WO2015071971A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2015071971A1
WO2015071971A1 PCT/JP2013/080659 JP2013080659W WO2015071971A1 WO 2015071971 A1 WO2015071971 A1 WO 2015071971A1 JP 2013080659 W JP2013080659 W JP 2013080659W WO 2015071971 A1 WO2015071971 A1 WO 2015071971A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stator
rotor
wound
rotating electrical
Prior art date
Application number
PCT/JP2013/080659
Other languages
French (fr)
Japanese (ja)
Inventor
夏樹 渡辺
貞一郎 千葉
杉本 幸彦
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to PCT/JP2013/080659 priority Critical patent/WO2015071971A1/en
Publication of WO2015071971A1 publication Critical patent/WO2015071971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a rotating electrical machine, and more particularly, to an improvement in a stator coil structure used in a rotating electrical machine such as an electric motor or a generator, particularly a stator coil structure having a coil formed by concentrated winding.
  • An electric motor having a plurality of coils formed by concentrated winding is widely used.
  • a stator of an electric motor slots are formed by gaps between a plurality of teeth.
  • it is effective to increase the coil space factor in the slot.
  • an electric motor with improved space factor it has been proposed to alternately arrange rectangular coils and pyramid coils each having the same cross-sectional area on teeth arranged in parallel in the circumferential direction (for example, Patent Document 1).
  • Patent Document 1 it is necessary to separately prepare two types of coils having different shapes such as a rectangular coil and a pyramid coil, which causes a problem that handling of the coil at the time of assembly becomes complicated.
  • An object of the present invention is to provide a rotating electrical machine having a coil structure of a stator that can improve the space factor of a coil in a slot and can eliminate complexity during assembly.
  • the rotating electrical machine of the present invention is a rotating electrical machine that includes an annular stator and a rotor that is rotatably disposed on the inner peripheral side of the stator.
  • the stator includes a plurality of teeth that protrude toward the rotor side.
  • a coil around which a wire is wound is inserted in the teeth at equal intervals, and the coil includes a first coil portion on the proximal end side of the teeth and a second coil portion on the distal end side.
  • the first and second coil portions are connected to each other by a connecting portion formed by a part of the element wire.
  • the present invention when the first coil portion is inserted into the predetermined tooth, it is not necessary to insert the second coil portion into another tooth adjacent to the first coil portion. For this reason, even if the slot between the teeth is narrow, the first coil portion does not interfere with the second coil portion, and the first coil portion having a large outer diameter can be reliably inserted, and the base end side ( The space factor on the outward side can be improved. In addition, the space factor on the front end side (inward side) of the slot can be increased by increasing the outer diameter so that the second coil portion inserted on the tip side of the teeth does not interfere with the adjacent second coil portion. Can be improved. And as a coil, it is only necessary to prepare one type having a first coil part and a second coil part that can be divided, and the troublesomeness caused by the increase in the number of types can be eliminated.
  • the coil has a protruding portion formed by protruding along the rotation center axis of the rotor with respect to the portion where the connecting portion is wound.
  • the connecting portion since the connecting portion protrudes as the protruding portion in the direction along the rotation center axis of the rotor, the connecting portion does not interfere between adjacent coils, and the coil fits well in the slot. it can.
  • a first insulator inserted into the proximal end side of the teeth and wound with the first coil portion, and a second insulator inserted into the distal end side and wound with the second coil portion.
  • the first and second insulators are provided with fitting portions that are fitted to each other at adjacent ends of the first and second insulators.
  • the first coil part is wound around the first insulator in advance, and the second coil part is wound around the second insulator in advance.
  • the first and second coil portions can be divided and integrated at the same time as the first and second insulators are engaged and disengaged.
  • the posture of the second coil portion with respect to the first coil portion is maintained by the shape retaining property of the connecting portion. According to the present invention, when the first coil portion is first inserted into the proximal end side of the tooth, the second coil portion can be maintained in a posture facing the distal end of the tooth. Therefore, when the second coil portion is inserted, it is only necessary to push in the state of the posture, and the assembling work can be facilitated.
  • the strand is preferably a rectangular wire having a rectangular cross section.
  • the space factor is easily improved. Since the contact area between the strands is large, the heat conduction can be improved and the heat dissipation performance from the coil surface can be improved.
  • the rotating electrical machine of the present invention is a rotating electrical machine that includes an annular stator and a rotor that is rotatably disposed on the inner peripheral side of the stator.
  • the stator includes a plurality of teeth that protrude toward the rotor side.
  • the first insulator is provided at equal intervals in the circumferential direction, and a coil around which a wire having a rectangular cross section is wound is inserted into the tooth, and the coil is inserted into the base end side of the tooth.
  • the first coil portion wound around the first coil portion and the second coil portion wound around the second insulator inserted on the distal end side can be freely divided.
  • a connecting portion formed by a plurality of connecting portions, and the connecting portion has a protruding portion formed by protruding along the rotation center axis of the rotor with respect to another wound portion.
  • the top view which shows a part of said construction machine.
  • the disassembled perspective view which shows the said generator motor.
  • Sectional drawing which shows the said generator motor.
  • the front view which shows the stator of the said generator motor.
  • the schematic diagram which shows notionally the connection state of the coil used for the said stator.
  • the enlarged view which shows the principal part of the said stator in partial cross section.
  • FIG. 1 is a side view of a hydraulic excavator 1 equipped with a generator motor 10 as a rotating electrical machine to which the coil structure according to the present embodiment is applied.
  • FIG. 2 is a plan view showing a part of the excavator 1.
  • the hydraulic excavator 1 is a so-called hybrid system in which the generator 6 is driven by the engine 6 to generate electric power, the upper swing body 3 is rotated by this electric power, and the auxiliary machines of the hydraulic excavator 1 are driven. Construction machine.
  • a hydraulic excavator 1 includes a lower traveling body 2 and an upper revolving body 3 provided on the lower traveling body 2 so as to be able to swivel.
  • the upper swing body 3 includes a work machine 4, a cab 5, an engine 6, a hydraulic pump 7, an inverter 8, a capacitor 9, and a generator motor 10.
  • the generator motor 10 and the inverter 8 are electrically connected via a power cable CA1, and the inverter 8 and the capacitor 9 are electrically connected.
  • the upper swing body 3 is driven by a swing electric motor 3A that is operated by electric energy from the generator motor 10 or the capacitor 9.
  • the swing electric motor 3A and the inverter 8 are electrically connected via a power cable CA2.
  • the swing electric motor 3 ⁇ / b> A generates power by the regenerative operation when the upper swing body 3 is decelerated, and the electric energy obtained by the power generation is stored in the capacitor 9 through the inverter 8.
  • the outer race OL of the swing circle SC is fixed to the upper swing body 3, and the inner race IL of the swing circle SC is fixed to the lower travel body 2.
  • the swing circle SC connects the upper swing body 3 and the lower traveling body 2.
  • the input / output shaft of the swing electric motor 3A is connected to the swing pinion SP via a swing machinery having a speed reduction mechanism.
  • the swing pinion SP meshes with internal teeth formed on the inner race IL of the swing circle SC.
  • the driving force of the swing electric motor 3A is transmitted to the swing pinion SP via the swing machinery, and the upper swing body 3 is swung.
  • the swing electric motor 3A is installed so that the input / output shaft of the swing electric motor 3A is directed in the direction in which gravity acts when the swing electric motor 3A is installed vertically, that is, when the hybrid excavator 1 is installed on a horizontal plane.
  • the work machine 4 includes a boom 4A, an arm 4B, and a bucket 4C.
  • the boom 4A, the arm 4B, and the bucket 4C are driven by hydraulic oil for the boom 4A, the arm 4B, and the bucket 4C, respectively, via the control valve by hydraulic oil pumped from the hydraulic pump 7 shown in FIG. Perform various operations such as excavation.
  • FIG. 3 is an exploded view of the generator motor 10 according to the present embodiment.
  • FIG. 4 is a cross-sectional view of the generator motor 10. More specifically, FIG. 4 shows a cross section when the generator motor 10 is cut along a plane including the rotation center axis Z of the rotor 14 of the generator motor 10 and parallel to the rotation center axis Z.
  • the generator motor 10 has a rotor shaft 14A connected directly or indirectly to the output shaft of the engine 6 and the input shaft of the hydraulic pump 7, and generates power by the rotational driving force of the output shaft of the engine. .
  • the generator motor 10 is used as an electric motor by the electric energy stored in the capacitor 9 as needed to assist the rotation of the engine 6.
  • the generator motor 10 receives the rotational driving force of the engine 6 to generate electric power, and the electric energy generated by the electric power generation is stored in the capacitor 9.
  • the generator motor 10 in the present embodiment is a generator motor having a three-phase switched reluctance (hereinafter abbreviated as SR: Switched Reluctance) motor structure, and includes a first housing 11 on the engine 7 side, a flywheel A wheel 12, a coupling 13, a rotor 14, a stator 15, a second housing 16 on the hydraulic pump 7 side, and a flange 17 are provided.
  • SR Switched Reluctance
  • the first housing 11 is a cast iron member, and is joined to the second housing 16 to form a space for accommodating the rotor 14, the stator 15, and the like.
  • an oil reservoir 21 for storing the cooling oil for encouraging lubrication of the rotor shaft 14A and the bearing 18 and cooling the heat generating part (coil 43, etc.) of the stator 15. .
  • the cooling structure of the stator 15 will be described later.
  • the flywheel 12 is fixed to the output shaft of the engine 6 in the accommodating space formed by the first and second housings 11 and 16.
  • the flywheel 12 is connected to the rotor 14 via the coupling 13 and rotates in the first and second housings 11 and 16.
  • the coupling 13 is a substantially annular member and is bolted to the flywheel 12.
  • an internal spline formed on the inner diameter portion meshes with an external spline formed on the outer diameter portion on the engine side of the rotor shaft 14A, and is splined to each other.
  • the flywheel 12, the coupling 13, and the rotor 14 having the rotor shaft 14A rotate together and are driven by the engine 6.
  • the rotor 14 is disposed in a space on the inner peripheral side of the stator 15 in the first and second housings 11 and 16.
  • a support space 14B in which the rotor shaft 14A is bolted is formed in the center of the rotor 14.
  • a cylindrical support portion 17A provided at the center of the flange 17 enters the support space 14B.
  • the bearings 18 are disposed between the inner peripheral surface of the support space 14B and the outer peripheral surface of the support portion 17A, so that the rotor 14 is rotatably supported around the support portion 17A of the flange 17.
  • the portion on the hydraulic pump 7 side of the rotor shaft 14A of the rotor 14 is inserted into the support portion 17A of the flange 17.
  • an internal spline is formed on the inner diameter side of the portion inserted into the support portion 17A.
  • the internal spline and the external spline provided on the input shaft of the hydraulic pump 7 are spline-coupled. As a result, the hydraulic pump 7 is driven by the engine 6 via the rotor 14.
  • the stator 15 is provided in a space in the first and second housings 11 and 16, and the second housing 16 is provided with a plurality of bolts 22 (only one is shown in FIG. 3) penetrating the yoke 41 portion from the engine 6 side. Bolted to.
  • the second housing 16 is a cast iron member, and is provided on the hydraulic pump 7 side (the right side in FIG. 4) of the generator motor 10.
  • the electric box 19 having an internal space communicating with the accommodation space is attached to the shoulder portion of the second housing 16.
  • terminals for connecting lead wires A1, A2, B1, B2, C1, and C2 (FIGS. 5 and 6) from the coil 43 are arranged.
  • Such a terminal is connected to a connector of a power cable CA1 (FIG. 2) fixed to the electric box 19. That is, the electric energy generated by the generator motor 10 is transmitted from the electric box 19 to the inverter 8 through the power cable CA1.
  • the flange 17 is a member that closes the storage space formed by the first and second housings 11 and 16 on the second housing 16 side. Therefore, the flange 17 is bolted to the second housing 16 from the hydraulic pump 7 side.
  • An insertion hole 17B is provided coaxially with the support portion 17A at the center of the flange 17, and the input shaft of the hydraulic pump 7 inserted through the insertion hole 17B is splined with the rotor shaft 14A of the rotor 14 as described above. Is done.
  • the second housing 16 is provided with a cooling medium introduction path 31 through which a cooling medium such as oil is introduced toward the rotation center axis Z.
  • the lower end of the cooling medium introduction path 31 is open to the flange 17 side at the contact surface between the second housing 16 and the flange 17.
  • the flange 17 is provided with a vertical cooling medium communication path 32 whose upper end communicates with the lower end of the cooling medium introduction path 31 and whose lower end opens at the end of an internal spline formed in the rotor shaft 14A.
  • the flange 17 is provided with a cooling medium branch path 33 that branches in the horizontal direction from the middle of the cooling medium communication path 32 and opens above the support portion 17A.
  • the support portion 17A is provided with a plurality of communication holes 17C communicating in the radial direction along the circumferential direction.
  • the cooling medium that has flowed into the space between the support portion 17A and the rotor shaft 14A moves to the inner surface side of the support portion 17A by the centrifugal force when the rotor 14 rotates, and is supplied to the bearing 18 side through the communication hole 17C of the support portion 17A.
  • the bearing 18 is cooled and lubricated.
  • the cooling medium that has cooled the bearing 18 moves further outward by centrifugal force, and most of the cooling medium is collected by the first blade 34 having a J-shaped cross section provided on the outer periphery of the rotor 14.
  • the cooling medium collected by the first blade 34 is discharged by a centrifugal force from a discharge hole 34A provided in the first blade 34 and supplied to a gap between the coil end of the coil 43 and the second housing 16.
  • the coil end facing the second housing 16 side of 43 is efficiently cooled.
