WO2015071942A1 - Filtration device, filtration method, acetate fiber manufacturing method - Google Patents

Filtration device, filtration method, acetate fiber manufacturing method Download PDF

Info

Publication number
WO2015071942A1
WO2015071942A1 PCT/JP2013/006756 JP2013006756W WO2015071942A1 WO 2015071942 A1 WO2015071942 A1 WO 2015071942A1 JP 2013006756 W JP2013006756 W JP 2013006756W WO 2015071942 A1 WO2015071942 A1 WO 2015071942A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
precoat layer
container
filtration surface
state
Prior art date
Application number
PCT/JP2013/006756
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 圭介
小島 昭男
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201380081017.8A priority Critical patent/CN105745000A/en
Priority to PCT/JP2013/006756 priority patent/WO2015071942A1/en
Publication of WO2015071942A1 publication Critical patent/WO2015071942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • B01D29/055Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported ring shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • B01D29/54Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection arranged concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/70Regenerating the filter material in the filter by forces created by movement of the filter element
    • B01D29/74Regenerating the filter material in the filter by forces created by movement of the filter element involving centrifugal force
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/106Filtering
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate

Definitions

  • the present invention relates to a filtration apparatus and a filtration method for intermittently performing filtration while periodically recovering the filtration ability by repeating filtration and washing of the filtration surface alternately and washing the filtration surface.
  • the present invention relates to a method for producing an acetate fiber by filtering a spinning dope using such a filtration apparatus.
  • a raw material cellulose acetate flake is dissolved in an organic solvent such as acetone to prepare a spinning stock solution, and the spinning stock solution is extruded from a spinneret to dry-spin cellulose acetate.
  • acetate tow is produced by bundling a large number of acetate single fibers spun from each of the pores so as to form a fiber assembly called tow yarn.
  • a single fiber thin acetate tow is suitably used for a tobacco filter.
  • acetate tow used for cigarette filters has a single fiber diameter as thin as, for example, 3.5 denier (note that even the most common fiber has the smallest single fiber diameter of about 20 denier).
  • the spinning dope In order to make a single filament of acetate tow thin, it is effective to make the spinning dope high in concentration, but the concentration is restricted by solubility. In order to increase the concentration to some extent and make the single fiber thin, it is necessary to make the pores of the spinneret smaller. When this happens, the pores are blocked by minute foreign substances and thread breakage is induced, so that the yield rate decreases. Therefore, the spinning dope is filtered with high accuracy by a filtration device before being sent to the spinneret, and foreign matters such as mixed foreign matters and gel-like insoluble matter are removed (see, for example, Patent Document 1).
  • the raw material solution of acetate tow and other polymer products is required to have a high concentration without impurities, and the viscosity increases if the concentration is high. Therefore, in addition to the filter press taught in Patent Document 1, a leaf filter may be applied to the filtering device (see, for example, Patent Document 5). Since the filter press and the leaf filter can perform cake filtration under pressure, they are suitable for handling the raw material solution that receives the above request. In the acetate tow used for the cigarette filter, since the single fiber degree is small as described above, the concentration becomes high. And precise filtration of such a high concentration and high viscosity raw material solution is required.
  • the so-called precoat method can be used for the filter press and the leaf filter.
  • a slurry of the filter aid previously suspended is filtered to form a filter aid cake (precoat layer) on the original filter surface of the filter medium.
  • the raw material solution is pumped and the raw material solution is filtered using the precoat layer as a filter medium.
  • the presence of the precoat layer can prevent the original filter medium from opening, so that the precoat method is particularly useful for pressure filtration of a high-viscosity fluid such as a spinning dope.
  • the precoat layer is discarded when the filtration surface is washed, and the precoat layer is renewed on the filtration surface before the filtration is resumed.
  • Patent Document 5 in order to automatically peel the cake from the filtration surface, the filter leaf portion in the pressure vessel is rotated and the cake is shaken down by centrifugal force. The dropped cake is discharged from the discharge port at the bottom of the container.
  • the leaf filter is advantageous in that the work at the time of filtration interruption can be easily saved as compared with the filter press.
  • the one or more stock solution inlet parts are provided in the center part of the pressure vessel.
  • JP-A-5-117302 Japanese National Patent Publication No. 8-510681 JP 2008-63403 A Japanese Patent Laid-Open No. 11-254594 JP-A-11-128620
  • the precoat layer on the entire filtration surface has a uniform and appropriate thickness and that there is no thickness unevenness in each precoat layer. For example, when the precoat layer is thinner than an appropriate thickness, the foreign matter in the raw material solution cannot be sufficiently filtered.
  • the state of the filtration surface during the washing of the filtration surface or the formation of the precoat layer is desirable to manage.
  • Patent Document 5 it may be possible to form a cake uniformly under specific operating conditions.
  • the operating conditions such as the properties, pressure, and flow rate of the raw material solution or the slurry containing the filter aid are changed, the cake may not be formed uniformly. And the user of a filtration apparatus cannot confirm easily from the exterior whether the cake was actually formed uniformly.
  • the filtration device is stopped and the filter medium is taken out. There is nothing else. If such a method is adopted, cost and time are required for the confirmation work, and product productivity is reduced. In particular, when the filtration device is large, a large work machine such as a crane is required, and the cost and time required for the confirmation work become enormous.
  • an organic solvent like a raw material solution of acetate tow, it is necessary to ensure safety against the organic solvent. Since the filtration device must be stopped, it is impossible to check the state of the filtration surface during filtration.
  • an object of the present invention is to make it possible to easily and appropriately manage the state of the filtration surface, thereby maintaining a high filtration capacity and product productivity.
  • the filtration device is a filtration device in which filtration for pressurizing a filtrate solution to permeate the filtration surface and cleaning of the filtration surface blocked from the outside are repeated alternately, and the filtration medium having the filtration surface And a container that accommodates the filter medium in a state of being blocked from the outside, and the container is partially provided on the container main body and the container main body so that the state of the filtration surface can be visually recognized from the outside. And a transparent portion.
  • the state of the filtration surface during filtration, after filtration (that is, before the start of washing), during washing and after washing (ie, before resumption of filtration) is transparent. It can be visually confirmed from the outside using the section. For example, after washing the filtration surface, it is easy to visually determine whether the cake has been completely discarded from the filtration surface and whether any cake remains on the filtration surface without removing the filter medium from the container. Can be confirmed. And based on the state of the confirmed filtration surface, it is possible to take appropriate measures such as re-washing before resuming the next filtration. Thus, the state of the filtration surface can be managed easily and appropriately without complicated confirmation work.
  • a photographing device for photographing the state of the filtration surface from the outside of the container through the transparent part may be further provided.
  • the user of the filtration device can visually confirm the state of the filtration surface using an image or a moving image photographed by the photographing device. Therefore, the size of the transparent part can be reduced. Therefore, even when filtration is performed under pressure, it is easy to ensure the pressure resistance of the transparent portion and its peripheral portion of the container.
  • the photographing apparatus since the photographing apparatus is disposed outside the container, the photographing apparatus does not need to have pressure resistance and solvent resistance, and the photographing apparatus is selected with emphasis on other design requirements (size, resolution, field of view, etc.). be able to.
  • a precoat layer is formed by depositing fine particles on the filtration surface.
  • the precoat layer is peeled off from the filtration surface, and the next filtration is resumed.
  • a new precoat layer is formed before the imaging, and the imaging device is configured to image at least the formation state of the precoat layer or the state of the filtration surface after the precoat layer is peeled off and washed May be.
  • the thickness of the precoat layer and the separation of the precoat layer can be easily managed. Therefore, it is possible to maintain high filtration capacity and product productivity.
  • a rotation mechanism for rotating the filter medium may be provided, and when the rotation mechanism is operated, the precoat layer on the filtration surface may move in the outer peripheral direction by centrifugal force, whereby the precoat layer may be peeled off from the filtration surface. .
  • a plurality of the filter media may be provided, each of the plurality of filter media may be provided with a plurality of the filtration surfaces, and the transparent portion may be configured so that a part or all of the plurality of filtration surfaces can be visually recognized from the outside.
  • An illumination device that irradiates light to the filtration surface may be further provided.
  • the state of the filtration surface can be more easily confirmed.
  • the container may have a pressure resistance sufficient to filter a filtrate stock solution having a viscosity of 100 poise or more.
  • the state of the filtration surface can be easily confirmed through the transparent portion.
  • the waste pipe is further provided with a waste pipe that is connected to the container and forms a waste passage through which a precoat layer peeled off from the filtration surface flows as waste, and the waste pipe is partially provided on the pipe body and the pipe body. And a transparent portion that enables the waste material flowing through the waste material passage to be visually recognized from the outside.
  • the waste material can be visually recognized through the transparent portion of the waste material pipe.
  • the state of the filtration surface can be managed more highly.
  • the internal pressure of the waste material passage is lower than the internal pressure of the container in which the filtration surface is arranged. For this reason, even when it is used for filtration of a high-concentration filtrate stock solution, it is possible to install a relatively large transparent portion without particularly worrying about pressure resistance if it is a waste pipe.
  • the filtration surface may be oriented horizontally, and the filtrate stock solution may flow vertically with respect to the filtration surface.
  • the precoat layer formed on the filtration surface can be easily held uniformly.
  • the filtration method according to the present invention is a filtration method of filtering a stock solution using the above-described filtration device, wherein a precoat layer forming step of forming a precoat layer by depositing fine particles on the filtration surface, and the precoat After the layer formation step, pressurize the filtrate stock solution and filter through the precoat layer and the filtration surface, and when the filtration capacity decreases due to the filtration surface being blocked in the filtration step, the filtration step is stopped, A cleaning step of peeling off the precoat layer from the filtration surface and washing the filtration surface, and restarting the filtration step after performing the precoat layer forming step after the washing step, and at least from the washing step In the stage during the transition to the precoat layer forming process or the stage during the transition from the precoat layer forming process to the filtration process, It further includes a determination step for determining the quality of the state of the filtration surface confirmed through the transparent portion. When the determination step determines good, the process proceeds to the next step, and when the determination step determine
  • the state of the filtration surface can be easily and appropriately managed, so that the filtration ability can be maintained high.
  • the method for producing acetate fiber according to the present invention is a method for producing acetate fiber, in which the spinning dope is filtered using the filtration device described above, and the filtered spinning dope is extruded from the spinneret to dry-spin cellulose acetate.
  • the filtration method described above is used in the filtration process.
  • the state of the filtration surface can be easily and appropriately managed, so that the filtration capacity is maintained high and the productivity of acetate fibers is maintained high.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a flowchart which shows the filtration method which concerns on this embodiment.
  • FIG. 4 is a flowchart which shows the washing
  • FIG. 4 is a flowchart which shows the precoat layer formation process shown in FIG. 4, and a subsequent determination process.
  • FIG. 1 is a conceptual diagram showing a method for producing acetate fibers according to this embodiment.
  • a spinning dope is prepared by dissolving cellulose acetate flakes as raw materials with acetone.
  • the spinning dope has a high concentration, for example, a high viscosity of 300 to 900 poise, preferably 400 to 700 poise at 50 degrees Celsius. By making such a numerical range, it is possible to achieve both spinning easily and maintaining the cleaning efficiency of the filtration surface.
  • the spinning dope may contain coloring additives such as titanium (IV) oxide.
  • the spinning dope is filtered using the filtration device 1, thereby removing impurities in the spinning dope.
  • the filtered spinning solution is sent to the dry spinning machine 2 and pushed out from the spinneret 2a into the spinning cylinder 2b.
  • Cellulose acetate is dry-spun in the spinning cylinder 2b. That is, acetone evaporates in the spinning cylinder 2b, and the cellulose acetate is solidified to form a yarn.
  • the yarn is discharged out of the spinning cylinder 2b and scraped off. Thereafter, the yarn is subjected to post-treatment such as crimping and drying, and then packed.
  • the spinneret 2a may have a large number of pores.
  • a tow yarn is formed by the dry spinning machine 2 by bundling a large number of acetate single fibers discharged from each of the pores, and an acetate tow product is obtained by post-processing and packing the tow yarn in the same manner as described above. Manufactured.
  • the method for producing acetate fibers (including acetate tow) according to the present embodiment is characterized by at least a filtration treatment, whereby the filtration capacity and the productivity of acetate fibers can be maintained high.
  • the filtration apparatus 1 and the filtration method using this filtration apparatus 1 are demonstrated.
  • the filtration method described later is used for the filtration treatment of the spinning dope.
  • the filtration device 1 and the filtration method described later can be applied to the production of other fibers that are dry-spun, such as acrylic or vinylon. Furthermore, it can be applied to the production of wet-spun fibers and the production of polymer products other than fibers such as cellulose films.
  • FIG. 1 includes a cross-sectional view of a filtration device 1 according to the present embodiment.
  • a filtration device 1 shown in FIG. 1 is a pressurized cake filter.
  • the filtration device 1 alternately repeats filtration that pressurizes a filtration stock solution (for example, a spinning stock solution of acetate fiber) and permeates the filtration surface 10 and washing of the filtration surface 10.
  • a filtration stock solution for example, a spinning stock solution of acetate fiber
  • the filtration device 1 performs cake filtration using a precoat method.
  • the precoat layer 15 is formed by depositing fine particles on the filtration surface 10.
  • the fine particles are filter aids such as diatomaceous earth or perlite.
  • the fine particles are deposited on the filtration surface 10 to form the precoat layer 15.
  • the filtered stock solution is pressurized so as to pass through the precoat layer 15 and the filtration surface 10, and the precoat layer 15 functions as a filter medium.
  • the precoat layer 15 is peeled off from the filtration surface 10. After this washing, a new precoat layer 15 is formed on the filtration surface 10, and then filtration of the stock solution is resumed.
  • the filtration device 1 is a leaf filter as an example of a filter capable of realizing the above operation.
  • the filtration device 1 includes a stem 11, one or more filter media 12 having a filtration surface 10, and a container 13 that accommodates the stem 11 and the filter media 12 while being blocked from the outside.
  • the filtration device 1 is relatively large.
  • FIG. 1 shows only a few filter media 12 for convenience of illustration, but in the large-sized filter device 1, the number of filter media 12 ranges from several tens (for example, 40 to 90).
  • the plurality of filter media 12 are arranged at intervals in the axial direction of the stem 11 and are detachably coupled to the stem 11.
  • Each filter medium 12 is formed in a leaf shape or a plate shape, and extends from the stem 11 in the radial direction.
  • One surface of the filter medium 12 forms a filtration surface 10, and the filtration surface 10 is substantially perpendicular to the axis A of the stem 11.
  • the filter medium 12 is disk-shaped and the filter surface 10 is circular. At this time, each filter medium 12 is arranged substantially coaxially with the stem 11.
  • the container 13 has a container body 21 that forms a sealed inner space 20, and the stem 11 and the filter medium 12 are disposed in the inner space 20.
  • the container main body 21 is formed in a substantially cylindrical shape.
  • the container body 21 has a peripheral wall 22 that defines the inner space 20 on its inner peripheral surface and surrounds the filter medium 12, a first end wall 23 that is provided at one end of the peripheral wall 22 and closes the inner space 20, And a second end wall 24 that is provided at the other end of the peripheral wall 22 and closes the inner space 20.
  • the filtration device 1 includes a liquid supply port 26, a filtrate recovery port 27, a gas supply port 28, and a waste material discharge port 29.
  • the liquid supply port 26 communicates with the inner space 20 and is connected to a stock solution source 31, a slurry source 32, and a cleaning solution source (not shown) outside the container 13, respectively.
  • the filtered stock solution from the stock solution source 31, the slurry containing the filter aid from the slurry source 32, and the cleaning solution from the cleaning solution source pass through the liquid supply port 26 to the inner space 20 based on the operation of the liquid supply pump 34 and valves 35a to 35c. And selectively supplied.
  • the slurry is used for forming the precoat layer 15, and the cleaning liquid is used for cleaning the filtration surface 10.
  • the stock solution source 31 is, for example, a dissolving machine for preparing a filtered stock solution.
  • the slurry source 32 is a stirrer for preparing, for example, a slurry in which a filter aid is suspended.
  • the cleaning liquid source is, for example, a tank that stores the cleaning liquid.
  • the cleaning liquid may be the same as the solvent of the filtrate stock solution. In this case, the cleaning liquid source may also serve as a tank that stores the solvent of the filter stock solution.
  • the stem 11 is formed hollow.
  • the filtrate obtained by allowing the filtrate stock solution to pass through the filtration surface 10 flows toward the center of the filter medium 12 and flows into the hollow stem 11.
  • the filtrate collection port 27 communicates with the inside of the stem 11, and the filtrate in the stem 11 is collected outside the container 13 through the filtrate collection port 27.
  • the gas supply port 28 communicates with the inner space 20 and is connected to a gas source (not shown) outside the container 13.
  • the gas from the gas source is supplied to the inner space 20 through the gas supply port 28.
  • this gas is an inert gas such as nitrogen or argon.
  • the waste material discharge port 29 communicates with the inner space 20.
  • the waste material is generated by washing the filtration surface 10, and the waste material includes the precoat layer 15 peeled off from the filtration surface 10.
  • the waste material is discharged out of the container 13 through the waste material discharge port 29 before starting the formation of the next precoat layer 15.
  • the filtration device 1 includes a waste material pipe 36 that forms a waste material passage 37 through which the separated precoat layer 15 flows as waste material.
  • the waste material pipe 36 is connected to the container 13 and disposed outside the container 13.
  • the waste material passage 37 communicates with the inner space 20 through the waste material discharge port 29 and extends from the waste material discharge port 29 to the outside of the container 13.
  • the filtration device 1 includes a rotation mechanism 25 that rotates the filter medium 12.
  • the rotation mechanism 25 according to the present embodiment is configured by an electric motor that rotationally drives the stem 11 around its own axis A.
  • the rotating mechanism 25 operates, the stem 11 rotates, and the plurality of filter media 12 attached to the stem 11 rotate at the same time.
  • the precoat layer 15 is moved in the outer peripheral direction by a centrifugal force and peeled off from the filtration surface 10. In this way, when the filtration surface 10 is cleaned, the peeling of the precoat layer 15 is automated.
  • This filtration device 1 is a vertical type. That is, the stem 11 is directed vertically, the filtration surface 10 and the filter medium 12 are directed horizontally, and the filtrate stock solution flows vertically with respect to the filtration surface 10 during filtration.
  • the upper surface of the filter medium 12 forms a filtration surface 10, and the filtrate stock solution permeates the filtration surface 10 from top to bottom.
  • the peripheral wall 22 is vertically oriented and arranged coaxially with the stem 11.
  • the first end wall 23 forms the ceiling of the container 13, and the second end wall 24 forms the bottom of the container 13.
  • a liquid supply port 26 and a gas supply port 28 are provided in the ceiling portion (the upper end portion of the peripheral wall 22 or the first end wall 23) of the container 13, a filtrate recovery port 27 is provided in the lower portion of the stem 11, and a waste material discharge port 29. Is provided at the bottom of the container 13 (the lower end of the peripheral wall 22 or the second end wall 24). However, these arrangements are examples and can be changed as appropriate.
  • the filtration device 1 includes a single liquid supply port 26, but may include a plurality of liquid supply ports 26.
  • the filtrate stock solution, the slurry containing the filter aid, and the cleaning liquid are supplied to the inner space 20 through the common liquid supply port 26, but at least one of them may be supplied to the inner space 20 through the dedicated supply port.
  • the container body 21 of the container 13 is made of a metal such as stainless steel and has pressure resistance required for pressure filtration.
  • the container main body 21 has a pressure resistance that can sufficiently withstand the filtration pressure required for the filtration of the filtrate stock having a viscosity of 100 poise or more.
  • the filtration device 1 can also be suitably used for the filtration treatment of the spinning dope having a high viscosity as described above. While the pressure resistance is ensured, the container body 21 does not have optical transparency. Therefore, the worker cannot visually recognize the inner space 20 and the filter medium 12 accommodated therein from the outside of the container 13 through the container main body 21. Thus, the filtration surface 10 is shut off from the outside.
