (arrangement) can be very compact.
  • the greatest feature of the SGT is that, in terms of structural principle, the lower layer wiring by the silicide layer existing on the substrate side under the silicon pillar and the upper wiring by contact connection at the upper part of the silicon pillar can be used.
  • the present invention makes use of the characteristics of this SGT to arrange the SGTs constituting the row selection decoder in accordance with the SRAM cells arranged in two rows in a row and b columns, thereby arranging them compactly and minimizing the area.
  • An object is to provide a low-cost semiconductor device.
  • a source, a drain, and a gate are provided with a plurality of MOS transistors arranged hierarchically in a direction perpendicular to the substrate, and at least a ⁇ b MOS transistors are provided on the substrate.
  • a semiconductor device that constitutes a decoder circuit by arranging in rows and columns, Each of the plurality of MOS transistors includes: Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
  • the decoder circuit is at least 1st to n-th n P-channel MOS transistors and 1st to n-th n-channel MOS transistors,
  • N gates of transistors are connected to each other to form n transistor pairs;
  • the drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are disposed on the substrate side from the silicon pillar, and the first to n-th N-channel MOS transistors
  • the drain regions of the first P-channel MOS transistors are connected to each other via a silicide region;
  • the sources of the first to nth N-channel MOS transistors are each connected to a reference power supply line, and the sources of the nth P-channel MOS transistors are connected to a power supply line,
  • One input signal line for each of at least one set of input signal lines is connected to the gates of the MOS transistors of each of the n pairs of transistors, At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in the same direction, and a semiconductor device is provided.
  • the first to nth N-channel MOS transistors are arranged in 1 row and n column
  • the first to nth P-channel MOS transistors are arranged in one row and n column
  • At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  • the sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer
  • the source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer
  • the power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer
  • the reference power line is constituted by the second metal wiring layer
  • the source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected.
  • the source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
  • At least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is:
  • the wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
  • the decoder circuit further includes a first inverter and a second inverter
  • the first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor
  • the second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor
  • the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in the direction perpendicular to the row direction.
  • the (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
  • the drain regions of the first to nth N-channel MOS transistors and the first P-channel MOS transistors are connected to the input of the first inverter,
  • the output wiring of the first inverter is connected to the input wiring of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
  • the first to nth N-channel MOS transistors are arranged in n rows and 1 column
  • the first to nth P-channel MOS transistors are arranged in n rows and 1 column
  • At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  • the sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer
  • the source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer
  • the power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer
  • the reference power line is constituted by the second metal wiring layer
  • the source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected.
  • the source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
  • At least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gates of the MOS transistors of each of the n sets of transistor pairs are:
  • the wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
  • the decoder circuit further includes a first inverter and a second inverter
  • the first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor
  • the second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor
  • the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
  • the (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in a direction perpendicular to the row direction.
  • the drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are connected to the input gate of the first inverter,
  • the output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
  • the source, drain, and gate include a plurality of MOS transistors arranged hierarchically in a direction perpendicular to the substrate, and at least a ⁇ b MOS transistors are arranged on the substrate.
  • Sources of the first to nth N-channel MOS transistors are respectively connected to a reference power supply line, A source of the n-th P-channel MOS transistor is connected to a power line;
  • One input signal line for each of at least one set of input signal lines is connected to the gates of the MOS transistors of each of the n pairs of transistors, At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in the same direction, and a semiconductor device is provided.
  • the first to nth P-channel MOS transistors are arranged in 1 row and n column
  • the first to nth N-channel MOS transistors are arranged in 1 row and n column
  • At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  • a source of the first to nth N-channel MOS transistors is connected to a wiring of a first metal wiring layer extending in a direction parallel to the row direction,
  • the source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
  • the power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
  • the reference power line is constituted by the second metal wiring layer,
  • the source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected.
  • the source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
  • At least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gates of the MOS transistors of each of the n sets of transistor pairs are: The wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
  • a plurality of the decoder circuits are arranged in a column direction, Source regions of adjacent N-channel MOS transistors of adjacent decoder circuits to which the reference power supply line is connected are commonly connected via a silicide region and / or adjacent to which the power supply line is connected. The source regions of adjacent P-channel MOS transistors of the decoder circuit are commonly connected via a silicide region.
  • the decoder circuit comprises a first inverter and a second inverter
  • the first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor
  • the second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor
  • the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in the direction perpendicular to the row direction.
  • the (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
  • the drain regions of the first to nth N-channel MOS transistors and the first P-channel MOS transistor are connected to the input gate of the first inverter,
  • the output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
  • the first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor.
  • the second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor, The source regions of the first to nth N-channel MOS transistors and the n + 1th N-channel MOS transistor and the source regions of the n + 2 N-channel MOS transistors are connected in common via a silicide region.
  • the source region of the n-th P-channel MOS transistor, the n + 1-th P-channel MOS transistor, and the source region of the n + 2-th P-channel MOS transistor are connected in common via a silicide region to form a first metal.
  • the power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer
  • the reference power line is constituted by the second metal wiring layer
  • the sources of the first to nth N-channel MOS transistors, the (n + 1) th N-channel MOS transistor, and the (n + 2) th N-channel MOS transistor are the first to n-th N-channel MOS transistors and the source Wiring of the second metal wiring layer constituting the reference power supply line via the wiring of the first metal wiring layer to which the sources of the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are connected
  • the sources of the nth P channel MOS transistor, the (n + 1) th P channel MOS transistor, and the (n + 2) th P channel MOS transistor are the nth P channel MOS transistor and the (n + 1) th P channel MOS transistor.
  • the MOS transistor and the n + 2 P-channel MOS transistor are connected to
  • the first to nth P-channel MOS transistors are arranged in n rows and 1 column
  • the first to nth N-channel MOS transistors are arranged in n rows and 1 column
  • At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  • the sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer
  • the source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer
  • the power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer
  • the reference power line is constituted by the second metal wiring layer
  • the source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected.
  • the source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
  • At least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gates of the MOS transistors in each of the n sets of transistor pairs are: The wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
  • the decoder circuit further includes a first inverter and a second inverter
  • the first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor
  • the second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor
  • the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
  • the (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in a direction perpendicular to the row direction.
  • the drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are connected to the input gate of the first inverter,
  • the output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
  • the first inverter includes at least an (n + 1) th P-channel MOS transistor and an (n + 1) th N-channel MOS transistor.
  • the second inverter includes at least an n + 2 P-channel MOS transistor and an n + 2 N-channel MOS transistor, Source regions of the (n + 1) th n-channel MOS transistor and the (n + 2) th n-channel MOS transistor are commonly connected via a silicide region and connected to a reference power supply, or the (n + 1) th n-channel MOS transistor And the source region of the n + 2 P-channel MOS transistor are commonly connected via a silicide region and connected to a power supply line.
  • a semiconductor device constituting a static memory by arranging, on a substrate, a plurality of MOS transistors whose sources, drains and gates are arranged hierarchically in a direction perpendicular to the substrate.
  • a plurality of static memory cells in which at least six MOS transistors are arranged on an insulating film formed on a substrate are arranged in a matrix,
  • a plurality of row decoders for selecting one row of the static memory cell by signals from the plurality of row address circuits; 6 MOS transistors constituting the static memory cell;
  • Each of the plurality of MOS transistors constituting the row decoder is Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
  • the drain regions of the P-channel MOS transistors of the eyes are connected to each other via a silicide region,
  • the sources of the n N-channel MOS transistors are respectively connected to a reference power supply line extending in the direction perpendicular to the row direction, and the source of the P-channel MOS transistor in the nth column is perpendicular to the row direction.
  • the input signals input to the gates of the MOS transistors of the n transistor pairs are respectively supplied by wirings extending in the direction perpendicular to the row direction,
  • the drains of the n N-channel MOS transistors and the first column of P-channel MOS transistors are connected to the input gate of the first inverter, and the output wiring of the first inverter is the second inverter.
  • a semiconductor device is provided in which the output wiring of the second inverter is connected to a row selection line of the static memory cell.
  • the source of the n N-channel MOS transistors is connected to the wiring of the first metal wiring layer
  • the source of the n-th column P-channel MOS transistor is connected to the wiring of the first metal wiring layer
  • the power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer
  • the reference power line is constituted by the second metal wiring layer
  • the source of the n N-channel MOS transistors is a second metal that constitutes the reference power supply line via the wiring of the first metal wiring layer to which the sources of the n N-channel MOS transistors are connected.
  • the source of the n-th column P-channel MOS transistor constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th column P-channel MOS transistor is connected.
  • the wiring of the metal wiring layer of 2 At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction.
  • the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines is connected via the wiring of the wiring layer.
  • a semiconductor that constitutes a static memory by arranging, on a substrate, a plurality of MOS transistors in which sources, drains, and gates are arranged hierarchically in a direction perpendicular to the substrate.
  • a device A plurality of static memory cells in which at least six MOS transistors are arranged on an insulating film formed on a substrate are arranged in a matrix, A plurality of row address circuits for designating one row line of the memory cells; A plurality of row decoders for selecting one row of the static memory cell by signals from the plurality of row address circuits; 6 MOS transistors constituting the static memory cell; Each of the plurality of MOS transistors constituting the row decoder is Silicon pillars, An insulator surrounding a side surface of the silicon pillar; A gate surrounding the insulator; A source region disposed above or below the silicon pillar; A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar; The six MOS transistors constituting the static memory cell are arranged in two rows and three columns, The row decoder circuit includes at least N P-channel MOS transistors arranged in one row and n columns, n N-channel MOS transistors arranged in one row
  • the gates of the N-channel MOS transistors in the k-th column of the P-channel MOS transistors and the n N-channel MOS transistors arranged in the first row and the n-th column are connected to each other. Forming, The source regions of the n N-channel MOS transistors and the first column of the P-channel MOS transistors are arranged on the substrate side from the silicon pillar, and the n N-channel MOS transistors and the first column of the first column are disposed.
  • the drain regions of the P-channel MOS transistors of the eyes are connected to each other through contacts,
  • the sources of the n N-channel MOS transistors are respectively connected to a reference power supply line extending in the direction perpendicular to the row direction, and the source of the P-channel MOS transistor in the nth column is perpendicular to the row direction.
  • Input signals input to the gates of the MOS transistors of each of the n pairs of transistors are respectively supplied by wirings extending in the direction perpendicular to the row direction,
  • the drains of the n N-channel MOS transistors and the first column of P-channel MOS transistors are connected to the input gate of the first inverter, and the output wiring of the first inverter is the second inverter.
  • a semiconductor device is provided in which the output wiring of the second inverter is connected to a row selection line of the static memory cell.
  • the source of the n N-channel MOS transistors is connected to a wiring of a first metal wiring layer extending in a direction parallel to the row direction
  • the source of the n-th column P-channel MOS transistor is connected to the wiring of the first metal wiring layer
  • the power line is constituted by a second metal wiring layer that is higher than the wiring layer of the first metal wiring layer
  • the reference power line is constituted by the second metal wiring layer
  • the source of the n N-channel MOS transistors is a second metal that constitutes the reference power supply line via the wiring of the first metal wiring layer to which the sources of the n N-channel MOS transistors are connected.
  • the source of the n-th column P-channel MOS transistor constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th column P-channel MOS transistor is connected.
  • the wiring of the metal wiring layer of 2 At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction.
  • the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines is connected via the wiring of the wiring layer.
  • FIG. 1 is a circuit diagram of a semiconductor memory device according to an embodiment of the present invention. It is a selection operation
  • 1 is a plan view of a NOR decoder according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram showing a row selection decoder according to a second embodiment of the present invention. It is a top view of the row selection decoder of 2nd Example of this invention.
  • FIG. 1 shows a semiconductor memory device including a decoder circuit for a memory applied to the present invention.
  • An SRAM cell is adopted as an example of the memory cell.
  • Reference numeral 200 denotes a row selection decoder.
  • a predecoder 300 receives address signals and outputs address selection signals XA0 to XA0, XB0 to 3, and XC0 to 7 for selecting a row selection decoder.
  • 300A which receives the address signals A0 to A2 and outputs the address selection signals XA0 to X7
  • 300B which receives the address signals A3 to A4 and outputs the address selection signals XB0 to 3
  • the address signals A5 to A7 which receive the address It is composed of 300C that outputs selection signals XC0 to XC7.
  • the row selection decoder 200 including the NOR type decoder 201 receives the address selection signals XA0, XB0, and XC0, selects WL0, receives the address selection signals XA1, XB0, and XC0, selects WL1, and so on. In response to the address selection signals XA7, XB3, and XC7, WL255 is selected.
  • Reference numeral 400 denotes a column selection gate
  • reference numeral 500 denotes a column selection decoder that selects the column selection gate 400.
  • Column select gate transistors CGn and CGnB have sources connected to bit line BLn and inverted bit line BLnB of the SRAM cell, respectively, and drains commonly connected to data line DL and inverted data line DLB.
  • Reference numeral 600 is a sense amplifier that receives and amplifies and outputs a minute read signal read from the memory cell to the data line via the bit line and the inverted bit line. This is an output circuit that creates a read signal DOUT to be read.
  • FIG. 2 shows a selection operation table of the row selection decoder.
  • the output DECOUT of the corresponding NOR decoder 201 is selected.
  • the output DECOUT10 of the corresponding NOR type decoder 201 is selected. That is, as the address selection signal for selecting the row selection decoder, it is necessary to supply a total of 20 address selection signals to the row selection decoder 200, XA is 8, XB is 4, XC is 8.
  • FIG. 3 shows a NOR type decoder circuit 201 of the present invention.
  • Tn1, Tn2, and Tn3 are NMOS transistors configured by SGT
  • Tp1, Tp2, and Tp3 are PMOS transistors that are also configured by SGT.
  • the sources of the NMOS transistors Tn1, Tn2, and Tn3 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1.
  • the node N1 becomes the output DECOUTk.
  • the drain of the PMOS transistor Tp1 is connected to the node N1, the source is connected to the drain of the PMOS transistor Tp2 via the node N2, and the source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 via the node N3.
  • the source of Tp3 is connected to the power supply Vcc.
  • FIG. 4A is a plan view of the layout (arrangement) of the 3-input NOR decoder 201 of the present invention
  • FIG. 4B is a cross-sectional view along the cut line AA ′ in FIG. 4A
  • FIG. 4C is the cut line in FIG.
  • FIG. 4d is a cross-sectional view along the cut line CC ′ in FIG. 4a
  • FIG. 4e is a cross-sectional view along the cut line DD ′ in FIG. 4a
  • FIG. 4f. 4a is a cross-sectional view along the cut line EE ′ in FIG. 4a
  • FIG. 4g is a cross-sectional view along the cut line FF ′ in FIG. 4a
  • FIG. 4h is a cross-sectional view along the cut line GG ′ in FIG.
  • FIG. 4i shows a cross-sectional view along the cut line HH ′ in FIG. 4a.
  • the NMOS transistors Tn1, Tn2 and Tn3 of the NOR decoder of FIG. 3 are in the first row (upper row in the figure), and the PMOS transistors Tp1, Tp2 and Tp3 are in the second row (lower row in the figure). They are arranged in order from the right side of the figure. 4a, FIG. 4b, FIG. 4c, FIG. 4d, FIG. 4e, FIG. 4f, FIG. 4g, FIG. 4h, and FIG. It is indicated by the equivalent symbol on the base.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa.
  • 104p1, 104p2, and 104p3 are p-type silicon pillars, 104n1, 104n2, and 104n3 are n-type silicon pillars, 105 is a gate insulating film that surrounds the silicon pillars 104p1, 104p2, 104p3, 104n1, 104n2, and 104n3, 106 is a gate electrode, 106a, 106b, 106c, and 106d are gate wirings, respectively.
  • N + diffusion layers 107n1, 107n2, and 107n3 are respectively formed on the uppermost portions of the silicon pillars 104p1, 104p2, and 104p3 by impurity implantation or the like, and p + diffusion layers 107p1 and 107p2 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, and 104n3, respectively.
  • 107p3 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105
  • 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 are silicides connected to n + diffusion layers 107n1, 107n2, 107n3, and p + diffusion layers 107p1, 107p2, and 107p3, respectively.
  • 110n1, 110n2, 110n3, 110p1, 110p2, and 110p3 include silicide layers 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 and wirings 113a, 113a, 113a, 113d, 113d, and 113c of the first metal wiring layer.
  • Contacts for connection, 111a is a contact for connecting the gate wiring 106a and the wiring 113e of the first metal wiring layer, and 111b is a wiring 1 of the gate wiring 106c and the first metal wiring layer.
  • Contacts for connecting the 3f, 111c denotes a contact for connecting the wires 113g of the gate wiring 106d and the first metal wiring layer.
  • Reference numeral 112a denotes a contact for connecting the silicide 103 connecting the lower diffusion layer 102n and the lower diffusion layer 102pa and the wiring 113b of the first metal wiring layer.
  • the silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105,
  • the gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104n1 and the lower diffusion layer 102pa, upper diffusion layer 107p1, gate insulating film 105, and gate electrode 106 constitute a PMOS transistor Tp1, and silicon pillar 104n2, lower diffusion layer 102pb, upper diffusion layer 107p2, gate insulating film 105, gate electrode
  • the electrode 106 constitutes a PMOS transistor Tp2, the silicon pillar 104N3, lower
  • a gate wiring 106a is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1.
  • a gate line 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate line 106c is connected to the gate electrode 106 of the PMOS transistor Tp2.
  • a gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3.
  • the lower diffusion layers 102n and 102pa serve as common drains of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistor Tp1 through the silicide 103, and are connected to the wiring 113b of the first metal wiring layer through the contact 112a to become the output DECOUT1.
  • the upper diffusion layer 107n1 which is the source of the NMOS transistor Tn1 is connected to the wiring 113a of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113a of the first metal wiring layer is further connected to the wiring 114a via the contact 114n1.
  • the reference power supply Vss is supplied to 115c connected to the wiring 115c of the second metal wiring layer.
  • the wiring 115c of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the upper diffusion layer 107n2 which is the source of the NMOS transistor Tn2 is connected to the wiring 113a of the first metal wiring layer extending in the row direction via the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3 which is the source of the NMOS transistor Tn3 is connected to the wiring 113a of the first metal wiring layer through the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107p1, which is the source of the PMOS transistor Tp1 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p1 and the contact 110p1.
  • the upper diffusion layer 107p2 which is the drain of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2.
  • the source of the PMOS transistor Tp1 and the drain of the PMOS transistor Tp2 are connected via the wiring 113d of the first metal wiring layer.
  • the source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 through the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Tp3 is connected to the wiring 113c of the first metal wiring layer through the contact 110p3.
  • the first metal wiring layer wiring 113c is further connected to the second metal wiring layer wiring 115g via the contact 114p3, and the power Vcc is supplied to 115g.
  • the wiring 115g of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the gate wiring 106a to which any of the address selection signals XA0 to XA7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113e of the first metal wiring layer via the contact 111a.
  • the wiring 113e of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction.
  • the contact 114a is arranged at any one of the intersections of the wirings of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extending in the direction perpendicular to the row direction to the address 113e, and the address selection signal XAh
  • a contact 114a is provided at the intersection of the wiring 115a of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA1 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of the NOR decoder.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA7 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the right side in a form perpendicular to the row direction. Note that a contact 114z is drawn by a broken line at the intersection of the address selection signal XA0 (wiring 115b of the second metal wiring layer) and the wiring 113e of the first metal wiring layer. There is no contact, and if it is desired to input the address selection signal XA0 (the wiring 115b of the second metal wiring layer), it shows the location of the fictitious contact where a contact is provided here. Yes. Hereinafter, the same is true for the other portions.
  • the gate wiring 106c to which any of the address selection signals XB0 to XB3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b.
  • the wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113f of the first metal wiring layer.
  • a contact 114b is provided at the intersection of the wiring 115d of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 113f of the first metal wiring layer. That is, the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder. Note that the second metal wiring layer 115e for supplying the address selection signal XB1, the second metal wiring layer 115f for supplying the address selection signal XB2, and the second metal wiring layer for supplying the address selection signal XB3.
  • a contact 114z is drawn by a broken line at the intersection of the wiring 115h and the wiring 113f of the first metal wiring layer. However, as described above, there is no contact here, and the location of the fictitious contact is shown. Show.
  • the gate wiring 106d to which any one of the address selection signals XC0 to XC7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer through the contact 111c.
  • the wiring 113g of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC7 extends in a direction perpendicular to the row direction, and is at one of the intersections with the wiring 113g of the first metal wiring layer.
  • a contact 114c is provided at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
  • a contact 114z is drawn by a broken line at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 113g of the first metal wiring layer, as described above. Here, no contact exists, and the location of a fictitious contact is shown.
  • the wiring of the second metal wiring layer that supplies the address selection signals XC2 to XC7 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XC0 and XC1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction. According to this embodiment, address selection signals XA1, XB0, and XC0 are input to this NOR type decoder, and the output is DECOUT1 according to FIG.
  • the NOR decoder BL201A is a region surrounded by a frame in the figure, and the vertical dimension is Ly1 which is the same as the SRAM cell of FIG. 19a.
  • the power supply wiring, the reference power supply wiring, and the address selection signal line are the wirings of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 2 rows and 3 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction As a result, it is possible to supply an arbitrary address selection signal to the input of the NOR decoder, and the same arrangement as that of a small SRAM having a small area that can be arranged with the minimum wiring pitch of the second metal wiring layer.
  • a NOR type decoder can be realized with a pitch of.
  • a NOR type decoder circuit 201k, a first inverter 202k, and a second inverter 203k are included.
  • the NOR decoder 201k is the same as that shown in FIG. 3, and the first inverter 202k includes a PMOS transistor Tp11 and an NMOS transistor Tn11.
  • the drains of the PMOS transistor Tp11 and the NMOS transistor Tn11 are commonly connected by a node N11.
  • the source of the PMOS transistor Tp11 is connected to the power supply Vcc, and the source of the NMOS transistor Tn11 is connected to the reference power supply Vss.
  • the second inverter 203k includes a PMOS transistor Tp12 and an NMOS transistor Tn12.
  • the drains of the PMOS transistor Tp12 and the NMOS transistor Tn12 are commonly connected by the node N12, and the output is WLk that is the output of the row selection decoder 200-k.
  • the source of the PMOS transistor Tp12 is connected to the power supply Vcc, and the source of the NMOS transistor Tn12 is connected to the reference power supply Vss.
  • the gates of the PMOS transistor Tp12 and the NMOS transistor Tn12 are connected in common and connected to the node N11 that is the output of the first inverter 202k.
  • FIGS. 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h and 6i show a second embodiment.
  • 6a is a plan view of the layout (arrangement) of the row selection decoder 200-k in FIG. 5
  • FIG. 6b is a cross-sectional view along the cut line AA ′ in FIG. 6a
  • FIG. 6c is a cut line in FIG.
  • FIG. 6d is a cross-sectional view along the cut line CC ′ in FIG. 6a
  • FIG. 6e is a cross-sectional view along the cut line DD ′ in FIG. 6a
  • Fig. 6a is a cross-sectional view along the cut line EE 'in Fig. 6a, Fig.
  • FIG. 6g is a cross-sectional view along the cut line FF' in Fig. 6a
  • Fig. 6h is a cut line GG 'in Fig. 6a
  • FIG. 6i shows a cross-sectional view along the cut line HH ′ in FIG. 6a.
  • Inverters 202 and 203 are arranged on the right side of the NOR decoder in FIG. 4, and three sets of main row selection decoders BL200A-7, BL200A-8, and BL200A-9 are arranged at a pitch Ly1 on the upper and lower sides.
  • the sources of the NMOS transistor Tn11 and NMOS transistor Tn12 constituting the first and second inverters are respectively the lower diffusion layer 102nb and are commonly connected by the silicide layer 103, and contact 112b (
  • the wiring 113h of the first metal wiring layer is connected to the wiring 113h of the first metal wiring layer via the contact 114d.
  • the wiring 113h of the first metal wiring layer is connected to the wiring 115m of the second metal wiring layer via the contact 114d.
  • 115m is supplied with a reference power source Vss.
  • lower diffusion layers 102nb of the first and second inverters constituting adjacent row selection decoders are commonly connected.
  • the lower diffusion layers that are the sources of the four transistors of the NMOS transistors Tn11 and Tn12 of the adjacent inverters are connected in common, thereby reducing the area.
  • the wiring 115m of the second metal wiring layer to which the reference power is supplied extends in the direction perpendicular to the row direction.
  • the sources of the PMOS transistor Tp11 and the PMOS transistor Tp12 constituting the first and second inverters are respectively a lower diffusion layer 102pc and are commonly connected by the silicide layer 103, and are connected via the contact 112c (three in the figure) via the first contact 112c.
  • the wiring 113j of the first metal wiring layer is connected to the wiring 115l of the second metal wiring layer via the contact 114e, and the power supply Vcc is supplied to 115l. .
  • the lower diffusion layers 102pc of the first and second inverters constituting the adjacent row selection decoders are commonly connected. That is, the lower diffusion layers that are the sources of the four transistors of the PMOS transistors Tp11 and Tp12 of the adjacent inverter are connected in common, and the reduction of the area is achieved.
  • the wiring 115l of the second metal wiring layer to which power is supplied extends in the direction perpendicular to the row direction.
  • the upper diffusion layer 107p11 serving as the drain of the PMOS transistor Tp11 is connected to the wiring 113i of the first metal wiring layer via the silicide layer 109p11 and the contact 110p11, and the wiring 113i of the first metal wiring layer is connected to the first inverter. Output N11.
  • the upper diffusion layer 107n11 serving as the drain of the NMOS transistor Tn11 is connected to the wiring 113i of the first metal wiring layer through the silicide layer 109n11 and the contact 110n11.
  • a gate wiring 106f is connected in common to the gate electrode 106 of the PMOS transistor Tp11 and the gate electrode 106 of the NMOS transistor Tn11, and a gate wiring 106e is connected to the gate electrode of the NMOS transistor Tn11.
  • the output wiring 113b of the NOR decoder BL201A-7 which is the embodiment of FIG. 4, that is, DECOUT7 is input to the gate wiring 106e.
  • the upper diffusion layer 107p12 serving as the drain of the PMOS transistor Tp12 is connected to the wiring 113k of the first metal wiring layer through the silicide layer 109p12 and the contact 110p12, and 113k serves as the output WL7 of the row selection decoder BL200A-7.
  • the upper diffusion layer 107n12 serving as the drain of the NMOS transistor Tn12 is connected to the wiring 113k of the first metal wiring layer through the silicide layer 109n12 and the contact 110n12.
  • a gate wiring 106g is commonly connected to the gate electrode 106 of the PMOS transistor Tp12 and the gate electrode 106 of the NMOS transistor Tn12, and the wiring 113i of the first metal wiring layer, which is the output wiring of the first inverter, is connected to 106g. Connected.
  • a row selection decoder BL200A-7 to which address selection signals XA7, XB0, and XC0 are input
  • a row decoder BL200A-8 to which address selection signals XA0, XB1, and XC0 are input
  • address selection signals XA1, XB1, and XC0 are provided.
  • the input row decoder BL200A-9 is adjacently arranged at a pitch (interval) Ly1, and the second metal that supplies the power supply Vcc is commonly used for BL200A-7, BL200A-8, and BL200A-9.
  • Wiring layers 115g and 115l and second metal wiring layers 115c and 115m for supplying the reference power supply Vss are arranged, and second metals for supplying address selection signals XA0 to 7, XB0 to 3, and XC0 to 7 are arranged. All the wirings in the wiring layer are arranged at the minimum pitch of the wirings in the second metal wiring layer, and the first metal wiring is arranged.
  • a layer of wirings 113e, 113f, via the 113 g, any address selection signals, respectively are connected to the input gate of the NOR type decoder.
  • the row selection decoder is composed of a NOR decoder and two inverters and has the same pitch as that of the SRAM and the minimum pitch of the second metal wiring layer, thereby minimizing the area. Can be provided.
  • FIG. 7 shows an embodiment in which the row selection decoder of the present invention is connected to an SRAM cell in which MOS transistors are arranged in 2 rows and 3 columns.
  • a row selection decoder BL200, a region BLC (Block Connection) for connecting the row selection decoder and the SRAM cell, and an SRAM cell array are arranged.
  • the wiring 113k of the first metal wiring layer which is the output of the row selection decoder, is connected to the wiring 115n of the second metal wiring layer through the contact 114k, and further the third metal wiring through the contact 116a. 17 is connected.
  • the third metal wiring 17 serves as a word line of the SRAM cell, and an arbitrary SRAM cell designated by the address signal can be selected by this row selection decoder.
  • M (7,0), M (8,0), M (9,0) are arranged in the column direction, and at the same pitch, the row selection decoder BL200A. -7, BL200A-8, and BL200A-9 are arranged adjacent to each other to constitute a row selection decoder for selecting an SRAM cell.
  • Example 4 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8i and 8j show a fourth embodiment.
  • 8a is a plan view of the layout (arrangement) of the NOR decoder of the present invention
  • FIG. 8b is a cross-sectional view taken along the cut line AA ′ in FIG. 8a
  • FIG. 8c is a cut line BB in FIG. 8d
  • FIG. 8e is a cross-sectional view along the cut line DD ′ in FIG. 8a
  • FIG. 8a is a cross-sectional view taken along the cut line EE ′, FIG.
  • FIG. 8g is a cross-sectional view taken along the cut line FF ′ in FIG. 8a
  • FIG. 8h is a cross-sectional view taken along the cut line GG ′ in FIG.
  • FIG. 8i is a cross-sectional view taken along the cut line HH ′ in FIG. 8a
  • FIG. 8j is a cross-sectional view taken along the cut line II ′ in FIG. 8a.
  • NMOS transistors Tn1, Tn2, Tn3, the PMOS transistors Tp1, Tp2, and Tp3 have their sources and drains arranged upside down, and the NMOS transistors Tn1, Tn2 , Tn3 and the drains of the PMOS transistor Tp1 are connected in common through contacts.
  • NMOS transistors Tn1, Tn2 and Tn3 of the NOR decoder of FIG. 3 are in the first row (upper row in the figure), and PMOS transistors Tp1, Tp2 and Tp3 are in the second row (lower row in the figure). They are arranged in order from the left side of the figure.
  • FIGS. 4a, 4b, 4c, 4d, 4e, and 4f. 4G, FIG. 4H and FIG. 4I are indicated by equivalent symbols in the 100s.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb).
  • 104p1, 104p2, and 104p3 are p-type silicon pillars, 104n1, 104n2, and 104n3 are n-type silicon pillars, 105 is a gate insulating film that surrounds the silicon pillars 104p1, 104p2, 104p3, 104n1, 104n2, and 104n3, 106 is a gate electrode, 106a, 106b, 106c, and 106d are gate wirings, respectively.
  • N + diffusion layers 107n1, 107n2, and 107n3 are respectively formed on the uppermost portions of the silicon pillars 104p1, 104p2, and 104p3 by impurity implantation or the like, and p + diffusion layers 107p1 and 107p2 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, and 104n3, respectively.
  • 107p3 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105
  • 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 are silicides connected to n + diffusion layers 107n1, 107n2, 107n3, and p + diffusion layers 107p1, 107p2, and 107p3, respectively.
  • 110n1, 110n2, 110n3, 110p1, 110p2, and 110p3 include silicide layers 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 and wirings 113b, 113b, 113b, 113b, 113d, and 113d of the first metal wiring layer.
  • Contacts for connection, 111a is a contact for connecting the gate wiring 106a and the wiring 113g of the first metal wiring layer, and 111b is a wiring 1 of the gate wiring 106c and the first metal wiring layer.
  • Contacts for connecting the 3f, 111c denotes a contact for connecting the wires 113e of the gate wiring 106d and the first metal wiring layer.
  • 112a (five arrangements in the figure) is a contact for connecting the silicide layer 103 and the wiring 113a of the first metal wiring layer, which covers and connects the lower diffusion layer 102n, and 112b is a connection which covers the lower diffusion layer 102pb. This contact connects the silicide layer 103 to be connected to the wiring 113c of the first metal wiring layer.
  • the silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104n1 and the lower diffusion layer 102 pa, upper diffusion layer 107 p 1, gate insulating film 105, and gate electrode 106 constitute a PMOS transistor Tp 1, and silicon pillar 104 n 2, lower diffusion layer 102 pa, upper diffusion layer 107 p 2, gate insulating film 105, gate electrode 106
  • the gate electrode 106 constitutes a PMOS transistor Tp2, the silicon pillar 104N
  • the gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1
  • the gate wiring 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2
  • the gate electrode of the PMOS transistor Tp2 is connected to the gate electrode of the PMOS transistor Tp2.
  • a gate line 106c is connected to 106
  • a gate line 106a is connected to the gate electrodes 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3.
  • the sources of the NMOS transistors Tn1, Tn2, and Tn3 are the lower diffusion layer 102n, which is connected to the wiring 113a of the first metal wiring layer through the silicide 103 and the contacts 112a (five in the figure), and the first metal wiring
  • the layer wiring 113a is connected to the second metal wiring layer wiring 115d through a contact 114d, and a reference power source Vss is supplied to 115d.
  • the wiring 115d of the second metal wiring layer extends in a direction perpendicular to the row direction. Note that the wiring 113a of the first metal wiring layer extends in the row direction and supplies the power source Vss to the lower diffusion layer and the silicide 103, and the resistance of the silicide layer is almost negligible.
  • the upper diffusion layer 107n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 113b of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113b of the first metal wiring layer becomes the output DECOUT1.
  • the upper diffusion layer 107n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3, which is the drain of the NMOS transistor Tn3, is connected to the wiring 113b of the first metal wiring layer via the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 113b of the first metal wiring layer through the silicide 109p1 and the contact 110p1.
  • the drains of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistor Tp1 are commonly connected to the wiring 113b of the first metal wiring layer through the contacts.
  • the lower diffusion layer 102pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 103.
  • the upper diffusion layer 107p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2.
  • the upper diffusion layer 107p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 113d of the first metal wiring layer through the silicide 109p3 and the contact 110p3.
  • the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 113d of the first metal wiring layer.
  • the source of the PMOS transistor Tp3 is connected to the wiring 113c of the first metal wiring layer through the lower diffusion layer 102pb, the silicide region 103, and the contact 112b, and the wiring 113c of the first metal wiring layer is further connected through the contact 114e.
  • the power source Vcc is supplied to 115c.
  • the wiring 115c of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the gate wiring 106d to which any of the address selection signals XA0 to XA7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113e of the first metal wiring layer through the contact 111c.
  • the wiring 113e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction.
  • the contact 114c is arranged at any one of the intersections of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA7 extending in the direction perpendicular to the row direction with the address 113e, and the address selection signal XAh
  • a contact 114c is provided at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA1 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of the NOR decoder.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA7 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the left side in a form perpendicular to the row direction. Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 113e of the first metal wiring layer.
  • the gate wiring 106c to which any of the address selection signals XB0 to XB3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b.
  • the wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113f of the first metal wiring layer.
  • a contact 114b is provided at the intersection of the wiring 115e of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 113f of the first metal wiring layer. That is, the selection address signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of this NOR decoder.
  • a contact 114z is drawn by a broken line at the intersection of the wiring 115h and the wiring 113f of the first metal wiring layer. However, as described above, there is no contact here, and the location of the fictitious contact is shown. Show.
  • the gate wiring 106a to which any of the address selection signals XC0 to XC7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer through the contact 111a.
  • the wiring 113g of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC7 extends in a direction perpendicular to the row direction, and is at one of the intersections with the wiring 113g of the first metal wiring layer.
  • a contact 114a is provided at the intersection of the wiring 115b of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder. Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115a of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 113g of the first metal wiring layer, as described above. Here, no contact exists, and the location of a fictitious contact is shown.
  • the second metal wiring layer for supplying the address selection signals XC2 to XC7 is omitted for the convenience of the drawing, but, as with the second metal wiring layer for supplying the address selection signals XC0 and XC1, further to the right side.
  • address selection signals XA1, XB0, and XC0 are input to this NOR type decoder, and the output is DECOUT1 according to FIG.
  • the NOR type decoder BL201B is a region surrounded by a frame in the figure, and the vertical dimension is Ly2, which is smaller than the SRAM cell dimension Ly1 in FIG.
  • the reason why Example 4 (FIG. 8) is smaller than the pitch (dimension) of Example 1 (FIG. 4) is that Example 1 is a dead space (area is taken) of the p + diffusion layer and the n + diffusion layer. Whereas there are two gaps in the pitch, there are only 1.5 places in the fourth embodiment, which can be reduced accordingly.
  • the power supply wiring, the reference power supply wiring, and the address selection signal line are the wirings of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 2 rows and 3 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction As a result, it becomes possible to supply an arbitrary address selection signal to the input of the NOR type decoder, which can be arranged at the minimum pitch of the wiring of the second metal wiring layer, and is smaller than a small SRAM having a small area.
  • a row selection decoder can be realized with a small pitch.
  • 9a, 9b, 9c, 9d, 9e, 9f, 9g, 9h, 9i and 9j show a fifth embodiment.
  • 9a is a plan view of the layout (arrangement) of the row selection decoder of the present invention
  • FIG. 9b is a sectional view taken along the cut line AA ′ in FIG. 9a
  • FIG. 9c is a cut line BB in FIG. 9a.
  • 9d is a cross-sectional view along the cut line CC ′ in FIG. 9a
  • FIG. 9e is a cross-sectional view along the cut line DD ′ in FIG. 9a
  • FIG. 9a is a cross-sectional view taken along the cut line EE ′, FIG.
  • FIG. 9g is a cross-sectional view taken along the cut line FF ′ in FIG. 9a
  • FIG. 9h is a cross-sectional view taken along the cut line GG ′ in FIG.
  • FIG. 9i is a cross-sectional view taken along the cut line HH ′ in FIG. 9a
  • FIG. 9j is a cross-sectional view taken along the cut line II ′ in FIG. 9a.
  • the equivalent circuit diagram of this embodiment is obtained by integrating the NOR decoder 201k, the first inverter 202k, and the second inverter 203k in accordance with FIG. 5 to realize a smaller area. In this embodiment, the difference from FIG.
  • the configuration on the left side of the wiring 115b of the second metal wiring layer constituting the NOR type decoder is the same as that of FIG. 8 except that the signals supplied to the wirings 115b, 115c, 115d of the second metal wiring layer are different. Is the same.
  • the first inverters 202k and 203k are continuously arranged on the right side of the wiring 115a of the second metal wiring layer, sharing the lower diffusion layer.
  • 9a, 9b, 9c, 9d, 9e, 9f, 9g, 9h, 9i, and 9j, FIGS. 8a, 8b, 8c, 8d, 8e, and 8f. 8G, FIG. 8H, FIG. 8I, and FIG. 8J are indicated by equivalent symbols in the 100s.
  • the allocation of the address signal for distributing the address signal to each decoder is changed from the distribution in FIG. That is, in FIG.
  • the address signals A0 to A2 are assigned to the predecoder 300A, A3 to A4 are assigned to 300B, and A5 to A7 are assigned to 300C.
  • the address signal is sent to 300A due to the arrangement of the address selection signal lines.
  • A3 to A5 are assigned to A0 to A2 and 300B, and A6 to A7 are assigned to 300C.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb).
  • 104p1, 104p2, 104p3, 104p11, 104p12 are p-type silicon pillars, 104n1, 104n2, 104n3, 104n11, 104n12 are n-type silicon pillars, 105 are silicon pillars 104p1, 104p2, 104p3, 104p11, 104p12, 104n1, 104n2, 104n3, Gate insulating films surrounding 104n11 and 104n12, 106 is a gate electrode, 106a, 106b, 106c, 106d, 106e, 106f and 106g are gate wirings, respectively.
  • n + diffusion layers 107n1, 107n2, 107n3, 107n11, 107n12 are formed by impurity implantation or the like, and the silicon pillars 104n1, 104n2, 104n3, 104n11, 104n12
  • p + diffusion layers 107p1, 107p2, 107p3, 107p11, and 107p12 are formed by impurity implantation or the like, respectively.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109n1, 109n2, 109n3, 109n11, 109n12, 109p1, 109p2, 109p3, 109p11, 109p12 are n + diffusion layers 107n1, 107n2, 107n3, 107n11, 107n12, p +, respectively.
  • a contact connecting the wiring 113f of the first metal wiring layer, 111c is a contact connecting the gate wiring 106d and the wiring 113e of the first metal wiring layer, and 111d is a wiring connecting the gate wiring 106f and the wiring 113b of the first metal wiring layer.
  • a contact 111e is a contact for connecting the gate wiring 106g and the wiring 113h of the first metal wiring layer.
  • 112a (nine in the figure) is a contact for connecting the silicide layer 103 connected to cover the lower diffusion layer 102n and the wiring 113a of the first metal wiring layer, and 112b (five in the figure) is a lower part. This is a contact for connecting the silicide layer 103 connected to cover the diffusion layer 102pb and the wiring 113c of the first metal wiring layer.
  • the silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104p11, the lower diffusion layer.
  • the silicon pillar 104p12, the lower diffusion layer 102n, the upper diffusion layer 107n12, and the gate insulating film 10 constitute an NMOS transistor Tn11.
  • the gate electrode 106 constitutes the NMOS transistor Tn12, and the silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp1, and the silicon pillar 104n2 and the lower diffusion.
  • the layer 102pa, the upper diffusion layer 107p2, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp2, and the silicon pillar 104n3, the lower diffusion layer 102pb, the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute the PMOS.
  • the transistor Tp3 is configured, and the silicon pillar 104n11, the lower diffusion layer 102pb, the upper diffusion layer 107p11, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp11, and the silicon pillar 04N12, lower diffusion layer 102Pb, the upper diffusion layer 107P12, a gate insulating film 105, the gate electrode 106, constituting the PMOS transistor Tp12.
  • a gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1.
  • a gate line 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate line 106c is connected to the gate electrode 106 of the PMOS transistor Tp2.
  • a gate wiring 106a is connected to the gate electrodes 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3.
  • a gate wiring 106e is connected to the gate electrode 106 of the NMOS transistor Tn11 and the PMOS transistor Tp11, and a gate wiring 106f is connected to the gate electrode 106 of the NMOS transistor Tn11.
  • a gate wiring 106g is connected to the gate electrodes 106 of the NMOS transistor Tn12 and the PMOS transistor Tp12.
  • the sources of the NMOS transistors Tn1, Tn2, Tn3, Tn11, and Tn12 are all shared to form the lower diffusion layer 102n, and the wiring 113a of the first metal wiring layer is formed through the silicide 103 and the contacts 112a (nine in the drawing).
  • the wiring 113a of the first metal wiring layer is connected to the wiring 115k of the second metal wiring layer via the contact 114d, and the reference power source Vss is supplied to 115k.
  • the wiring 115k of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the wiring 113a of the first metal wiring layer extends along the row direction and supplies the reference power source Vss to the silicide layer 103 and the lower diffusion layer 102n, and the resistance of the silicide layer is almost negligible.
  • the sources of the PMOS transistors Tp3, Tp11, and Tp12 are all shared to form the lower diffusion layer 102pb, and are connected to the wiring 113c of the first metal wiring layer through the silicide 103 and the contacts 112b (five in the drawing). Then, the wiring 113c of the first metal wiring layer is connected to the wiring 115l of the second metal wiring layer through the contact 114e, and the power source Vcc is supplied to 115l.
  • the wiring 115l of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the wiring 113c of the first metal wiring layer extends along the row direction and supplies the power Vcc to the silicide layer 103 and the lower diffusion layer 102pb, and the resistance of the silicide layer can be almost ignored.
  • the upper diffusion layer 107n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 113b of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113b of the first metal wiring layer is connected to the output DECOUT1 (not shown).
  • the upper diffusion layer 107n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3, which is the drain of the NMOS transistor Tn3, is connected to the wiring 113b of the first metal wiring layer via the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 113b of the first metal wiring layer through the silicide 109p1 and the contact 110p1.
  • the drains of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistor Tp1 are commonly connected to the wiring 113b of the first metal wiring layer through the contacts.
  • the lower diffusion layer 102pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 103.
  • the upper diffusion layer 107p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2.
  • the upper diffusion layer 107p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 113d of the first metal wiring layer through the silicide 109p3 and the contact 110p3.
  • the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 113d of the first metal wiring layer.
  • the source of the PMOS transistor Tp3 is the lower diffusion layer 102pb.
  • the upper diffusion layer 107n11 and the upper diffusion layer 107p11 which are the drains of the NMOS transistor Tn11 and the PMOS transistor Tp11 constituting the first inverter are respectively connected to the first metal wiring via the silicide 109n11 and the contact 110n11 or the silicide layer 109p11 and the contact 110p11. It is commonly connected to the wiring 113h of the layer, and 113h becomes an output of the first inverter. Further, the wiring 113b of the first metal wiring layer, which is the output of the NOR decoder, is connected to the gate wiring 106f commonly connected to the gate electrodes of the NMOS transistor Tn11 and the PMOS transistor Tp11 via the gate wiring 106e. .
  • the upper diffusion layer 107n12 and the upper diffusion layer 107p12 which are the drains of the NMOS transistor Tn12 and the PMOS transistor Tp12 constituting the second inverter are respectively connected to the first metal wiring through the silicide 109n12 and the contact 110n12 or the silicide layer 109p12 and the contact 110p12. Commonly connected to the layer wiring 113i, 113i becomes the output WL1 of this row selection decoder. Further, the wiring 113h of the first metal wiring layer, which is the output of the first inverter, is connected to the gate wiring 106g commonly connected to the gate electrodes of the NMOS transistor Tn12 and the PMOS transistor Tp12.
  • the gate wiring 106d to which any of the address selection signals XA0 to XA7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113e of the first metal wiring layer through the contact 111c.
  • the wiring 113e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction.
  • the contact 114c is arranged at any one of the intersections of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA7 extending in the direction perpendicular to the row direction with the address 113e, and the address selection signal XAh
  • a contact 114c is provided at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA1 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this row selection decoder.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA7 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the left side in a form perpendicular to the row direction. Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 113e of the first metal wiring layer.
  • the gate wiring 106c to which any of the address selection signals XB0 to XB7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b.
  • the wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB7 extends in a direction perpendicular to the row direction, and is at one of the intersections with the wiring 113e of the first metal wiring layer.
  • a contact 114b is provided at the intersection of the wiring 115e of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 113f of the first metal wiring layer. That is, the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of this row selection decoder.
  • the wiring of the second metal wiring layer that supplies the address selection signals XB4 to XB7 is omitted, but the arrangement is the same as the wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3. Further, it is arranged on the left side in a form perpendicular to the row direction.
  • the address selection signal XB1 (second metal wiring layer wiring 115f), the address selection signal XB2 (second metal wiring layer wiring 115g), and the address selection signal XB3 (second metal wiring layer wiring 115h)
  • a contact 114z is drawn by a broken line at the intersection with the wiring 113f of the first metal wiring layer. However, as described above, there is no contact here, and an imaginary contact location is shown. .
  • the gate wiring 106a to which any one of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer through the contact 111a.
  • the wiring 113g of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row.
  • a contact 114a is provided at the intersection of the wiring 115d of the second metal wiring layer of the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this row selection decoder.
  • the contact 114z is drawn with a broken line at each intersection with the wiring 113g, as described above, there is no contact here, and an imaginary contact is shown.
  • address selection signals XA1, XB0, and XC0 are input and WL1 is selected as the row selection signal.
  • the row selection decoder BL200B is an area surrounded by a frame in the figure, and the vertical dimension is Ly2 which is the same as that in FIG.
  • the NOR type decoder and the first and second inverters are integrated and the SGTMOS transistors constituting them are arranged in 2 rows and 5 columns in the direction perpendicular to the row direction.
  • the input gate of the NOR decoder is arranged via the wiring of the second metal wiring layer and the wiring of the second metal wiring layer, and the wiring of the first metal wiring layer arranged in parallel along the row direction.
  • the silicide layer 103 covering the lower diffusion layer 102n serving as the source region of the NMOS transistors Tn1, Tn2, Tn3, Tn11, and Tn12 is a similar row selection decoder in an inverted arrangement adjacent to the upper side of the row selection decoder BL200B in FIG. 9a. Since it is connected in common to the silicide region covering the source region of the NMOS transistor (not shown) and connected to the reference power supply line, it is possible to reduce a region for wasteful reference power supply and to reduce the area.