  • the cooling medium flowing into the internal space of the rotor shaft 14A flows out from the spline coupling portion between the rotor shaft 14A and the output shaft of the engine 6 (FIG. 2), and then the rotor shaft 14A and the coupling 13 It flows out to the outer peripheral side of the coupling 13 through the spline coupling portion.
  • the coolant that has flowed out is moved outward by centrifugal force, and most of the coolant is collected by the second blade 35 provided on the outer periphery of the rotor 14.
  • the cooling medium collected by the second blade 35 is discharged by a centrifugal force from a discharge hole 35A provided in the second blade 35, and efficiently cools the coil end of the coil 43 facing the first housing 11 side.
  • the cooling medium that has flowed to the cooling medium branch path 33 side flows out above the support portion 17A.
  • the cooling medium that has flowed out spreads around the support portion 17 ⁇ / b> A, moves outward by centrifugal force, and is collected by the first blade 34.
  • the aggregated cooling medium is discharged from the discharge holes 34A by centrifugal force to cool the coil ends.
  • the cooling medium that has cooled the coil ends drops in the first and second housings 11 and 16 and accumulates in the oil reservoir 21, and is shown in FIG. 3 via a discharge passage 22, a filter (not shown), and a pump. It is sent to the oil cooler inlet 23.
  • the cooling medium cooled by the oil cooler is supplied again from the oil cooler outlet 24 through the pipe 25 to the upper part of the cooling medium introduction path 31.
  • FIG. 5 is a front view showing the stator 15 of the generator motor 10.
  • FIG. 6 is a schematic diagram conceptually showing the connection state of the coils used in the stator 15.
  • FIG. 7 is an enlarged view showing a part of the main part of the stator 15 in cross section.
  • the stator 15 includes an annular stator core 40 and a plurality of coils 43.
  • the stator core 40 is configured by laminating a plurality of electromagnetic steel plates.
  • An outer peripheral side of the stator core 40 is an annular yoke 41.
  • the yoke 41 is provided with a plurality of teeth 42 (FIG. 5) protruding radially inward at equal intervals along the circumferential direction.
  • a coil 43 by concentrated winding is wound around each tooth 42.
  • a total of 36 teeth 42 are provided on the stator core 40 in order to constitute the 36-pole stator 15.
  • a space between adjacent teeth 42 is a slot 44.
  • a total of six lead wires A1, A2, B1, B2, C1, and C2 where power is input and output are in a predetermined position. It is pulled out from the coil 43.
  • One end of the wire of one coil 43A constituting the A phase is drawn out as a lead wire A1, and the other end is electrically connected to one end of the wire of the next coil 43A separated by two counterclockwise in FIG. Connected.
  • the other end of the strand of the twelfth coil 43A is drawn out as a lead wire A2.
  • the coils 43 of the respective phases are drawn so that the strands of each phase are connected to each other, but actually, as schematically shown in FIG. Are electrically connected. That is, on the outer peripheral side of the bus bar 50, a plurality of A-phase conducting portions 50A to which the strands of the A-phase coil 43A are welded are formed in an arc shape.
  • the A-phase conducting portion 50A has a length corresponding to the interval between the coils 43A.
  • a B-phase conduction portion 50B is formed inside the A-phase conduction portion 50A of the bus bar 50
  • a C-phase conduction portion 50C is formed further inside the B-phase conduction portion 50B.
  • Coils 43A, 43B, and 43C are connected in series for each phase by conduction portions 50A, 50B, and 50C of the respective phases.
  • the teeth 42 and the coil 43 will be described in detail.
  • the teeth 42 have a staircase shape.
  • the teeth 42 have a wide end portion 45 on the base end side that is the outer side and a narrow width portion 46 on the front end side that is the inner side.
  • the width dimension of the widened portion 45 along the circumferential direction of the stator 15 is larger than the similar width dimension of the narrow width portion 46, and the widened portion 45 and the narrow width portion 46 are continuous by a tapered stepped portion 47.
  • the stepped portion 47 is located substantially at the center in the length direction of the teeth 42 (same as the protruding direction).
  • the coil 43 is formed by winding a strand made of a rectangular wire having a rectangular cross section.
  • a rectangular wire is used as the strand, compared to the case where a strand having a circular cross section (round wire) is used, voids are less likely to occur in the overlapping portion between the strands, and the space factor is easily improved. Further, since the contact area between the strands is large, the heat conduction is good and the heat dissipation performance from the surface of the coil 43 is excellent.
  • Such a strand is wound in a triple manner by the widened portion 45 of the tooth 42, and is wound in three stages in the longitudinal direction.
  • the wire is wound in a triple and double step at a portion near the wide portion 45, and is wound in a double and double step on the tip side. Further, the wire is wound in a double and one step at the stepped portion 47.
  • the numbers given to the cross-sectional portions of the strands in FIG. 7 are the order in which the strands are wound. The wire is wound so that the odd-numbered portion on the left side facing the paper surface is vertically downward with respect to the paper surface, and the even-numbered portion on the right side is vertically upward with respect to the paper surface.
  • a first insulator 48 having an insulating property is inserted into the widened portion 45 of the tooth 42, and a second insulator 49 having an insulating property is inserted into the narrow-width portion 46.
  • the first and second insulators 48 and 49 have fitting portions 48A and 49A on end sides close to each other, and are fitted by these fitting portions 48A and 49A.
  • the above-described triple triple-stage wire portion is wound around the first insulator 48, and the above-described triple double-stage and double double-stage wire portions are wound around the second insulator 49.
  • the above-described single and single-stage wire portions are wound at positions corresponding to the fitting portions 48A and 49A.
  • Such first and second insulators 48 and 49 can be engaged and disengaged together with the wound wire until the middle of the assembly process of the stator 15, and the coil 43 is connected to the outer first coil portion 51. It is possible to divide the inner coil into the second coil portion 52 on the inner side. At this time, the single-stage winding portion corresponding to the fitting portion is provided with the 7th and 30th portions on the first coil portion 51 side, and the 8th and 29th portions on the second coil portion 52 side. Provided. However, even in the divided state, the first and second coil portions 51 and 52 are connected by the two connecting portions 53 formed of the strand portions. As the connection part 53 which connects each other, the part wound from No. 7 on the first coil part 51 side toward No. 8 on the second coil part 52 side, and No. 29 on the second coil part 52 side from the first coil part. It is a part wound toward No. 30 on the 51 side.
  • first and second coil portions 51 and 52 are formed by winding a wire around first and second insulators 48 and 49 which are integrated with each other. That is, the wire is wound around the first insulator 48 from No. 1 to No. 7 and then moved to the second insulator 49 with a length of the connecting portion 53 from here. Wind up to 29. Further, after a length of the connecting portion 53 from No. 29 of the second insulator 49, the transition to the first insulator 48 is performed again, and the No. 30 to No. 42 are wound around the first insulator 48. In the state after winding, the two connecting portions 53 intersect each other on the first housing 11 (FIG. 4) side with respect to the teeth 42. As a result, as shown in FIG.
  • a coil 43 in which the strands are wound around the first and second insulators 48 and 49 (not shown in FIG. 9) is completed. Then, the coil 43 is released in the axial direction (vertical direction in FIG. 8) by releasing the fitting of the first and second insulators 48 and 49, as shown in FIG. 8.
  • the first coil unit 51 and the second coil unit 52 are divided into a connected state.
  • the length of the connecting portion 53 is a length that allows the second coil portion 52 to be inserted into and removed from the narrow width portion 46 in a state where the first coil portion 51 is inserted into the widened portion 45 of the tooth 42.
  • the slot (inner side opening) of the slot 44 is small with respect to the predetermined tooth 42. Even if a new coil 43 is inserted, it interferes with the coil 43 of the adjacent tooth 42 and cannot be inserted.
  • the triple winding portion is only provided in two stages, and the length of the thick portion is shorter than that of the first coil portion 51. Therefore, even if the opening of the slot 44 is small because the coil 43 that has not been divided is inserted next to the adjacent coil 43, the first coil portion 51 can be inserted in advance into the tooth 42 to be newly inserted.
  • the second coil portion 52 can be freely inserted into the first coil portion 51. As a result, in the slot 44, not only the adjacent first coil portions 51 but also the second coil portions 52 can be brought close to each other, and the space factor of the coil 43 in the slot 44 can be improved.
  • FIG. 8 shows a front view in a state in which the coil 43 is separated from the first coil portion 51 and the second coil portion 52.
  • FIG. 9 shows a perspective view of the coil 43.
  • FIG. 10 is a perspective view of the coil 43 attached to the tooth 42.
  • FIG. 8, 9, and 10 the first and second insulators 48 and 49 are not shown.
  • the connecting portion 53 that connects the first and second coil portions 51 and 52 has one short side. It is located on the side, and this position is directed to the first housing 11 side shown in FIGS.
  • the length of the connecting portion 53 is longer than the width W1 (FIG. 9) of the short side of the portion that is triple-wound. For this reason, in the state in which the first and second coil portions 51 and 52 are integrated as the coil 43, the connecting portion 53 cannot be accommodated within the short side width W1, and as shown in FIGS. It protrudes and protrudes to the housing 11 side.
  • This protruding portion is a protruding portion 54 of the coil 43 and is formed by two connecting portions 53.
  • the wire of the coil 43 of the present embodiment is thick, in the state where the coil 43 is divided into the first and second coil parts 51 and 52, the first coil part 51 inserted in the teeth 42 is The posture of the second coil part 52 separated from this can be maintained by the shape retaining property of the connecting part 53. For this reason, in the state in which the first coil portion 51 is inserted into the widened portion 45 of the tooth 42, the second coil portion 52 is slightly separated from the tip of the tooth 42, and this posture is maintained. Then, when the second coil portion 52 is pushed in as it is, the second coil portion 52 is inserted into the narrow width portion 46 and is integrated with the first coil portion 51 again.
  • the division position of the first coil part 51 and the second coil part 52 is a position substantially corresponding to the center of the length direction of the teeth 42, that is, the stepped part 47.
  • the outer dimensions of the second coil portion 52 must be reduced before insertion into the teeth 42. There is a possibility of interference with the other second coil section 52, and the space factor does not increase as much as expected. Further, in this case, since the length of the connecting portion 53 is also longer, it is conceivable that the protruding amount of the protruding portion 54 is increased, and when accommodated in the first and second housings 11 and 16, The possibility of interfering with other parts arises. In addition, since the size of the second coil portion 52 becomes large and heavy, it becomes difficult to maintain the posture through the connecting portion 53.
  • every other coil 43 in a state of being divided into a first coil portion 51 and a second coil portion 52 is disposed with respect to the teeth 42. That is, the first coil portion 51 is inserted into the widened portion 45 of every other tooth 42. At this time, the coils 43 are arranged so that the connecting portions 53 are all exposed in the same direction. Further, the second coil portion 52 is opposed to the tip of the tooth 42.
  • the order in which the first coil portion 51 is inserted into any of the widened portions 45 is arbitrary.
  • the coils 43 that are not divided into the first coil part 51 and the second coil part 52 are inserted into every other vacant tooth 42.
  • the insertion order at this time is also arbitrary.
  • the second coil portion 52 in the divided state is slightly movable while facing the tip of the tooth 42 as the connecting portion 53 bends. Therefore, when inserting the non-divided coils 43, the second coil portions 52 of the left and right coils 43 may be moved so as to expand left and right.
  • the second coil part 52 in the divided state is pushed in as it is from the tip position of the tooth 42 and integrated with the first coil part 51.
  • the pushing order at this time is also arbitrary.
  • the wire of each coil 43 is connected to the bus bar 50, the lead wires A1, A2, B1, B2, C1, and C2 are processed, the sensor parts are assembled, and finally, the varnish is processed and the stator 15 is fixed. Finalize.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the coil 43 is divided by pulling the second coil portion 52 away from the first coil portion 51 in the axial direction (center direction of the stator 15).
  • the coil 43 may be divided by separating the second coil portion 52 from the first coil portion 51 so that the second coil portion 52 is bent by approximately 90 ° at the connecting portion 53.
  • the length of the connecting portion 53 can be shortened as compared with the embodiment, and the protruding amount of the protruding portion 54 can be suppressed.
  • the connecting portion 53 is bent by 90 °, when inserting the coil 43 that is not divided, it is not necessary to move the second coil portion 52 of the left and right coils 43 so as to expand left and right, Can be easily inserted as it is.
  • the tooth 42 has a stepped shape having the widened portion 45, the narrowed portion 46, and the stepped portion 47 therebetween, but the cross-sectional shape in a direction orthogonal to the protruding direction May be a straight shape (parallel shape) that does not change, or may be a tapered shape that tapers toward the inner tip side, and the shape of the teeth may be arbitrarily determined in the implementation.
  • the assembly procedure of the stator 15 has been described by first inserting the first coil portion 51 of the coil 43 into every other tooth 42. However, all such first coil portions 51 are used. After that, the second coil portion 52 may be inserted into all the teeth 42 in the same manner.
  • the wire forming the coil 43 is a rectangular wire having a rectangular cross section, but is not limited thereto, and may be a round wire having a circular cross section.
  • the present invention can be used not only for a hybrid construction machine but also for a hybrid automobile, an electric automobile, and an electric construction machine.
  • SYMBOLS 10 DESCRIPTION OF SYMBOLS 10 ... Generator motor which is a rotary electric machine, 14 ... Rotor, 15 ... Stator, 42 ... Teeth, 43 ... Coil, 48 ... 1st insulator, 49 ... 2nd insulator, 48A, 49A ... Fitting part, 51 ... 1st Coil part, 52 ... second coil part, 53 ... connecting part, 54 ... projecting part, Z ... rotation center axis.
  • Generator motor which is a rotary electric machine, 14 ... Rotor, 15 ... Stator, 42 ... Teeth, 43 ... Coil, 48 ... 1st insulator, 49 ... 2nd insulator, 48A, 49A ... Fitting part, 51 ... 1st Coil part, 52 ... second coil part, 53 ... connecting part, 54 ... projecting part, Z ... rotation center axis.