  • the container 13 includes a container transparent portion 40 that is partially provided in the container main body portion 21 so that the state of the filter surface 10 can be visually recognized from the outside.
  • the container transparent part 40 is formed of a transparent pressure-resistant glass material such as quartz glass or acrylic glass.
  • the container 13 is required to have a pressure resistance that can sufficiently withstand the pressure filtration of the filtration stock solution having a high viscosity as described above.
  • the container transparent portion 40 according to the present embodiment is provided in the container main body portion 21 so as to suppress the processing of the container main body portion 21 as much as possible and suppress the decrease in pressure resistance performance as much as possible.
  • FIG. 2 is a partial cross-sectional view showing the main part of the filtration device 1 shown in FIG.
  • the container transparent part 40 cuts off a part of the peripheral wall 22 of the container main body part 21, and a lump made of the above-described glass material so as to close the cut-off area is applied to the peripheral wall 22.
  • the peripheral wall 22 is partially cut off by drilling a substantially circular small hole (for example, a diameter of 10 to 30 mm) using a tool such as a drill.
  • the container transparent part 40 is as small as such a small hole 22a, so that the pressure resistance of the container 13 can be maintained high.
  • the filtration device 1 includes a photographing device 41 that photographs the state of the filtration surface 10 from the outside of the container 13 through the transparent container portion 40.
  • the photographing device 41 may be a still camera capable of photographing only a still image, but it is more preferable that the photographing device 41 is configured to be capable of photographing a moving image. Although detailed illustration is omitted, the imaging device 41 is disposed so that the objective lens is brought close to the container transparent portion 40.
  • the photographing device 41 is configured to photograph the formation state of the precoat layer 15, the washing state of the precoat layer 15, and the state of the filtration surface 10 after washing.
  • the imaging device 41 is used, even if the container transparent part 40 is small, the worker can visually recognize the state of the filtration surface 10 by referring to the imaging result of the imaging device 41. Further, when the filtration device 1 is large and vertical and the container transparent portion 40 is disposed at a high place, the worker does not have to perform an operation of checking the filtration surface 10 at the high place.
  • the filtration device 1 includes a camera holder 42 that holds the photographing device 41 outside the container 13.
  • the camera holder 42 has a cylindrical shape opened at both ends.
  • One end of the camera holder 42 is inserted into a small hole 22a formed in the peripheral wall 22, and is joined to the outer surface of the peripheral wall 22 in an air-tight and liquid-tight manner.
  • the container transparent part 40 is closely fitted to one end of the camera holder 42, and the inside of the camera holder 42 is isolated from the inner space 20 of the container 13 through the container transparent part 40.
  • the photographing device 41 is preferably a small CCD camera having a cylindrical appearance.
  • the imaging device 41 is fitted into the camera holder 42 through the opening on the other end side of the camera holder 42, whereby the imaging device 41 is placed in the container 13 with the objective lens being close to the container transparent part 40 outside the container 13. Positioned against.
  • the photographing apparatus 41 When the photographing apparatus 41 is disposed outside the container 13, the photographing apparatus 41 may not have pressure resistance and solvent resistance. Therefore, the imaging device 41 can be selected with emphasis on other design requirements (size, resolution, field of view, etc.).
  • the imaging surface of the imaging device 41 is composed of, for example, a photoelectric conversion element such as a CCD, and the imaging result of the imaging device 41 is transferred to the computer 45 as electronic data (hereinafter referred to as imaging data).
  • imaging data electronic data
  • the worker can refer to the photographing result by displaying the photographing data on the display of the computer 45, and can visually confirm the state of the filtration surface 10.
  • the filtration device 1 includes an illumination device 44 that irradiates the filtration surface 10 with light.
  • the illumination device 44 may be accommodated in the container 13 or may be disposed outside the container 13. When arranged outside the container 13, the illumination device 44 may be held by the camera holder 42 or may be built in the photographing device 41. By illuminating the filtration surface 10, a clear photographing result can be obtained.
  • the central axis B of the camera holder 42 extends away from the filtration surface 10 to be photographed from the peripheral wall 22 while being inclined with respect to the axis A of the stem 11.
  • FIG. 3 is a cross-sectional view of the filtration device 1 cut along the line III-III in FIG.
  • the photographing device 41 is capable of photographing a region 43 that is a part in the circumferential direction of the filtration surface 10 and includes a part of the inner peripheral edge and a part of the outer peripheral edge of the filtration surface 10. That's fine.
  • the moving mechanism 25 continues to shoot moving images while rotating the filtration surface 10 or still images. Can be obtained as a result of continuous shooting.
  • the filtering device 1 has a plurality of filter media 12, and the container transparent part 40 is in a state of a part or all of the filter surfaces 10 among the plurality of filter surfaces 10 individually corresponding to the plurality of filter media 12. Is configured to be visible from the outside.
  • the plurality of filter media 12 have the same shape.
  • the interval between the filter media 12 is set as small as possible. Therefore, in reality, it is possible to visually recognize the state of only one filtration surface 10 through one container transparent portion 40. Therefore, the container body 21 is provided with a plurality of container transparent portions 40.
  • the filtration device 1 As described above, if the filtration device 1 is large, the number of filter media 12 reaches several tens. If the same number of container transparent parts 40 as the filter medium 12 are provided in the container main body 21 so that the state of all the filtration surfaces 10 can be visually recognized, the manufacture of the filtration device 1 becomes complicated. In this embodiment, the container transparent part 40 is comprised so that the state of only some filtration surfaces 10 can be visually recognized from the outside. Thereby, coexistence with confirming the state of the filtration surface 10 highly and manufacturing the filtration apparatus 1 simply is achieved.
  • the container 13 includes three container transparent portions 40 (40a to 40c).
  • the container transparent part 40a makes the state of the filtration surface 10a located near the liquid supply port 26, preferably closest to the liquid supply port 26 visible.
  • the container transparent part 40b makes the state of the filtration surface 10b located near the waste material discharge port 29, preferably closest to the waste material discharge port 29 visible. Thereby, even if a drift occurs near the liquid supply port 26 or the waste material discharge port 29 and the state of the filtration surfaces 10a and 10b becomes unstable, this can be visually recognized through the container transparent portions 40a and 40b.
  • the container transparent part 40c enables visual recognition of the state of the filtration surface 10c located in the middle (not necessarily the center) between the filtration surfaces 10a and 10b. By confirming the state of the filtration surfaces 10a and 10b while referring to the state of the filtration surface 10c, it becomes easy to determine the quality of the state of the filtration surfaces 10a and 10b.
  • the waste material pipe 36 has a pipe body portion 38 that forms a waste material passage 37.
  • the internal pressure of the waste material passage 37 during the distribution of the waste material is lower than the internal pressure of the container 13 during filtration.
  • the piping main body portion 38 is not required to have a pressure resistance performance as high as that of the container main body portion 21.
  • the waste material pipe 36 is, for example, a steel pipe or a synthetic resin pipe.
  • the pipe main body 38 does not have light transmittance. Therefore, the worker cannot visually recognize the waste material passage 37 and the waste material flowing through the pipe main body portion 38 from the outside of the waste material pipe 36.
  • the waste material pipe 36 includes a pipe transparent portion 50 that is partially provided in the pipe main body portion 38 so that the waste material flowing through the waste material passage 37 can be visually recognized from the outside.
  • the pipe transparent part 50 is formed of a transparent pressure-resistant glass material such as quartz glass or acrylic glass, similarly to the container transparent part 40.
  • the pipe transparent part 50 cuts off a part of the pipe main body part 38, and joins a plate material made of the above-mentioned transparent glass material to the pipe main body part 38 so as to block the cut-off area.
  • the pipe transparent part 50 (that is, the region cut off from the pipe main body part 38) has a sufficiently large size so that an operator can visually recognize the waste material passage 37 through the pipe transparent part 50 with the naked eye.
  • the single transparent pipe portion 50 is provided in the waste material pipe, but a plurality of transparent pipe portions 50 may be provided in the waste material pipe 36 as necessary.
  • FIG. 4 is a flowchart showing the filtration method according to the present embodiment.
  • the reference numerals shown in FIGS. 1 to 3 are appropriately attached to the components of the filtration device 1.
  • the precoat layer 15 is formed by depositing fine particles on the filtration surface 10 (precoat layer forming step S1).
  • the filtered stock solution is supplied to the inner space 20 of the container 13 through the liquid supply port 26 while being pressurized by the liquid supply pump 34, and the filtered stock solution is filtered through the precoat layer 15 and the filtration surface 10 ( Filtration step S2).
  • the filtration step S2 is continued.
  • the filtration step S2 is stopped, the precoat layer 15 is peeled off from the filtration surface 10 and the filtration surface 10 is washed (washing step S4).
  • the cleaning step S4 is completed, the precoat layer forming step S1 is performed to form a new precoat layer 15 on the filtration surface 10, and then the filtration step S2 is restarted.
  • the discharge pressure of the liquid supply pump 34 and thus the filtration pressure are adjusted so that the filtration rate (filtrate flow rate) is kept constant.
  • the discharge pressure and the filtration pressure are gradually increased to make the filtration speed constant.
  • the filtration capacity is determined based on whether or not the discharge pressure or the filtration pressure has increased to a predetermined maximum pressure. If the pressure is less than the maximum pressure, the filtration step S2 is continued assuming that the filtration capability remains, and if the maximum pressure is reached, the filtration step S2 is terminated because the filtration capability is reduced.
  • the filtration method includes a determination step S5 that determines whether the state of the filtration surface 10 confirmed through the container transparent part 40 is good or not during the transition from the cleaning step S4 to the precoat layer formation step S1.
  • this determination step S5 it is determined whether or not the state of the filter surface 10 after cleaning is good, typically whether or not the precoat layer 15 has actually been completely peeled from the filter surface 10 in the cleaning step S4.
  • S5: OK a good determination is made in this determination step S5
  • the process proceeds to the next step, that is, the precoat layer formation step S1.
  • a negative determination is made in this determination step S5 (S5: NG)
  • the previous step that is, the cleaning step S4 is performed again.
  • the filtration method includes a determination step S6 for determining whether the state of the filtration surface 10 confirmed through the container transparent portion 40 is good or not during the transition from the precoat layer forming step S1 to the filtration step S2. Including.
  • this determination step S6 it is determined whether or not the precoat layer 15 is formed properly, that is, whether or not the precoat layer 15 is appropriately formed on the filtration surface 10 in the precoat layer formation step S1.
  • S6: OK the process proceeds to the next step, that is, the filtration step S2.
  • a negative determination is made in this determination step S12 (S6: NG)
  • the previous step that is, the precoat layer formation step S1 is performed again.
  • the precoat layer forming step S1 is performed again after returning to the cleaning step S4.
  • FIG. 5 is a flowchart showing the cleaning step S4 shown in FIG. 4 and the subsequent determination step S5.
  • the cleaning step S4 first, the filtrate stock solution in the container 13 is discharged from the waste material discharge port 29 (step S41).
  • the cleaning liquid is injected into the container 13 from the liquid supply port 26, and the injected cleaning liquid is discharged from the waste material discharge port 29 (step S42).
  • the washing solution can dissolve the solute dissolved in the filtration stock solution (if the filtration stock solution is a spinning stock solution of acetate fiber), and the solvent of the filtration stock solution (if the filtration stock solution is a spinning stock solution of acetate fiber, For example, acetone) can be suitably applied.
  • the washing liquid can dissolve the gel-like insoluble matter remaining on the filtration surface 10a, and the insoluble matter can be removed from the filtration surface 10a by the washing liquid.
  • steps S41 and S42 the worker visually recognizes the waste liquid flowing through the waste material passage 36 through the pipe transparent portion 50, and confirms the viscosity of the waste liquid. If it is recognized that the viscosity of the waste liquid is high (S43: NO), the injection and discharge of the cleaning liquid are continued assuming that the filtering stock solution and its impurities remain in the container 13 (S42). If it is recognized that the viscosity of the waste liquid has decreased (S43: YES), the injection of the cleaning liquid is stopped. Since the continuation or stop of the injection of the cleaning liquid is determined while checking the viscosity of the waste liquid, it is possible to prevent the stock filtrate and its contaminants from remaining in the container 13. For this reason, in the next filtration process S2, the rate of decrease in filtration capacity (rate of increase in filtration pressure) can be suitably suppressed, and the period for carrying out the next filtration process S2 can be increased.
  • an inert gas is injected into the container 13 from the gas supply port 28, and the inert gas is filled into the container 13 (step S44).
  • the rotation mechanism 25 is operated, and the precoat layer 15 is peeled off from the filtration surface 10 (step S45).
  • the cleaning liquid is again injected, and the precoat layer 15 shaken off from the filtration surface 10 is discharged together with the cleaning liquid from the waste material discharge port 29 (step S46). Thereby, cleaning process S4 is complete
  • the photographing device 41 and the illumination device 44 are activated (step S51).
  • the rotation mechanism 25 is operated to rotate the filter medium 12 (step S52).
  • the rotation speed of the filter medium 12 in the determination step S5 is slower than the rotation speed of the filter medium 12 in the cleaning process S4.
  • the photographing device 41 continues to photograph the state of the filtered surface 10 after washing through the container transparent part 40.
  • the rotation mechanism 25 is stopped and the photographing is finished.
  • the photographic data is transferred to the computer 45 (step S53), and the photographic data is displayed on the display of the computer 45. The worker confirms the state of the filtration surface 10 through the container transparent part 40 by referring to the displayed photographing data (step S54).
  • the worker checks whether the precoat layer 15 is completely peeled off or remains on the filtration surface 10, and thereby determines whether the state of the filtration surface 10 after washing is good or bad. If it is determined that the precoat layer 15 remains on the filtration surface 10 and the state of the filtration surface 10 is defective (S55: NG), the process returns to the cleaning step S4. At this time, as a specific example, the process can return to step S45 in which the precoat layer 15 is peeled off. In the cleaning step S4 to be performed again, the operation parameters of the rotation mechanism 25 such as the rotation speed and rotation time of the filter medium 12 are appropriately changed so that the precoat layer 15 is completely peeled off from the filtration surface 10. If it is determined that the precoat layer is completely separated from the filtration surface 10 and the state of the filtration surface 10 is good (S55: OK), the process proceeds to the precoat layer formation step S1.
  • FIG. 6 is a flowchart showing the precoat layer forming step S1 shown in FIG. 4 and the subsequent determination step S6.
  • a slurry in which a filter aid is suspended is poured into the container 13 from the liquid supply port 26, and the container 13 is filled with the slurry (step S11).
  • the slurry is filtered under pressure (step S12), and the filtrate is discharged (step S13).
  • the filter aid is deposited on the filtration surface 10
  • the precoat layer 15 is formed on the filtration surface 10.
  • an inert gas is injected into the container 13 from the gas supply port 28, and the inert gas is filled into the container 13 (step S14).
  • precoat layer formation process S1 is complete
  • the photographing device 41 and the illumination device 44 are activated (step S61), the filter medium 12 is rotated (step S62), and the image pickup apparatus 41 is rotated while the filter medium 12 is rotating.
  • the formation state of the precoat layer 15 is continuously photographed through the container transparent part 40.
  • the photographing data is transferred to the computer 45 (step S63), and the photographing data is displayed on the display of the computer 45.
  • the worker confirms the state of the filtration surface 10 through the container transparent part 40 by referring to the displayed photographing data (step S64).
  • the worker refers to the photographing data, whether the thickness of the precoat layer 15 is within a desired range, and whether the thickness of the precoat layer 15 is uniform over the entire filtration surface 10. Confirm. Thereby, the worker can determine whether the precoat layer 15 is formed properly.
  • both the filter aid and the filtration surface 10 are non-transparent, and both colors are different from each other.
  • the color is, for example, white or amber color
  • pearlite when used as the filter aid, the color is, for example, white.
  • the filter medium 12 has a filter cloth made of chemical fiber and the surface of the filter cloth forms the filter surface 10
  • the filter cloth is preferably selected to have a color different from the filter aid, for example, gray or black. .
  • the worker refers to the photographing data and confirms how much the color of the precoat layer 15 is mixed with the color component of the filter aid and the color component of the filter surface 10 to thereby determine the thickness of the precoat layer 15. It is possible to grasp this.
  • the color component of the filter aid is too strong, it can be determined that the thickness of the precoat layer 15 exceeds the desired range. If the color component of the filtration surface 10 is too strong, it can be determined that the thickness of the precoat layer 15 is smaller than the desired range. Whether or not thickness unevenness has occurred can be determined according to whether or not color unevenness is recognized. In particular, in the present embodiment, since shooting is performed using the illumination device 44, a clear shooting result can be obtained, thereby improving the determination accuracy.
  • the process can return to step S45 where the precoat layer 15 is peeled off.
  • the filtration operation parameters such as the supply rate of the slurry 11, the discharge pressure of the liquid supply pump 34, and the filtration rate of the slurry 11 are appropriately changed.
  • the optimum filtration operation parameters for appropriately forming the precoat layer 15 in the filtration device 1 can be obtained empirically. Therefore, it is possible to reduce the redo of the precoat layer forming step S1 by continuously performing the filtration method, thereby increasing productivity in the long run. If it is determined that the thickness of the precoat layer 15 is within the desired range, the thickness unevenness is not generated in the precoat layer 15, and the precoat layer 15 is formed well (S65: OK), filtration is performed. Proceed to step S2.
  • the filtration surface 10 is cleaned and precoated with the cleaning liquid in the container 13 having high pressure resistance and no light transmission. Even when the separation of the layer 15 from the filtration surface 10 is automatically performed, the state of the filtration surface 10 after washing can be visually confirmed through the container transparent portion 40. For this reason, the quality of the state of the filtration surface 10 after washing
  • cleaning can be determined.
  • the formation state of the precoat layer 15 is visually confirmed through the container transparent portion 40. Can be confirmed. For this reason, the quality of the formation state of the precoat layer 15 can be determined.
  • the state of the filtration surface 10 after washing and the state of the filtration surface 10 after forming the precoat layer 15 can be managed easily and appropriately.
  • the filtration capability can be kept high in the filtration step S2.
  • the implementation period of the said filtration process S2 can be taken long, and productivity of a filtrate can be improved.
  • the filtration stock solution is a spinning stock solution of acetate fiber, it leads to an increase in the productivity of acetate fiber.
  • step S46 in which the precoat layer in the cleaning step S4 is discharged as waste material the worker may check the waste material flowing in the waste material passage 37 through the transparent pipe portion 50. By taking this confirmation result into consideration in the pass / fail determination in step S55, the pass / fail determination accuracy can be improved.
  • the imaging of the filtration surface 10 after the cleaning by the imaging device 41 is performed under the condition that the inert gas is filled in the container 13, the imaging of the filtration surface 10 after the cleaning by the imaging device 41 is performed. Therefore, a clear photographing result can be obtained, and the accuracy of determining whether or not the cleaning is good is improved. The same applies to the case where the formation state of the precoat layer 15 is photographed. Therefore, the quality determination accuracy of the formation state of the precoat layer 15 is improved.
  • the leaf filter may be a horizontal type.
  • the filter device 1 may be a filter different from the leaf filter as long as it can perform pressurized cake filtration using the precoat method and the filter surface cannot be easily visually recognized from the outside. .
  • the photographing device 41 is configured to photograph both the formation state of the precoat layer 15 and the state of the filtration surface 10 after the precoat layer 15 is peeled off and cleaned. Moreover, the quality of the state of the filtration surface 10 is determined in both the stage during the transition from the cleaning process S4 to the precoat layer formation process S1 and the stage during the transition from the precoat layer formation process S1 to the filtration process S2. Determination steps S5 and S6.
  • the photographing apparatus 41 may be configured to photograph at least the formation state of the precoat layer 15 or the state of the filtration surface 10 after the precoat layer 15 is peeled off and washed.
  • the filtration method determines the quality of the state of the filtration surface 10 at least during the transition from the cleaning step S4 to the precoat layer formation step S1 or during the transition from the precoat layer formation step S1 to the filtration step S2. What is necessary is just to provide determination process S5, S6 to perform.
  • the present invention can be used for the filtration of various filtrate stock solutions, and is useful when used for the filtration treatment of a raw material solution of a polymer compound product, for example, a spinning stock solution of acetate fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Filtration Of Liquid (AREA)