  • the silicide layer 103 covering the lower diffusion layer 102pb serving as the source regions of the PMOS transistors Tp3, Tp11, and Tp12 is a PMOS transistor of a similar row selection decoder arranged in an inverted manner adjacent to the lower side of the row selection decoder BL200B in FIG. 9a. Since it is connected to the power source line in common with the silicide region covering the source region, it is possible to reduce a region for wasteful power supply and further reduce the area.
  • FIG. 10 shows still another semiconductor memory device including SRAM cells.
  • the row selection decoder is constituted by a 4-input NOR type decoder.
  • the difference from FIG. 1 is a row selection decoder 210 and a predecoder 310 that generates an address selection signal.
  • the row address signal assignment is the same as A0 to A7, and the number of word lines is 256. Therefore, four types of predecoders 310A, 310B, 310C, and 310D are provided in correspondence with 4-input NOR.
  • 310A receives address signals A0 to A1 and outputs address selection signals XA0 to XA3.
  • 310B receives address signals A2 to A3 and outputs address selection signals XB0 to XB3.
  • 310C receives address signals A4 to A5 and outputs address selection signals XC0 to XC3.
  • 310D receives address signals A6 to A7 and outputs address selection signals XD0 to XD3.
  • the 4-input NOR type decoder 211 receives one signal for each of the groups of address selection signals A0 to XA3, XB0 to XB3, XC0 to XC3, and XD0 to XD3.
  • XA1, XB0, XC0, and XD0 are connected to the NOR decoder 211 that outputs DECOUT1.
  • the address selection signals of the XA group are 4, the XB group is 4, the XC group is 4, and the XD group is 4, which can be realized with a total of 16 wires.
  • FIG. 11 shows a selection operation table of the row selection decoder similar to FIG. When a circled address selection signal is input to the NOR decoder 211, the corresponding output DECOUTk is selected.
  • FIG. 12 shows a NOR decoder 211-k of the present invention.
  • Tn1, Tn2, Tn3, and Tn4 are NMOS transistors configured by SGT
  • Tp1, Tp2, Tp3, and Tp4 are PMOS transistors that are also configured by SGT.
  • the sources of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1.
  • the node N1 becomes the output DECOUTk.
  • the drain of the PMOS transistor Tp1 is connected to the node N1, the source is connected to the drain of the PMOS transistor Tp2 via the node N2, and the source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 via the node N3.
  • the source of Tp3 is connected to the drain of the PMOS transistor Tp4 via the node N4, and the source of the PMOS transistor Tp4 is connected to the power supply Vcc.
  • FIGS. 13a, 13b, 13c, 13d and 13e A sixth embodiment is shown in FIGS. 13a, 13b, 13c, 13d and 13e.
  • 13a is a plan view of the layout (arrangement) of the NOR decoder according to the present invention
  • FIG. 13b is a sectional view taken along the cut line AA ′ in FIG. 13a
  • FIG. 13e is a cross-sectional view along the cut line DD ′ in FIG. 13a.
  • An NMOS transistor Tn4 and a PMOS transistor Tp4 are additionally arranged on the right side of the plan view of the layout (arrangement) of the 3-input NOR type decoder in FIG. 8a.
  • the structure and arrangement of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistors Tp1, Tp2, Tp3 are the same as those in FIG.
  • the NMOS transistor Tn4 and the PMOS transistor Tp4 are arranged on the right side, the arrangement location of the address selection signal by the wiring of the second metal wiring layer and the connection method are partially different.
  • FIGS. 13a, 13b, 13c, 13d, and 13e the same structure as in FIGS. 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, and 8i is shown. Are indicated by equivalent symbols in the 100s.
  • Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb).
  • 104p1, 104p2, 104p3, 104p4 are p-type silicon pillars
  • 104n1, 104n2, 104n3, 104n4 are n-type silicon pillars
  • 105 is a silicon pillar 104p1, 104p2, 104p3, 104p4, 104n1, 104n2, 104n3, 104n4.
  • 106 are gate electrodes
  • 106a, 106b, 106c, 106d, 106e, and 106f are gate wirings, respectively.
  • N + diffusion layers 107n1, 107n2, 107n3, and 107n4 are formed by impurity implantation or the like on the uppermost portions of the silicon pillars 104p1, 104p2, 104p3, and 104p4, respectively.
  • the p + diffusion layers 107p1, 107p2, 107p3, and 107p4 are formed by impurity implantation or the like.
  • 108 is a silicon nitride film for protecting the gate insulating film 105, 109n1, 109n2, 109n3, 109n4, 109p1, 109p2, 109p3, 109p4 are n + diffusion layers 107n1, 107n2, 107n3, 107n4, p + diffusion layers 107p1, 107p2,
  • the silicide layers connected to 107p3 and 107p4, 110n1, 110n2, 110n3, 110n4, 110p1, 110p2, 110p3, and 110p4 are silicide layers 109n1, 109n2, 109n3, 109n4, 109p1, 109p2, 109p3, and 109p4 and the first metal wiring Layer wirings 113b, 113b, 113b, 113b, 113d, 113d, 113c are respectively connected to contacts, and 111c is a gate wiring 106.
  • 111b is a contact connecting the gate wiring 106c and the first metal wiring layer 113f
  • 111a is a contact connecting the gate wiring 106e and the first metal wiring layer 113g
  • 111d is a contact for connecting the gate wiring 106f and the wiring 113h of the first metal wiring layer.
  • Reference numeral 112a (seven in the figure) denotes a contact for connecting the silicide layer 103 connected to cover the lower diffusion layer 102n and the wiring 113a of the first metal wiring layer.
  • the silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104p4, the lower diffusion layer.
  • the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Tp3.
  • the silicon pillar 104n4, the lower diffusion layer 102pb, the upper diffusion layer 107p4, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp4. Configure.
  • a gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1.
  • a gate line 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate line 106c is connected to the gate electrode 106 of the PMOS transistor Tp2.
  • a gate wiring 106a is connected to the gate electrode 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3, and a gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Tp3.
  • a gate wiring 106f is connected to the gate electrodes 106 of the NMOS transistor Tn4 and the PMOS transistor Tp4.
  • the sources of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 are the lower diffusion layer 102n, and are connected to the wiring 113a of the first metal wiring layer through the silicide 103 and the contacts 112a (seven in the drawing),
  • the wiring 113a of the metal wiring layer is connected to the wiring 115d of the second metal wiring layer through the contact 114e, and the reference power source Vss is supplied to 115d.
  • the wiring 115d of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the wiring 113a of the first metal wiring layer extends in the row direction and supplies the reference power source Vss to the lower diffusion layer and the silicide 103, and the resistance of the silicide layer is almost negligible.
  • the upper diffusion layer 107n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 113b of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113b of the first metal wiring layer becomes the output DECOUT4.
  • the upper diffusion layer 107n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n2 and the contact 110n2.
  • the upper diffusion layer 107n3 which is the drain of the NMOS transistor Tn3 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n3 and the contact 110n3.
  • the upper diffusion layer 107n4 which is the drain of the NMOS transistor Tn4 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n4 and the contact 110n4.
  • the upper diffusion layer 107p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 113b of the first metal wiring layer through the silicide 109p1 and the contact 110p1.
  • the drains of the NMOS transistors Tn1, Tn2, Tn3, Tn4 and the PMOS transistor Tp1 are commonly connected to the wiring 113b of the first metal wiring layer through the contacts.
  • the lower diffusion layer 102pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 103.
  • the upper diffusion layer 107p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2.
  • the upper diffusion layer 107p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 113d of the first metal wiring layer through the silicide 109p3 and the contact 110p3.
  • the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 113d of the first metal wiring layer.
  • the source of the PMOS transistor Tp3 is connected to the drain of the PMOS transistor Tp4 via the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Tp4 is the first metal via the upper diffusion layer 107p4, the silicide 109p4 and the contact 110p4.
  • the wiring 113c of the first metal wiring layer is further connected to the wiring 115a of the second metal wiring layer via the contact 114p4, and the power supply Vcc is supplied to 115a.
  • the wiring 115a of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the gate wiring 106d to which any one of the address selection signals XA0 to XA3 supplied by the wiring of the second metal wiring layer is connected is connected to the wiring 113e of the first metal wiring layer through the contact 111c.
  • the wiring 113e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction.
  • a contact 114c is arranged at any one of the intersections of the wirings of the second metal wiring layer that supplies the selection address signals XA0 to XA3 extending in the direction perpendicular to the row direction to the address 113e, and the address selection signal XAh
  • a contact 114c is provided at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA0 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this NOR decoder.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA3 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the left side in a form perpendicular to the row direction. Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1, the location of the fictitious contact in which a contact is provided here is provided. Show.
  • the gate wiring 106c to which any of the address selection signals XB0 to XB3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b.
  • the wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113f of the first metal wiring layer.
  • a contact 114b is provided at the intersection of the wiring 115f of the second metal wiring layer that supplies the address selection signal XB1 and the wiring 113f of the first metal wiring layer. That is, the address selection signal XB1 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder. Note that the intersection of the wiring 115g of the second metal wiring layer that supplies the address selection signal XB2 and the wiring 115h of the second metal wiring layer that supplies the address selection signal XB3 and the wiring 113f of the first metal wiring layer Although the contact 114z is drawn by a broken line, as described above, there is no contact here, and an imaginary contact location is shown.
  • the gate wiring 106e to which any of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer via the contact 111a.
  • the wiring 113g of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113g of the first metal wiring layer.
  • a contact 114a is provided at the intersection of the wiring 115c of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
  • the contact 114z is drawn by a broken line at the intersection of the first metal wiring layer and the wiring 113g of the first metal wiring layer. However, as described above, there is no contact here, and the location of the fictitious contact is shown. Yes.
  • the gate wiring 106f to which any of the address selection signals XD0 to XD3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113h of the first metal wiring layer through the contact 111d.
  • the wiring 113h of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XD0 to XD3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction.
  • a contact 114d is arranged at any one of the intersections of the wirings of the second metal wiring layer for supplying the address selection signals XD0 to XD3 extending in the direction perpendicular to the row direction with respect to 113h, and the address selection signal XDj
  • a contact 114d is provided at the intersection of the wiring 115r of the second metal wiring layer that supplies the address selection signal XD0 and the wiring 113h of the first metal wiring layer. That is, the address selection signal XD0 is input to the gates of the NMOS transistor Tn4 and the PMOS transistor Tp4 of this NOR decoder.
  • the wiring of the second metal wiring layer that supplies the address selection signals XD2 to XD3 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XD0 and XD1. Further, it is arranged on the right side in a form perpendicular to the row direction. Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115s of the second metal wiring layer that supplies the address selection signal XD1 and the wiring 113h of the first metal wiring layer.
  • address selection signals XA0, XB1, XC0 and XD0 are input to this NOR type decoder, and the output is DECOUT4 according to FIG.
  • the NOR type decoder BL211B is a region surrounded by a frame in the figure, and the vertical dimension is Ly2.
  • the power supply wiring, the reference power supply wiring, and the address selection signal line are the wirings of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 2 rows and 4 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction. As a result, it is possible to supply an arbitrary address selection signal to the input of the NOR decoder, and a NOR decoder with a reduced area that can be arranged at the minimum pitch of the wiring of the second metal wiring layer is provided. realizable.
  • the silicide layer 103 covering the lower diffusion layer 102n serving as the source region of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 is the NMOS of the same NOR type decoder arranged in an inverted manner adjacent to the upper side of the NOR type decoder BL211B in FIG. 13a. Since it is connected in common to the silicide region covering the source region of the transistor and connected to the reference power supply line, a region for supplying unnecessary reference power can be reduced and the area can be reduced.
  • FIG. 14A is a plan view of the layout (arrangement) of the 4-input NOR type decoder of the present invention
  • FIG. 14B is a cut line A in FIG. 14c is a cross-sectional view along the cut line BB ′ in FIG. 14a
  • FIG. 14d is a cross-sectional view along the cut line CC ′ in FIG. 14a
  • FIG. 14a is a cross-sectional view along the cut line DD ′ in FIG. 14a
  • FIG. 14f is a cross-sectional view along the cut line EE ′ in FIG. 14a
  • FIG. 14g is along the cut line FF ′ in FIG.
  • FIG. 14A is a plan view of the layout (arrangement) of the 4-input NOR type decoder of the present invention
  • FIG. 14d is a cross-section
  • This embodiment differs greatly from the other embodiments in this embodiment, in which NMOS transistors Tn1, Tn2, Tn3, and Tn4 constituting the NOR decoder 211k are arranged in one row (right side in the vertical direction in the figure). That is, the PMOS transistors Tp1, Tp2, Tp3, and Tp4 are arranged in one column (left side in the vertical direction in the figure).
  • the definition of the row and the column is the same when rotated by 90 degrees, but here is an embodiment that constitutes a row selection decoder according to the memory cells arranged in a matrix, where the horizontal direction is the row, the vertical direction Is defined as a column.
  • the NMOS transistor Tn1 and the PMOS transistor Tp1 are arranged from the right side in the first row from the top, the NMOS transistor Tn2 and the PMOS transistor Tp2 are arranged in the second row, and the NMOS transistor Tn3 and the PMOS transistor are arranged in the third row. Tp3 is arranged, and NMOS transistor Tn4 and PMOS transistor Tp4 are arranged in the fourth row.
  • the directions of the source and drain of the NMOS transistors Tn1, Tn2, Tn3, Tn4, and the PMOS transistors Tp1, Tp2, Tp3, Tp4 are arranged upside down.
  • the drains of the NMOS transistors Tn1, Tn2, Tn3, Tn4, and the PMOS transistor Tp1 are connected in common through contacts. 14a, FIG. 14b, FIG. 14c, FIG. 14d, FIG. 14e, FIG. 14f, and FIG. 14g, portions having the same structure as FIG.
  • Planar silicon layers 202n, 202pa, 202pb are formed on an insulating film such as a buried oxide film layer (BOX) 201 formed on the substrate, and these planar silicon layers 202n, 202pa, 202pb are formed by impurity implantation or the like, respectively. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer.
  • Reference numeral 203 denotes a silicide layer formed on the surface of the planar silicon layer (202n, 202pa, 202pb).
  • 204p1, 204p2, 204p3, and 204p4 are p-type silicon pillars, 204n1, 204n2, 204n3, and 204n4 are n-type silicon pillars, 205 is a silicon pillar 204p1, 204p2, 204p3, 204p4, 204n1, 204n2, 204n3, and 204n4.
  • 206 are gate electrodes, and 206a, 206b, 206c, 206d, 206e, 206f, 206g and 206h are gate wirings, respectively.
  • N + diffusion layers 207n1, 207n2, 207n3, and 207n4 are formed on the uppermost portions of the silicon pillars 204p1, 204p2, 204p3, and 204p4 by impurity implantation, respectively, and the uppermost portions of the silicon pillars 204n1, 204n2, 204n3, and 204n4 are respectively formed on the uppermost portions.
  • P + diffusion layers 207p1, 207p2, 207p3, and 207p4 are formed by impurity implantation or the like.
  • 208 is a silicon nitride film for protecting the gate insulating film 205, 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 are n + diffusion layers 207n1, 207n2, 207n3, 207n4, p + diffusion layers 207p1, 207p2, respectively.
  • Silicide layers 210n1, 210n2, 210n3, 210n4, 210p1, 210p2, 210p3, 210p4 connected to 207p3, 207p4 are silicide layers 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 and the first metal wiring Layer wirings 213b, 213b, 213b, 213b, 213d, 213d, and 213c are respectively connected to contacts, 211a is a gate wiring 206 And a contact connecting the wiring 213e of the first metal wiring layer, 211b a contact connecting the gate wiring 206d and the wiring 213h of the first metal wiring layer, and 211c a wiring 213f of the gate wiring 206c and the first metal wiring layer.
  • 211d is a contact connecting the gate wiring 206e and the first metal wiring layer 213g
  • 211e is a contact connecting the gate wiring 206g and the first metal wiring layer 213i.
  • Reference numeral 212a (two in the figure) is a contact for connecting the silicide layer 203 connected to cover the lower diffusion layer 202n and the wiring 213a of the first metal wiring layer (two places in the figure in the vertical direction). is there.
  • the silicon pillar 204p1, the lower diffusion layer 202n, the upper diffusion layer 207n1, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn1, and the silicon pillar 204p2, the lower diffusion layer 202n, the upper diffusion layer 207n2, the gate insulating film 205, The gate electrode 206 constitutes the NMOS transistor Tn2, and the silicon pillar 204p3, the lower diffusion layer 202n, the upper diffusion layer 207n3, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn3, and the silicon pillar 204p4, the lower diffusion layer.
  • the 202n, the upper diffusion layer 207n4, the gate insulating film 205, and the gate electrode 206 constitute an NMOS transistor Tn4.
  • the electrode 206 constitutes the PMOS transistor Tp1, and the silicon pillar 204n2, the lower diffusion layer 202pa, the upper diffusion layer 207p2, the gate insulating film 205, and the gate electrode 206 constitute the PMOS transistor Tp2, and the silicon pillar 204n3 and the lower diffusion layer 202pb.
  • the upper diffusion layer 207p3, the gate insulating film 205, and the gate electrode 206 constitute a PMOS transistor Tp3, and the silicon pillar 204n4, the lower diffusion layer 202pb, the upper diffusion layer 207p4, the gate insulating film 205, and the gate electrode 206 constitute the PMOS transistor Tp4. Configure.
  • the gate wiring 206b is connected to the gate electrode 206 of the NMOS transistor Tn1 and the PMOS transistor Tp1, and the gate wiring 206a is connected to the gate electrode 206 of the PMOS transistor Tp1.
  • a gate wiring 206d is connected to the gate electrodes 206 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate wiring 206c is connected to the gate electrode 206 of the PMOS transistor Tp2.
  • a gate wiring 206f is connected to the gate electrode 206 of the NMOS transistor Tn3 and the PMOS transistor Tp3, and a gate wiring 206e is connected to the gate electrode 206 of the PMOS transistor Tp3.
  • a gate wiring 206h is connected to the gate electrode 206 of the NMOS transistor Tn4 and the PMOS transistor Tp4, and a gate wiring 206g is connected to the gate electrode 206 of the PMOS transistor Tp4.
  • the sources of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 serve as the lower diffusion layer 202n, and are connected to the wiring 213a of the first metal wiring layer through the silicide 203 and the contacts 212a (two upper and lower in the figure),
  • the wiring 213a of the first metal wiring layer is connected to the wiring 215a of the second metal wiring layer through the contact 214e, and the reference power source Vss is supplied to 215a.
  • the wiring 215a of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the upper diffusion layer 207n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 213b of the first metal wiring layer via the silicide 209n1 and the contact 210n1, and the wiring 213b of the first metal wiring layer becomes the output DECOUT0.
  • the upper diffusion layer 207n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 213b of the first metal wiring layer through the silicide 209n2 and the contact 210n2.
  • the upper diffusion layer 207n3 which is the drain of the NMOS transistor Tn3 is connected to the wiring 213b of the first metal wiring layer through the silicide 209n3 and the contact 210n3.
  • the upper diffusion layer 207n4 which is the drain of the NMOS transistor Tn4 is connected to the wiring 213b of the first metal wiring layer through the silicide 209n4 and the contact 210n4.
  • the upper diffusion layer 207p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 213b of the first metal wiring layer through the silicide 209p1 and the contact 210p1.
  • the drains of the NMOS transistors Tn1, Tn2, Tn3, Tn4 and the PMOS transistor Tp1 are commonly connected to the wiring 213b of the first metal wiring layer through the contacts.
  • the lower diffusion layer 202pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 203.
  • the upper diffusion layer 207p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 213d of the first metal wiring layer through the silicide 209p2 and the contact 210p2.
  • the upper diffusion layer 207p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 213d of the first metal wiring layer through the silicide 209p3 and the contact 210p3.
  • the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 213d of the first metal wiring layer.
  • the source of the PMOS transistor Tp3 is connected to the drain of the PMOS transistor Tp4 through the lower diffusion layer 202pb and the silicide region 203.
  • the upper diffusion layer 207p4 serving as the source of the PMOS transistor Tp4 is connected to the wiring 213c of the first metal wiring layer via the silicide 209p4 and the contact 210p4, and 213c is further connected to the second metal wiring layer via the contact 214p4.
  • the power supply Vcc is supplied to the wiring 215c.
  • the wiring 215c of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the gate wiring 206a to which any of the address selection signals XA0 to XA3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213e of the first metal wiring layer via the contact 211a.
  • the wiring 213e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction.
  • a contact 214a is arranged at one intersection of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA3 extending in the direction perpendicular to the row direction with respect to 213e, and the address selection signal XAh
  • a contact 214a is provided at the intersection of the wiring 215d of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 213e of the first metal wiring layer. That is, the address selection signal XA0 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this NOR decoder.
  • the address selection signals XA2 to XA3 are omitted, but are arranged in the same manner as XA0 and XA1, and further on the left side in a form perpendicular to the row direction.
  • a contact 214z is drawn by a broken line at the intersection of the wiring 215e of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 213e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115e of the second metal wiring layer that supplies the selection address signal XA1, the location of the fictitious contact, that is, the contact is provided at this location, is provided. Show.
  • the gate wiring 206d to which the address selection signal XB0 supplied by the second metal wiring layer is selectively input is connected to the first metal wiring layer wiring 213h via the contact 211b, and the address selection signal XB1 ⁇
  • the gate wiring 206c to which one of the second metal wiring layers supplying XB3 is input is connected to the wiring 213f of the first metal wiring layer through the contact 211c.
  • the wiring 213f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in a direction perpendicular to the row direction, and the wiring 213f of the first metal wiring layer or the wiring 213h of the first metal wiring layer
  • a contact 214b is provided at the intersection of the wiring 215b of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 213h of the first metal wiring layer.
  • the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder.
  • a contact 214z is drawn by a broken line at the intersection of the wiring 215f of the second metal wiring layer that supplies the address selection signal XB1 and the wiring 213f of the first metal wiring layer. There is no contact, and the location of the fictitious contact is shown.
  • the second metal wiring layer that supplies the address selection signals XB2 to XB3 is omitted for the sake of illustration, but it is the same as the second metal wiring layer address selection signal that supplies the address selection signals XB0 and XB1. Further, it is arranged on the left side in a direction perpendicular to the row direction.
  • the gate wiring 206e to which any of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213g of the first metal wiring layer through the contact 211d.
  • the wiring 213g of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213g of the first metal wiring layer.
  • a contact 214c is provided at the intersection of the wiring 215g of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 213g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder. Note that a contact 214z is drawn with a broken line at the intersection of the wiring 215h of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 213g of the first metal wiring layer. Here, no contact exists, and the location of a fictitious contact is shown.
  • the wiring of the second metal wiring layer that supplies the address selection signals XC2 to XC3 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XC0 and XC1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction.
  • the gate wiring 206g to which any one of the address selection signals XD0 to XD3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213i of the first metal wiring layer through the contact 211e.
  • the wiring 213i of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XD0 to XD3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213i of the first metal wiring layer.
  • a contact 214d is provided at the intersection of the wiring 215i of the second metal wiring layer that supplies the address selection signal XD0 and the wiring 213i of the first metal wiring layer. That is, the address selection signal XD0 is input to the gates of the NMOS transistor Tn4 and the PMOS transistor Tp4 of this NOR decoder.
  • a contact 214z is drawn with a broken line at the intersection of the wiring 215j of the second metal wiring layer that supplies the address selection signal XD1 and the wiring 213i of the first metal wiring layer. Here, no contact exists, and the location of an imaginary contact is shown.
  • the wiring of the second metal wiring layer that supplies the address selection signals XD2 to XD3 is omitted for the sake of illustration, but the wiring address selection of the second metal wiring layer that supplies the address selection signals XD0 and XD1 is omitted. Similar to the signal, it is arranged on the left side in the direction perpendicular to the row direction.
  • address selection signals XA0, XB0, XC0, and XD0 are input to this NOR type decoder, and the output is DECOUT0 according to FIG.
  • the NOR decoder BL211C is an area surrounded by a frame in the figure, and the vertical dimension Ly3 is 2.0 diffusion intervals which are dead spaces with respect to four vertical rows.
  • the power supply wiring, the reference power supply wiring, and the address selection signal line are the wiring of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 4 rows and 2 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction.
  • the NOR decoder having a reduced area can be arranged at the minimum pitch of the wiring of the second metal wiring layer. realizable.
  • 8 MOS transistors in 4 rows and 2 columns and reducing the number of diffusion intervals, the lateral direction can be reduced, and the area is further reduced.
  • FIG. 15 shows an eighth embodiment.
  • a row selection decoder in which a NOR type decoder 211k according to the seventh embodiment is combined and integrated with a first inverter 212 and a second inverter 213 is shown.
  • the NMOS transistor Tn11 and PMOS transistor Tp11 constituting the first inverter, and the PMOS transistor Tp12 and NMOS transistor Tn12 constituting the second inverter are in order from the top. Placed in.
  • the lower diffusion layer 202nb which is the source of the NMOS transistor Tn11, is commonly connected to the lower diffusion layer, which is the source of the NMOS transistor (Tn12) of the second inverter adjacent to the upper side (not shown), via the silicide layer 203.
  • the lower diffusion layer 202nc that is the source of Tn12 is commonly connected to the lower diffusion layer that is the source of the NMOS transistor (Tn11) of the first inverter adjacent to the lower side (not shown) via the silicide layer 203.
  • the lower diffusion layer 202 pc which is the source of the PMOS transistors Tp 11 and Tp 12 is also commonly connected through the silicide layer 203.
  • the upper diffusion layer 207n11 and the upper diffusion layer 207p11 which are the drains of the NMOS transistor Tn11 and the PMOS transistor Tp11 constituting the first inverter are respectively connected to the first metal wiring via the silicide 209n11 and the contact 210n11 or the silicide layer 209p11 and the contact 210p11.
  • the wiring 213j of the first metal wiring layer is commonly connected to the wiring 213j of the layer, and becomes the output of the first inverter.
  • the wiring 213b of the first metal wiring layer which is the output of the NOR decoder, is connected to the gate wiring 206i commonly connected to the gate electrodes of the NMOS transistor Tn11 and the PMOS transistor Tp11 via the gate wiring 206j.
  • the upper diffusion layer 207n12 and the upper diffusion layer 207p12 which are the drains of the NMOS transistor Tn12 and the PMOS transistor Tp12 constituting the second inverter are respectively connected to the first metal wiring via the silicide 209n12, the contact 210n12 or the silicide layer 209p12 and the contact 210p12.
  • the wiring 213k of the first metal wiring layer is commonly connected to the wiring 213k of the layer, and becomes the output WL1 of the row selection decoder.
  • the wiring 113j of the first metal wiring layer, which is the output of the first inverter is connected to the gate wiring 206k commonly connected to the gate electrodes of the NMOS transistor Tn12 and the PMOS transistor Tp12 via the gate wiring 206l.
  • Lower diffusion layer 202nb is connected to wiring 213a of the first metal wiring layer via silicide layer 203 and contact 212b, and further connected to wiring 215a of the second metal wiring layer via contact 214f.
  • the wiring 213a of the first metal wiring layer and the wiring 215a of the second metal wiring layer widely share the wiring of the NOR decoder (BL211C) of FIG.
  • Lower diffusion layer 202nc is connected to wiring 213a of the first metal wiring layer via silicide layer 203 and contact 212c, and further connected to wiring 215a of the second metal wiring layer via contact 214g.
  • the wiring 213a of the first metal wiring layer and the wiring 215a of the second metal wiring layer are shared with the NOR decoder (BL211C) of FIG.
  • the lower diffusion layer 202pc is connected to the wiring 213l of the first metal wiring layer via the silicide 203 and the contact 212d, and further connected to the wiring 215k of the second metal wiring layer via the contact 214h.
  • the power supply Vcc is supplied to the wiring 215k of the metal wiring layer.
  • the row selection decoder BL210C is an area surrounded by a frame in the figure, and the vertical dimension can be realized with the minimum Ly3.
  • NOR type decoder arranged in 4 rows and 2 columns, and a first inverter and a second inverter arranged in a vertical column are integrally arranged so that there is no useless area.
  • a row selection decoder with a reduced area can be provided.
  • the sources of the NMOS transistors and PMOS transistors of the first inverter and the second inverter share the lower diffusion layer and are arranged in a row, so that the inverter can be arranged with a minimum area.
  • only the row selection decoder is arranged.
  • the memory cell is reduced in size by connecting the SRAM cells in which the MOS transistors are arranged in two rows and three columns. The apparatus can be easily configured.
  • FIGS. 16a, 16b, 16c, 16d, 16e, 16f, 16g, and 16h show a ninth embodiment.
  • This embodiment is a NOR type decoder realizing the equivalent circuit shown in FIG. 12
  • FIG. 16a is a plan view of the layout (arrangement) of the NOR type decoder of the present invention
  • FIG. 16b is a cut line AA in FIG. 16c is a cross-sectional view along the cut line BB ′ in FIG. 16a
  • FIG. 16d is a cross-sectional view along the cut line CC ′ in FIG. 16a
  • FIG. 16a is a cross-sectional view along the cut line DD ′ in FIG. 16a
  • FIG. 16f is a cross-sectional view along the cut line EE ′ in FIG. 16a
  • FIG. 16g is a cross-sectional view along the cut line FF ′ in FIG.
  • FIGS. 16h show a cross-sectional view along the cut line GG ′ in FIG. 16a.
  • NMOS transistors Tn1, Tn2, Tn3 and Tn4 constituting a NOR decoder are arranged in one column (right side in the vertical direction in the figure), and similarly, PMOS transistors Tp1, Tp2, Tp3, and Tp4 are arranged in one row (left side in the vertical direction in the figure). That is, in the embodiment, the NMOS transistor Tn4 and the PMOS transistor Tp4 are arranged in the first row from the right side, the NMOS transistor Tn3 and the PMOS transistor Tp3 are arranged in the second row, and the NMOS transistor Tn2 and the PMOS transistor are arranged in the third row.
  • Tp2 is arranged, and NMOS transistor Tn1 and PMOS transistor Tp1 are arranged in the fourth row. Further, the direction of the source and drain of the transistor of this embodiment is arranged in the same manner as in the first embodiment. 16a, FIG. 16b, FIG. 16c, FIG. 16d, FIG. 16e, FIG. 16f, FIG. 16g, and FIG. 16h, parts having the same structure as FIG. .
  • Planar silicon layers 202n, 202pa, 202pb, 202pc are formed on an insulating film such as a buried oxide film layer (BOX) 201 formed on the substrate, and the planar silicon layers 202n, 202pa, 202pb, 202pc are impurity-implanted.
  • the n + diffusion layer, the p + diffusion layer, the p + diffusion layer, and the p + diffusion layer are respectively formed.
  • a silicide layer 203 is formed on the surface of the planar silicon layer (202n, 202pa, 202pb, 202pc), and connects the planar silicon layers 202n and 202pa.
  • 203 is arranged to cover the p + diffusion layers 202pb and 202pc, respectively.
  • 204p1, 204p2, 204p3, and 204p4 are p-type silicon pillars
  • 204n1, 204n2, 204n3, and 204n4 are n-type silicon pillars
  • 205 is a silicon pillar 204p1, 204p2, 204p3, 204p4, 204n1, 204n2, 204n3, and 204n4.
  • 206 are gate electrodes
  • 206a, 206b, 206c, 206d, 206e, 206f, 206g and 206h are gate wirings, respectively.
  • N + diffusion layers 207n1, 207n2, 207n3, and 207n4 are formed on the uppermost portions of the silicon pillars 204p1, 204p2, 204p3, and 204p4 by impurity implantation, respectively, and the uppermost portions of the silicon pillars 204n1, 204n2, 204n3, and 204n4 are respectively formed on the uppermost portions.
  • P + diffusion layers 207p1, 207p2, 207p3, and 207p4 are formed by impurity implantation or the like.
  • 208 is a silicon nitride film for protecting the gate insulating film 205, 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 are n + diffusion layers 207n1, 207n2, 207n3, 207n4, p + diffusion layers 207p1, 207p2, respectively.
  • Silicide layers 210n1, 210n2, 210n3, 210n4, 210p1, 210p2, 210p3, 210p4 connected to 207p3, 207p4 are silicide layers 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 and the first metal wiring Layer wirings 213k, 213a, 213a, 213a, 213d, 213d, 213j, and 213j, respectively, contacts 211a, gate wiring 206 And a contact connecting the wiring 213e of the first metal wiring layer, 211b a contact connecting the gate wiring 206c and the wiring 213f of the first metal wiring layer, and 211c a wiring 213h of the gate wiring 206d and the first metal wiring layer , 211d is a contact connecting the gate wiring 206e and the first metal wiring layer 213g, and 211e is a contact connecting the gate wiring 206g and the first metal wiring layer 213i.
  • 212a is a contact for connecting the silicide 203 connecting the lower diffusion layer 202n and the lower diffusion layer 202pa and the wiring 213b of the first metal wiring layer.
  • Reference numeral 212b denotes a contact for connecting the silicide layer 203 covering the lower diffusion layer 202pc and the wiring 213c of the first metal wiring layer.
  • the silicon pillar 204p1, the lower diffusion layer 202n, the upper diffusion layer 207n1, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn1, and the silicon pillar 204p2, the lower diffusion layer 202n, the upper diffusion layer 207n2, the gate insulating film 205, The gate electrode 206 constitutes the NMOS transistor Tn2, and the silicon pillar 204p3, the lower diffusion layer 202n, the upper diffusion layer 207n3, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn3, and the silicon pillar 204p4, the lower diffusion layer.
  • the upper diffusion layer 207p3, the gate insulating film 205, and the gate electrode 206 constitute a PMOS transistor Tp3, and the silicon pillar 204n4, the lower diffusion layer 202nc, the upper diffusion layer 207p4, the gate insulating film 205, and the gate electrode 206 constitute the PMOS transistor Tp4. Configure.
  • the gate wiring 206b is connected to the gate electrode 206 of the NMOS transistor Tn1 and the PMOS transistor Tp1, and the gate wiring 206a is connected to the gate electrode of the PMOS transistor Tp1.
  • a gate wiring 206d is connected to the gate electrodes 206 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate wiring 206c is connected to the gate electrode 206 of the PMOS transistor Tp2.
  • a gate wiring 206f is connected to the gate electrode 206 of the NMOS transistor Tn3 and the PMOS transistor Tp3, and a gate wiring 206e is connected to the gate electrode 206 of the PMOS transistor Tp3.
  • the gate wiring 206h is connected to the gate electrode 206 of the NMOS transistor Tn4 and the PMOS transistor Tp4, and the gate wiring 206g is connected to the gate electrode 206 of the PMOS transistor Tp4.
  • the lower diffusion layers 202n and 202pa serve as a common drain of the NMOS transistors Tn1, Tn2, Tn3, Tn4 and the PMOS transistor Tp1 through the silicide layer 203, and are connected to the wiring 213b of the first metal wiring layer through the contact 212a. DECOUT0.
  • the upper diffusion layer 207n1 which is the source of the NMOS transistor Tn1 is connected to the wiring 213k of the first metal wiring layer via the silicide 209n1 and the contact 210n1, and the wiring 213k of the first metal wiring layer is further connected to the wiring 214c1 via the contact 214n1.
  • the reference power supply Vss is supplied to the wiring 215a of the second metal wiring layer.
  • the upper diffusion layer 207n2 which is the source of the NMOS transistor Tn2 is connected to the wiring 213a of the first metal wiring layer extending along the column direction (vertical direction) via the silicide 209n2 and the contact 210n2,
  • the metal wiring layer wiring 213a is further connected to the second metal wiring layer wiring 215a through a contact 214n2.
  • the upper diffusion layer 207n3 that is the source of the NMOS transistor Tn3 is connected to the wiring 213a of the first metal wiring layer via the silicide 209n3 and the contact 210n3, and the wiring 213a of the first metal wiring layer is further connected to the wiring 214c via the contact 214n3. It is connected to the wiring 215a of the second metal wiring layer.
  • the upper diffusion layer 207n4 which is the source of the NMOS transistor Tn4 is connected to the wiring 213a of the first metal wiring layer via the silicide 209n4 and the contact 210n4, and the wiring 213a of the first metal wiring layer is further connected to the wiring 214c via the contact 214n4. It is connected to the wiring 215a of the second metal wiring layer.
  • the upper diffusion layer 207p1 which is the source of the PMOS transistor Tp1 is connected to the wiring 213d of the first metal wiring layer via the silicide 209p1 and the contact 210p1.
  • the upper diffusion layer 207p2 which is the drain of the PMOS transistor Tp2 is connected to the wiring 213d of the first metal wiring layer through the silicide 209p2 and the contact 210p2.
  • the source of the PMOS transistor Tp1 and the drain of the PMOS transistor Tp2 are connected via the wiring 213d of the first metal wiring layer.
  • the source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 through the lower diffusion layer 202pb and the silicide region 203, and the source of the PMOS transistor Tp3 is connected to the wiring 214j of the first metal wiring layer through the contact 210p3. Connected.
  • the upper diffusion layer 207p4 which is the drain of the PMOS transistor Tp4 is connected to the wiring 213j of the first metal wiring layer through the silicide 209p4 and the contact 210p4.
  • the source of the PMOS transistor Tp3 and the drain of the PMOS transistor Tp4 are connected via the wiring 213j of the first metal wiring layer.
  • the lower diffusion layer 202pc which is the source of the PMOS transistor Tp4 is connected to the wiring 213c of the first metal wiring layer via the silicide region 203 and the contact 212b, and 213c is further connected to the second metal via the contact 214e.
  • the power supply Vcc is supplied to the wiring 215c connected to the wiring 215c of the wiring layer.
  • the wiring 215c of the second metal wiring layer extends in a direction perpendicular to the row direction.
  • the gate wiring 206a to which any of the address selection signals XA0 to XA3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213e of the first metal wiring layer via the contact 211a.
  • the wiring 213e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction.
  • a contact 214a is arranged at one intersection of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA3 extending in the direction perpendicular to the row direction with respect to 213e, and the address selection signal XAh
  • a contact 214a is provided at the intersection of the wiring 215d of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 213e of the first metal wiring layer. That is, the address selection signal XA0 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this NOR decoder.
  • the wiring of the second metal wiring layer for supplying the address selection signals XA2 to XA3 is omitted, but it is arranged in the same manner as XA0 and XA1, and further on the left side in a form perpendicular to the row direction. Be placed.
  • a contact 214z is drawn by a broken line at the intersection of the wiring 215e of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 213e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115e of the second metal wiring layer that supplies the address selection signal XA1, the location of the fictitious contact in which a contact is provided here is provided. Show. Hereinafter, the same is true for the other portions.
  • the gate wiring 206d to which the address selection signal XB0 supplied by the wiring of the second metal wiring layer is selectively input (input only to the selected decoder) is connected to the first metal wiring layer via the contact 211c.
  • the gate wiring 206c connected to the wiring 213h and to which any one of the address selection signals XB1 to XB3 is input is connected to the wiring 213f of the first metal wiring layer through the contact 211b.
  • the wiring 213f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • a contact 214b is provided at the intersection of the wiring 215b of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 213h of the first metal wiring layer.
  • the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder.
  • a contact 214z is drawn by a broken line at the intersection of the wiring 215f of the second metal wiring layer that supplies the address selection signal XB1 and the wiring 213f of the first metal wiring layer, as described above.
  • no contact exists, and the location of a fictitious contact is shown.
  • the gate wiring 206e to which any of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213g of the first metal wiring layer through the contact 211d.
  • the wiring 213g of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213g of the first metal wiring layer.
  • a contact 214c is provided at the intersection of the wiring 215g of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 213g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
  • a contact 214z is drawn by a broken line at the intersection of the wiring 215h of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 213g of the first metal wiring layer. Here, no contact exists, and the location of an imaginary contact is shown.
  • the wiring of the second metal wiring layer that supplies the selection address signals XC2 to XC3 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XC0 and XC1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction.
  • the gate wiring 206g to which any one of the address selection signals XD0 to XD3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213i of the first metal wiring layer through the contact 211e.
  • the wiring 213i of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row.
  • the wiring of the second metal wiring layer that supplies the address selection signals XD0 to XD3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213i of the first metal wiring layer.
  • a contact 214d is provided at the intersection of the wiring 215i of the second metal wiring layer that supplies the address selection signal XD0 and the wiring 213i of the first metal wiring layer. That is, the address selection signal XD0 is input to the gates of the NMOS transistor Tn4 and the PMOS transistor Tp4 of this NOR decoder.
  • a contact 214z is drawn with a broken line at the intersection of the wiring 215j of the second metal wiring layer that supplies the address selection signal XD1 and the wiring 213i of the first metal wiring layer. Here, no contact exists, and the location of an imaginary contact is shown.
  • the wiring of the second metal wiring layer that supplies the address selection signals XD2 to XD3 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XD0 and XD1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction. According to the present embodiment, address selection signals XA0, XB0, XC0, and XD0 are input to the row selection decoder, and the output is WL0 according to FIG. Further, the NOR decoder BL211D is an area surrounded by a frame in the figure, and the vertical dimension Ly4 is 2.5 diffusion intervals.
  • the power supply wiring, the reference power supply wiring, and the address selection signal line are the wiring of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 4 rows and 2 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction Thus, it becomes possible to supply an arbitrary address selection signal to the input of the NOR decoder, and the NOR decoder having a reduced area can be arranged at the minimum pitch of the wiring of the second metal wiring layer. realizable.
  • the horizontal direction can be reduced, and the area is further reduced.
  • only the NOR type decoder is arranged.
  • the first inverter and the second inverter are arranged in one column to reduce the area.
  • a decoder can be easily configured.
  • FIGS. 17a, 17b, 17c, and 17d show a tenth embodiment in which the embodiment of FIG. 4 is arranged in a bulk CMOS process.
  • 17a is a plan view of the layout (arrangement) of the 3-input NOR decoder according to the present invention
  • FIG. 17b is a cross-sectional view along the cut line AA ′ in FIG. 17a
  • FIG. 17c is a cut line B in FIG.
  • FIG. 17d shows a cross-sectional view along the cut line CC ′ in FIG. 17a.
  • FIGS. 17a, 17b, 17c, and 17d portions having the same structure as those in FIGS. 4a, 4b, 4d, 4f, and 4i are denoted by the same reference numerals in the 100s.
  • FIGS. 17b, 17c, and 17d there are differences in the cross-sectional views of FIGS. 17b, 17c, and 17d.
  • reference numeral 150 denotes a p-type silicon substrate.
  • Reference numeral 160 denotes an insulator for element isolation (isolation).
  • Reference numeral 170 denotes an n ⁇ region which serves as a leakage preventing separation layer. Except for this p-type silicon substrate 150, the element isolation insulator 160, and the leak prevention isolation layer 170, the process and structure above the lower diffusion layer are exactly the same. Can be realized by a process.
  • the first to tenth embodiments have been described.
  • a typical configuration is described, and the type of NOR decoder, the combination with an inverter, and the like can be freely selected.
  • the row selection decoder of FIG. 9 may be replaced with the row selection decoder of FIG. 7, or the first and second inverters of FIG. 15 are adopted as the NOR type decoder of FIG. It may be configured.
  • the number of transistors constituting the decoder is minimized.
  • Modifications such as arranging a plurality of transistors in parallel for the purpose of increasing the operation speed of the NOR decoder or increasing the drive capability (current amount) of the inverter are included as design matters in the present invention. Further, providing a reset transistor for resetting the decoder or adding a standby (current cut) function is included in the design matters. On the other hand, in a design where the operation speed is not important, there is no problem in operation even if the first inverter and the second inverter are omitted and the output of the NOR decoder is directly used as the row selection signal. The configuration is included in the design matters.
  • the silicon column of the PMOS transistor is defined as n-type silicon and the NMOS silicon column is defined as a p-type silicon layer.
  • both the PMOS transistor and the NMOS transistor use a so-called neutral semiconductor that does not inject impurities into the silicon pillar, and the channel control, that is, the threshold values of the PMOS and NMOS are specific to the metal gate material.
  • the difference in work function (Work Function) is used.
  • the lower diffusion layer or the upper diffusion layer is covered with the silicide layer.
  • silicide is used to reduce the resistance, and other low-resistance materials may be used.
  • a generic term for metal compounds is defined as silicide.
  • the essence of the present invention is to reduce the area by commonly connecting the drains of the transistors connected to the output terminal via the lower diffusion layer, which is a feature of the SGT, in accordance with the pitch of the memory cells.
  • the area of the transistor connected to the output terminal is reduced by commonly connecting the drains of the transistors via the upper diffusion layer and the contact, and further, the power supply line, the reference power supply line, and the plurality of address selection lines input to the decoder
  • a decoder having a reduced area including the wiring region is provided.
  • the wiring method of the gate wiring, the wiring position, and the wiring method of the metal wiring The wiring positions and the like other than those shown in the drawings of this embodiment belong to the technical scope of the present invention.
  • Tp1, Tp2, Tp3, Tp4, Tp11, Tp12 P channel MOS transistors Tn1, Tn2, Tn3, Tn4, Tn11, Tn12: N channel MOS transistors 101, 201: buried oxide film layers 102pa, 102pb, 102pc, 102n, 202pa, 202pb, 202pc, 202n, 202nb, 202nc: planar silicon layer 103, 203: silicide layer 104p1, 104p2, 104p3, 104p4, 104p11, 104p12, 204p1, 204p2, 204p3, 204p4, 204p11, 204p12: p-type silicon pillar 104n1, 104n2, 104n3, 104n4, 104n11, 104n12, 204n1, 204n2, 204n3, 204n4, 204n11, 204n1 : N-type silicon pillars 105 and 205: gate insulating films

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

The purpose of the present invention is, using Surrounding Gate Transistors (SGT) which are vertical transistors, to provide a semiconductor device which configures a decoder circuit for memory selection and which occupies a small area. In a decoder circuit which is of a NOR-type configured using a plurality of MOS transistors disposed in a rows and b columns, the MOS transistors configuring the decoder circuit are formed upon a planar silicon layer formed upon a substrate, with drains, gates, and sources being disposed vertically. Said gates surround silicon columns, and said planar silicon layer comprises a first active area having a first conductivity type and a second active area having a second conductivity type, with the active areas being connected to each other through a silicide layer formed upon the planar silicon layer surface. Thus, a semiconductor device which configures a decoder circuit of a small area is provided.

Description

半導体装置Semiconductor device
 本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.
昨今、半導体集積回路は大規模化されており、最先端のMPU(Micro-processing Unit)では、トランジスタの数が1G(ギガ)個にも達する半導体チップが開発されており、従来の平面形成トランジスタ、いわゆるプレーナー型トランジスタは、非特許文献1に示されるように、PMOSを形成するN-well領域とNMOSを形成するP型シリコン基板(あるいはP-well領域)を完全に分離する必要があり、また、N-well領域およびP型シリコン基板には、それぞれ電位を与えるボディ端子が必要であり、さらに面積が大きくなる要因となっている。 In recent years, semiconductor integrated circuits have been scaled up, and in the state-of-the-art MPU (Micro-processing Unit), semiconductor chips with as many as 1G transistors have been developed. In so-called planar type transistors, as shown in Non-Patent Document 1, it is necessary to completely separate the N-well region for forming the PMOS and the P-type silicon substrate (or P-well region) for forming the NMOS, In addition, the N-well region and the P-type silicon substrate each need a body terminal for applying a potential, which is a factor of increasing the area.
この課題を解決する手段として、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲートが島状半導体層を取り囲む構造のSurrounding Gate Transistor(SGT)が提案され、SGTの製造方法、SGTを用いたCMOSインバータ、NAND回路あるいはSRAMセルが開示されている。例えば、特許文献1、特許文献2、特許文献3、特許文献4を参照。 As a means for solving this problem, a Surrounding Gate Transistor (SGT) having a structure in which a source, a gate, and a drain are arranged in a vertical direction with respect to a substrate and the gate surrounds an island-shaped semiconductor layer has been proposed. A CMOS inverter, a NAND circuit, or an SRAM cell using the above is disclosed. For example, see Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4.