Abstract

A rotary electric machine (10) provided with an annular stator (15), and a rotor (14) rotatably disposed on the inner peripheral side of the stator (15), wherein a plurality of teeth (42) projecting toward the rotor (14) side are circumferentially provided at regular intervals in the stator (15), a coil (43) around which an element wire is wound is inserted into the tooth (42), the coil (43) is dividable into a first coil part (51) on the base end side of the tooth and a second coil part (52) on the leading end side thereof, and the first and second coil parts (51, 52) are coupled to each other by a coupling part (53) formed by part of the element wire.

Description

回転電機Rotating electric machine
 本発明は、回転電機に係り、具体的には、電動機や発電機といった回転電機に用いられるステータのコイル構造、特に、集中巻にて形成されたコイルを有するステータのコイル構造の改良に関する。 The present invention relates to a rotating electrical machine, and more particularly, to an improvement in a stator coil structure used in a rotating electrical machine such as an electric motor or a generator, particularly a stator coil structure having a coil formed by concentrated winding.
 集中巻によって形成された複数のコイルを有する電動機が多用されている。このような電動機のステータでは、複数のティース間の空隙によりスロットが形成されている。ステータでの銅損を低減して電動機としての効率を向上させるためには、スロット内でのコイルの占積率を大きくすることが有効である。占積率を向上させた電動機として、それぞれ同じ大きさの断面積を有した矩形コイルとピラミッドコイルとを、周方向に並設されたティースに交互に配設することが提案されている(例えば、特許文献1)。 An electric motor having a plurality of coils formed by concentrated winding is widely used. In such a stator of an electric motor, slots are formed by gaps between a plurality of teeth. In order to reduce the copper loss in the stator and improve the efficiency of the electric motor, it is effective to increase the coil space factor in the slot. As an electric motor with improved space factor, it has been proposed to alternately arrange rectangular coils and pyramid coils each having the same cross-sectional area on teeth arranged in parallel in the circumferential direction (for example, Patent Document 1).
 各ティースがステータコアの内周部分から中央に向けて突出していることから、スロット内の空隙は、スロットの内方側ほど狭くなり、外方に向かうに従って拡がっている。特許文献1によれば、そのようなスロットの半分が矩形コイルで占められ、残り半分がピラミッドコイルで占められるが、ピラミッドコイルの傾斜部分に矩形コイルを近接させることが可能であり、狭い空隙とされたスロットの内方側においても、矩形コイルとピラミッドコイルとが干渉することなく密に配設され、スロット内でのコイルの占積率が向上するとしている。 Since each tooth protrudes from the inner peripheral portion of the stator core toward the center, the gap in the slot becomes narrower toward the inner side of the slot and expands toward the outer side. According to Patent Document 1, half of such a slot is occupied by a rectangular coil and the other half is occupied by a pyramid coil. However, the rectangular coil can be brought close to the inclined portion of the pyramid coil, Also, the rectangular coil and the pyramid coil are closely arranged on the inner side of the formed slot without interference, and the space factor of the coil in the slot is improved.
特開2002-112484号公報JP 2002-112484 A
 しかしながら、特許文献1では、矩形コイルおよびピラミッドコイルといった形状の異なる2種類のコイルを別々に用意する必要があるため、組立時のコイルの取り扱いが繁雑になるという問題がある。 However, in Patent Document 1, it is necessary to separately prepare two types of coils having different shapes such as a rectangular coil and a pyramid coil, which causes a problem that handling of the coil at the time of assembly becomes complicated.
 本発明の目的は、スロット内でのコイルの占積率を向上させることができ、かつ組立時の繁雑さを解消できるステータのコイル構造を有した回転電機を提供することにある。 An object of the present invention is to provide a rotating electrical machine having a coil structure of a stator that can improve the space factor of a coil in a slot and can eliminate complexity during assembly.
 本発明の回転電機は、環状のステータと、前記ステータの内周側に回転自在に配置されたロータとを備える回転電機において、前記ステータには、前記ロータ側に向かって突出した複数のティースが周方向に等間隔で設けられ、前記ティースには、素線を巻回させたコイルが挿入され、前記コイルは、前記ティースの基端側の第1コイル部と先端側の第2コイル部とに分割自在であるとともに、前記第1、第2コイル部が前記素線の一部で形成された連結部で互いに連結されることを特徴とする。 The rotating electrical machine of the present invention is a rotating electrical machine that includes an annular stator and a rotor that is rotatably disposed on the inner peripheral side of the stator. The stator includes a plurality of teeth that protrude toward the rotor side. A coil around which a wire is wound is inserted in the teeth at equal intervals, and the coil includes a first coil portion on the proximal end side of the teeth and a second coil portion on the distal end side. And the first and second coil portions are connected to each other by a connecting portion formed by a part of the element wire.
 このような本発明によれば、第1コイル部を所定のティースに挿入する際には、これと隣り合う他のティースに第2コイル部を挿入しておく必要がない。このため、ティース間のスロットの間口が狭くとも、第1コイル部が第2コイル部に干渉することがなく、外径の大きな第1コイル部を確実に挿入でき、スロット内の基端側(外方側)での占積率を向上させることができる。また、ティースの先端側に挿入される第2コイル部としても、隣り合う第2コイル部と干渉しない程度に外径を大きくすることで、スロットの間口側(内方側)での占積率を向上させることができる。そして、コイルとしては、分割可能な第1コイル部および第2コイル部を有した1種類だけ用意すればよく、種類が多くなることでの煩わしさを解消できる。 According to the present invention, when the first coil portion is inserted into the predetermined tooth, it is not necessary to insert the second coil portion into another tooth adjacent to the first coil portion. For this reason, even if the slot between the teeth is narrow, the first coil portion does not interfere with the second coil portion, and the first coil portion having a large outer diameter can be reliably inserted, and the base end side ( The space factor on the outward side can be improved. In addition, the space factor on the front end side (inward side) of the slot can be increased by increasing the outer diameter so that the second coil portion inserted on the tip side of the teeth does not interfere with the adjacent second coil portion. Can be improved. And as a coil, it is only necessary to prepare one type having a first coil part and a second coil part that can be divided, and the troublesomeness caused by the increase in the number of types can be eliminated.
 本発明の回転電機において、前記コイルは、前記連結部が他の巻回された部分に対して前記ロータの回転中心軸に沿って突出することで形成された突出部を有することが好ましい。
 本発明によれば、連結部がロータの回転中心軸に沿った方向に突出部として突出するので、隣り合うコイル間で連結部が干渉したりせず、コイルのスロット内での納まりを良好にできる。
In the rotating electrical machine according to the aspect of the invention, it is preferable that the coil has a protruding portion formed by protruding along the rotation center axis of the rotor with respect to the portion where the connecting portion is wound.
According to the present invention, since the connecting portion protrudes as the protruding portion in the direction along the rotation center axis of the rotor, the connecting portion does not interfere between adjacent coils, and the coil fits well in the slot. it can.
 本発明の回転電機において、前記ティースの基端側に挿入されて前記第1コイル部が巻回される第1インシュレータと、先端側に挿入されて前記第2コイル部が巻回される第2インシュレータとを備え、前記第1、第2インシュレータの近接する端部には、互いに嵌合する嵌合部が設けられていることが好ましい。
 本発明によれば、互いに係脱自在な第1、第2インシュレータを用いるので、第1インシュレータに第1コイル部を予め巻回しておき、第2インシュレータに第2コイル部を予め巻回しておくことで、第1、第2インシュレータの係脱に併せて、第1、第2コイル部の分割および一体化を同時にできる。
In the rotating electrical machine of the present invention, a first insulator inserted into the proximal end side of the teeth and wound with the first coil portion, and a second insulator inserted into the distal end side and wound with the second coil portion. It is preferable that the first and second insulators are provided with fitting portions that are fitted to each other at adjacent ends of the first and second insulators.
According to the present invention, since the first and second insulators that are detachable from each other are used, the first coil part is wound around the first insulator in advance, and the second coil part is wound around the second insulator in advance. Thus, the first and second coil portions can be divided and integrated at the same time as the first and second insulators are engaged and disengaged.
 本発明の回転電機において、前記第1コイル部に対する前記第2コイル部の姿勢が前記連結部の形状保持性によって維持されることが好ましい。
 本発明によれば、第1コイル部を先にティースの基端側に挿入した場合、第2コイル部をティースの先端と対峙した姿勢に維持できる。従って、第2コイル部を挿入するに際しては、その姿勢の状態から押し込めばよく、組立作業を容易にできる。
In the rotating electrical machine of the present invention, it is preferable that the posture of the second coil portion with respect to the first coil portion is maintained by the shape retaining property of the connecting portion.
According to the present invention, when the first coil portion is first inserted into the proximal end side of the tooth, the second coil portion can be maintained in a posture facing the distal end of the tooth. Therefore, when the second coil portion is inserted, it is only necessary to push in the state of the posture, and the assembling work can be facilitated.
 本発明の回転電機において、前記素線は、断面矩形の平角線であることが好ましく、このような場合には、素線同士の重なり部分に空隙が生じ難く、占積率を向上させ易いうえ、素線同士の接触面積が大きいので、熱伝導を良好にでき、コイル表面からの放熱性能を向上させることができる。 In the rotating electrical machine of the present invention, the strand is preferably a rectangular wire having a rectangular cross section. In such a case, it is difficult for voids to occur in the overlapping portion of the strands, and the space factor is easily improved. Since the contact area between the strands is large, the heat conduction can be improved and the heat dissipation performance from the coil surface can be improved.
 本発明の回転電機は、環状のステータと、前記ステータの内周側に回転自在に配置されたロータとを備える回転電機において、前記ステータには、前記ロータ側に向かって突出した複数のティースが周方向に等間隔で設けられ、前記ティースには、断面矩形の平角線である素線を巻回させたコイルが挿入され、前記コイルは、前記ティースの基端側に挿入される第1インシュレータに巻回された第1コイル部と先端側に挿入される第2インシュレータに巻回された第2コイル部とに分割自在であるとともに、前記第1、第2コイル部が前記素線の一部で形成された連結部で互いに連結され、かつ前記連結部が他の巻回された部分に対して前記ロータの回転中心軸に沿って突出することで形成された突出部を有することを特徴とする。 The rotating electrical machine of the present invention is a rotating electrical machine that includes an annular stator and a rotor that is rotatably disposed on the inner peripheral side of the stator. The stator includes a plurality of teeth that protrude toward the rotor side. The first insulator is provided at equal intervals in the circumferential direction, and a coil around which a wire having a rectangular cross section is wound is inserted into the tooth, and the coil is inserted into the base end side of the tooth. The first coil portion wound around the first coil portion and the second coil portion wound around the second insulator inserted on the distal end side can be freely divided. And a connecting portion formed by a plurality of connecting portions, and the connecting portion has a protruding portion formed by protruding along the rotation center axis of the rotor with respect to another wound portion. And
本発明の一実施形態に係るコイル構造が適用された発電機モータを搭載する建設機械の側面図。The side view of the construction machine carrying the generator motor to which the coil structure concerning one embodiment of the present invention was applied. 前記建設機械の一部を示す平面図。The top view which shows a part of said construction machine. 前記発電機モータを示す分解斜視図。The disassembled perspective view which shows the said generator motor. 前記発電機モータを示す断面図。Sectional drawing which shows the said generator motor. 前記発電機モータのステータを示す正面図。The front view which shows the stator of the said generator motor. 前記ステータに用いられるコイルの結線状態を概念的に示す模式図。The schematic diagram which shows notionally the connection state of the coil used for the said stator. 前記ステータの要部を一部断面して示す拡大図。The enlarged view which shows the principal part of the said stator in partial cross section. 前記コイルを第1コイル部と第2コイル部とに離間した状態で示す正面図。The front view which shows the said coil in the state spaced apart to the 1st coil part and the 2nd coil part. 前記ステータに用いられるコイルを示す斜視図。The perspective view which shows the coil used for the said stator. 前記コイルをティースに装着した状態を示す斜視図。The perspective view which shows the state which mounted | wore the teeth with the said coil. 前記コイルの組立手順を説明する第1の斜視図。The 1st perspective view explaining the assembly procedure of the said coil. 前記コイルの組立手順を説明する第2の斜視図。The 2nd perspective view explaining the assembly procedure of the said coil. 前記コイルの組立手順を説明する第3の斜視図。The 3rd perspective view explaining the assembly procedure of the said coil. 本発明の変形例を示す斜視図。The perspective view which shows the modification of this invention.
 以下、本発明の一実施形態を図面に基づいて説明する。
 図1は、本実施形態に係るコイル構造が適用された回転電機としての発電機モータ10を搭載する油圧ショベル1の側面図である。図2は、油圧ショベル1の一部を示す平面図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side view of a hydraulic excavator 1 equipped with a generator motor 10 as a rotating electrical machine to which the coil structure according to the present embodiment is applied. FIG. 2 is a plan view showing a part of the excavator 1.
[油圧ショベルの大略構成]
 油圧ショベル1は、エンジン6により発電機モータ10を駆動して電力を発生させ、この電力によって上部旋回体3を旋回させたり、油圧ショベル1の補機類を駆動したりする、いわゆるハイブリッド方式の建設機械である。
 このような油圧ショベル1は、下部走行体2と、下部走行体2に旋回可能に設けられた上部旋回体3とを備えている。上部旋回体3は、作業機4、キャブ5、エンジン6、油圧ポンプ7、インバータ8、キャパシタ9、および発電機モータ10を備えている。発電機モータ10とインバータ8とは、電源ケーブルCA1を介して電気的に接続され、また、インバータ8とキャパシタ9とが電気的に接続されている。
[General configuration of hydraulic excavator]
The hydraulic excavator 1 is a so-called hybrid system in which the generator 6 is driven by the engine 6 to generate electric power, the upper swing body 3 is rotated by this electric power, and the auxiliary machines of the hydraulic excavator 1 are driven. Construction machine.
Such a hydraulic excavator 1 includes a lower traveling body 2 and an upper revolving body 3 provided on the lower traveling body 2 so as to be able to swivel. The upper swing body 3 includes a work machine 4, a cab 5, an engine 6, a hydraulic pump 7, an inverter 8, a capacitor 9, and a generator motor 10. The generator motor 10 and the inverter 8 are electrically connected via a power cable CA1, and the inverter 8 and the capacitor 9 are electrically connected.