Abstract

This filtration device (1) repeatedly alternates between filtration, in which a filtration solution is pressurized and passed through a filtration surface (10), and cleaning, in which the filtration surface, which is cut off from the outside, is cleaned. This filtration device (1) is provided with a filtration material (12) having the filtration surface (10), and with a container (13) which houses the filtration material (12) in a state cut off from the outside. The container (13) comprises a container main body (21) and a transparent unit (40) which is provided partially in the container main body (21) and which makes the state of the filtration surface (10) visible from the outside.

Description

濾過装置、濾過方法及びアセテート繊維の製造方法Filtration apparatus, filtration method, and production method of acetate fiber
 本発明は、濾過と濾過面の洗浄とを交互に繰り返し、濾過面を洗浄することで濾過能力を定期的に回復しながら濾過を断続的に行う濾過装置及び濾過方法に関する。本発明は、このような濾過装置を用いて紡糸原液を濾過処理してアセテート繊維を製造する方法に関する。 The present invention relates to a filtration apparatus and a filtration method for intermittently performing filtration while periodically recovering the filtration ability by repeating filtration and washing of the filtration surface alternately and washing the filtration surface. The present invention relates to a method for producing an acetate fiber by filtering a spinning dope using such a filtration apparatus.
 アセテート繊維の製造では、原料であるセルロースアセテートフレークをアセトンのような有機溶剤に溶解して紡糸原液を調製し、紡糸原液を紡糸口金から押し出してセルロースアセテートを乾式紡糸する。多数の細孔を有する紡糸口金を用い、細孔それぞれから紡出された多数のアセテート単繊維をトウ糸条と呼ばれる繊維集合体を成すように集束することで、アセテートトウが製造される。単繊維の細いアセテートトウは、タバコフィルターに好適に利用されている。特に、たばこフィルターに用いられるアセテートトウは単繊維径が例えば3.5デニールと細い(尚、一般的な繊維は最も細いものでも単繊維径が20デニール程度である)。 In the production of acetate fiber, a raw material cellulose acetate flake is dissolved in an organic solvent such as acetone to prepare a spinning stock solution, and the spinning stock solution is extruded from a spinneret to dry-spin cellulose acetate. Using a spinneret having a large number of pores, acetate tow is produced by bundling a large number of acetate single fibers spun from each of the pores so as to form a fiber assembly called tow yarn. A single fiber thin acetate tow is suitably used for a tobacco filter. In particular, acetate tow used for cigarette filters has a single fiber diameter as thin as, for example, 3.5 denier (note that even the most common fiber has the smallest single fiber diameter of about 20 denier).
 アセテートトウの単繊維を細くするには、紡糸原液を高濃度とすることが有効であるが、濃度は溶解度による制約を受ける。濃度をある程度高くして尚且つ単繊維を細くするには、紡糸口金の細孔を小さくする必要がある。そうなると、微小な異物で細孔が閉塞して糸切れが誘発されるので、歩留率が低下する。そこで、紡糸原液は紡糸口金に送られる前に濾過装置で高精度に濾過され、混入異物やゲル状の不溶解物などの夾雑物が除去される(例えば、特許文献1を参照)。 In order to make a single filament of acetate tow thin, it is effective to make the spinning dope high in concentration, but the concentration is restricted by solubility. In order to increase the concentration to some extent and make the single fiber thin, it is necessary to make the pores of the spinneret smaller. When this happens, the pores are blocked by minute foreign substances and thread breakage is induced, so that the yield rate decreases. Therefore, the spinning dope is filtered with high accuracy by a filtration device before being sent to the spinneret, and foreign matters such as mixed foreign matters and gel-like insoluble matter are removed (see, for example, Patent Document 1).
 高分子化合物を賦形する他の技術でも、賦形前に原料溶液を濾過することは重要視されている(例えば、特許文献2~4を参照)。特許文献2は、湿式紡糸の前にドープを濾過することを教示している。特許文献3及び4は、溶液製膜の前にセルロースエステル溶液を濾過することを教示している。 In other techniques for shaping polymer compounds, it is important to filter the raw material solution before shaping (see, for example, Patent Documents 2 to 4). U.S. Patent No. 6,057,032 teaches filtering the dope prior to wet spinning. U.S. Patent Nos. 5,098,036 and 5,496 teach the filtration of cellulose ester solutions prior to solution casting.
 アセテートトウその他ポリマー製品の原料溶液は、夾雑物がなく高濃度であることを要請され、高濃度であれば粘度が高くなる。そこで、濾過装置に、特許文献1に教示されているフィルタプレスの他、リーフフィルタを適用することもある(例えば、特許文献5を参照)。フィルタプレス及びリーフフィルタは、加圧下でケーク濾過を行うことができるので、上記要請を受ける原料溶液の取扱いに好適である。たばこフィルターに用いられるアセテートトウでは、上記のように単繊維度が小さいので、濃度が高くなる。そして、このような高濃度で高粘度の原料溶液の精密な濾過が要求される。 The raw material solution of acetate tow and other polymer products is required to have a high concentration without impurities, and the viscosity increases if the concentration is high. Therefore, in addition to the filter press taught in Patent Document 1, a leaf filter may be applied to the filtering device (see, for example, Patent Document 5). Since the filter press and the leaf filter can perform cake filtration under pressure, they are suitable for handling the raw material solution that receives the above request. In the acetate tow used for the cigarette filter, since the single fiber degree is small as described above, the concentration becomes high. And precise filtration of such a high concentration and high viscosity raw material solution is required.
 フィルタプレス及びリーフフィルタでは、濾過時間が経過するにつれて濾材の目詰まりが進行していく。濾過速度を保ち続けるには、濾過中に濾過圧力を上昇させなくてはならない。一方、原料溶液を圧送するポンプの仕様又は圧送された原料溶液を受容する濾過装置の耐圧性能に照らして、濾過圧力の上昇にも限界がある。そこで、濾過圧力がある上限に達すると、濾過能力を回復するために、濾過を一旦中断して濾過面が洗浄される。濾過面を洗浄した後、初期化された濾過圧力で濾過が再開する。 In the filter press and leaf filter, clogging of the filter medium proceeds as the filtration time elapses. In order to keep the filtration rate, the filtration pressure must be increased during the filtration. On the other hand, in view of the specifications of the pump for pumping the raw material solution or the pressure resistance performance of the filtration device for receiving the pumped raw material solution, there is a limit to the increase in filtration pressure. Therefore, when the filtration pressure reaches a certain upper limit, the filtration surface is cleaned by temporarily interrupting the filtration in order to recover the filtration capacity. After washing the filtration surface, filtration resumes at the initialized filtration pressure.
 フィルタプレス及びリーフフィルタは、いわゆるプリコート法を用いることができる。プリコート法では、予め濾過助剤を懸濁させたスラリーを濾過することで、元来の濾材の濾過面上に濾過助剤のケーク(プリコート層)を形成する。その後、原料溶液を圧送し、プリコート層をも濾材として活用して原料溶液を濾過する。プリコート層の存在により元来の濾材の目開きを防ぐことができるため、特に紡糸原液のような高粘度流体の加圧濾過にプリコート法は有益である。プリコート法を用いる場合、濾過面を洗浄するときにプリコート層が廃棄され、濾過を再開する前にプリコート層が濾過面上に更新形成される。 The so-called precoat method can be used for the filter press and the leaf filter. In the precoat method, a slurry of the filter aid previously suspended is filtered to form a filter aid cake (precoat layer) on the original filter surface of the filter medium. Thereafter, the raw material solution is pumped and the raw material solution is filtered using the precoat layer as a filter medium. The presence of the precoat layer can prevent the original filter medium from opening, so that the precoat method is particularly useful for pressure filtration of a high-viscosity fluid such as a spinning dope. When the precoat method is used, the precoat layer is discarded when the filtration surface is washed, and the precoat layer is renewed on the filtration surface before the filtration is resumed.
 特許文献5では、ケークを濾過面から自動的に剥離するため、耐圧容器内の濾葉部を回転させて遠心力でケークを下方に振り落とす。落とされたケークは、容器底部の排滓口部から排出される。このようにリーフフィルタは、フィルタプレスと対比して、濾過中断時の作業を容易に省力化することができる点で、有利である。また、特許文献5では、各濾過面上でケークを均一に形成するため、1以上の原液入口部が耐圧容器の中央部に設けられている。 In Patent Document 5, in order to automatically peel the cake from the filtration surface, the filter leaf portion in the pressure vessel is rotated and the cake is shaken down by centrifugal force. The dropped cake is discharged from the discharge port at the bottom of the container. As described above, the leaf filter is advantageous in that the work at the time of filtration interruption can be easily saved as compared with the filter press. Moreover, in patent document 5, in order to form a cake uniformly on each filtration surface, the one or more stock solution inlet parts are provided in the center part of the pressure vessel.
特開平5-117302号公報JP-A-5-117302 特表平8-510681号公報Japanese National Patent Publication No. 8-510681 特開2008-63403号公報JP 2008-63403 A 特開平11-254594号公報Japanese Patent Laid-Open No. 11-254594 特開平11-128620号公報JP-A-11-128620
 濾過能力を高く維持するには、濾過面を洗浄するときにケーク(プリコート層も含む)を濾過面から完全に除去することが肝要である。ケークが部分的に残った場合、更新されるプリコート層がその上に堆積し、プリコート層の厚さムラを生む。 In order to maintain a high filtration capacity, it is important to completely remove the cake (including the precoat layer) from the filtration surface when washing the filtration surface. If the cake remains partially, the renewed precoat layer is deposited thereon, resulting in uneven thickness of the precoat layer.
 ケークの完全除去は、アセテートトウその他ポリマー製品の生産性を高く維持するためにも肝要である。ケークが残った場合、再開された濾過の初期濾過圧力が高くなる。また、再開された濾過中に目詰まりが速く進行して濾過圧力の上昇速度が速くなる。すると、洗浄のために濾過を頻繁に中断しなくてはならず、製品生産性が低下する。特に、原料溶液が紡糸原液のように高粘度を有していれば濾過面を洗浄するときに濾過面に原料溶液が残りやすく、原料溶液が残っていれば濾過圧力の上昇速度が一段と速くなる。 完全 Complete removal of the cake is essential to maintain high productivity of acetate tow and other polymer products. If cake remains, the initial filtration pressure of the resumed filtration will increase. In addition, clogging progresses rapidly during the resumed filtration, and the rate of increase in filtration pressure increases. Then, the filtration must be interrupted frequently for cleaning, and product productivity is reduced. In particular, if the raw material solution has a high viscosity like a spinning stock solution, the raw material solution tends to remain on the filtration surface when the filtration surface is washed, and if the raw material solution remains, the rate of increase in the filtration pressure is further increased. .
 濾過能力を高く維持するには、全濾過面上のプリコート層が均一且つ適切な厚さを有すること、各プリコート層で厚さムラがないことも肝要である。例えば、プリコート層が適切な厚さよりも薄い場合には、原料溶液中の異物を十分に濾過することができなくなる。 In order to maintain a high filtration capacity, it is important that the precoat layer on the entire filtration surface has a uniform and appropriate thickness and that there is no thickness unevenness in each precoat layer. For example, when the precoat layer is thinner than an appropriate thickness, the foreign matter in the raw material solution cannot be sufficiently filtered.
 このように、濾過された原料溶液を用いてアセテートトウその他ポリマー製品を製造するにあたり、濾過能力及び製品生産性を高く維持するには、濾過面の洗浄時又はプリコート層の形成時に濾過面の状態を管理することが望ましい。 Thus, in producing acetate tow and other polymer products using the filtered raw material solution, in order to maintain high filtration capacity and product productivity, the state of the filtration surface during the washing of the filtration surface or the formation of the precoat layer. It is desirable to manage.
 しかしながら、特許文献5に教示されるリーフフィルタにおいては、濾材が耐圧容器内に収容されているので、濾過面を視覚的に確認することができない。このため、濾過面の洗浄は自動化されているものの、ケークが濾過面から実際に完全に除去されたのか否かを濾過装置の利用者が外部から容易には確認することができない。 However, in the leaf filter taught in Patent Document 5, since the filter medium is accommodated in the pressure vessel, the filtration surface cannot be visually confirmed. For this reason, although the cleaning of the filtration surface is automated, the user of the filtration device cannot easily confirm from the outside whether the cake has actually been completely removed from the filtration surface.
 また、特許文献5によれば、特定の運転条件下ではケークを均一に形成可能になるかもしれない。しかしながら、原料溶液又は濾過助剤入りスラリーの性状、圧力及び流量などの運転条件を変えたときには、ケークを均一に形成することができないおそれがある。そして、ケークが実際に均一に形成されたのか否かを濾過装置の利用者が外部から容易には確認することができない。 Also, according to Patent Document 5, it may be possible to form a cake uniformly under specific operating conditions. However, when the operating conditions such as the properties, pressure, and flow rate of the raw material solution or the slurry containing the filter aid are changed, the cake may not be formed uniformly. And the user of a filtration apparatus cannot confirm easily from the exterior whether the cake was actually formed uniformly.
 結局、リーフフィルタでも、濾過面の状態を確認してその良否を判定し、それにより濾過面の状態を適切に管理するには、フィルタプレスと同様に、濾過装置を停止して濾材を取り出すより他ないのが現状である。このような手法を採れば、確認作業に費用及び時間を要し、製品生産性が低下する。特に濾過装置が大型である場合には、クレーン等の大型作業機械が必要となり、確認作業に要する費用及び時間が膨大となる。アセテートトウの原料溶液のように有機溶剤を用いる場合には、有機溶剤に対する安全性を確保する必要も生じる。濾過装置を停止しなくてはならないので、濾過中に濾過面の状態を確認することは不可能である。 After all, even in the leaf filter, in order to check the condition of the filtration surface and determine its quality, thereby properly managing the condition of the filtration surface, as with the filter press, the filtration device is stopped and the filter medium is taken out. There is nothing else. If such a method is adopted, cost and time are required for the confirmation work, and product productivity is reduced. In particular, when the filtration device is large, a large work machine such as a crane is required, and the cost and time required for the confirmation work become enormous. When an organic solvent is used like a raw material solution of acetate tow, it is necessary to ensure safety against the organic solvent. Since the filtration device must be stopped, it is impossible to check the state of the filtration surface during filtration.
 そこで本発明は、濾過面の状態を容易且つ適切に管理することができるようにし、それにより濾過能力及び製品生産性を高く維持することを目的としている。 Therefore, an object of the present invention is to make it possible to easily and appropriately manage the state of the filtration surface, thereby maintaining a high filtration capacity and product productivity.
 本発明に係る濾過装置は、濾過原液を加圧して濾過面を透過させる濾過と、外部から遮断された前記濾過面の洗浄とが交互に繰り返される濾過装置であって、前記濾過面を有する濾材と、前記濾材を外部から遮断した状態で収容する容器と、を備え、前記容器は、容器本体部と、前記容器本体部に部分的に設けられて外部から前記濾過面の状態を視認可能とする透明部と、を有する。 The filtration device according to the present invention is a filtration device in which filtration for pressurizing a filtrate solution to permeate the filtration surface and cleaning of the filtration surface blocked from the outside are repeated alternately, and the filtration medium having the filtration surface And a container that accommodates the filter medium in a state of being blocked from the outside, and the container is partially provided on the container main body and the container main body so that the state of the filtration surface can be visually recognized from the outside. And a transparent portion.
 前記構成によれば、濾過面が外部から遮断されていても、濾過中、濾過後(すなわち、洗浄開始前)、洗浄中及び洗浄後(すなわち、濾過再開前)における濾過面の状態を、透明部を利用して外部から視覚的に確認することができる。例えば、濾過面の洗浄後に、濾材を容器から取り出さなくても、濾過面からケーキが完全に廃棄されているか否か及びいずれの濾過面にケーキが残っているのか否かを容易に視覚的に確認することができる。そして、確認された濾過面の状態に基づいて、次の濾過を再開する前に再洗浄を行うなど適切な対策を講じることができる。このように、煩雑な確認作業を伴わずに、濾過面の状態を容易且つ適切に管理することができるようになる。 According to the said structure, even if the filtration surface is interrupted from the outside, the state of the filtration surface during filtration, after filtration (that is, before the start of washing), during washing and after washing (ie, before resumption of filtration) is transparent. It can be visually confirmed from the outside using the section. For example, after washing the filtration surface, it is easy to visually determine whether the cake has been completely discarded from the filtration surface and whether any cake remains on the filtration surface without removing the filter medium from the container. Can be confirmed. And based on the state of the confirmed filtration surface, it is possible to take appropriate measures such as re-washing before resuming the next filtration. Thus, the state of the filtration surface can be managed easily and appropriately without complicated confirmation work.
 前記容器の外部から前記透明部を通して前記濾過面の状態を撮影する撮影装置を更に備えてもよい。 A photographing device for photographing the state of the filtration surface from the outside of the container through the transparent part may be further provided.
 前記構成によれば、濾過装置の利用者が、撮影装置により撮影された画像又は動画を用いて濾過面の状態を視覚的に確認することができる。よって、透明部のサイズを小さくすることが可能になる。よって、加圧下で濾過を行う場合でも、容器のうち透明部及びその周辺部の耐圧性を確保しやすくなる。また、撮影装置は容器外部に配置されるので、撮影装置は耐圧性及び耐溶剤性を有する必要がなく、他の設計要求(サイズ、解像度及び視野など)に重きをおいて撮影装置を選択することができる。 According to the above configuration, the user of the filtration device can visually confirm the state of the filtration surface using an image or a moving image photographed by the photographing device. Therefore, the size of the transparent part can be reduced. Therefore, even when filtration is performed under pressure, it is easy to ensure the pressure resistance of the transparent portion and its peripheral portion of the container. In addition, since the photographing apparatus is disposed outside the container, the photographing apparatus does not need to have pressure resistance and solvent resistance, and the photographing apparatus is selected with emphasis on other design requirements (size, resolution, field of view, etc.). be able to.
 前記濾過を開始する前に前記濾過面上に微細粒子を堆積させることでプリコート層が形成され、前記濾過面を洗浄するときに前記プリコート層が前記濾過面から剥離され、次の前記濾過を再開する前に新たなプリコート層が形成され、前記撮影装置は、少なくとも、前記プリコート層の形成状態、又は、前記プリコート層を剥離して洗浄された後の前記濾過面の状態を撮影するように構成されてもよい。 Before starting the filtration, a precoat layer is formed by depositing fine particles on the filtration surface. When the filtration surface is washed, the precoat layer is peeled off from the filtration surface, and the next filtration is resumed. A new precoat layer is formed before the imaging, and the imaging device is configured to image at least the formation state of the precoat layer or the state of the filtration surface after the precoat layer is peeled off and washed May be.
 前記構成によれば、プリコート法を用いる場合に、プリコート層の厚さ及びプリコート層の剥離を容易に管理することができる。したがって、濾過能力及び製品生産性を高く維持することができる。 According to the above configuration, when the precoat method is used, the thickness of the precoat layer and the separation of the precoat layer can be easily managed. Therefore, it is possible to maintain high filtration capacity and product productivity.
 前記濾材を回転させる回転機構を備え、前記回転機構が動作すると、前記濾過面上の前記プリコート層が遠心力で外周方向に移動し、それにより前記プリコート層が前記濾過面から剥離されてもよい。 A rotation mechanism for rotating the filter medium may be provided, and when the rotation mechanism is operated, the precoat layer on the filtration surface may move in the outer peripheral direction by centrifugal force, whereby the precoat layer may be peeled off from the filtration surface. .
 前記構成によれば、プリコート層の剥離が自動化される場合に、プリコート層が実際に完全に剥離されたのか否かを容易に確認することができる。このため、濾過面の状態を適切に管理することができる。よって、更新されるプリコート層を適切に形成することができるようになり、また、次に再開される濾過において濾過圧力の上昇を抑制することができる。 According to the above configuration, when peeling of the precoat layer is automated, it can be easily confirmed whether or not the precoat layer has actually been completely peeled off. For this reason, the state of a filtration surface can be managed appropriately. Therefore, it becomes possible to appropriately form the renewed precoat layer, and it is possible to suppress an increase in the filtration pressure in the filtration that is resumed next.
 前記濾材が複数設けられ、前記複数の濾材それぞれに前記濾過面が複数設けられ、前記透明部は、前記複数の濾過面の一部又は全部の状態を外部から視認可能に構成されてもよい。 A plurality of the filter media may be provided, each of the plurality of filter media may be provided with a plurality of the filtration surfaces, and the transparent portion may be configured so that a part or all of the plurality of filtration surfaces can be visually recognized from the outside.
 前記構成によれば、濾過面が複数存在する場合に、濾過面ごとに状態のバラつきがあるのか否かを容易に確認することができる。よって、濾過面の状態を一段と高度に管理することができる。 According to the above configuration, when there are a plurality of filtration surfaces, it can be easily confirmed whether or not there is a variation in the state of each filtration surface. Therefore, the state of the filtration surface can be managed more highly.
 前記濾過面に光を照射する照明装置を更に備えてもよい。 An illumination device that irradiates light to the filtration surface may be further provided.
 前記構成によれば、濾過面の状態を一段と容易に確認することができる。 According to the above configuration, the state of the filtration surface can be more easily confirmed.
 前記容器は、100ポアズ以上の粘度を有する濾過原液を濾過するために十分な耐圧性能を有してもよい。 The container may have a pressure resistance sufficient to filter a filtrate stock solution having a viscosity of 100 poise or more.
 前記構成によれば、耐圧性を高くすることで容器本体部における遮蔽性が高くなったとしても、透明部を通して濾過面の状態を容易に確認することができる。 According to the above configuration, even if the shielding property in the container main body is increased by increasing the pressure resistance, the state of the filtration surface can be easily confirmed through the transparent portion.
 前記容器に接続され、前記濾過面から剥離されたプリコート層が廃材として流れる廃材通路を形成する廃材配管を更に備え、前記廃材配管は、配管本体部と、前記配管本体部に部分的に設けられて前記廃材通路を流れる廃材を外部から視認可能とする透明部と、を備えてもよい。 The waste pipe is further provided with a waste pipe that is connected to the container and forms a waste passage through which a precoat layer peeled off from the filtration surface flows as waste, and the waste pipe is partially provided on the pipe body and the pipe body. And a transparent portion that enables the waste material flowing through the waste material passage to be visually recognized from the outside.