特許第5130596号公報Japanese Patent No. 5130596 特許第5031809号公報Japanese Patent No. 5031809 特許第4756221号公報Japanese Patent No. 4756221 国際公開第2009/096465号International Publication No. 2009/096465
図18、図19a、図19b、図19c、図19d、図20に、従来のSGTを用いたスタティック型メモリセル(以下SRAMセルと称す)の回路図とレイアウト図を示す。
詳細は特許文献4、国際公開第2009/096465号に記載されているが、以下に簡単に説明する。
FIG. 18, FIG. 19a, FIG. 19b, FIG. 19c, FIG. 19d, and FIG. 20 show circuit diagrams and layout diagrams of static memory cells (hereinafter referred to as SRAM cells) using conventional SGTs.
Details are described in Patent Document 4 and International Publication No. 2009/096465, which will be briefly described below.
図18は、SRAMセルの回路図であり、Qp1、Qp2はPチャネルMOSトランジスタ(以下PMOSトランジスタと称す)Qn1,Qn2、Qn3、Qn4はNチャネルMOSトランジスタ(以下NMOSトランジスタと称す)、BLはビット線、BLBは反転ビット線、WLはワード線(行選択線)、Vccは電源、Vssは基準電源である。
図19aには、一例として、図18のSRAMセルをSGTで構成したレイアウトの平面図を示す。また、図19bには、図19aにおけるカットラインA-A’方向の断面図、図19cには、図19aにおけるカットラインB-B’方向の断面図、図19dには、図19aにおけるカットラインC-C’方向の断面図を示す。
図19aにおいて、図18のSRAMセルのNMOSトランジスタQn2、PMOSトランジスタQp2およびNMOSトランジスタQn4が1行目(図の上の行)、NMOSトランジスタQn3、PMOSトランジスタQp1およびNMOSトランジスタQn1が2行目(図の下の行)に、それぞれ図の左側より順番に配置されている。
FIG. 18 is a circuit diagram of an SRAM cell. Qp1 and Qp2 are P-channel MOS transistors (hereinafter referred to as PMOS transistors) Qn1, Qn2, Qn3 and Qn4 are N-channel MOS transistors (hereinafter referred to as NMOS transistors), and BL is a bit. A line, BLB is an inverted bit line, WL is a word line (row selection line), Vcc is a power supply, and Vss is a reference power supply.
FIG. 19a shows a plan view of a layout in which the SRAM cell of FIG. 19b is a cross-sectional view in the direction of cut line AA ′ in FIG. 19a, FIG. 19c is a cross-sectional view in the direction of cut line BB ′ in FIG. 19a, and FIG. 19d is a cut line in FIG. A cross-sectional view in the direction CC ′ is shown.
19a, the NMOS transistor Qn2, the PMOS transistor Qp2 and the NMOS transistor Qn4 of the SRAM cell of FIG. 18 are in the first row (upper row in the figure), and the NMOS transistor Qn3, the PMOS transistor Qp1 and the NMOS transistor Qn1 are in the second row (see FIG. 19a). Are arranged in order from the left side of the figure.
基板上に形成された埋め込み酸化膜層(BOX)1などの絶縁膜上に平面状シリコン層2pa、2pb、2na、2nb、2nc、2ndが形成され、不純物注入等により、2pa、2pbはそれぞれp+拡散層、2na、2nb、2nc、2ndはそれぞれn+拡散層から構成される。3は、平面状シリコン層(2pa、2pb、2na、2nb、2nc、2nd)の表面に形成されるシリサイド層であり、平面状シリコン層2nc、2pb、2ndを接続し、また、2nb、2pa、2naを接続する。
4n1、4n2はn型シリコン柱、4p1、4p2、4p3、4p4はp型シリコン柱、5はシリコン柱4n1、4n2、4p1、4p2、4p3、4p4を取り囲むゲート絶縁膜、6はゲート電極、6a、6b、6c、6dは、それぞれゲート配線である。シリコン柱4n1、4n2の最上部には、それぞれp+拡散層7p1、7p2が不純物注入等により形成され、シリコン柱4p1、4p2、4p3、4p4の最上部には、それぞれn+拡散層7n1、7n2、7n3、7n4が不純物注入等により形成される。8はゲート絶縁膜5を保護するためのシリコン窒化膜、9p1、9p2、9n1、9n2、9n3、9n4はそれぞれp+拡散層7p1、7p2、n+拡散層7n1、7n2、7n3、7n4に接続されるシリサイド層、10p1、10p2、10n1、10n2、10n3、10n4は、シリサイド層9p1、9p2、9n1、9n2、9n3、9n4と第1のメタル配線層の配線13c、13g、13a、13f、13e、13hとをそれぞれ接続するコンタクト、11aはゲート配線6aと第1のメタル配線層の配線13bを接続するコンタクト、11bはゲート配線6bと第1のメタル配線層の配線13dを接続するコンタクト、11cはゲート配線6cと第1のメタル配線層の配線13iを接続するコンタクト、11dはゲート配線6dと第1のメタル配線層の配線13jを接続するコンタクトである。
また、12aは、下部拡散層2nb、2paおよび2naを接続するシリサイド3と第1のメタル配線層の配線13dを接続するコンタクト、12bは、下部拡散層2nd、2pbおよび2ncを接続するシリサイド3と第1のメタル配線層の配線13bを接続するコンタクトである。
Planar silicon layers 2pa, 2pb, 2na, 2nb, 2nc, and 2nd are formed on an insulating film such as a buried oxide film layer (BOX) 1 formed on the substrate, and 2pa and 2pb are p + by impurity implantation or the like, respectively. The diffusion layers, 2na, 2nb, 2nc, and 2nd are each composed of an n + diffusion layer. 3 is a silicide layer formed on the surface of the planar silicon layer (2pa, 2pb, 2na, 2nb, 2nc, 2nd), which connects the planar silicon layers 2nc, 2pb, 2nd, and 2nb, 2pa, 2na is connected.
4n1, 4n2 are n-type silicon pillars, 4p1, 4p2, 4p3, 4p4 are p-type silicon pillars, 5 is a gate insulating film surrounding the silicon pillars 4n1, 4n2, 4p1, 4p2, 4p3, 4p4, 6 is a gate electrode, 6a, Reference numerals 6b, 6c, and 6d denote gate wirings. P + diffusion layers 7p1, 7p2 are formed on the uppermost portions of the silicon pillars 4n1, 4n2, respectively by impurity implantation, and n + diffusion layers 7n1, 7n2, 7n3 are formed on the uppermost portions of the silicon pillars 4p1, 4p2, 4p3, 4p4, respectively. 7n4 are formed by impurity implantation or the like. 8 is a silicon nitride film for protecting the gate insulating film 5, and 9p1, 9p2, 9n1, 9n2, 9n3, and 9n4 are silicides connected to p + diffusion layers 7p1, 7p2, n + diffusion layers 7n1, 7n2, 7n3, and 7n4, respectively. Layers 10p1, 10p2, 10n1, 10n2, 10n3, 10n4 include silicide layers 9p1, 9p2, 9n1, 9n2, 9n3, 9n4 and wirings 13c, 13g, 13a, 13f, 13e, 13h of the first metal wiring layer. 11a is a contact for connecting the gate wiring 6a and the wiring 13b of the first metal wiring layer, 11b is a contact for connecting the gate wiring 6b and the wiring 13d of the first metal wiring layer, and 11c is a gate wiring 6c. And a contact 11d for connecting the wiring 13i of the first metal wiring layer and a gate arrangement 11d. 6d and a contact for connecting the wires 13j of the first metal wiring layer.
Further, 12a is a contact connecting the silicide 3 connecting the lower diffusion layers 2nb, 2pa and 2na and the wiring 13d of the first metal wiring layer, and 12b is a silicide 3 connecting the lower diffusion layers 2nd, 2pb and 2nc. This is a contact for connecting the wiring 13b of the first metal wiring layer.
シリコン柱4n1、下部拡散層2pa、上部拡散層7p1、ゲート絶縁膜5、ゲート電極6により、PMOSトランジスタQp1を構成し、シリコン柱4n2、下部拡散層2pb、上部拡散層7p2、ゲート絶縁膜5、ゲート電極6により、PMOSトランジスタQp2を構成し、シリコン柱4p1、下部拡散層2na、上部拡散層7n1、ゲート絶縁膜5、ゲート電極6により、NMOSトランジスタQn1を構成し、シリコン柱4p2、下部拡散層2nc、上部拡散層7n2、ゲート絶縁膜5、ゲート電極6により、NMOSトランジスタQn2を構成し、シリコン柱4p3、下部拡散層2nb、上部拡散層7n3、ゲート絶縁膜5、ゲート電極6により、NMOSトランジスタQn3を構成し、シリコン柱4p4、下部拡散層2nd、上部拡散層7n4、ゲート絶縁膜5、ゲート電極6により、NMOSトランジスタQn4を構成する。 The silicon pillar 4n1, the lower diffusion layer 2pa, the upper diffusion layer 7p1, the gate insulating film 5, and the gate electrode 6 constitute the PMOS transistor Qp1, and the silicon pillar 4n2, the lower diffusion layer 2pb, the upper diffusion layer 7p2, the gate insulating film 5, The gate electrode 6 constitutes the PMOS transistor Qp2, and the silicon pillar 4p1, the lower diffusion layer 2na, the upper diffusion layer 7n1, the gate insulating film 5, and the gate electrode 6 constitute the NMOS transistor Qn1, and the silicon pillar 4p2 and the lower diffusion layer 2nc, the upper diffusion layer 7n2, the gate insulating film 5 and the gate electrode 6 constitute an NMOS transistor Qn2, and the silicon pillar 4p3, the lower diffusion layer 2nb, the upper diffusion layer 7n3, the gate insulating film 5 and the gate electrode 6 constitute an NMOS transistor. Qn3, silicon pillar 4p4, lower diffusion layer 2nd, Part diffusion layer 7N4, the gate insulating film 5, the gate electrode 6 constitute a NMOS transistor Qn4.
また、PMOSトランジスタQp1とNMOSトランジスタQn1のゲート電極6にはゲート配線6aが接続され、PMOSトランジスタQp2のゲート電極6とNMOSトランジスタQn2のゲート電極6にはゲート配線6bが接続され、NMOSトランジスタQnn3のゲート電極6にはゲート配線6cが接続され、NMOSトランジスタQn4のゲート電極6にはゲート配線6dが接続される。 The gate wiring 6a is connected to the gate electrode 6 of the PMOS transistor Qp1 and the NMOS transistor Qn1, the gate wiring 6b is connected to the gate electrode 6 of the PMOS transistor Qp2 and the gate electrode 6 of the NMOS transistor Qn2, and the NMOS transistor Qnn3 A gate line 6c is connected to the gate electrode 6, and a gate line 6d is connected to the gate electrode 6 of the NMOS transistor Qn4.
下部拡散層2pa、2na、2nbはシリサイド3を介してPMOSトランジスタQp1、Qn1、Qn3の共通ドレインとなり、コンタクト12aを介して第1のメタル配線層の配線13dに接続され、さらに、コンタクト11bを介してゲート電極6bに接続される。同様に、下部拡散層2pb、2nc、2ndはシリサイド3を介してPMOSトランジスタQp2、Qn2、Qn4の共通ドレインとなり、コンタクト12bを介して第1のメタル配線層の配線13bに接続され、さらに、コンタクト11aを介してゲート電極6aに接続される。
PMOSトランジスタQp1、Qp2のソースである上部拡散層7p1、7p2は、それぞれシリサイド層9p1、9p2およびコンタクト10p1、10p2を介して、それぞれ第1のメタル配線層の配線13c、13gに接続され、さらに、コンタクト14p1、14p2を介して第2のメタル配線層の配線15aに接続され、第2のメタル配線層の配線15aには電源Vccが供給される。
NMOSトランジスタQn1およびQn2のソースである上部拡散層7n1および7n2は、それぞれシリサイド層9n1、9n2、コンタクト10n1、10n2を介して第1のメタル配線層の配線13a、13fに接続され、第1のメタル配線層の配線13a、13fには基準電源Vssが供給される。
The lower diffusion layers 2pa, 2na, and 2nb become common drains of the PMOS transistors Qp1, Qn1, and Qn3 through the silicide 3, are connected to the wiring 13d of the first metal wiring layer through the contact 12a, and are further connected through the contact 11b. To the gate electrode 6b. Similarly, the lower diffusion layers 2pb, 2nc, and 2nd become common drains of the PMOS transistors Qp2, Qn2, and Qn4 through the silicide 3, and are connected to the wiring 13b of the first metal wiring layer through the contact 12b. 11a is connected to the gate electrode 6a.
The upper diffusion layers 7p1 and 7p2 which are the sources of the PMOS transistors Qp1 and Qp2 are connected to the wirings 13c and 13g of the first metal wiring layer through the silicide layers 9p1 and 9p2 and the contacts 10p1 and 10p2, respectively. It is connected to the wiring 15a of the second metal wiring layer via the contacts 14p1 and 14p2, and the power supply Vcc is supplied to the wiring 15a of the second metal wiring layer.
Upper diffusion layers 7n1 and 7n2 which are sources of NMOS transistors Qn1 and Qn2 are connected to wirings 13a and 13f of the first metal wiring layer via silicide layers 9n1 and 9n2 and contacts 10n1 and 10n2, respectively. The reference power supply Vss is supplied to the wirings 13a and 13f in the wiring layer.
NMOSトランジスタQn3のソースである上部拡散層7n3は、シリサイド層9n3、コンタクト10n3を介して第1のメタル配線層の配線13eに接続され、さらにコンタクト14n3を介して第2のメタル配線層の配線15bに接続され、第2のメタル配線層の配線15bはビット線BLとなる。また、NMOSトランジスタQn4のソースである上部拡散層7n4は、シリサイド層9n4、コンタクト10n4を介して第1のメタル配線層の配線13hに接続され、さらにコンタクト14n4を介して第2のメタル配線層の配線15cに接続され、第2のメタル配線層の配線15cは反転ビット線BLBとなる。また、NMOSトランジスタQn3、Qn4のゲート電極6は、それぞれゲート配線6c、6dに接続される。ゲート配線6dは、図19dに示すように、コンタク11d、第1のメタル配線層の配線13j、コンタクト14b、第2のメタル配線層の配線15e、コンタクト16bを介して第3メタル配線17に接続され、第3メタル配線17は、ワード線(行選択信号)WLとなる。同様に、ゲート配線6cは、コンタク11c、第1のメタル配線層の配線13i、コンタクト14a、第2のメタル配線層の配線15d、コンタクト16aを介して第3メタル配線17に接続される。
以上により、図19aに示すように、PMOSトランジスタQp1、Qp2、NMOSトランジスタQn1、Qn2、Qn3、Qn4を2行3列の最小寸法で図18のSRAMセルが提供できる。
なお、細線枠で囲まれたブロックSRAMがユニットセルの単位であり、高さ方向は寸法Ly1となる。
The upper diffusion layer 7n3 which is the source of the NMOS transistor Qn3 is connected to the wiring 13e of the first metal wiring layer via the silicide layer 9n3 and the contact 10n3, and further to the wiring 15b of the second metal wiring layer via the contact 14n3. And the wiring 15b of the second metal wiring layer becomes the bit line BL. The upper diffusion layer 7n4 which is the source of the NMOS transistor Qn4 is connected to the wiring 13h of the first metal wiring layer via the silicide layer 9n4 and the contact 10n4, and further to the second metal wiring layer via the contact 14n4. The wiring 15c of the second metal wiring layer connected to the wiring 15c becomes the inverted bit line BLB. The gate electrodes 6 of the NMOS transistors Qn3 and Qn4 are connected to gate wirings 6c and 6d, respectively. As shown in FIG. 19d, the gate wiring 6d is connected to the third metal wiring 17 via the contact 11d, the first metal wiring layer wiring 13j, the contact 14b, the second metal wiring layer wiring 15e, and the contact 16b. Then, the third metal wiring 17 becomes a word line (row selection signal) WL. Similarly, the gate wiring 6c is connected to the third metal wiring 17 through the contact 11c, the wiring 13i of the first metal wiring layer, the contact 14a, the wiring 15d of the second metal wiring layer, and the contact 16a.
Thus, as shown in FIG. 19a, the SRAM cell of FIG. 18 can be provided with the PMOS transistors Qp1 and Qp2 and the NMOS transistors Qn1, Qn2, Qn3, and Qn4 having the minimum dimensions of 2 rows and 3 columns.
The block SRAM surrounded by the thin line frame is a unit cell unit, and the height direction is the dimension Ly1.
図20には、SRAMセルをマトリックス状に配置したSRAMセルアレイを示す。便宜上、M(0,0)M(1,0)、M(0,1)、M(1,1)の4つのSRAMセルを配置する。図20から明らかなように、このSRAMセルは、2行3列を最小単位として、隙間なく配置ができ、最小面積でSRAMセルアレイが提供できる。 FIG. 20 shows an SRAM cell array in which SRAM cells are arranged in a matrix. For convenience, four SRAM cells of M (0,0) M (1,0), M (0,1), and M (1,1) are arranged. As is apparent from FIG. 20, this SRAM cell can be arranged without gaps with 2 rows and 3 columns as a minimum unit, and an SRAM cell array can be provided with a minimum area.
SGTを用いたSRAMは、PMOSトランジスタ、NMOSトランジスタが構造上完全に分離されており、プレーナトランジスタのように、well分離が必要なく、さらに、シリコン柱はフローティングボディとなるため、プレーナトランジスタのように、wellへ電位を供給するボディ端子も必要なく、非常にコンパクトにレイアウト(配置)ができることが特徴である。 In an SRAM using SGT, a PMOS transistor and an NMOS transistor are completely separated from each other in structure. Well isolation is not necessary unlike a planar transistor, and a silicon pillar is a floating body. The body terminal for supplying the potential to the well is not necessary, and the layout (arrangement) can be very compact.
上述したように、SGTの最大の特徴は、構造原理的に、シリコン柱下部の基板側に存在するシリサイド層による下層配線と、シリコン柱上部のコンタクト接続による上部配線が利用できる点にある。本発明は、このSGTの特徴を利用して、2行に配置されたSRAMセルに合わせた行選択デコーダを構成するSGTをa行b列に並べることによりコンパクトに配置し、面積を最小にした、低価格な半導体装置を提供することが目的である。 As described above, the greatest feature of the SGT is that, in terms of structural principle, the lower layer wiring by the silicide layer existing on the substrate side under the silicon pillar and the upper wiring by contact connection at the upper part of the silicon pillar can be used. The present invention makes use of the characteristics of this SGT to arrange the SGTs constituting the row selection decoder in accordance with the SRAM cells arranged in two rows in a row and b columns, thereby arranging them compactly and minimizing the area. An object is to provide a low-cost semiconductor device.
(1)本発明によれば、ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを備え、少なくとも、a×b個の前記MOSトランジスタを基板上にa行b列に配列することによりデコーダ回路を構成する半導体装置であって、
 前記複数のMOSトランジスタの各々は、
  シリコン柱と、
  前記シリコン柱の側面を取り囲む絶縁体と、
  前記絶縁体を囲むゲートと、
  前記シリコン柱の上部又は下部に配置されるソース領域と、
  前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
 前記デコーダ回路は、少なくとも、
  第1~第nのn個のPチャネルの前記MOSトランジスタと
  第1~第nのn個のNチャネルの前記MOSトランジスタと
で構成され、
 前記第1~第nのPチャネルのMOSトランジスタおよび前記第1~第nのNチャネルのMOSトランジスタは、第k(k=1~n)のPチャネルのMOSトランジスタと第kのNチャネルのMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、、
 前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
 前記第1~第nのPチャネルのMOSトランジスタのうちの第s(s=1~n-1)のPチャネルのMOSトランジスタのソースと第s+1のPチャネルのMOSトランジスタのドレインは互いに接続されており、
 前記第1~第nのNチャネルのMOSトランジスタのソースは、各々、基準電源線に接続され、前記第nのPチャネルのMOSトランジスタのソースは、電源線に接続され、
前記n組のトランジスタ対の各々の、MOSトランジスタのゲートには、入力信号線の少なくとも1つの組の各々についてそれぞれ1つの入力信号線が接続され、
 前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、同一方向に延在することを特徴とする半導体装置が提供される。
(1) According to the present invention, a source, a drain, and a gate are provided with a plurality of MOS transistors arranged hierarchically in a direction perpendicular to the substrate, and at least a × b MOS transistors are provided on the substrate. A semiconductor device that constitutes a decoder circuit by arranging in rows and columns,
Each of the plurality of MOS transistors includes:
Silicon pillars,
An insulator surrounding a side surface of the silicon pillar;
A gate surrounding the insulator;
A source region disposed above or below the silicon pillar;
A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
The decoder circuit is at least
1st to n-th n P-channel MOS transistors and 1st to n-th n-channel MOS transistors,
The first to n-th P-channel MOS transistors and the first to n-th N-channel MOS transistors are k-th (k = 1 to n) P-channel MOS transistors and k-th N-channel MOS transistors. N gates of transistors are connected to each other to form n transistor pairs;
The drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are disposed on the substrate side from the silicon pillar, and the first to n-th N-channel MOS transistors The drain regions of the first P-channel MOS transistors are connected to each other via a silicide region;
Of the first to nth P-channel MOS transistors, the source of the s (s = 1 to n−1) th P-channel MOS transistor and the drain of the s + 1th P-channel MOS transistor are connected to each other. And
The sources of the first to nth N-channel MOS transistors are each connected to a reference power supply line, and the sources of the nth P-channel MOS transistors are connected to a power supply line,
One input signal line for each of at least one set of input signal lines is connected to the gates of the MOS transistors of each of the n pairs of transistors,
At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in the same direction, and a semiconductor device is provided.
(2)本発明の好ましい態様では、前記第1~第nのNチャネルのMOSトランジスタは、1行n列に配置され、
 前記第1~第nのPチャネルのMOSトランジスタは、1行n列に配置され、
 前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直方向に延在する。
(2) In a preferred aspect of the present invention, the first to nth N-channel MOS transistors are arranged in 1 row and n column,
The first to nth P-channel MOS transistors are arranged in one row and n column,
At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
(3)また、別の態様では、前記第1~第nのNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
 前記基準電源線は、前記第2のメタル配線層により構成され、
 前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続される。
(3) In another aspect, the sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer,
The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
The reference power line is constituted by the second metal wiring layer,
The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
The source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
(4)さらに、別の態様では、前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続される。 (4) Further, in another aspect, at least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is: The wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
(5)また、別の態様では、前記デコーダ回路は、第1のインバータと第2のインバータをさらに備え、
 前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
 前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
 前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
 前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
 前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、前記第1のインバータの入力に接続され、
 前記第1のインバータの出力配線が、前記第2のインバータの入力配線に接続され、前記第2のインバータの出力がデコーダ回路の出力となる。
(5) In another aspect, the decoder circuit further includes a first inverter and a second inverter,
The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in the direction perpendicular to the row direction. ,
The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
The drain regions of the first to nth N-channel MOS transistors and the first P-channel MOS transistors are connected to the input of the first inverter,
The output wiring of the first inverter is connected to the input wiring of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
(6)また、別の態様では、前記第1~第nのNチャネルのMOSトランジスタは、n行1列に配置され、
 前記第1~第nのPチャネルのMOSトランジスタは、n行1列に配置され、
 前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直な方向に延在する。
(6) In another aspect, the first to nth N-channel MOS transistors are arranged in n rows and 1 column,
The first to nth P-channel MOS transistors are arranged in n rows and 1 column,
At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
(7)また、別の態様では、前記第1~第nのNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
 前記基準電源線は、前記第2のメタル配線層により構成され、
 前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続される。
(7) In another aspect, the sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer,
The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
The reference power line is constituted by the second metal wiring layer,
The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
The source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
(8)さらに、別の態様では、前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続される。 (8) Furthermore, in another aspect, at least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gates of the MOS transistors of each of the n sets of transistor pairs are: The wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
(9)また、別の態様では、前記デコーダ回路は、第1のインバータと第2のインバータとをさらに備え、
 前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
 前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
 前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
 前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
 前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、前記第1のインバータの入力ゲートに接続され、
 前記第1のインバータの出力配線が、前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力が、前記デコーダ回路の出力となる。
(9) In another aspect, the decoder circuit further includes a first inverter and a second inverter,
The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in a direction perpendicular to the row direction. ,
The drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are connected to the input gate of the first inverter,
The output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
(10)また、本発明によれば、ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを備え、少なくとも、a×b個の前記MOSトランジスタを基板上にa行b列に配列することによりデコーダ回路を構成する半導体装置であって、
 前記複数のMOSトランジスタの各々は、
  シリコン柱と、
  前記シリコン柱の側面を取り囲む絶縁体と、
  前記絶縁体を囲むゲートと、
  前記シリコン柱の上部又は下部に配置されるソース領域と、
  前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
 前記デコーダ回路は、少なくとも、
  第1~第nのn個のPチャネルの前記MOSトランジスタと
  第1~第nのn個のNチャネルの前記MOSトランジスタと
で構成され、
 前記第1~第nのPチャネルMOSトランジスタおよび前記第1~第nのNチャネルのMOSトランジスタは、第k(k=1~n)のPチャネルのMOSトランジスタと第kのNチャネルのMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、
 前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのソース領域はシリコン柱より基板側に配置されており、前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルMOSトランジスタのドレイン領域が、コンタクトを介して互いに接続されており、
 前記第1~第nのPチャネルのMOSトランジスタのうちの第s(s=1~n-1)のPチャネルのMOSトランジスタのソースと第s+1のPチャネルのMOSトランジスタのドレインは互いに接続されており、
 前記第1~第nのNチャネルのMOSトランジスタのソースは、各々、基準電源線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、電源線に接続され、
 前記n組のトランジスタ対の各々の、MOSトランジスタのゲートには、入力信号線の少なくとも1つの組の各々についてそれぞれ1つの入力信号線が接続され、
 前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、同一方向に延在することを特徴とする半導体装置が提供される。
(10) According to the invention, the source, drain, and gate include a plurality of MOS transistors arranged hierarchically in a direction perpendicular to the substrate, and at least a × b MOS transistors are arranged on the substrate. A semiconductor device that constitutes a decoder circuit by arranging in a rows and b columns,
Each of the plurality of MOS transistors includes:
Silicon pillars,
An insulator surrounding a side surface of the silicon pillar;
A gate surrounding the insulator;
A source region disposed above or below the silicon pillar;
A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
The decoder circuit is at least
1st to n-th n P-channel MOS transistors and 1st to n-th n-channel MOS transistors,
The first to n-th P-channel MOS transistors and the first to n-th N-channel MOS transistors are k-th (k = 1 to n) P-channel MOS transistors and k-th N-channel MOS transistors. Are connected to each other to form n transistor pairs,
Source regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are disposed on the substrate side from the silicon pillar, and the first to n-th N-channel MOS transistors The drain regions of the first P-channel MOS transistors are connected to each other through a contact;
Of the first to nth P-channel MOS transistors, the source of the s (s = 1 to n−1) th P-channel MOS transistor and the drain of the s + 1th P-channel MOS transistor are connected to each other. And
Sources of the first to nth N-channel MOS transistors are respectively connected to a reference power supply line,
A source of the n-th P-channel MOS transistor is connected to a power line;
One input signal line for each of at least one set of input signal lines is connected to the gates of the MOS transistors of each of the n pairs of transistors,
At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in the same direction, and a semiconductor device is provided.
(11)本発明の、別の好ましい態様では、前記第1~第nのPチャネルのMOSトランジスタは、1行n列に配置され、
 前記第1~第nのNチャネルのMOSトランジスタは、1行n列に配置され、
 前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直方向に延在する。
(11) In another preferred aspect of the present invention, the first to nth P-channel MOS transistors are arranged in 1 row and n column,
The first to nth N-channel MOS transistors are arranged in 1 row and n column,
At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
(12)また、別の態様では、前記第1~第nのNチャネルのMOSトランジスタのソースは、前記行方向に平行な方向に延在する第1のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
 前記基準電源線は、前記第2のメタル配線層により構成され、
 前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続される。
(12) In another aspect, a source of the first to nth N-channel MOS transistors is connected to a wiring of a first metal wiring layer extending in a direction parallel to the row direction,
The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
The reference power line is constituted by the second metal wiring layer,
The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
The source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
(13)また、別の態様では、前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続される。 (13) In another aspect, at least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gates of the MOS transistors of each of the n sets of transistor pairs are: The wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
(14)また、別の態様では、前記デコーダ回路が列方向に複数個配置され、
 前記基準電源線が接続される、隣接する前記デコーダ回路の隣接するNチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続され、および/または、前記電源線が接続される、隣接する前記デコーダ回路の隣接するPチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続される。
(14) In another aspect, a plurality of the decoder circuits are arranged in a column direction,
Source regions of adjacent N-channel MOS transistors of adjacent decoder circuits to which the reference power supply line is connected are commonly connected via a silicide region and / or adjacent to which the power supply line is connected. The source regions of adjacent P-channel MOS transistors of the decoder circuit are commonly connected via a silicide region.
(15)また、別の態様では、前記デコーダ回路は、第1のインバータと第2のインバータとを具備し、
 前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
 前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
 前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
 前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
 前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルMOSトランジスタのドレイン領域が、前記第1のインバータの入力ゲートに接続され、
 前記第1のインバータの出力配線が、前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力が前記デコーダ回路の出力となる。
(15) In another aspect, the decoder circuit comprises a first inverter and a second inverter,
The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in the direction perpendicular to the row direction. ,
The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
The drain regions of the first to nth N-channel MOS transistors and the first P-channel MOS transistor are connected to the input gate of the first inverter,
The output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
(16)また、別の態様では、前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタとで構成され、
 前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタとで構成され、
 前記第1~第nのNチャネルのMOSトランジスタと前記第n+1のNチャネルのMOSトランジスタのソース領域および前記第n+2のNチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続されて第1のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタと前記第n+1のPチャネルのMOSトランジスタのソース領域および前記第n+2のPチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続されて第1のメタル配線層の配線に接続され、
 前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
 前記基準電源線は、前記第2のメタル配線層により構成され、
 前記第1~第nのNチャネルのMOSトランジスタと前記第n+1のNチャネルのMOSトランジスタおよび前記第n+2のNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタと前記第n+1のNチャネルのMOSトランジスタおよび前記第n+2のNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタと前記第n+1のPチャネルのMOSトランジスタおよび前記第n+2のPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタと前記第n+1のPチャネルのMOSトランジスタおよび前記第n+2のPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続される。
(16) In another aspect, the first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor.
The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
The source regions of the first to nth N-channel MOS transistors and the n + 1th N-channel MOS transistor and the source regions of the n + 2 N-channel MOS transistors are connected in common via a silicide region. Connected to the wiring of one metal wiring layer,
The source region of the n-th P-channel MOS transistor, the n + 1-th P-channel MOS transistor, and the source region of the n + 2-th P-channel MOS transistor are connected in common via a silicide region to form a first metal. Connected to the wiring in the wiring layer,
The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
The reference power line is constituted by the second metal wiring layer,
The sources of the first to nth N-channel MOS transistors, the (n + 1) th N-channel MOS transistor, and the (n + 2) th N-channel MOS transistor are the first to n-th N-channel MOS transistors and the source Wiring of the second metal wiring layer constituting the reference power supply line via the wiring of the first metal wiring layer to which the sources of the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are connected Connected to
The sources of the nth P channel MOS transistor, the (n + 1) th P channel MOS transistor, and the (n + 2) th P channel MOS transistor are the nth P channel MOS transistor and the (n + 1) th P channel MOS transistor. The MOS transistor and the n + 2 P-channel MOS transistor are connected to the wiring of the second metal wiring layer constituting the power supply line through the wiring of the first metal wiring layer to which the source of the MOS transistor is connected.
(17)また、別の態様では、前記第1~第nのPチャネルのMOSトランジスタは、n行1列に配置され、
 前記第1~第nのNチャネルのMOSトランジスタは、n行1列に配置され、
 前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直な方向に延在する。
(17) In another aspect, the first to nth P-channel MOS transistors are arranged in n rows and 1 column,
The first to nth N-channel MOS transistors are arranged in n rows and 1 column,
At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
(18)また、別の態様では、前記第1~第nのNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
 前記基準電源線は、前記第2のメタル配線層により構成され、
 前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
 前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続される。
(18) In another aspect, the sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer,
The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
The reference power line is constituted by the second metal wiring layer,
The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
The source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. Connected to the layer wiring.
(19)また、別の態様では、前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続される。 (19) In another aspect, at least one set of input signal lines of the input signal lines is configured by a second metal wiring layer, and the gates of the MOS transistors in each of the n sets of transistor pairs are: The wiring of the first metal wiring layer extending in the row direction is connected to the wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines.
(20)また、別の態様では、前記デコーダ回路は、第1のインバータと第2のインバータとをさらに備え、
 前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
 前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
 前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
 前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
 前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、前記第1のインバータの入力ゲートに接続され、
 前記第1のインバータの出力配線が、前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力が、前記デコーダ回路の出力となる。
(20) In another aspect, the decoder circuit further includes a first inverter and a second inverter,
The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in a direction perpendicular to the row direction. ,
The drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are connected to the input gate of the first inverter,
The output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit.
(21)また、別の態様では、前記第1のインバータは、少なくとも、第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタとで構成され、
 前記第2のインバータは、少なくとも、第n+2のPチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタとで構成され、
 前記第n+1のNチャネルのMOSトランジスタと前記第n+2のNチャネルのMOSトランジスタのソース領域がシリサイド領域を介して共通接続されて基準電源に接続される、あるいは、前記第n+1のPチャネルのMOSトランジスタと前記第n+2のPチャネルのMOSトランジスタのソース領域がシリサイド領域を介して共通接続されて電源線に接続される。
(21) In another aspect, the first inverter includes at least an (n + 1) th P-channel MOS transistor and an (n + 1) th N-channel MOS transistor.
The second inverter includes at least an n + 2 P-channel MOS transistor and an n + 2 N-channel MOS transistor,
Source regions of the (n + 1) th n-channel MOS transistor and the (n + 2) th n-channel MOS transistor are commonly connected via a silicide region and connected to a reference power supply, or the (n + 1) th n-channel MOS transistor And the source region of the n + 2 P-channel MOS transistor are commonly connected via a silicide region and connected to a power supply line.
(22)本発明によれば、ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを、基板上に配列することによりスタティック型メモリを構成する半導体装置であって、
 少なくとも6個の前記MOSトランジスタが、基板上に形成された絶縁膜上に配列されたスタティック型メモリセルが行列状に複数配置され、
 前記メモリセルの1つの行線を指定する複数の行アドレス回路と、
 前記複数の行アドレス回路からの信号により、前記スタティック型メモリセルの1つの行を選択する複数の行デコーダを備え、
 前記スタティック型メモリセルを構成する6個の前記MOSトランジスタと、
 前記行デコーダを構成する複数の前記MOSトランジスタの各々は、
  シリコン柱と、
  前記シリコン柱の側面を取り囲む絶縁体と、
  前記絶縁体を囲むゲートと、
  前記シリコン柱の上部又は下部に配置されるソース領域と、
  前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
 前記スタティック型メモリセルを構成する前記6個のMOSトランジスタは、2行3列に配置され、
 前記行デコーダ回路は、少なくとも、
  1行n列に配置されたn個のPチャネルの前記MOSトランジスタと
  1行n列に配置されたn個のNチャネルの前記MOSトランジスタと
  第1のインバータと第2のインバータにより構成され、
 前記n個のPチャネルのMOSトランジスタおよび前記n個のNチャネルのMOSトランジスタ々は、前記1行n列に配置されたn個のPチャネルのMOSトランジスタの第k列目(k=1~n)のPチャネルのMOSトランジスタと前記1行n列に配置されたn個のNチャネルのMOSトランジスタの第k列目のNチャネルMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、
 前記n個のNチャネルのMOSトランジスタと第1列目の前記PチャネルのMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記n個のNチャネルのMOSトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
 第s列目(s=1~n-1)の前記PチャネルのMOSトランジスタのソースと第s+1列目の前記PチャネルのMOSトランジスタのドレインは互いに接続されており、
 前記n個のNチャネルMOSトランジスタのソースは、各々、前記行方向と垂直方向に延在した基準電源線に接続され、第n列目の前記PチャネルMOSトランジスタのソースは、前記行方向と垂直方向に延在した電源線に接続され、
 前記n個のトランジスタ対の各々のMOSトランジスタのゲートに入力される入力信号は、各々、前記行方向と垂直方向に延在した配線により供給されており、
 前記n個のNチャネルのMOSトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレインが前記第1のインバータの入力ゲートに接続され、前記第1のインバータの出力配線が前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力配線が、前記スタティック型メモリセルの行選択線に接続されることを特徴とする半導体装置が提供される。
(22) According to the present invention, in a semiconductor device constituting a static memory by arranging, on a substrate, a plurality of MOS transistors whose sources, drains and gates are arranged hierarchically in a direction perpendicular to the substrate. There,
A plurality of static memory cells in which at least six MOS transistors are arranged on an insulating film formed on a substrate are arranged in a matrix,
A plurality of row address circuits for designating one row line of the memory cells;
A plurality of row decoders for selecting one row of the static memory cell by signals from the plurality of row address circuits;
6 MOS transistors constituting the static memory cell;
Each of the plurality of MOS transistors constituting the row decoder is
Silicon pillars,
An insulator surrounding a side surface of the silicon pillar;
A gate surrounding the insulator;
A source region disposed above or below the silicon pillar;
A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
The six MOS transistors constituting the static memory cell are arranged in two rows and three columns,
The row decoder circuit includes at least
N P-channel MOS transistors arranged in one row and n columns, n N-channel MOS transistors arranged in one row and n columns, a first inverter, and a second inverter,
The n P-channel MOS transistors and the n N-channel MOS transistors are the k-th column (k = 1 to n) of the n P-channel MOS transistors arranged in the first row and the n-th column. ) And the gates of the k-th N-channel MOS transistors of the n N-channel MOS transistors arranged in the first row and the n-th column are connected to each other. Form the
The drain regions of the n N-channel MOS transistors and the first column of the P-channel MOS transistors are arranged on the substrate side from the silicon pillar, and the n N-channel MOS transistors and the first column of the first column are disposed. The drain regions of the P-channel MOS transistors of the eyes are connected to each other via a silicide region,
The source of the P-channel MOS transistor in the s-th column (s = 1 to n−1) and the drain of the P-channel MOS transistor in the s + 1-th column are connected to each other,
The sources of the n N-channel MOS transistors are respectively connected to a reference power supply line extending in the direction perpendicular to the row direction, and the source of the P-channel MOS transistor in the nth column is perpendicular to the row direction. Connected to the power line extending in the direction,
The input signals input to the gates of the MOS transistors of the n transistor pairs are respectively supplied by wirings extending in the direction perpendicular to the row direction,
The drains of the n N-channel MOS transistors and the first column of P-channel MOS transistors are connected to the input gate of the first inverter, and the output wiring of the first inverter is the second inverter. A semiconductor device is provided in which the output wiring of the second inverter is connected to a row selection line of the static memory cell.
(23)また、別の態様では、前記n個のNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記n列目のPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
 前記基準電源線は、前記第2のメタル配線層により構成され、
 前記n個のNチャネルのMOSトランジスタのソースは、前記n個のNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
 前記第n列目のPチャネルのMOSトランジスタのソースは、前記第n列目のPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続され、
 前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続される。
(23) In another aspect, the source of the n N-channel MOS transistors is connected to the wiring of the first metal wiring layer,
The source of the n-th column P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
The reference power line is constituted by the second metal wiring layer,
The source of the n N-channel MOS transistors is a second metal that constitutes the reference power supply line via the wiring of the first metal wiring layer to which the sources of the n N-channel MOS transistors are connected. Connected to the wiring in the wiring layer,
The source of the n-th column P-channel MOS transistor constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th column P-channel MOS transistor is connected. Connected to the wiring of the metal wiring layer of 2,
At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. The wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines is connected via the wiring of the wiring layer.
(24)また、本発明によれば、ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを、基板上に配列することによりスタティック型メモリを構成する半導体装置であって、
 少なくとも6個の前記MOSトランジスタが、基板上に形成された絶縁膜上に配列されたスタティック型メモリセルが行列状に複数配置され、
 前記メモリセルの1つの行線を指定する複数の行アドレス回路と、
 前記複数の行アドレス回路からの信号により、前記スタティック型メモリセルの1つの行を選択する複数の行デコーダを備え、
 前記スタティック型メモリセルを構成する6個の前記MOSトランジスタと、
 前記行デコーダを構成する複数の前記MOSトランジスタの各々は、
  シリコン柱と、
  前記シリコン柱の側面を取り囲む絶縁体と、
  前記絶縁体を囲むゲートと、
  前記シリコン柱の上部又は下部に配置されるソース領域と、
  前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
 前記スタティック型メモリセルを構成する前記6個のMOSトランジスタは、2行3列に配置され、
 前記行デコーダ回路は、少なくとも、
  1行n列に配置されたn個のPチャネルの前記MOSトランジスタと
  1行n列に配置されたn個のNチャネルの前記MOSトランジスタと
  第1のインバータと第2のインバータにより構成され、
 前記n個のPチャネルのMOSトランジスタおよび前記n個のNチャネルのMOSトランジスタは、前記1行n列に配置されたn個のPチャネルのMOSトランジスタの第k列目(k=1~n)のPチャネルのMOSトランジスタと前記1行n列に配置されたn個のNチャネルのMOSトランジスタの第k列目のNチャネルMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、
 前記n個のNチャネルのMOSトランジスタと第1列目の前記PチャネルのMOSトランジスタのソース領域はシリコン柱より基板側に配置されており、前記n個のNチャネルMOSのトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレイン領域が、互いにコンタクトを介して接続されており、
 第s列目(s=1~n-1)の前記PチャネルのMOSトランジスタのソースと第s+1列目の前記PチャネルのMOSトランジスタのドレインは互いに接続されており、
 前記n個のNチャネルMOSトランジスタのソースは、各々、前記行方向と垂直方向に延在した基準電源線に接続され、第n列目の前記PチャネルMOSトランジスタのソースは、前記行方向と垂直方向に延在した電源線に接続され、
 前記n組のトランジスタ対の各々の、MOSトランジスタのゲートに入力される入力信号は、各々、前記行方向と垂直方向に延在した配線により供給されており、
 前記n個のNチャネルのMOSトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレインが前記第1のインバータの入力ゲートに接続され、前記第1のインバータの出力配線が前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力配線が、前記スタティック型メモリセルの行選択線に接続されることを特徴とする半導体装置が提供される。
(24) Further, according to the present invention, a semiconductor that constitutes a static memory by arranging, on a substrate, a plurality of MOS transistors in which sources, drains, and gates are arranged hierarchically in a direction perpendicular to the substrate. A device,
A plurality of static memory cells in which at least six MOS transistors are arranged on an insulating film formed on a substrate are arranged in a matrix,
A plurality of row address circuits for designating one row line of the memory cells;
A plurality of row decoders for selecting one row of the static memory cell by signals from the plurality of row address circuits;
6 MOS transistors constituting the static memory cell;
Each of the plurality of MOS transistors constituting the row decoder is
Silicon pillars,
An insulator surrounding a side surface of the silicon pillar;
A gate surrounding the insulator;
A source region disposed above or below the silicon pillar;
A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
The six MOS transistors constituting the static memory cell are arranged in two rows and three columns,
The row decoder circuit includes at least
N P-channel MOS transistors arranged in one row and n columns, n N-channel MOS transistors arranged in one row and n columns, a first inverter, and a second inverter,
The n P-channel MOS transistors and the n N-channel MOS transistors are the k-th column (k = 1 to n) of the n P-channel MOS transistors arranged in the first row and the nth column. The gates of the N-channel MOS transistors in the k-th column of the P-channel MOS transistors and the n N-channel MOS transistors arranged in the first row and the n-th column are connected to each other. Forming,
The source regions of the n N-channel MOS transistors and the first column of the P-channel MOS transistors are arranged on the substrate side from the silicon pillar, and the n N-channel MOS transistors and the first column of the first column are disposed. The drain regions of the P-channel MOS transistors of the eyes are connected to each other through contacts,
The source of the P-channel MOS transistor in the s-th column (s = 1 to n−1) and the drain of the P-channel MOS transistor in the s + 1-th column are connected to each other,
The sources of the n N-channel MOS transistors are respectively connected to a reference power supply line extending in the direction perpendicular to the row direction, and the source of the P-channel MOS transistor in the nth column is perpendicular to the row direction. Connected to the power line extending in the direction,
Input signals input to the gates of the MOS transistors of each of the n pairs of transistors are respectively supplied by wirings extending in the direction perpendicular to the row direction,
The drains of the n N-channel MOS transistors and the first column of P-channel MOS transistors are connected to the input gate of the first inverter, and the output wiring of the first inverter is the second inverter. A semiconductor device is provided in which the output wiring of the second inverter is connected to a row selection line of the static memory cell.
(25)また、別の態様では、前記n個のNチャネルのMOSトランジスタのソースは、前記行方向に平行な方向に延在する第1のメタル配線層の配線に接続され、
 前記n列目のPチャネルMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
 前記電源線は、前記第1のメタル配線層の配線層よりも上層の第2のメタル配線層により構成され、
 前記基準電源線は、前記第2のメタル配線層により構成され、
 前記n個のNチャネルのMOSトランジスタのソースは、前記n個のNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
 前記第n列目のPチャネルのMOSトランジスタのソースは、前記第n列目のPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続され、
 前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続される。
(25) In another aspect, the source of the n N-channel MOS transistors is connected to a wiring of a first metal wiring layer extending in a direction parallel to the row direction,
The source of the n-th column P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
The power line is constituted by a second metal wiring layer that is higher than the wiring layer of the first metal wiring layer,
The reference power line is constituted by the second metal wiring layer,
The source of the n N-channel MOS transistors is a second metal that constitutes the reference power supply line via the wiring of the first metal wiring layer to which the sources of the n N-channel MOS transistors are connected. Connected to the wiring in the wiring layer,
The source of the n-th column P-channel MOS transistor constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th column P-channel MOS transistor is connected. Connected to the wiring of the metal wiring layer of 2,
At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. The wiring of the second metal wiring layer constituting at least one set of input signal lines of the input signal lines is connected via the wiring of the wiring layer.