 このうちの上部旋回体3は、発電機モータ10あるいはキャパシタ9からの電気エネルギにより動作する旋回電動モータ3Aにて駆動される。旋回電動モータ3Aとインバータ8とは、電源ケーブルCA2を介して電気的に接続されている。旋回電動モータ3Aは、上部旋回体3の減速時の回生動作により発電し、発電で得られた電気エネルギはインバータ8を通してキャパシタ9に蓄積される。 Among these, the upper swing body 3 is driven by a swing electric motor 3A that is operated by electric energy from the generator motor 10 or the capacitor 9. The swing electric motor 3A and the inverter 8 are electrically connected via a power cable CA2. The swing electric motor 3 </ b> A generates power by the regenerative operation when the upper swing body 3 is decelerated, and the electric energy obtained by the power generation is stored in the capacitor 9 through the inverter 8.
 また、上部旋回体3には、スイングサークルSCのアウターレースOLが固定されており、下部走行体2には、スイングサークルSCのインナーレースILが固定されている。このような構造によってスイングサークルSCは、上部旋回体3と下部走行体2とを連結する。旋回電動モータ3Aの入出力シャフトは、減速機構を備えたスイングマシナリを介してスイングピニオンSPと連結している。スイングピニオンSPは、スイングサークルSCのインナーレースILに形成された内歯に噛み合っている。 Further, the outer race OL of the swing circle SC is fixed to the upper swing body 3, and the inner race IL of the swing circle SC is fixed to the lower travel body 2. With such a structure, the swing circle SC connects the upper swing body 3 and the lower traveling body 2. The input / output shaft of the swing electric motor 3A is connected to the swing pinion SP via a swing machinery having a speed reduction mechanism. The swing pinion SP meshes with internal teeth formed on the inner race IL of the swing circle SC.
 旋回電動モータ3Aの駆動力は、前記スイングマシナリを介してスイングピニオンSPに伝達されて、上部旋回体3を旋回させる。本実施形態において、旋回電動モータ3Aは、縦置き、すなわち、ハイブリッド油圧ショベル1を水平面に設置した場合において、旋回電動モータ3Aの入出力シャフトが重力の作用する方向に向かうように設置される。 The driving force of the swing electric motor 3A is transmitted to the swing pinion SP via the swing machinery, and the upper swing body 3 is swung. In the present embodiment, the swing electric motor 3A is installed so that the input / output shaft of the swing electric motor 3A is directed in the direction in which gravity acts when the swing electric motor 3A is installed vertically, that is, when the hybrid excavator 1 is installed on a horizontal plane.
 作業機4は、ブーム4A、アーム4B、およびバケット4Cを備えて構成される。ブーム4A、アーム4B、およびバケット4Cは、図2に示す油圧ポンプ7から圧送される作動油により、コントロールバルブを介して各々ブーム4A用、アーム4B用、バケット4C用の各油圧シリンダによって駆動され、掘削等の各種作業を実行する。 The work machine 4 includes a boom 4A, an arm 4B, and a bucket 4C. The boom 4A, the arm 4B, and the bucket 4C are driven by hydraulic oil for the boom 4A, the arm 4B, and the bucket 4C, respectively, via the control valve by hydraulic oil pumped from the hydraulic pump 7 shown in FIG. Perform various operations such as excavation.
[発電機モータの構成]
 図3は、本実施形態に係る発電機モータ10の分解図である。図4は、発電機モータ10の断面図である。より具体的に、図4は、発電機モータ10のロータ14の回転中心軸Zを含み、かつ回転中心軸Zと平行な平面で発電機モータ10を切ったときの断面を示している。
[Configuration of generator motor]
FIG. 3 is an exploded view of the generator motor 10 according to the present embodiment. FIG. 4 is a cross-sectional view of the generator motor 10. More specifically, FIG. 4 shows a cross section when the generator motor 10 is cut along a plane including the rotation center axis Z of the rotor 14 of the generator motor 10 and parallel to the rotation center axis Z.
 発電機モータ10は、エンジン6の出力軸および油圧ポンプ7の入力軸に対して、ロータ軸14Aが直接的、あるいは間接的に接続されており、エンジンの出力軸の回転駆動力によって発電を行う。エンジン6の回転を増加させる場合など、発電機モータ10は、必要に応じてキャパシタ9に蓄えられた電気エネルギによって電動機として使用され、エンジン6の回転をアシストする。また、エンジン6がアイドリング状態にある場合には、発電機モータ10はエンジン6の回転駆動力を受けて発電し、発電によって生じた電気エネルギは、キャパシタ9に蓄えられる。 The generator motor 10 has a rotor shaft 14A connected directly or indirectly to the output shaft of the engine 6 and the input shaft of the hydraulic pump 7, and generates power by the rotational driving force of the output shaft of the engine. . When increasing the rotation of the engine 6, the generator motor 10 is used as an electric motor by the electric energy stored in the capacitor 9 as needed to assist the rotation of the engine 6. When the engine 6 is in an idling state, the generator motor 10 receives the rotational driving force of the engine 6 to generate electric power, and the electric energy generated by the electric power generation is stored in the capacitor 9.
 本実施形態での発電機モータ10は、3相のスイッチトリラクタンス(以下SR:Switched Reluctance と略す)モータの構造を有した発電機モータであって、エンジン7側の第1ハウジング11と、フライホイール12と、カップリング13と、ロータ14と、ステータ15と、油圧ポンプ7側の第2ハウジング16と、フランジ17とを備えている。 The generator motor 10 in the present embodiment is a generator motor having a three-phase switched reluctance (hereinafter abbreviated as SR: Switched Reluctance) motor structure, and includes a first housing 11 on the engine 7 side, a flywheel A wheel 12, a coupling 13, a rotor 14, a stator 15, a second housing 16 on the hydraulic pump 7 side, and a flange 17 are provided.
 第1ハウジング11は、鋳鉄製の部材であって、第2ハウジング16と接合されて内部にロータ14やステータ15等を収納する空間を形成する。この収納空間の下部には、ロータ軸14Aや軸受18部分の潤滑を促すとともに、ステータ15の発熱部位(コイル43等)を冷却するための冷却油を貯留する油溜部21が形成されている。ステータ15の冷却構造については、後述する。 The first housing 11 is a cast iron member, and is joined to the second housing 16 to form a space for accommodating the rotor 14, the stator 15, and the like. In the lower part of the storage space, there is formed an oil reservoir 21 for storing the cooling oil for encouraging lubrication of the rotor shaft 14A and the bearing 18 and cooling the heat generating part (coil 43, etc.) of the stator 15. . The cooling structure of the stator 15 will be described later.
 フライホイール12は、第1、第2ハウジング11,16によって形成される収容空間内において、エンジン6の出力軸に固定される。また、フライホイール12は、カップリング13を介してロータ14と接続され、第1、第2ハウジング11,16内で回転する。 The flywheel 12 is fixed to the output shaft of the engine 6 in the accommodating space formed by the first and second housings 11 and 16. The flywheel 12 is connected to the rotor 14 via the coupling 13 and rotates in the first and second housings 11 and 16.
 カップリング13は、略円環状の部材であって、フライホイール12に対してボルト固定される。このカップリング13は、内径部分に形成された内歯スプラインがロータ軸14Aのエンジン側の外径部分に形成された外歯スプラインと噛合し、互いにスプライン結合される。このことにより、フライホイール12、カップリング13、およびロータ軸14Aを有するロータ14は共に回転し、エンジン6によって駆動される。 The coupling 13 is a substantially annular member and is bolted to the flywheel 12. In this coupling 13, an internal spline formed on the inner diameter portion meshes with an external spline formed on the outer diameter portion on the engine side of the rotor shaft 14A, and is splined to each other. As a result, the flywheel 12, the coupling 13, and the rotor 14 having the rotor shaft 14A rotate together and are driven by the engine 6.
 ロータ14は、第1、第2ハウジング11,16内において、ステータ15の内周側の空間に配置されている。ロータ14の中央には、ロータ軸14Aがボルト固定される支持空間14Bが形成されている。支持空間14B内には、フランジ17の中央に設けられた円筒状の支持部17Aが入り込む。そして、支持空間14Bの内周面と支持部17Aの外周面との間に軸受18,18が配置されることで、ロータ14がフランジ17の支持部17A回りに回転自在に支持される。 The rotor 14 is disposed in a space on the inner peripheral side of the stator 15 in the first and second housings 11 and 16. A support space 14B in which the rotor shaft 14A is bolted is formed in the center of the rotor 14. A cylindrical support portion 17A provided at the center of the flange 17 enters the support space 14B. The bearings 18 are disposed between the inner peripheral surface of the support space 14B and the outer peripheral surface of the support portion 17A, so that the rotor 14 is rotatably supported around the support portion 17A of the flange 17.
 一方、ロータ14のロータ軸14Aにおける油圧ポンプ7側の部分は、フランジ17の支持部17A内に挿入される。ロータ14のロータ軸14Aにおいて、支持部17A内に挿入された部分の内径側には、内歯スプラインが形成されている。この内歯スプラインと油圧ポンプ7の入力軸に設けられた外歯スプラインとがスプライン結合される。このことにより、油圧ポンプ7がロータ14を介してエンジン6によって駆動されることになる。 On the other hand, the portion on the hydraulic pump 7 side of the rotor shaft 14A of the rotor 14 is inserted into the support portion 17A of the flange 17. In the rotor shaft 14A of the rotor 14, an internal spline is formed on the inner diameter side of the portion inserted into the support portion 17A. The internal spline and the external spline provided on the input shaft of the hydraulic pump 7 are spline-coupled. As a result, the hydraulic pump 7 is driven by the engine 6 via the rotor 14.
 ステータ15は、第1、第2ハウジング11,16内の空間に設けられ、ヨーク41部分をエンジン6側から貫通する複数のボルト22(図3中に1本のみを図示)によって第2ハウジング16にボルト固定される。 The stator 15 is provided in a space in the first and second housings 11 and 16, and the second housing 16 is provided with a plurality of bolts 22 (only one is shown in FIG. 3) penetrating the yoke 41 portion from the engine 6 side. Bolted to.
 第2ハウジング16は、鋳鉄製の部材であって、発電機モータ10における油圧ポンプ7側(図4中での右側)に設けられている。第2ハウジング16は、ボルト固定される第1ハウジング11と共に、フライホイール12、カップリング13、ロータ14、およびステータ15を収納する収納空間を形成するとともに、発電機モータ10の外郭を形成する。 The second housing 16 is a cast iron member, and is provided on the hydraulic pump 7 side (the right side in FIG. 4) of the generator motor 10. The second housing 16, together with the first housing 11 that is bolt-fixed, forms a storage space for storing the flywheel 12, the coupling 13, the rotor 14, and the stator 15, and forms an outer shell of the generator motor 10.
 第2ハウジング16の肩部分には、収容空間と連通する内部空間を有した電気ボックス19が取り付けられる。電気ボックス19の内部空間内には、コイル43からのリード線A1,A2,B1,B2,C1,C2(図5、図6)を結線するターミナルが配置されている。このようなターミナルは、電気ボックス19に固定される電源ケーブルCA1(図2)のコネクタに接続される。すなわち、発電機モータ10で発電された電気エネルギは、電気ボックス19から該電源ケーブルCA1を通してインバータ8に送電される。 The electric box 19 having an internal space communicating with the accommodation space is attached to the shoulder portion of the second housing 16. In the internal space of the electric box 19, terminals for connecting lead wires A1, A2, B1, B2, C1, and C2 (FIGS. 5 and 6) from the coil 43 are arranged. Such a terminal is connected to a connector of a power cable CA1 (FIG. 2) fixed to the electric box 19. That is, the electric energy generated by the generator motor 10 is transmitted from the electric box 19 to the inverter 8 through the power cable CA1.
 フランジ17は、第1、第2ハウジング11,16で形成される収納空間を第2ハウジング16側で閉塞する部材である。従って、フランジ17は、第2ハウジング16に対して油圧ポンプ7側からボルト固定される。フランジ17の中央には、支持部17Aと同軸上に挿通孔17Bが設けられ、この挿通孔17Bに挿通される油圧ポンプ7の入力軸が前述したように、ロータ14のロータ軸14Aとスプライン結合される。 The flange 17 is a member that closes the storage space formed by the first and second housings 11 and 16 on the second housing 16 side. Therefore, the flange 17 is bolted to the second housing 16 from the hydraulic pump 7 side. An insertion hole 17B is provided coaxially with the support portion 17A at the center of the flange 17, and the input shaft of the hydraulic pump 7 inserted through the insertion hole 17B is splined with the rotor shaft 14A of the rotor 14 as described above. Is done.
[発電機モータの冷却構造]
 図4において、第2ハウジング16には、油等の冷却媒体が導入される冷却媒体導入路31が回転中心軸Zに向かって設けられている。冷却媒体導入路31の下端は、第2ハウジング16とフランジ17との当接面において、フランジ17側に開口している。フランジ17には、上端が冷却媒体導入路31の下端と連通し、下端がロータ軸14Aに形成された内歯スプラインの端部に開口した鉛直な冷却媒体連通路32が設けられている。また、フランジ17には、冷却媒体連通路32の途中から水平方向に分岐して支持部17Aの上方に開口した冷却媒体分岐路33が設けられている。支持部17Aには、径方向の連通する連通孔17Cが周方向の沿って複数設けられている。
[Generator / motor cooling structure]
In FIG. 4, the second housing 16 is provided with a cooling medium introduction path 31 through which a cooling medium such as oil is introduced toward the rotation center axis Z. The lower end of the cooling medium introduction path 31 is open to the flange 17 side at the contact surface between the second housing 16 and the flange 17. The flange 17 is provided with a vertical cooling medium communication path 32 whose upper end communicates with the lower end of the cooling medium introduction path 31 and whose lower end opens at the end of an internal spline formed in the rotor shaft 14A. Further, the flange 17 is provided with a cooling medium branch path 33 that branches in the horizontal direction from the middle of the cooling medium communication path 32 and opens above the support portion 17A. The support portion 17A is provided with a plurality of communication holes 17C communicating in the radial direction along the circumferential direction.
 第2ハウジング16の冷却媒体導入路31に供給された冷却媒体の一部は、フランジ17の冷却媒体連通路32を通して流れ落ちる。流れ落ちた冷却媒体の更に一部は、フランジ17とロータ軸14Aとのスプライン結合部分を通して、支持部17Aとロータ軸14Aとの間の空間に流れる。また、冷却媒体連通路32から流れ落ちる冷却媒体の他の一部は、ロータ軸14Aと油圧ポンプ7(図2)の入力軸とのスプライン結合部分を通してロータ軸14Aの内部空間へ流れる。 A part of the cooling medium supplied to the cooling medium introduction path 31 of the second housing 16 flows down through the cooling medium communication path 32 of the flange 17. Part of the coolant that has flowed down flows through the spline coupling portion between the flange 17 and the rotor shaft 14A to the space between the support portion 17A and the rotor shaft 14A. Further, the other part of the cooling medium flowing down from the cooling medium communication path 32 flows into the internal space of the rotor shaft 14A through the spline coupling portion between the rotor shaft 14A and the input shaft of the hydraulic pump 7 (FIG. 2).