 前記構成によれば、廃材配管の透明部を通して廃材を視認することができる。容器の透明部と併用することで、濾過面の状態を一段と高度に管理することができる。廃材通路の内圧は濾過面が配置される容器の内圧と比べて低い。このため、高粘度を有する濾過原液の濾過に供される場合にも、廃材配管であれば耐圧性を殊更憂慮せずに比較的大きいサイズの透明部を設置することが可能になる。 According to the above configuration, the waste material can be visually recognized through the transparent portion of the waste material pipe. By using together with the transparent part of the container, the state of the filtration surface can be managed more highly. The internal pressure of the waste material passage is lower than the internal pressure of the container in which the filtration surface is arranged. For this reason, even when it is used for filtration of a high-concentration filtrate stock solution, it is possible to install a relatively large transparent portion without particularly worrying about pressure resistance if it is a waste pipe.
 前記濾過面が水平に向けられ、濾過原液が前記濾過面に対して鉛直に流れてもよい。 The filtration surface may be oriented horizontally, and the filtrate stock solution may flow vertically with respect to the filtration surface.
 前記構成によれば、濾過面上に形成されたプリコート層を均一に保持しやすくなる。 According to the above configuration, the precoat layer formed on the filtration surface can be easily held uniformly.
 本発明に係る濾過方法は、前述した濾過装置を用いて濾過原液を濾過する濾過方法であって、前記濾過面に微細粒子を堆積させることによりプリコート層を形成するプリコート層形成工程と、前記プリコート層形成工程の後に、濾過原液を加圧して前記プリコート層及び前記濾過面で濾過する濾過工程と、前記濾過工程において前記濾過面の閉塞により濾過能力が低下すると、前記濾過工程を停止し、前記濾過面から前記プリコート層を剥離して前記濾過面を洗浄する洗浄工程と、を備え、前記洗浄工程の後に前記プリコート層形成工程を行ってから前記濾過工程を再開し、少なくとも、前記洗浄工程から前記プリコート層形成工程に移行する間の段階、又は、前記プリコート層形成工程から前記濾過工程に移行する間の段階において、前記透明部を通して確認される前記濾過面の状態の良否を判定する判定工程を更に備え、前記判定工程で良判定がなされると次の工程に進み、前記判定工程で否判定がなされると前の工程をやり直す。 The filtration method according to the present invention is a filtration method of filtering a stock solution using the above-described filtration device, wherein a precoat layer forming step of forming a precoat layer by depositing fine particles on the filtration surface, and the precoat After the layer formation step, pressurize the filtrate stock solution and filter through the precoat layer and the filtration surface, and when the filtration capacity decreases due to the filtration surface being blocked in the filtration step, the filtration step is stopped, A cleaning step of peeling off the precoat layer from the filtration surface and washing the filtration surface, and restarting the filtration step after performing the precoat layer forming step after the washing step, and at least from the washing step In the stage during the transition to the precoat layer forming process or the stage during the transition from the precoat layer forming process to the filtration process, It further includes a determination step for determining the quality of the state of the filtration surface confirmed through the transparent portion. When the determination step determines good, the process proceeds to the next step, and when the determination step determines negative, the previous step Redo the process.
 前記方法によれば、濾過面の状態を容易且つ適切に管理することができるようになるので、濾過能力を高く維持することができるようになる。 According to the above method, the state of the filtration surface can be easily and appropriately managed, so that the filtration ability can be maintained high.
 本発明に係るアセテート繊維の製造方法は、前述した濾過装置を用いて紡糸原液を濾過処理し、濾過された紡糸原液を紡糸口金から押し出してセルロースアセテートを乾式紡糸する、アセテート繊維の製造方法であって、前記濾過処理において前述した濾過方法を用いる。 The method for producing acetate fiber according to the present invention is a method for producing acetate fiber, in which the spinning dope is filtered using the filtration device described above, and the filtered spinning dope is extruded from the spinneret to dry-spin cellulose acetate. The filtration method described above is used in the filtration process.
 前記方法によれば、濾過面の状態を容易且つ適切に管理することができるようになるので、濾過能力が高く維持されると共に、アセテート繊維の生産性が高く維持される。 According to the above method, the state of the filtration surface can be easily and appropriately managed, so that the filtration capacity is maintained high and the productivity of acetate fibers is maintained high.
 本発明によれば、濾過面の状態を容易且つ適切に管理することができ、それにより濾過能力及び製品生産性を高く維持することができる。 According to the present invention, it is possible to easily and appropriately manage the state of the filtration surface, thereby maintaining high filtration capacity and product productivity.
本実施形態に係るアセテート繊維の製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of the acetate fiber which concerns on this embodiment. 本実施形態に係る濾過装置の要部を示す部分断面図である。It is a fragmentary sectional view showing an important section of a filtration device concerning this embodiment. 図1のIII-III線に沿って示す断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 本実施形態に係る濾過方法を示すフローチャートである。It is a flowchart which shows the filtration method which concerns on this embodiment. 図4に示す洗浄工程及びその後の判定工程を示すフローチャートである。It is a flowchart which shows the washing | cleaning process shown in FIG. 4, and the subsequent determination process. 図4に示すプリコート層形成工程及びその後の判定工程を示すフローチャートである。It is a flowchart which shows the precoat layer formation process shown in FIG. 4, and a subsequent determination process.
 以下、図面を参照しながら本発明の実施形態について説明する。全ての図を通じて同一の又は対応する要素には同一の符号を付し、その重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Throughout the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description thereof is omitted.
 図1は、本実施形態に係るアセテート繊維の製造方法を示す概念図である。図1に示すように、アセテート繊維の製造では、先ず、原料であるセルロースアセテートのフレークをアセトンで溶解することによって、紡糸原液が調製される。紡糸原液は高濃度であり、例えば摂氏50度において300~900ポアズ、好ましくは400~700ポアズの高粘度を有する。このような数値範囲とすることで、紡糸を容易に行うことと濾過面の洗浄効率を維持することとを両立することができる。紡糸原液は、例えば酸化チタン(IV)のように着色用の添加剤を含んでもよい。 FIG. 1 is a conceptual diagram showing a method for producing acetate fibers according to this embodiment. As shown in FIG. 1, in the production of acetate fibers, first, a spinning dope is prepared by dissolving cellulose acetate flakes as raw materials with acetone. The spinning dope has a high concentration, for example, a high viscosity of 300 to 900 poise, preferably 400 to 700 poise at 50 degrees Celsius. By making such a numerical range, it is possible to achieve both spinning easily and maintaining the cleaning efficiency of the filtration surface. The spinning dope may contain coloring additives such as titanium (IV) oxide.
 紡糸原液は濾過装置1を用いて濾過処理され、それにより紡糸原液中の夾雑物が除去される。濾過された紡糸原液は、乾式紡糸機2に送られ、紡糸口金2aから紡糸筒2b内へと押し出される。紡糸筒2b内でセルロースアセテートが乾式紡糸される。すなわち、アセトンが紡糸筒2b内で蒸発し、セルロースアセテートが固化して糸条が形成される。糸条は紡糸筒2b外へ排出されて捲き取られる。その後糸条は、捲縮及び乾燥等の後処理を施され、梱包される。 The spinning dope is filtered using the filtration device 1, thereby removing impurities in the spinning dope. The filtered spinning solution is sent to the dry spinning machine 2 and pushed out from the spinneret 2a into the spinning cylinder 2b. Cellulose acetate is dry-spun in the spinning cylinder 2b. That is, acetone evaporates in the spinning cylinder 2b, and the cellulose acetate is solidified to form a yarn. The yarn is discharged out of the spinning cylinder 2b and scraped off. Thereafter, the yarn is subjected to post-treatment such as crimping and drying, and then packed.
 紡糸口金2aは多数の細孔を有してもよい。その場合、細孔それぞれから吐出された多数のアセテート単繊維を集束することでトウ糸条が乾式紡糸機2で形成され、トウ糸条を上記同様に後処理及び梱包することでアセテートトウ製品が製造される。 The spinneret 2a may have a large number of pores. In that case, a tow yarn is formed by the dry spinning machine 2 by bundling a large number of acetate single fibers discharged from each of the pores, and an acetate tow product is obtained by post-processing and packing the tow yarn in the same manner as described above. Manufactured.
 本実施形態に係るアセテート繊維(アセテートトウを含む)の製造方法は、少なくとも濾過処理に特徴を有し、それにより濾過能力及びアセテート繊維の生産性を高く維持することができる。以下、濾過装置1及びこの濾過装置1を用いた濾過方法を説明する。本実施形態に係るアセテート繊維の製造方法では、後述の濾過方法が紡糸原液の濾過処理に用いられる。 The method for producing acetate fibers (including acetate tow) according to the present embodiment is characterized by at least a filtration treatment, whereby the filtration capacity and the productivity of acetate fibers can be maintained high. Hereinafter, the filtration apparatus 1 and the filtration method using this filtration apparatus 1 are demonstrated. In the method for producing acetate fibers according to the present embodiment, the filtration method described later is used for the filtration treatment of the spinning dope.
 なお、後述の濾過装置1及び濾過方法は、例えばアクリル又はビニロンのように乾式紡糸される他の繊維の製造にも応用可能である。更に、湿式紡糸される繊維の製造や、例えばセルロースフィルムのように繊維以外のポリマー製品の製造にも応用可能である。 The filtration device 1 and the filtration method described later can be applied to the production of other fibers that are dry-spun, such as acrylic or vinylon. Furthermore, it can be applied to the production of wet-spun fibers and the production of polymer products other than fibers such as cellulose films.
 [濾過装置]
 図1は、本実施形態に係る濾過装置1の断面図を含む。図1に示す濾過装置1は、加圧式のケーク濾過器である。濾過装置1は、濾過原液(例えば、アセテート繊維の紡糸原液)を加圧して濾過面10を透過させる濾過と、濾過面10の洗浄とを交互に繰り返す。濾過面10の閉塞のため濾過能力が低下すると、濾過を停止して洗浄を開始する。この洗浄において、ケークが濾過面10から剥離される。濾過面10を洗浄することで濾過能力を定期的に回復しながら、濾過が断続的に行われる。
[Filtering equipment]
FIG. 1 includes a cross-sectional view of a filtration device 1 according to the present embodiment. A filtration device 1 shown in FIG. 1 is a pressurized cake filter. The filtration device 1 alternately repeats filtration that pressurizes a filtration stock solution (for example, a spinning stock solution of acetate fiber) and permeates the filtration surface 10 and washing of the filtration surface 10. When the filtration capacity decreases due to the blocking of the filtration surface 10, the filtration is stopped and the washing is started. In this cleaning, the cake is peeled off from the filtration surface 10. Filtration is intermittently performed while periodically recovering the filtration capacity by washing the filtration surface 10.
 濾過装置1は、プリコート法を用いたケーク濾過を行う。濾過を開始する前に、濾過面10上に微細粒子を堆積させることによりプリコート層15が形成される。微細粒子は、例えば珪藻土又はパーライトのような濾過助剤である。微細粒子を懸濁させたスラリーを濾過面10を透過させることで、微細粒子を濾過面10上に堆積させてプリコート層15を形成する。その後の濾過では、濾過原液を加圧してプリコート層15及び濾過面10を透過させ、プリコート層15を濾材として機能させる。その後の洗浄では、プリコート層15を濾過面10から剥離する。この洗浄後、新たなプリコート層15を濾過面10上に形成してから、濾過原液の濾過を再開する。 The filtration device 1 performs cake filtration using a precoat method. Before the filtration is started, the precoat layer 15 is formed by depositing fine particles on the filtration surface 10. The fine particles are filter aids such as diatomaceous earth or perlite. By passing the slurry in which the fine particles are suspended through the filtration surface 10, the fine particles are deposited on the filtration surface 10 to form the precoat layer 15. In the subsequent filtration, the filtered stock solution is pressurized so as to pass through the precoat layer 15 and the filtration surface 10, and the precoat layer 15 functions as a filter medium. In the subsequent cleaning, the precoat layer 15 is peeled off from the filtration surface 10. After this washing, a new precoat layer 15 is formed on the filtration surface 10, and then filtration of the stock solution is resumed.
 本実施形態に係る濾過装置1は、上記操作を実現可能な濾過器の一例としてのリーフフィルタである。濾過装置1は、ステム11と、濾過面10を有する1以上の濾材12と、ステム11及び濾材12を外部から遮断した状態で収容する容器13と、を備える。アセテート繊維の製造では、濾過装置1が比較的大型となる。図1は、図示の便宜のため数個のみの濾材12を示しているが、大型の濾過装置1では、濾材12の個数が数十(例えば、40~90)に及ぶ。 The filtration device 1 according to this embodiment is a leaf filter as an example of a filter capable of realizing the above operation. The filtration device 1 includes a stem 11, one or more filter media 12 having a filtration surface 10, and a container 13 that accommodates the stem 11 and the filter media 12 while being blocked from the outside. In the production of acetate fiber, the filtration device 1 is relatively large. FIG. 1 shows only a few filter media 12 for convenience of illustration, but in the large-sized filter device 1, the number of filter media 12 ranges from several tens (for example, 40 to 90).
 複数の濾材12は、ステム11の軸線方向に間隔をおいて並べられ、ステム11に取外し可能に結合される。各濾材12は、葉状又は板状に形成され、ステム11から径方向に延びる。濾材12の一表面が濾過面10を成し、濾過面10はステム11の軸線Aに略垂直である。例えば、濾材12は円盤状であり濾過面10は円形である。このとき、各濾材12は、ステム11と略同軸に配置される。 The plurality of filter media 12 are arranged at intervals in the axial direction of the stem 11 and are detachably coupled to the stem 11. Each filter medium 12 is formed in a leaf shape or a plate shape, and extends from the stem 11 in the radial direction. One surface of the filter medium 12 forms a filtration surface 10, and the filtration surface 10 is substantially perpendicular to the axis A of the stem 11. For example, the filter medium 12 is disk-shaped and the filter surface 10 is circular. At this time, each filter medium 12 is arranged substantially coaxially with the stem 11.
 容器13は、密閉された内空間20を形成する容器本体部21を有し、ステム11及び濾材12は、当該内空間20に配置される。容器本体部21は概略円筒状に形成される。容器本体部21は、その内周面で内空間20を規定して濾材12を外囲する周壁22と、周壁22の一端部に設けられて内空間20を閉鎖する第1端壁23と、周壁22の他端部に設けられて内空間20を閉鎖する第2端壁24とを含む。 The container 13 has a container body 21 that forms a sealed inner space 20, and the stem 11 and the filter medium 12 are disposed in the inner space 20. The container main body 21 is formed in a substantially cylindrical shape. The container body 21 has a peripheral wall 22 that defines the inner space 20 on its inner peripheral surface and surrounds the filter medium 12, a first end wall 23 that is provided at one end of the peripheral wall 22 and closes the inner space 20, And a second end wall 24 that is provided at the other end of the peripheral wall 22 and closes the inner space 20.
 濾過装置1は、液供給口26、濾液回収口27、ガス供給口28及び廃材排出口29を備える。液供給口26は、内空間20に連通し、また、容器13外の原液源31、スラリー源32及び洗浄液源(図示せず)それぞれと接続される。原液源31からの濾過原液、スラリー源32からの濾過助剤入りスラリー及び洗浄液源からの洗浄液は、液供給ポンプ34及びバルブ35a~cの動作に基づき液供給口26を通って内空間20へと選択的に供給される。スラリーはプリコート層15の形成に用いられ、洗浄液は濾過面10の洗浄に用いられる。原液源31は、例えば濾過原液を調製するための溶解機である。スラリー源32は、例えば濾過助剤を懸濁させたスラリーを調製するための攪拌機である。洗浄液源は、例えば洗浄液を貯留するタンクである。洗浄液は濾過原液の溶剤と同じでもよく、その場合、洗浄液源は濾過原液の溶剤を貯留するタンクを兼ねていてもよい。 The filtration device 1 includes a liquid supply port 26, a filtrate recovery port 27, a gas supply port 28, and a waste material discharge port 29. The liquid supply port 26 communicates with the inner space 20 and is connected to a stock solution source 31, a slurry source 32, and a cleaning solution source (not shown) outside the container 13, respectively. The filtered stock solution from the stock solution source 31, the slurry containing the filter aid from the slurry source 32, and the cleaning solution from the cleaning solution source pass through the liquid supply port 26 to the inner space 20 based on the operation of the liquid supply pump 34 and valves 35a to 35c. And selectively supplied. The slurry is used for forming the precoat layer 15, and the cleaning liquid is used for cleaning the filtration surface 10. The stock solution source 31 is, for example, a dissolving machine for preparing a filtered stock solution. The slurry source 32 is a stirrer for preparing, for example, a slurry in which a filter aid is suspended. The cleaning liquid source is, for example, a tank that stores the cleaning liquid. The cleaning liquid may be the same as the solvent of the filtrate stock solution. In this case, the cleaning liquid source may also serve as a tank that stores the solvent of the filter stock solution.
 ステム11は中空に形成される。濾過原液を濾過面10を透過させることで得られた濾液は、濾材12を中心に向かって流れて中空のステム11内に流入する。濾液回収口27は、ステム11の内部に連通し、ステム11内の濾液は、濾液回収口27を通って容器13外で回収される。ガス供給口28は、内空間20に連通し、また、容器13外のガス源(図示せず)と接続される。ガス源からのガスは、ガス供給口28を通って内空間20へ供給される。好ましくは、このガスは、例えば窒素やアルゴンなどの不活性ガスである。 The stem 11 is formed hollow. The filtrate obtained by allowing the filtrate stock solution to pass through the filtration surface 10 flows toward the center of the filter medium 12 and flows into the hollow stem 11. The filtrate collection port 27 communicates with the inside of the stem 11, and the filtrate in the stem 11 is collected outside the container 13 through the filtrate collection port 27. The gas supply port 28 communicates with the inner space 20 and is connected to a gas source (not shown) outside the container 13. The gas from the gas source is supplied to the inner space 20 through the gas supply port 28. Preferably, this gas is an inert gas such as nitrogen or argon.
 廃材排出口29は、内空間20に連通する。濾過面10を洗浄することによって廃材が生成され、その廃材には濾過面10から剥離されたプリコート層15が多分に含まれる。その廃材は、次のプリコート層15の形成を開始する前に、廃材排出口29を通って容器13外へと排出される。濾過装置1は、剥離されたプリコート層15が廃材として流れる廃材通路37を形成する廃材配管36を備える。廃材配管36は、容器13に接続されて容器13外に配置される。廃材通路37は、廃材排出口29を介して内空間20と連通し、廃材排出口29から容器13外へと延在する。 The waste material discharge port 29 communicates with the inner space 20. The waste material is generated by washing the filtration surface 10, and the waste material includes the precoat layer 15 peeled off from the filtration surface 10. The waste material is discharged out of the container 13 through the waste material discharge port 29 before starting the formation of the next precoat layer 15. The filtration device 1 includes a waste material pipe 36 that forms a waste material passage 37 through which the separated precoat layer 15 flows as waste material. The waste material pipe 36 is connected to the container 13 and disposed outside the container 13. The waste material passage 37 communicates with the inner space 20 through the waste material discharge port 29 and extends from the waste material discharge port 29 to the outside of the container 13.
 濾過装置1は、濾材12を回転させる回転機構25を備える。本実施形態に係る回転機構25は、ステム11を自身の軸線Aの周りに回転駆動する電気モータで構成される。回転機構25が動作すると、ステム11が回転し、これに取り付けられている複数の濾材12が一斉に回転する。それにより、プリコート層15が濾過面10上に形成されている場合、プリコート層15が遠心力で外周方向に移動して濾過面10から剥離される。このように、濾過面10を洗浄するにあたって、プリコート層15の剥離が自動化される。 The filtration device 1 includes a rotation mechanism 25 that rotates the filter medium 12. The rotation mechanism 25 according to the present embodiment is configured by an electric motor that rotationally drives the stem 11 around its own axis A. When the rotating mechanism 25 operates, the stem 11 rotates, and the plurality of filter media 12 attached to the stem 11 rotate at the same time. Thereby, when the precoat layer 15 is formed on the filtration surface 10, the precoat layer 15 is moved in the outer peripheral direction by a centrifugal force and peeled off from the filtration surface 10. In this way, when the filtration surface 10 is cleaned, the peeling of the precoat layer 15 is automated.
 この濾過装置1は垂直型である。つまり、ステム11は鉛直に向けられ、濾過面10及び濾材12は水平に向けられ、濾過中に濾過原液は濾過面10に対して鉛直に流れる。濾材12の上面が濾過面10を成し、濾過原液は濾過面10を上から下へ透過する。周壁22は鉛直に向けられてステム11と同軸に配置される。第1端壁23は容器13の天井を成し、第2端壁24は容器13の底を成す。液供給口26及びガス供給口28が、容器13の天井部(周壁22の上端部又は第1端壁23)に設けられ、濾液回収口27がステム11の下部に設けられ、廃材排出口29が、容器13の底部(周壁22の下端部又は第2端壁24)に設けられる。ただし、これら配置は一例であり、適宜変更可能である。 This filtration device 1 is a vertical type. That is, the stem 11 is directed vertically, the filtration surface 10 and the filter medium 12 are directed horizontally, and the filtrate stock solution flows vertically with respect to the filtration surface 10 during filtration. The upper surface of the filter medium 12 forms a filtration surface 10, and the filtrate stock solution permeates the filtration surface 10 from top to bottom. The peripheral wall 22 is vertically oriented and arranged coaxially with the stem 11. The first end wall 23 forms the ceiling of the container 13, and the second end wall 24 forms the bottom of the container 13. A liquid supply port 26 and a gas supply port 28 are provided in the ceiling portion (the upper end portion of the peripheral wall 22 or the first end wall 23) of the container 13, a filtrate recovery port 27 is provided in the lower portion of the stem 11, and a waste material discharge port 29. Is provided at the bottom of the container 13 (the lower end of the peripheral wall 22 or the second end wall 24). However, these arrangements are examples and can be changed as appropriate.
 なお、濾過装置1が単一の液供給口26を備えているが、複数の液供給口26を備えてもよい。濾過原液、濾過助剤入りスラリー及び洗浄液が共通の液供給口26を通して内空間20に供給されるが、そのうちの少なくともいずれか1つが専用の供給口を通して内空間20に供給されてもよい。 The filtration device 1 includes a single liquid supply port 26, but may include a plurality of liquid supply ports 26. The filtrate stock solution, the slurry containing the filter aid, and the cleaning liquid are supplied to the inner space 20 through the common liquid supply port 26, but at least one of them may be supplied to the inner space 20 through the dedicated supply port.
 容器13の容器本体部21は、例えばステンレス鋼などの金属で製作され、加圧濾過に必要とされる耐圧性能を有する。特に、本実施形態では、容器本体部21が、100ポアズ以上の粘度を有する濾過原液の濾過に必要とされる濾過圧力にも十分に耐えることができるような耐圧性能を有している。濾過装置1は、上記のような高粘度を有する紡糸原液の濾過処理にも、好適に利用されることができる。耐圧性が確保される反面、容器本体部21は光透過性を有しない。そのため、作業員は、容器13の外から容器本体部21を通して内空間20及びこれに収容された濾材12を視認することができない。このように濾過面10は外部から遮断されている。 The container body 21 of the container 13 is made of a metal such as stainless steel and has pressure resistance required for pressure filtration. In particular, in this embodiment, the container main body 21 has a pressure resistance that can sufficiently withstand the filtration pressure required for the filtration of the filtrate stock having a viscosity of 100 poise or more. The filtration device 1 can also be suitably used for the filtration treatment of the spinning dope having a high viscosity as described above. While the pressure resistance is ensured, the container body 21 does not have optical transparency. Therefore, the worker cannot visually recognize the inner space 20 and the filter medium 12 accommodated therein from the outside of the container 13 through the container main body 21. Thus, the filtration surface 10 is shut off from the outside.