本発明の実施例の半導体記憶装置の回路図である。1 is a circuit diagram of a semiconductor memory device according to an embodiment of the present invention. 本発明のデコーダ回路の選択動作図である。It is a selection operation | movement figure of the decoder circuit of this invention. 本発明のNOR型デコーダの等価回路図である。It is an equivalent circuit diagram of the NOR type decoder of the present invention. 本発明の第1の実施例のNOR型デコーダの平面図である。1 is a plan view of a NOR decoder according to a first embodiment of the present invention. FIG. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第1の実施例のNOR型デコーダの断面図である。1 is a cross-sectional view of a NOR decoder according to a first embodiment of the present invention. 本発明の第2の実施例の行選択デコーダを示す等価回路図である。FIG. 6 is an equivalent circuit diagram showing a row selection decoder according to a second embodiment of the present invention. 本発明の第2の実施例の行選択デコーダの平面図である。It is a top view of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第2の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of 2nd Example of this invention. 本発明の第3の実施例のメモリセルを含む行選択デコーダの平面図である。It is a top view of the row selection decoder containing the memory cell of the 3rd Example of this invention. 本発明の第4の実施例のNOR型デコーダの平面図である。It is a top view of the NOR type decoder of the 4th example of the present invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第4の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 4th Example of this invention. 本発明の第5の実施例の行選択デコーダの平面図である。It is a top view of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の第5の実施例の行選択デコーダの断面図である。It is sectional drawing of the row selection decoder of the 5th Example of this invention. 本発明の別の実施例の半導体記憶装置の回路図である。It is a circuit diagram of the semiconductor memory device of another Example of this invention. 本発明の別の実施例のデコーダ回路の選択動作図である。It is a selection operation | movement figure of the decoder circuit of another Example of this invention. 本発明のNOR型デコーダの等価回路図である。It is an equivalent circuit diagram of the NOR type decoder of the present invention. 本発明の第6の実施例のNOR型デコーダの平面図である。It is a top view of the NOR type decoder of the 6th example of the present invention. 本発明の第6の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 6th Example of this invention. 本発明の第6の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 6th Example of this invention. 本発明の第6の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 6th Example of this invention. 本発明の第6の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 6th Example of this invention. 本発明の第7の実施例のNOR型デコーダの平面図である。It is a top view of the NOR type decoder of 7th Example of this invention. 本発明の第7の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 7th Example of this invention. 本発明の第7の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 7th Example of this invention. 本発明の第7の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 7th Example of this invention. 本発明の第7の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 7th Example of this invention. 本発明の第7の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 7th Example of this invention. 本発明の第7の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 7th Example of this invention. 本発明の第8の実施例の行選択デコーダの平面図である。It is a top view of the row selection decoder of the 8th Example of this invention. 本発明の第9の実施例のNOR型デコーダの平面図である。It is a top view of the NOR type | mold decoder of the 9th Example of this invention. 本発明の第9の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 9th Example of this invention. 本発明の第9の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 9th Example of this invention. 本発明の第9の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 9th Example of this invention. 本発明の第9の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 9th Example of this invention. 本発明の第9の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 9th Example of this invention. 本発明の第9の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 9th Example of this invention. 本発明の第9の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 9th Example of this invention. 本発明の第10の実施例のNOR型デコーダの平面図である。It is a top view of the NOR type decoder of the 10th Example of this invention. 本発明の第10の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 10th Example of this invention. 本発明の第10の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 10th Example of this invention. 本発明の第109の実施例のNOR型デコーダの断面図である。It is sectional drawing of the NOR type decoder of the 109th Example of this invention. 従来例を示すSRAMセルの等価回路である。It is the equivalent circuit of the SRAM cell which shows a prior art example. 従来例を示すSRAMの平面図である。It is a top view of SRAM which shows a prior art example. 従来例を示すSRAMの断面図である。It is sectional drawing of SRAM which shows a prior art example. 従来例を示すSRAMの断面図である。It is sectional drawing of SRAM which shows a prior art example. 従来例を示すSRAMの断面図である。It is sectional drawing of SRAM which shows a prior art example. 従来のSRAMセルのマトリックスアレイである。It is a matrix array of conventional SRAM cells.
(実施例1)
図1に本発明に適用するメモリ用のデコーダ回路を含む、半導体記憶装置を示す。メモリセルの一例として、SRAMセルを採用している。
100は、図18に示すSRAMセルをマトリックス状に配置したメモリアレイである。図では、256行、16列、すなわち4096ビットのメモリアレイを構成する。
これらのSRAMセルは、行方向に、ワード線WLm(m=0~255)、を共通接続して横方向に配置され、列方向に、ビット線BLn(n=0~15)、反転ビット線BLnBを共通接続して縦方向に配置される。
200は、行選択デコーダを示す。行選択デコーダ200は、NOR型デコーダ201と、その出力DECOUTk(k=0~255)を入力とする第1のインバータ202および第1のインバータ202の出力を入力とし、出力として行選択信号WLkを出力するインバータ203により構成される。
NOR型デコーダ201には、後述するアドレス選択信号XA0~7、XB0~3、XC0~7が入力され、入力されたアドレス信号により行選択信号WLk(k=0~255)のいずれか1つを選択する。
300は、アドレス信号を受けて、行選択デコーダを選択するアドレス選択信号XA0~7、XB0~3、XC0~7を出力するプリデコーダである。ここでは、アドレス信号A0~A2を受けてアドレス選択信号XA0~7を出力する300A、アドレス信号A3~A4を受けてアドレス選択信号XB0~3を出力する300B、アドレス信号A5~A7を受けてアドレス選択信号XC0~7を出力する300Cにより構成される。
例えば、NOR型デコーダ201を含む行選択デコーダ200は、アドレス選択信号XA0、XB0、XC0を受けて、WL0を選択し、アドレス選択信号XA1、XB0、XC0を受けて、WL1を選択し、同様にして、アドレス選択信号XA7、XB3、XC7を受けて、WL255を選択する。
Example 1
FIG. 1 shows a semiconductor memory device including a decoder circuit for a memory applied to the present invention. An SRAM cell is adopted as an example of the memory cell.
Reference numeral 100 denotes a memory array in which the SRAM cells shown in FIG. 18 are arranged in a matrix. In the figure, a memory array of 256 rows and 16 columns, that is, 4096 bits is constructed.
These SRAM cells are arranged in the horizontal direction by commonly connecting word lines WLm (m = 0 to 255) in the row direction, and bit lines BLn (n = 0 to 15), inverted bit lines in the column direction. BLnB are connected in common and arranged in the vertical direction.
Reference numeral 200 denotes a row selection decoder. The row selection decoder 200 receives the NOR decoder 201 and the outputs of the first inverter 202 and the first inverter 202 that receive the output DECOUTk (k = 0 to 255) as inputs, and receives the row selection signal WLk as an output. It is comprised by the inverter 203 which outputs.
The NOR decoder 201 receives address selection signals XA0 to XA7, XB0 to 3, and XC0 to 7, which will be described later, and receives one of the row selection signals WLk (k = 0 to 255) according to the input address signal. select.
A predecoder 300 receives address signals and outputs address selection signals XA0 to XA0, XB0 to 3, and XC0 to 7 for selecting a row selection decoder. Here, 300A which receives the address signals A0 to A2 and outputs the address selection signals XA0 to X7, 300B which receives the address signals A3 to A4 and outputs the address selection signals XB0 to 3, and the address signals A5 to A7 which receive the address It is composed of 300C that outputs selection signals XC0 to XC7.
For example, the row selection decoder 200 including the NOR type decoder 201 receives the address selection signals XA0, XB0, and XC0, selects WL0, receives the address selection signals XA1, XB0, and XC0, selects WL1, and so on. In response to the address selection signals XA7, XB3, and XC7, WL255 is selected.
400は列選択ゲート、500は列選択ゲート400を選択する列選択デコーダである。列選択デコーダ500は、列アドレス信号A8~A11を受けて、列選択信号CLn(n=0~15)を出力し、列選択信号CLnは、列選択ゲートに入力され、列選択ゲートトランジスタCGn(n=0~15)およびCGnBのゲートに接続される。列選択ゲートトランジスタCGn、CGnBのソースは、それぞれSRAMセルのビット線BLnおよび反転ビット線BLnBに接続され、ドレインは共通にデータ線DLおよび反転データ線DLBに接続される。 Reference numeral 400 denotes a column selection gate, and reference numeral 500 denotes a column selection decoder that selects the column selection gate 400. The column selection decoder 500 receives the column address signals A8 to A11 and outputs a column selection signal CLn (n = 0 to 15). The column selection signal CLn is input to the column selection gate, and the column selection gate transistor CGn ( n = 0-15) and connected to the gate of CGnB. Column select gate transistors CGn and CGnB have sources connected to bit line BLn and inverted bit line BLnB of the SRAM cell, respectively, and drains commonly connected to data line DL and inverted data line DLB.
600は、メモリセルからビット線および反転ビット線を介してデータ線に読み出される微小な読み出し信号を受けて、増幅して出力するセンスアンプ、700はセンスアンプ600の信号を受けて、外部に出力する読み出し信号DOUTを作成する出力回路である。
また、800は、入力データDINを受けて、SRAMセルにデータを書き込む信号を作成する書き込み回路である。
図1に示すように、2行ピッチの最小単位で配置されるSRAMセルは、アドレス信号を受けて、行選択デコーダを介して行選択線WLk(k=0~255)のいずれか1つにより選択されるため、行選択デコーダも、2行配置の最小単位で配置を行う必要がある。
Reference numeral 600 is a sense amplifier that receives and amplifies and outputs a minute read signal read from the memory cell to the data line via the bit line and the inverted bit line. This is an output circuit that creates a read signal DOUT to be read.
Reference numeral 800 denotes a writing circuit that receives the input data DIN and creates a signal for writing data to the SRAM cell.
As shown in FIG. 1, an SRAM cell arranged in a minimum unit of two row pitches receives an address signal, and uses one of row selection lines WLk (k = 0 to 255) via a row selection decoder. Since the selection is made, the row selection decoder also needs to be arranged in a minimum unit of two rows.
図2には、行選択デコーダの選択動作表を示す。丸印のアドレス選択信号がNOR型デコーダ201に入力されると、対応したNOR型デコーダ201の出力DECOUTが選択される。例えば、アドレス選択信号XA2、XB1、XC0が入力されると、対応したNOR型デコーダ201の出力DECOUT10が選択される。すなわち、この行選択デコーダを選択するアドレス選択信号は、XAが8本、XBが4本、XCが8本、合計20本のアドレス選択信号を行選択デコーダ200に供給する必要がある。 FIG. 2 shows a selection operation table of the row selection decoder. When the address selection signal indicated by a circle is input to the NOR decoder 201, the output DECOUT of the corresponding NOR decoder 201 is selected. For example, when the address selection signals XA2, XB1, and XC0 are input, the output DECOUT10 of the corresponding NOR type decoder 201 is selected. That is, as the address selection signal for selecting the row selection decoder, it is necessary to supply a total of 20 address selection signals to the row selection decoder 200, XA is 8, XB is 4, XC is 8.
図3に本発明のNOR型デコーダ回路201を示す。
Tn1、Tn2、Tn3は、SGTで構成されたNMOSトランジスタ、Tp1、Tp2、Tp3は、同じくSGTで構成されたPMOSトランジスタである。前記NMOSトランジスタTn1、Tn2、Tn3のソースは基準電源Vssに接続され、ドレインは共通にノードN1に接続される。ノードN1は出力DECOUTkとなる。PMOSトランジスタTp1のドレインはノードN1に接続され、ソースはノードN2を介してPMOSトランジスタTp2のドレインに接続され、PMOSトランジスタTp2のソースはノードN3を介してPMOSトランジスタTp3のドレインに接続され、PMOSトランジスタTp3のソースは電源Vccに接続される。また、NMOSトランジスタTn1、PMOSトランジスタTp1のゲートには入力信号XAh(h=0~7)が入力され、NMOSトランジスタTn2、PMOSトランジスタTp2のゲートには入力信号XBi(i=0~3)が入力され、NMOSトランジスタTn3、PMOSトランジスタTp3のゲートには入力信号XCj(j=0~7)が入力される。
FIG. 3 shows a NOR type decoder circuit 201 of the present invention.
Tn1, Tn2, and Tn3 are NMOS transistors configured by SGT, and Tp1, Tp2, and Tp3 are PMOS transistors that are also configured by SGT. The sources of the NMOS transistors Tn1, Tn2, and Tn3 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1. The node N1 becomes the output DECOUTk. The drain of the PMOS transistor Tp1 is connected to the node N1, the source is connected to the drain of the PMOS transistor Tp2 via the node N2, and the source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 via the node N3. The source of Tp3 is connected to the power supply Vcc. An input signal XAh (h = 0 to 7) is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1, and an input signal XBi (i = 0 to 3) is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2. The input signal XCj (j = 0 to 7) is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3.
図4a、図4b、図4c、図4d、図4e、図4f、図4g、図4hおよび図4iに、第1の実施例を示す。図4aは、本発明の3入力NOR型デコーダ201のレイアウト(配置)の平面図、図4bは、図4aにおけるカットラインA-A’に沿った断面図、図4cは、図4aにおけるカットラインB-B’に沿った断面図、図4dは、図4aにおけるカットラインC-C’に沿った断面図、図4eは、図4aにおけるカットラインD-D’に沿った断面図、図4fは、図4aにおけるカットラインE-E’に沿った断面図、図4gは、図4aにおけるカットラインF-F’に沿った断面図、図4hは、図4aにおけるカットラインG-G’に沿った断面図、図4iは、図4aにおけるカットラインH-H’に沿った断面図を示す。
図4aにおいて、図3のNOR型デコーダのNMOSトランジスタTn1、Tn2およびTn3が1行目(図の上の行)、PMOSトランジスタTp1、Tp2およびTp3が2行目(図の下の行)に、それぞれ図の右側より順番に配置されている。
なお、図4a、図4b、図4c、図4d、図4e、図4f、図4g、図4hおよび図4iにおいて、図19a、図19b、図19c、図19dと同じ構造の箇所については、100番台の同等の記号で示してある。
4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h and 4i show a first embodiment. 4A is a plan view of the layout (arrangement) of the 3-input NOR decoder 201 of the present invention, FIG. 4B is a cross-sectional view along the cut line AA ′ in FIG. 4A, and FIG. 4C is the cut line in FIG. FIG. 4d is a cross-sectional view along the cut line CC ′ in FIG. 4a, FIG. 4e is a cross-sectional view along the cut line DD ′ in FIG. 4a, and FIG. 4f. 4a is a cross-sectional view along the cut line EE ′ in FIG. 4a, FIG. 4g is a cross-sectional view along the cut line FF ′ in FIG. 4a, and FIG. 4h is a cross-sectional view along the cut line GG ′ in FIG. FIG. 4i shows a cross-sectional view along the cut line HH ′ in FIG. 4a.
4a, the NMOS transistors Tn1, Tn2 and Tn3 of the NOR decoder of FIG. 3 are in the first row (upper row in the figure), and the PMOS transistors Tp1, Tp2 and Tp3 are in the second row (lower row in the figure). They are arranged in order from the right side of the figure.
4a, FIG. 4b, FIG. 4c, FIG. 4d, FIG. 4e, FIG. 4f, FIG. 4g, FIG. 4h, and FIG. It is indicated by the equivalent symbol on the base.
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層であり、平面状シリコン層102n、102paを接続する。104p1、104p2、104p3はp型シリコン柱、104n1、104n2、104n3はn型シリコン柱、105はシリコン柱104p1、104p2、104p3、104n1、104n2、104n3を取り囲むゲート絶縁膜、106はゲート電極、106a、106b、106c、および106dは、それぞれゲート配線である。シリコン柱104p1、104p2、104p3の最上部には、それぞれn+拡散層107n1、107n2、107n3が不純物注入等により形成され、シリコン柱104n1、104n2、104n3の最上部には、それぞれp+拡散層107p1、107p2、107p3が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109n1、109n2、109n3、109p1、109p2、109p3はそれぞれn+拡散層107n1、107n2、107n3、p+拡散層107p1、107p2、107p3に接続されるシリサイド層、110n1、110n2、110n3、110p1、110p2、110p3は、シリサイド層109n1、109n2、109n3、109p1、109p2、109p3と第1のメタル配線層の配線113a、113a、113a、113d、113d、113cとをそれぞれ接続するコンタクト、111aはゲート配線106aと第1のメタル配線層の配線113eを接続するコンタクト、111bはゲート配線106cと第1のメタル配線層の配線113fを接続するコンタクト、111cはゲート配線106dと第1のメタル配線層の配線113gを接続するコンタクトである。
また、112aは、下部拡散層102nと下部拡散層102paとを接続するシリサイド103と第1のメタル配線層の配線113bを接続するコンタクトである。
Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer. 103 is a silicide layer formed on the surface of the planar silicon layers (102n, 102pa, 102pb), and connects the planar silicon layers 102n, 102pa. 104p1, 104p2, and 104p3 are p-type silicon pillars, 104n1, 104n2, and 104n3 are n-type silicon pillars, 105 is a gate insulating film that surrounds the silicon pillars 104p1, 104p2, 104p3, 104n1, 104n2, and 104n3, 106 is a gate electrode, 106a, 106b, 106c, and 106d are gate wirings, respectively. N + diffusion layers 107n1, 107n2, and 107n3 are respectively formed on the uppermost portions of the silicon pillars 104p1, 104p2, and 104p3 by impurity implantation or the like, and p + diffusion layers 107p1 and 107p2 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, and 104n3, respectively. 107p3 are formed by impurity implantation or the like. 108 is a silicon nitride film for protecting the gate insulating film 105, 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 are silicides connected to n + diffusion layers 107n1, 107n2, 107n3, and p + diffusion layers 107p1, 107p2, and 107p3, respectively. 110n1, 110n2, 110n3, 110p1, 110p2, and 110p3 include silicide layers 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 and wirings 113a, 113a, 113a, 113d, 113d, and 113c of the first metal wiring layer. Contacts for connection, 111a is a contact for connecting the gate wiring 106a and the wiring 113e of the first metal wiring layer, and 111b is a wiring 1 of the gate wiring 106c and the first metal wiring layer. Contacts for connecting the 3f, 111c denotes a contact for connecting the wires 113g of the gate wiring 106d and the first metal wiring layer.
Reference numeral 112a denotes a contact for connecting the silicide 103 connecting the lower diffusion layer 102n and the lower diffusion layer 102pa and the wiring 113b of the first metal wiring layer.
シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスTn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn3を構成し、シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp1を構成し、シリコン柱104n2、下部拡散層102pb、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp3を構成する。 The silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104n1 and the lower diffusion layer 102pa, upper diffusion layer 107p1, gate insulating film 105, and gate electrode 106 constitute a PMOS transistor Tp1, and silicon pillar 104n2, lower diffusion layer 102pb, upper diffusion layer 107p2, gate insulating film 105, gate electrode The electrode 106 constitutes a PMOS transistor Tp2, the silicon pillar 104N3, lower diffusion layer 102Pb, the upper diffusion layer 107P3, gate insulating film 105, the gate electrode 106, constituting the PMOS transistor Tp3.
また、NMOSトランジスタTn1およびPMOSトランジスタTp1のゲート電極106にはゲート配線106aが接続される。NMOSトランジスタTn2およびPMOSトランジスタTp2のゲート電極106にはゲート配線106bが接続され、さらに、PMOSトランジスタTp2のゲート電極106にはゲート配線106cが接続される。NMOSトランジスタTn3およびPMOSトランジスタTp3のゲート電極106にはゲート配線106dが接続される。 A gate wiring 106a is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1. A gate line 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate line 106c is connected to the gate electrode 106 of the PMOS transistor Tp2. A gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3.
下部拡散層102nおよび102paはシリサイド103を介してNMOSトランジスタTn1、Tn2、Tn3およびPMOSトランジスタTp1の共通ドレインとなり、コンタクト112aを介して第1のメタル配線層の配線113bに接続され、出力DECOUT1となる。NMOSトランジスタTn1のソースである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1のメタル配線層の配線113aに接続され、第1のメタル配線層の配線113aはさらに、コンタクト114n1を介して第2のメタル配線層の配線115cに接続され、115cには基準電源Vssが供給される。ここで、第2のメタル配線層の配線115cは、行方向と垂直な方向へ延在する。NMOSトランジスタTn2のソースである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して、行方向に沿って延在している第1のメタル配線層の配線113aに接続される。また、NMOSトランジスタTn3のソースである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1のメタル配線層の配線113aに接続される。PMOSトランジスタTp1のソースである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1のメタル配線層の配線113dに接続される。PMOSトランジスタTp2のドレインである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1のメタル配線層の配線113dに接続される。ここで、PMOSトランジスタTp1のソースとPMOSトランジスタTp2のドレインは、第1のメタル配線層の配線113dを介して接続される。また、PMOSトランジスタTp2のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタTp3のドレインと接続され、PMOSトランジスタTp3のソースは、コンタクト110p3を介して第1のメタル配線層の配線113cに接続され、第1のメタル配線層の配線113cは、さらにコンタクト114p3を介して第2のメタル配線層の配線115gに接続され、115gには電源Vccが供給される。ここで、第2のメタル配線層の配線115gは、行方向と垂直な方向に延在する。 The lower diffusion layers 102n and 102pa serve as common drains of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistor Tp1 through the silicide 103, and are connected to the wiring 113b of the first metal wiring layer through the contact 112a to become the output DECOUT1. . The upper diffusion layer 107n1 which is the source of the NMOS transistor Tn1 is connected to the wiring 113a of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113a of the first metal wiring layer is further connected to the wiring 114a via the contact 114n1. The reference power supply Vss is supplied to 115c connected to the wiring 115c of the second metal wiring layer. Here, the wiring 115c of the second metal wiring layer extends in a direction perpendicular to the row direction. The upper diffusion layer 107n2 which is the source of the NMOS transistor Tn2 is connected to the wiring 113a of the first metal wiring layer extending in the row direction via the silicide 109n2 and the contact 110n2. The upper diffusion layer 107n3 which is the source of the NMOS transistor Tn3 is connected to the wiring 113a of the first metal wiring layer through the silicide 109n3 and the contact 110n3. The upper diffusion layer 107p1, which is the source of the PMOS transistor Tp1, is connected to the wiring 113d of the first metal wiring layer through the silicide 109p1 and the contact 110p1. The upper diffusion layer 107p2 which is the drain of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2. Here, the source of the PMOS transistor Tp1 and the drain of the PMOS transistor Tp2 are connected via the wiring 113d of the first metal wiring layer. The source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 through the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Tp3 is connected to the wiring 113c of the first metal wiring layer through the contact 110p3. The first metal wiring layer wiring 113c is further connected to the second metal wiring layer wiring 115g via the contact 114p3, and the power Vcc is supplied to 115g. Here, the wiring 115g of the second metal wiring layer extends in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XA0~XA7のいずれかが入力されるゲート配線106aは、コンタクト111aを介して第1のメタル配線層の配線113eに接続される。第1のメタル配線層の配線113eは、行に沿って平行な方向(図の右側)へ延在する。アドレス選択信号XA0~XA7を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、行方向と平行に延在している第1のメタル配線層の配線113eと行方向と垂直な方向に延在しているアドレス選択信号XA0~XA7を供給する第2のメタル配線層の配線のいずれか1つの交点に、コンタクト114aを配置して、アドレス選択信号XAh(h=0~7)を供給する第2のメタル配線層の配線をゲート配線106aに接続する。図では、アドレス選択信号XA1を供給する第2のメタル配線層の配線115aと第1のメタル配線層の配線113eの交点にコンタクト114aを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn1とPMOSトランジスタTp1のゲートには、アドレス選択信号XA1が入力される。
本図では、アドレス選択信号XA2~XA7を供給する第2のメタル配線層の配線は省略してあるが、アドレス選択信号XA0、XA1を供給する第2のメタル配線層の配線と同様な配置で、さらに右側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XA0(第2のメタル配線層の配線115b)と第1のメタル配線層の配線113eとの交点には、破線にてコンタクト114zが描かれているが、本図では、ここにはコンタクトは存在せず、もし、アドレス選択信号XA0(第2のメタル配線層の配線115b)を入力させたい場合には、ここの箇所にコンタクトを設けるという、架空のコンタクトの箇所を示している。以下、他の箇所についても同様な意味である。
The gate wiring 106a to which any of the address selection signals XA0 to XA7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113e of the first metal wiring layer via the contact 111a. The wiring 113e of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction. The contact 114a is arranged at any one of the intersections of the wirings of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extending in the direction perpendicular to the row direction to the address 113e, and the address selection signal XAh The wiring of the second metal wiring layer that supplies (h = 0 to 7) is connected to the gate wiring 106a. In the figure, a contact 114a is provided at the intersection of the wiring 115a of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA1 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of the NOR decoder.
In this figure, the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA7 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the right side in a form perpendicular to the row direction.
Note that a contact 114z is drawn by a broken line at the intersection of the address selection signal XA0 (wiring 115b of the second metal wiring layer) and the wiring 113e of the first metal wiring layer. There is no contact, and if it is desired to input the address selection signal XA0 (the wiring 115b of the second metal wiring layer), it shows the location of the fictitious contact where a contact is provided here. Yes. Hereinafter, the same is true for the other portions.
第2のメタル配線層の配線により供給されるアドレス選択信号XB0~XB3のいずれかが入力されるゲート配線106cは、コンタクト111bを介して第1のメタル配線層の配線113fに接続される。第1のメタル配線層の配線113fは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XB0~XB3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113fとの交点のいずれか1つにコンタクト114bを配置して、アドレス選択信号XBi(i=0~3)を供給する第2のメタル配線層の配線をゲート配線106cに接続する。図では、アドレス選択信号XB0を供給する第2のメタル配線層の配線115dと第1のメタル配線層の配線113fの交点にコンタクト114bを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn2とPMOSトランジスタTp2のゲートには、アドレス選択信号XB0が入力される。
なお、アドレス選択信号XB1を供給する第2のメタル配線層の配線115e、アドレス選択信号XB2を供給する第2のメタル配線層の配線115fおよびアドレス選択信号XB3を供給する第2のメタル配線層の配線115hと第1のメタル配線層の配線113fとの交点には、破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
The gate wiring 106c to which any of the address selection signals XB0 to XB3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b. The wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113f of the first metal wiring layer. The contact 114b is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XBi (i = 0 to 3) to the gate wiring 106c. In the figure, a contact 114b is provided at the intersection of the wiring 115d of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 113f of the first metal wiring layer. That is, the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder.
Note that the second metal wiring layer 115e for supplying the address selection signal XB1, the second metal wiring layer 115f for supplying the address selection signal XB2, and the second metal wiring layer for supplying the address selection signal XB3. A contact 114z is drawn by a broken line at the intersection of the wiring 115h and the wiring 113f of the first metal wiring layer. However, as described above, there is no contact here, and the location of the fictitious contact is shown. Show.
第2のメタル配線層の配線により供給されるアドレス選択信号XC0~XC7のいずれかが入力されるゲート配線106dは、コンタクト111cを介して第1のメタル配線層の配線113gに接続される。第1のメタル配線層の配線113gは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XC0~XC7を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113gとの交点のいずれか1つにコンタクト114cを配置して、アドレス選択信号XCj(i=0~7)を供給する第2のメタル配線層の配線をゲート配線106dに接続する。図では、アドレス選択信号XC0を供給する第2のメタル配線層の配線115iと第1のメタル配線層の配線113gの交点にコンタクト114cを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn3とPMOSトランジスタTp3のゲートには、アドレス選択信号XC0が入力される。
なお、アドレス選択信号XC1を供給する第2のメタル配線層の配線115jと第1のメタル配線層の配線113gとの交点には、破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
また、アドレス選択信号XC2~XC7を供給する第2のメタル配線層の配線は図面の都合上、省略してあるが、アドレス選択信号XC0、XC1を供給する第2のメタル配線層の配線と同様に、さらに左側に、行方向と垂直な方向に配置される。
本実施例に従えば、本NOR型デコーダにはアドレス選択信号XA1、XB0、XC0が入力されており、図2により、出力はDECOUT1となる。
また、NOR型デコーダBL201Aは図の枠で囲った領域となり、縦方向の寸法は図19aのSRAMセルと同一のLy1となる。
The gate wiring 106d to which any one of the address selection signals XC0 to XC7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer through the contact 111c. The wiring 113g of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC7 extends in a direction perpendicular to the row direction, and is at one of the intersections with the wiring 113g of the first metal wiring layer. A contact 114c is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XCj (i = 0 to 7) to the gate wiring 106d. In the figure, a contact 114c is provided at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 113g of the first metal wiring layer, as described above. Here, no contact exists, and the location of a fictitious contact is shown.
Further, the wiring of the second metal wiring layer that supplies the address selection signals XC2 to XC7 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XC0 and XC1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction.
According to this embodiment, address selection signals XA1, XB0, and XC0 are input to this NOR type decoder, and the output is DECOUT1 according to FIG.
The NOR decoder BL201A is a region surrounded by a frame in the figure, and the vertical dimension is Ly1 which is the same as the SRAM cell of FIG. 19a.
本実施例によれば、電源配線、基準電源配線、およびアドレス選択信号線を第2のメタル配線層の配線で、NOR型デコーダを構成するSGTMOSトランジスタが2行3列に配置される行方向と垂直な方向に延在配置し、行方向に沿って平行に配置される第1のメタル配線層の配線を介して、NOR型デコーダの入力ゲートと前記第2のメタル配線層の配線との接続を行うことで、任意のアドレス選択信号をNOR型デコーダの入力に供給することが可能となり、第2のメタル配線層の配線の最小ピッチで配置が可能な、面積が小さく、微小なSRAMと同一のピッチでNOR型デコーダが実現できる。 According to this embodiment, the power supply wiring, the reference power supply wiring, and the address selection signal line are the wirings of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 2 rows and 3 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction As a result, it is possible to supply an arbitrary address selection signal to the input of the NOR decoder, and the same arrangement as that of a small SRAM having a small area that can be arranged with the minimum wiring pitch of the second metal wiring layer. A NOR type decoder can be realized with a pitch of.
(実施例2)
図5に、行選択デコーダ200-k(k=0~255)の等価回路を示す。NOR型デコーダ回路201kと第1のインバータ202kおよび第2のインバータ203kにより構成される。NOR型デコーダ201kは図3と同一であり、第1のインバータ202kは、PMOSトランジスタTp11とNMOSトランジスタTn11で構成される。PMOSトランジスタTp11とNMOSトランジスタTn11のドレインはノードN11により共通接続される。PMOSトランジスタTp11のソースは電源Vccに接続され、NMOSトランジスタTn11のソースは基準電源Vssに接続される。また、PMOSトランイスタTp11とNMOSトランジスタTn11のゲートは共通接続されて、NOR型デコーダの出力DECOUTkが入力される。第2のインバータ203kは、PMOSトランジスタTp12とNMOSトランジスタTn12で構成される。PMOSトランジスタTp12とNMOSトランジスタTn12のドレインはノードN12により共通接続され、出力は行選択デコーダ200-kの出力であるWLkとなる。PMOSトランジスタTp12のソースは電源Vccに接続され、NMOSトランジスタTn12のソースは基準電源Vssに接続される。また、PMOSトランジスタTp12とNMOSトランジスタTn12のゲートは共通接続されて、第1のインバータ202kの出力であるノードN11に接続される。
(Example 2)
FIG. 5 shows an equivalent circuit of the row selection decoder 200-k (k = 0 to 255). A NOR type decoder circuit 201k, a first inverter 202k, and a second inverter 203k are included. The NOR decoder 201k is the same as that shown in FIG. 3, and the first inverter 202k includes a PMOS transistor Tp11 and an NMOS transistor Tn11. The drains of the PMOS transistor Tp11 and the NMOS transistor Tn11 are commonly connected by a node N11. The source of the PMOS transistor Tp11 is connected to the power supply Vcc, and the source of the NMOS transistor Tn11 is connected to the reference power supply Vss. Further, the gates of the PMOS transistor Tp11 and the NMOS transistor Tn11 are connected in common, and the output DECOUTk of the NOR decoder is input. The second inverter 203k includes a PMOS transistor Tp12 and an NMOS transistor Tn12. The drains of the PMOS transistor Tp12 and the NMOS transistor Tn12 are commonly connected by the node N12, and the output is WLk that is the output of the row selection decoder 200-k. The source of the PMOS transistor Tp12 is connected to the power supply Vcc, and the source of the NMOS transistor Tn12 is connected to the reference power supply Vss. The gates of the PMOS transistor Tp12 and the NMOS transistor Tn12 are connected in common and connected to the node N11 that is the output of the first inverter 202k.
図6a、図6b、図6c、図6d、図6e、図6f、図6g、図6hおよび図6iに、第2の実施例を示す。図6aは、図5の行選択デコーダ200-kのレイアウト(配置)の平面図、図6bは、図6aにおけるカットラインA-A’に沿った断面図、図6cは、図6aにおけるカットラインB-B’に沿った断面図、図6dは、図6aにおけるカットラインC-C’に沿った断面図、図6eは、図6aにおけるカットラインD-D’に沿った断面図、図6fは、図6aにおけるカットラインE-E’に沿った断面図、図6gは、図6aにおけるカットラインF-F’に沿った断面図、図6hは、図6aにおけるカットラインG-G’に沿った断面図、図6iは、図6aにおけるカットラインH-H’に沿った断面図を示す。
図4のNOR型デコーダの右側にインバータ202および203が配置されており、さらに上下に3組の本行選択デコーダBL200A-7、BL200A-8、BL200A-9がピッチLy1にて配置されている。
FIGS. 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h and 6i show a second embodiment. 6a is a plan view of the layout (arrangement) of the row selection decoder 200-k in FIG. 5, FIG. 6b is a cross-sectional view along the cut line AA ′ in FIG. 6a, and FIG. 6c is a cut line in FIG. FIG. 6d is a cross-sectional view along the cut line CC ′ in FIG. 6a, FIG. 6e is a cross-sectional view along the cut line DD ′ in FIG. 6a, and FIG. 6f. Fig. 6a is a cross-sectional view along the cut line EE 'in Fig. 6a, Fig. 6g is a cross-sectional view along the cut line FF' in Fig. 6a, and Fig. 6h is a cut line GG 'in Fig. 6a. FIG. 6i shows a cross-sectional view along the cut line HH ′ in FIG. 6a.
Inverters 202 and 203 are arranged on the right side of the NOR decoder in FIG. 4, and three sets of main row selection decoders BL200A-7, BL200A-8, and BL200A-9 are arranged at a pitch Ly1 on the upper and lower sides.
図の行選択デコーダBL200A-7において、第1および第2のインバータを構成するNMOSトランジスタTn11とNMOSトランジスタTn12のソースは、それぞれ下部拡散層102nbとなり、シリサイド層103により共通接続されて、コンタクト112b(図では3個配置)を介して第1のメタル配線層の配線113hと接続され、第1のメタル配線層の配線113hは、コンタクト114dを介して第2のメタル配線層の配線115mに接続され、115mには基準電源Vssが供給される。さらに、隣接された行選択デコーダを構成する第1および第2のインバータの下部拡散層102nbは共通接続される。すなわち、隣接されたインバータのNMOSトランジスタTn11、Tn12の4つのトランジスタのソースである下部拡散層が共通に接続され、面積の縮小が達成される。ここで、基準電源が供給される第2のメタル配線層の配線115mは、行方向と垂直方向に延在配置される。
第1および第2のインバータを構成するPMOSトランジスタTp11とPMOSトランジスタTp12のソースは、それぞれ下部拡散層102pcとなり、シリサイド層103により共通接続されて、コンタクト112c(図では3個配置)を介して第1のメタル配線層の配線113jと接続され、第1のメタル配線層の配線113jは、コンタクト114eを介して第2のメタル配線層の配線115lに接続され、115lには電源Vccが供給される。さらに、隣接された行選択デコーダを構成する第1および第2のインバータの下部拡散層102pcは共通接続される。すなわち、隣接されたインバータのPMOSトランジスタTp11、Tp12の4つのトランジスタのソースである下部拡散層が共通に接続され、面積の縮小が達成される。ここで、電源が供給される第2のメタル配線層の配線115lは、行方向と垂直方向に延在配置される。
In the row selection decoder BL200A-7 in the figure, the sources of the NMOS transistor Tn11 and NMOS transistor Tn12 constituting the first and second inverters are respectively the lower diffusion layer 102nb and are commonly connected by the silicide layer 103, and contact 112b ( The wiring 113h of the first metal wiring layer is connected to the wiring 113h of the first metal wiring layer via the contact 114d. The wiring 113h of the first metal wiring layer is connected to the wiring 115m of the second metal wiring layer via the contact 114d. , 115m is supplied with a reference power source Vss. Further, lower diffusion layers 102nb of the first and second inverters constituting adjacent row selection decoders are commonly connected. In other words, the lower diffusion layers that are the sources of the four transistors of the NMOS transistors Tn11 and Tn12 of the adjacent inverters are connected in common, thereby reducing the area. Here, the wiring 115m of the second metal wiring layer to which the reference power is supplied extends in the direction perpendicular to the row direction.
The sources of the PMOS transistor Tp11 and the PMOS transistor Tp12 constituting the first and second inverters are respectively a lower diffusion layer 102pc and are commonly connected by the silicide layer 103, and are connected via the contact 112c (three in the figure) via the first contact 112c. The wiring 113j of the first metal wiring layer is connected to the wiring 115l of the second metal wiring layer via the contact 114e, and the power supply Vcc is supplied to 115l. . Further, the lower diffusion layers 102pc of the first and second inverters constituting the adjacent row selection decoders are commonly connected. That is, the lower diffusion layers that are the sources of the four transistors of the PMOS transistors Tp11 and Tp12 of the adjacent inverter are connected in common, and the reduction of the area is achieved. Here, the wiring 115l of the second metal wiring layer to which power is supplied extends in the direction perpendicular to the row direction.
PMOSトランジスタTp11のドレインとなる上部拡散層107p11は、シリサイド層109p11、コンタクト110p11を介して第1のメタル配線層の配線113iに接続され、第1のメタル配線層の配線113iは第1のインバータの出力N11となる。NMOSトランジスタTn11のドレインとなる上部拡散層107n11は、シリサイド層109n11、コンタクト110n11を介して第1のメタル配線層の配線113iに接続される。PMOSトランジスタTp11のゲート電極106とNMOSトランジスタTn11のゲート電極106には、ゲート配線106fが共通に接続され、さらに、NMOSトランジスタTn11のゲート電極には、ゲート配線106eが接続される。ゲート配線106eには、図4の実施例であるNOR型デコーダBL201A-7の出力配線113bすなわちDECOUT7が入力される。
PMOSトランジスタTp12のドレインとなる上部拡散層107p12は、シリサイド層109p12、コンタクト110p12を介して第1のメタル配線層の配線113kに接続され、113kは行選択デコーダBL200A-7の出力WL7となる。NMOSトランジスタTn12のドレインとなる上部拡散層107n12は、シリサイド層109n12、コンタクト110n12を介して第1のメタル配線層の配線113kに接続される。PMOSトランジスタTp12のゲート電極106とNMOSトランジスタTn12のゲート電極106には、ゲート配線106gが共通に接続され、106gには、第1のインバータの出力配線である第1のメタル配線層の配線113iが接続される。
The upper diffusion layer 107p11 serving as the drain of the PMOS transistor Tp11 is connected to the wiring 113i of the first metal wiring layer via the silicide layer 109p11 and the contact 110p11, and the wiring 113i of the first metal wiring layer is connected to the first inverter. Output N11. The upper diffusion layer 107n11 serving as the drain of the NMOS transistor Tn11 is connected to the wiring 113i of the first metal wiring layer through the silicide layer 109n11 and the contact 110n11. A gate wiring 106f is connected in common to the gate electrode 106 of the PMOS transistor Tp11 and the gate electrode 106 of the NMOS transistor Tn11, and a gate wiring 106e is connected to the gate electrode of the NMOS transistor Tn11. The output wiring 113b of the NOR decoder BL201A-7 which is the embodiment of FIG. 4, that is, DECOUT7 is input to the gate wiring 106e.
The upper diffusion layer 107p12 serving as the drain of the PMOS transistor Tp12 is connected to the wiring 113k of the first metal wiring layer through the silicide layer 109p12 and the contact 110p12, and 113k serves as the output WL7 of the row selection decoder BL200A-7. The upper diffusion layer 107n12 serving as the drain of the NMOS transistor Tn12 is connected to the wiring 113k of the first metal wiring layer through the silicide layer 109n12 and the contact 110n12. A gate wiring 106g is commonly connected to the gate electrode 106 of the PMOS transistor Tp12 and the gate electrode 106 of the NMOS transistor Tn12, and the wiring 113i of the first metal wiring layer, which is the output wiring of the first inverter, is connected to 106g. Connected.
図6aにおいて、アドレス選択信号XA7、XB0、XC0が入力される行選択デコーダBL200A-7、アドレス選択信号XA0、XB1、XC0が入力される行デコーダBL200A-8、アドレス選択信号XA1、XB1、XC0が入力される行デコーダBL200A-9が隣接してピッチ(間隔)Ly1にて配置されており、BL200A-7、BL200A-8、BL200A-9には、共通に、電源Vccを供給する第2のメタル配線層の配線115g、115l、基準電源Vssを供給する第2のメタル配線層の配線115c、115mが配置され、アドレス選択信号XA0~7、XB0~3、XC0~7を供給する第2のメタル配線層の配線が全て第2のメタル配線層の配線の最小ピッチにより配置され、第1のメタル配線層の配線113e、113f、113gを介して、それぞれ任意のアドレス選択信号がNOR型デコーダの入力ゲートに接続される。 In FIG. 6a, a row selection decoder BL200A-7 to which address selection signals XA7, XB0, and XC0 are input, a row decoder BL200A-8 to which address selection signals XA0, XB1, and XC0 are input, and address selection signals XA1, XB1, and XC0 are provided. The input row decoder BL200A-9 is adjacently arranged at a pitch (interval) Ly1, and the second metal that supplies the power supply Vcc is commonly used for BL200A-7, BL200A-8, and BL200A-9. Wiring layers 115g and 115l and second metal wiring layers 115c and 115m for supplying the reference power supply Vss are arranged, and second metals for supplying address selection signals XA0 to 7, XB0 to 3, and XC0 to 7 are arranged. All the wirings in the wiring layer are arranged at the minimum pitch of the wirings in the second metal wiring layer, and the first metal wiring is arranged. A layer of wirings 113e, 113f, via the 113 g, any address selection signals, respectively are connected to the input gate of the NOR type decoder.
本実施例によれば、NOR型デコーダと2個のインバータにより構成された、SRAMと同一ピッチで且つ、第2のメタル配線層の配線の最小ピッチにより配線され、面積が最小となる行選択デコーダが提供できる。 According to this embodiment, the row selection decoder is composed of a NOR decoder and two inverters and has the same pitch as that of the SRAM and the minimum pitch of the second metal wiring layer, thereby minimizing the area. Can be provided.
(実施例3)
図7には、本発明の行選択デコーダと、MOSトランジスタが2行3列に配置されたSRAMセルを接続した実施例を示す。
行選択デコーダであるBL200、行選択デコーダとSRAMセルを接続する領域BLC(Block Connection)およびSRAMセルアレイが配置される。
領域BLCでは、行選択デコーダの出力である第1のメタル配線層の配線113kが、コンタクト114kを介して第2のメタル配線層の配線115nと接続され、さらにコンタクト116aを介して第3メタル配線17に接続される。第3メタル配線17は、SRAMセルのワード線となり、本行選択デコーダにより、アドレス信号により指定された任意のSRAMセルが選択できる。実施例では、図19に示したSRAMセルとして、M(7,0)、M(8,0)、M(9,0)を列方向に配置して、同一ピッチにて、行選択デコーダBL200A-7、BL200A-8、BL200A-9の3組を隣接して配置し、SRAMセルを選択する行選択デコーダを構成する。
Example 3
FIG. 7 shows an embodiment in which the row selection decoder of the present invention is connected to an SRAM cell in which MOS transistors are arranged in 2 rows and 3 columns.
A row selection decoder BL200, a region BLC (Block Connection) for connecting the row selection decoder and the SRAM cell, and an SRAM cell array are arranged.
In the region BLC, the wiring 113k of the first metal wiring layer, which is the output of the row selection decoder, is connected to the wiring 115n of the second metal wiring layer through the contact 114k, and further the third metal wiring through the contact 116a. 17 is connected. The third metal wiring 17 serves as a word line of the SRAM cell, and an arbitrary SRAM cell designated by the address signal can be selected by this row selection decoder. In the embodiment, as the SRAM cell shown in FIG. 19, M (7,0), M (8,0), M (9,0) are arranged in the column direction, and at the same pitch, the row selection decoder BL200A. -7, BL200A-8, and BL200A-9 are arranged adjacent to each other to constitute a row selection decoder for selecting an SRAM cell.
本実施例によれば、2行3列配置のSRAMセルに最適な行選択デコーダが提供できる。 According to this embodiment, it is possible to provide a row selection decoder that is optimal for SRAM cells arranged in 2 rows and 3 columns.
(実施例4)
図8a、図8b、図8c、図8d、図8e、図8f、図8g、図8h、図8iおよび図8jに、第4の実施例を示す。図8aは、本発明のNOR型デコーダのレイアウト(配置)の平面図、図8bは、図8aにおけるカットラインA-A’に沿った断面図、図8cは、図8aにおけるカットラインB-B’に沿った断面図、図8dは、図8aにおけるカットラインC-C’に沿った断面図、図8eは、図8aにおけるカットラインD-D’に沿った断面図、図8fは、図8aにおけるカットラインE-E’に沿った断面図、図8gは、図8aにおけるカットラインF-F’に沿った断面図、図8hは、図8aにおけるカットラインG-G’に沿った断面図、図8iは、図8aにおけるカットラインH-H’に沿った断面図、図8jは、図8aにおけるカットラインI-I’に沿った断面図を示す。
本実施例において、図4a(実施例1)と異なるところはNMOSトランジスタTn1、Tn2、Tn3、PMOSトランジスタTp1、Tp2およびTp3のソースとドレインの向きを上下逆に配置して、NMOSトランジスタTn1、Tn2、Tn3およびPMOSトランジスタTp1の各ドレインが、コンタクトを介して共通に接続されていることである。
図8aにおいて、図3のNOR型デコーダのNMOSトランジスタTn1、Tn2およびTn3が1行目(図の上の行)、PMOSトランジスタTp1、Tp2およびTp3が2行目(図の下の行)に、それぞれ図の左側より順番に配置されている。
なお、図8a、図8b、図8c、図8d、図8e、図8f、図8g、図8h、図8iおよび図8jにおいて、図4a、図4b、図4c、図4d、図4e、図4f、図4g、図4hおよび図4iと同じ構造の箇所については、100番台の同等の記号で示してある。
Example 4
8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8i and 8j show a fourth embodiment. 8a is a plan view of the layout (arrangement) of the NOR decoder of the present invention, FIG. 8b is a cross-sectional view taken along the cut line AA ′ in FIG. 8a, and FIG. 8c is a cut line BB in FIG. 8d is a cross-sectional view along the cut line CC ′ in FIG. 8a, FIG. 8e is a cross-sectional view along the cut line DD ′ in FIG. 8a, and FIG. 8a is a cross-sectional view taken along the cut line EE ′, FIG. 8g is a cross-sectional view taken along the cut line FF ′ in FIG. 8a, and FIG. 8h is a cross-sectional view taken along the cut line GG ′ in FIG. FIG. 8i is a cross-sectional view taken along the cut line HH ′ in FIG. 8a, and FIG. 8j is a cross-sectional view taken along the cut line II ′ in FIG. 8a.
In this embodiment, the difference from FIG. 4a (embodiment 1) is that the NMOS transistors Tn1, Tn2, Tn3, the PMOS transistors Tp1, Tp2, and Tp3 have their sources and drains arranged upside down, and the NMOS transistors Tn1, Tn2 , Tn3 and the drains of the PMOS transistor Tp1 are connected in common through contacts.
In FIG. 8a, NMOS transistors Tn1, Tn2 and Tn3 of the NOR decoder of FIG. 3 are in the first row (upper row in the figure), and PMOS transistors Tp1, Tp2 and Tp3 are in the second row (lower row in the figure). They are arranged in order from the left side of the figure.
8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8i, and 8j, FIGS. 4a, 4b, 4c, 4d, 4e, and 4f. 4G, FIG. 4H and FIG. 4I are indicated by equivalent symbols in the 100s.
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層である。104p1、104p2、104p3はp型シリコン柱、104n1、104n2、104n3はn型シリコン柱、105はシリコン柱104p1、104p2、104p3、104n1、104n2、104n3を取り囲むゲート絶縁膜、106はゲート電極、106a、106b、106c、および106dは、それぞれゲート配線である。シリコン柱104p1、104p2、104p3の最上部には、それぞれn+拡散層107n1、107n2、107n3が不純物注入等により形成され、シリコン柱104n1、104n2、104n3の最上部には、それぞれp+拡散層107p1、107p2、107p3が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109n1、109n2、109n3、109p1、109p2、109p3はそれぞれn+拡散層107n1、107n2、107n3、p+拡散層107p1、107p2、107p3に接続されるシリサイド層、110n1、110n2、110n3、110p1、110p2、110p3は、シリサイド層109n1、109n2、109n3、109p1、109p2、109p3と第1のメタル配線層の配線113b、113b、113b、113b、113d、113dとをそれぞれ接続するコンタクト、111aはゲート配線106aと第1のメタル配線層の配線113gを接続するコンタクト、111bはゲート配線106cと第1のメタル配線層の配線113fを接続するコンタクト、111cはゲート配線106dと第1のメタル配線層の配線113eを接続するコンタクトである。
また、112a(図では5個配置)は、下部拡散層102nを覆って接続するシリサイド層103と第1のメタル配線層の配線113aを接続するコンタクト、112bは、下部拡散層102pbを覆って接続するシリサイド層103と第1のメタル配線層の配線113cを接続するコンタクトである。
Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer. Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb). 104p1, 104p2, and 104p3 are p-type silicon pillars, 104n1, 104n2, and 104n3 are n-type silicon pillars, 105 is a gate insulating film that surrounds the silicon pillars 104p1, 104p2, 104p3, 104n1, 104n2, and 104n3, 106 is a gate electrode, 106a, 106b, 106c, and 106d are gate wirings, respectively. N + diffusion layers 107n1, 107n2, and 107n3 are respectively formed on the uppermost portions of the silicon pillars 104p1, 104p2, and 104p3 by impurity implantation or the like, and p + diffusion layers 107p1 and 107p2 are formed on the uppermost portions of the silicon pillars 104n1, 104n2, and 104n3, respectively. 107p3 are formed by impurity implantation or the like. 108 is a silicon nitride film for protecting the gate insulating film 105, 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 are silicides connected to n + diffusion layers 107n1, 107n2, 107n3, and p + diffusion layers 107p1, 107p2, and 107p3, respectively. 110n1, 110n2, 110n3, 110p1, 110p2, and 110p3 include silicide layers 109n1, 109n2, 109n3, 109p1, 109p2, and 109p3 and wirings 113b, 113b, 113b, 113b, 113d, and 113d of the first metal wiring layer. Contacts for connection, 111a is a contact for connecting the gate wiring 106a and the wiring 113g of the first metal wiring layer, and 111b is a wiring 1 of the gate wiring 106c and the first metal wiring layer. Contacts for connecting the 3f, 111c denotes a contact for connecting the wires 113e of the gate wiring 106d and the first metal wiring layer.