 支持部17Aとロータ軸14Aとの間の空間に流れ込んだ冷却媒体は、ロータ14回転時の遠心力によって支持部17Aの内面側に移動し、支持部17Aの連通孔17Cを通して軸受18側に供給され、この軸受18を冷却および潤滑する。軸受18を冷却した冷却媒体は、遠心力によってさらに外方に移動し、その多くがロータ14の外周に設けられた断面J字形状の第1ブレード34で集約される。第1ブレード34で集約された冷却媒体は、第1ブレード34に設けられた吐出孔34Aから遠心力によって吐出し、コイル43のコイルエンドと第2ハウジング16との間の隙間に供給され、コイル43の第2ハウジング16側に向いたコイルエンドを効率的に冷却する。 The cooling medium that has flowed into the space between the support portion 17A and the rotor shaft 14A moves to the inner surface side of the support portion 17A by the centrifugal force when the rotor 14 rotates, and is supplied to the bearing 18 side through the communication hole 17C of the support portion 17A. The bearing 18 is cooled and lubricated. The cooling medium that has cooled the bearing 18 moves further outward by centrifugal force, and most of the cooling medium is collected by the first blade 34 having a J-shaped cross section provided on the outer periphery of the rotor 14. The cooling medium collected by the first blade 34 is discharged by a centrifugal force from a discharge hole 34A provided in the first blade 34 and supplied to a gap between the coil end of the coil 43 and the second housing 16. The coil end facing the second housing 16 side of 43 is efficiently cooled.
 これに対して、ロータ軸14Aの内部空間に流れ込んだ冷却媒体は、ロータ軸14Aとエンジン6(図2)の出力軸とのスプライン結合部分から流出した後、ロータ軸14Aとカップリング13とのスプライン結合部分を通してカップリング13の外周側に流出する。流出した冷却媒体は、遠心力によって外方に移動し、その多くがロータ14の外周に設けられた第2ブレード35で集約される。第2ブレード35で集約された冷却媒体は、第2ブレード35に設けられた吐出孔35Aから遠心力によって吐出し、コイル43の第1ハウジング11側に向いたコイルエンドを効率的に冷却する。 On the other hand, the cooling medium flowing into the internal space of the rotor shaft 14A flows out from the spline coupling portion between the rotor shaft 14A and the output shaft of the engine 6 (FIG. 2), and then the rotor shaft 14A and the coupling 13 It flows out to the outer peripheral side of the coupling 13 through the spline coupling portion. The coolant that has flowed out is moved outward by centrifugal force, and most of the coolant is collected by the second blade 35 provided on the outer periphery of the rotor 14. The cooling medium collected by the second blade 35 is discharged by a centrifugal force from a discharge hole 35A provided in the second blade 35, and efficiently cools the coil end of the coil 43 facing the first housing 11 side.
 一方、冷却媒体導入路31に供給された冷却媒体のうち、冷却媒体分岐路33側に流れた冷却媒体は、支持部17Aの上方に流出する。流出した冷却媒体は、支持部17Aの周囲に拡がった後、遠心力によって外方に移動し、第1ブレード34で集約される。集約された冷却媒体は前述した通り、吐出孔34Aから遠心力によって吐出してコイルエンドを冷却する。 Meanwhile, of the cooling medium supplied to the cooling medium introduction path 31, the cooling medium that has flowed to the cooling medium branch path 33 side flows out above the support portion 17A. The cooling medium that has flowed out spreads around the support portion 17 </ b> A, moves outward by centrifugal force, and is collected by the first blade 34. As described above, the aggregated cooling medium is discharged from the discharge holes 34A by centrifugal force to cool the coil ends.
 コイルエンドを冷却した冷却媒体は、第1、第2ハウジング11,16内を滴下して油溜部21に溜まり、ここから排出通路22、図示しないフィルタ、およびポンプを経由して図3に示すオイルクーラ入口23に送られる。オイルクーラで冷却された冷却媒体は、オイルクーラ出口24から配管25を通って、再び冷却媒体導入路31の上部に供給される。 The cooling medium that has cooled the coil ends drops in the first and second housings 11 and 16 and accumulates in the oil reservoir 21, and is shown in FIG. 3 via a discharge passage 22, a filter (not shown), and a pump. It is sent to the oil cooler inlet 23. The cooling medium cooled by the oil cooler is supplied again from the oil cooler outlet 24 through the pipe 25 to the upper part of the cooling medium introduction path 31.
[ステータの構成]
 図5は、発電機モータ10のステータ15を示す正面図である。図6は、ステータ15に用いられるコイルの結線状態を概念的に示す模式図である。図7は、ステータ15の要部を一部断面して示す拡大図である。
[Structure of stator]
FIG. 5 is a front view showing the stator 15 of the generator motor 10. FIG. 6 is a schematic diagram conceptually showing the connection state of the coils used in the stator 15. FIG. 7 is an enlarged view showing a part of the main part of the stator 15 in cross section.
 図5ないし図7において、ステータ15は、円環状のステータコア40や複数のコイル43によって構成されている。ステータコア40は、複数の電磁鋼板を積層して構成されている。ステータコア40の外周側は、円環状のヨーク41となっている。このヨーク41には、径方向の内側に向かって突出する複数のティース42(図5)が周方向に沿って等間隔で設けられている。各ティース42には、集中巻きによるコイル43が巻回されている。本実施形態では、36極のステータ15を構成するため、ステータコア40には、合計36個のティース42が設けられている。隣り合うティース42間の空間は、スロット44になっている。 5 to 7, the stator 15 includes an annular stator core 40 and a plurality of coils 43. The stator core 40 is configured by laminating a plurality of electromagnetic steel plates. An outer peripheral side of the stator core 40 is an annular yoke 41. The yoke 41 is provided with a plurality of teeth 42 (FIG. 5) protruding radially inward at equal intervals along the circumferential direction. A coil 43 by concentrated winding is wound around each tooth 42. In the present embodiment, a total of 36 teeth 42 are provided on the stator core 40 in order to constitute the 36-pole stator 15. A space between adjacent teeth 42 is a slot 44.
 A相、B相、C相からなる3相交流用の発電機モータ10では、電力の入出力が行われる合計6本のリード線A1,A2,B1,B2,C1,C2が所定位置にあるコイル43から引き出されている。A相を構成する1つのコイル43Aの素線の一端はリード線A1として引き出され、他端は図5中の反時計回りに2つおいて離れた次のコイル43Aの素線の一端と電気的に接続されている。そして、12番目のコイル43Aの素線の他端はリード線A2として引き出される。B相の複数のコイル43B、およびC相の複数のコイル43Cでも同様である。 In the three-phase AC generator / motor 10 composed of the A phase, the B phase, and the C phase, a total of six lead wires A1, A2, B1, B2, C1, and C2 where power is input and output are in a predetermined position. It is pulled out from the coil 43. One end of the wire of one coil 43A constituting the A phase is drawn out as a lead wire A1, and the other end is electrically connected to one end of the wire of the next coil 43A separated by two counterclockwise in FIG. Connected. The other end of the strand of the twelfth coil 43A is drawn out as a lead wire A2. The same applies to the plurality of B-phase coils 43B and the plurality of C-phase coils 43C.
 ここで、図5では、各相のコイル43は互いの素線同士が繋がっているように描かれているが、実際には、図6に模式的に示すように、環状のバスバー50を介して電気的に接続されている。すなわち、バスバー50の外周側には、A相のコイル43Aの素線が溶着される複数のA相導通部50Aが円弧状に形成されている。A相導通部50Aは、コイル43Aの間隔に対応した長さを有している。同様に、バスバー50のA相導通部50A内側にはB相導通部50Bが形成され、B相導通部50Bのさらに内側にはC相導通部50Cが形成されている。各相の導通部50A,50B,50Cにより、コイル43A,43B,43Cが相毎に直列に接続される。 Here, in FIG. 5, the coils 43 of the respective phases are drawn so that the strands of each phase are connected to each other, but actually, as schematically shown in FIG. Are electrically connected. That is, on the outer peripheral side of the bus bar 50, a plurality of A-phase conducting portions 50A to which the strands of the A-phase coil 43A are welded are formed in an arc shape. The A-phase conducting portion 50A has a length corresponding to the interval between the coils 43A. Similarly, a B-phase conduction portion 50B is formed inside the A-phase conduction portion 50A of the bus bar 50, and a C-phase conduction portion 50C is formed further inside the B-phase conduction portion 50B. Coils 43A, 43B, and 43C are connected in series for each phase by conduction portions 50A, 50B, and 50C of the respective phases.
[ティースおよびコイル]
 図7に基づき、ティース42およびコイル43について詳細に説明する。
 図7において、ティース42は、階段形状である。具体的にティース42は、外方側である基端側の拡幅部45、および内方側である先端側の狭幅部46を有する。ステータ15の周方向に沿った拡幅部45の幅寸法は狭幅部46の同様な幅寸法よりも大きく、拡幅部45と狭幅部46とはテーパ状の段差部47で連続している。段差部47は、ティース42の長さ方向(突出方向に同じ)の略中央に位置している。ティース42の基端側を先端側よりも太くすることにより、この基端側での磁気飽和を抑制でき、磁界の強さに応じて磁束密度を確実に大きくできる。
[Teeth and coils]
Based on FIG. 7, the teeth 42 and the coil 43 will be described in detail.
In FIG. 7, the teeth 42 have a staircase shape. Specifically, the teeth 42 have a wide end portion 45 on the base end side that is the outer side and a narrow width portion 46 on the front end side that is the inner side. The width dimension of the widened portion 45 along the circumferential direction of the stator 15 is larger than the similar width dimension of the narrow width portion 46, and the widened portion 45 and the narrow width portion 46 are continuous by a tapered stepped portion 47. The stepped portion 47 is located substantially at the center in the length direction of the teeth 42 (same as the protruding direction). By making the proximal end side of the teeth 42 thicker than the distal end side, magnetic saturation on the proximal end side can be suppressed, and the magnetic flux density can be reliably increased according to the strength of the magnetic field.
 コイル43は、断面矩形の平角線からなる素線を巻回して形成されている。素線として平角線を用いた場合には、断面円形の素線(丸線)を用いた場合に比較して、素線同士の重なり部分に空隙が生じ難く、占積率を向上させ易い。また、素線同士の接触面積が大きいので、熱伝導が良好となり、コイル43表面からの放熱性能に優れている。 The coil 43 is formed by winding a strand made of a rectangular wire having a rectangular cross section. When a rectangular wire is used as the strand, compared to the case where a strand having a circular cross section (round wire) is used, voids are less likely to occur in the overlapping portion between the strands, and the space factor is easily improved. Further, since the contact area between the strands is large, the heat conduction is good and the heat dissipation performance from the surface of the coil 43 is excellent.
 そのような素線は、ティース42の拡幅部45にて3重に巻かれ、その長手方向には3段に巻回されている。狭幅部46にて素線は、拡幅部45寄りの部分で3重2段に巻回され、先端側で2重2段に巻回されている。また、段差部47にて素線は、2重1段に巻回されている。図7中の素線の断面部分に記した番号は、素線が巻かれる順序である。紙面に向かって左側の奇数番号の部分では、紙面に対して鉛直下向きとなるように、右側の偶数番号の部分では、紙面に対して鉛直上向きとなるように素線が巻かれる。 Such a strand is wound in a triple manner by the widened portion 45 of the tooth 42, and is wound in three stages in the longitudinal direction. In the narrow portion 46, the wire is wound in a triple and double step at a portion near the wide portion 45, and is wound in a double and double step on the tip side. Further, the wire is wound in a double and one step at the stepped portion 47. The numbers given to the cross-sectional portions of the strands in FIG. 7 are the order in which the strands are wound. The wire is wound so that the odd-numbered portion on the left side facing the paper surface is vertically downward with respect to the paper surface, and the even-numbered portion on the right side is vertically upward with respect to the paper surface.
 ここで、ティース42の拡幅部45には、絶縁性を有する第1インシュレータ48が挿入され、狭幅部46には、絶縁性を有する第2インシュレータ49が挿入されている。第1、第2インシュレータ48,49は、互いに近接する端部側に嵌合部48A,49Aを有し、これらの嵌合部48A,49Aにて嵌合している。また、第1インシュレータ48に対して前述した3重3段の素線部分が巻回され、第2インシュレータ49に対して前述の3重2段および2重2段の素線部分が巻回され、嵌合部48A,49Aに対応した位置で、前述の1重1段の素線部分が巻回されている。 Here, a first insulator 48 having an insulating property is inserted into the widened portion 45 of the tooth 42, and a second insulator 49 having an insulating property is inserted into the narrow-width portion 46. The first and second insulators 48 and 49 have fitting portions 48A and 49A on end sides close to each other, and are fitted by these fitting portions 48A and 49A. Further, the above-described triple triple-stage wire portion is wound around the first insulator 48, and the above-described triple double-stage and double double-stage wire portions are wound around the second insulator 49. The above-described single and single-stage wire portions are wound at positions corresponding to the fitting portions 48A and 49A.
 このような第1、第2インシュレータ48,49は、ステータ15の組立工程の途中までは、巻回された素線ごと係脱自在であり、コイル43を外方側の第1コイル部51と内方側の第2コイル部52とに2分割することが可能である。この際、嵌合部分に対応した1重1段の巻線部分は、7番および30番部分が第1コイル部51側に設けられ、8番および29番部分が第2コイル部52側に設けられる。ただし、分割された状態でも、第1、第2コイル部51,52は、素線部分で構成される2本の連結部53によって繋がることになる。互いを繋ぐ連結部53としては、第1コイル部51側の7番から第2コイル部52側の8番へ向かって巻かれる部分、および第2コイル部52側の29番から第1コイル部51側の30番へ向かって巻かれる部分である。 Such first and second insulators 48 and 49 can be engaged and disengaged together with the wound wire until the middle of the assembly process of the stator 15, and the coil 43 is connected to the outer first coil portion 51. It is possible to divide the inner coil into the second coil portion 52 on the inner side. At this time, the single-stage winding portion corresponding to the fitting portion is provided with the 7th and 30th portions on the first coil portion 51 side, and the 8th and 29th portions on the second coil portion 52 side. Provided. However, even in the divided state, the first and second coil portions 51 and 52 are connected by the two connecting portions 53 formed of the strand portions. As the connection part 53 which connects each other, the part wound from No. 7 on the first coil part 51 side toward No. 8 on the second coil part 52 side, and No. 29 on the second coil part 52 side from the first coil part. It is a part wound toward No. 30 on the 51 side.
 このようなコイル43を形成するにあたっては、互いに一体とされた第1、第2インシュレータ48,49に素線を巻回して第1、第2コイル部51,52を形成する。すなわち、素線を1番から7番に至るまで第1インシュレータ48に巻回し、ここから連結部53分の長さをおいて第2インシュレータ49に移行し、第2インシュレータ49にて8番から29番まで一気に巻回する。さらに、第2インシュレータ49の29番から連結部53分の長さをおいて、再度第1インシュレータ48に移行し、第1インシュレータ48にて30番から42番までを巻回する。巻回後の状態では、2本の連結部53は、ティース42に対して第1ハウジング11(図4)側で互いに交差する。これにより、図9に示すように、第1、第2インシュレータ48,49(図9では図示略)全体に素線が巻かれたコイル43が完成する。そして、コイル43は、第1、第2インシュレータ48,49の嵌合を解除することで、図8に示すように、軸方向(図8での上下方向)に引き離され、連結部53にて連結された状態に第1コイル部51と第2コイル部52とに分割される。 In forming such a coil 43, first and second coil portions 51 and 52 are formed by winding a wire around first and second insulators 48 and 49 which are integrated with each other. That is, the wire is wound around the first insulator 48 from No. 1 to No. 7 and then moved to the second insulator 49 with a length of the connecting portion 53 from here. Wind up to 29. Further, after a length of the connecting portion 53 from No. 29 of the second insulator 49, the transition to the first insulator 48 is performed again, and the No. 30 to No. 42 are wound around the first insulator 48. In the state after winding, the two connecting portions 53 intersect each other on the first housing 11 (FIG. 4) side with respect to the teeth 42. As a result, as shown in FIG. 9, a coil 43 in which the strands are wound around the first and second insulators 48 and 49 (not shown in FIG. 9) is completed. Then, the coil 43 is released in the axial direction (vertical direction in FIG. 8) by releasing the fitting of the first and second insulators 48 and 49, as shown in FIG. 8. The first coil unit 51 and the second coil unit 52 are divided into a connected state.