 そこで、容器13は、容器本体部21に部分的に設けられて外部から濾面10の状態を視認可能とする容器透明部40を有する。容器透明部40は、例えば石英ガラスやアクリルガラスのような透明な耐圧ガラス材料で形成される。容器13は、前述したような高粘度を有する濾過原液の加圧濾過に十分に耐えられるような耐圧性能を要求される。本実施形態に係る容器透明部40は、容器本体部21への加工を極力抑えて耐圧性能の低下を極力抑えるようにして、容器本体部21に設けられている。 Therefore, the container 13 includes a container transparent portion 40 that is partially provided in the container main body portion 21 so that the state of the filter surface 10 can be visually recognized from the outside. The container transparent part 40 is formed of a transparent pressure-resistant glass material such as quartz glass or acrylic glass. The container 13 is required to have a pressure resistance that can sufficiently withstand the pressure filtration of the filtration stock solution having a high viscosity as described above. The container transparent portion 40 according to the present embodiment is provided in the container main body portion 21 so as to suppress the processing of the container main body portion 21 as much as possible and suppress the decrease in pressure resistance performance as much as possible.
 図2は、図1に示す濾過装置1の要部を示す部分断面図である。図2に示すように、容器透明部40は、容器本体部21の周壁22の一部を切り落とし、その切り落とされた領域を塞ぐようにして前述のガラス材で製作された塊材を周壁22に接合することにより、容器本体部21に設けられる。周壁22は、例えばドリルなどの工具を用いて概略円形の小孔(例えば、径10~30mm)を穿つことで部分的に切り落とされる。容器透明部40は、このような小孔22aと同等に小さく、それにより容器13の耐圧性能を高いままに維持することができる。 FIG. 2 is a partial cross-sectional view showing the main part of the filtration device 1 shown in FIG. As shown in FIG. 2, the container transparent part 40 cuts off a part of the peripheral wall 22 of the container main body part 21, and a lump made of the above-described glass material so as to close the cut-off area is applied to the peripheral wall 22. By bonding, the container body 21 is provided. The peripheral wall 22 is partially cut off by drilling a substantially circular small hole (for example, a diameter of 10 to 30 mm) using a tool such as a drill. The container transparent part 40 is as small as such a small hole 22a, so that the pressure resistance of the container 13 can be maintained high.
 容器透明部40が小さいと、作業員が肉眼で濾過面10の状態を視認することが困難になる可能性がある。そこで濾過装置1は、容器13の外部から容器透明部40を通して濾過面10の状態を撮影する撮影装置41を備えている。撮影装置41は、静止画のみを撮影可能なスチルカメラでもよいが、動画を撮影可能に構成されていれば尚好ましい。詳細図示を省略するが、撮影装置41は、対物レンズを容器透明部40に近接させるように配置される。後の濾過方法についての説明で詳述するが、撮影装置41は、プリコート層15の形成状態、プリコート層15の洗浄状態及び洗浄後の濾過面10の状態を撮影するように構成されている。 If the container transparent portion 40 is small, it may be difficult for an operator to visually recognize the state of the filtration surface 10 with the naked eye. Therefore, the filtration device 1 includes a photographing device 41 that photographs the state of the filtration surface 10 from the outside of the container 13 through the transparent container portion 40. The photographing device 41 may be a still camera capable of photographing only a still image, but it is more preferable that the photographing device 41 is configured to be capable of photographing a moving image. Although detailed illustration is omitted, the imaging device 41 is disposed so that the objective lens is brought close to the container transparent portion 40. As will be described in detail in the description of the subsequent filtration method, the photographing device 41 is configured to photograph the formation state of the precoat layer 15, the washing state of the precoat layer 15, and the state of the filtration surface 10 after washing.
 撮影装置41を用いれば、容器透明部40が小さくても、作業員は撮影装置41の撮影結果を参照することで濾過面10の状態を視認することができる。また、濾過装置1が大型且つ垂直型であって、容器透明部40が高所に配置されるような場合に、作業員は高所で濾過面10を確認する作業を行わなくて済む。 If the imaging device 41 is used, even if the container transparent part 40 is small, the worker can visually recognize the state of the filtration surface 10 by referring to the imaging result of the imaging device 41. Further, when the filtration device 1 is large and vertical and the container transparent portion 40 is disposed at a high place, the worker does not have to perform an operation of checking the filtration surface 10 at the high place.
 濾過装置1は、撮影装置41を容器13外で保持するカメラホルダ42を備える。例えば、カメラホルダ42は両端で開放された筒状である。カメラホルダ42の一端は、周壁22に形成された小孔22aに挿し込まれ、周壁22の外面に気密且つ液密に接合される。容器透明部40は、カメラホルダ42の一端部に緊密に嵌め込まれ、カメラホルダ42の内部は、容器透明部40を介して容器13の内空間20と隔絶される。撮影装置41は筒状の外観を呈する小型CCDカメラであると好ましい。その場合、撮影装置41はカメラホルダ42の他端側開口を通してカメラホルダ42内に嵌め込まれ、それにより撮影装置41は対物レンズを容器13外で容器透明部40に近接させた状態で容器13に対して位置決めされる。 The filtration device 1 includes a camera holder 42 that holds the photographing device 41 outside the container 13. For example, the camera holder 42 has a cylindrical shape opened at both ends. One end of the camera holder 42 is inserted into a small hole 22a formed in the peripheral wall 22, and is joined to the outer surface of the peripheral wall 22 in an air-tight and liquid-tight manner. The container transparent part 40 is closely fitted to one end of the camera holder 42, and the inside of the camera holder 42 is isolated from the inner space 20 of the container 13 through the container transparent part 40. The photographing device 41 is preferably a small CCD camera having a cylindrical appearance. In that case, the imaging device 41 is fitted into the camera holder 42 through the opening on the other end side of the camera holder 42, whereby the imaging device 41 is placed in the container 13 with the objective lens being close to the container transparent part 40 outside the container 13. Positioned against.
 撮影装置41を容器13外に配置すると、撮影装置41が耐圧性及び耐溶剤性を備えていなくてもよい。よって、その他の設計要求(サイズ、解像度及び視野など)に重きをおいて撮影装置41を選択することができる。 When the photographing apparatus 41 is disposed outside the container 13, the photographing apparatus 41 may not have pressure resistance and solvent resistance. Therefore, the imaging device 41 can be selected with emphasis on other design requirements (size, resolution, field of view, etc.).
 撮影装置41の撮像面は、例えばCCDのような光電変換素子により構成され、撮影装置41の撮影結果は電子データ(以下、撮影データ)としてコンピュータ45に転送される。作業員は、コンピュータ45のディスプレイに撮影データを表示することで撮影結果を参照することができ、濾過面10の状態を視覚的に確認することができる。 The imaging surface of the imaging device 41 is composed of, for example, a photoelectric conversion element such as a CCD, and the imaging result of the imaging device 41 is transferred to the computer 45 as electronic data (hereinafter referred to as imaging data). The worker can refer to the photographing result by displaying the photographing data on the display of the computer 45, and can visually confirm the state of the filtration surface 10.
 濾過装置1は、濾過面10に光を照射する照明装置44を備える。照明装置44は容器13に収容されてもよく、容器13外に配置されてもよい。容器13外に配置される場合には、照明装置44がカメラホルダ42に保持されてもよいし、撮影装置41に内蔵されていてもよい。濾過面10を照明することで、鮮明な撮影結果を得ることができる。 The filtration device 1 includes an illumination device 44 that irradiates the filtration surface 10 with light. The illumination device 44 may be accommodated in the container 13 or may be disposed outside the container 13. When arranged outside the container 13, the illumination device 44 may be held by the camera holder 42 or may be built in the photographing device 41. By illuminating the filtration surface 10, a clear photographing result can be obtained.
 カメラホルダ42の中心軸線Bは、ステム11の軸線Aに対して傾斜しながら、周壁22から撮影対象の濾過面10から離れるように延在している。カメラホルダ42がこのように設けられることで、カメラホルダ42に保持された撮影装置41で濾過面10を撮影することができる。 The central axis B of the camera holder 42 extends away from the filtration surface 10 to be photographed from the peripheral wall 22 while being inclined with respect to the axis A of the stem 11. By providing the camera holder 42 in this way, the filtering surface 10 can be photographed by the photographing device 41 held by the camera holder 42.
 図3は、図1のIII-III線に沿って切断して示す濾過装置1の断面図である。図3に示すように、撮影装置41は、濾過面10の周方向の一部であって、濾過面10の内周縁の一部と外周縁の一部とを含む領域43を撮影可能であればよい。撮影装置41の視野が、このように限られた領域43のみ撮影可能なように小さくても、回転機構25(図1を参照)で濾過面10を回転させながら動画を撮影し続ける又は静止画を連射撮影することによって、濾過面10全体についての撮影結果を得ることができる。 FIG. 3 is a cross-sectional view of the filtration device 1 cut along the line III-III in FIG. As shown in FIG. 3, the photographing device 41 is capable of photographing a region 43 that is a part in the circumferential direction of the filtration surface 10 and includes a part of the inner peripheral edge and a part of the outer peripheral edge of the filtration surface 10. That's fine. Even if the field of view of the imaging device 41 is so small that only the limited region 43 can be imaged, the moving mechanism 25 (see FIG. 1) continues to shoot moving images while rotating the filtration surface 10 or still images. Can be obtained as a result of continuous shooting.
 図1に戻り、濾過装置1は複数の濾材12を有するところ、容器透明部40は、これら複数の濾材12に個別対応する複数の濾過面10のうち、一部又は全部の濾過面10の状態を外部から視認可能に構成される。ここで、複数の濾材12は、互いに同じ形状を有する。また、容器13の容積に対する濾過面積の比率を極力大きくするために、濾材12同士の間隔は極力小さく設定される。よって、現実的には、1つの容器透明部40を通して1つの濾過面10のみの状態を視認可能である。そこで、容器本体部21には、複数の容器透明部40が設けられている。 Returning to FIG. 1, the filtering device 1 has a plurality of filter media 12, and the container transparent part 40 is in a state of a part or all of the filter surfaces 10 among the plurality of filter surfaces 10 individually corresponding to the plurality of filter media 12. Is configured to be visible from the outside. Here, the plurality of filter media 12 have the same shape. Further, in order to increase the ratio of the filtration area to the volume of the container 13 as much as possible, the interval between the filter media 12 is set as small as possible. Therefore, in reality, it is possible to visually recognize the state of only one filtration surface 10 through one container transparent portion 40. Therefore, the container body 21 is provided with a plurality of container transparent portions 40.
 前述のとおり、濾過装置1が大型であれば濾材12の個数が数十に及ぶ。全部の濾過面10の状態を視認可能なように濾材12と同数の容器透明部40を容器本体部21に設けるとなると、濾過装置1の製造は煩雑になる。本実施形態では、容器透明部40が、一部の濾過面10のみの状態を外部から視認可能に構成される。それにより、濾過面10の状態を高度に確認することと、濾過装置1を簡便に製造することとの両立が図られる。 As described above, if the filtration device 1 is large, the number of filter media 12 reaches several tens. If the same number of container transparent parts 40 as the filter medium 12 are provided in the container main body 21 so that the state of all the filtration surfaces 10 can be visually recognized, the manufacture of the filtration device 1 becomes complicated. In this embodiment, the container transparent part 40 is comprised so that the state of only some filtration surfaces 10 can be visually recognized from the outside. Thereby, coexistence with confirming the state of the filtration surface 10 highly and manufacturing the filtration apparatus 1 simply is achieved.
 例えば、容器13は、3つの容器透明部40(40a~c)を有する。容器透明部40aは、液供給口26の近く、好ましくは液供給口26の最も近くに位置する濾過面10aの状態を視認可能にする。容器透明部40bは、廃材排出口29の近く、好ましくは廃材排出口29の最も近くに位置する濾過面10bの状態を視認可能にする。これにより、液供給口26又は廃材排出口29の近辺で偏流が起こって濾過面10a,10bの状態が不安定となっても、これを容器透明部40a,40bを通して視認することができる。容器透明部40cは、濾過面10a,10bの中間(ちょうど中央でなくてもよい)に位置する濾過面10cの状態を視認可能とする。濾過面10cの状態を参照しながら濾過面10a,10bの状態を確認することで、濾過面10a,10bの状態の良否を判定しやすくなる。 For example, the container 13 includes three container transparent portions 40 (40a to 40c). The container transparent part 40a makes the state of the filtration surface 10a located near the liquid supply port 26, preferably closest to the liquid supply port 26 visible. The container transparent part 40b makes the state of the filtration surface 10b located near the waste material discharge port 29, preferably closest to the waste material discharge port 29 visible. Thereby, even if a drift occurs near the liquid supply port 26 or the waste material discharge port 29 and the state of the filtration surfaces 10a and 10b becomes unstable, this can be visually recognized through the container transparent portions 40a and 40b. The container transparent part 40c enables visual recognition of the state of the filtration surface 10c located in the middle (not necessarily the center) between the filtration surfaces 10a and 10b. By confirming the state of the filtration surfaces 10a and 10b while referring to the state of the filtration surface 10c, it becomes easy to determine the quality of the state of the filtration surfaces 10a and 10b.
 また、廃材配管36は、廃材通路37を形成する配管本体部38を有する。廃材流通中の廃材通路37の内圧は、濾過中の容器13の内圧よりも低い。このため、配管本体部38は、容器本体部21ほど高い耐圧性能を要求されない。廃材配管36は、例えば鋼管又は合成樹脂管である。配管本体部38は光透過性を有しない。そのため、作業員は、廃材配管36の外部から配管本体部38を通して廃材通路37及びこれを流れる廃材を視認することができない。 Further, the waste material pipe 36 has a pipe body portion 38 that forms a waste material passage 37. The internal pressure of the waste material passage 37 during the distribution of the waste material is lower than the internal pressure of the container 13 during filtration. For this reason, the piping main body portion 38 is not required to have a pressure resistance performance as high as that of the container main body portion 21. The waste material pipe 36 is, for example, a steel pipe or a synthetic resin pipe. The pipe main body 38 does not have light transmittance. Therefore, the worker cannot visually recognize the waste material passage 37 and the waste material flowing through the pipe main body portion 38 from the outside of the waste material pipe 36.
 そこで、廃材配管36は、配管本体部38に部分的に設けられて廃材通路37を流れる廃材を外部から視認可能とする配管透明部50を有している。配管透明部50は、容器透明部40と同様にして、例えば石英ガラスやアクリルガラスのような透明な耐圧ガラス材で形成される。例えば、配管透明部50は、配管本体部38の一部を切り落とし、その切り落とされた領域を塞ぐようにして前述の透明ガラス材で製作された板材を配管本体部38に接合することにより、配管本体部38に設けられる。配管透明部50(すなわち、配管本体部38から切り落とされる領域)は、作業員が肉眼で当該配管透明部50を通して廃材通路37を視認するために十分に大きなサイズを有し、容器透明部40よりも大きい。廃材通路37の内圧は比較的低いので、配管透明部50を設置するに際して高い耐圧性能を要求されない。そのため、配管本体部36の一部を作業員の目視を許容する大きなサイズで切り落としても、実用上問題とならないで済む。本実施形態では、単一の配管透明部50が、廃材配管に設けられているが、必要に応じて複数の配管透明部50を廃材配管36に設けてもよい。 Therefore, the waste material pipe 36 includes a pipe transparent portion 50 that is partially provided in the pipe main body portion 38 so that the waste material flowing through the waste material passage 37 can be visually recognized from the outside. The pipe transparent part 50 is formed of a transparent pressure-resistant glass material such as quartz glass or acrylic glass, similarly to the container transparent part 40. For example, the pipe transparent part 50 cuts off a part of the pipe main body part 38, and joins a plate material made of the above-mentioned transparent glass material to the pipe main body part 38 so as to block the cut-off area. Provided in the main body 38. The pipe transparent part 50 (that is, the region cut off from the pipe main body part 38) has a sufficiently large size so that an operator can visually recognize the waste material passage 37 through the pipe transparent part 50 with the naked eye. Is also big. Since the internal pressure of the waste material passage 37 is relatively low, high pressure resistance is not required when installing the transparent pipe portion 50. Therefore, even if a part of the pipe main body portion 36 is cut off with a large size that allows the operator to visually check, there is no practical problem. In the present embodiment, the single transparent pipe portion 50 is provided in the waste material pipe, but a plurality of transparent pipe portions 50 may be provided in the waste material pipe 36 as necessary.
 [濾過方法]
 図4は、本実施形態に係る濾過方法を示すフローチャートである。なお、以降の説明においては、濾過装置1の構成要素には図1~図3に示した参照符号を適宜付す。図4に示すように、本実施形態に係る濾過方法の基本的手順として、先ず、濾過面10に微細粒子を堆積させることによりプリコート層15を形成する(プリコート層形成工程S1)。プリコート層形成工程S1の後に、濾過原液を液供給ポンプ34で加圧しながら液供給口26を介して容器13の内空間20へ供給し、濾過原液をプリコート層15及び濾過面10で濾過する(濾過工程S2)。濾過能力が充分であれば(S3:NO)、濾過工程S2を続行する。濾過面10の閉塞により濾過能力が低下すると(S3:YES)、濾過工程S2を停止し、濾過面10からプリコート層15を剥離して濾過面10を洗浄する(洗浄工程S4)。洗浄工程S4が終わると、プリコート層形成工程S1を行って新たなプリコート層15を濾過面10上に形成し、そのうえで濾過工程S2を再開する。
[Filtration method]
FIG. 4 is a flowchart showing the filtration method according to the present embodiment. In the following description, the reference numerals shown in FIGS. 1 to 3 are appropriately attached to the components of the filtration device 1. As shown in FIG. 4, as a basic procedure of the filtration method according to the present embodiment, first, the precoat layer 15 is formed by depositing fine particles on the filtration surface 10 (precoat layer forming step S1). After the precoat layer forming step S1, the filtered stock solution is supplied to the inner space 20 of the container 13 through the liquid supply port 26 while being pressurized by the liquid supply pump 34, and the filtered stock solution is filtered through the precoat layer 15 and the filtration surface 10 ( Filtration step S2). If the filtration capacity is sufficient (S3: NO), the filtration step S2 is continued. When the filtration capacity decreases due to the blocking of the filtration surface 10 (S3: YES), the filtration step S2 is stopped, the precoat layer 15 is peeled off from the filtration surface 10 and the filtration surface 10 is washed (washing step S4). When the cleaning step S4 is completed, the precoat layer forming step S1 is performed to form a new precoat layer 15 on the filtration surface 10, and then the filtration step S2 is restarted.
 なお、濾過工程S2では、濾過速度(濾液流量)が一定に保たれるように、液供給ポンプ34の吐出圧、ひいては濾過圧力が調整される。濾過工程S2では、濾材12の目詰まりが進行して濾過能力が漸次低下していくため、濾過速度の一定化のため吐出圧及び濾過圧力を漸次上昇させていくことになる。ステップS3では、具体的な一例として、吐出圧又は濾過圧力が所定の最大圧まで上昇したか否かに基づいて、濾過能力が判定される。最大圧未満であれば濾過能力が残っているとして濾過工程S2を続行し、最大圧に達すると濾過能力が低下したとして濾過工程S2を終了する。 In the filtration step S2, the discharge pressure of the liquid supply pump 34 and thus the filtration pressure are adjusted so that the filtration rate (filtrate flow rate) is kept constant. In the filtration step S2, since the clogging of the filter medium 12 progresses and the filtration capacity gradually decreases, the discharge pressure and the filtration pressure are gradually increased to make the filtration speed constant. In step S3, as a specific example, the filtration capacity is determined based on whether or not the discharge pressure or the filtration pressure has increased to a predetermined maximum pressure. If the pressure is less than the maximum pressure, the filtration step S2 is continued assuming that the filtration capability remains, and if the maximum pressure is reached, the filtration step S2 is terminated because the filtration capability is reduced.
 本実施形態に係る濾過方法は、洗浄工程S4からプリコート層形成工程S1に移行する間の段階で、容器透明部40を通して確認される濾過面10の状態の良否を判定する判定工程S5を含む。この判定工程S5では、洗浄後の濾過面10の状態の良否、典型的には洗浄工程S4で濾過面10からプリコート層15が実際に完全に剥離されたのか否かを判定する。この判定工程S5で良判定がなされると(S5:OK)、次の工程、すなわちプリコート層形成工程S1に進む。この判定工程S5で否判定がなされると(S5:NG)、前の工程、すなわち洗浄工程S4をやり直す。 The filtration method according to the present embodiment includes a determination step S5 that determines whether the state of the filtration surface 10 confirmed through the container transparent part 40 is good or not during the transition from the cleaning step S4 to the precoat layer formation step S1. In this determination step S5, it is determined whether or not the state of the filter surface 10 after cleaning is good, typically whether or not the precoat layer 15 has actually been completely peeled from the filter surface 10 in the cleaning step S4. When a good determination is made in this determination step S5 (S5: OK), the process proceeds to the next step, that is, the precoat layer formation step S1. When a negative determination is made in this determination step S5 (S5: NG), the previous step, that is, the cleaning step S4 is performed again.
 また、本実施形態に係る濾過方法は、プリコート層形成工程S1から濾過工程S2に移行する間の段階で、容器透明部40を通して確認される濾過面10の状態の良否を判定する判定工程S6を含む。この判定工程S6では、プリコート層15の形成状態の良否、すなわち、プリコート層形成工程S1においてプリコート層15が適切に濾過面10上に形成されているのか否かを判定する。この判定工程S6で良判定がなされると(S6:OK)、次の工程、すなわち濾過工程S2に進む。この判定工程S12で否判定がなされると(S6:NG)、前の工程、すなわちプリコート層形成工程S1をやり直す。本実施形態では、不良のプリコート層15を濾過面10から剥離してから適切なプリコート層15を形成するため、洗浄工程S4まで戻ってからプリコート層形成工程S1をやり直すこととしている。 Further, the filtration method according to the present embodiment includes a determination step S6 for determining whether the state of the filtration surface 10 confirmed through the container transparent portion 40 is good or not during the transition from the precoat layer forming step S1 to the filtration step S2. Including. In this determination step S6, it is determined whether or not the precoat layer 15 is formed properly, that is, whether or not the precoat layer 15 is appropriately formed on the filtration surface 10 in the precoat layer formation step S1. When a good determination is made in this determination step S6 (S6: OK), the process proceeds to the next step, that is, the filtration step S2. If a negative determination is made in this determination step S12 (S6: NG), the previous step, that is, the precoat layer formation step S1 is performed again. In this embodiment, in order to form an appropriate precoat layer 15 after the defective precoat layer 15 is peeled off from the filtration surface 10, the precoat layer forming step S1 is performed again after returning to the cleaning step S4.