112a (five arrangements in the figure) is a contact for connecting the silicide layer 103 and the wiring 113a of the first metal wiring layer, which covers and connects the lower diffusion layer 102n, and 112b is a connection which covers the lower diffusion layer 102pb. This contact connects the silicide layer 103 to be connected to the wiring 113c of the first metal wiring layer.
シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn3を構成し、シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp1を構成し、シリコン柱104n2、下部拡散層102pa、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp3を構成する。 The silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104n1 and the lower diffusion layer 102 pa, upper diffusion layer 107 p 1, gate insulating film 105, and gate electrode 106 constitute a PMOS transistor Tp 1, and silicon pillar 104 n 2, lower diffusion layer 102 pa, upper diffusion layer 107 p 2, gate insulating film 105, gate electrode 106 The gate electrode 106, constitutes a PMOS transistor Tp2, the silicon pillar 104N3, lower diffusion layer 102Pb, the upper diffusion layer 107P3, gate insulating film 105, the gate electrode 106, constituting the PMOS transistor Tp3.
また、NMOSトランジスタTn1およびPMOSトランジスタTp1のゲート電極106にはゲート配線106dが接続され、NMOSトランジスタTn2およびPMOSトランジスタTp2のゲート電極106にはゲート配線106bが接続され、さらに、PMOSトランジスタTp2のゲート電極106にはゲート配線106cが接続され、NMOSトランジスタTn3およびPMOSトランジスタTp3のゲート電極106にはゲート配線106aが接続される。 The gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1, the gate wiring 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and the gate electrode of the PMOS transistor Tp2. A gate line 106c is connected to 106, and a gate line 106a is connected to the gate electrodes 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3.
NMOSトランジスタTn1、Tn2、Tn3のソースは、下部拡散層102nとなり、シリサイド103およびコンタクト112a(図では5個配置)を介して第1のメタル配線層の配線113aに接続され、第1のメタル配線層の配線113aはコンタクト114dを介して第2のメタル配線層の配線115dに接続され、115dには基準電源Vssが供給される。ここで、第2のメタル配線層の配線115dは、行方向と垂直な方向へ延在する。なお、第1のメタル配線層の配線113aは行方向に沿って延在して下部拡散層およびシリサイド103に電源Vssを供給しており、シリサイド層の抵抗はほとんど無視できる。NMOSトランジスタTn1のドレインである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1のメタル配線層の配線113bに接続され、第1のメタル配線層の配線113bは出力DECOUT1となる。NMOSトランジスタTn2のドレインである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1のメタル配線層の配線113bに接続される。また、NMOSトランジスタTn3のドレインである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1のメタル配線層の配線113bに接続される。PMOSトランジスタTp1のドレインである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1のメタル配線層の配線113bに接続される。ここで、上述したように、NMOSトランジスタTn1、Tn2、Tn3およびPMOSトランジスタTp1のドレインがコンタクトを介して第1のメタル配線層の配線113bに共通接続される。PMOSトランジスタTp1のソースとなる下部拡散層102paはシリサイド層103を介してPMOSトランジスタTp2のドレインと接続される。PMOSトランジスタTp2のソースである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1のメタル配線層の配線113dに接続される。また、PMOSトランジスタTp3のドレインである上部拡散層107p3はシリサイド109p3、コンタクト110p3を介して第1のメタル配線層の配線113dに接続される。ここで、PMOSトランジスタTp2のソースとPMOSトランジスタTp3のドレインは、第1のメタル配線層の配線113dを介して接続される。また、PMOSトランジスタTp3のソースは下部拡散層102pbとシリサイド領域103とコンタクト112bを介して第1のメタル配線層の配線113cに接続され、第1のメタル配線層の配線113cはさらにコンタクト114eを介して第2のメタル配線層の配線115cに接続され、115cには電源Vccが供給される。ここで、第2のメタル配線層の配線115cは、行方向と垂直な方向に延在する。 The sources of the NMOS transistors Tn1, Tn2, and Tn3 are the lower diffusion layer 102n, which is connected to the wiring 113a of the first metal wiring layer through the silicide 103 and the contacts 112a (five in the figure), and the first metal wiring The layer wiring 113a is connected to the second metal wiring layer wiring 115d through a contact 114d, and a reference power source Vss is supplied to 115d. Here, the wiring 115d of the second metal wiring layer extends in a direction perpendicular to the row direction. Note that the wiring 113a of the first metal wiring layer extends in the row direction and supplies the power source Vss to the lower diffusion layer and the silicide 103, and the resistance of the silicide layer is almost negligible. The upper diffusion layer 107n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 113b of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113b of the first metal wiring layer becomes the output DECOUT1. The upper diffusion layer 107n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n2 and the contact 110n2. The upper diffusion layer 107n3, which is the drain of the NMOS transistor Tn3, is connected to the wiring 113b of the first metal wiring layer via the silicide 109n3 and the contact 110n3. The upper diffusion layer 107p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 113b of the first metal wiring layer through the silicide 109p1 and the contact 110p1. Here, as described above, the drains of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistor Tp1 are commonly connected to the wiring 113b of the first metal wiring layer through the contacts. The lower diffusion layer 102pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 103. The upper diffusion layer 107p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2. The upper diffusion layer 107p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 113d of the first metal wiring layer through the silicide 109p3 and the contact 110p3. Here, the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 113d of the first metal wiring layer. The source of the PMOS transistor Tp3 is connected to the wiring 113c of the first metal wiring layer through the lower diffusion layer 102pb, the silicide region 103, and the contact 112b, and the wiring 113c of the first metal wiring layer is further connected through the contact 114e. Are connected to the wiring 115c of the second metal wiring layer, and the power source Vcc is supplied to 115c. Here, the wiring 115c of the second metal wiring layer extends in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XA0~XA7のいずれかが入力されるゲート配線106dは、コンタクト111cを介して第1のメタル配線層の配線113eに接続される。第1のメタル配線層の配線113eは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XA0~XA7を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、行方向と平行に延在している第1のメタル配線層の配線113eと行方向と垂直な方向に延在しているアドレス選択信号XA0~XA7を供給する第2のメタル配線層の配線のいずれか1つの交点に、コンタクト114cを配置して、アドレス選択信号XAh(h=0~7)を供給する第2のメタル配線層の配線をゲート配線106dに接続する。図では、アドレス選択信号XA1を供給する第2のメタル配線層の配線115jと第1のメタル配線層の配線113eの交点にコンタクト114cを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn1とPMOSトランジスタTp1のゲートには、アドレス選択信号XA1が入力される。
本図では、アドレス選択信号XA2~XA7を供給する第2のメタル配線層の配線は省略してあるが、アドレス選択信号XA0、XA1を供給する第2のメタル配線層の配線と同様な配置で、さらに左側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XA0を供給する第2のメタル配線層の配線115iと第1のメタル配線層の配線113eとの交点には、破線にてコンタクト114zが描かれているが、本図では、ここにはコンタクトは存在せず、もし、アドレス選択信号XA0を供給する第2のメタル配線層の配線115iを入力させたい場合には、ここの箇所にコンタクトを設けるという、架空のコンタクトの箇所を示している。以下、他の箇所についても同様な意味である。
The gate wiring 106d to which any of the address selection signals XA0 to XA7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113e of the first metal wiring layer through the contact 111c. The wiring 113e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction. The contact 114c is arranged at any one of the intersections of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA7 extending in the direction perpendicular to the row direction with the address 113e, and the address selection signal XAh The wiring of the second metal wiring layer that supplies (h = 0 to 7) is connected to the gate wiring 106d. In the figure, a contact 114c is provided at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA1 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of the NOR decoder.
In this figure, the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA7 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the left side in a form perpendicular to the row direction.
Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 113e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0, the location of the fictitious contact in which a contact is provided here is set. Show. Hereinafter, the same is true for the other portions.
第2のメタル配線層の配線により供給されるアドレス選択信号XB0~XB3のいずれかが入力されるゲート配線106cは、コンタクト111bを介して第1のメタル配線層の配線113fに接続される。第1のメタル配線層の配線113fは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XB0~XB3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113fとの交点のいずれか1つにコンタクト114bを配置して、アドレス選択信号XBi(i=0~3)を供給する第2のメタル配線層の配線をゲート配線106cに接続する。図では、アドレス選択信号XB0を供給する第2のメタル配線層の配線115eと第1のメタル配線層の配線113fの交点にコンタクト114bを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn2とPMOSトランジスタTp2のゲートには、選択アドレス信号XB0が入力される。
なお、アドレス選択信号XB1を供給する第2のメタル配線層の配線115f、アドレス選択信号XB2を供給する第2のメタル配線層の配線115gおよびアドレス選択信号XB3を供給する第2のメタル配線層の配線115hと第1のメタル配線層の配線113fとの交点には、破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
The gate wiring 106c to which any of the address selection signals XB0 to XB3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b. The wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113f of the first metal wiring layer. The contact 114b is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XBi (i = 0 to 3) to the gate wiring 106c. In the figure, a contact 114b is provided at the intersection of the wiring 115e of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 113f of the first metal wiring layer. That is, the selection address signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of this NOR decoder.
The second metal wiring layer 115f for supplying the address selection signal XB1, the second metal wiring layer 115g for supplying the address selection signal XB2, and the second metal wiring layer for supplying the address selection signal XB3. A contact 114z is drawn by a broken line at the intersection of the wiring 115h and the wiring 113f of the first metal wiring layer. However, as described above, there is no contact here, and the location of the fictitious contact is shown. Show.
第2のメタル配線層の配線により供給されるアドレス選択信号XC0~XC7のいずれかが入力されるゲート配線106aは、コンタクト111aを介して第1のメタル配線層の配線113gに接続される。第1のメタル配線層の配線113gは、行に沿って平行な方向(図の右側)へ延在する。アドレス選択信号XC0~XC7を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113gとの交点のいずれか1つにコンタクト114aを配置して、アドレス選択信号XCj(i=0~7)を供給する第2のメタル配線層の配線をゲート配線106aに接続する。図では、アドレス選択信号XC0を供給する第2のメタル配線層の配線115bと第1のメタル配線層の配線113gの交点にコンタクト114aを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn3とPMOSトランジスタTp3のゲートには、アドレス選択信号XC0が入力される。
なお、アドレス選択信号XC1を供給する第2のメタル配線層の配線115aと第1のメタル配線層の配線113gとの交点には、破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
なお、アドレス選択信号XC2~XC7を供給する第2のメタル配線層は図面の都合上、省略してあるが、アドレス選択信号XC0、XC1を供給する第2のメタル配線層と同様に、さらに右側に、行方向に対して垂直な方向に配置される。
本図に従えば、本NOR型デコーダにはアドレス選択信号XA1、XB0、XC0が入力されており、図2により、出力はDECOUT1となる。
The gate wiring 106a to which any of the address selection signals XC0 to XC7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer through the contact 111a. The wiring 113g of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC7 extends in a direction perpendicular to the row direction, and is at one of the intersections with the wiring 113g of the first metal wiring layer. The contact 114a is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XCj (i = 0 to 7) to the gate wiring 106a. In the figure, a contact 114a is provided at the intersection of the wiring 115b of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115a of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 113g of the first metal wiring layer, as described above. Here, no contact exists, and the location of a fictitious contact is shown.
Note that the second metal wiring layer for supplying the address selection signals XC2 to XC7 is omitted for the convenience of the drawing, but, as with the second metal wiring layer for supplying the address selection signals XC0 and XC1, further to the right side. Are arranged in a direction perpendicular to the row direction.
According to this figure, address selection signals XA1, XB0, and XC0 are input to this NOR type decoder, and the output is DECOUT1 according to FIG.
NOR型デコーダBL201Bは図の枠で囲った領域となり、縦方向の寸法は図19のSRAMセルの寸法Ly1より小さいLy2となる。実施例4(図8)のほうが実施例1(図4)のピッチ(寸法)より小さくなる理由は、実施例1は、デッドスペースとなる(領域を取られる)p+拡散層とn+拡散層の間隙がピッチ内に2箇所あるのに対して、実施例4では1.5箇所しかなく、その分、小さくできる。 The NOR type decoder BL201B is a region surrounded by a frame in the figure, and the vertical dimension is Ly2, which is smaller than the SRAM cell dimension Ly1 in FIG. The reason why Example 4 (FIG. 8) is smaller than the pitch (dimension) of Example 1 (FIG. 4) is that Example 1 is a dead space (area is taken) of the p + diffusion layer and the n + diffusion layer. Whereas there are two gaps in the pitch, there are only 1.5 places in the fourth embodiment, which can be reduced accordingly.
本実施例によれば、電源配線、基準電源配線、およびアドレス選択信号線を第2のメタル配線層の配線で、NOR型デコーダを構成するSGTMOSトランジスタが2行3列に配置される行方向と垂直な方向に延在配置し、行方向に沿って平行に配置される第1のメタル配線層の配線を介して、NOR型デコーダの入力ゲートと前記第2のメタル配線層の配線との接続を行うことで、任意のアドレス選択信号をNOR型デコーダの入力に供給することが可能となり、第2のメタル配線層の配線の最小ピッチで配置が可能な、面積が小さく、微小なSRAMよりさらに小さなピッチで行選択デコーダが実現できる。 According to this embodiment, the power supply wiring, the reference power supply wiring, and the address selection signal line are the wirings of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 2 rows and 3 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction As a result, it becomes possible to supply an arbitrary address selection signal to the input of the NOR type decoder, which can be arranged at the minimum pitch of the wiring of the second metal wiring layer, and is smaller than a small SRAM having a small area. A row selection decoder can be realized with a small pitch.
(実施例5)
図9a、図9b、図9c、図9d、図9e、図9f、図9g、図9h、図9iおよび図9jに、第5の実施例を示す。図9aは、本発明の行選択デコーダのレイアウト(配置)の平面図、図9bは、図9aにおけるカットラインA-A’に沿った断面図、図9cは、図9aにおけるカットラインB-B’に沿った断面図、図9dは、図9aにおけるカットラインC-C’に沿った断面図、図9eは、図9aにおけるカットラインD-D’に沿った断面図、図9fは、図9aにおけるカットラインE-E’に沿った断面図、図9gは、図9aにおけるカットラインF-F’に沿った断面図、図9hは、図9aにおけるカットラインG-G’に沿った断面図、図9iは、図9aにおけるカットラインH-H’に沿った断面図、図9jは、図9aにおけるカットラインI-I’に沿った断面図を示す。
本実施例の等価回路図は図5に従い、NOR型デコーダ201kと第1のインバータ202k、第2のインバータ203kを一体化して、さらに小さな面積を実現したものである。
本実施例において、図8a(実施例4)と異なるところは、第1のインバータを構成するPMOSトランジスタTp11とNMOSトランジスタTn11および第2のインバータを構成するPMOSトランジスタTp12とNMOSトランジスタTn12の電源供給用の下部拡散層、基準電源供給用の下部拡散層を、図8のNOR型デコーダと共有化することにより、無駄な領域を削減し、さらに面積を縮小したことにある。
図9aにおいて、NOR型デコーダを構成する第2のメタル配線層の配線115bより左側の構成は、第2のメタル配線層の配線115b、115c、115dに供給される信号が異なる以外は、図8と同一である。第2のメタル配線層の配線115aより右側に、下部拡散層を共有して、連続して、第1のインバータ202kおよび203kが配置される。
なお、図9a、図9b、図9c、図9d、図9e、図9f、図9g、図9h、図9iおよび図9jにおいて、図8a、図8b、図8c、図8d、図8e、図8f、図8g、図8h、図8iおよび図8jと同じ構造の箇所については、100番台の同等の記号で示してある。
図示しないが、本実施例では、アドレス信号を各デコーダに配分するアドレス信号の割り振りを図1の配分と変えてある。すなわち、図1では、プリデコーダ300Aにアドレス信号A0~A2、300BにA3~A4、300CにA5~A7を割り当ててあるが、本実施例では、アドレス選択信号線の配置上、300Aにアドレス信号A0~A2、300BにA3~A5、300CにA6~A7を割り当てる。
この結果、アドレス選択信号線の本数は、XAh(h=0~7)が8本、XBi(i=0~7)が8本、XCj(j=0~3)が4本となる。
(Example 5)
9a, 9b, 9c, 9d, 9e, 9f, 9g, 9h, 9i and 9j show a fifth embodiment. 9a is a plan view of the layout (arrangement) of the row selection decoder of the present invention, FIG. 9b is a sectional view taken along the cut line AA ′ in FIG. 9a, and FIG. 9c is a cut line BB in FIG. 9a. 9d is a cross-sectional view along the cut line CC ′ in FIG. 9a, FIG. 9e is a cross-sectional view along the cut line DD ′ in FIG. 9a, and FIG. 9a is a cross-sectional view taken along the cut line EE ′, FIG. 9g is a cross-sectional view taken along the cut line FF ′ in FIG. 9a, and FIG. 9h is a cross-sectional view taken along the cut line GG ′ in FIG. FIG. 9i is a cross-sectional view taken along the cut line HH ′ in FIG. 9a, and FIG. 9j is a cross-sectional view taken along the cut line II ′ in FIG. 9a.
The equivalent circuit diagram of this embodiment is obtained by integrating the NOR decoder 201k, the first inverter 202k, and the second inverter 203k in accordance with FIG. 5 to realize a smaller area.
In this embodiment, the difference from FIG. 8a (Embodiment 4) is for supplying power to the PMOS transistor Tp11 and NMOS transistor Tn11 constituting the first inverter and the PMOS transistor Tp12 and NMOS transistor Tn12 constituting the second inverter. By sharing the lower diffusion layer and the lower diffusion layer for supplying the reference power with the NOR decoder of FIG. 8, the useless area is reduced and the area is further reduced.
In FIG. 9a, the configuration on the left side of the wiring 115b of the second metal wiring layer constituting the NOR type decoder is the same as that of FIG. 8 except that the signals supplied to the wirings 115b, 115c, 115d of the second metal wiring layer are different. Is the same. The first inverters 202k and 203k are continuously arranged on the right side of the wiring 115a of the second metal wiring layer, sharing the lower diffusion layer.
9a, 9b, 9c, 9d, 9e, 9f, 9g, 9h, 9i, and 9j, FIGS. 8a, 8b, 8c, 8d, 8e, and 8f. 8G, FIG. 8H, FIG. 8I, and FIG. 8J are indicated by equivalent symbols in the 100s.
Although not shown, in the present embodiment, the allocation of the address signal for distributing the address signal to each decoder is changed from the distribution in FIG. That is, in FIG. 1, the address signals A0 to A2 are assigned to the predecoder 300A, A3 to A4 are assigned to 300B, and A5 to A7 are assigned to 300C. However, in this embodiment, the address signal is sent to 300A due to the arrangement of the address selection signal lines. A3 to A5 are assigned to A0 to A2 and 300B, and A6 to A7 are assigned to 300C.
As a result, the number of address selection signal lines is 8 for XAh (h = 0 to 7), 8 for XBi (i = 0 to 7), and 4 for XCj (j = 0 to 3).
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層である。104p1、104p2、104p3、104p11、104p12はp型シリコン柱、104n1、104n2、104n3、104n11、104n12はn型シリコン柱、105はシリコン柱104p1、104p2、104p3、104p11、104p12、104n1、104n2、104n3、104n11、104n12を取り囲むゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106e、106fおよび106gは、それぞれゲート配線である。シリコン柱104p1、104p2、104p3、104p11、104p12の最上部には、それぞれn+拡散層107n1、107n2、107n3、107n11、107n12が不純物注入等により形成され、シリコン柱104n1、104n2、104n3、104n11、104n12の最上部には、それぞれp+拡散層107p1、107p2、107p3、107p11、107p12が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109n1、109n2、109n3、109n11、109n12、109p1、109p2、109p3、109p11、109p12はそれぞれn+拡散層107n1、107n2、107n3、107n11、107n12、p+拡散層107p1、107p2、107p3、107p11、107p12に接続されるシリサイド層、110n1、110n2、110n3、110n11、110n12、110p1、110p2、110p3、110p11、110p12は、シリサイド層109n1、109n2、109n3、109n11、109n12、109p1、109p2、109p3、109p11、109p12と第1のメタル配線層の配線113b、113b、113b、113h、113i、113b、113d、113d、113h、113iをそれぞれ接続するコンタクト、111aはゲート配線106aと第1のメタル配線層の配線113gを接続するコンタクト、111bはゲート配線106cと第1のメタル配線層の配線113fを接続するコンタクト、111cはゲート配線106dと第1のメタル配線層の配線113eを接続するコンタクト、111dはゲート配線106fと第1のメタル配線層の配線113bを接続するコンタクト、111eはゲート配線106gと第1のメタル配線層の配線113hを接続するコンタクトである。
また、112a(図では9個配置)は、下部拡散層102nを覆って接続するシリサイド層103と第1のメタル配線層の配線113aを接続するコンタクト、112b(図では5個配置)は、下部拡散層102pbを覆って接続するシリサイド層103と第1のメタル配線層の配線113cを接続するコンタクトである。
Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer. Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb). 104p1, 104p2, 104p3, 104p11, 104p12 are p-type silicon pillars, 104n1, 104n2, 104n3, 104n11, 104n12 are n-type silicon pillars, 105 are silicon pillars 104p1, 104p2, 104p3, 104p11, 104p12, 104n1, 104n2, 104n3, Gate insulating films surrounding 104n11 and 104n12, 106 is a gate electrode, 106a, 106b, 106c, 106d, 106e, 106f and 106g are gate wirings, respectively. At the top of the silicon pillars 104p1, 104p2, 104p3, 104p11, 104p12, n + diffusion layers 107n1, 107n2, 107n3, 107n11, 107n12 are formed by impurity implantation or the like, and the silicon pillars 104n1, 104n2, 104n3, 104n11, 104n12 On the top, p + diffusion layers 107p1, 107p2, 107p3, 107p11, and 107p12 are formed by impurity implantation or the like, respectively. 108 is a silicon nitride film for protecting the gate insulating film 105, 109n1, 109n2, 109n3, 109n11, 109n12, 109p1, 109p2, 109p3, 109p11, 109p12 are n + diffusion layers 107n1, 107n2, 107n3, 107n11, 107n12, p +, respectively. Silicide layers connected to the diffusion layers 107p1, 107p2, 107p3, 107p11, 107p12, 110n1, 110n2, 110n3, 110n11, 110n12, 110p1, 110p2, 110p3, 110p11, 110p12 are silicide layers 109n1, 109n2, 109n3, 109n11, 109n12 , 109p1, 109p2, 109p3, 109p11, 109p12 and the wiring 113 of the first metal wiring layer 113b, 113b, 113h, 113i, 113b, 113d, 113d, 113h, and 113i, 111a is a contact that connects the gate wiring 106a and the wiring 113g of the first metal wiring layer, and 111b is a gate wiring 106c. A contact connecting the wiring 113f of the first metal wiring layer, 111c is a contact connecting the gate wiring 106d and the wiring 113e of the first metal wiring layer, and 111d is a wiring connecting the gate wiring 106f and the wiring 113b of the first metal wiring layer. A contact 111e is a contact for connecting the gate wiring 106g and the wiring 113h of the first metal wiring layer.
112a (nine in the figure) is a contact for connecting the silicide layer 103 connected to cover the lower diffusion layer 102n and the wiring 113a of the first metal wiring layer, and 112b (five in the figure) is a lower part. This is a contact for connecting the silicide layer 103 connected to cover the diffusion layer 102pb and the wiring 113c of the first metal wiring layer.
シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn3を構成し、シリコン柱104p11、下部拡散層102n、上部拡散層107n11、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn11を構成し、シリコン柱104p12、下部拡散層102n、上部拡散層107n12、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn12を構成し、シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp1を構成し、シリコン柱104n2、下部拡散層102pa、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp3を構成し、シリコン柱104n11、下部拡散層102pb、上部拡散層107p11、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp11を構成し、シリコン柱104n12、下部拡散層102pb、上部拡散層107p12、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp12を構成する。 The silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104p11, the lower diffusion layer. 102n, the upper diffusion layer 107n11, the gate insulating film 105, and the gate electrode 106 constitute an NMOS transistor Tn11. The silicon pillar 104p12, the lower diffusion layer 102n, the upper diffusion layer 107n12, and the gate insulating film 10 The gate electrode 106 constitutes the NMOS transistor Tn12, and the silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp1, and the silicon pillar 104n2 and the lower diffusion. The layer 102pa, the upper diffusion layer 107p2, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp2, and the silicon pillar 104n3, the lower diffusion layer 102pb, the upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute the PMOS. The transistor Tp3 is configured, and the silicon pillar 104n11, the lower diffusion layer 102pb, the upper diffusion layer 107p11, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp11, and the silicon pillar 04N12, lower diffusion layer 102Pb, the upper diffusion layer 107P12, a gate insulating film 105, the gate electrode 106, constituting the PMOS transistor Tp12.
また、NMOSトランジスタTn1およびPMOSトランジスタTp1のゲート電極106にはゲート配線106dが接続される。NMOSトランジスタTn2およびPMOSトランジスタTp2のゲート電極106にはゲート配線106bが接続され、さらにPMOSトランジスタTp2のゲート電極106にはゲート配線106cが接続される。NMOSトランジスタTn3およびPMOSトランジスタTp3のゲート電極106にはゲート配線106aが接続される。NMOSトランジスタTn11およびPMOSトランジスタTp11のゲート電極106にはゲート配線106eが接続され、さらにNMOSトランジスタTn11のゲート電極106にはゲート配線106fが接続される。NMOSトランジスタTn12およびPMOSトランジスタTp12のゲート電極106にはゲート配線106gが接続される。 A gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1. A gate line 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate line 106c is connected to the gate electrode 106 of the PMOS transistor Tp2. A gate wiring 106a is connected to the gate electrodes 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3. A gate wiring 106e is connected to the gate electrode 106 of the NMOS transistor Tn11 and the PMOS transistor Tp11, and a gate wiring 106f is connected to the gate electrode 106 of the NMOS transistor Tn11. A gate wiring 106g is connected to the gate electrodes 106 of the NMOS transistor Tn12 and the PMOS transistor Tp12.
NMOSトランジスタTn1、Tn2、Tn3、Tn11およびTn12のソースは、全て共有化されて下部拡散層102nとなり、シリサイド103およびコンタクト112a(図では9個配置)を介して第1のメタル配線層の配線113aに接続され、第1のメタル配線層の配線113aはコンタクト114dを介して第2のメタル配線層の配線115kに接続され、115kには基準電源Vssが供給される。ここで、第2のメタル配線層の配線115kは、行方向と垂直な方向へ延在する。なお、第1のメタル配線層の配線113aは行方向に沿って延在して、シリサイド層103および下部拡散層102nに基準電源Vssを供給しており、シリサイド層の抵抗はほとんど無視できる。また、PMOSトランジスタTp3、Tp11、Tp12のソースは、全て共有化されて下部拡散層102pbとなり、シリサイド103およびコンタクト112b(図では5個配置)を介して第1のメタル配線層の配線113cに接続され、第1のメタル配線層の配線113cはコンタクト114eを介して第2のメタル配線層の配線115lに接続され、115lには電源Vccが供給される。ここで、第2のメタル配線層の配線115lは、行方向と垂直な方向へ延在する。なお、第1のメタル配線層の配線113cは行方向に沿って延在して、シリサイド層103および下部拡散層102pbに電源Vccを供給しており、シリサイド層の抵抗はほとんど無視できる。 The sources of the NMOS transistors Tn1, Tn2, Tn3, Tn11, and Tn12 are all shared to form the lower diffusion layer 102n, and the wiring 113a of the first metal wiring layer is formed through the silicide 103 and the contacts 112a (nine in the drawing). The wiring 113a of the first metal wiring layer is connected to the wiring 115k of the second metal wiring layer via the contact 114d, and the reference power source Vss is supplied to 115k. Here, the wiring 115k of the second metal wiring layer extends in a direction perpendicular to the row direction. Note that the wiring 113a of the first metal wiring layer extends along the row direction and supplies the reference power source Vss to the silicide layer 103 and the lower diffusion layer 102n, and the resistance of the silicide layer is almost negligible. The sources of the PMOS transistors Tp3, Tp11, and Tp12 are all shared to form the lower diffusion layer 102pb, and are connected to the wiring 113c of the first metal wiring layer through the silicide 103 and the contacts 112b (five in the drawing). Then, the wiring 113c of the first metal wiring layer is connected to the wiring 115l of the second metal wiring layer through the contact 114e, and the power source Vcc is supplied to 115l. Here, the wiring 115l of the second metal wiring layer extends in a direction perpendicular to the row direction. Note that the wiring 113c of the first metal wiring layer extends along the row direction and supplies the power Vcc to the silicide layer 103 and the lower diffusion layer 102pb, and the resistance of the silicide layer can be almost ignored.
NMOSトランジスタTn1のドレインである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1のメタル配線層の配線113bに接続され、第1のメタル配線層の配線113bは出力DECOUT1(図示しない)となる。NMOSトランジスタTn2のドレインである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1のメタル配線層の配線113bに接続される。また、NMOSトランジスタTn3のドレインである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1のメタル配線層の配線113bに接続される。PMOSトランジスタTp1のドレインである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1のメタル配線層の配線113bに接続される。ここで、上述したように、NMOSトランジスタTn1、Tn2、Tn3およびPMOSトランジスタTp1のドレインがコンタクトを介して第1のメタル配線層の配線113bに共通接続される。PMOSトランジスタTp1のソースとなる下部拡散層102paはシリサイド層103を介してPMOSトランジスタTp2のドレインと接続される。PMOSトランジスタTp2のソースである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1のメタル配線層の配線113dに接続される。また、PMOSトランジスタTp3のドレインである上部拡散層107p3はシリサイド109p3、コンタクト110p3を介して第1のメタル配線層の配線113dに接続される。ここで、PMOSトランジスタTp2のソースとPMOSトランジスタTp3のドレインは、第1のメタル配線層の配線113dを介して接続される。また、PMOSトランジスタTp3のソースは上述したように、下部拡散層102pbとなる。 The upper diffusion layer 107n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 113b of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113b of the first metal wiring layer is connected to the output DECOUT1 (not shown). Become. The upper diffusion layer 107n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n2 and the contact 110n2. The upper diffusion layer 107n3, which is the drain of the NMOS transistor Tn3, is connected to the wiring 113b of the first metal wiring layer via the silicide 109n3 and the contact 110n3. The upper diffusion layer 107p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 113b of the first metal wiring layer through the silicide 109p1 and the contact 110p1. Here, as described above, the drains of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistor Tp1 are commonly connected to the wiring 113b of the first metal wiring layer through the contacts. The lower diffusion layer 102pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 103. The upper diffusion layer 107p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2. The upper diffusion layer 107p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 113d of the first metal wiring layer through the silicide 109p3 and the contact 110p3. Here, the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 113d of the first metal wiring layer. Further, as described above, the source of the PMOS transistor Tp3 is the lower diffusion layer 102pb.
第1のインバータを構成するNMOSトランジスタTn11とPMOSトランジスタTp11のドレインである上部拡散層107n11および上部拡散層107p11は、各々シリサイド109n11、コンタクト110n11あるいはシリサイド層109p11、コンタクト110p11を介して第1のメタル配線層の配線113hに共通に接続され、113hは、第1のインバータの出力となる。また、NMOSトランジスタTn11とPMOSトランジスタTp11のゲート電極にゲート配線106eを介して共通に接続されたゲート配線106fには、NOR型デコーダの出力である第1のメタル配線層の配線113bが接続される。
第2のインバータを構成するNMOSトランジスタTn12とPMOSトランジスタTp12のドレインである上部拡散層107n12および上部拡散層107p12は、各々シリサイド109n12、コンタクト110n12あるいはシリサイド層109p12、コンタクト110p12を介して第1のメタル配線層の配線113iに共通に接続され、113iは、本行選択デコーダの出力WL1となる。また、NMOSトランジスタTn12とPMOSトランジスタTp12のゲート電極に共通に接続されたゲート配線106gには、第1のインバータの出力である第1のメタル配線層の配線113hが接続される。
The upper diffusion layer 107n11 and the upper diffusion layer 107p11 which are the drains of the NMOS transistor Tn11 and the PMOS transistor Tp11 constituting the first inverter are respectively connected to the first metal wiring via the silicide 109n11 and the contact 110n11 or the silicide layer 109p11 and the contact 110p11. It is commonly connected to the wiring 113h of the layer, and 113h becomes an output of the first inverter. Further, the wiring 113b of the first metal wiring layer, which is the output of the NOR decoder, is connected to the gate wiring 106f commonly connected to the gate electrodes of the NMOS transistor Tn11 and the PMOS transistor Tp11 via the gate wiring 106e. .
The upper diffusion layer 107n12 and the upper diffusion layer 107p12 which are the drains of the NMOS transistor Tn12 and the PMOS transistor Tp12 constituting the second inverter are respectively connected to the first metal wiring through the silicide 109n12 and the contact 110n12 or the silicide layer 109p12 and the contact 110p12. Commonly connected to the layer wiring 113i, 113i becomes the output WL1 of this row selection decoder. Further, the wiring 113h of the first metal wiring layer, which is the output of the first inverter, is connected to the gate wiring 106g commonly connected to the gate electrodes of the NMOS transistor Tn12 and the PMOS transistor Tp12.
第2のメタル配線層の配線により供給されるアドレス選択信号XA0~XA7のいずれかが入力されるゲート配線106dは、コンタクト111cを介して第1のメタル配線層の配線113eに接続される。第1のメタル配線層の配線113eは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XA0~XA7を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、行方向と平行に延在している第1のメタル配線層の配線113eと行方向と垂直な方向に延在しているアドレス選択信号XA0~XA7を供給する第2のメタル配線層の配線のいずれか1つの交点に、コンタクト114cを配置して、アドレス選択信号XAh(h=0~7)を供給する第2のメタル配線層の配線をゲート配線106dに接続する。図では、アドレス選択信号XA1を供給する第2のメタル配線層の配線115jと第1のメタル配線層の配線113eの交点にコンタクト114cを設けてある。すなわち、本行選択デコーダのNMOSトランジスタTn1とPMOSトランジスタTp1のゲートには、アドレス選択信号XA1が入力される。
本図では、アドレス選択信号XA2~XA7を供給する第2のメタル配線層の配線は省略してあるが、アドレス選択信号XA0、XA1を供給する第2のメタル配線層の配線と同様な配置で、さらに左側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XA0を供給する第2のメタル配線層の配線115iと第1のメタル配線層の配線113eとの交点には、破線にてコンタクト114zが描かれているが、本図では、ここにはコンタクトは存在せず、もし、アドレス選択信号XA0を供給する第2のメタル配線層の配線115iを入力させたい場合には、ここの箇所にコンタクトを設けるという、架空のコンタクトの箇所を示している。以下、他の箇所についても同様な意味である。
The gate wiring 106d to which any of the address selection signals XA0 to XA7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113e of the first metal wiring layer through the contact 111c. The wiring 113e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA7 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction. The contact 114c is arranged at any one of the intersections of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA7 extending in the direction perpendicular to the row direction with the address 113e, and the address selection signal XAh The wiring of the second metal wiring layer that supplies (h = 0 to 7) is connected to the gate wiring 106d. In the figure, a contact 114c is provided at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA1 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this row selection decoder.
In this figure, the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA7 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the left side in a form perpendicular to the row direction.
Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 113e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0, the location of the fictitious contact in which a contact is provided here is set. Show. Hereinafter, the same is true for the other portions.
第2のメタル配線層の配線により供給されるアドレス選択信号XB0~XB7のいずれかが入力されるゲート配線106cは、コンタクト111bを介して第1のメタル配線層の配線113fに接続される。第1のメタル配線層の配線113fは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XB0~XB7を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113eとの交点のいずれか1つにコンタクト114bを配置して、アドレス選択信号XBi(i=0~7)を供給する第2のメタル配線層の配線をゲート配線106cに接続する。図では、アドレス選択信号XB0を供給する第2のメタル配線層の配線115eと第1のメタル配線層の配線113fの交点にコンタクト114bを設けてある。すなわち、本行選択デコーダのNMOSトランジスタTn2とPMOSトランジスタTp2のゲートには、アドレス選択信号XB0が入力される。
本図では、アドレス選択信号XB4~XB7を供給する第2のメタル配線層の配線は省略してあるが、アドレス選択信号XB0~XB3を供給する第2のメタル配線層の配線と同様な配置で、さらに左側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XB1(第2のメタル配線層の配線115f)、アドレス選択信号XB2(第2のメタル配線層の配線115g)およびアドレス選択信号XB3(第2のメタル配線層の配線115h)と第1のメタル配線層の配線113fとの交点には、破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
The gate wiring 106c to which any of the address selection signals XB0 to XB7 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b. The wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB7 extends in a direction perpendicular to the row direction, and is at one of the intersections with the wiring 113e of the first metal wiring layer. The contact 114b is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XBi (i = 0 to 7) to the gate wiring 106c. In the figure, a contact 114b is provided at the intersection of the wiring 115e of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 113f of the first metal wiring layer. That is, the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of this row selection decoder.
In this figure, the wiring of the second metal wiring layer that supplies the address selection signals XB4 to XB7 is omitted, but the arrangement is the same as the wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3. Further, it is arranged on the left side in a form perpendicular to the row direction.
The address selection signal XB1 (second metal wiring layer wiring 115f), the address selection signal XB2 (second metal wiring layer wiring 115g), and the address selection signal XB3 (second metal wiring layer wiring 115h) A contact 114z is drawn by a broken line at the intersection with the wiring 113f of the first metal wiring layer. However, as described above, there is no contact here, and an imaginary contact location is shown. .
第2のメタル配線層の配線により供給されるアドレス選択信号XC0~XC3のいずれかが入力されるゲート配線106aは、コンタクト111aを介して第1のメタル配線層の配線113gに接続される。第1のメタル配線層の配線113gは、行に沿って平行な方向(図の右側)へ延在する。アドレス選択信号XC0~XC3は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113gとの交点のいずれか1つにコンタクト114aを配置して、アドレス選択信号XCj(i=0~3)をゲート配線106aに接続する。図では、アドレス選択信号XC0の第2のメタル配線層の配線115dと第1のメタル配線層の配線113gの交点にコンタクト114aを設けてある。すなわち、本行選択デコーダのNMOSトランジスタTn3とPMOSトランジスタTp3のゲートには、アドレス選択信号XC0が入力される。
なお、アドレス選択信号XC1(第2のメタル配線層の配線115c)、XC2(第2のメタル配線層の配線115b)、XC3(第2のメタル配線層の配線115a)と第1のメタル配線層の配線113gとの交点には、それぞれ破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
本実施例では、アドレス選択信号XA1、XB0、XC0が入力されており、行選択信号はWL1が選択される。
行選択デコーダBL200Bは図の枠で囲った領域となり、縦方向の寸法は図8と同一のLy2となる。
The gate wiring 106a to which any one of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer through the contact 111a. The wiring 113g of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row. The address selection signals XC0 to XC3 extend in a direction perpendicular to the row direction, and a contact 114a is arranged at any one of intersections with the wiring 113g of the first metal wiring layer, so that the address selection signal XCj (I = 0 to 3) is connected to the gate wiring 106a. In the figure, a contact 114a is provided at the intersection of the wiring 115d of the second metal wiring layer of the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this row selection decoder.
The address selection signals XC1 (second metal wiring layer wiring 115c), XC2 (second metal wiring layer wiring 115b), XC3 (second metal wiring layer wiring 115a) and the first metal wiring layer Although the contact 114z is drawn with a broken line at each intersection with the wiring 113g, as described above, there is no contact here, and an imaginary contact is shown.
In this embodiment, address selection signals XA1, XB0, and XC0 are input and WL1 is selected as the row selection signal.
The row selection decoder BL200B is an area surrounded by a frame in the figure, and the vertical dimension is Ly2 which is the same as that in FIG.
本実施例によれば、NOR型デコーダと第1および第2のインバータが一体化してそれらを構成するSGTMOSトランジスタが2行5列に配置される行方向と垂直な方向に、電源配線、基準電源配線、およびアドレス選択信号線を第2のメタル配線層の配線で延在配置し、行方向に沿って平行に配置される第1のメタル配線層の配線を介して、NOR型デコーダの入力ゲートと前記第2のメタル配線層の配線との接続を行うことで、任意のアドレス選択信号をNOR型デコーダの入力に供給することが可能となり、第2のメタル配線層の配線の最小ピッチで配置が可能で、面積が縮小された選択デコーダが提供される。
また、NMOSトランジスタTn1、Tn2、Tn3、Tn11およびTn12のソース領域となる下部拡散層102nを覆うシリサイド層103は、図9aにおいて行選択デコーダBL200Bの上側に隣接する反転配置された同様の行選択デコーダ(図示しない)のNMOSトランジスタのソース領域を覆うシリサイド領域と共通接続されて基準電源線に接続されるので、無駄な基準電源供給のための領域を削減でき、面積を縮小できる。
さらに、PMOSトランジスタTp3、Tp11およびTp12のソース領域となる下部拡散層102pbを覆うシリサイド層103は、図9aにおいて行選択デコーダBL200Bの下側に隣接する反転配置された同様の行選択デコーダのPMOSトランジスタのソース領域を覆うシリサイド領域と共通接続されて電源線に接続されるので、無駄な電源供給のための領域を削減でき、さらに面積を縮小できる。
According to this embodiment, the NOR type decoder and the first and second inverters are integrated and the SGTMOS transistors constituting them are arranged in 2 rows and 5 columns in the direction perpendicular to the row direction. The input gate of the NOR decoder is arranged via the wiring of the second metal wiring layer and the wiring of the second metal wiring layer, and the wiring of the first metal wiring layer arranged in parallel along the row direction. By connecting the second metal wiring layer to the wiring of the second metal wiring layer, it becomes possible to supply an arbitrary address selection signal to the input of the NOR type decoder, and it is arranged at the minimum wiring pitch of the second metal wiring layer. And a selection decoder with reduced area is provided.
Further, the silicide layer 103 covering the lower diffusion layer 102n serving as the source region of the NMOS transistors Tn1, Tn2, Tn3, Tn11, and Tn12 is a similar row selection decoder in an inverted arrangement adjacent to the upper side of the row selection decoder BL200B in FIG. 9a. Since it is connected in common to the silicide region covering the source region of the NMOS transistor (not shown) and connected to the reference power supply line, it is possible to reduce a region for wasteful reference power supply and to reduce the area.
Further, the silicide layer 103 covering the lower diffusion layer 102pb serving as the source regions of the PMOS transistors Tp3, Tp11, and Tp12 is a PMOS transistor of a similar row selection decoder arranged in an inverted manner adjacent to the lower side of the row selection decoder BL200B in FIG. 9a. Since it is connected to the power source line in common with the silicide region covering the source region, it is possible to reduce a region for wasteful power supply and further reduce the area.
(実施例6)
図10には、SRAMセルを含む、さらに別の半導体記憶装置を示す。図1と異なるところは、行選択デコーダを4入力NOR型デコーダにより構成した点である。図1と異なる箇所は、行選択デコーダ210と、アドレス選択信号を生成するプリデコーダ310である。
行アドレス信号の割り当ては、A0~A7と変わらず、ワード線の本数は256本となるので、4入力NORに対応させて、プリデコーダは、310A、310B、310C、310Dの4種類を設ける。310Aはアドレス信号A0~A1を受けてアドレス選択信号XA0~XA3を出力する。310Bはアドレス信号A2~A3を受けてアドレス選択信号XB0~XB3を出力する。310Cはアドレス信号A4~A5を受けてアドレス選択信号XC0~XC3を出力する。310Dはアドレス信号A6~A7を受けてアドレス選択信号XD0~XD3を出力する。4入力NOR型デコーダ211には、アドレス選択信号A0~XA3、XB0~XB3、XC0~XC3、XD0~XD3の組の各々について、それぞれ1つの信号が入力される。例えば、DECOUT1を出力するNOR型デコーダ211には、XA1,XB0、XC0、XD0が接続される。図1のアドレス選択信号の本数は、XAの組が8本、XBの組が4本、XCの組が8本となり、合計20本の配線が必要であったが、図10の実施例では、XAの組のアドレス選択信号は4本、XBの組は4本、XCの組は4本、XDの組が4本となり、合計16本の配線数で実現できる。
(Example 6)
FIG. 10 shows still another semiconductor memory device including SRAM cells. The difference from FIG. 1 is that the row selection decoder is constituted by a 4-input NOR type decoder. The difference from FIG. 1 is a row selection decoder 210 and a predecoder 310 that generates an address selection signal.
The row address signal assignment is the same as A0 to A7, and the number of word lines is 256. Therefore, four types of predecoders 310A, 310B, 310C, and 310D are provided in correspondence with 4-input NOR. 310A receives address signals A0 to A1 and outputs address selection signals XA0 to XA3. 310B receives address signals A2 to A3 and outputs address selection signals XB0 to XB3. 310C receives address signals A4 to A5 and outputs address selection signals XC0 to XC3. 310D receives address signals A6 to A7 and outputs address selection signals XD0 to XD3. The 4-input NOR type decoder 211 receives one signal for each of the groups of address selection signals A0 to XA3, XB0 to XB3, XC0 to XC3, and XD0 to XD3. For example, XA1, XB0, XC0, and XD0 are connected to the NOR decoder 211 that outputs DECOUT1. The number of address selection signals in FIG. 1 is 8 for the XA group, 4 for the XB group, and 8 for the XC group, and a total of 20 wires are required. In the embodiment of FIG. The address selection signals of the XA group are 4, the XB group is 4, the XC group is 4, and the XD group is 4, which can be realized with a total of 16 wires.
図11には、図2と同様の、行選択デコーダの選択動作表を示す。丸印のアドレス選択信号がNOR型デコーダ211に入力されると、対応した出力DECOUTkが選択される。 FIG. 11 shows a selection operation table of the row selection decoder similar to FIG. When a circled address selection signal is input to the NOR decoder 211, the corresponding output DECOUTk is selected.
図12に本発明のNOR型デコーダ211-kを示す。
Tn1、Tn2、Tn3、Tn4は、SGTで構成されたNMOSトランジスタ、Tp1、Tp2、Tp3、Tp4は、同じくSGTで構成されたPMOSトランジスタである。前記NMOSトランジスタTn1、Tn2、Tn3、Tn4のソースは基準電源Vssに接続され、ドレインは共通にノードN1に接続される。ノードN1は出力DECOUTkとなる。PMOSトランジスタTp1のドレインはノードN1に接続され、ソースはノードN2を介してPMOSトランジスタTp2のドレインに接続され、PMOSトランジスタTp2のソースはノードN3を介してPMOSトランジスタTp3のドレインに接続され、PMOSトランジスタTp3のソースはノードN4を介してPMOSトランジスタTp4のドレインに接続され、PMOSトランジスタTp4のソースは電源Vccに接続される。また、NMOSトランジスタTn1、PMOSトランジスタTp1のゲートには入力信号XAg(g=0~3)が入力され、NMOSトランジスタTn2、PMOSトランジスタTp2のゲートには入力信号XBh(h=0~3)が入力され、NMOSトランジスタTn3、PMOSトランジスタTp3のゲートには入力信号XCi(i=0~3)が入力され、NMOSトランジスタTn4、PMOSトランジスタTp4のゲートには入力信号XDj(j=0~3)が接続される。
FIG. 12 shows a NOR decoder 211-k of the present invention.