 連結部53の長さは、第1コイル部51がティース42の拡幅部45に挿入された状態で、第2コイル部52が狭幅部46に対して挿抜可能な長さである。
 所定のティース42に対し、その隣のティース42に分割していないコイル43が挿入されている場合、その所定のティース42に対しては、スロット44の間口(内方側の開口)が小さいため、新たなコイル43を挿入しようとしても、隣のティース42のコイル43と干渉し、挿入できない。
The length of the connecting portion 53 is a length that allows the second coil portion 52 to be inserted into and removed from the narrow width portion 46 in a state where the first coil portion 51 is inserted into the widened portion 45 of the tooth 42.
When the coil 43 that is not divided into the adjacent teeth 42 is inserted into the predetermined tooth 42, the slot (inner side opening) of the slot 44 is small with respect to the predetermined tooth 42. Even if a new coil 43 is inserted, it interferes with the coil 43 of the adjacent tooth 42 and cannot be inserted.
 しかしながら、分割可能なコイル43の第2コイル部52については、3重巻き部分も2段に設けられているだけであり、太い部分の長さが第1コイル部51よりも短い。従って、隣りに既に分割していないコイル43が挿入されていることで、スロット44の間口が小さくなっていても、新たに挿入しようとするティース42に予め第1コイル部51を挿入しておけば、その第1コイル部51に対しては、第2コイル部52を自在に挿入可能である。この結果、スロット44では、隣り合う第1コイル部51同士のみならず、第2コイル部52同士も近接させることができ、スロット44内でのコイル43の占積率を向上させることができる。 However, for the second coil portion 52 of the separable coil 43, the triple winding portion is only provided in two stages, and the length of the thick portion is shorter than that of the first coil portion 51. Therefore, even if the opening of the slot 44 is small because the coil 43 that has not been divided is inserted next to the adjacent coil 43, the first coil portion 51 can be inserted in advance into the tooth 42 to be newly inserted. For example, the second coil portion 52 can be freely inserted into the first coil portion 51. As a result, in the slot 44, not only the adjacent first coil portions 51 but also the second coil portions 52 can be brought close to each other, and the space factor of the coil 43 in the slot 44 can be improved.
[コイルの詳細説明]
 図8には、コイル43が第1コイル部51と第2コイル部52とに離間した状態での正面図が示されている。図9には、コイル43の斜視図が示されている。図10には、コイル43がティース42に装着された状態での斜視図が示されている。なお、図8、図9、図10では、第1、第2インシュレータ48,49の図示を省略してある。
[Detailed description of coil]
FIG. 8 shows a front view in a state in which the coil 43 is separated from the first coil portion 51 and the second coil portion 52. FIG. 9 shows a perspective view of the coil 43. FIG. 10 is a perspective view of the coil 43 attached to the tooth 42. FIG. 8, 9, and 10, the first and second insulators 48 and 49 are not shown.
 図8ないし図10において、ティース42の断面形状に合わせ、矩形状に巻回される本実施形態のコイル43では、第1、第2コイル部51,52を繋ぐ連結部53は、一方の短辺側に位置し、この位置が図3、図4に示す第1ハウジング11側に向くことになる。連結部53の長さは、3重巻きとされた部分の短辺の幅W1(図9)よりも長い。このため、第1、第2コイル部51,52がコイル43として一体の状態では、連結部53は、短辺の幅W1内に収まりきれず、図9、図10に示すように、第1ハウジング11側にはみ出して突出する。この突出した部分がコイル43の突出部54であり、2本の連結部53で形成される。 8 to 10, in the coil 43 of the present embodiment wound in a rectangular shape in accordance with the cross-sectional shape of the tooth 42, the connecting portion 53 that connects the first and second coil portions 51 and 52 has one short side. It is located on the side, and this position is directed to the first housing 11 side shown in FIGS. The length of the connecting portion 53 is longer than the width W1 (FIG. 9) of the short side of the portion that is triple-wound. For this reason, in the state in which the first and second coil portions 51 and 52 are integrated as the coil 43, the connecting portion 53 cannot be accommodated within the short side width W1, and as shown in FIGS. It protrudes and protrudes to the housing 11 side. This protruding portion is a protruding portion 54 of the coil 43 and is formed by two connecting portions 53.
 また、本実施形態のコイル43の素線が太いことから、コイル43が第1、第2コイル部51,52に分割された状態では、ティース42に挿入された第1コイル部51に対し、これと離間した第2コイル部52の姿勢を連結部53が有する形状保持性にて維持可能である。このため、第1コイル部51がティース42の拡幅部45に挿入された状態では、ティース42の先端に第2コイル部52が僅かに離れて対峙し、この姿勢が維持される。そして、そのまま第2コイル部52が押し込まれことで、狭幅部46に挿入され、第1コイル部51と再び一体となる。 In addition, since the wire of the coil 43 of the present embodiment is thick, in the state where the coil 43 is divided into the first and second coil parts 51 and 52, the first coil part 51 inserted in the teeth 42 is The posture of the second coil part 52 separated from this can be maintained by the shape retaining property of the connecting part 53. For this reason, in the state in which the first coil portion 51 is inserted into the widened portion 45 of the tooth 42, the second coil portion 52 is slightly separated from the tip of the tooth 42, and this posture is maintained. Then, when the second coil portion 52 is pushed in as it is, the second coil portion 52 is inserted into the narrow width portion 46 and is integrated with the first coil portion 51 again.
 第1コイル部51と第2コイル部52との分割位置は、ティース42の長さ方向の略中央、つまり段差部47に略対応した位置である。極端に第1コイル部51としてより長く、第2コイル部52としてより短くなる位置で分割する場合には、第1コイル部51の外形寸法を小さくしないと、ティース42に挿入する際、隣り合う他の第1コイル部51と干渉する可能性があり、占積率が思うほど上がらない。 The division position of the first coil part 51 and the second coil part 52 is a position substantially corresponding to the center of the length direction of the teeth 42, that is, the stepped part 47. When dividing at a position that is extremely longer as the first coil portion 51 and shorter as the second coil portion 52, the outer dimensions of the first coil portion 51 are not reduced unless they are inserted into the teeth 42. There is a possibility of interference with other first coil sections 51, and the space factor does not increase as much as expected.
 これに対して、第1コイル部51としてより短く、第2コイル部52としてより長くなる位置で分割する場合には、第2コイル部52の外形寸法を小さくしないと、ティース42に挿入する際、他の第2コイル部52と干渉する可能性があり、やはり占積率が思うほど上がらない。また、この場合には、連結部53の長さもより長くなることから、突出部54の突出量が大きくなることが考えられ、第1、第2ハウジング11、16内に収容された際に、他の部位と干渉する可能性が生じる。加えて、第2コイル部52の大きさが大きくなり、重くなるため、連結部53を介して姿勢を維持させるのが困難になる。 On the other hand, when dividing at a position where the first coil portion 51 is shorter and the second coil portion 52 is longer, the outer dimensions of the second coil portion 52 must be reduced before insertion into the teeth 42. There is a possibility of interference with the other second coil section 52, and the space factor does not increase as much as expected. Further, in this case, since the length of the connecting portion 53 is also longer, it is conceivable that the protruding amount of the protruding portion 54 is increased, and when accommodated in the first and second housings 11 and 16, The possibility of interfering with other parts arises. In addition, since the size of the second coil portion 52 becomes large and heavy, it becomes difficult to maintain the posture through the connecting portion 53.
[ステータの組立手順]
 以上に説明したコイル43を有するステータ15の組立手順を、図11ないし図13に基づいて説明する。なお、以下に説明においては、各コイル43の第1コイル部51は第1インシュレータ48に巻回され、第2コイル部52は第2インシュレータ49に巻回されているものとし、ここでは、第1、第2インシュレータ48,49の図示および説明は省略する。
[Assembly procedure of stator]
The assembly procedure of the stator 15 having the coil 43 described above will be described with reference to FIGS. In the following description, it is assumed that the first coil portion 51 of each coil 43 is wound around the first insulator 48 and the second coil portion 52 is wound around the second insulator 49. The illustration and description of the first and second insulators 48 and 49 are omitted.
 先ず、図11に示すように、第1コイル部51と第2コイル部52とに分割した状態のコイル43を、ティース42に対して1つおきに配設する。つまり第1コイル部51を、1つおきのティース42の拡幅部45に対して挿入していく。この時、連結部53は全て同じ向きに表出するように各コイル43を配設する。また、第2コイル部52をティース42の先端と対峙させておく。いずれの拡幅部45に対して第1コイル部51を挿入していくか、といった順番は任意である。 First, as shown in FIG. 11, every other coil 43 in a state of being divided into a first coil portion 51 and a second coil portion 52 is disposed with respect to the teeth 42. That is, the first coil portion 51 is inserted into the widened portion 45 of every other tooth 42. At this time, the coils 43 are arranged so that the connecting portions 53 are all exposed in the same direction. Further, the second coil portion 52 is opposed to the tip of the tooth 42. The order in which the first coil portion 51 is inserted into any of the widened portions 45 is arbitrary.
 次いで、図12に示すように、1つおきに空いているティース42に対し、第1コイル部51と第2コイル部52とに分割していないコイル43を挿入していく。この際の挿入順序も任意である。ここで、分割した状態にある第2コイル部52は、連結部53が撓むことにより、ティース42の先端と対峙した状態で多少移動可能となっている。従って、分割していないコイル43を挿入するにあたっては、左右のコイル43の第2コイル部52を左右に押し拡げるようにして移動させればよい。この後、図13に示すように、分割した状態にある第2コイル部52を、ティース42の先端位置からそのまま押し込み、第1コイル部51と一体化する。この際の押込順序も任意である。
 さらに、各コイル43の素線のバスバー50への結線、リード線A1,A2,B1,B2,C1,C2の処理、センサ部品の組込等を行い、最後にワニス処理を行ってステータ15を完成させる。
Next, as shown in FIG. 12, the coils 43 that are not divided into the first coil part 51 and the second coil part 52 are inserted into every other vacant tooth 42. The insertion order at this time is also arbitrary. Here, the second coil portion 52 in the divided state is slightly movable while facing the tip of the tooth 42 as the connecting portion 53 bends. Therefore, when inserting the non-divided coils 43, the second coil portions 52 of the left and right coils 43 may be moved so as to expand left and right. Thereafter, as shown in FIG. 13, the second coil part 52 in the divided state is pushed in as it is from the tip position of the tooth 42 and integrated with the first coil part 51. The pushing order at this time is also arbitrary.
Further, the wire of each coil 43 is connected to the bus bar 50, the lead wires A1, A2, B1, B2, C1, and C2 are processed, the sensor parts are assembled, and finally, the varnish is processed and the stator 15 is fixed. Finalize.
[変形例]
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記実施形態では、第1コイル部51に対して第2コイル部52を軸方向(ステータ15の中心方向)に引き離すことで、コイル43を分割する構造であったが、図14に示すように、第1コイル部51に対し第2コイル部52を連結部53にて略90°折り曲げるように離間させることで、コイル43を分割する構造としてもよい。このような分割構造では、前記実施形態に比較して連結部53の長さを短くでき、突出部54の突出量を抑制できる。そして、連結部53を90°折り曲げるので、分割していない状態のコイル43を挿入する際には、左右のコイル43の第2コイル部52を左右に押し拡げるようにして移動させなくともよく、そのまま容易に挿入できる。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above-described embodiment, the coil 43 is divided by pulling the second coil portion 52 away from the first coil portion 51 in the axial direction (center direction of the stator 15). As described above, the coil 43 may be divided by separating the second coil portion 52 from the first coil portion 51 so that the second coil portion 52 is bent by approximately 90 ° at the connecting portion 53. In such a divided structure, the length of the connecting portion 53 can be shortened as compared with the embodiment, and the protruding amount of the protruding portion 54 can be suppressed. And since the connecting portion 53 is bent by 90 °, when inserting the coil 43 that is not divided, it is not necessary to move the second coil portion 52 of the left and right coils 43 so as to expand left and right, Can be easily inserted as it is.
 前記実施形態では、ティース42の形状として、拡幅部45、狭幅部46、およびこれらの間の段差部47を有した階段形状になっていたが、突出方向に対して直交する方向の断面形状が変わらないストレート形状(平行形状)であったり、内方側の先端側に向かうに従って先細りとなるテーパ形状であったりしてもよく、ティースの形状は、その実施にあたって任意に決められてよい。 In the embodiment, the tooth 42 has a stepped shape having the widened portion 45, the narrowed portion 46, and the stepped portion 47 therebetween, but the cross-sectional shape in a direction orthogonal to the protruding direction May be a straight shape (parallel shape) that does not change, or may be a tapered shape that tapers toward the inner tip side, and the shape of the teeth may be arbitrarily determined in the implementation.
 前記実施形態では、ステータ15の組立手順として先ず、1つおきのティース42に対してコイル43の第1コイル部51を挿入していくとして説明したが、そのような第1コイル部51を全てのティース42に挿入し、この後に、第2コイル部52を全てのティース42に同様に挿入してもよい。 In the above embodiment, the assembly procedure of the stator 15 has been described by first inserting the first coil portion 51 of the coil 43 into every other tooth 42. However, all such first coil portions 51 are used. After that, the second coil portion 52 may be inserted into all the teeth 42 in the same manner.
 前記実施形態では、コイル43を形成している素線が断面矩形の平角線であったが、これに限定されず、断面円形の丸線であってもよい。 In the above embodiment, the wire forming the coil 43 is a rectangular wire having a rectangular cross section, but is not limited thereto, and may be a round wire having a circular cross section.
 本発明は、ハイブリッド型の建設機械に利用できる他、ハイブリッド型の自動車、電気式の自動車、さらには電気式の建設機械にも利用できる。 The present invention can be used not only for a hybrid construction machine but also for a hybrid automobile, an electric automobile, and an electric construction machine.
 10…回転電機である発電機モータ、14…ロータ、15…ステータ、42…ティース、43…コイル、48…第1インシュレータ、49…第2インシュレータ、48A,49A…嵌合部、51…第1コイル部、52…第2コイル部、53…連結部、54…突出部、Z…回転中心軸。 DESCRIPTION OF SYMBOLS 10 ... Generator motor which is a rotary electric machine, 14 ... Rotor, 15 ... Stator, 42 ... Teeth, 43 ... Coil, 48 ... 1st insulator, 49 ... 2nd insulator, 48A, 49A ... Fitting part, 51 ... 1st Coil part, 52 ... second coil part, 53 ... connecting part, 54 ... projecting part, Z ... rotation center axis.