 図5は、図4に示す洗浄工程S4及びその後の判定工程S5を示すフローチャートである。図5に示すように、洗浄工程S4では、先ず、容器13内の濾過原液を廃材排出口29から排出する(ステップS41)。次に、洗浄液を液供給口26から容器13内に注入し、注入された洗浄液を廃材排出口29から排出する(ステップS42)。洗浄液は、濾過原液に溶解している溶質(濾過原液がアセテート繊維の紡糸原液である場合、セルロースアセテート)を溶解可能であり、濾過原液の溶媒(濾過原液がアセテート繊維の紡糸原液である場合、例えばアセトン)を好適に適用することができる。洗浄液は、濾過面10a上に残ったゲル状の不溶解物を溶解することができ、洗浄液によって不溶解物を濾過面10aから除去することができる。 FIG. 5 is a flowchart showing the cleaning step S4 shown in FIG. 4 and the subsequent determination step S5. As shown in FIG. 5, in the cleaning step S4, first, the filtrate stock solution in the container 13 is discharged from the waste material discharge port 29 (step S41). Next, the cleaning liquid is injected into the container 13 from the liquid supply port 26, and the injected cleaning liquid is discharged from the waste material discharge port 29 (step S42). The washing solution can dissolve the solute dissolved in the filtration stock solution (if the filtration stock solution is a spinning stock solution of acetate fiber), and the solvent of the filtration stock solution (if the filtration stock solution is a spinning stock solution of acetate fiber, For example, acetone) can be suitably applied. The washing liquid can dissolve the gel-like insoluble matter remaining on the filtration surface 10a, and the insoluble matter can be removed from the filtration surface 10a by the washing liquid.
 ステップS41,S42の実行中、作業員は、配管透明部50を通して廃材通路36を通流する廃液を視認し、廃液の粘性を確認する。廃液の粘性が高いと認められれば(S43:NO)、濾過原液及びその夾雑物が容器13内に残っているとして、洗浄液の注入及び排出を続行する(S42)。廃液の粘性が低くなったと認められれば(S43:YES)、洗浄液の注入を停止する。廃液の粘性を確認しながら洗浄液の注入続行又は停止を決定するので、濾過原液及びその夾雑物が容器13内に残るのを防ぐことができる。このため、次回の濾過工程S2において濾過能力の低下速度(濾過圧力の上昇速度)を好適に抑えることができ、次回の濾過工程S2の実施期間を長くとることができる。 During execution of steps S41 and S42, the worker visually recognizes the waste liquid flowing through the waste material passage 36 through the pipe transparent portion 50, and confirms the viscosity of the waste liquid. If it is recognized that the viscosity of the waste liquid is high (S43: NO), the injection and discharge of the cleaning liquid are continued assuming that the filtering stock solution and its impurities remain in the container 13 (S42). If it is recognized that the viscosity of the waste liquid has decreased (S43: YES), the injection of the cleaning liquid is stopped. Since the continuation or stop of the injection of the cleaning liquid is determined while checking the viscosity of the waste liquid, it is possible to prevent the stock filtrate and its contaminants from remaining in the container 13. For this reason, in the next filtration process S2, the rate of decrease in filtration capacity (rate of increase in filtration pressure) can be suitably suppressed, and the period for carrying out the next filtration process S2 can be increased.
 次いで、不活性ガスをガス供給口28から容器13内に注入し、不活性ガスを容器13内に充填する(ステップS44)。不活性ガスへの置換が完了すると、回転機構25を動作させ、プリコート層15を濾過面10から剥離する(ステップS45)。再度、洗浄液を注入し、濾過面10から振り落とされたプリコート層15を洗浄液と共に廃材排出口29から排出する(ステップS46)。これにより洗浄工程S4が終了する。 Next, an inert gas is injected into the container 13 from the gas supply port 28, and the inert gas is filled into the container 13 (step S44). When the replacement with the inert gas is completed, the rotation mechanism 25 is operated, and the precoat layer 15 is peeled off from the filtration surface 10 (step S45). The cleaning liquid is again injected, and the precoat layer 15 shaken off from the filtration surface 10 is discharged together with the cleaning liquid from the waste material discharge port 29 (step S46). Thereby, cleaning process S4 is complete | finished.
 判定工程S5においては、撮影装置41及び照明装置44を起動する(ステップS51)。次に、回転機構25を動作させ濾材12を回転させる(ステップS52)。判定工程S5での濾材12の回転速度は洗浄工程S4での濾材12の回転速度よりも遅い。濾材12が回転している間、撮影装置41は容器透明部40を通して洗浄後の濾過面10の状態を撮影し続ける。濾材12が一周回転すると回転機構25を停止して撮影を終了する。次に、撮影データをコンピュータ45に転送し(ステップS53)、コンピュータ45のディスプレイに撮影データを表示させる。作業員は、表示された撮影データを参照することにより容器透明部40を通して濾過面10の状態を確認する(ステップS54)。 In the determination step S5, the photographing device 41 and the illumination device 44 are activated (step S51). Next, the rotation mechanism 25 is operated to rotate the filter medium 12 (step S52). The rotation speed of the filter medium 12 in the determination step S5 is slower than the rotation speed of the filter medium 12 in the cleaning process S4. While the filter medium 12 is rotating, the photographing device 41 continues to photograph the state of the filtered surface 10 after washing through the container transparent part 40. When the filter medium 12 rotates once, the rotation mechanism 25 is stopped and the photographing is finished. Next, the photographic data is transferred to the computer 45 (step S53), and the photographic data is displayed on the display of the computer 45. The worker confirms the state of the filtration surface 10 through the container transparent part 40 by referring to the displayed photographing data (step S54).
 このとき作業員は、濾過面10にプリコート層15が完全に剥離されているのか残留しているのかを確認し、それにより洗浄後の濾過面10の状態の良否を判定する。濾過面10にプリコート層15が残留しており濾過面10の状態が不良であると判定されれば(S55:NG)、洗浄工程S4に戻る。このとき、具体的な一例として、プリコート層15を剥離するステップS45に戻ることができる。再実施される洗浄工程S4では、プリコート層15が濾過面10から完全に剥離されるように、例えば濾材12の回転速度及び回転時間のような回転機構25の動作パラメータが適宜変更される。プリコート層が濾過面10から完全に剥離されており濾過面10の状態が良であると判定されれば(S55:OK)、プリコート層形成工程S1に進む。 At this time, the worker checks whether the precoat layer 15 is completely peeled off or remains on the filtration surface 10, and thereby determines whether the state of the filtration surface 10 after washing is good or bad. If it is determined that the precoat layer 15 remains on the filtration surface 10 and the state of the filtration surface 10 is defective (S55: NG), the process returns to the cleaning step S4. At this time, as a specific example, the process can return to step S45 in which the precoat layer 15 is peeled off. In the cleaning step S4 to be performed again, the operation parameters of the rotation mechanism 25 such as the rotation speed and rotation time of the filter medium 12 are appropriately changed so that the precoat layer 15 is completely peeled off from the filtration surface 10. If it is determined that the precoat layer is completely separated from the filtration surface 10 and the state of the filtration surface 10 is good (S55: OK), the process proceeds to the precoat layer formation step S1.
 図6は、図4に示すプリコート層形成工程S1及びその後の判定工程S6を示すフローチャートである。図6に示すように、プリコート層形成工程S1では、先ず、濾過助剤を懸濁させたスラリーを液供給口26から容器13内に注入し、スラリーで容器13内を充填する(ステップS11)。次に、スラリーを加圧濾過し(ステップS12)、濾液を排出する(ステップS13)。これにより、濾過助剤が濾過面10上に堆積し、プリコート層15が濾過面10上に形成される。その後、不活性ガスをガス供給口28から容器13内に注入し、不活性ガスを容器13内に充填する(ステップS14)。これによりプリコート層形成工程S1が終了する。 FIG. 6 is a flowchart showing the precoat layer forming step S1 shown in FIG. 4 and the subsequent determination step S6. As shown in FIG. 6, in the precoat layer forming step S1, first, a slurry in which a filter aid is suspended is poured into the container 13 from the liquid supply port 26, and the container 13 is filled with the slurry (step S11). . Next, the slurry is filtered under pressure (step S12), and the filtrate is discharged (step S13). Thereby, the filter aid is deposited on the filtration surface 10, and the precoat layer 15 is formed on the filtration surface 10. Thereafter, an inert gas is injected into the container 13 from the gas supply port 28, and the inert gas is filled into the container 13 (step S14). Thereby, precoat layer formation process S1 is complete | finished.
 判定工程S6においては、判定工程S5と同様、撮影装置41及び照明装置44を起動し(ステップS61)、濾材12を回転させ(ステップS62)、濾材12が回転している間に撮影装置41が容器透明部40を通してプリコート層15の形成状態を撮影し続ける。濾材12が一周回転すると回転機構25を停止して撮影を終了する。次に撮影データをコンピュータ45に転送し(ステップS63)、コンピュータ45のディスプレイに撮影データを表示させる。作業員は、表示された撮影データを参照することにより容器透明部40を通して濾過面10の状態を確認する(ステップS64)。 In the determination step S6, as in the determination step S5, the photographing device 41 and the illumination device 44 are activated (step S61), the filter medium 12 is rotated (step S62), and the image pickup apparatus 41 is rotated while the filter medium 12 is rotating. The formation state of the precoat layer 15 is continuously photographed through the container transparent part 40. When the filter medium 12 rotates once, the rotation mechanism 25 is stopped and the photographing is finished. Next, the photographing data is transferred to the computer 45 (step S63), and the photographing data is displayed on the display of the computer 45. The worker confirms the state of the filtration surface 10 through the container transparent part 40 by referring to the displayed photographing data (step S64).
 このとき作業員は、撮影データを参照しながらプリコート層15の厚さが所望範囲内に収まっているのか否か、プリコート層15の厚さが濾過面10上の全体にわたって均一であるか否かを確認する。それにより、作業員はプリコート層15の形成状態の良否を判定することができる。 At this time, the worker refers to the photographing data, whether the thickness of the precoat layer 15 is within a desired range, and whether the thickness of the precoat layer 15 is uniform over the entire filtration surface 10. Confirm. Thereby, the worker can determine whether the precoat layer 15 is formed properly.
 ここで、濾過助剤及び濾過面10はいずれも非透明であり、両者の色は互いに異なる。濾過助剤に珪藻土を用いる場合、その色は例えば白色又は鮭肉色であり、濾過助剤にパーライトを用いる場合、その色は例えば白色である。濾材12が化学繊維製の濾布を有し、その濾布の表面が濾過面10を成す場合、濾布は、濾過助剤とは異なる色、例えば灰色又は黒色のものが好適に選択される。作業員は、撮影データを参照して、プリコート層15の色が濾過助剤の色成分に濾過面10の色成分がどの程度混じったものであるのかを確認することで、プリコート層15の厚さを把握することが可能である。濾過助剤の色成分が強すぎれば、プリコート層15の厚さが所望範囲を超えて大きいと判定することができる。濾過面10の色成分が強すぎれば、プリコート層15の厚さが所望範囲を超えて小さいと判定することができる。色ムラが認められるか否かに応じて、厚さムラが生じているか否かを判定することができる。特に、本実施形態では、照明装置44を用いて撮影しているため鮮明な撮影結果を得ることができ、それにより判定精度が向上する。 Here, both the filter aid and the filtration surface 10 are non-transparent, and both colors are different from each other. When diatomaceous earth is used as the filter aid, the color is, for example, white or amber color, and when pearlite is used as the filter aid, the color is, for example, white. When the filter medium 12 has a filter cloth made of chemical fiber and the surface of the filter cloth forms the filter surface 10, the filter cloth is preferably selected to have a color different from the filter aid, for example, gray or black. . The worker refers to the photographing data and confirms how much the color of the precoat layer 15 is mixed with the color component of the filter aid and the color component of the filter surface 10 to thereby determine the thickness of the precoat layer 15. It is possible to grasp this. If the color component of the filter aid is too strong, it can be determined that the thickness of the precoat layer 15 exceeds the desired range. If the color component of the filtration surface 10 is too strong, it can be determined that the thickness of the precoat layer 15 is smaller than the desired range. Whether or not thickness unevenness has occurred can be determined according to whether or not color unevenness is recognized. In particular, in the present embodiment, since shooting is performed using the illumination device 44, a clear shooting result can be obtained, thereby improving the determination accuracy.
 プリコート層15の厚さが所望範囲内に収まっておらず又はプリコート層15に厚さムラが生じており、プリコート層15の形成状態が不良であると判定されれば(S65:NG)、洗浄工程S4又はプリコート層形成工程S1に戻る。洗浄工程S4に戻る場合の具体的一例として、プリコート層15を剥離するステップS45に戻ることができる。再実施されるプリコート層形成工程S1では、例えばスラリー11の供給速度、液供給ポンプ34の吐出圧及びスラリー11の濾過速度のような濾過操作パラメータを適宜変更する。濾過操作パラメータの試行錯誤が行われることで、濾過装置1においてプリコート層15を適切に形成するための最適な濾過操作パラメータを経験的に得ることができる。よって、濾過方法を継続的に実施することでプリコート層形成工程S1のやり直しを低減し、それにより長期的に見て生産性を高くすることができる。プリコート層15の厚さが所望範囲内に収まっており且つプリコート層15に厚さムラが生じておらず、プリコート層15の形成状態が良であると判定されれば(S65:OK)、濾過工程S2に進む。 If the thickness of the precoat layer 15 is not within the desired range, or the thickness of the precoat layer 15 is uneven, and the formation state of the precoat layer 15 is determined to be defective (S65: NG), cleaning is performed. Returning to the step S4 or the precoat layer forming step S1. As a specific example of returning to the cleaning step S4, the process can return to step S45 where the precoat layer 15 is peeled off. In the precoat layer forming step S1 to be performed again, for example, the filtration operation parameters such as the supply rate of the slurry 11, the discharge pressure of the liquid supply pump 34, and the filtration rate of the slurry 11 are appropriately changed. By performing trial and error of the filtration operation parameters, the optimum filtration operation parameters for appropriately forming the precoat layer 15 in the filtration device 1 can be obtained empirically. Therefore, it is possible to reduce the redo of the precoat layer forming step S1 by continuously performing the filtration method, thereby increasing productivity in the long run. If it is determined that the thickness of the precoat layer 15 is within the desired range, the thickness unevenness is not generated in the precoat layer 15, and the precoat layer 15 is formed well (S65: OK), filtration is performed. Proceed to step S2.
 上記構成の濾過装置1を用いて実施される本実施形態に係る濾過方法によれば、高い耐圧性を有して光透過性を有しない容器13内で、洗浄液による濾過面10の洗浄とプリコート層15の濾過面10からの剥離とが自動的に行われる場合においても、容器透明部40を通して洗浄後の濾過面10の状態を視覚的に確認することができる。このため、洗浄後の濾過面10の状態の良否を判定することができる。良判定が得られるまで洗浄工程S4をやり直すことで、次に控えるプリコート層形成工程S1ではプリコート層を適切に形成しやすくなる。ひいては、その次に控える濾過工程S2において濾過能力の低下(濾過圧力の上昇)の速度を抑えることができる。 According to the filtration method according to the present embodiment implemented using the filtration device 1 having the above-described configuration, the filtration surface 10 is cleaned and precoated with the cleaning liquid in the container 13 having high pressure resistance and no light transmission. Even when the separation of the layer 15 from the filtration surface 10 is automatically performed, the state of the filtration surface 10 after washing can be visually confirmed through the container transparent portion 40. For this reason, the quality of the state of the filtration surface 10 after washing | cleaning can be determined. By repeating the cleaning step S4 until a good determination is obtained, it is easy to appropriately form the precoat layer in the next precoat layer forming step S1. As a result, it is possible to suppress the rate of decrease in filtration capacity (increase in filtration pressure) in the subsequent filtration step S2.
 また、高い耐圧性を有して光透過性を有しない容器13内で、プリコート層15の形成が自動的に行われる場合においても、容器透明部40を通してプリコート層15の形成状態を視覚的に確認することができる。このため、プリコート層15の形成状態の良否を判定することができる。良判定が得られるまでプリコート層形成工程S1をやり直すことで、次に控える濾過工程S2において濾過能力の低下(濾過圧力の上昇)の速度を抑えることができる。 Further, even when the precoat layer 15 is automatically formed in the container 13 having high pressure resistance and no light transmittance, the formation state of the precoat layer 15 is visually confirmed through the container transparent portion 40. Can be confirmed. For this reason, the quality of the formation state of the precoat layer 15 can be determined. By repeating the precoat layer forming step S1 until a good determination is obtained, the rate of decrease in filtration capacity (increase in filtration pressure) can be suppressed in the subsequent filtration step S2.
 このように、洗浄後の濾過面10の状態、プリコート層15の形成後の濾過面10の状態を容易且つ適切に管理することができる。それにより、濾過工程S2において濾過能力を高く維持することができる。また、当該濾過工程S2の実施期間を長くとることができ、濾液の生産性を高めることができる。濾過原液がアセテート繊維の紡糸原液である場合には、アセテート繊維の生産性を高めることに繋がる。 Thus, the state of the filtration surface 10 after washing and the state of the filtration surface 10 after forming the precoat layer 15 can be managed easily and appropriately. Thereby, the filtration capability can be kept high in the filtration step S2. Moreover, the implementation period of the said filtration process S2 can be taken long, and productivity of a filtrate can be improved. When the filtration stock solution is a spinning stock solution of acetate fiber, it leads to an increase in the productivity of acetate fiber.
 洗浄工程S4のプリコート層を廃材として排出するステップS46において、作業員が配管透明部50を通して廃材通路37内を流れる廃材を確認してもよい。ステップS55の良否判定においてこの確認結果を加味することで、良否判定精度を向上させることができる。 In step S46 in which the precoat layer in the cleaning step S4 is discharged as waste material, the worker may check the waste material flowing in the waste material passage 37 through the transparent pipe portion 50. By taking this confirmation result into consideration in the pass / fail determination in step S55, the pass / fail determination accuracy can be improved.
 また、不活性ガスが容器13内で充填されている状況下で、撮影装置41による洗浄後の濾過面10の撮影が行われる。したがって、鮮明な撮影結果を得ることができ、洗浄良否の判定精度が向上する。プリコート層15の形成状態を撮影するときも同様であり、そのためプリコート層15の形成状態の良否判定精度が向上する。 Further, under the condition that the inert gas is filled in the container 13, the imaging of the filtration surface 10 after the cleaning by the imaging device 41 is performed. Therefore, a clear photographing result can be obtained, and the accuracy of determining whether or not the cleaning is good is improved. The same applies to the case where the formation state of the precoat layer 15 is photographed. Therefore, the quality determination accuracy of the formation state of the precoat layer 15 is improved.
 これまで実施形態に係る濾過装置、濾過方法及びアセテート繊維の製造方法について説明したが、上記構成及び方法は本発明の範囲内で適宜変更可能である。 Although the filtration device, the filtration method, and the acetate fiber manufacturing method according to the embodiments have been described so far, the above-described configuration and method can be appropriately changed within the scope of the present invention.
 リーフフィルタは、水平型でもよい。濾過装置1は、プリコート法を用いた加圧式ケーク濾過を行うことができ且つ濾過面の状態を外部から容易には視認できない濾過器であれば、リーフフィルタとは異なる濾過器であってもよい。 The leaf filter may be a horizontal type. The filter device 1 may be a filter different from the leaf filter as long as it can perform pressurized cake filtration using the precoat method and the filter surface cannot be easily visually recognized from the outside. .
 上記実施形態では、撮影装置41が、プリコート層15の形成状態及びプリコート層15を剥離して洗浄された後の濾過面10の状態の両方を撮影するよう構成される。また、濾過方法が、洗浄工程S4からプリコート層形成工程S1に移行する間の段階及びプリコート層形成工程S1から濾過工程S2に移行する間の段階の両方において、濾過面10の状態の良否を判定する判定工程S5,S6を備える。しかし、撮影装置41は、少なくとも、プリコート層15の形成状態、又は、プリコート層15を剥離して洗浄された後の濾過面10の状態を撮影するよう構成されていてもよい。濾過方法は、少なくとも、洗浄工程S4からプリコート層形成工程S1に移行する間の段階、又は、プリコート層形成工程S1から濾過工程S2に移行する間の段階において、濾過面10の状態の良否を判定する判定工程S5,S6を備えていればよい。 In the above embodiment, the photographing device 41 is configured to photograph both the formation state of the precoat layer 15 and the state of the filtration surface 10 after the precoat layer 15 is peeled off and cleaned. Moreover, the quality of the state of the filtration surface 10 is determined in both the stage during the transition from the cleaning process S4 to the precoat layer formation process S1 and the stage during the transition from the precoat layer formation process S1 to the filtration process S2. Determination steps S5 and S6. However, the photographing apparatus 41 may be configured to photograph at least the formation state of the precoat layer 15 or the state of the filtration surface 10 after the precoat layer 15 is peeled off and washed. The filtration method determines the quality of the state of the filtration surface 10 at least during the transition from the cleaning step S4 to the precoat layer formation step S1 or during the transition from the precoat layer formation step S1 to the filtration step S2. What is necessary is just to provide determination process S5, S6 to perform.
 本発明は、種々の濾過原液の濾過に利用可能であり、高分子化合物製品の原料溶液、例えばアセテート繊維の紡糸原液の濾過処理に用いると有益である。 The present invention can be used for the filtration of various filtrate stock solutions, and is useful when used for the filtration treatment of a raw material solution of a polymer compound product, for example, a spinning stock solution of acetate fiber.
1 濾過装置
2 乾式紡糸機
2a 紡糸口金
10 濾過面
12 濾材
13 容器
15 プリコート層
21 容器本体部
25 回転機構
36 廃材配管
37 廃材通路
38 配管本体部
40 容器透明部
41 撮影装置
44 照明装置
50 配管透明部
S1 プリコート層形成工程
S2 濾過工程
S4 洗浄工程
S5,S6 判定工程
DESCRIPTION OF SYMBOLS 1 Filtration apparatus 2 Dry-type spinning machine 2a Spinneret 10 Filtration surface 12 Filter medium 13 Container 15 Precoat layer 21 Container main body part 25 Rotating mechanism 36 Waste material pipe 37 Waste material passage 38 Pipe main body part 40 Container transparent part 41 Photographing apparatus 44 Illumination apparatus 50 Piping transparent Part S1 Precoat layer forming step S2 Filtration step S4 Cleaning step S5, S6 Determination step