Tn1, Tn2, Tn3, and Tn4 are NMOS transistors configured by SGT, and Tp1, Tp2, Tp3, and Tp4 are PMOS transistors that are also configured by SGT. The sources of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 are connected to the reference power supply Vss, and the drains are commonly connected to the node N1. The node N1 becomes the output DECOUTk. The drain of the PMOS transistor Tp1 is connected to the node N1, the source is connected to the drain of the PMOS transistor Tp2 via the node N2, and the source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 via the node N3. The source of Tp3 is connected to the drain of the PMOS transistor Tp4 via the node N4, and the source of the PMOS transistor Tp4 is connected to the power supply Vcc. An input signal XAg (g = 0 to 3) is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1, and an input signal XBh (h = 0 to 3) is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2. The input signal XCi (i = 0 to 3) is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3, and the input signal XDj (j = 0 to 3) is connected to the gates of the NMOS transistor Tn4 and the PMOS transistor Tp4. Is done.
図13a、図13b、図13c、図13dおよび図13eに、第6の実施例を示す。図13aは、本発明のNOR型デコーダのレイアウト(配置)の平面図、図13bは、図13aにおけるカットラインA-A’に沿った断面図、図13cは、図13aにおけるカットラインB-B’に沿った断面図、図13dは、図13aにおけるカットラインC-C’に沿った断面図、図13eは、図13aにおけるカットラインD-D’に沿った断面図を示す。
図8aの3入力NOR型デコーダのレイアウト(配置)の平面図に対して、右側に、NMOSトランジスタTn4とPMOSトランジスタTp4を追加配置している。NMOSトランジスタTn1、Tn2、Tn3、PMOSトランジスタTp1、Tp2、Tp3の構造と配置は図8と同一である。図13は、NMOSトランジスタTn4とPMOSトランジスタTp4を右側に配置したことにより、第2のメタル配線層の配線によるアドレス選択信号の配置場所および、接続方法が一部異なる。
なお、図13a、図13b、図13c、図13d、図13eにおいて、図8a、図8b、図8c、図8d、図8e、図8f、図8g、図8hおよび図8iと同じ構造の箇所については、100番台の同等の記号で示してある。
A sixth embodiment is shown in FIGS. 13a, 13b, 13c, 13d and 13e. 13a is a plan view of the layout (arrangement) of the NOR decoder according to the present invention, FIG. 13b is a sectional view taken along the cut line AA ′ in FIG. 13a, and FIG. 13c is a cut line BB in FIG. 13d is a cross-sectional view along the cut line CC ′ in FIG. 13a, and FIG. 13e is a cross-sectional view along the cut line DD ′ in FIG. 13a.
An NMOS transistor Tn4 and a PMOS transistor Tp4 are additionally arranged on the right side of the plan view of the layout (arrangement) of the 3-input NOR type decoder in FIG. 8a. The structure and arrangement of the NMOS transistors Tn1, Tn2, Tn3 and the PMOS transistors Tp1, Tp2, Tp3 are the same as those in FIG. In FIG. 13, since the NMOS transistor Tn4 and the PMOS transistor Tp4 are arranged on the right side, the arrangement location of the address selection signal by the wiring of the second metal wiring layer and the connection method are partially different.
In FIGS. 13a, 13b, 13c, 13d, and 13e, the same structure as in FIGS. 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, and 8i is shown. Are indicated by equivalent symbols in the 100s.
基板上に形成された埋め込み酸化膜層(BOX)101などの絶縁膜上に平面状シリコン層102n、102pa、102pbが形成され、この平面状シリコン層102n、102pa、102pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。103は、平面状シリコン層(102n、102pa、102pb)の表面に形成されるシリサイド層である。104p1、104p2、104p3、104p4はp型シリコン柱、104n1、104n2、104n3、104n4はn型シリコン柱、105はシリコン柱104p1、104p2、104p3、104p4、104n1、104n2、104n3、104n4を取り囲むゲート絶縁膜、106はゲート電極、106a、106b、106c、106d、106eおよび106fは、それぞれゲート配線である。シリコン柱104p1、104p2、104p3、104p4の最上部には、それぞれn+拡散層107n1、107n2、107n3、107n4が不純物注入等により形成され、シリコン柱104n1、104n2、104n3、104n4の最上部には、それぞれp+拡散層107p1、107p2、107p3、107p4が不純物注入等により形成される。108はゲート絶縁膜105を保護するためのシリコン窒化膜、109n1、109n2、109n3、109n4、109p1、109p2、109p3、109p4はそれぞれn+拡散層107n1、107n2、107n3、107n4、p+拡散層107p1、107p2、107p3、107p4に接続されるシリサイド層、110n1、110n2、110n3、110n4、110p1、110p2、110p3、110p4は、シリサイド層109n1、109n2、109n3、109n4、109p1、109p2、109p3、109p4と第1のメタル配線層の配線113b、113b、113b、113b、113b、113d、113d、113cをそれぞれ接続するコンタクト、111cはゲート配線106dと第1のメタル配線層の配線113eを接続するコンタクト、111bはゲート配線106cと第1のメタル配線層の配線113fを接続するコンタクト、111aはゲート配線106eと第1のメタル配線層の配線113gを接続するコンタクト、111dはゲート配線106fと第1のメタル配線層の配線113hを接続するコンタクトである。
また、112a(図では7個配置)は、下部拡散層102nを覆って接続するシリサイド層103と第1のメタル配線層の配線113aを接続するコンタクトである。
Planar silicon layers 102n, 102pa, and 102pb are formed on an insulating film such as a buried oxide film layer (BOX) 101 formed on the substrate. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer. Reference numeral 103 denotes a silicide layer formed on the surface of the planar silicon layer (102n, 102pa, 102pb). 104p1, 104p2, 104p3, 104p4 are p-type silicon pillars, 104n1, 104n2, 104n3, 104n4 are n-type silicon pillars, 105 is a silicon pillar 104p1, 104p2, 104p3, 104p4, 104n1, 104n2, 104n3, 104n4. , 106 are gate electrodes, and 106a, 106b, 106c, 106d, 106e, and 106f are gate wirings, respectively. N + diffusion layers 107n1, 107n2, 107n3, and 107n4 are formed by impurity implantation or the like on the uppermost portions of the silicon pillars 104p1, 104p2, 104p3, and 104p4, respectively. The p + diffusion layers 107p1, 107p2, 107p3, and 107p4 are formed by impurity implantation or the like. 108 is a silicon nitride film for protecting the gate insulating film 105, 109n1, 109n2, 109n3, 109n4, 109p1, 109p2, 109p3, 109p4 are n + diffusion layers 107n1, 107n2, 107n3, 107n4, p + diffusion layers 107p1, 107p2, The silicide layers connected to 107p3 and 107p4, 110n1, 110n2, 110n3, 110n4, 110p1, 110p2, 110p3, and 110p4 are silicide layers 109n1, 109n2, 109n3, 109n4, 109p1, 109p2, 109p3, and 109p4 and the first metal wiring Layer wirings 113b, 113b, 113b, 113b, 113b, 113d, 113d, 113c are respectively connected to contacts, and 111c is a gate wiring 106. 111b is a contact connecting the gate wiring 106c and the first metal wiring layer 113f, 111a is a contact connecting the gate wiring 106e and the first metal wiring layer 113g. 111d is a contact for connecting the gate wiring 106f and the wiring 113h of the first metal wiring layer.
Reference numeral 112a (seven in the figure) denotes a contact for connecting the silicide layer 103 connected to cover the lower diffusion layer 102n and the wiring 113a of the first metal wiring layer.
シリコン柱104p1、下部拡散層102n、上部拡散層107n1、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn1を構成し、シリコン柱104p2、下部拡散層102n、上部拡散層107n2、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn2を構成し、シリコン柱104p3、下部拡散層102n、上部拡散層107n3、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn3を構成し、シリコン柱104p4、下部拡散層102n、上部拡散層107n4、ゲート絶縁膜105、ゲート電極106により、NMOSトランジスタTn4を構成し、シリコン柱104n1、下部拡散層102pa、上部拡散層107p1、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp1を構成し、シリコン柱104n2、下部拡散層102pa、上部拡散層107p2、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp2を構成し、シリコン柱104n3、下部拡散層102pb、上部拡散層107p3、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp3を構成し、シリコン柱104n4、下部拡散層102pb、上部拡散層107p4、ゲート絶縁膜105、ゲート電極106により、PMOSトランジスタTp4を構成する。 The silicon pillar 104p1, the lower diffusion layer 102n, the upper diffusion layer 107n1, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn1, and the silicon pillar 104p2, the lower diffusion layer 102n, the upper diffusion layer 107n2, the gate insulating film 105, The gate electrode 106 constitutes the NMOS transistor Tn2, and the silicon pillar 104p3, the lower diffusion layer 102n, the upper diffusion layer 107n3, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn3, and the silicon pillar 104p4, the lower diffusion layer. 102n, the upper diffusion layer 107n4, the gate insulating film 105, and the gate electrode 106 constitute the NMOS transistor Tn4. The silicon pillar 104n1, the lower diffusion layer 102pa, the upper diffusion layer 107p1, the gate insulating film 105, the gate electrode The electrode 106 constitutes the PMOS transistor Tp1, and the silicon pillar 104n2, the lower diffusion layer 102pa, the upper diffusion layer 107p2, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp2, and the silicon pillar 104n3 and the lower diffusion layer 102pb. The upper diffusion layer 107p3, the gate insulating film 105, and the gate electrode 106 constitute a PMOS transistor Tp3. The silicon pillar 104n4, the lower diffusion layer 102pb, the upper diffusion layer 107p4, the gate insulating film 105, and the gate electrode 106 constitute the PMOS transistor Tp4. Configure.
また、NMOSトランジスタTn1およびPMOSトランジスタTp1のゲート電極106にはゲート配線106dが接続される。NMOSトランジスタTn2およびPMOSトランジスタTp2のゲート電極106にはゲート配線106bが接続され、さらに、PMOSトランジスタTp2のゲート電極106にはゲート配線106cが接続される。NMOSトランジスタTn3およびPMOSトランジスタTp3のゲート電極106にはゲート配線106aが接続され、さらに、PMOSトランジスタTp3のゲート電極106にはゲート配線106eが接続される。NMOSトランジスタTn4およびPMOSトランジスタTp4のゲート電極106にはゲート配線106fが接続される。 A gate wiring 106d is connected to the gate electrodes 106 of the NMOS transistor Tn1 and the PMOS transistor Tp1. A gate line 106b is connected to the gate electrodes 106 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate line 106c is connected to the gate electrode 106 of the PMOS transistor Tp2. A gate wiring 106a is connected to the gate electrode 106 of the NMOS transistor Tn3 and the PMOS transistor Tp3, and a gate wiring 106e is connected to the gate electrode 106 of the PMOS transistor Tp3. A gate wiring 106f is connected to the gate electrodes 106 of the NMOS transistor Tn4 and the PMOS transistor Tp4.
NMOSトランジスタTn1、Tn2、Tn3、Tn4のソースは、下部拡散層102nとなり、シリサイド103およびコンタクト112a(図では7個配置)を介して第1のメタル配線層の配線113aに接続され、第1のメタル配線層の配線113aはコンタクト114eを介して第2のメタル配線層の配線115dに接続され、115dには基準電源Vssが供給される。ここで、第2のメタル配線層の配線115dは、行方向と垂直な方向へ延在する。なお、第1のメタル配線層の配線113aは行方向に沿って延在して下部拡散層およびシリサイド103に基準電源Vssを供給しており、シリサイド層の抵抗はほとんど無視できる。NMOSトランジスタTn1のドレインである上部拡散層107n1はシリサイド109n1、コンタクト110n1を介して第1のメタル配線層の配線113bに接続され、第1のメタル配線層の配線113bは出力DECOUT4となる。NMOSトランジスタTn2のドレインである上部拡散層107n2はシリサイド109n2、コンタクト110n2を介して第1のメタル配線層の配線113bに接続される。NMOSトランジスタTn3のドレインである上部拡散層107n3はシリサイド109n3、コンタクト110n3を介して第1のメタル配線層の配線113bに接続される。また、NMOSトランジスタTn4のドレインである上部拡散層107n4はシリサイド109n4、コンタクト110n4を介して第1のメタル配線層の配線113bに接続される。PMOSトランジスタTp1のドレインである上部拡散層107p1はシリサイド109p1、コンタクト110p1を介して第1のメタル配線層の配線113bに接続される。ここで、上述したように、NMOSトランジスタTn1、Tn2、Tn3、Tn4およびPMOSトランジスタTp1のドレインがコンタクトを介して第1のメタル配線層の配線113bに共通接続される。PMOSトランジスタTp1のソースとなる下部拡散層102paはシリサイド層103を介してPMOSトランジスタTp2のドレインと接続される。PMOSトランジスタTp2のソースである上部拡散層107p2はシリサイド109p2、コンタクト110p2を介して第1のメタル配線層の配線113dに接続される。また、PMOSトランジスタTp3のドレインである上部拡散層107p3はシリサイド109p3、コンタクト110p3を介して第1のメタル配線層の配線113dに接続される。ここで、PMOSトランジスタTp2のソースとPMOSトランジスタTp3のドレインは、第1のメタル配線層の配線113dを介して接続される。PMOSトランジスタTp3のソースは下部拡散層102pbとシリサイド領域103を介してPMOSトランジスタTp4のドレインと接続され、PMOSトランジスタTp4のソースは、上部拡散層107p4、シリサイド109p4およびコンタクト110p4を介して第1のメタル配線層の配線113cに接続され、第1のメタル配線層の配線113cはさらにコンタクト114p4を介して第2のメタル配線層の配線115aに接続され、115aには電源Vccが供給される。ここで、第2のメタル配線層の配線115aは、行方向と垂直な方向に延在する。 The sources of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 are the lower diffusion layer 102n, and are connected to the wiring 113a of the first metal wiring layer through the silicide 103 and the contacts 112a (seven in the drawing), The wiring 113a of the metal wiring layer is connected to the wiring 115d of the second metal wiring layer through the contact 114e, and the reference power source Vss is supplied to 115d. Here, the wiring 115d of the second metal wiring layer extends in a direction perpendicular to the row direction. Note that the wiring 113a of the first metal wiring layer extends in the row direction and supplies the reference power source Vss to the lower diffusion layer and the silicide 103, and the resistance of the silicide layer is almost negligible. The upper diffusion layer 107n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 113b of the first metal wiring layer via the silicide 109n1 and the contact 110n1, and the wiring 113b of the first metal wiring layer becomes the output DECOUT4. The upper diffusion layer 107n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n2 and the contact 110n2. The upper diffusion layer 107n3 which is the drain of the NMOS transistor Tn3 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n3 and the contact 110n3. The upper diffusion layer 107n4 which is the drain of the NMOS transistor Tn4 is connected to the wiring 113b of the first metal wiring layer through the silicide 109n4 and the contact 110n4. The upper diffusion layer 107p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 113b of the first metal wiring layer through the silicide 109p1 and the contact 110p1. Here, as described above, the drains of the NMOS transistors Tn1, Tn2, Tn3, Tn4 and the PMOS transistor Tp1 are commonly connected to the wiring 113b of the first metal wiring layer through the contacts. The lower diffusion layer 102pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 103. The upper diffusion layer 107p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 113d of the first metal wiring layer through the silicide 109p2 and the contact 110p2. The upper diffusion layer 107p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 113d of the first metal wiring layer through the silicide 109p3 and the contact 110p3. Here, the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 113d of the first metal wiring layer. The source of the PMOS transistor Tp3 is connected to the drain of the PMOS transistor Tp4 via the lower diffusion layer 102pb and the silicide region 103, and the source of the PMOS transistor Tp4 is the first metal via the upper diffusion layer 107p4, the silicide 109p4 and the contact 110p4. Connected to the wiring 113c of the wiring layer, the wiring 113c of the first metal wiring layer is further connected to the wiring 115a of the second metal wiring layer via the contact 114p4, and the power supply Vcc is supplied to 115a. Here, the wiring 115a of the second metal wiring layer extends in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XA0~XA3のいずれかが入力されるゲート配線106dは、コンタクト111cを介して第1のメタル配線層の配線113eに接続される。第1のメタル配線層の配線113eは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XA0~XA3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、行方向と平行に延在している第1のメタル配線層の配線113eと行方向と垂直な方向に延在している選択アドレス信号XA0~XA3を供給する第2のメタル配線層の配線のいずれか1つの交点に、コンタクト114cを配置して、アドレス選択信号XAh(h=0~3)を供給する第2のメタル配線層の配線をゲート配線106dに接続する。図では、アドレス選択信号XA0を供給する第2のメタル配線層の配線115iと第1のメタル配線層の配線113eの交点にコンタクト114cを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn1とPMOSトランジスタTp1のゲートには、アドレス選択信号XA0が入力される。
本図では、アドレス選択信号XA2~XA3を供給する第2のメタル配線層の配線は省略してあるが、アドレス選択信号XA0、XA1を供給する第2のメタル配線層の配線と同様な配置で、さらに左側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XA1を供給する第2のメタル配線層の配線115jと第1のメタル配線層の配線113eとの交点には、破線にてコンタクト114zが描かれているが、本図では、ここにはコンタクトは存在せず、もし、アドレス選択信号XA1を供給する第2のメタル配線層の配線115jを入力させたい場合には、ここの箇所にコンタクトを設けるという、架空のコンタクトの箇所を示している。
The gate wiring 106d to which any one of the address selection signals XA0 to XA3 supplied by the wiring of the second metal wiring layer is connected is connected to the wiring 113e of the first metal wiring layer through the contact 111c. The wiring 113e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction. A contact 114c is arranged at any one of the intersections of the wirings of the second metal wiring layer that supplies the selection address signals XA0 to XA3 extending in the direction perpendicular to the row direction to the address 113e, and the address selection signal XAh The wiring of the second metal wiring layer that supplies (h = 0 to 3) is connected to the gate wiring 106d. In the figure, a contact 114c is provided at the intersection of the wiring 115i of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 113e of the first metal wiring layer. That is, the address selection signal XA0 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this NOR decoder.
In this figure, the wiring of the second metal wiring layer that supplies the address selection signals XA2 to XA3 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XA0 and XA1. Further, it is arranged on the left side in a form perpendicular to the row direction.
Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 113e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115j of the second metal wiring layer that supplies the address selection signal XA1, the location of the fictitious contact in which a contact is provided here is provided. Show.
第2のメタル配線層の配線により供給されるアドレス選択信号XB0~XB3のいずれかが入力されるゲート配線106cは、コンタクト111bを介して第1のメタル配線層の配線113fに接続される。第1のメタル配線層の配線113fは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XB0~XB3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113fとの交点のいずれか1つにコンタクト114bを配置して、アドレス選択信号XBi(i=0~3)を供給する第2のメタル配線層の配線をゲート配線106cに接続する。図では、アドレス選択信号XB1を供給する第2のメタル配線層の配線115fと第1のメタル配線層の配線113fの交点にコンタクト114bを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn2とPMOSトランジスタTp2のゲートには、アドレス選択信号XB1が入力される。
なお、アドレス選択信号XB2を供給する第2のメタル配線層の配線115gおよびアドレス選択信号XB3を供給する第2のメタル配線層の配線115hと第1のメタル配線層の配線113fとの交点には、破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
The gate wiring 106c to which any of the address selection signals XB0 to XB3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113f of the first metal wiring layer through the contact 111b. The wiring 113f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113f of the first metal wiring layer. The contact 114b is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XBi (i = 0 to 3) to the gate wiring 106c. In the figure, a contact 114b is provided at the intersection of the wiring 115f of the second metal wiring layer that supplies the address selection signal XB1 and the wiring 113f of the first metal wiring layer. That is, the address selection signal XB1 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder.
Note that the intersection of the wiring 115g of the second metal wiring layer that supplies the address selection signal XB2 and the wiring 115h of the second metal wiring layer that supplies the address selection signal XB3 and the wiring 113f of the first metal wiring layer Although the contact 114z is drawn by a broken line, as described above, there is no contact here, and an imaginary contact location is shown.
第2のメタル配線層の配線により供給されるアドレス選択信号XC0~XC3のいずれかが入力されるゲート配線106eは、コンタクト111aを介して第1のメタル配線層の配線113gに接続される。第1のメタル配線層の配線113gは、行に沿って平行な方向(図の右側)へ延在する。アドレス選択信号XC0~XC3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線113gとの交点のいずれか1つにコンタクト114aを配置して、アドレス選択信号XCj(i=0~3)を供給する第2のメタル配線層の配線をゲート配線106eに接続する。図では、アドレス選択信号XC0を供給する第2のメタル配線層の配線115cと第1のメタル配線層の配線113gの交点にコンタクト114aを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn3とPMOSトランジスタTp3のゲートには、アドレス選択信号XC0が入力される。
アドレス選択信号XC1を供給する第2のメタル配線層の配線115b、アドレス選択信号XC2を供給する第2のメタル配線層の配線115p、アドレス選択信号XC3を供給する第2のメタル配線層の配線115qと第1のメタル配線層の配線113gとの交点には、破線にてコンタクト114zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
The gate wiring 106e to which any of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113g of the first metal wiring layer via the contact 111a. The wiring 113g of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 113g of the first metal wiring layer. A contact 114a is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XCj (i = 0 to 3) to the gate wiring 106e. In the figure, a contact 114a is provided at the intersection of the wiring 115c of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 113g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
Wiring 115b of the second metal wiring layer that supplies the address selection signal XC1, wiring 115p of the second metal wiring layer that supplies the address selection signal XC2, and wiring 115q of the second metal wiring layer that supplies the address selection signal XC3 The contact 114z is drawn by a broken line at the intersection of the first metal wiring layer and the wiring 113g of the first metal wiring layer. However, as described above, there is no contact here, and the location of the fictitious contact is shown. Yes.
第2のメタル配線層の配線により供給されるアドレス選択信号XD0~XD3のいずれかが入力されるゲート配線106fは、コンタクト111dを介して第1のメタル配線層の配線113hに接続される。第1のメタル配線層の配線113hは、行に沿って平行な方向(図の右側)へ延在する。アドレス選択信号XD0~XD3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、行方向と平行に延在している第1のメタル配線層の配線113hと行方向と垂直な方向に延在しているアドレス選択信号XD0~XD3を供給する第2のメタル配線層の配線のいずれか1つの交点に、コンタクト114dを配置して、アドレス選択信号XDj(j=0~3)を供給する第2のメタル配線層の配線をゲート配線106fに接続する。図では、アドレス選択信号XD0を供給する第2のメタル配線層の配線115rと第1のメタル配線層の配線113hの交点にコンタクト114dを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn4とPMOSトランジスタTp4のゲートには、アドレス選択信号XD0が入力される。
本図では、アドレス選択信号XD2~XD3を供給する第2のメタル配線層の配線は省略してあるが、アドレス選択信号XD0、XD1を供給する第2のメタル配線層の配線と同様な配置で、さらに右側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XD1を供給する第2のメタル配線層の配線115sと第1のメタル配線層の配線113hとの交点には、破線にてコンタクト114zが描かれているが、本図では、ここにはコンタクトは存在せず、もし、アドレス選択信号XD1を供給する第2のメタル配線層の配線115sを入力させたい場合には、ここの箇所にコンタクトを設けるという、架空のコンタクトの箇所を示している。
本図に従えば、本NOR型デコーダにはアドレス選択信号XA0、XB1、XC0、XD0が入力されており、図11により、出力はDECOUT4となる。
NOR型デコーダBL211Bは図の枠で囲った領域となり、縦方向の寸法はLy2となる。
The gate wiring 106f to which any of the address selection signals XD0 to XD3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 113h of the first metal wiring layer through the contact 111d. The wiring 113h of the first metal wiring layer extends in a parallel direction (right side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XD0 to XD3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction. A contact 114d is arranged at any one of the intersections of the wirings of the second metal wiring layer for supplying the address selection signals XD0 to XD3 extending in the direction perpendicular to the row direction with respect to 113h, and the address selection signal XDj The wiring of the second metal wiring layer that supplies (j = 0 to 3) is connected to the gate wiring 106f. In the figure, a contact 114d is provided at the intersection of the wiring 115r of the second metal wiring layer that supplies the address selection signal XD0 and the wiring 113h of the first metal wiring layer. That is, the address selection signal XD0 is input to the gates of the NMOS transistor Tn4 and the PMOS transistor Tp4 of this NOR decoder.
In this figure, the wiring of the second metal wiring layer that supplies the address selection signals XD2 to XD3 is omitted, but it has the same arrangement as the wiring of the second metal wiring layer that supplies the address selection signals XD0 and XD1. Further, it is arranged on the right side in a form perpendicular to the row direction.
Note that a contact 114z is drawn by a broken line at the intersection of the wiring 115s of the second metal wiring layer that supplies the address selection signal XD1 and the wiring 113h of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115s of the second metal wiring layer that supplies the address selection signal XD1, the location of the fictitious contact in which a contact is provided here is provided. Show.
According to this figure, address selection signals XA0, XB1, XC0 and XD0 are input to this NOR type decoder, and the output is DECOUT4 according to FIG.
The NOR type decoder BL211B is a region surrounded by a frame in the figure, and the vertical dimension is Ly2.
本実施例によれば、電源配線、基準電源配線、およびアドレス選択信号線を第2のメタル配線層の配線で、NOR型デコーダを構成するSGTMOSトランジスタが2行4列に配置される行方向と垂直な方向に延在配置し、行方向に沿って平行に配置される第1のメタル配線層の配線を介して、NOR型デコーダの入力ゲートと前記第2のメタル配線層の配線との接続を行うことで、任意のアドレス選択信号をNOR型デコーダの入力に供給することが可能となり、第2のメタル配線層の配線の最小ピッチで配置が可能な、面積が縮小されたNOR型デコーダが実現できる。
また、NMOSトランジスタTn1、Tn2、Tn3およびTn4のソース領域となる下部拡散層102nを覆うシリサイド層103は、図13aにおいてNOR型デコーダBL211Bの上側に隣接する反転配置された同様のNOR型デコーダのNMOSトランジスタのソース領域を覆うシリサイド領域と共通接続されて基準電源線に接続されるので、無駄な基準電源供給のための領域を削減でき、面積を縮小できる。
According to this embodiment, the power supply wiring, the reference power supply wiring, and the address selection signal line are the wirings of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 2 rows and 4 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction As a result, it is possible to supply an arbitrary address selection signal to the input of the NOR decoder, and a NOR decoder with a reduced area that can be arranged at the minimum pitch of the wiring of the second metal wiring layer is provided. realizable.
Further, the silicide layer 103 covering the lower diffusion layer 102n serving as the source region of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 is the NMOS of the same NOR type decoder arranged in an inverted manner adjacent to the upper side of the NOR type decoder BL211B in FIG. 13a. Since it is connected in common to the silicide region covering the source region of the transistor and connected to the reference power supply line, a region for supplying unnecessary reference power can be reduced and the area can be reduced.
(実施例7)
図14a、図14b、図14c、図14d、図14e、図14fおよび図14gに、第7の実施例を示す。本実施例は図12に示す等価回路を実現したNOR型デコーダであり、図14aは、本発明の4入力NOR型デコーダのレイアウト(配置)の平面図、図14bは、図14aにおけるカットラインA-A’に沿った断面図、図14cは、図14aにおけるカットラインB-B’に沿った断面図、図14dは、図14aにおけるカットラインC-C’に沿った断面図、図14eは、図14aにおけるカットラインD-D’に沿った断面図、図14fは、図14aにおけるカットラインE-E’に沿った断面図、図14gは、図14aにおけるカットラインF-F’に沿った断面図を示す。
(Example 7)
14a, 14b, 14c, 14d, 14e, 14f and 14g show a seventh embodiment. This embodiment is a NOR type decoder realizing the equivalent circuit shown in FIG. 12. FIG. 14A is a plan view of the layout (arrangement) of the 4-input NOR type decoder of the present invention, and FIG. 14B is a cut line A in FIG. 14c is a cross-sectional view along the cut line BB ′ in FIG. 14a, FIG. 14d is a cross-sectional view along the cut line CC ′ in FIG. 14a, and FIG. 14a is a cross-sectional view along the cut line DD ′ in FIG. 14a, FIG. 14f is a cross-sectional view along the cut line EE ′ in FIG. 14a, and FIG. 14g is along the cut line FF ′ in FIG. FIG.
本実施例と他の実施例と大きく異なるところは、本実施例は、NOR型デコーダ211kを構成するNMOSトランジスタTn1、Tn2、Tn3、Tn4が1列に配置(図の縦方向右側)され、同じくPMOSトランジスタTp1、Tp2、Tp3、Tp4が1列に配置(図の縦方向左側)されていることである。
行と列の定義は、90度回転させれば同一であるが、ここでは、マトリックス状に配置されたメモリセルに合わせた行選択デコーダを構成する実施例であり、横方向を行、縦方向を列と定義する。
すなわち、実施例において、NMOSトランジスタTn1とPMOSトランジスタTp1が上から1行目に右側より配置され、2行目にNMOSトランジスタTn2とPMOSトランジスタTp2が配置され、3行目にNMOSトランジスタTn3とPMOSトランジスタTp3が配置され、4行目にNMOSトランジスタTn4とPMOSトランジスタTp4が配置される。
さらに、本実施例では、実施例4(図8)と同じく、NMOSトランジスタTn1、Tn2、Tn3、Tn4、PMOSトランジスタTp1、Tp2、Tp3、Tp4のソースとドレインの向きを上下逆に配置して、NMOSトランジスタTn1、Tn2、Tn3、Tn4、PMOSトランジスタTp1の各ドレインが、コンタクトを介して共通に接続されていることである。
なお、図14a、図14b、図14c、図14d、図14e、図14fおよび図14gにおいて、図8と同じ構造の箇所については、200番台の同等の記号で示してある。
This embodiment differs greatly from the other embodiments in this embodiment, in which NMOS transistors Tn1, Tn2, Tn3, and Tn4 constituting the NOR decoder 211k are arranged in one row (right side in the vertical direction in the figure). That is, the PMOS transistors Tp1, Tp2, Tp3, and Tp4 are arranged in one column (left side in the vertical direction in the figure).
The definition of the row and the column is the same when rotated by 90 degrees, but here is an embodiment that constitutes a row selection decoder according to the memory cells arranged in a matrix, where the horizontal direction is the row, the vertical direction Is defined as a column.
That is, in the embodiment, the NMOS transistor Tn1 and the PMOS transistor Tp1 are arranged from the right side in the first row from the top, the NMOS transistor Tn2 and the PMOS transistor Tp2 are arranged in the second row, and the NMOS transistor Tn3 and the PMOS transistor are arranged in the third row. Tp3 is arranged, and NMOS transistor Tn4 and PMOS transistor Tp4 are arranged in the fourth row.
Further, in the present embodiment, as in the fourth embodiment (FIG. 8), the directions of the source and drain of the NMOS transistors Tn1, Tn2, Tn3, Tn4, and the PMOS transistors Tp1, Tp2, Tp3, Tp4 are arranged upside down. The drains of the NMOS transistors Tn1, Tn2, Tn3, Tn4, and the PMOS transistor Tp1 are connected in common through contacts.
14a, FIG. 14b, FIG. 14c, FIG. 14d, FIG. 14e, FIG. 14f, and FIG. 14g, portions having the same structure as FIG.
基板上に形成された埋め込み酸化膜層(BOX)201などの絶縁膜上に平面状シリコン層202n、202pa、202pbが形成され、この平面状シリコン層202n、202pa、202pbは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層から構成される。203は、平面状シリコン層(202n、202pa、202pb)の表面に形成されるシリサイド層である。204p1、204p2、204p3、204p4はp型シリコン柱、204n1、204n2、204n3、204n4はn型シリコン柱、205はシリコン柱204p1、204p2、204p3、204p4、204n1、204n2、204n3、204n4を取り囲むゲート絶縁膜、206はゲート電極、206a、206b、206c、206d、206e、206f、206gおよび206hは、それぞれゲート配線である。シリコン柱204p1、204p2、204p3、204p4の最上部には、それぞれn+拡散層207n1、207n2、207n3、207n4が不純物注入等により形成され、シリコン柱204n1、204n2、204n3、204n4の最上部には、それぞれp+拡散層207p1、207p2、207p3、207p4が不純物注入等により形成される。208はゲート絶縁膜205を保護するためのシリコン窒化膜、209n1、209n2、209n3、209n4、209p1、209p2、209p3、209p4はそれぞれn+拡散層207n1、207n2、207n3、207n4、p+拡散層207p1、207p2、207p3、207p4に接続されるシリサイド層、210n1、210n2、210n3、210n4、210p1、210p2、210p3、210p4は、シリサイド層209n1、209n2、209n3、209n4、209p1、209p2、209p3、209p4と第1のメタル配線層の配線213b、213b、213b、213b、213b、213d、213d、213cをそれぞれ接続するコンタクト、211aはゲート配線206aと第1のメタル配線層の配線213eを接続するコンタクト、211bはゲート配線206dと第1のメタル配線層の配線213hを接続するコンタクト、211cはゲート配線206cと第1のメタル配線層の配線213fを接続するコンタクト、211dはゲート配線206eと第1のメタル配線層の配線213gを接続するコンタクト、211eはゲート配線206gと第1のメタル配線層の配線213iを接続するコンタクトである。
また、212a(図では上下に2個配置)は、下部拡散層202nを覆って接続するシリサイド層203と第1のメタル配線層の配線213a(図では上下に2箇所配置)を接続するコンタクトである。
Planar silicon layers 202n, 202pa, 202pb are formed on an insulating film such as a buried oxide film layer (BOX) 201 formed on the substrate, and these planar silicon layers 202n, 202pa, 202pb are formed by impurity implantation or the like, respectively. It is composed of an n + diffusion layer, a p + diffusion layer, and a p + diffusion layer. Reference numeral 203 denotes a silicide layer formed on the surface of the planar silicon layer (202n, 202pa, 202pb). 204p1, 204p2, 204p3, and 204p4 are p-type silicon pillars, 204n1, 204n2, 204n3, and 204n4 are n-type silicon pillars, 205 is a silicon pillar 204p1, 204p2, 204p3, 204p4, 204n1, 204n2, 204n3, and 204n4. , 206 are gate electrodes, and 206a, 206b, 206c, 206d, 206e, 206f, 206g and 206h are gate wirings, respectively. N + diffusion layers 207n1, 207n2, 207n3, and 207n4 are formed on the uppermost portions of the silicon pillars 204p1, 204p2, 204p3, and 204p4 by impurity implantation, respectively, and the uppermost portions of the silicon pillars 204n1, 204n2, 204n3, and 204n4 are respectively formed on the uppermost portions. P + diffusion layers 207p1, 207p2, 207p3, and 207p4 are formed by impurity implantation or the like. 208 is a silicon nitride film for protecting the gate insulating film 205, 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 are n + diffusion layers 207n1, 207n2, 207n3, 207n4, p + diffusion layers 207p1, 207p2, respectively. Silicide layers 210n1, 210n2, 210n3, 210n4, 210p1, 210p2, 210p3, 210p4 connected to 207p3, 207p4 are silicide layers 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 and the first metal wiring Layer wirings 213b, 213b, 213b, 213b, 213b, 213d, 213d, and 213c are respectively connected to contacts, 211a is a gate wiring 206 And a contact connecting the wiring 213e of the first metal wiring layer, 211b a contact connecting the gate wiring 206d and the wiring 213h of the first metal wiring layer, and 211c a wiring 213f of the gate wiring 206c and the first metal wiring layer. , 211d is a contact connecting the gate wiring 206e and the first metal wiring layer 213g, and 211e is a contact connecting the gate wiring 206g and the first metal wiring layer 213i.
Reference numeral 212a (two in the figure) is a contact for connecting the silicide layer 203 connected to cover the lower diffusion layer 202n and the wiring 213a of the first metal wiring layer (two places in the figure in the vertical direction). is there.
シリコン柱204p1、下部拡散層202n、上部拡散層207n1、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスタTn1を構成し、シリコン柱204p2、下部拡散層202n、上部拡散層207n2、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスタTn2を構成し、シリコン柱204p3、下部拡散層202n、上部拡散層207n3、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスタTn3を構成し、シリコン柱204p4、下部拡散層202n、上部拡散層207n4、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスタTn4を構成し、シリコン柱204n1、下部拡散層202pa、上部拡散層207p1、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp1を構成し、シリコン柱204n2、下部拡散層202pa、上部拡散層207p2、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp2を構成し、シリコン柱204n3、下部拡散層202pb、上部拡散層207p3、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp3を構成し、シリコン柱204n4、下部拡散層202pb、上部拡散層207p4、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp4を構成する。 The silicon pillar 204p1, the lower diffusion layer 202n, the upper diffusion layer 207n1, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn1, and the silicon pillar 204p2, the lower diffusion layer 202n, the upper diffusion layer 207n2, the gate insulating film 205, The gate electrode 206 constitutes the NMOS transistor Tn2, and the silicon pillar 204p3, the lower diffusion layer 202n, the upper diffusion layer 207n3, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn3, and the silicon pillar 204p4, the lower diffusion layer. 202n, the upper diffusion layer 207n4, the gate insulating film 205, and the gate electrode 206 constitute an NMOS transistor Tn4. The silicon pillar 204n1, the lower diffusion layer 202pa, the upper diffusion layer 207p1, the gate insulating film 205, the gate electrode The electrode 206 constitutes the PMOS transistor Tp1, and the silicon pillar 204n2, the lower diffusion layer 202pa, the upper diffusion layer 207p2, the gate insulating film 205, and the gate electrode 206 constitute the PMOS transistor Tp2, and the silicon pillar 204n3 and the lower diffusion layer 202pb. The upper diffusion layer 207p3, the gate insulating film 205, and the gate electrode 206 constitute a PMOS transistor Tp3, and the silicon pillar 204n4, the lower diffusion layer 202pb, the upper diffusion layer 207p4, the gate insulating film 205, and the gate electrode 206 constitute the PMOS transistor Tp4. Configure.
また、NMOSトランジスタTn1およびPMOSトランジスタTp1のゲート電極206にはゲート配線206bが接続され、さらに、PMOSトランジスタTp1のゲート電極206にはゲート配線206aが接続される。NMOSトランジスタTn2およびPMOSトランジスタTp2のゲート電極206にはゲート配線206dが接続され、さらに、PMOSトランジスタTp2のゲート電極206にはゲート配線206cが接続される。NMOSトランジスタTn3およびPMOSトランジスタTp3のゲート電極206にはゲート配線206fが接続され、さらに、PMOSトランジスタTp3のゲート電極206にはゲート配線206eが接続される。NMOSトランジスタTn4およびPMOSトランジスタTp4のゲート電極206にはゲート配線206hが接続され、さらに、PMOSトランジスタTp4のゲート電極206にはゲート配線206gが接続される。 Further, the gate wiring 206b is connected to the gate electrode 206 of the NMOS transistor Tn1 and the PMOS transistor Tp1, and the gate wiring 206a is connected to the gate electrode 206 of the PMOS transistor Tp1. A gate wiring 206d is connected to the gate electrodes 206 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate wiring 206c is connected to the gate electrode 206 of the PMOS transistor Tp2. A gate wiring 206f is connected to the gate electrode 206 of the NMOS transistor Tn3 and the PMOS transistor Tp3, and a gate wiring 206e is connected to the gate electrode 206 of the PMOS transistor Tp3. A gate wiring 206h is connected to the gate electrode 206 of the NMOS transistor Tn4 and the PMOS transistor Tp4, and a gate wiring 206g is connected to the gate electrode 206 of the PMOS transistor Tp4.
NMOSトランジスタTn1、Tn2、Tn3、Tn4のソースは、下部拡散層202nとなり、シリサイド203およびコンタクト212a(図では上下2個配置)を介して第1のメタル配線層の配線213aに接続され、さらに、第1のメタル配線層の配線213aはコンタクト214eを介して第2のメタル配線層の配線215aに接続され、215aには基準電源Vssが供給される。ここで、第2のメタル配線層の配線215aは、行方向と垂直な方向へ延在する。NMOSトランジスタTn1のドレインである上部拡散層207n1はシリサイド209n1、コンタクト210n1を介して第1のメタル配線層の配線213bに接続され、第1のメタル配線層の配線213bは出力DECOUT0となる。NMOSトランジスタTn2のドレインである上部拡散層207n2はシリサイド209n2、コンタクト210n2を介して第1のメタル配線層の配線213bに接続される。また、NMOSトランジスタTn3のドレインである上部拡散層207n3はシリサイド209n3、コンタクト210n3を介して第1のメタル配線層の配線213bに接続される。さらに、NMOSトランジスタTn4のドレインである上部拡散層207n4はシリサイド209n4、コンタクト210n4を介して第1のメタル配線層の配線213bに接続される。PMOSトランジスタTp1のドレインである上部拡散層207p1はシリサイド209p1、コンタクト210p1を介して第1のメタル配線層の配線213bに接続される。ここで、上述したように、NMOSトランジスタTn1、Tn2、Tn3、Tn4およびPMOSトランジスタTp1のドレインがコンタクトを介して第1のメタル配線層の配線213bに共通接続される。PMOSトランジスタTp1のソースとなる下部拡散層202paはシリサイド層203を介してPMOSトランジスタTp2のドレインと接続される。PMOSトランジスタTp2のソースである上部拡散層207p2はシリサイド209p2、コンタクト210p2を介して第1のメタル配線層の配線213dに接続される。また、PMOSトランジスタTp3のドレインである上部拡散層207p3はシリサイド209p3、コンタクト210p3を介して第1のメタル配線層の配線213dに接続される。ここで、PMOSトランジスタTp2のソースとPMOSトランジスタTp3のドレインは、第1のメタル配線層の配線213dを介して接続される。PMOSトランジスタTp3のソースは下部拡散層202pbとシリサイド領域203を介してPMOSトランジスタTp4のドレインと接続される。また、PMOSトランジスタTp4のソースとなる上部拡散層207p4はシリサイド209p4、コンタクト210p4を介して第1のメタル配線層の配線213cに接続され、213cはさらに、コンタクト214p4を介して第2のメタル配線層の配線215cに接続され、215cには電源Vccが供給される。ここで、第2のメタル配線層の配線215cは、行方向と垂直な方向に延在する。 The sources of the NMOS transistors Tn1, Tn2, Tn3, and Tn4 serve as the lower diffusion layer 202n, and are connected to the wiring 213a of the first metal wiring layer through the silicide 203 and the contacts 212a (two upper and lower in the figure), The wiring 213a of the first metal wiring layer is connected to the wiring 215a of the second metal wiring layer through the contact 214e, and the reference power source Vss is supplied to 215a. Here, the wiring 215a of the second metal wiring layer extends in a direction perpendicular to the row direction. The upper diffusion layer 207n1 which is the drain of the NMOS transistor Tn1 is connected to the wiring 213b of the first metal wiring layer via the silicide 209n1 and the contact 210n1, and the wiring 213b of the first metal wiring layer becomes the output DECOUT0. The upper diffusion layer 207n2 which is the drain of the NMOS transistor Tn2 is connected to the wiring 213b of the first metal wiring layer through the silicide 209n2 and the contact 210n2. The upper diffusion layer 207n3 which is the drain of the NMOS transistor Tn3 is connected to the wiring 213b of the first metal wiring layer through the silicide 209n3 and the contact 210n3. Further, the upper diffusion layer 207n4 which is the drain of the NMOS transistor Tn4 is connected to the wiring 213b of the first metal wiring layer through the silicide 209n4 and the contact 210n4. The upper diffusion layer 207p1 which is the drain of the PMOS transistor Tp1 is connected to the wiring 213b of the first metal wiring layer through the silicide 209p1 and the contact 210p1. Here, as described above, the drains of the NMOS transistors Tn1, Tn2, Tn3, Tn4 and the PMOS transistor Tp1 are commonly connected to the wiring 213b of the first metal wiring layer through the contacts. The lower diffusion layer 202pa serving as the source of the PMOS transistor Tp1 is connected to the drain of the PMOS transistor Tp2 through the silicide layer 203. The upper diffusion layer 207p2 that is the source of the PMOS transistor Tp2 is connected to the wiring 213d of the first metal wiring layer through the silicide 209p2 and the contact 210p2. The upper diffusion layer 207p3, which is the drain of the PMOS transistor Tp3, is connected to the wiring 213d of the first metal wiring layer through the silicide 209p3 and the contact 210p3. Here, the source of the PMOS transistor Tp2 and the drain of the PMOS transistor Tp3 are connected via the wiring 213d of the first metal wiring layer. The source of the PMOS transistor Tp3 is connected to the drain of the PMOS transistor Tp4 through the lower diffusion layer 202pb and the silicide region 203. The upper diffusion layer 207p4 serving as the source of the PMOS transistor Tp4 is connected to the wiring 213c of the first metal wiring layer via the silicide 209p4 and the contact 210p4, and 213c is further connected to the second metal wiring layer via the contact 214p4. The power supply Vcc is supplied to the wiring 215c. Here, the wiring 215c of the second metal wiring layer extends in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XA0~XA3のいずれかが入力されるゲート配線206aは、コンタクト211aを介して第1のメタル配線層の配線213eに接続される。第1のメタル配線層の配線213eは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XA0~XA3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、行方向と平行に延在している第1のメタル配線層の配線213eと行方向と垂直な方向に延在しているアドレス選択信号XA0~XA3を供給する第2のメタル配線層の配線のいずれか1つの交点に、コンタクト214aを配置して、アドレス選択信号XAh(h=0~3)を供給する第2のメタル配線層の配線をゲート配線206aに接続する。図では、アドレス選択信号XA0を供給する第2のメタル配線層の配線215dと第1のメタル配線層の配線213eの交点にコンタクト214aを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn1とPMOSトランジスタTp1のゲートには、アドレス選択信号XA0が入力される。
本図では、アドレス選択信号XA2~XA3は省略してあるが、XA0、XA1と同様な配置で、さらに左側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XA1を供給する第2のメタル配線層の配線215eと第1のメタル配線層の配線213eとの交点には、破線にてコンタクト214zが描かれているが、本図では、ここにはコンタクトは存在せず、もし、選択アドレス信号XA1を供給する第2のメタル配線層の配線115eを入力させたい場合には、ここの箇所にコンタクトを設けるという、架空のコンタクトの箇所を示している。
The gate wiring 206a to which any of the address selection signals XA0 to XA3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213e of the first metal wiring layer via the contact 211a. The wiring 213e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction. A contact 214a is arranged at one intersection of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA3 extending in the direction perpendicular to the row direction with respect to 213e, and the address selection signal XAh The wiring of the second metal wiring layer that supplies (h = 0 to 3) is connected to the gate wiring 206a. In the figure, a contact 214a is provided at the intersection of the wiring 215d of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 213e of the first metal wiring layer. That is, the address selection signal XA0 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this NOR decoder.
In this figure, the address selection signals XA2 to XA3 are omitted, but are arranged in the same manner as XA0 and XA1, and further on the left side in a form perpendicular to the row direction.
Note that a contact 214z is drawn by a broken line at the intersection of the wiring 215e of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 213e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115e of the second metal wiring layer that supplies the selection address signal XA1, the location of the fictitious contact, that is, the contact is provided at this location, is provided. Show.