Claims (6)

  1.  環状のステータと、
     前記ステータの内周側に回転自在に配置されたロータとを備える回転電機において、
     前記ステータには、前記ロータ側に向かって突出した複数のティースが周方向に等間隔で設けられ、
     前記ティースには、素線を巻回させたコイルが挿入され、
     前記コイルは、前記ティースの基端側の第1コイル部と先端側の第2コイル部とに分割自在であるとともに、前記第1、第2コイル部が前記素線の一部で形成された連結部で互いに連結される
     ことを特徴とする回転電機。
    An annular stator;
    In a rotating electrical machine comprising a rotor that is rotatably arranged on the inner peripheral side of the stator,
    The stator is provided with a plurality of teeth protruding toward the rotor side at equal intervals in the circumferential direction,
    A coil around which a wire is wound is inserted into the teeth,
    The coil is separable into a first coil portion on the proximal end side of the teeth and a second coil portion on the distal end side, and the first and second coil portions are formed by a part of the strands. A rotating electrical machine characterized by being connected to each other at a connecting portion.
  2.  請求項1に記載の回転電機において、
     前記コイルは、前記連結部が他の巻回された部分に対して前記ロータの回転中心軸に沿って突出することで形成された突出部を有する
     ことを特徴とする回転電機。
    In the rotating electrical machine according to claim 1,
    The coil includes a projecting portion formed by projecting the connecting portion along another rotation center axis of the rotor with respect to another wound portion.
  3.  請求項1または請求項2に記載の回転電機において、
     前記ティースの基端側に挿入されて前記第1コイル部が巻回される第1インシュレータと、先端側に挿入されて前記第2コイル部が巻回される第2インシュレータとを備え、
     前記第1、第2インシュレータの近接する端部には、互いに嵌合する嵌合部が設けられている
     ことを特徴とする回転電機。
    In the rotating electrical machine according to claim 1 or 2,
    A first insulator that is inserted into the base end side of the tooth and wound with the first coil portion; and a second insulator that is inserted into the distal end side and wound with the second coil portion;
    A rotating electrical machine characterized in that fitting portions that are fitted to each other are provided at end portions of the first and second insulators that are close to each other.
  4.  請求項1ないし請求項3のいずれかに記載の回転電機において、
     前記第1コイル部に対する前記第2コイル部の姿勢が前記連結部の形状保持性によって維持される
     ことを特徴とする回転電機。
    The rotating electrical machine according to any one of claims 1 to 3,
    The rotary electric machine characterized in that the posture of the second coil part with respect to the first coil part is maintained by the shape retaining property of the connecting part.
  5.  請求項1ないし請求項4のいずれかに記載の回転電機において、
     前記素線は、断面矩形の平角線である
     ことを特徴とする回転電機。
    The rotating electrical machine according to any one of claims 1 to 4,
    The rotating electric machine characterized in that the strand is a rectangular wire having a rectangular cross section.
  6.  環状のステータと、
     前記ステータの内周側に回転自在に配置されたロータとを備える回転電機において、
     前記ステータには、前記ロータ側に向かって突出した複数のティースが周方向に等間隔で設けられ、
     前記ティースには、断面矩形の平角線である素線を巻回させたコイルが挿入され、
     前記コイルは、前記ティースの基端側に挿入される第1インシュレータに巻回された第1コイル部と先端側に挿入される第2インシュレータに巻回された第2コイル部とに分割自在であるとともに、前記第1、第2コイル部が前記素線の一部で形成された連結部で互いに連結され、かつ前記連結部が他の巻回された部分に対して前記ロータの回転中心軸に沿って突出することで形成された突出部を有する
     ことを特徴とする回転電機。
    An annular stator;
    In a rotating electrical machine comprising a rotor that is rotatably arranged on the inner peripheral side of the stator,
    The stator is provided with a plurality of teeth protruding toward the rotor side at equal intervals in the circumferential direction,
    In the teeth, a coil around which a wire that is a rectangular wire having a rectangular cross section is wound is inserted,
    The coil can be divided into a first coil portion wound around a first insulator inserted on the proximal end side of the teeth and a second coil portion wound around a second insulator inserted on the distal end side. In addition, the first and second coil portions are connected to each other by a connecting portion formed by a part of the element wire, and the connecting portion is rotated around the rotation center axis of the rotor with respect to another wound portion. A rotating electrical machine characterized by having a protrusion formed by protruding along the axis.
PCT/JP2013/080659 2013-11-13 2013-11-13 Rotary electric machine WO2015071971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080659 WO2015071971A1 (en) 2013-11-13 2013-11-13 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080659 WO2015071971A1 (en) 2013-11-13 2013-11-13 Rotary electric machine