Claims (11)

  1.  濾過原液を加圧して濾過面を透過させる濾過と、外部から遮断された前記濾過面の洗浄とが交互に繰り返される濾過装置であって、
     前記濾過面を有する濾材と、
     前記濾材を外部から遮断した状態で収容する容器と、を備え、
     前記容器は、容器本体部と、前記容器本体部に部分的に設けられて外部から前記濾過面の状態を視認可能とする透明部と、を有する、濾過装置。
    A filtration device in which filtration for pressurizing a filtrate solution to permeate the filtration surface and washing of the filtration surface blocked from the outside are repeated alternately,
    A filter medium having the filtration surface;
    A container for containing the filter medium in a state of being cut off from the outside,
    The said container is a filtration apparatus which has a container main-body part and the transparent part which is partially provided in the said container main-body part and can visually recognize the state of the said filtration surface from the outside.
  2.  前記容器の外部から前記透明部を通して前記濾過面の状態を撮影する撮影装置を更に備える、請求項1に記載の濾過装置。 The filtration device according to claim 1, further comprising a photographing device that photographs the state of the filtration surface from the outside of the container through the transparent portion.
  3.  前記濾過を開始する前に前記濾過面上に微細粒子を堆積させることでプリコート層が形成され、前記濾過面を洗浄するときに前記プリコート層が前記濾過面から剥離され、次の前記濾過を再開する前に新たなプリコート層が形成され、
     前記撮影装置は、少なくとも、前記プリコート層の形成状態、又は、前記プリコート層を剥離して洗浄された後の前記濾過面の状態を撮影するように構成される、請求項2に記載の濾過装置。
    Before starting the filtration, a precoat layer is formed by depositing fine particles on the filtration surface. When the filtration surface is washed, the precoat layer is peeled off from the filtration surface, and the next filtration is resumed. A new precoat layer is formed before
    The filtration device according to claim 2, wherein the photographing device is configured to photograph at least a formation state of the precoat layer or a state of the filtration surface after the precoat layer is peeled off and washed. .
  4.  前記濾材を回転させる回転機構を備え、
     前記回転機構が動作すると、前記濾過面上の前記プリコート層が遠心力で外周方向に移動し、それにより前記プリコート層が前記濾過面から剥離される、請求項1乃至3のいずれか1項に記載の濾過装置。
    A rotation mechanism for rotating the filter medium;
    4. The method according to claim 1, wherein when the rotating mechanism is operated, the precoat layer on the filtration surface is moved in an outer peripheral direction by a centrifugal force, whereby the precoat layer is peeled off from the filtration surface. The filtration apparatus as described.
  5.  前記濾材が複数設けられ、前記複数の濾材それぞれに前記濾過面が複数設けられ、
     前記透明部は、前記複数の濾過面の一部又は全部の状態を外部から視認可能に構成される、請求項1乃至4のいずれか1項に記載の濾過装置。
    A plurality of the filter media are provided, and a plurality of the filtration surfaces are provided for each of the plurality of filter media,
    The said transparent part is a filtration apparatus of any one of Claims 1 thru | or 4 comprised so that the state of a part or all of these filtration surfaces can be visually recognized from the outside.
  6.  前記濾過面に光を照射する照明装置を更に備える、請求項1乃至5のいずれか1項に記載の濾過装置。 The filtration device according to any one of claims 1 to 5, further comprising an illumination device that irradiates the filtration surface with light.
  7.  前記容器は、100ポアズ以上の粘度を有する濾過原液を濾過するために十分な耐圧性能を有する、請求項1乃至6のいずれか1項に記載の濾過装置。 The filtration device according to any one of claims 1 to 6, wherein the container has a pressure resistance sufficient to filter a filtrate stock solution having a viscosity of 100 poise or more.
  8.  前記容器に接続され、前記濾過面から剥離されたプリコート層が廃材として流れる廃材通路を形成する廃材配管を更に備え、
     前記廃材配管は、配管本体部と、前記配管本体部に部分的に設けられて前記廃材通路を流れる廃材を外部から視認可能とする透明部と、を備える、請求項1乃至7のいずれか1項に記載の濾過装置。
    A waste material pipe connected to the container and forming a waste material passage in which a precoat layer peeled off from the filtration surface flows as waste material;
    The waste material pipe includes a pipe main body portion and a transparent portion that is partially provided in the pipe main body portion and allows the waste material flowing through the waste material passage to be visually recognized from the outside. The filtration device according to item.
  9.  前記濾過面が水平に向けられ、濾過原液が前記濾過面に対して鉛直に流れる、請求項1乃至8のいずれか1項に記載の濾過装置。 The filtration device according to any one of claims 1 to 8, wherein the filtration surface is oriented horizontally, and the filtrate stock solution flows vertically with respect to the filtration surface.
  10.  請求項1乃至9のいずれか1項に記載の濾過装置を用いて濾過原液を濾過する濾過方法であって、
     前記濾過面に微細粒子を堆積させることによりプリコート層を形成するプリコート層形成工程と、
     前記プリコート層形成工程の後に、濾過原液を加圧して前記プリコート層及び前記濾過面で濾過する濾過工程と、
     前記濾過工程において前記濾過面の閉塞により濾過能力が低下すると、前記濾過工程を停止し、前記濾過面から前記プリコート層を剥離して前記濾過面を洗浄する洗浄工程と、を備え、
     前記洗浄工程の後に前記プリコート層形成工程を行ってから前記濾過工程を再開し、
     少なくとも、前記洗浄工程から前記プリコート層形成工程に移行する間の段階、又は、前記プリコート層形成工程から前記濾過工程に移行する間の段階において、前記透明部を通して確認される前記濾過面の状態の良否を判定する判定工程を更に備え、
     前記判定工程で良判定がなされると次の工程に進み、前記判定工程で否判定がなされると前の工程をやり直す、濾過方法。
    A filtration method of filtering a filtrate stock solution using the filtration device according to any one of claims 1 to 9,
    A precoat layer forming step of forming a precoat layer by depositing fine particles on the filtration surface;
    After the precoat layer forming step, a filtration step of pressurizing the filtrate stock solution and filtering through the precoat layer and the filtration surface;
    In the filtration step, when the filtration capacity is reduced due to the clogging of the filtration surface, the filtration step is stopped, and the washing step of separating the precoat layer from the filtration surface to wash the filtration surface,
    After performing the precoat layer forming step after the washing step, the filtration step is resumed,
    At least during the transition from the cleaning process to the precoat layer forming process, or during the transition from the precoat layer forming process to the filtration process, the state of the filtration surface confirmed through the transparent portion It further comprises a determination step for determining pass / fail,
    A filtration method that proceeds to the next step when a good determination is made in the determination step and restarts the previous step when a negative determination is made in the determination step.
  11.  請求項1乃至9のいずれか1項に記載の濾過装置を用いて紡糸原液を濾過処理し、濾過された紡糸原液を紡糸口金から押し出してセルロースアセテートを乾式紡糸する、アセテート繊維の製造方法であって、
     前記濾過処理において請求項10に記載の濾過方法を用いる、アセテート繊維の製造方法。
    A method for producing an acetate fiber, wherein the spinning solution is filtered using the filtration device according to any one of claims 1 to 9, and the filtered spinning solution is extruded from a spinneret to dry-spin cellulose acetate. And
    The manufacturing method of an acetate fiber which uses the filtration method of Claim 10 in the said filtration process.
PCT/JP2013/006756 2013-11-18 2013-11-18 Filtration device, filtration method, acetate fiber manufacturing method WO2015071942A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380081017.8A CN105745000A (en) 2013-11-18 2013-11-18 Filtration device, filtration method, acetate fiber manufacturing method
PCT/JP2013/006756 WO2015071942A1 (en) 2013-11-18 2013-11-18 Filtration device, filtration method, acetate fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/006756 WO2015071942A1 (en) 2013-11-18 2013-11-18 Filtration device, filtration method, acetate fiber manufacturing method