第2のメタル配線層の配線により供給されるアドレス選択信号XB0が選択的に入力されるゲート配線206dはコンタクト211bを介して第1のメタル配線層の配線213hに接続され、アドレス選択信号XB1~XB3を供給する第2のメタル配線層のいずれかが入力されるゲート配線206cは、コンタクト211cを介して第1のメタル配線層の配線213fに接続される。第1のメタル配線層の配線213fは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XB0~XB3を供給する第2のメタル配線層は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線213fあるいは第1のメタル配線層の配線213hの交点のいずれか1つにコンタクト214bを配置して、アドレス選択信号XBi(i=0~3)を供給する第2のメタル配線層をゲート配線206dあるいは206cに接続する。図では、アドレス選択信号XB0を供給する第2のメタル配線層の配線215bと第1のメタル配線層の配線213hの交点にコンタクト214bを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn2とPMOSトランジスタTp2のゲートには、アドレス選択信号XB0が入力される。
アドレス選択信号XB1を供給する第2のメタル配線層の配線215fと第1のメタル配線層の配線213fとの交点には、破線にてコンタクト214zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
なお、アドレス選択信号XB2~XB3を供給する第2のメタル配線層は図面の都合上、省略してあるが、アドレス選択信号XB0、XB1を供給する第2のメタル配線層アドレス選択信号と同様に、さらに左側に、行方向と垂直な方向に配置される。
The gate wiring 206d to which the address selection signal XB0 supplied by the second metal wiring layer is selectively input is connected to the first metal wiring layer wiring 213h via the contact 211b, and the address selection signal XB1˜ The gate wiring 206c to which one of the second metal wiring layers supplying XB3 is input is connected to the wiring 213f of the first metal wiring layer through the contact 211c. The wiring 213f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in a direction perpendicular to the row direction, and the wiring 213f of the first metal wiring layer or the wiring 213h of the first metal wiring layer A contact 214b is disposed at any one of the intersections, and a second metal wiring layer for supplying an address selection signal XBi (i = 0 to 3) is connected to the gate wiring 206d or 206c. In the figure, a contact 214b is provided at the intersection of the wiring 215b of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 213h of the first metal wiring layer. That is, the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder.
A contact 214z is drawn by a broken line at the intersection of the wiring 215f of the second metal wiring layer that supplies the address selection signal XB1 and the wiring 213f of the first metal wiring layer. There is no contact, and the location of the fictitious contact is shown.
Note that the second metal wiring layer that supplies the address selection signals XB2 to XB3 is omitted for the sake of illustration, but it is the same as the second metal wiring layer address selection signal that supplies the address selection signals XB0 and XB1. Further, it is arranged on the left side in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XC0~XC3のいずれかが入力されるゲート配線206eは、コンタクト211dを介して第1のメタル配線層の配線213gに接続される。第1のメタル配線層の配線213gは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XC0~XC3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線213gとの交点のいずれか1つにコンタクト214cを配置して、アドレス選択信号XCj(i=0~3)を供給する第2のメタル配線層の配線をゲート配線206eに接続する。図では、アドレス選択信号XC0を供給する第2のメタル配線層の配線215gと第1のメタル配線層の配線213gの交点にコンタクト214cを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn3とPMOSトランジスタTp3のゲートには、アドレス選択信号XC0が入力される。
なお、アドレス選択信号XC1を供給する第2のメタル配線層の配線215h)と第1のメタル配線層の配線213gの交点には、破線にてコンタクト214zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
なお、アドレス選択信号XC2~XC3を供給する第2のメタル配線層の配線は図面の都合上、省略してあるが、アドレス選択信号XC0、XC1を供給する第2のメタル配線層の配線と同様に、さらに左側に、行方向と垂直な方向に配置される。
The gate wiring 206e to which any of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213g of the first metal wiring layer through the contact 211d. The wiring 213g of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213g of the first metal wiring layer. A contact 214c is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XCj (i = 0 to 3) to the gate wiring 206e. In the figure, a contact 214c is provided at the intersection of the wiring 215g of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 213g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
Note that a contact 214z is drawn with a broken line at the intersection of the wiring 215h of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 213g of the first metal wiring layer. Here, no contact exists, and the location of a fictitious contact is shown.
Note that the wiring of the second metal wiring layer that supplies the address selection signals XC2 to XC3 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XC0 and XC1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XD0~XD3のいずれかが入力されるゲート配線206gは、コンタクト211eを介して第1のメタル配線層の配線213iに接続される。第1のメタル配線層の配線213iは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XD0~XD3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線213iとの交点のいずれか1つにコンタクト214dを配置して、アドレス選択信号XDj(i=0~3)を供給する第2のメタル配線層の配線をゲート配線206gに接続する。図では、アドレス選択信号XD0を供給する第2のメタル配線層の配線215iと第1のメタル配線層の配線213iの交点にコンタクト214dを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn4とPMOSトランジスタTp4のゲートには、アドレス選択信号XD0が入力される。
なお、アドレス選択信号XD1を供給する第2のメタル配線層の配線215jと第1のメタル配線層の配線213iの交点には、破線にてコンタクト214zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
なお、アドレス選択信号XD2~XD3を供給する第2のメタル配線層の配線は図面の都合上、省略してあるが、アドレス選択信号XD0、XD1を供給する第2のメタル配線層の配線アドレス選択信号と同様に、さらに左側に、行方向と垂直な方向に配置される。
本実施例によれば、本NOR型デコーダにはアドレス選択信号XA0、XB0、XC0、XD0が入力されており、図11により、出力はDECOUT0となる。
また、NOR型デコーダBL211Cは図の枠で囲った領域となり、縦方向の寸法Ly3は、縦4行に対して、デッドスペースである拡散間隔が2.0個となる。
The gate wiring 206g to which any one of the address selection signals XD0 to XD3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213i of the first metal wiring layer through the contact 211e. The wiring 213i of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XD0 to XD3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213i of the first metal wiring layer. A contact 214d is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XDj (i = 0 to 3) to the gate wiring 206g. In the figure, a contact 214d is provided at the intersection of the wiring 215i of the second metal wiring layer that supplies the address selection signal XD0 and the wiring 213i of the first metal wiring layer. That is, the address selection signal XD0 is input to the gates of the NMOS transistor Tn4 and the PMOS transistor Tp4 of this NOR decoder.
Note that a contact 214z is drawn with a broken line at the intersection of the wiring 215j of the second metal wiring layer that supplies the address selection signal XD1 and the wiring 213i of the first metal wiring layer. Here, no contact exists, and the location of an imaginary contact is shown.
Note that the wiring of the second metal wiring layer that supplies the address selection signals XD2 to XD3 is omitted for the sake of illustration, but the wiring address selection of the second metal wiring layer that supplies the address selection signals XD0 and XD1 is omitted. Similar to the signal, it is arranged on the left side in the direction perpendicular to the row direction.
According to this embodiment, address selection signals XA0, XB0, XC0, and XD0 are input to this NOR type decoder, and the output is DECOUT0 according to FIG.
Further, the NOR decoder BL211C is an area surrounded by a frame in the figure, and the vertical dimension Ly3 is 2.0 diffusion intervals which are dead spaces with respect to four vertical rows.
本実施例によれば、電源配線、基準電源配線、およびアドレス選択信号線を第2のメタル配線層の配線で、NOR型デコーダを構成するSGTMOSトランジスタが4行2列に配置される行方向と垂直な方向に延在配置し、行方向に沿って平行に配置される第1のメタル配線層の配線を介して、NOR型デコーダの入力ゲートと前記第2のメタル配線層の配線との接続を行うことで、任意のアドレス選択信号をNOR型デコーダの入力に供給することが可能となり、第2のメタル配線層の配線の最小ピッチで配置が可能で、面積が縮小されたNOR型デコーダが実現できる。さらに、8個のMOSトランジスタを4行2列に配置して、拡散間隔の箇所を削減することにより、横方向を縮小することができ、さらに面積が削減される。 According to this embodiment, the power supply wiring, the reference power supply wiring, and the address selection signal line are the wiring of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 4 rows and 2 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction Thus, it becomes possible to supply an arbitrary address selection signal to the input of the NOR decoder, and the NOR decoder having a reduced area can be arranged at the minimum pitch of the wiring of the second metal wiring layer. realizable. Further, by arranging 8 MOS transistors in 4 rows and 2 columns and reducing the number of diffusion intervals, the lateral direction can be reduced, and the area is further reduced.
(実施例8)
図15に、第8の実施例を示す。実施例7のNOR型デコーダ211kに、第1のインバータ212と第2のインバータ213を組み合わせて一体化した行選択デコーダを示す。実施例7(図14)のNOR型デコーダBL211Cの右側に、第1のインバータを構成するNMOSトランジスタTn11とPMOSトランジスタTp11および第2のインバータを構成するPMOSトランジスタTp12とNMOSトランジスタTn12が、上から順番に配置される。
NMOSトランジスタTn11のソースである下部拡散層202nbは、図示しない上側に隣接される第2のインバータのNMOSトランジスタ(Tn12)のソースである下部拡散層とシリサイド層203を介して共通接続され、NMOSトランジスタTn12のソースである下部拡散層202ncは、図示しない下側に隣接される第1のインバータのNMOSトランジスタ(Tn11)のソースである下部拡散層とシリサイド層203を介して共通接続される。また、PMOSトランジスタTp11とTp12のソースである下部拡散層202pcは、シリサイド層203を介して同じく共通接続される。
(Example 8)
FIG. 15 shows an eighth embodiment. A row selection decoder in which a NOR type decoder 211k according to the seventh embodiment is combined and integrated with a first inverter 212 and a second inverter 213 is shown. On the right side of the NOR decoder BL211C of the seventh embodiment (FIG. 14), the NMOS transistor Tn11 and PMOS transistor Tp11 constituting the first inverter, and the PMOS transistor Tp12 and NMOS transistor Tn12 constituting the second inverter are in order from the top. Placed in.
The lower diffusion layer 202nb, which is the source of the NMOS transistor Tn11, is commonly connected to the lower diffusion layer, which is the source of the NMOS transistor (Tn12) of the second inverter adjacent to the upper side (not shown), via the silicide layer 203. The lower diffusion layer 202nc that is the source of Tn12 is commonly connected to the lower diffusion layer that is the source of the NMOS transistor (Tn11) of the first inverter adjacent to the lower side (not shown) via the silicide layer 203. Further, the lower diffusion layer 202 pc which is the source of the PMOS transistors Tp 11 and Tp 12 is also commonly connected through the silicide layer 203.
第1のインバータを構成するNMOSトランジスタTn11とPMOSトランジスタTp11のドレインである上部拡散層207n11および上部拡散層207p11は、各々シリサイド209n11、コンタクト210n11あるいはシリサイド層209p11、コンタクト210p11を介して第1のメタル配線層の配線213jに共通に接続され、第1のメタル配線層の配線213jは、第1のインバータの出力となる。また、NMOSトランジスタTn11とPMOSトランジスタTp11のゲート電極にゲート配線206jを介して共通に接続されたゲート配線206iには、NOR型デコーダの出力である第1のメタル配線層の配線213bが接続される。
第2のインバータを構成するNMOSトランジスタTn12とPMOSトランジスタTp12のドレインである上部拡散層207n12および上部拡散層207p12は、各々シリサイド209n12、コンタクト210n12あるいはシリサイド層209p12、コンタクト210p12を介して第1のメタル配線層の配線213kに共通に接続され、第1のメタル配線層の配線213kは、本行選択デコーダの出力WL1となる。また、NMOSトランジスタTn12とPMOSトランジスタTp12のゲート電極にゲート配線206lを介して共通に接続されたゲート配線206kには、第1のインバータの出力である第1のメタル配線層の配線113jが接続される。
The upper diffusion layer 207n11 and the upper diffusion layer 207p11 which are the drains of the NMOS transistor Tn11 and the PMOS transistor Tp11 constituting the first inverter are respectively connected to the first metal wiring via the silicide 209n11 and the contact 210n11 or the silicide layer 209p11 and the contact 210p11. The wiring 213j of the first metal wiring layer is commonly connected to the wiring 213j of the layer, and becomes the output of the first inverter. Further, the wiring 213b of the first metal wiring layer, which is the output of the NOR decoder, is connected to the gate wiring 206i commonly connected to the gate electrodes of the NMOS transistor Tn11 and the PMOS transistor Tp11 via the gate wiring 206j. .
The upper diffusion layer 207n12 and the upper diffusion layer 207p12 which are the drains of the NMOS transistor Tn12 and the PMOS transistor Tp12 constituting the second inverter are respectively connected to the first metal wiring via the silicide 209n12, the contact 210n12 or the silicide layer 209p12 and the contact 210p12. The wiring 213k of the first metal wiring layer is commonly connected to the wiring 213k of the layer, and becomes the output WL1 of the row selection decoder. Further, the wiring 113j of the first metal wiring layer, which is the output of the first inverter, is connected to the gate wiring 206k commonly connected to the gate electrodes of the NMOS transistor Tn12 and the PMOS transistor Tp12 via the gate wiring 206l. The
下部拡散層202nbは、シリサイド層203およびコンタクト212bを介して第1のメタル配線層の配線213aに接続され、さらにコンタクト214fを介して第2のメタル配線層の配線215aに接続される。ここで、第1のメタル配線層の配線213aおよび第2のメタル配線層の配線215aは、図14のNOR型デコーダ(BL211C)の配線を幅広くして共用している。 
下部拡散層202ncは、シリサイド層203およびコンタクト212cを介して第1のメタル配線層の配線213aに接続され、さらにコンタクト214gを介して第2のメタル配線層の配線215aに接続される。同じく、第1のメタル配線層の配線213aおよび第2のメタル配線層の配線215aは、図14のNOR型デコーダ(BL211C)と共用している。
下部拡散層202pcは、シリサイド203とコンタクト212dを介して第1のメタル配線層の配線213lに接続され、さらに、コンタクト214hを介して第2のメタル配線層の配線215kに接続され、第2のメタル配線層の配線215kには電源Vccが供給される。
本実施例によれば、行選択デコーダBL210Cは図の枠で囲った領域となり、縦方向の寸法は最小のLy3で実現できる。
Lower diffusion layer 202nb is connected to wiring 213a of the first metal wiring layer via silicide layer 203 and contact 212b, and further connected to wiring 215a of the second metal wiring layer via contact 214f. Here, the wiring 213a of the first metal wiring layer and the wiring 215a of the second metal wiring layer widely share the wiring of the NOR decoder (BL211C) of FIG.
Lower diffusion layer 202nc is connected to wiring 213a of the first metal wiring layer via silicide layer 203 and contact 212c, and further connected to wiring 215a of the second metal wiring layer via contact 214g. Similarly, the wiring 213a of the first metal wiring layer and the wiring 215a of the second metal wiring layer are shared with the NOR decoder (BL211C) of FIG.
The lower diffusion layer 202pc is connected to the wiring 213l of the first metal wiring layer via the silicide 203 and the contact 212d, and further connected to the wiring 215k of the second metal wiring layer via the contact 214h. The power supply Vcc is supplied to the wiring 215k of the metal wiring layer.
According to the present embodiment, the row selection decoder BL210C is an area surrounded by a frame in the figure, and the vertical dimension can be realized with the minimum Ly3.
本実施例によれば、4行2列に配置されたNOR型デコーダと、縦1列に配置された第1のインバータと第2のインバータを一体化して配置することにより、無駄な領域がない、面積の削減された行選択デコーダが提供できる。さらに、第1のインバータと第2のインバータのNMOSトランジスタとPMOSトランジスタのソースのそれぞれが、下部拡散層を共有し、一列に配置されることで、最小の面積で、インバータが配置できる。
なお、本実施例では、行選択デコーダのみを配置したが、実施例3(図7)と同様に、MOSトランジスタが2行3列に配置されたSRAMセルを接続して、面積を縮小したメモリ装置を容易に構成できる。
According to the present embodiment, a NOR type decoder arranged in 4 rows and 2 columns, and a first inverter and a second inverter arranged in a vertical column are integrally arranged so that there is no useless area. A row selection decoder with a reduced area can be provided. Furthermore, the sources of the NMOS transistors and PMOS transistors of the first inverter and the second inverter share the lower diffusion layer and are arranged in a row, so that the inverter can be arranged with a minimum area.
In the present embodiment, only the row selection decoder is arranged. However, as in the third embodiment (FIG. 7), the memory cell is reduced in size by connecting the SRAM cells in which the MOS transistors are arranged in two rows and three columns. The apparatus can be easily configured.
(実施例9)
図16a、図16b、図16c、図16d、図16e、図16f、図16gおよび図16hに、第9の実施例を示す。本実施例は図12に示す等価回路を実現したNOR型デコーダであり、図16aは、本発明のNOR型デコーダのレイアウト(配置)の平面図、図16bは、図16aにおけるカットラインA-A’に沿った断面図、図16cは、図16aにおけるカットラインB-B’に沿った断面図、図16dは、図16aにおけるカットラインC-C’に沿った断面図、図16eは、図16aにおけるカットラインD-D’に沿った断面図、図16fは、図16aにおけるカットラインE-E’に沿った断面図、図16gは、図16aにおけるカットラインF-F’に沿った断面図、図16hは、図16aにおけるカットラインG-G’に沿った断面図を示す。
Example 9
FIGS. 16a, 16b, 16c, 16d, 16e, 16f, 16g, and 16h show a ninth embodiment. This embodiment is a NOR type decoder realizing the equivalent circuit shown in FIG. 12, FIG. 16a is a plan view of the layout (arrangement) of the NOR type decoder of the present invention, and FIG. 16b is a cut line AA in FIG. 16c is a cross-sectional view along the cut line BB ′ in FIG. 16a, FIG. 16d is a cross-sectional view along the cut line CC ′ in FIG. 16a, and FIG. 16a is a cross-sectional view along the cut line DD ′ in FIG. 16a, FIG. 16f is a cross-sectional view along the cut line EE ′ in FIG. 16a, and FIG. 16g is a cross-sectional view along the cut line FF ′ in FIG. FIGS. 16h show a cross-sectional view along the cut line GG ′ in FIG. 16a.
本実施例では、実施例8(図14)と同様に、NOR型デコーダを構成するNMOSトランジスタTn1、Tn2、Tn3およびTn4が1列に配置(図の縦方向右側)され、同じくPMOSトランジスタTp1、Tp2、Tp3、Tp4が1列に配置(図の縦方向左側)されていることである。
すなわち、実施例において、NMOSトランジスタTn4とPMOSトランジスタTp4が上から1行目に右側より配置され、2行目にNMOSトランジスタTn3とPMOSトランジスタTp3が配置され、3行目にNMOSトランジスタTn2とPMOSトランジスタTp2が配置され、4行目にNMOSトランジスタTn1とPMOSトランジスタTp1が配置される。
また、本実施例のトランジスタのソースとドレインの向きは、実施例1と同等に配置される。なお、図16a、図16b、図16c、図16d、図16e、図16f、図16gおよび図16hにおいて、図4あるいは図14と同じ構造の箇所については、200番台の同等の記号で示してある。
In the present embodiment, similarly to the eighth embodiment (FIG. 14), NMOS transistors Tn1, Tn2, Tn3 and Tn4 constituting a NOR decoder are arranged in one column (right side in the vertical direction in the figure), and similarly, PMOS transistors Tp1, Tp2, Tp3, and Tp4 are arranged in one row (left side in the vertical direction in the figure).
That is, in the embodiment, the NMOS transistor Tn4 and the PMOS transistor Tp4 are arranged in the first row from the right side, the NMOS transistor Tn3 and the PMOS transistor Tp3 are arranged in the second row, and the NMOS transistor Tn2 and the PMOS transistor are arranged in the third row. Tp2 is arranged, and NMOS transistor Tn1 and PMOS transistor Tp1 are arranged in the fourth row.
Further, the direction of the source and drain of the transistor of this embodiment is arranged in the same manner as in the first embodiment. 16a, FIG. 16b, FIG. 16c, FIG. 16d, FIG. 16e, FIG. 16f, FIG. 16g, and FIG. 16h, parts having the same structure as FIG. .
基板上に形成された埋め込み酸化膜層(BOX)201などの絶縁膜上に平面状シリコン層202n、202pa、202pb、202pcが形成され、この平面状シリコン層202n、202pa、202pb、202pcは不純物注入等により、それぞれn+拡散層、p+拡散層、p+拡散層、p+拡散層から構成される。203は、平面状シリコン層(202n、202pa、202pb、202pc)の表面に形成されるシリサイド層であり、平面状シリコン層202nと202paを接続する。また、203は、p+拡散層202pb、202pcをそれぞれ覆って配置される。204p1、204p2、204p3、204p4はp型シリコン柱、204n1、204n2、204n3、204n4はn型シリコン柱、205はシリコン柱204p1、204p2、204p3、204p4、204n1、204n2、204n3、204n4を取り囲むゲート絶縁膜、206はゲート電極、206a、206b、206c、206d、206e、206f、206gおよび206hは、それぞれゲート配線である。シリコン柱204p1、204p2、204p3、204p4の最上部には、それぞれn+拡散層207n1、207n2、207n3、207n4が不純物注入等により形成され、シリコン柱204n1、204n2、204n3、204n4の最上部には、それぞれp+拡散層207p1、207p2、207p3、207p4が不純物注入等により形成される。208はゲート絶縁膜205を保護するためのシリコン窒化膜、209n1、209n2、209n3、209n4、209p1、209p2、209p3、209p4はそれぞれn+拡散層207n1、207n2、207n3、207n4、p+拡散層207p1、207p2、207p3、207p4に接続されるシリサイド層、210n1、210n2、210n3、210n4、210p1、210p2、210p3、210p4は、シリサイド層209n1、209n2、209n3、209n4、209p1、209p2、209p3、209p4と第1のメタル配線層の配線213k、213a、213a、213a、213d、213d、213j、213jをそれぞれ接続するコンタクト、211aはゲート配線206aと第1のメタル配線層の配線213eを接続するコンタクト、211bはゲート配線206cと第1のメタル配線層の配線213fを接続するコンタクト、211cはゲート配線206dと第1のメタル配線層の配線213hを接続するコンタクト、211dはゲート配線206eと第1のメタル配線層の配線213gを接続するコンタクト、211eはゲート配線206gと第1のメタル配線層の配線213iを接続するコンタクトである。
212aは、下部拡散層202nと下部拡散層202paとを接続するシリサイド203と第1のメタル配線層の配線213bを接続するコンタクトである。また、212bは、下部拡散層202pcを覆うシリサイド層203と第1のメタル配線層の配線213cを接続するコンタクトである。
Planar silicon layers 202n, 202pa, 202pb, 202pc are formed on an insulating film such as a buried oxide film layer (BOX) 201 formed on the substrate, and the planar silicon layers 202n, 202pa, 202pb, 202pc are impurity-implanted. The n + diffusion layer, the p + diffusion layer, the p + diffusion layer, and the p + diffusion layer are respectively formed. A silicide layer 203 is formed on the surface of the planar silicon layer (202n, 202pa, 202pb, 202pc), and connects the planar silicon layers 202n and 202pa. Further, 203 is arranged to cover the p + diffusion layers 202pb and 202pc, respectively. 204p1, 204p2, 204p3, and 204p4 are p-type silicon pillars, 204n1, 204n2, 204n3, and 204n4 are n-type silicon pillars, 205 is a silicon pillar 204p1, 204p2, 204p3, 204p4, 204n1, 204n2, 204n3, and 204n4. , 206 are gate electrodes, and 206a, 206b, 206c, 206d, 206e, 206f, 206g and 206h are gate wirings, respectively. N + diffusion layers 207n1, 207n2, 207n3, and 207n4 are formed on the uppermost portions of the silicon pillars 204p1, 204p2, 204p3, and 204p4 by impurity implantation, respectively, and the uppermost portions of the silicon pillars 204n1, 204n2, 204n3, and 204n4 are respectively formed on the uppermost portions. P + diffusion layers 207p1, 207p2, 207p3, and 207p4 are formed by impurity implantation or the like. 208 is a silicon nitride film for protecting the gate insulating film 205, 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 are n + diffusion layers 207n1, 207n2, 207n3, 207n4, p + diffusion layers 207p1, 207p2, respectively. Silicide layers 210n1, 210n2, 210n3, 210n4, 210p1, 210p2, 210p3, 210p4 connected to 207p3, 207p4 are silicide layers 209n1, 209n2, 209n3, 209n4, 209p1, 209p2, 209p3, 209p4 and the first metal wiring Layer wirings 213k, 213a, 213a, 213a, 213d, 213d, 213j, and 213j, respectively, contacts 211a, gate wiring 206 And a contact connecting the wiring 213e of the first metal wiring layer, 211b a contact connecting the gate wiring 206c and the wiring 213f of the first metal wiring layer, and 211c a wiring 213h of the gate wiring 206d and the first metal wiring layer , 211d is a contact connecting the gate wiring 206e and the first metal wiring layer 213g, and 211e is a contact connecting the gate wiring 206g and the first metal wiring layer 213i.
212a is a contact for connecting the silicide 203 connecting the lower diffusion layer 202n and the lower diffusion layer 202pa and the wiring 213b of the first metal wiring layer. Reference numeral 212b denotes a contact for connecting the silicide layer 203 covering the lower diffusion layer 202pc and the wiring 213c of the first metal wiring layer.
シリコン柱204p1、下部拡散層202n、上部拡散層207n1、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスタTn1を構成し、シリコン柱204p2、下部拡散層202n、上部拡散層207n2、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスTn2を構成し、シリコン柱204p3、下部拡散層202n、上部拡散層207n3、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスタTn3を構成し、シリコン柱204p4、下部拡散層202n、上部拡散層207n4、ゲート絶縁膜205、ゲート電極206により、NMOSトランジスタTn4を構成し、シリコン柱204n1、下部拡散層202pa、上部拡散層207p1、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp1を構成し、シリコン柱204n2、下部拡散層202pb、上部拡散層207p2、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp2を構成し、シリコン柱204n3、下部拡散層202pb、上部拡散層207p3、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp3を構成し、シリコン柱204n4、下部拡散層202nc、上部拡散層207p4、ゲート絶縁膜205、ゲート電極206により、PMOSトランジスタTp4を構成する。 The silicon pillar 204p1, the lower diffusion layer 202n, the upper diffusion layer 207n1, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn1, and the silicon pillar 204p2, the lower diffusion layer 202n, the upper diffusion layer 207n2, the gate insulating film 205, The gate electrode 206 constitutes the NMOS transistor Tn2, and the silicon pillar 204p3, the lower diffusion layer 202n, the upper diffusion layer 207n3, the gate insulating film 205, and the gate electrode 206 constitute the NMOS transistor Tn3, and the silicon pillar 204p4, the lower diffusion layer. 202n, the upper diffusion layer 207n4, the gate insulating film 205, and the gate electrode 206 constitute an NMOS transistor Tn4. The silicon pillar 204n1, the lower diffusion layer 202pa, the upper diffusion layer 207p1, the gate insulating film 205, the gate The pole 206 constitutes the PMOS transistor Tp1, and the silicon pillar 204n2, the lower diffusion layer 202pb, the upper diffusion layer 207p2, the gate insulating film 205, and the gate electrode 206 constitute the PMOS transistor Tp2, and the silicon pillar 204n3 and the lower diffusion layer 202pb. The upper diffusion layer 207p3, the gate insulating film 205, and the gate electrode 206 constitute a PMOS transistor Tp3, and the silicon pillar 204n4, the lower diffusion layer 202nc, the upper diffusion layer 207p4, the gate insulating film 205, and the gate electrode 206 constitute the PMOS transistor Tp4. Configure.
また、NMOSトランジスタTn1およびPMOSトランジスタTp1のゲート電極206にはゲート配線206bが接続され、さらにPMOSトランジスタTp1のゲート電極にはゲート配線206aが接続される。NMOSトランジスタTn2およびPMOSトランジスタTp2のゲート電極206にはゲート配線206dが接続され、さらに、PMOSトランジスタTp2のゲート電極206にはゲート配線206cが接続される。NMOSトランジスタTn3およびPMOSトランジスタTp3のゲート電極206にはゲート配線206fが接続され、さらに、PMOSトランジスタTp3のゲート電極206にはゲート配線206eが接続される。また、NMOSトランジスタTn4およびPMOSトランジスタTp4のゲート電極206にはゲート配線206hが接続され、さらに、PMOSトランジスタTp4のゲート電極206にはゲート配線206gが接続される。 Further, the gate wiring 206b is connected to the gate electrode 206 of the NMOS transistor Tn1 and the PMOS transistor Tp1, and the gate wiring 206a is connected to the gate electrode of the PMOS transistor Tp1. A gate wiring 206d is connected to the gate electrodes 206 of the NMOS transistor Tn2 and the PMOS transistor Tp2, and a gate wiring 206c is connected to the gate electrode 206 of the PMOS transistor Tp2. A gate wiring 206f is connected to the gate electrode 206 of the NMOS transistor Tn3 and the PMOS transistor Tp3, and a gate wiring 206e is connected to the gate electrode 206 of the PMOS transistor Tp3. The gate wiring 206h is connected to the gate electrode 206 of the NMOS transistor Tn4 and the PMOS transistor Tp4, and the gate wiring 206g is connected to the gate electrode 206 of the PMOS transistor Tp4.
下部拡散層202nおよび202paはシリサイド層203を介してNMOSトランジスタTn1、Tn2、Tn3、Tn4およびPMOSトランジスタTp1の共通ドレインとなり、コンタクト212aを介して第1のメタル配線層の配線213bに接続され、出力DECOUT0となる。NMOSトランジスタTn1のソースである上部拡散層207n1はシリサイド209n1、コンタクト210n1を介して第1のメタル配線層の配線213kに接続され、第1のメタル配線層の配線213kはさらに、コンタクト214n1を介して第2のメタル配線層の配線215aに接続され、215aには基準電源Vssが供給される。NMOSトランジスタTn2のソースである上部拡散層207n2はシリサイド209n2、コンタクト210n2を介して、列方向(縦方向)に沿って延在している第1のメタル配線層の配線213aに接続され、第1のメタル配線層の配線213aはさらに、コンタクト214n2を介して第2のメタル配線層の配線215aに接続される。NMOSトランジスタTn3のソースである上部拡散層207n3はシリサイド209n3、コンタクト210n3を介して第1のメタル配線層の配線213aに接続され、第1のメタル配線層の配線213aはさらに、コンタクト214n3を介して第2のメタル配線層の配線215aに接続される。
NMOSトランジスタTn4のソースである上部拡散層207n4はシリサイド209n4、コンタクト210n4を介して第1のメタル配線層の配線213aに接続され、第1のメタル配線層の配線213aはさらに、コンタクト214n4を介して第2のメタル配線層の配線215aに接続される。
PMOSトランジスタTp1のソースである上部拡散層207p1はシリサイド209p1、コンタクト210p1を介して第1のメタル配線層の配線213dに接続される。PMOSトランジスタTp2のドレインである上部拡散層207p2はシリサイド209p2、コンタクト210p2を介して第1のメタル配線層の配線213dに接続される。ここで、PMOSトランジスタTp1のソースとPMOSトランジスタTp2のドレインは、第1のメタル配線層の配線213dを介して接続される。また、PMOSトランジスタTp2のソースは下部拡散層202pbとシリサイド領域203を介してPMOSトランジスタTp3のドレインと接続され、PMOSトランジスタTp3のソースは、コンタクト210p3を介して第1のメタル配線層の配線214jに接続される。PMOSトランジスタTp4のドレインである上部拡散層207p4はシリサイド209p4、コンタクト210p4を介して第1のメタル配線層の配線213jに接続される。ここで、PMOSトランジスタTp3のソースとPMOSトランジスタTp4のドレインは、第1のメタル配線層の配線213jを介して接続される。また、PMOSトランジスタTp4のソースである下部拡散層202pcは、シリサイド領域203とコンタクト212bを介して第1のメタル配線層の配線213cに接続され、213cは、さらにコンタクト214eを介して第2のメタル配線層の配線215cに接続され、215cには、電源Vccが供給される。
ここで、第2のメタル配線層の配線215cは、行方向と垂直な方向に延在する。
The lower diffusion layers 202n and 202pa serve as a common drain of the NMOS transistors Tn1, Tn2, Tn3, Tn4 and the PMOS transistor Tp1 through the silicide layer 203, and are connected to the wiring 213b of the first metal wiring layer through the contact 212a. DECOUT0. The upper diffusion layer 207n1 which is the source of the NMOS transistor Tn1 is connected to the wiring 213k of the first metal wiring layer via the silicide 209n1 and the contact 210n1, and the wiring 213k of the first metal wiring layer is further connected to the wiring 214c1 via the contact 214n1. The reference power supply Vss is supplied to the wiring 215a of the second metal wiring layer. The upper diffusion layer 207n2 which is the source of the NMOS transistor Tn2 is connected to the wiring 213a of the first metal wiring layer extending along the column direction (vertical direction) via the silicide 209n2 and the contact 210n2, The metal wiring layer wiring 213a is further connected to the second metal wiring layer wiring 215a through a contact 214n2. The upper diffusion layer 207n3 that is the source of the NMOS transistor Tn3 is connected to the wiring 213a of the first metal wiring layer via the silicide 209n3 and the contact 210n3, and the wiring 213a of the first metal wiring layer is further connected to the wiring 214c via the contact 214n3. It is connected to the wiring 215a of the second metal wiring layer.
The upper diffusion layer 207n4 which is the source of the NMOS transistor Tn4 is connected to the wiring 213a of the first metal wiring layer via the silicide 209n4 and the contact 210n4, and the wiring 213a of the first metal wiring layer is further connected to the wiring 214c via the contact 214n4. It is connected to the wiring 215a of the second metal wiring layer.
The upper diffusion layer 207p1 which is the source of the PMOS transistor Tp1 is connected to the wiring 213d of the first metal wiring layer via the silicide 209p1 and the contact 210p1. The upper diffusion layer 207p2 which is the drain of the PMOS transistor Tp2 is connected to the wiring 213d of the first metal wiring layer through the silicide 209p2 and the contact 210p2. Here, the source of the PMOS transistor Tp1 and the drain of the PMOS transistor Tp2 are connected via the wiring 213d of the first metal wiring layer. The source of the PMOS transistor Tp2 is connected to the drain of the PMOS transistor Tp3 through the lower diffusion layer 202pb and the silicide region 203, and the source of the PMOS transistor Tp3 is connected to the wiring 214j of the first metal wiring layer through the contact 210p3. Connected. The upper diffusion layer 207p4 which is the drain of the PMOS transistor Tp4 is connected to the wiring 213j of the first metal wiring layer through the silicide 209p4 and the contact 210p4. Here, the source of the PMOS transistor Tp3 and the drain of the PMOS transistor Tp4 are connected via the wiring 213j of the first metal wiring layer. The lower diffusion layer 202pc which is the source of the PMOS transistor Tp4 is connected to the wiring 213c of the first metal wiring layer via the silicide region 203 and the contact 212b, and 213c is further connected to the second metal via the contact 214e. The power supply Vcc is supplied to the wiring 215c connected to the wiring 215c of the wiring layer.
Here, the wiring 215c of the second metal wiring layer extends in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XA0~XA3のいずれかが入力されるゲート配線206aは、コンタクト211aを介して第1のメタル配線層の配線213eに接続される。第1のメタル配線層の配線213eは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XA0~XA3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、行方向と平行に延在している第1のメタル配線層の配線213eと行方向と垂直な方向に延在しているアドレス選択信号XA0~XA3を供給する第2のメタル配線層の配線のいずれか1つの交点に、コンタクト214aを配置して、アドレス選択信号XAh(h=0~3)を供給する第2のメタル配線層の配線をゲート配線206aに接続する。図では、アドレス選択信号XA0を供給する第2のメタル配線層の配線215dと第1のメタル配線層の配線213eの交点にコンタクト214aを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn1とPMOSトランジスタTp1のゲートには、アドレス選択信号XA0が入力される。
本図では、アドレス選択信号XA2~XA3を供給する第2のメタル配線層の配線は省略してあるが、XA0、XA1と同様な配置で、さらに左側に、行方向に対して垂直な形で配置される。
なお、アドレス選択信号XA1を供給する第2のメタル配線層の配線215eと第1のメタル配線層の配線213eとの交点には、破線にてコンタクト214zが描かれているが、本図では、ここにはコンタクトは存在せず、もし、アドレス選択信号XA1を供給する第2のメタル配線層の配線115eを入力させたい場合には、ここの箇所にコンタクトを設けるという、架空のコンタクトの箇所を示している。以下、他の箇所についても同様な意味である。
The gate wiring 206a to which any of the address selection signals XA0 to XA3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213e of the first metal wiring layer via the contact 211a. The wiring 213e of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XA0 to XA3 extends in the direction perpendicular to the row direction, and the wiring of the first metal wiring layer that extends in parallel to the row direction. A contact 214a is arranged at one intersection of the wirings of the second metal wiring layer for supplying the address selection signals XA0 to XA3 extending in the direction perpendicular to the row direction with respect to 213e, and the address selection signal XAh The wiring of the second metal wiring layer that supplies (h = 0 to 3) is connected to the gate wiring 206a. In the figure, a contact 214a is provided at the intersection of the wiring 215d of the second metal wiring layer that supplies the address selection signal XA0 and the wiring 213e of the first metal wiring layer. That is, the address selection signal XA0 is input to the gates of the NMOS transistor Tn1 and the PMOS transistor Tp1 of this NOR decoder.
In this figure, the wiring of the second metal wiring layer for supplying the address selection signals XA2 to XA3 is omitted, but it is arranged in the same manner as XA0 and XA1, and further on the left side in a form perpendicular to the row direction. Be placed.
Note that a contact 214z is drawn by a broken line at the intersection of the wiring 215e of the second metal wiring layer that supplies the address selection signal XA1 and the wiring 213e of the first metal wiring layer. There is no contact here, and if it is desired to input the wiring 115e of the second metal wiring layer that supplies the address selection signal XA1, the location of the fictitious contact in which a contact is provided here is provided. Show. Hereinafter, the same is true for the other portions.
第2のメタル配線層の配線により供給されるアドレス選択信号XB0が選択的に入力される(選択されるデコーダのみに入力される)ゲート配線206dはコンタクト211cを介して第1のメタル配線層の配線213hに接続され、アドレス選択信号XB1~XB3のいずれかが入力されるゲート配線206cは、コンタクト211bを介して第1のメタル配線層の配線213fに接続される。第1のメタル配線層の配線213fは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XB0~XB3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線213hあるいは第1のメタル配線層の配線213fの交点のいずれか1つにコンタクト214bを配置して、アドレス選択信号XBi(i=0~3)を供給する第2のメタル配線層の配線をゲート配線206dあるいは206cに接続する。図では、アドレス選択信号XB0を供給する第2のメタル配線層の配線215bと第1のメタル配線層の配線213hの交点にコンタクト214bを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn2とPMOSトランジスタTp2のゲートには、アドレス選択信号XB0が入力される。
なお、アドレス選択信号XB1を供給する第2のメタル配線層の配線215fと第1のメタル配線層の配線213fとの交点には、破線にてコンタクト214zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
The gate wiring 206d to which the address selection signal XB0 supplied by the wiring of the second metal wiring layer is selectively input (input only to the selected decoder) is connected to the first metal wiring layer via the contact 211c. The gate wiring 206c connected to the wiring 213h and to which any one of the address selection signals XB1 to XB3 is input is connected to the wiring 213f of the first metal wiring layer through the contact 211b. The wiring 213f of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XB0 to XB3 extends in the direction perpendicular to the row direction, and the wiring 213h of the first metal wiring layer or the wiring of the first metal wiring layer A contact 214b is arranged at any one of the intersections of 213f, and the wiring of the second metal wiring layer that supplies the address selection signal XBi (i = 0 to 3) is connected to the gate wiring 206d or 206c. In the figure, a contact 214b is provided at the intersection of the wiring 215b of the second metal wiring layer that supplies the address selection signal XB0 and the wiring 213h of the first metal wiring layer. That is, the address selection signal XB0 is input to the gates of the NMOS transistor Tn2 and the PMOS transistor Tp2 of the NOR decoder.
Note that a contact 214z is drawn by a broken line at the intersection of the wiring 215f of the second metal wiring layer that supplies the address selection signal XB1 and the wiring 213f of the first metal wiring layer, as described above. Here, no contact exists, and the location of a fictitious contact is shown.
第2のメタル配線層の配線により供給されるアドレス選択信号XC0~XC3のいずれかが入力されるゲート配線206eは、コンタクト211dを介して第1のメタル配線層の配線213gに接続される。第1のメタル配線層の配線213gは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XC0~XC3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線213gとの交点のいずれか1つにコンタクト214cを配置して、アドレス選択信号XCj(i=0~3)を供給する第2のメタル配線層の配線をゲート配線206eに接続する。図では、アドレス選択信号XC0を供給する第2のメタル配線層の配線215gと第1のメタル配線層の配線213gの交点にコンタクト214cを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn3とPMOSトランジスタTp3のゲートには、アドレス選択信号XC0が入力される。
なお、アドレス選択信号XC1を供給する第2のメタル配線層の配線215hと第1のメタル配線層の配線213gの交点には、破線にてコンタクト214zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
なお、選択アドレス信号XC2~XC3を供給する第2のメタル配線層の配線は図面の都合上、省略してあるが、アドレス選択信号XC0、XC1を供給する第2のメタル配線層の配線と同様に、さらに左側に、行方向と垂直な方向に配置される。
The gate wiring 206e to which any of the address selection signals XC0 to XC3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213g of the first metal wiring layer through the contact 211d. The wiring 213g of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XC0 to XC3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213g of the first metal wiring layer. A contact 214c is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XCj (i = 0 to 3) to the gate wiring 206e. In the figure, a contact 214c is provided at the intersection of the wiring 215g of the second metal wiring layer that supplies the address selection signal XC0 and the wiring 213g of the first metal wiring layer. That is, the address selection signal XC0 is input to the gates of the NMOS transistor Tn3 and the PMOS transistor Tp3 of this NOR decoder.
Note that a contact 214z is drawn by a broken line at the intersection of the wiring 215h of the second metal wiring layer that supplies the address selection signal XC1 and the wiring 213g of the first metal wiring layer. Here, no contact exists, and the location of an imaginary contact is shown.
Note that the wiring of the second metal wiring layer that supplies the selection address signals XC2 to XC3 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XC0 and XC1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction.
第2のメタル配線層の配線により供給されるアドレス選択信号XD0~XD3のいずれかが入力されるゲート配線206gは、コンタクト211eを介して第1のメタル配線層の配線213iに接続される。第1のメタル配線層の配線213iは、行に沿って平行な方向(図の左側)へ延在する。アドレス選択信号XD0~XD3を供給する第2のメタル配線層の配線は、行方向と垂直な方向へ延在しており、第1のメタル配線層の配線213iとの交点のいずれか1つにコンタクト214dを配置して、アドレス選択信号XDj(j=0~3)を供給する第2のメタル配線層の配線をゲート配線206gに接続する。図では、アドレス選択信号XD0を供給する第2のメタル配線層の配線215iと第1のメタル配線層の配線213iの交点にコンタクト214dを設けてある。すなわち、本NOR型デコーダのNMOSトランジスタTn4とPMOSトランジスタTp4のゲートには、アドレス選択信号XD0が入力される。
なお、アドレス選択信号XD1を供給する第2のメタル配線層の配線215jと第1のメタル配線層の配線213iの交点には、破線にてコンタクト214zが描かれているが、上述したように、ここにはコンタクトは存在せず、架空のコンタクトの箇所を示している。
なお、アドレス選択信号XD2~XD3を供給する第2のメタル配線層の配線は図面の都合上、省略してあるが、アドレス選択信号XD0、XD1を供給する第2のメタル配線層の配線と同様に、さらに左側に、行方向と垂直な方向に配置される。
本実施例によれば、本行選択デコーダにはアドレス選択信号XA0、XB0、XC0、XD0が入力されており、図11により、出力はWL0となる。
また、NOR型デコーダBL211Dは図の枠で囲った領域となり、縦方向の寸法Ly4は、拡散間隔の数が2.5個となる。
The gate wiring 206g to which any one of the address selection signals XD0 to XD3 supplied by the wiring of the second metal wiring layer is input is connected to the wiring 213i of the first metal wiring layer through the contact 211e. The wiring 213i of the first metal wiring layer extends in a parallel direction (left side in the drawing) along the row. The wiring of the second metal wiring layer that supplies the address selection signals XD0 to XD3 extends in the direction perpendicular to the row direction, and is at one of the intersections with the wiring 213i of the first metal wiring layer. A contact 214d is arranged to connect the wiring of the second metal wiring layer that supplies the address selection signal XDj (j = 0 to 3) to the gate wiring 206g. In the figure, a contact 214d is provided at the intersection of the wiring 215i of the second metal wiring layer that supplies the address selection signal XD0 and the wiring 213i of the first metal wiring layer. That is, the address selection signal XD0 is input to the gates of the NMOS transistor Tn4 and the PMOS transistor Tp4 of this NOR decoder.
Note that a contact 214z is drawn with a broken line at the intersection of the wiring 215j of the second metal wiring layer that supplies the address selection signal XD1 and the wiring 213i of the first metal wiring layer. Here, no contact exists, and the location of an imaginary contact is shown.
Note that the wiring of the second metal wiring layer that supplies the address selection signals XD2 to XD3 is omitted for the sake of illustration, but is the same as the wiring of the second metal wiring layer that supplies the address selection signals XD0 and XD1. Furthermore, it is arranged on the left side in a direction perpendicular to the row direction.
According to the present embodiment, address selection signals XA0, XB0, XC0, and XD0 are input to the row selection decoder, and the output is WL0 according to FIG.
Further, the NOR decoder BL211D is an area surrounded by a frame in the figure, and the vertical dimension Ly4 is 2.5 diffusion intervals.
本実施例によれば、電源配線、基準電源配線、およびアドレス選択信号線を第2のメタル配線層の配線で、NOR型デコーダを構成するSGTMOSトランジスタが4行2列に配置される行方向と垂直な方向に延在配置し、行方向に沿って平行に配置される第1のメタル配線層の配線を介して、NOR型デコーダの入力ゲートと前記第2のメタル配線層の配線との接続を行うことで、任意のアドレス選択信号をNOR型デコーダの入力に供給することが可能となり、第2のメタル配線層の配線の最小ピッチで配置が可能で、面積が縮小されたNOR型デコーダが実現できる。さらに、8個のMOSトランジスタを4行2列に配置することにより、横方向を縮小することができ、さらに面積が削減される。
なお、本実施例では、NOR型デコーダのみを配置したが、実施例8(図15)と同様に、第1のインバータと第2のインバータを1列に配置して、面積を縮小した行選択デコーダを容易に構成できる。
According to this embodiment, the power supply wiring, the reference power supply wiring, and the address selection signal line are the wiring of the second metal wiring layer, and the SGTMOS transistors constituting the NOR decoder are arranged in 4 rows and 2 columns. Connection between the input gate of the NOR decoder and the wiring of the second metal wiring layer through the wiring of the first metal wiring layer that extends in the vertical direction and is arranged in parallel along the row direction Thus, it becomes possible to supply an arbitrary address selection signal to the input of the NOR decoder, and the NOR decoder having a reduced area can be arranged at the minimum pitch of the wiring of the second metal wiring layer. realizable. Furthermore, by arranging 8 MOS transistors in 4 rows and 2 columns, the horizontal direction can be reduced, and the area is further reduced.
In this embodiment, only the NOR type decoder is arranged. However, as in the eighth embodiment (FIG. 15), the first inverter and the second inverter are arranged in one column to reduce the area. A decoder can be easily configured.
(実施例10)
以上の実施例では、基板上に形成された埋め込み酸化膜層(BOX)などの絶縁膜上に平面状シリコンを配置したプロセスの例を用いて配置を説明したが、バルクのCMOSプロセスを用いても同様である。一例として、図17a、図17b、図17c、図17dに、図4の実施例を、バルクCMOSプロセスにて配置した第10の実施例を示す。
図17aは、本発明の3入力NOR型デコーダのレイアウト(配置)の平面図、図17bは、図17aにおけるカットラインA-A’に沿った断面図、図17cは、図17aにおけるカットラインB-B’に沿った断面図、図17dは、図17aにおけるカットラインC-C’に沿った断面図を示す。
図17a、図17b、図17c、図17dにおいて、図4a、図4b、図4d、図4f、図4iと同じ構造の箇所については、同じ100番台の同等の記号で示してある。
特許文献3の特許第4756221号公報を参照して、図4のBOXプロセスと図17のバルクCMOSプロセスでは、図17aの平面図では違いがない。図17b、図17c、図17dの断面図において、異なる点がある。図17bにおいて、150は、p型シリコン基板である。160は、素子分離(アイソレーション)用の絶縁体である。また、170は、リーク防止の分離層となるn-領域である。このp型シリコン基板150、素子分離用の絶縁体160、リーク防止分離層170以外の、下層拡散層より上側の工程、構造はまったく同じであり、本発明の実施例1~9までをバルクCMOSプロセスで実現できる。
(Example 10)
In the above embodiments, the arrangement has been described using an example of a process in which planar silicon is arranged on an insulating film such as a buried oxide film layer (BOX) formed on a substrate. However, a bulk CMOS process is used. Is the same. As an example, FIGS. 17a, 17b, 17c, and 17d show a tenth embodiment in which the embodiment of FIG. 4 is arranged in a bulk CMOS process.