Publications (1)

Publication Number Publication Date
WO2015071971A1 true WO2015071971A1 (en) 2015-05-21

Family

ID=53056941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080659 WO2015071971A1 (en) 2013-11-13 2013-11-13 Rotary electric machine

Country Status (1)

Country Link
WO (1) WO2015071971A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169933A1 (en) * 2016-03-31 2017-10-05 株式会社小松製作所 Stator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312940A (en) * 2003-04-09 2004-11-04 Tani Electronics Corp Winding coil
JP2011223652A (en) * 2010-04-05 2011-11-04 Toyota Central R&D Labs Inc Rotating electric machine winding and rotating electric machine component member
JP2013102680A (en) * 2013-01-10 2013-05-23 Sumitomo Electric Ind Ltd Coil member and stator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312940A (en) * 2003-04-09 2004-11-04 Tani Electronics Corp Winding coil
JP2011223652A (en) * 2010-04-05 2011-11-04 Toyota Central R&D Labs Inc Rotating electric machine winding and rotating electric machine component member
JP2013102680A (en) * 2013-01-10 2013-05-23 Sumitomo Electric Ind Ltd Coil member and stator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169933A1 (en) * 2016-03-31 2017-10-05 株式会社小松製作所 Stator
JP2017184558A (en) * 2016-03-31 2017-10-05 株式会社小松製作所 Stator

Similar Documents

Publication Publication Date Title
CN102986120B (en) Insulator and possess the Stator and electrical machine of this insulator
EP3346586B1 (en) Stator coil, stator equipped with same, and rotary electric machine equipped with this stator
US20140184011A1 (en) Stator for Rotating Electrical Machine and Rotating Electrical Machine
US9030062B2 (en) Cooling structure of rotating electric machine
US11387698B2 (en) Rotating-electrical-machine stator, and rotating electrical machine provided with same
US11309760B2 (en) Rotary electric machine
JP6777760B2 (en) Stator for rotary electric machine and rotary electric machine
JP5188592B2 (en) Generator motor cooling structure and generator motor
EP3070817B1 (en) Stator and rotating electric machine equipped with same
JP6719671B2 (en) Stator of rotating electric machine and rotating electric machine
CN112787433A (en) Electric machine with in-slot stator cooling
JP7060419B2 (en) Rotating electric machine
WO2015071971A1 (en) Rotary electric machine
JP6416655B2 (en) Rotating electric machine stator
JP2008312324A (en) Cooling structure for stator
US20130015732A1 (en) Electric Machine Module
JP6336774B2 (en) Rotating electric machine
WO2022059789A1 (en) Stator and motor
CN110492630A (en) Rotating electric machine
JP5909790B2 (en) Rotating electric machine, rotating electric stator and vehicle
JP6804415B2 (en) Manufacture method of stator, manufacturing method of rotary electric machine
JP2014100038A (en) Stator of rotary electric machine
CN216872951U (en) Flat wire winding, stator module and flat wire motor
JP6302698B2 (en) Rotating electrical machine unit
JP2014100039A (en) Stator of rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13897530

Country of ref document: EP

Kind code of ref document: A1