Publications (1)

Publication Number Publication Date
WO2015071942A1 true WO2015071942A1 (en) 2015-05-21

Family

ID=53056912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006756 WO2015071942A1 (en) 2013-11-18 2013-11-18 Filtration device, filtration method, acetate fiber manufacturing method

Country Status (2)

Country Link
CN (1) CN105745000A (en)
WO (1) WO2015071942A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378041A (en) * 2022-02-11 2022-04-22 陈惠玲 Novel washing equipment and washing method for powdery material and slurry

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250396A (en) * 1964-08-12 1966-05-10 Ametek Inc Rotary disc filter
US4201670A (en) * 1977-02-08 1980-05-06 Schenk-Filterbau Gesellschaft Mit Beschrankter Haftung Method of and device for filtering liquids
JPS5820216A (en) * 1981-07-31 1983-02-05 Mitsubishi Heavy Ind Ltd Apparatus for detecting contamination of filter cloth
JPS59127614A (en) * 1977-06-22 1984-07-23 アイドレツクス・インコ−ポレ−テツド Filter apparatus
JPS6087821A (en) * 1983-09-15 1985-05-17 クロル レイノルズ エンジニアリング カンパニ− アイエヌシ− Method and apparatus for filtering suspended solid
JP2008056819A (en) * 2006-08-31 2008-03-13 Daicel Chem Ind Ltd Mixed fatty acid cellulose ester, and method for producing the same
JP2008126216A (en) * 2006-11-24 2008-06-05 Mitsui Eng & Shipbuild Co Ltd Operation control device for filtration device and operation control method for filtration device
JP2011104548A (en) * 2009-11-19 2011-06-02 Atlas:Kk Liquid cleaning apparatus
JP2013176722A (en) * 2012-02-28 2013-09-09 Takeo Yoshida Filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361008A (en) * 2001-06-08 2002-12-17 Sumitomo Chem Co Ltd Method for discharging cake from horizontal filter leaf type pressure filter
CN201088886Y (en) * 2007-08-15 2008-07-23 马彰原 Vertical auto-backwash filter
CN201370998Y (en) * 2009-02-26 2009-12-30 江苏巨能机械有限公司 Horizontal blade filter
CN102553279B (en) * 2012-01-16 2014-03-26 哈尔滨工程大学 High pressure flash drum
CN203108235U (en) * 2013-03-20 2013-08-07 陈慧君 Evaporating tower convenient to observe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250396A (en) * 1964-08-12 1966-05-10 Ametek Inc Rotary disc filter
US4201670A (en) * 1977-02-08 1980-05-06 Schenk-Filterbau Gesellschaft Mit Beschrankter Haftung Method of and device for filtering liquids
JPS59127614A (en) * 1977-06-22 1984-07-23 アイドレツクス・インコ−ポレ−テツド Filter apparatus
JPS5820216A (en) * 1981-07-31 1983-02-05 Mitsubishi Heavy Ind Ltd Apparatus for detecting contamination of filter cloth
JPS6087821A (en) * 1983-09-15 1985-05-17 クロル レイノルズ エンジニアリング カンパニ− アイエヌシ− Method and apparatus for filtering suspended solid
JP2008056819A (en) * 2006-08-31 2008-03-13 Daicel Chem Ind Ltd Mixed fatty acid cellulose ester, and method for producing the same
JP2008126216A (en) * 2006-11-24 2008-06-05 Mitsui Eng & Shipbuild Co Ltd Operation control device for filtration device and operation control method for filtration device
JP2011104548A (en) * 2009-11-19 2011-06-02 Atlas:Kk Liquid cleaning apparatus
JP2013176722A (en) * 2012-02-28 2013-09-09 Takeo Yoshida Filter

Also Published As

Publication number Publication date
CN105745000A (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP4051260B2 (en) Filtration device
JPH0596136A (en) Hollow-fiber membrane module and using method therefor
SE525450C2 (en) Cleaning method for white liquor filter, by spraying filtrate supplied to nozzle from tank
WO2015071942A1 (en) Filtration device, filtration method, acetate fiber manufacturing method
JPS6352928A (en) Electro-discharge processing device
EP0813063A1 (en) Method of controlling equipment for deinking paper pulp, and device for continuously measuring the quantity of particles in a liquid
CN108355389A (en) A kind of sewage disposal membrane bioreactor pretreatment equipment for separating liquid from solid and method
KR101106072B1 (en) Apparatus for removing impurities from a Centrifugal Filter System
JP2021120155A (en) Method for washing metal fiber filter, metal fiber filter and method for depositing thermoplastic resin film
WO1992006765A1 (en) Process for separating the solid constituents of a suspension and device for carrying out said process
JP2006305430A (en) Continuous filtering device
CN108379905A (en) Filter device
FI123885B (en) Pressure filter and method in connection therewith
TW200914507A (en) Solution casting process and apparatus
JPH04305209A (en) Filtration concentrator
CN208512018U (en) A kind of raw paper jam pulp filtering device
CN208065889U (en) Filter device
JP5165427B2 (en) Solution casting method
US5055207A (en) Filtration of cellulose ester dope
CN109354120A (en) Polishing mixed bed resin catching device in a kind of pure water system
JP2002263412A (en) Method for washing filter
JP5094299B2 (en) Method and apparatus for collecting filter aid
CN220715107U (en) Filter device for pigment dispersion
KR20110073223A (en) Apparatus for continuous inflow filtering using the fiber and filtration filter with back washing function
CN214181951U (en) Leaf filter suitable for filter cake is handled

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13897524

Country of ref document: EP

Kind code of ref document: A1