17a is a plan view of the layout (arrangement) of the 3-input NOR decoder according to the present invention, FIG. 17b is a cross-sectional view along the cut line AA ′ in FIG. 17a, and FIG. 17c is a cut line B in FIG. FIG. 17d shows a cross-sectional view along the cut line CC ′ in FIG. 17a.
In FIGS. 17a, 17b, 17c, and 17d, portions having the same structure as those in FIGS. 4a, 4b, 4d, 4f, and 4i are denoted by the same reference numerals in the 100s.
Referring to Japanese Patent No. 4756221 of Patent Document 3, there is no difference between the BOX process of FIG. 4 and the bulk CMOS process of FIG. 17 in the plan view of FIG. 17a. There are differences in the cross-sectional views of FIGS. 17b, 17c, and 17d. In FIG. 17b, reference numeral 150 denotes a p-type silicon substrate. Reference numeral 160 denotes an insulator for element isolation (isolation). Reference numeral 170 denotes an n− region which serves as a leakage preventing separation layer. Except for this p-type silicon substrate 150, the element isolation insulator 160, and the leak prevention isolation layer 170, the process and structure above the lower diffusion layer are exactly the same. Can be realized by a process.
以上、実施例1から実施例10まで説明したが、本実施例では、代表的な構成を説明してあり、NOR型デコーダの種類、インバータとの組み合わせ等、自由に選択できる。例えば、図7の行選択デコーダに、図9の行選択デコーダを入れ替えても良いし、図16のNOR型デコーダに図15の第1のインバータと第2のインバータを採用して行選択デコーダを構成しても良い。
また、本実施例は、デコーダの面積を最小にするために、デコーダを構成するトランジスタの数は、最小限の構成にしてある。NOR型デコーダの動作速度を速めたい、あるいはインバータの駆動能力(電流量)を増加させる等の目的により、複数のトランジスタを並列に配置する等の変更は設計的事項として本発明に含まれる。また、デコーダをリセットするリセットトランジスタを設ける、あるいはスタンドバイ(電流カット)機能を付加することも、設計事項に含まれる。逆に、動作速度が重要でない設計の場合には、第1のインバータと第2のインバータを省略して、NOR型デコーダの出力をそのまま行選択信号としても動作的には問題ない。どのような構成にするかは、設計事項に含まれる。
なお、本実施例の説明では、便宜上、PMOSトランジスタのシリコン柱はn型シリコン、NMOSシリコン柱はp型シリコン層と定義したが、微細化されたプロセスでは、不純物注入による濃度の制御が困難となるため、PMOSトランジスタもNMOSトランジスタも、シリコン柱は不純物注入を行わない、いわゆる中性(イントリンジック:Intrinsic)な半導体を用い、チャネルの制御、すなわちPMOS、NMOSの閾値は、金属ゲート材固有のワークファンクション(Work Functin)の差を利用する場合もある。
また、本実施例では、下部拡散層あるいは上部拡散層をシリサイド層で覆うようにしたが、低抵抗にするためにシリサイドを採用したものであり、他の低抵抗な材料でもかまわない。金属化合物の総称としてシリサイドと定義をしている。
本発明の本質は、メモリセルのピッチに合わせて、SGTの特徴であるところの、出力端子に接続されるトランジスタのドレインを、下部拡散層を介して共通に接続することにより面積を縮小する、あるいは、出力端子に接続されるトランジスタのドレインを上部拡散層およびコンタクトを介して共通に接続することにより面積を縮小し、さらに、デコーダに入力される電源線、基準電源線および複数のアドレス選択線の配線方法を工夫することにより、配線領域を含めて面積が縮小されたデコーダを提供するものであり、この配置方法に従った場合において、ゲート配線の配線方法、配線位置、メタル配線の配線方法および配線位置等は本実施例の図面に示したもの以外のものも、本発明の技術的範囲に属するものである。
As described above, the first to tenth embodiments have been described. In this embodiment, a typical configuration is described, and the type of NOR decoder, the combination with an inverter, and the like can be freely selected. For example, the row selection decoder of FIG. 9 may be replaced with the row selection decoder of FIG. 7, or the first and second inverters of FIG. 15 are adopted as the NOR type decoder of FIG. It may be configured.
In this embodiment, in order to minimize the area of the decoder, the number of transistors constituting the decoder is minimized. Modifications such as arranging a plurality of transistors in parallel for the purpose of increasing the operation speed of the NOR decoder or increasing the drive capability (current amount) of the inverter are included as design matters in the present invention. Further, providing a reset transistor for resetting the decoder or adding a standby (current cut) function is included in the design matters. On the other hand, in a design where the operation speed is not important, there is no problem in operation even if the first inverter and the second inverter are omitted and the output of the NOR decoder is directly used as the row selection signal. The configuration is included in the design matters.
In the description of this embodiment, for convenience, the silicon column of the PMOS transistor is defined as n-type silicon and the NMOS silicon column is defined as a p-type silicon layer. However, it is difficult to control the concentration by impurity implantation in a miniaturized process. Therefore, both the PMOS transistor and the NMOS transistor use a so-called neutral semiconductor that does not inject impurities into the silicon pillar, and the channel control, that is, the threshold values of the PMOS and NMOS are specific to the metal gate material. In some cases, the difference in work function (Work Function) is used.
In this embodiment, the lower diffusion layer or the upper diffusion layer is covered with the silicide layer. However, silicide is used to reduce the resistance, and other low-resistance materials may be used. A generic term for metal compounds is defined as silicide.
The essence of the present invention is to reduce the area by commonly connecting the drains of the transistors connected to the output terminal via the lower diffusion layer, which is a feature of the SGT, in accordance with the pitch of the memory cells. Alternatively, the area of the transistor connected to the output terminal is reduced by commonly connecting the drains of the transistors via the upper diffusion layer and the contact, and further, the power supply line, the reference power supply line, and the plurality of address selection lines input to the decoder By devising the wiring method, a decoder having a reduced area including the wiring region is provided. When this arrangement method is followed, the wiring method of the gate wiring, the wiring position, and the wiring method of the metal wiring The wiring positions and the like other than those shown in the drawings of this embodiment belong to the technical scope of the present invention.
Tp1、Tp2、Tp3、Tp4、Tp11、Tp12:PチャネルMOSトランジスタ
Tn1、Tn2、Tn3、Tn4、Tn11、Tn12:NチャネルMOSトランジスタ
101,201:埋め込み酸化膜層
102pa、102pb、102pc、102n、202pa、202pb、202pc、202n、202nb、202nc:平面状シリコン層
103、203:シリサイド層
104p1、104p2、104p3、104p4、104p11、104p12、204p1、204p2、204p3、204p4、204p11、204p12:p型シリコン柱
104n1、104n2、104n3、104n4、104n11、104n12、204n1、204n2、204n3、204n4、204n11、204n12:n型シリコン柱
105、205:ゲート絶縁膜
106、206:ゲート電極
106a、106b、106c、106d、106e、106f、106g、106h、206a、206b、206c、206d、206e、206f、206g、206h:ゲート配線
107p1、107p2、107p3、107p4、107p11、107p12、207p1、207p2、207p3、207p4、207p11、207p12:p+拡散層
107n1、107n2、107n3、107n4、107n11、107n12、207n1、207n2、207n3、207n4、207n11、207n12:n+拡散層
108、208:シリコン窒化膜
109p1、109p2、109p3、109p4、109p11、109p12、109n1、109n2、109n3、109n4、109n11、109n12、209p1、209p2、209p3、209p4、209p11、209p12、209n1、209n2、209n3、209n4、209n11、209n12:シリサイド層
110p1、110p2、110p3、110p4、110p11、110p12、110n1、110n2、110n3、110n4、110n11、110n12、210p1、210p2、210p3、210p4、210p11、210p12、210n1、210n2、210n3、210n4、210n11、210n12:コンタクト
111a、111b、111c、111d、111e、111f、111g、211a、211b、211c、211d、211e、211f、211g:コンタクト
112a、112b、212a、212b、212c:コンタクト
113a、113b、113c、113d、113e、113f、113g、113h、113i、113j、113k、213a、213b、213c、213d、213e、213f、213g、213h、213i、213j、213k、213l:第1のメタル配線層の配線
114a、114b、114c、114d、114e、214a、214b、214c、214d、214e、214f、214g:コンタクト
115a、115b、115c、115d、115e、115f、115g、115h、115i、115j、115k、115l、115m、115n、115p、115q、115r、115s、215a、215b、215c、215d、215e、215f、215g、215h、215i、215j、215k:第2のメタル配線層の配線
150シリコン基板
160:素子分離用絶縁体
170:リーク防止分離層
Tp1, Tp2, Tp3, Tp4, Tp11, Tp12: P channel MOS transistors Tn1, Tn2, Tn3, Tn4, Tn11, Tn12: N channel MOS transistors 101, 201: buried oxide film layers 102pa, 102pb, 102pc, 102n, 202pa, 202pb, 202pc, 202n, 202nb, 202nc: planar silicon layer 103, 203: silicide layer 104p1, 104p2, 104p3, 104p4, 104p11, 104p12, 204p1, 204p2, 204p3, 204p4, 204p11, 204p12: p-type silicon pillar 104n1, 104n2, 104n3, 104n4, 104n11, 104n12, 204n1, 204n2, 204n3, 204n4, 204n11, 204n1 : N-type silicon pillars 105 and 205: gate insulating films 106 and 206: gate electrodes 106a, 106b, 106c, 106d, 106e, 106f, 106g, 106h, 206a, 206b, 206c, 206d, 206e, 206f, 206g, 206h: Gate lines 107p1, 107p2, 107p3, 107p4, 107p11, 107p12, 207p1, 207p2, 207p3, 207p4, 207p11, 207p12: p + diffusion layers 107n1, 107n2, 107n3, 107n4, 107n11, 107n12, 207n1, 207n2, 207n3, 207n4, 20711 207n12: n + diffusion layer 108, 208: silicon nitride films 109p1, 109p2, 109p3, 109p4, 109p11, 109p 2, 109n1, 109n2, 109n3, 109n4, 109n11, 109n12, 209p1, 209p2, 209p3, 209p4, 209p11, 209p12, 209n1, 209n2, 209n3, 209n4, 209n11, 209n12: Silicide layers 110p1, 110p11p, 110p3 110p12, 110n1, 110n2, 110n3, 110n4, 110n11, 110n12, 210p1, 210p2, 210p3, 210p4, 210p11, 210p12, 210n1, 210n2, 210n3, 210n4, 210n11, 210n12: Contacts 111a, 111b, 111c, 111d, 111e, 111f 111g, 211a, 211b, 211c, 211d 211e, 211f, 211g: Contacts 112a, 112b, 212a, 212b, 212c: Contacts 113a, 113b, 113c, 113d, 113e, 113f, 113g, 113h, 113i, 113j, 113k, 213a, 213b, 213c, 213d, 213e 213f, 213g, 213h, 213i, 213j, 213k, 213l: wirings 114a, 114b, 114c, 114d, 114e, 214a, 214b, 214c, 214d, 214e, 214f, 214g of the first metal wiring layer: contacts 115a, 115b, 115c, 115d, 115e, 115f, 115g, 115h, 115i, 115j, 115k, 115l, 115m, 115n, 115p, 115q, 115r, 115s, 15a, 215b, 215c, 215d, 215e, 215f, 215g, 215h, 215i, 215j, 215k: second metal wiring layer wiring 150 silicon substrate 160: element isolation insulator 170: leakage preventing separation layer

Claims (25)

  1.  ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを備え、少なくとも、a×b個の前記MOSトランジスタを基板上にa行b列に配列することによりデコーダ回路を構成する半導体装置であって、
     前記複数のMOSトランジスタの各々は、
      シリコン柱と、
      前記シリコン柱の側面を取り囲む絶縁体と、
      前記絶縁体を囲むゲートと、
      前記シリコン柱の上部又は下部に配置されるソース領域と、
      前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
     前記デコーダ回路は、少なくとも、
      第1~第nのn個のPチャネルの前記MOSトランジスタと
      第1~第nのn個のNチャネルの前記MOSトランジスタと
    で構成され、
     前記第1~第nのPチャネルのMOSトランジスタおよび前記第1~第nのNチャネルのMOSトランジスタは、第k(k=1~n)のPチャネルのMOSトランジスタと第kのNチャネルのMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、、
     前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
     前記第1~第nのPチャネルのMOSトランジスタのうちの第s(s=1~n-1)のPチャネルのMOSトランジスタのソースと第s+1のPチャネルのMOSトランジスタのドレインは互いに接続されており、
     前記第1~第nのNチャネルのMOSトランジスタのソースは、各々、基準電源線に接続され、前記第nのPチャネルのMOSトランジスタのソースは、電源線に接続され、
    前記n組のトランジスタ対の各々の、MOSトランジスタのゲートには、入力信号線の少なくとも1つの組の各々についてそれぞれ1つの入力信号線が接続され、
     前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、同一方向に延在することを特徴とする半導体装置。
    A decoder comprising a plurality of MOS transistors whose sources, drains and gates are arranged hierarchically in a direction perpendicular to the substrate, wherein at least a × b MOS transistors are arranged in a rows and b columns on the substrate A semiconductor device constituting a circuit,
    Each of the plurality of MOS transistors includes:
    Silicon pillars,
    An insulator surrounding a side surface of the silicon pillar;
    A gate surrounding the insulator;
    A source region disposed above or below the silicon pillar;
    A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
    The decoder circuit is at least
    1st to n-th n P-channel MOS transistors and 1st to n-th n-channel MOS transistors,
    The first to n-th P-channel MOS transistors and the first to n-th N-channel MOS transistors are k-th (k = 1 to n) P-channel MOS transistors and k-th N-channel MOS transistors. N gates of transistors are connected to each other to form n transistor pairs;
    The drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are disposed on the substrate side from the silicon pillar, and the first to n-th N-channel MOS transistors The drain regions of the first P-channel MOS transistors are connected to each other via a silicide region;
    Of the first to nth P-channel MOS transistors, the source of the s (s = 1 to n−1) th P-channel MOS transistor and the drain of the s + 1th P-channel MOS transistor are connected to each other. And
    The sources of the first to nth N-channel MOS transistors are each connected to a reference power supply line, and the sources of the nth P-channel MOS transistors are connected to a power supply line,
    One input signal line for each of at least one set of input signal lines is connected to the gates of the MOS transistors of each of the n pairs of transistors,
    At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in the same direction.
  2.  前記第1~第nのNチャネルのMOSトランジスタは、1行n列に配置され、
     前記第1~第nのPチャネルのMOSトランジスタは、1行n列に配置され、
     前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直方向に延在することを特徴とする、請求項1に記載の半導体装置。
    The first to nth N-channel MOS transistors are arranged in 1 row and n column,
    The first to nth P-channel MOS transistors are arranged in one row and n column,
    2. The semiconductor device according to claim 1, wherein at least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  3.  前記第1~第nのNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
     前記基準電源線は、前記第2のメタル配線層により構成され、
     前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項2に記載の半導体装置。
    The sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer,
    The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
    The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
    The reference power line is constituted by the second metal wiring layer,
    The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
    The source of the n-th P-channel MOS transistor is a second metal wiring that constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th P-channel MOS transistor is connected. The semiconductor device according to claim 2, wherein the semiconductor device is connected to a wiring of a layer.
  4.  前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項2あるいは請求項3に記載の半導体装置。 At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. The wiring of the second metal wiring layer constituting at least one set of the input signal lines of the input signal lines is connected to the wiring of the second metal wiring layer through the wiring of the wiring layer. Semiconductor device.
  5.  前記デコーダ回路は、第1のインバータと第2のインバータをさらに備え、
     前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
     前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
     前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
     前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
     前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、前記第1のインバータの入力に接続され、
     前記第1のインバータの出力配線が、前記第2のインバータの入力配線に接続され、前記第2のインバータの出力がデコーダ回路の出力となることを特徴とする請求項2~請求項4のいずれか1項に記載の半導体装置。
    The decoder circuit further includes a first inverter and a second inverter,
    The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
    The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
    The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in the direction perpendicular to the row direction. ,
    The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
    The drain regions of the first to nth N-channel MOS transistors and the first P-channel MOS transistors are connected to the input of the first inverter,
    The output wiring of the first inverter is connected to the input wiring of the second inverter, and the output of the second inverter becomes the output of the decoder circuit. 2. The semiconductor device according to claim 1.
  6.  前記第1~第nのNチャネルのMOSトランジスタは、n行1列に配置され、
     前記第1~第nのPチャネルのMOSトランジスタは、n行1列に配置され、
     前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直な方向に延在することを特徴とする、請求項1に記載の半導体装置。
    The first to nth N-channel MOS transistors are arranged in n rows and 1 column,
    The first to nth P-channel MOS transistors are arranged in n rows and 1 column,
    2. The semiconductor device according to claim 1, wherein at least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  7.  前記第1~第nのNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
     前記基準電源線は、前記第2のメタル配線層により構成され、
     前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項6に記載の半導体装置。
    The sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer,
    The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
    The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
    The reference power line is constituted by the second metal wiring layer,
    The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
    The source of the n-th P-channel MOS transistor is a second metal wiring that constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th P-channel MOS transistor is connected. The semiconductor device according to claim 6, wherein the semiconductor device is connected to a wiring of a layer.
  8.  前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項6あるいは請求項7に記載の半導体装置。 At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. 8. The wiring of a second metal wiring layer constituting at least one set of input signal lines of the input signal lines is connected to wirings of a second metal wiring layer through wirings of a wiring layer. Semiconductor device.
  9.  前記デコーダ回路は、第1のインバータと第2のインバータとをさらに備え、
     前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
     前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
     前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
     前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
     前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、前記第1のインバータの入力ゲートに接続され、
     前記第1のインバータの出力配線が、前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力が、前記デコーダ回路の出力となることを特徴とする請求項6~請求項8のいずれか1項に記載の半導体装置。
    The decoder circuit further includes a first inverter and a second inverter,
    The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
    The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
    The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
    The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in a direction perpendicular to the row direction. ,
    The drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are connected to the input gate of the first inverter,
    The output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit. The semiconductor device according to any one of the above.
  10.  ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを備え、少なくとも、a×b個の前記MOSトランジスタを基板上にa行b列に配列することによりデコーダ回路を構成する半導体装置であって、
     前記複数のMOSトランジスタの各々は、
      シリコン柱と、
      前記シリコン柱の側面を取り囲む絶縁体と、
      前記絶縁体を囲むゲートと、
      前記シリコン柱の上部又は下部に配置されるソース領域と、
      前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
     前記デコーダ回路は、少なくとも、
      第1~第nのn個のPチャネルの前記MOSトランジスタと
      第1~第nのn個のNチャネルの前記MOSトランジスタと
    で構成され、
     前記第1~第nのPチャネルMOSトランジスタおよび前記第1~第nのNチャネルのMOSトランジスタは、第k(k=1~n)のPチャネルのMOSトランジスタと第kのNチャネルのMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、
     前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのソース領域はシリコン柱より基板側に配置されており、前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルMOSトランジスタのドレイン領域が、コンタクトを介して互いに接続されており、
     前記第1~第nのPチャネルのMOSトランジスタのうちの第s(s=1~n-1)のPチャネルのMOSトランジスタのソースと第s+1のPチャネルのMOSトランジスタのドレインは互いに接続されており、
     前記第1~第nのNチャネルのMOSトランジスタのソースは、各々、基準電源線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、電源線に接続され、
     前記n組のトランジスタ対の各々の、MOSトランジスタのゲートには、入力信号線の少なくとも1つの組の各々についてそれぞれ1つの入力信号線が接続され、
     前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、同一方向に延在することを特徴とする半導体装置。
    A decoder comprising a plurality of MOS transistors whose sources, drains and gates are arranged hierarchically in a direction perpendicular to the substrate, wherein at least a × b MOS transistors are arranged in a rows and b columns on the substrate A semiconductor device constituting a circuit,
    Each of the plurality of MOS transistors includes:
    Silicon pillars,
    An insulator surrounding a side surface of the silicon pillar;
    A gate surrounding the insulator;
    A source region disposed above or below the silicon pillar;
    A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
    The decoder circuit is at least
    1st to n-th n P-channel MOS transistors and 1st to n-th n-channel MOS transistors,
    The first to n-th P-channel MOS transistors and the first to n-th N-channel MOS transistors are k-th (k = 1 to n) P-channel MOS transistors and k-th N-channel MOS transistors. Are connected to each other to form n transistor pairs,
    Source regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are disposed on the substrate side from the silicon pillar, and the first to n-th N-channel MOS transistors The drain regions of the first P-channel MOS transistors are connected to each other through a contact;
    Of the first to nth P-channel MOS transistors, the source of the s (s = 1 to n−1) th P-channel MOS transistor and the drain of the s + 1th P-channel MOS transistor are connected to each other. And
    Sources of the first to nth N-channel MOS transistors are respectively connected to a reference power supply line,
    A source of the n-th P-channel MOS transistor is connected to a power line;
    One input signal line for each of at least one set of input signal lines is connected to the gates of the MOS transistors of each of the n pairs of transistors,
    At least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in the same direction.
  11.  前記第1~第nのPチャネルのMOSトランジスタは、1行n列に配置され、
     前記第1~第nのNチャネルのMOSトランジスタは、1行n列に配置され、
     前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直方向に延在することを特徴とする、請求項10に記載の半導体装置。
    The first to nth P-channel MOS transistors are arranged in one row and n column,
    The first to nth N-channel MOS transistors are arranged in 1 row and n column,
    11. The semiconductor device according to claim 10, wherein at least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  12.  前記第1~第nのNチャネルのMOSトランジスタのソースは、前記行方向に平行な方向に延在する第1のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
     前記基準電源線は、前記第2のメタル配線層により構成され、
     前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項11に記載の半導体装置。
    Sources of the first to n-th N-channel MOS transistors are connected to wirings of a first metal wiring layer extending in a direction parallel to the row direction,
    The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
    The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
    The reference power line is constituted by the second metal wiring layer,
    The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
    The source of the n-th P-channel MOS transistor is a second metal wiring that constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th P-channel MOS transistor is connected. The semiconductor device according to claim 11, wherein the semiconductor device is connected to a wiring of a layer.
  13.  前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項11あるいは請求項12に記載の半導体装置。 At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. 13. The wiring of a second metal wiring layer constituting at least one set of input signal lines of the input signal lines is connected to wiring of a second metal wiring layer through wiring of a wiring layer. Semiconductor device.
  14.  前記デコーダ回路が列方向に複数個配置され、
     前記基準電源線が接続される、隣接する前記デコーダ回路の隣接するNチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続され、および/または、前記電源線が接続される、隣接する前記デコーダ回路の隣接するPチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続されることを特徴とする請求項11~請求項13のいずれか1項に記載の半導体装置。
    A plurality of the decoder circuits are arranged in the column direction,
    Source regions of adjacent N-channel MOS transistors of adjacent decoder circuits to which the reference power supply line is connected are commonly connected via a silicide region and / or adjacent to which the power supply line is connected. 14. The semiconductor device according to claim 11, wherein source regions of adjacent P-channel MOS transistors of the decoder circuit are commonly connected via a silicide region.
  15.  前記デコーダ回路は、第1のインバータと第2のインバータとを具備し、
     前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
     前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
     前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
     前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
     前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルMOSトランジスタのドレイン領域が、前記第1のインバータの入力ゲートに接続され、
     前記第1のインバータの出力配線が、前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力が前記デコーダ回路の出力となることを特徴とする請求項11~請求項14のいずれか1項に記載の半導体装置。
    The decoder circuit includes a first inverter and a second inverter,
    The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
    The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
    The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in the direction perpendicular to the row direction. ,
    The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
    The drain regions of the first to nth N-channel MOS transistors and the first P-channel MOS transistor are connected to the input gate of the first inverter,
    15. The output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit. The semiconductor device according to any one of the above.
  16.  前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタとで構成され、
     前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタとで構成され、
     前記第1~第nのNチャネルのMOSトランジスタと前記第n+1のNチャネルのMOSトランジスタのソース領域および前記第n+2のNチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続されて第1のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタと前記第n+1のPチャネルのMOSトランジスタのソース領域および前記第n+2のPチャネルのMOSトランジスタのソース領域は、シリサイド領域を介して共通接続されて第1のメタル配線層の配線に接続され、
     前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
     前記基準電源線は、前記第2のメタル配線層により構成され、
     前記第1~第nのNチャネルのMOSトランジスタと前記第n+1のNチャネルのMOSトランジスタおよび前記第n+2のNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタと前記第n+1のNチャネルのMOSトランジスタおよび前記第n+2のNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタと前記第n+1のPチャネルのMOSトランジスタおよび前記第n+2のPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタと前記第n+1のPチャネルのMOSトランジスタおよび前記第n+2のPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項11~請求項15のいずれか1項に記載の半導体装置。
    The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
    The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
    The source regions of the first to nth N-channel MOS transistors and the n + 1th N-channel MOS transistor and the source regions of the n + 2 N-channel MOS transistors are connected in common via a silicide region. Connected to the wiring of one metal wiring layer,
    The source region of the n-th P-channel MOS transistor, the n + 1-th P-channel MOS transistor, and the source region of the n + 2-th P-channel MOS transistor are connected in common via a silicide region to form a first metal. Connected to the wiring in the wiring layer,
    The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
    The reference power line is constituted by the second metal wiring layer,
    The sources of the first to nth N-channel MOS transistors, the (n + 1) th N-channel MOS transistor, and the (n + 2) th N-channel MOS transistor are the first to n-th N-channel MOS transistors and the source Wiring of the second metal wiring layer constituting the reference power supply line via the wiring of the first metal wiring layer to which the sources of the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are connected Connected to
    The sources of the nth P channel MOS transistor, the (n + 1) th P channel MOS transistor, and the (n + 2) th P channel MOS transistor are the nth P channel MOS transistor and the (n + 1) th P channel MOS transistor. It is connected to the wiring of the second metal wiring layer constituting the power supply line through the wiring of the first metal wiring layer to which the source of the MOS transistor and the n + 2 P-channel MOS transistor is connected. The semiconductor device according to any one of claims 11 to 15, wherein:
  17.  前記第1~第nのPチャネルのMOSトランジスタは、n行1列に配置され、
     前記第1~第nのNチャネルのMOSトランジスタは、n行1列に配置され、
     前記電源線、前記基準電源線および前記入力信号線の少なくとも1つの組の入力信号線は、前記行方向と垂直な方向に延在することを特徴とする、請求項10に記載の半導体装置。
    The first to nth P-channel MOS transistors are arranged in n rows and 1 column,
    The first to nth N-channel MOS transistors are arranged in n rows and 1 column,
    11. The semiconductor device according to claim 10, wherein at least one set of input signal lines of the power supply line, the reference power supply line, and the input signal line extends in a direction perpendicular to the row direction.
  18.  前記第1~第nのNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
     前記基準電源線は、前記第2のメタル配線層により構成され、
     前記第1~第nのNチャネルのMOSトランジスタのソースは、前記第1~第nのNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
     前記第nのPチャネルのMOSトランジスタのソースは、前記第nのPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項17に記載の半導体装置。
    The sources of the first to nth N-channel MOS transistors are connected to the wiring of the first metal wiring layer,
    The source of the nth P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
    The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
    The reference power line is constituted by the second metal wiring layer,
    The source of the first to n-th N-channel MOS transistors is connected to the reference power supply line via the wiring of the first metal wiring layer to which the sources of the first to n-th N-channel MOS transistors are connected. Connected to the wiring of the second metal wiring layer constituting,
    The source of the nth P-channel MOS transistor is a second metal wiring that constitutes the power supply line via a wiring of a first metal wiring layer to which the source of the nth P-channel MOS transistor is connected. The semiconductor device according to claim 17, wherein the semiconductor device is connected to a wiring of a layer.
  19.  前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項17あるいは請求項18に記載の半導体装置。 At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. 19. The wiring of a second metal wiring layer constituting at least one set of input signal lines of the input signal lines is connected to wiring of a second metal wiring layer through wiring of a wiring layer. Semiconductor device.
  20.  前記デコーダ回路は、第1のインバータと第2のインバータとをさらに備え、
     前記第1のインバータは、少なくとも、第n+1のPチャネルの前記MOSトランジスタと第n+1のNチャネルの前記MOSトランジスタで構成され、
     前記第2のインバータは、少なくとも、第n+2のPチャネルの前記MOSトランジスタと第n+2のNチャネルの前記MOSトランジスタで構成され、
     前記第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタ、および前記第n+2のPチャネルのMOSトランジスタと第n+2のNチャネのMOSトランジスタは、それぞれ前記行方向に沿って配置され、
     前記第n+1のPチャネルのMOSトランジスタと第n+2のPチャネルのMOSトランジスタ、および前記第n+1のNチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタは、それぞれ前記行方向と垂直方向に配置され、
     前記第1~第nのNチャネルのMOSトランジスタと前記第1のPチャネルのMOSトランジスタのドレイン領域が、前記第1のインバータの入力ゲートに接続され、
     前記第1のインバータの出力配線が、前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力が、前記デコーダ回路の出力となることを特徴とする請求項17~請求項19のいずれか1項に記載の半導体装置。
    The decoder circuit further includes a first inverter and a second inverter,
    The first inverter includes at least the (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor,
    The second inverter includes at least the n + 2 P-channel MOS transistor and the n + 2 N-channel MOS transistor,
    The (n + 1) th P-channel MOS transistor and the (n + 1) th N-channel MOS transistor, and the (n + 2) th P-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged along the row direction, respectively.
    The (n + 1) th P-channel MOS transistor and the (n + 2) th P-channel MOS transistor, and the (n + 1) th N-channel MOS transistor and the (n + 2) th N-channel MOS transistor are arranged in a direction perpendicular to the row direction. ,
    The drain regions of the first to n-th N-channel MOS transistors and the first P-channel MOS transistors are connected to the input gate of the first inverter,
    The output wiring of the first inverter is connected to the input gate of the second inverter, and the output of the second inverter becomes the output of the decoder circuit. The semiconductor device according to any one of the above.
  21.  前記第1のインバータは、少なくとも、第n+1のPチャネルのMOSトランジスタと第n+1のNチャネルのMOSトランジスタとで構成され、
     前記第2のインバータは、少なくとも、第n+2のPチャネルのMOSトランジスタと第n+2のNチャネルのMOSトランジスタとで構成され、
     前記第n+1のNチャネルのMOSトランジスタと前記第n+2のNチャネルのMOSトランジスタのソース領域がシリサイド領域を介して共通接続されて基準電源に接続される、あるいは、前記第n+1のPチャネルのMOSトランジスタと前記第n+2のPチャネルのMOSトランジスタのソース領域がシリサイド領域を介して共通接続されて電源線に接続されることを特徴とする請求項17~請求項20のいずれか1項に記載の半導体装置。
    The first inverter includes at least an (n + 1) th P-channel MOS transistor and an (n + 1) th N-channel MOS transistor.
    The second inverter includes at least an n + 2 P-channel MOS transistor and an n + 2 N-channel MOS transistor,
    Source regions of the (n + 1) th n-channel MOS transistor and the (n + 2) th n-channel MOS transistor are commonly connected via a silicide region and connected to a reference power supply, or the (n + 1) th n-channel MOS transistor 21. The semiconductor according to claim 17, wherein a source region of said n + 2 P-channel MOS transistor is connected in common through a silicide region and connected to a power supply line. apparatus.
  22.  ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを、基板上に配列することによりスタティック型メモリを構成する半導体装置であって、
     少なくとも6個の前記MOSトランジスタが、基板上に形成された絶縁膜上に配列されたスタティック型メモリセルが行列状に複数配置され、
     前記メモリセルの1つの行線を指定する複数の行アドレス回路と、
     前記複数の行アドレス回路からの信号により、前記スタティック型メモリセルの1つの行を選択する複数の行デコーダを備え、
     前記スタティック型メモリセルを構成する6個の前記MOSトランジスタと、
     前記行デコーダを構成する複数の前記MOSトランジスタの各々は、
      シリコン柱と、
      前記シリコン柱の側面を取り囲む絶縁体と、
      前記絶縁体を囲むゲートと、
      前記シリコン柱の上部又は下部に配置されるソース領域と、
      前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
     前記スタティック型メモリセルを構成する前記6個のMOSトランジスタは、2行3列に配置され、
     前記行デコーダ回路は、少なくとも、
      1行n列に配置されたn個のPチャネルの前記MOSトランジスタと
      1行n列に配置されたn個のNチャネルの前記MOSトランジスタと
      第1のインバータと第2のインバータにより構成され、
     前記n個のPチャネルのMOSトランジスタおよび前記n個のNチャネルのMOSトランジスタ々は、前記1行n列に配置されたn個のPチャネルのMOSトランジスタの第k列目(k=1~n)のPチャネルのMOSトランジスタと前記1行n列に配置されたn個のNチャネルのMOSトランジスタの第k列目のNチャネルMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、
     前記n個のNチャネルのMOSトランジスタと第1列目の前記PチャネルのMOSトランジスタのドレイン領域はシリコン柱より基板側に配置されており、前記n個のNチャネルのMOSトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレイン領域が、互いにシリサイド領域を介して接続されており、
     第s列目(s=1~n-1)の前記PチャネルのMOSトランジスタのソースと第s+1列目の前記PチャネルのMOSトランジスタのドレインは互いに接続されており、
     前記n個のNチャネルMOSトランジスタのソースは、各々、前記行方向と垂直方向に延在した基準電源線に接続され、第n列目の前記PチャネルMOSトランジスタのソースは、前記行方向と垂直方向に延在した電源線に接続され、
     前記n個のトランジスタ対の各々のMOSトランジスタのゲートに入力される入力信号は、各々、前記行方向と垂直方向に延在した配線により供給されており、
     前記n個のNチャネルのMOSトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレインが前記第1のインバータの入力ゲートに接続され、前記第1のインバータの出力配線が前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力配線が、前記スタティック型メモリセルの行選択線に接続されることを特徴とする半導体装置。
    A semiconductor device that constitutes a static memory by arranging a plurality of MOS transistors in which sources, drains, and gates are arranged hierarchically in a direction perpendicular to the substrate, on the substrate,
    A plurality of static memory cells in which at least six MOS transistors are arranged on an insulating film formed on a substrate are arranged in a matrix,
    A plurality of row address circuits for designating one row line of the memory cells;
    A plurality of row decoders for selecting one row of the static memory cell by signals from the plurality of row address circuits;
    6 MOS transistors constituting the static memory cell;
    Each of the plurality of MOS transistors constituting the row decoder is
    Silicon pillars,
    An insulator surrounding a side surface of the silicon pillar;
    A gate surrounding the insulator;
    A source region disposed above or below the silicon pillar;
    A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
    The six MOS transistors constituting the static memory cell are arranged in two rows and three columns,
    The row decoder circuit includes at least
    N P-channel MOS transistors arranged in one row and n columns, n N-channel MOS transistors arranged in one row and n columns, a first inverter, and a second inverter,
    The n P-channel MOS transistors and the n N-channel MOS transistors are the k-th column (k = 1 to n) of the n P-channel MOS transistors arranged in the first row and the n-th column. ) And the gates of the k-th N-channel MOS transistors of the n N-channel MOS transistors arranged in the first row and the n-th column are connected to each other. Form the
    The drain regions of the n N-channel MOS transistors and the first column of the P-channel MOS transistors are arranged on the substrate side from the silicon pillar, and the n N-channel MOS transistors and the first column of the first column are disposed. The drain regions of the P-channel MOS transistors of the eyes are connected to each other via a silicide region,
    The source of the P-channel MOS transistor in the s-th column (s = 1 to n−1) and the drain of the P-channel MOS transistor in the s + 1-th column are connected to each other,
    The sources of the n N-channel MOS transistors are respectively connected to a reference power supply line extending in the direction perpendicular to the row direction, and the source of the P-channel MOS transistor in the nth column is perpendicular to the row direction. Connected to the power line extending in the direction,
    The input signals input to the gates of the MOS transistors of the n transistor pairs are respectively supplied by wirings extending in the direction perpendicular to the row direction,
    The drains of the n N-channel MOS transistors and the first column of P-channel MOS transistors are connected to the input gate of the first inverter, and the output wiring of the first inverter is the second inverter. A semiconductor device, wherein the output wiring of the second inverter is connected to a row selection line of the static memory cell.
  23.  前記n個のNチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記n列目のPチャネルのMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記電源線は、前記第1のメタル配線層よりも上層の第2のメタル配線層により構成され、
     前記基準電源線は、前記第2のメタル配線層により構成され、
     前記n個のNチャネルのMOSトランジスタのソースは、前記n個のNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
     前記第n列目のPチャネルのMOSトランジスタのソースは、前記第n列目のPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続され、
     前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項22に記載の半導体装置。
    The sources of the n N-channel MOS transistors are connected to the wiring of the first metal wiring layer,
    The source of the n-th column P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
    The power line is constituted by a second metal wiring layer that is higher than the first metal wiring layer,
    The reference power line is constituted by the second metal wiring layer,
    The source of the n N-channel MOS transistors is a second metal that constitutes the reference power supply line via the wiring of the first metal wiring layer to which the sources of the n N-channel MOS transistors are connected. Connected to the wiring in the wiring layer,
    The source of the n-th column P-channel MOS transistor constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th column P-channel MOS transistor is connected. Connected to the wiring of the metal wiring layer of 2,
    At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. 23. The semiconductor device according to claim 22, wherein the semiconductor device is connected to a wiring of a second metal wiring layer constituting at least one set of the input signal lines of the input signal lines via a wiring of a wiring layer.
  24.  ソース、ドレインおよびゲートが、基板と垂直な方向に階層的に配置される複数のMOSトランジスタを、基板上に配列することによりスタティック型メモリを構成する半導体装置であって、
     少なくとも6個の前記MOSトランジスタが、基板上に形成された絶縁膜上に配列されたスタティック型メモリセルが行列状に複数配置され、
     前記メモリセルの1つの行線を指定する複数の行アドレス回路と、
     前記複数の行アドレス回路からの信号により、前記スタティック型メモリセルの1つの行を選択する複数の行デコーダを備え、
     前記スタティック型メモリセルを構成する6個の前記MOSトランジスタと、
     前記行デコーダを構成する複数の前記MOSトランジスタの各々は、
      シリコン柱と、
      前記シリコン柱の側面を取り囲む絶縁体と、
      前記絶縁体を囲むゲートと、
      前記シリコン柱の上部又は下部に配置されるソース領域と、
      前記シリコン柱の上部又は下部に配置されるドレイン領域であって、前記シリコン柱に対して前記ソース領域と反対側に配置されるドレイン領域とを備え、
     前記スタティック型メモリセルを構成する前記6個のMOSトランジスタは、2行3列に配置され、
     前記行デコーダ回路は、少なくとも、
      1行n列に配置されたn個のPチャネルの前記MOSトランジスタと
      1行n列に配置されたn個のNチャネルの前記MOSトランジスタと
      第1のインバータと第2のインバータにより構成され、
     前記n個のPチャネルのMOSトランジスタおよび前記n個のNチャネルのMOSトランジスタは、前記1行n列に配置されたn個のPチャネルのMOSトランジスタの第k列目(k=1~n)のPチャネルのMOSトランジスタと前記1行n列に配置されたn個のNチャネルのMOSトランジスタの第k列目のNチャネルMOSトランジスタのゲートが互いに接続されることによって、n組のトランジスタ対を形成し、
     前記n個のNチャネルのMOSトランジスタと第1列目の前記PチャネルのMOSトランジスタのソース領域はシリコン柱より基板側に配置されており、前記n個のNチャネルMOSのトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレイン領域が、互いにコンタクトを介して接続されており、
     第s列目(s=1~n-1)の前記PチャネルのMOSトランジスタのソースと第s+1列目の前記PチャネルのMOSトランジスタのドレインは互いに接続されており、
     前記n個のNチャネルMOSトランジスタのソースは、各々、前記行方向と垂直方向に延在した基準電源線に接続され、第n列目の前記PチャネルMOSトランジスタのソースは、前記行方向と垂直方向に延在した電源線に接続され、
     前記n組のトランジスタ対の各々の、MOSトランジスタのゲートに入力される入力信号は、各々、前記行方向と垂直方向に延在した配線により供給されており、
     前記n個のNチャネルのMOSトランジスタと前記第1列目のPチャネルのMOSトランジスタのドレインが前記第1のインバータの入力ゲートに接続され、前記第1のインバータの出力配線が前記第2のインバータの入力ゲートに接続され、前記第2のインバータの出力配線が、前記スタティック型メモリセルの行選択線に接続されることを特徴とする半導体装置。
    A semiconductor device that constitutes a static memory by arranging a plurality of MOS transistors in which sources, drains, and gates are arranged hierarchically in a direction perpendicular to the substrate, on the substrate,
    A plurality of static memory cells in which at least six MOS transistors are arranged on an insulating film formed on a substrate are arranged in a matrix,
    A plurality of row address circuits for designating one row line of the memory cells;
    A plurality of row decoders for selecting one row of the static memory cell by signals from the plurality of row address circuits;
    6 MOS transistors constituting the static memory cell;
    Each of the plurality of MOS transistors constituting the row decoder is
    Silicon pillars,
    An insulator surrounding a side surface of the silicon pillar;
    A gate surrounding the insulator;
    A source region disposed above or below the silicon pillar;
    A drain region disposed above or below the silicon pillar, the drain region disposed opposite to the source region with respect to the silicon pillar;
    The six MOS transistors constituting the static memory cell are arranged in two rows and three columns,
    The row decoder circuit includes at least
    N P-channel MOS transistors arranged in one row and n columns, n N-channel MOS transistors arranged in one row and n columns, a first inverter, and a second inverter,
    The n P-channel MOS transistors and the n N-channel MOS transistors are the k-th column (k = 1 to n) of the n P-channel MOS transistors arranged in the first row and the nth column. The gates of the N-channel MOS transistors in the k-th column of the P-channel MOS transistors and the n N-channel MOS transistors arranged in the first row and the n-th column are connected to each other. Forming,
    The source regions of the n N-channel MOS transistors and the first column of the P-channel MOS transistors are arranged on the substrate side from the silicon pillar, and the n N-channel MOS transistors and the first column of the first column are disposed. The drain regions of the P-channel MOS transistors of the eyes are connected to each other through contacts,
    The source of the P-channel MOS transistor in the s-th column (s = 1 to n−1) and the drain of the P-channel MOS transistor in the s + 1-th column are connected to each other,
    The sources of the n N-channel MOS transistors are respectively connected to a reference power supply line extending in the direction perpendicular to the row direction, and the source of the P-channel MOS transistor in the nth column is perpendicular to the row direction. Connected to the power line extending in the direction,
    Input signals input to the gates of the MOS transistors of each of the n pairs of transistors are respectively supplied by wirings extending in the direction perpendicular to the row direction,
    The drains of the n N-channel MOS transistors and the first column of P-channel MOS transistors are connected to the input gate of the first inverter, and the output wiring of the first inverter is the second inverter. A semiconductor device, wherein the output wiring of the second inverter is connected to a row selection line of the static memory cell.
  25.  前記n個のNチャネルのMOSトランジスタのソースは、前記行方向に平行な方向に延在する第1のメタル配線層の配線に接続され、
     前記n列目のPチャネルMOSトランジスタのソースは、第1のメタル配線層の配線に接続され、
     前記電源線は、前記第1のメタル配線層の配線層よりも上層の第2のメタル配線層により構成され、
     前記基準電源線は、前記第2のメタル配線層により構成され、
     前記n個のNチャネルのMOSトランジスタのソースは、前記n個のNチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記基準電源線を構成する第2のメタル配線層の配線に接続され、
     前記第n列目のPチャネルのMOSトランジスタのソースは、前記第n列目のPチャネルのMOSトランジスタのソースが接続された第1のメタル配線層の配線を介して前記電源線を構成する第2のメタル配線層の配線に接続され、
     前記入力信号線の少なくとも1つの組の入力信号線は第2のメタル配線層により構成され、前記n組のトランジスタ対の各々の、MOSトランジスタのゲートは、行方向に延在した第1のメタル配線層の配線を介して、前記入力信号線の少なくとも1つの組の入力信号線を構成する第2のメタル配線層の配線に接続されることを特徴とする請求項24に記載の半導体装置。
    Sources of the n N-channel MOS transistors are connected to wiring of a first metal wiring layer extending in a direction parallel to the row direction,
    The source of the n-th column P-channel MOS transistor is connected to the wiring of the first metal wiring layer,
    The power line is constituted by a second metal wiring layer that is higher than the wiring layer of the first metal wiring layer,
    The reference power line is constituted by the second metal wiring layer,
    The source of the n N-channel MOS transistors is a second metal that constitutes the reference power supply line via the wiring of the first metal wiring layer to which the sources of the n N-channel MOS transistors are connected. Connected to the wiring in the wiring layer,
    The source of the n-th column P-channel MOS transistor constitutes the power supply line via the wiring of the first metal wiring layer to which the source of the n-th column P-channel MOS transistor is connected. Connected to the wiring of the metal wiring layer of 2,
    At least one set of the input signal lines is constituted by a second metal wiring layer, and the gate of the MOS transistor of each of the n sets of transistor pairs is a first metal extending in the row direction. 25. The semiconductor device according to claim 24, wherein the semiconductor device is connected to a wiring of a second metal wiring layer constituting at least one set of input signal lines of the input signal lines via a wiring of a wiring layer.
PCT/JP2013/080823 2013-11-14 2013-11-14 Semiconductor device WO2015071998A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080823 WO2015071998A1 (en) 2013-11-14 2013-11-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080823 WO2015071998A1 (en) 2013-11-14 2013-11-14 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2015071998A1 true WO2015071998A1 (en) 2015-05-21

Family

ID=53056961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080823 WO2015071998A1 (en) 2013-11-14 2013-11-14 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2015071998A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285352A (en) * 1990-03-31 1991-12-16 Toshiba Corp Dynamic type semiconductor storage device
JPH06268173A (en) * 1993-03-15 1994-09-22 Toshiba Corp Semiconductor memory device
WO2009096465A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
WO2011043402A1 (en) * 2009-10-06 2011-04-14 国立大学法人東北大学 Semiconductor device
JP2011108702A (en) * 2009-11-13 2011-06-02 Unisantis Electronics Japan Ltd Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285352A (en) * 1990-03-31 1991-12-16 Toshiba Corp Dynamic type semiconductor storage device
JPH06268173A (en) * 1993-03-15 1994-09-22 Toshiba Corp Semiconductor memory device
WO2009096465A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
WO2011043402A1 (en) * 2009-10-06 2011-04-14 国立大学法人東北大学 Semiconductor device
JP2011108702A (en) * 2009-11-13 2011-06-02 Unisantis Electronics Japan Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP5688189B1 (en) Semiconductor device
JP5719944B1 (en) Semiconductor device
JP5688190B1 (en) Semiconductor device
JP5677642B1 (en) Semiconductor device
WO2015015565A1 (en) Semiconductor device
JP5677643B1 (en) Semiconductor device
US9590631B2 (en) Semiconductor device
JP5833279B1 (en) Semiconductor device
JP5804230B1 (en) Semiconductor device
JP5686931B1 (en) Semiconductor device
JP5688191B1 (en) Semiconductor device
WO2015071998A1 (en) Semiconductor device
WO2015071966A1 (en) Semiconductor device
WO2015071965A1 (en) Semiconductor device
JP5770406B1 (en) Semiconductor device
WO2015097800A1 (en) Semiconductor device
WO2015087413A1 (en) Semiconductor device
JP2015138974A (en) semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP