WO2015071521A1 - Carrier for catalysts made of graphene derivatives - Google Patents

Carrier for catalysts made of graphene derivatives Download PDF

Info

Publication number
WO2015071521A1
WO2015071521A1 PCT/ES2014/070848 ES2014070848W WO2015071521A1 WO 2015071521 A1 WO2015071521 A1 WO 2015071521A1 ES 2014070848 W ES2014070848 W ES 2014070848W WO 2015071521 A1 WO2015071521 A1 WO 2015071521A1
Authority
WO
WIPO (PCT)
Prior art keywords
product according
graphene
compound
catalyst
carbon
Prior art date
Application number
PCT/ES2014/070848
Other languages
Spanish (es)
French (fr)
Inventor
José Antonio MATA MARTÍNEZ
Eduardo Victor PERIS FAJARNÉS
Sara SABATER LÓPEZ
Original Assignee
Universitat Jaume I De Castelló
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Jaume I De Castelló filed Critical Universitat Jaume I De Castelló
Publication of WO2015071521A1 publication Critical patent/WO2015071521A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Definitions

  • the following invention relates to a material comprising a graphene support or other carbon material such as carbon fibers or nanotubes, and a complex formed by a polycyclic hydrocarbon such as pyrene attached to an N-heterocycle carbine and an organometallic compound.
  • the support and the complex are linked by stacking interactions ⁇ , which makes the part of the metal complex retain its intact molecular properties, including its catalytic properties.
  • the invention represents a substantial advance with respect to traditional catalyst support techniques in solid matrices.
  • the main drawbacks of the immobilization of a catalyst in a solid matrix is that it must be ensured that the catalyst does not decompose or is lost (leaching) of the solid matrix in the catalytic process, so it is normally intended that the immobilization is carried out through strong covalent bonds.
  • the immobilization from covalent bonds of a catalyst with a solid matrix implies the chemical transformation of the catalyst, whereby the reactivity of the immobilized catalyst is usually altered with respect to what the homogeneous molecular catalyst would show.
  • the need to carry out a chemical transformation in the immobilization process may imply an inconvenience in the experimental process, since a maximum reaction yield and a minimum generation of residues that may affect the subsequent catalytic process.
  • thermostable catalysts allow catalytic reactions to be carried out at high temperatures, facilitating the activation of traditionally inert bonds, and giving access to new methods of synthesis of organic compounds.
  • thermostable catalysts based on transition metals with NHC ligands due to their high stability. These properties make organometallic compounds with NHC ligands excellent candidates to be supported in graphene derivatives. The materials obtained in this way can be easily modulated through the organometallic fragment. Graphene and its derivatives are excellent supports since these materials have a high porosity and conduction.
  • graphene and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO)
  • GO graphene oxide
  • rGO reduced graphene oxide
  • the properties of graphene as a catalyst lie in the properties of this material, such as the electrical conductivity, the high specific surface area and its two-dimensional structure. These properties favor the use of these materials as catalysts and as a support for catalysts.
  • the inventors of the present invention have managed to obtain catalysts based on graphene and other carbon materials containing metal centers introduced by coordinating organometallic compounds by stacking interactions ⁇ . In this way, there is no modification in the graphene surface, nor in the catalyst, so that the properties of both materials (graphene and catalyst) remain intact.
  • the present invention relates to immobilization of homogeneous catalysts on graphene surfaces and other carbon materials, by incorporating a fragment in the catalyst structure.
  • the interaction of type- (-stacking) between polycyclic aromatic hydrocarbon and graphene or carbon material allows the immobilization of the catalyst on a solid surface, easily and without producing any modification in the properties of graphene and catalyst.
  • the separation of the catalyst from the reaction medium is achieved once the catalytic reaction is over.
  • This type of immobilization is especially useful, since it prevents the formation of covalent bonds in the immobilization process, which not only facilitates the experimental procedure, but also prevents substantial transformations within the homogeneous catalyst during the process of solid matrix binding.
  • the invention can be applied to a wide variety of catalysts, being, therefore, applicable to a high number of catalytic processes. To demonstrate these properties, concrete examples of catalyst immobilization are described below, as well as their catalytic activity, which remains after a high number of recycled materials.
  • the invention relates to a product comprising:
  • A is a polycyclic aromatic hydrocarbon
  • X is a bridge group between A and B that is selected from [-CH 2 -] m, [-CH 2 -0-] m, [- aryl-CH 2 -] m or [-CH 2 -NH-] m, where m is a value that is selected from 1, 2, 3 or 4, B is a 5- to 8-membered N-heterocycle optionally substituted by optionally substituted C1-C10 alkyl or optionally substituted aryl,
  • [MLn] is a coordination group where M is a transition metal, L is a coordination ligand and n has a value that is selected from 1, 2, 3 or 4.
  • "carbon aggregates” means the family of the fulerenes, characterized by forming spheres by curvature of a set of carbon hexagons through a reduced number of carbon pentagons. Examples of fulerenes are C60, C70 and giant fulerenes.
  • carbon fibers are understood as those fibers composed of thin strips of graphite that are packaged in the form of bundles.
  • carbon nanotubes is meant in the present invention those nanotubes formed by a rolled sheet of carbon atoms with diameters of about one thousandth of a millimeter.
  • graphene is understood as that material formed solely by carbon atoms arranged in a regular hexagonal pattern similar to graphite characterized in that it forms a carbon sheet of atomic thickness.
  • Graphene derivatives are understood as those graphene structures into which atoms other than carbon have been introduced, such as H, O or halogens. Non-limiting examples of graphene derivatives are graphene, fluorografen, oxidized graphene and reduced oxidized graphene.
  • the carbon material support is selected from oxidized graphene or reduced oxidized graphene.
  • polycyclic aromatic hydrocarbon PAH
  • PAH polycyclic aromatic hydrocarbon
  • Preferred examples of PAH are anthracene, benzopyrene, chromene, coronen, naphthacene, pentacene, naphthalene, phenanthrene, pyrene, triphenylene. More preferably, pyrene.
  • the bridge group X is a chemical group that covalently binds aromatic polycyclic hydrocarbon A and N-heterocycle B.
  • This group can be any organic group whose binding stability to the junction between A and B and can be an alkyl group, a ether group, an aryl-alkyl group or an amine.
  • This group can be Repeat a number of times (m value), preferably between 1 and 4.
  • Preferred groups, not limiting, are as shown below:
  • X is [-CH 2 -] m .
  • N-heterocycle refers, in the present invention, to a stable 3 to 15 member ring group consisting in carbon atoms and in at least one N atom, preferably a 5 to 8 member ring with one or more N atoms, more preferably a 5 member ring with one or more N atoms.
  • the heterocycle may be a monocyclic, bicyclic or tricyclic ring system, which may include condensed ring systems, and that both C and N atoms can be optionally substituted by a d-C10 alkyl or aryl group.
  • N-heterocycles include but are not limited to azepines, benzimidazole, benzothiazole, isothiazole, imidazole, indole, purine, pyridine, pyrimidine, quinoline, isoquinoline, thiadiazole, pyrrole, pyrazole, pyrazoline, oxazole, isoxazole, triazole, imidazole , etc.
  • alkyl refers, in the present invention, to groups of hydrocarbon chains, linear or branched, having 1 to 10 carbon atoms, preferably 1 to 6, and more preferably 1 to 4, and which they bind the rest of the molecule through a single bond, for example, methyl, ethyl, n-propyl, / -propyl, n-butyl, ferc-butyl, sec-butyl, n-pentyl, n-hexyl etc.
  • the alkyl groups may be optionally substituted by one or more substituents such as halogen (called haloalkyl), hydroxyl, alkoxy, carboxyl, carbonyl, cyano, acyl, alkoxycarbonyl, amino, nitro, mercapto and alkylthio, or contain heteroatoms such as O, S or N incorporated in the carbon chain.
  • substituents such as halogen (called haloalkyl), hydroxyl, alkoxy, carboxyl, carbonyl, cyano, acyl, alkoxycarbonyl, amino, nitro, mercapto and alkylthio, or contain heteroatoms such as O, S or N incorporated in the carbon chain.
  • aryl refers in the present invention to an aromatic hydrocarbon group containing from 3 to 12 carbon atoms, preferably 6-12 carbon atoms such as cyclopropenyl, phenyl, tropyl, indenyl, naphthyl, azuylenyl, biphenyl , fluorenyl, anthracenyl etc, preferably phenyl.
  • the aryl radical may be optionally substituted by one or more substituents such as alkyl, haloalkyl, aminoalkyl, dialkylamino, hydroxyl, alkoxy, phenyl, mercapto, halogen, nitro, cyano and alkoxycarbonyl.
  • B is selected from pyridine, pyrimidine, pyrazoline, quinoline, isoquinoline, pyrrole, indole, purine, imidazole, pyrazole, thiazole. In a more preferred embodiment, B is imidazole.
  • the [MLn] group represents a coordination compound, which is understood as a complex comprising a central metal atom surrounded by molecules or ions called ligands or complexing agents, which are linked by coordination bonds, weaker than Covalent bonds
  • the coordination compound may have more than one metal center.
  • the ligands can be neutral, cationic or anionic with a sigma donor or pi acceptor character depending on the metal and the oxidation state. They can also be ligands of different hapticity, understood as hapticity the way in which a group of contiguous atoms of a ligand is coordinated to a central atom.
  • the hapticity of a ligand is indicated by the Greek letter 'eta', ⁇ .
  • the number of ligands (value n) varies depending on the oxidation state of the metal atom, although in the present invention, preferably, n is selected from 1, 2, 3 or 4. More specific examples of groups [MLn] in the present invention are RuCI 2 (p-cimeno)] 2 , [RhCI (COD)] 2 , [lrCI (COD)] 2 , [PdCI (r
  • the metal atom M is an atom selected from groups 8 to 1 1 of the periodic table, and preferably from Ru, Os, Rh, Ir, Pd, Pt, Ag, Au. More preferably, M is Ir.
  • the ligand L is selected from Cl, Br, pyridine, cyclopentadienyl, p-cimeno, 1,5-cyclooctadiene, n , 3- allyl, SMe 2 .
  • a catalyst comprising the product described above. These catalysts are applicable to many types of reactions depending on the metal M they comprise. For example, and not limited to, ruthenium materials are suitable in olefin metathesis reactions, oxidations and hydrogen transfer. Palladium materials are suitable in carbon-carbon coupling reactions and iridium and rhodium materials in hydrosilylation, hydroboration, hydrogen transfer and oxidation reactions.
  • Another aspect of the invention relates to a process for obtaining the product as described above comprising the following steps:
  • step (b) reacting the compound of formula (III) obtained in step (a) with an organometallic compound [MLn] wherein M, L and n are defined as in claim 1, to obtain the compound of formula (I):
  • step (b) react the product obtained in step (b) with the support of carbon material.
  • FIG. 1 It shows the X-ray diffractogram of the material of the invention (example 1) formed by reduced oxidized graphene (rGO) as a support attached to an Ir complex with N-heterocycle (NHC) (A) and the rGO support alone (B ).
  • FIG. 2. Displays the SEM image of rGO-lr-NHC (material from example 1).
  • FIG. 3 Shows the yield and conversion for the six consecutive reactions with rGO-Ru-NHC as catalyst (example 4).
  • Example 1 Obtaining a catalyst with reduced oxidized graphene base and Ir complex functionalized with pyrene groups.
  • the organometallic compound of Ir was functionalized with pyrene groups through an imidazole. Subsequently, the reaction was carried out with the reduced graphene oxide.
  • This material can be prepared in the laboratory or purchased from different commercial houses. The interaction by non-covalent bonding (stacking ⁇ ) between the pyrene group and the benzene rings of the rGO caused the anchoring of the organometallic system to the surface of the carbon material.
  • Examples 2 and 3 Obtaining a catalyst with reduced oxidized graphene base and Ru and Pd complexes functionalized with pyrene groups.
  • Examples 4 Catalytic evaluation of rGO-Ru-NHC
  • the rGO-Ru-NHC material has been used in the oxidation of alcohols for the generation of the corresponding ketones or aldehydes, one of them being the following reaction:
  • This material is very active reaching quantitative yields under mild reaction conditions (80 ° C, 12h), as shown in Figure 3.
  • the main advantage of this system is that it has been reused up to six consecutive times without an appreciable catalyst deactivation (see Fig. 3). After each catalytic cycle the material has been separated from the reaction medium by simple filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a material comprising a carrier of a carbon material such as graphene (by means of π-stacking interactions) joined to a complex comprising an aromatic polycyclic hydrocarbon, an optionally substituted N-heterocycle, and an organometallic compound of transition metals. The invention also relates to a catalyst comprising said material and to the method for producing the material. The catalytic tests show that i) the activity of the catalyst is not altered by the presence of the graphene carrier, ii) the separation between the catalyst and the reaction product is effective, and iii) the catalyst can be recycled up to ten times without losing activity.

Description

SOPORTE DE CATALIZADORES EN DERIVADOS DE GRAFENO  SUPPORT OF CATALYZERS IN GRAPHENE DERIVATIVES
DESCRIPCIÓN La siguiente invención se refiere a un material que comprende un soporte de grafeno u otro material de carbono como fibras de carbono o nanotubos, y un complejo formado por un hidrocarburo policíclico como el pireno unido a un carbeno N-heterociclo y a un compuesto organometálico. El soporte y el complejo están unidos mediante interacciones de apilamiento ττ, lo que hace que la parte del complejo metálico conserve sus propiedades moleculares intactas, incluidas sus propiedades catalíticas. La invención supone un avance sustancial con respecto a las técnicas tradicionales de soporte de catalizadores en matrices sólidas.  DESCRIPTION The following invention relates to a material comprising a graphene support or other carbon material such as carbon fibers or nanotubes, and a complex formed by a polycyclic hydrocarbon such as pyrene attached to an N-heterocycle carbine and an organometallic compound. The support and the complex are linked by stacking interactions ττ, which makes the part of the metal complex retain its intact molecular properties, including its catalytic properties. The invention represents a substantial advance with respect to traditional catalyst support techniques in solid matrices.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
El uso de transformaciones químicas catalizadas y el uso de materiales renovables, constituyen dos de los doce principios de la Química Verde. El desarrollo de catalizadores es un área de gran impacto científico y tecnológico utilizado para la obtención de productos orgánicos, eliminación de residuos y procesos destinados a la obtención de energía. Los catalizadores organometálicos tienen la ventaja de ser sistemas fácilmente modulables a través de la introducción de diferentes tipos de ligandos. Como complemento a la gran versatilidad química y elevada actividad de los catalizadores organometálicos, recientemente se están realizando muchos esfuerzos en encontrar sistemas que permitan su reciclado, principalmente soportando los catalizadores en matrices sólidas, que permitan la separación del catalizador por filtración y su posterior reutilización. Los principales inconvenientes de la inmovilización de un catalizador en una matriz sólida, es que se debe garantizar que el catalizador no descomponga o se pierda (leaching) de la matriz sólida en el proceso catalítico, por lo que normalmente se intenta que la inmovilización se realice a través de enlaces fuertes covalentes. La inmovilización a partir de enlaces covalentes de un catalizador con una matriz sólida, implica la transformación química del catalizador, con lo que habitualmente la reactividad del catalizador inmovilizado queda alterada con respecto a la que mostraría el catalizador molecular homogéneo. Además, la necesidad de realizar una transformación química en el proceso de inmovilizado puede implicar un inconveniente en el proceso experimental, ya que se debe garantizar un rendimiento máximo de la reacción y una mínima generación de residuos que puedan afectar al posterior proceso catalítico. The use of catalyzed chemical transformations and the use of renewable materials constitute two of the twelve principles of Green Chemistry. The development of catalysts is an area of great scientific and technological impact used to obtain organic products, waste disposal and processes destined to obtain energy. Organometallic catalysts have the advantage of being easily modulable systems through the introduction of different types of ligands. As a complement to the great chemical versatility and high activity of organometallic catalysts, many efforts have recently been made to find systems that allow recycling, mainly supporting the catalysts in solid matrices, which allow catalyst separation by filtration and subsequent reuse. The main drawbacks of the immobilization of a catalyst in a solid matrix, is that it must be ensured that the catalyst does not decompose or is lost (leaching) of the solid matrix in the catalytic process, so it is normally intended that the immobilization is carried out through strong covalent bonds. The immobilization from covalent bonds of a catalyst with a solid matrix implies the chemical transformation of the catalyst, whereby the reactivity of the immobilized catalyst is usually altered with respect to what the homogeneous molecular catalyst would show. In addition, the need to carry out a chemical transformation in the immobilization process may imply an inconvenience in the experimental process, since a maximum reaction yield and a minimum generation of residues that may affect the subsequent catalytic process.
Durante la última década, los catalizadores basados en carbenos N-heterocíclicos han destacado por su gran versatilidad y capacidad catalítica, poniéndose a la cabeza de cuantos catalizadores se conocen hasta la fecha. Una de las limitaciones de estos catalizadores es que pueden sufrir procesos de desactivación, particularmente en aquellas reacciones en las que se requieren condiciones de reacción extremas (atmósferas aéreas, humedad en el medio de reacción, elevadas temperaturas y presiones, etc.), que son precisamente las más habituales en procesos industriales. La preparación de catalizadores termoestables permite llevar a cabo reacciones catalíticas a altas temperaturas, facilitando la activación de enlaces tradicionalmente inertes, y dando acceso a nuevos métodos de síntesis de compuestos orgánicos. El principal beneficio científico, técnico y económico que se deriva es el aumento de rendimientos en reacciones de síntesis orgánica con el consiguiente ahorro en energía y en materiales contaminantes como disolventes y reactivos. Actualmente un gran número de investigadores centra sus esfuerzos en la obtención de catalizadores termoestables basados en metales de transición con ligandos NHC debido a su elevada estabilidad. Estas propiedades hacen de los compuestos organometálicos con ligandos NHC excelentes candidatos para ser soportados en derivados del grafeno. Los materiales obtenidos de este modo, podrán ser fácilmente modulables a través del fragmento organometálico. El grafeno y sus derivados son excelentes soportes ya que estos materiales poseen una elevada porosidad y conducción. La utilización del grafeno y sus derivados, como el óxido de grafeno (GO) y óxido de grafeno reducido (rGO), como catalizadores ha sido muy bien estudiada en los últimos años. Las propiedades del grafeno como catalizador radican en las propiedades de este material, como son la conductividad eléctrica, la elevada superficie específica y su estructura bidimensional. Estas propiedades favorecen la utilización de estos materiales como catalizadores y como soporte para los catalizadores. La mayor parte de los catalizadores basados en grafeno descritos hasta la fecha están basados en la introducción de metales nobles en la superficie del grafeno en forma de nanopartículas (Jeon, E. K.; Seo, E.; Lee, E.; Lee, W.; Um, M.-K.; Kim, B.-S.: Mussel- inspiredgreensynthesis of silver nanoparticles on graphene oxide nano sheets for enhanced catalytic applications. Chem. Commun. 2013, 49, 3392-3394; Oshi, H.; Sharma, K. N.; Sharma, A. K.; Prakash, O.; Singh, A. K.: Graphene oxide grafted with Pd17Se15 nano-particles generated from a single source precursor as a recyclable and efficient catalyst for C-0 coupling in O-arylation at room temperature. Chem. Commun. 2013, 49, 7483-7485) u óxidos metálicos. El principal inconveniente de estos materiales es que la introducción de los metales en forma de óxidos o nanopartículas modifica las propiedades del grafeno, y esto supone un cambio en sus propiedades. En concreto, la modificación de la superficie del grafeno puede producir la pérdida de la conductividad eléctrica. During the last decade, catalysts based on N-heterocyclic carbons have stood out for their great versatility and catalytic capacity, putting themselves at the forefront of how many catalysts are known to date. One of the limitations of these catalysts is that they can undergo deactivation processes, particularly in those reactions in which extreme reaction conditions are required (air atmospheres, humidity in the reaction medium, high temperatures and pressures, etc.), which are precisely the most common in industrial processes. The preparation of thermostable catalysts allows catalytic reactions to be carried out at high temperatures, facilitating the activation of traditionally inert bonds, and giving access to new methods of synthesis of organic compounds. The main scientific, technical and economic benefit that is derived is the increase in yields in reactions of organic synthesis with the consequent saving in energy and in polluting materials such as solvents and reagents. Currently, a large number of researchers focus their efforts on obtaining thermostable catalysts based on transition metals with NHC ligands due to their high stability. These properties make organometallic compounds with NHC ligands excellent candidates to be supported in graphene derivatives. The materials obtained in this way can be easily modulated through the organometallic fragment. Graphene and its derivatives are excellent supports since these materials have a high porosity and conduction. The use of graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), as catalysts has been very well studied in recent years. The properties of graphene as a catalyst lie in the properties of this material, such as the electrical conductivity, the high specific surface area and its two-dimensional structure. These properties favor the use of these materials as catalysts and as a support for catalysts. Most of the graphene-based catalysts described to date are based on the introduction of noble metals on the surface of graphene in the form of nanoparticles (Jeon, EK; Seo, E .; Lee, E .; Lee, W .; Um, M.-K .; Kim, B.-S .: Mussel-inspiredgreensynthesis of silver nanoparticles on graphene oxide nano sheets for enhanced catalytic applications. Chem. Commun. 2013, 49, 3392-3394; Oshi, H .; Sharma, KN; Sharma, AK; Prakash, O .; Singh, AK: Graphene oxide grafted with Pd17Se15 nano-particles generated from a single source precursor as a recyclable and efficient catalyst for C-0 coupling in O-arylation at room temperature. Chem. Commun. 2013, 49, 7483-7485) or metal oxides. The main drawback of these materials is that the introduction of metals in the form of oxides or nanoparticles modifies the properties of graphene, and this implies a change in their properties. Specifically, the modification of the graphene surface can cause the loss of electrical conductivity.
En la bibliografía existen algunos trabajos en donde se realiza la coordinación de derivados de pireno mediante apilamientos π sobre derivados del grafeno (Qu, S.; Li, M.; Xie, L; Huang, X.; Yang, J.; Wang, N.; Yang, S.: Noncovalent Functionalization of Graphene Attaching 6,6 -Phenyl-C61-butyric Acid Methyl Ester (PCBM) and Application as Electron Extraction Layer of Polymer Solar Cells. Acs Nano 2013, 7, 4070-4081 ; Lee, D.-W.; Kim, T.; Lee, M.: An amphiphilic pyrene sheet for selective functionalization of graphene. Chem. Commun. 201 1 , 47, 8259-8261 ) y sólo en un caso, la coordinación de pireno se ha utilizado para la introducción de un centro metálico (Mann, J. A.; Rodriguez-Lopez, J.; Abruna, H. D.; Dichtel, W. R.: Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. J. Am. Chem. Soc. 201 1 , 133, 17614-17617). In the literature there are some works where the coordination of pyrene derivatives is carried out by means of π stacking on graphene derivatives (Qu, S .; Li, M .; Xie, L; Huang, X .; Yang, J .; Wang, N .; Yang, S .: Noncovalent Functionalization of Graphene Attaching 6.6 -Phenyl-C61-butyric Acid Methyl Ester (PCBM) and Application as Electron Extraction Layer of Polymer Solar Cells. Acs Nano 2013, 7, 4070-4081; Lee , D.-W .; Kim, T .; Lee, M .: An amphiphilic pyrene sheet for selective functionalization of graphene. Chem. Commun. 201 1, 47, 8259-8261) and only in one case, pyrene coordination It has been used for the introduction of a metal center (Mann, JA; Rodriguez-Lopez, J .; Abruna, HD; Dichtel, WR: Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. J. Am. Chem. Soc. 201 1 , 133, 17614-17617).
Por tanto, existe la necesidad de desarrollar catalizadores basados en grafeno en los que se haya introducido algún centro metálico de manera que las propiedades intrínsecas del grafeno y del metal para su aplicación en catálisis no sean modificadas. Therefore, there is a need to develop graphene-based catalysts in which some metal center has been introduced so that the intrinsic properties of graphene and metal for application in catalysis are not modified.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Los inventores de la presente invención han conseguido obtener catalizadores basados en grafeno y otros materiales de carbono que contienen centros metálicos introducidos mediante la coordinación de compuestos organometálicos por interacciones de apilamiento ττ. De este modo, no se produce ninguna modificación en la superficie del grafeno, ni en el seno del catalizador, de forma que las propiedades de ambos materiales (grafeno y catalizador) permanecen intactas. La presente invención se refiere a inmovilización de catalizadores homogéneos en superficies de grafeno y otros materiales de carbono, por incorporación de un fragmento de en la estructura del catalizador. La interacción de tipo- ( -stacking) entre el hidrocarburo aromático policíclico y el grafeno o material de carbono, permite la inmovilización del catalizador en una superficie sólida, de forma sencilla y sin producir ninguna modificación en las propiedades del grafeno y del catalizador. Mediante la inmovilización de los compuestos organometálicos en la superficie de estos materiales se consigue la separación del catalizador del medio de reacción una vez la reacción catalítica haya terminado. Este tipo de inmovilización es especialmente útil, ya que evita la formación de enlaces covalentes en el proceso de inmovilización, lo cual no sólo facilita el procedimiento experimental, sino que además evita que se produzcan transformaciones sustanciales en el seno del catalizador homogéneo durante el proceso de unión a la matriz sólida. La invención se puede aplicar a una gran variedad de catalizadores, siendo, por tanto, aplicable a un elevado número de procesos catalíticos. Para demostrar estas propiedades, se describen posteriormente ejemplos concretos de inmovilización de catalizadores, así como su actividad catalítica, la cual permanece tras un elevado número de reciclados. The inventors of the present invention have managed to obtain catalysts based on graphene and other carbon materials containing metal centers introduced by coordinating organometallic compounds by stacking interactions ττ. In this way, there is no modification in the graphene surface, nor in the catalyst, so that the properties of both materials (graphene and catalyst) remain intact. The present invention relates to immobilization of homogeneous catalysts on graphene surfaces and other carbon materials, by incorporating a fragment in the catalyst structure. The interaction of type- (-stacking) between polycyclic aromatic hydrocarbon and graphene or carbon material, allows the immobilization of the catalyst on a solid surface, easily and without producing any modification in the properties of graphene and catalyst. By immobilizing the organometallic compounds on the surface of these materials, the separation of the catalyst from the reaction medium is achieved once the catalytic reaction is over. This type of immobilization is especially useful, since it prevents the formation of covalent bonds in the immobilization process, which not only facilitates the experimental procedure, but also prevents substantial transformations within the homogeneous catalyst during the process of solid matrix binding. The invention can be applied to a wide variety of catalysts, being, therefore, applicable to a high number of catalytic processes. To demonstrate these properties, concrete examples of catalyst immobilization are described below, as well as their catalytic activity, which remains after a high number of recycled materials.
En un primer aspecto, la invención se refiere a un producto que comprende: In a first aspect, the invention relates to a product comprising:
a) un soporte de un material de carbono seleccionado de entre agregados de carbono, fibras de carbono, nanotubos de carbono, grafeno y derivados del grafeno y a) a support of a carbon material selected from carbon aggregates, carbon fibers, carbon nanotubes, graphene and graphene derivatives and
b) un compuesto de fórmula general (I): b) a compound of general formula (I):
A-X-B-[MLn]  A-X-B- [MLn]
(I)  (I)
unido mediante enlaces no covalentes al soporte donde: joined by means of non-covalent bonds to the support where:
A es un hidrocarburo aromático policíclico, A is a polycyclic aromatic hydrocarbon,
X es un grupo puente entre A y B que se selecciona de entre [-CH2-]m, [-CH2-0-]m, [- arilo-CH2-]m ó [-CH2-NH-]m, siendo m un valor que se selecciona de entre 1 , 2, 3 ó 4, B es un N-heterociclo de 5 a 8 miembros opcionalmente sustituido por alquilo C1-C10 opcionalmente sustituido o arilo opcionalmente sustituido, X is a bridge group between A and B that is selected from [-CH 2 -] m, [-CH 2 -0-] m, [- aryl-CH 2 -] m or [-CH 2 -NH-] m, where m is a value that is selected from 1, 2, 3 or 4, B is a 5- to 8-membered N-heterocycle optionally substituted by optionally substituted C1-C10 alkyl or optionally substituted aryl,
[MLn] es un grupo de coordinación donde M es un metal de transición, L es un ligando de coordinación y n tiene un valor que se selecciona de entre 1 , 2, 3 ó 4. En la presente invención se entiende por "agregados de carbono" a la familia de los fulerenos, caracterizada por formar esferas mediante la curvatura de un conjunto de hexágonos de carbono a través de un número reducido de pentágonos de carbono. Ejemplos de fulerenos son C60, C70 y los fulerenos gigantes. [MLn] is a coordination group where M is a transition metal, L is a coordination ligand and n has a value that is selected from 1, 2, 3 or 4. In the present invention, "carbon aggregates" means the family of the fulerenes, characterized by forming spheres by curvature of a set of carbon hexagons through a reduced number of carbon pentagons. Examples of fulerenes are C60, C70 and giant fulerenes.
En la presente invención se entiende por "fibras de carbono" aquellas fibras compuestas por tiras delgadas de grafito que aparecen empaquetadas en forma de manojos. Por "nanotubos de carbono" se entiende en la presente invención aquellos nanotubos formados por una lámina enrollada de átomos de carbono con diámetros de alrededor de una milésima de miera. In the present invention, "carbon fibers" are understood as those fibers composed of thin strips of graphite that are packaged in the form of bundles. By "carbon nanotubes" is meant in the present invention those nanotubes formed by a rolled sheet of carbon atoms with diameters of about one thousandth of a millimeter.
En la presente invención se entiende por "grafeno" aquel material formado únicamente por átomos de carbono dispuestos en un patrón regular hexagonal similar al grafito caracterizado porque forma una lámina de carbono de espesor atómico. Se entiende como "derivados de grafeno", aquellos estructuras de grafeno en los que se han introducido átomos distinto de carbono como por ejemplo H, O o halógenos. Ejemplos no limitantes de derivados de grafeno son el grafano, el fluorografeno, el grafeno oxidado y el grafeno oxidado reducido. In the present invention, "graphene" is understood as that material formed solely by carbon atoms arranged in a regular hexagonal pattern similar to graphite characterized in that it forms a carbon sheet of atomic thickness. "Graphene derivatives" are understood as those graphene structures into which atoms other than carbon have been introduced, such as H, O or halogens. Non-limiting examples of graphene derivatives are graphene, fluorografen, oxidized graphene and reduced oxidized graphene.
En una realización preferida, el soporte de material de carbono se selecciona de entre grafeno oxidado o grafeno oxidado reducido. En la presente invención se entiende como "hidrocarburo aromático policíclico" (HAP) un compuesto orgánico formado por anillos aromáticos fusionados que no contiene heteroátomos u sustituyentes. Ejemplos preferidos de HAP son antraceno, benzopireno, criseno, coroneno, naftaceno, pentaceno, naftaleno, fenantreno, pireno, trifenileno. Más preferiblemente, pireno. In a preferred embodiment, the carbon material support is selected from oxidized graphene or reduced oxidized graphene. In the present invention, "polycyclic aromatic hydrocarbon" (PAH) is understood as an organic compound consisting of fused aromatic rings that does not contain heteroatoms or substituents. Preferred examples of PAH are anthracene, benzopyrene, chromene, coronen, naphthacene, pentacene, naphthalene, phenanthrene, pyrene, triphenylene. More preferably, pyrene.
El grupo puente X es un grupo químico que se une covalentemente al hidrocarburo policíclico aromático A y al N-heterociclo B. Este grupo puede ser cualquier grupo orgánico cuya unión de estabilidad a la unión entre A y B y puede ser un grupo alquílico, un grupo éter, un grupo arilo-alquilo o una amina. Este grupo se puede repetir un número de veces (valor m), preferiblemente entre 1 y 4. Grupos X preferidos, no limitantes, son los que se muestran a continuación: The bridge group X is a chemical group that covalently binds aromatic polycyclic hydrocarbon A and N-heterocycle B. This group can be any organic group whose binding stability to the junction between A and B and can be an alkyl group, a ether group, an aryl-alkyl group or an amine. This group can be Repeat a number of times (m value), preferably between 1 and 4. Preferred groups, not limiting, are as shown below:
Figure imgf000007_0001
n una realización preferida, X es [-CH2-]m.
Figure imgf000007_0001
n a preferred embodiment, X is [-CH 2 -] m .
En otra realización preferida, m se selecciona de entre 1 ó 2. En una realización más preferida, m es 1. "N-heterociclo" se refiere, en la presente invención, a un grupo estable de anillo de 3 a 15 miembros que consiste en átomos de carbono y en al menos un átomo de N, preferiblemente un anillo de 5 a 8 miembros con uno o más átomos de N, más preferiblemente un anillo de 5 miembros con uno o más átomos de N. Para los fines de esta invención, el heterociclo puede ser un sistema de anillo monocíclico, bicíclico o tricíclico, que puede incluir sistemas de anillos condensados, y que tanto los átomos de C como los de N pueden estar opcionalmente sustituidos por un grupo alquilo d- C10 o arilo. Ejemplos de tales N- heterociclos incluyen pero no se limitan a, azepinas, benzimidazol, benzotiazol, isotiazol, imidazol, indol, purina, piridina, pirimidina, quinolina, isoquinolina, tiadiazol, pirrol, pirazol, pirazolina, oxazol, isoxazol, triazol, imidazol, etc. In another preferred embodiment, m is selected from 1 or 2. In a more preferred embodiment, m is 1. "N-heterocycle" refers, in the present invention, to a stable 3 to 15 member ring group consisting in carbon atoms and in at least one N atom, preferably a 5 to 8 member ring with one or more N atoms, more preferably a 5 member ring with one or more N atoms. For the purposes of this invention , the heterocycle may be a monocyclic, bicyclic or tricyclic ring system, which may include condensed ring systems, and that both C and N atoms can be optionally substituted by a d-C10 alkyl or aryl group. Examples of such N-heterocycles include but are not limited to azepines, benzimidazole, benzothiazole, isothiazole, imidazole, indole, purine, pyridine, pyrimidine, quinoline, isoquinoline, thiadiazole, pyrrole, pyrazole, pyrazoline, oxazole, isoxazole, triazole, imidazole , etc.
El término "alquilo" se refiere, en la presente invención, a grupos de cadenas hidrocarbonadas, lineales o ramificadas, que tienen de 1 a 10 átomos de carbono, preferiblemente de 1 a 6, y más preferiblemente de 1 a 4, y que se unen al resto de la molécula mediante un enlace sencillo, por ejemplo, metilo, etilo, n-propilo, /-propilo, n- butilo, ferc-butilo, sec-butilo, n-pentilo, n-hexilo etc. Los grupos alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como halógeno (denominándose haloalquilo), hidroxilo, alcoxilo, carboxilo, carbonilo, ciano, acilo, alcoxicarbonilo, amino, nitro, mercapto y alquiltio, o contener heteroátomos como O, S o N incorporados en la cadena carbonada. El término "arilo" se refiere en la presente invención, a un grupo hidrocarbonado aromático que contienen desde 3 a 12 átomos de carbono, preferiblemente 6-12 átomos de carbono como por ejemplo ciclopropenilo, fenilo, tropilo, indenilo, naftilo, azulenilo, bifenilo, fluorenilo, antracenilo etc, preferiblemente fenilo. El radical arilo puede estar opcionalmente sustituido por uno o más sustituyentes tales como alquilo, haloalquilo, aminoalquilo, dialquilamino, hidroxilo, alcoxilo, fenilo, mercapto, halógeno, nitro, ciano y alcoxicarbonilo. The term "alkyl" refers, in the present invention, to groups of hydrocarbon chains, linear or branched, having 1 to 10 carbon atoms, preferably 1 to 6, and more preferably 1 to 4, and which they bind the rest of the molecule through a single bond, for example, methyl, ethyl, n-propyl, / -propyl, n-butyl, ferc-butyl, sec-butyl, n-pentyl, n-hexyl etc. The alkyl groups may be optionally substituted by one or more substituents such as halogen (called haloalkyl), hydroxyl, alkoxy, carboxyl, carbonyl, cyano, acyl, alkoxycarbonyl, amino, nitro, mercapto and alkylthio, or contain heteroatoms such as O, S or N incorporated in the carbon chain. The term "aryl" refers in the present invention to an aromatic hydrocarbon group containing from 3 to 12 carbon atoms, preferably 6-12 carbon atoms such as cyclopropenyl, phenyl, tropyl, indenyl, naphthyl, azuylenyl, biphenyl , fluorenyl, anthracenyl etc, preferably phenyl. The aryl radical may be optionally substituted by one or more substituents such as alkyl, haloalkyl, aminoalkyl, dialkylamino, hydroxyl, alkoxy, phenyl, mercapto, halogen, nitro, cyano and alkoxycarbonyl.
En una realización preferida, B se selecciona de entre piridina, pirimidina, pirazolina, quinolina, isoquinolina, pirrol, indol, purina, imidazol, pirazol, tiazol. En una realización más preferida, B es imidazol. In a preferred embodiment, B is selected from pyridine, pyrimidine, pyrazoline, quinoline, isoquinoline, pyrrole, indole, purine, imidazole, pyrazole, thiazole. In a more preferred embodiment, B is imidazole.
En la presente invención el grupo [MLn] representa un compuesto de coordinación, que se entiende como un complejo que comprende un átomo metálico central rodeado por moléculas o iones denominados ligandos o agentes complejantes, los cuales están unidos por enlaces de coordinación, más débiles que los enlaces covalentes. El compuesto de coordinación puede tener más de un centro metálico. Los ligandos pueden ser neutros, catiónicos o aniónicos con carácter dador sigma o aceptor pi dependiendo del metal y del estado de oxidación. También pueden ser ligandos de diferente hapticidad, entendiéndose como hapticidad la forma en que un grupo de átomos contiguos de un ligando está coordinado a un átomo central. La hapticidad de un ligando se indica por la letra griega 'eta', η. El número de ligandos (valor n) varía en función del estado de oxidación del átomo metálico, aunque en la presente invención, preferiblemente, n se selecciona de entre 1 , 2, 3 ó 4. Ejemplos más concretos de grupos [MLn] en la presente invención son RuCI2(p-cimeno)]2, [RhCI(COD)]2, [lrCI(COD)]2, [PdCI(r|3-alilo)]2 o [AuCI(SMe2)]. In the present invention the [MLn] group represents a coordination compound, which is understood as a complex comprising a central metal atom surrounded by molecules or ions called ligands or complexing agents, which are linked by coordination bonds, weaker than Covalent bonds The coordination compound may have more than one metal center. The ligands can be neutral, cationic or anionic with a sigma donor or pi acceptor character depending on the metal and the oxidation state. They can also be ligands of different hapticity, understood as hapticity the way in which a group of contiguous atoms of a ligand is coordinated to a central atom. The hapticity of a ligand is indicated by the Greek letter 'eta', η. The number of ligands (value n) varies depending on the oxidation state of the metal atom, although in the present invention, preferably, n is selected from 1, 2, 3 or 4. More specific examples of groups [MLn] in the present invention are RuCI 2 (p-cimeno)] 2 , [RhCI (COD)] 2 , [lrCI (COD)] 2 , [PdCI (r | 3- allyl)] 2 or [AuCI (SMe 2 )].
El átomo metálico M es un átomo seleccionado de entre los grupos 8 a 1 1 de la tabla periódica, y preferiblemente de entre Ru, Os, Rh, Ir, Pd, Pt, Ag, Au. Más preferiblemente, M es Ir. The metal atom M is an atom selected from groups 8 to 1 1 of the periodic table, and preferably from Ru, Os, Rh, Ir, Pd, Pt, Ag, Au. More preferably, M is Ir.
En una realización preferida, el ligando L se selecciona de entre Cl, Br, piridina, ciclopentadienilo, p-cimeno, 1 ,5-ciclooctadieno, n, 3-alilo, SMe2. Otro aspecto de la invención se refiere a un catalizador que comprende el producto anteriormente descrito. Estos catalizadores son aplicables a muchos tipos de reacciones dependiendo del metal M que comprenden. Por ejemplo, y sin limitarse a, los materiales de rutenio son adecuados en reacciones de metátesis de olefinas, oxidaciones y transferencia de hidrógeno. Los materiales de paladio son adecuados en reacciones de acoplamiento carbono-carbono y los materiales de iridio y rodio en reacciones de hidrosililacion, hidroboración, transferencia de hidrógeno y oxidaciones. In a preferred embodiment, the ligand L is selected from Cl, Br, pyridine, cyclopentadienyl, p-cimeno, 1,5-cyclooctadiene, n , 3- allyl, SMe 2 . Another aspect of the invention relates to a catalyst comprising the product described above. These catalysts are applicable to many types of reactions depending on the metal M they comprise. For example, and not limited to, ruthenium materials are suitable in olefin metathesis reactions, oxidations and hydrogen transfer. Palladium materials are suitable in carbon-carbon coupling reactions and iridium and rhodium materials in hydrosilylation, hydroboration, hydrogen transfer and oxidation reactions.
Otro aspecto de la invención se refiere a un procedimiento de obtención del producto según descrito anteriormente que comprende las siguientes etapas: Another aspect of the invention relates to a process for obtaining the product as described above comprising the following steps:
a) hacer reaccionar un compuesto de fórmula (II)  a) reacting a compound of formula (II)
A-X-Y  A-X-Y
(II)  (II)
con un compuesto B, donde A, X y B se definen como en la reivindicación 1 e Y se selecciona de entre Cl, I y Br, para dar un compuesto de fórmula (II):  with a compound B, wherein A, X and B are defined as in claim 1 and Y is selected from Cl, I and Br, to give a compound of formula (II):
A-X-B  A-X-B
(III)  (III)
b) hacer reaccionar el compuesto de fórmula (III) obtenido en la etapa (a) con un compuesto organometálico [MLn] donde M, L y n se definen como en la reivindicación 1 , para obtener el compuesto de fórmula (I):  b) reacting the compound of formula (III) obtained in step (a) with an organometallic compound [MLn] wherein M, L and n are defined as in claim 1, to obtain the compound of formula (I):
A-X-B-[MLn]  A-X-B- [MLn]
(I)  (I)
c) hacer reaccionar el producto obtenido en la etapa (b) con el soporte de material de carbono.  c) react the product obtained in step (b) with the support of carbon material.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS FIG. 1. Muestra el difractograma de rayos X del material de la invención (ejemplo 1 ) formado por grafeno oxidado reducido (rGO) como soporte unido a un complejo de Ir con N-heterociclo (NHC) (A) y del soporte rGO solo (B). FIG. 2. Muestra la imagen SEM de rGO-lr-NHC (material del ejemplo 1 ). BRIEF DESCRIPTION OF THE FIGURES FIG. 1. It shows the X-ray diffractogram of the material of the invention (example 1) formed by reduced oxidized graphene (rGO) as a support attached to an Ir complex with N-heterocycle (NHC) (A) and the rGO support alone (B ). FIG. 2. Displays the SEM image of rGO-lr-NHC (material from example 1).
FIG. 3. Muestra el rendimiento y la conversión para las seis reacciones consecutivas con rGO-Ru-NHC como catalizador (ejemplo 4). EJEMPLOS FIG. 3. Shows the yield and conversion for the six consecutive reactions with rGO-Ru-NHC as catalyst (example 4). EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención. Ejemplo 1 : Obtención de un catalizador con base de grafeno oxidado reducido y complejo de Ir funcionalizado con grupos pireno. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the effectiveness of the product of the invention. Example 1: Obtaining a catalyst with reduced oxidized graphene base and Ir complex functionalized with pyrene groups.
Este procedimiento se resume en el siguiente esquema: This procedure is summarized in the following scheme:
Figure imgf000010_0001
Figure imgf000010_0001
En una primera etapa se funcionalizó el compuesto organometálico de Ir con grupos pireno a través de un imidazol. Posteriormente se realizó la reacción con el óxido de grafeno reducido. Este material se puede preparar en el laboratorio o adquirirlo de diferentes casas comerciales. La interacción por enlace no covalente (apilamiento ττ) entre el grupo pireno y los anillos de benzeno del rGO produjo el anclaje del sistema organometálico a la superficie del material de carbono. In a first stage, the organometallic compound of Ir was functionalized with pyrene groups through an imidazole. Subsequently, the reaction was carried out with the reduced graphene oxide. This material can be prepared in the laboratory or purchased from different commercial houses. The interaction by non-covalent bonding (stacking ττ) between the pyrene group and the benzene rings of the rGO caused the anchoring of the organometallic system to the surface of the carbon material.
Las etapas de reacción se describen a continuación: i) Obtención de la sal de imidazolio A: The reaction steps are described below: i) Obtaining the imidazolium salt A:
En un matraz Schlenk se introduce 1-(Bromometil)pireno (1g, 3,39 mmol) se realizan tres ciclos de vacio/N2, se introducen 10 mL de THF seco y 1-metil imidazol (0,28 mi, 3,39 mmol). La mezcla de agita durante 15 horas a 60°C. Pasado el tiempo la suspensión se filtra. El sólido obtenido se lava con 10 mL de THF obteniéndose el producto deseado como un sólido blanco. Rendimiento: 1.22 g, 96%. In a Schlenk flask 1- (Bromomethyl) pyrene (1g, 3.39 mmol) is introduced, three cycles of vacuum / N 2 are performed , 10 mL of dry THF and 1-methyl imidazole (0.28 ml, 3, 39 mmol). The mixture is stirred for 15 hours at 60 ° C. After time the suspension is filtered. The solid obtained is washed with 10 mL of THF to obtain the desired product as a white solid. Yield: 1.22 g, 96%.
1H NMR (300 MHz, DMSO) δ 9.21 (s, 1 H), 8.51 - 8.08 (m, 9H), 7.87 (d, J = 1 .7 Hz, 1 H), 7.73 (d, J = 1 .7 Hz, 1 H), 6.23 (s, 2H), 3.82 (s, 3H). 13C NMR (75 MHz, DMSO) δ 1 H NMR (300 MHz, DMSO) δ 9.21 (s, 1 H), 8.51 - 8.08 (m, 9H), 7.87 (d, J = 1 .7 Hz, 1 H), 7.73 (d, J = 1. 7 Hz, 1 H), 6.23 (s, 2H), 3.82 (s, 3H). 13 C NMR (75 MHz, DMSO) δ
137.1 , 131 .9, 131 .1 , 130.6, 129.2, 129.1 , 128.6, 128.4, 127.8, 127.7, 127.1 , 126.4,137.1, 131 .9, 131 .1, 130.6, 129.2, 129.1, 128.6, 128.4, 127.8, 127.7, 127.1, 126.4,
126.2, 125.6, 124.5, 124.3,124.32, 124.1 , 123.1 , 123.0, 122.8, 50.4, 36.3. Electrospray MS (20V, m/zY 297.4 [M]+. ii) Obtención del compuesto de Iridio B: 126.2, 125.6, 124.5, 124.3,124.32, 124.1, 123.1, 123.0, 122.8, 50.4, 36.3. MS Electrospray (20V, m / zY 297.4 [M] + . Ii) Obtaining the Iridium B compound:
En un matraz Schlenk se introduce la sal de imidazolio A (95 mg, 0,250 mmol), KOfBu (33 mg, 0,28 mmol) y se realizan tres ciclos de vacio/N2. Se añaden 10 mL de THF a 0°C y se deja reaccionar durante 10 minutos a dicha temperatura. A continuación se deja que la mezcla de reacción alcance gradualmente temperatura ambiente y se mantiene durante 30 minutos. Se añade [lrCp*CI2]2 (100 mg, 0,125 mmol) y la mezcla de reacción se deja agitando a temperatura ambiente durante 4 horas. La suspensión resultante se filtra a través de Celite® y se elimina el disolvente a presión reducida, obteniéndose un crudo que se purifica mediante columna cromatográficaeluyendo con una mezcla DCM/Acetona (9:1 ) y obteniéndose el producto deseado como un sólido color naranja. Rendimiento: 125 mg, 64%. In a Schlenk flask the imidazolium salt A (95 mg, 0.250 mmol), KOfBu (33 mg, 0.28 mmol) is introduced and three vacuum / N 2 cycles are performed. 10 mL of THF is added at 0 ° C and allowed to react for 10 minutes at that temperature. The reaction mixture is then allowed to gradually reach room temperature and is maintained for 30 minutes. [LrCp * CI 2 ] 2 (100 mg, 0.125 mmol) is added and the reaction mixture is allowed to stir at room temperature for 4 hours. The resulting suspension is filtered through Celite® and the solvent is removed under reduced pressure, obtaining a crude that is purified by chromatographic column eluting with a DCM / Acetone mixture (9: 1) and obtaining the desired product as an orange solid. Yield: 125 mg, 64%.
1H NMR (300 MHz, CDCI3) δ 8.40 - 8.35 (m, 1 H), 8.26 - 8.00 (m, 7H), 7.87 - 7.82 (m, 1 H), 6.90 (d, J = 2.0 Hz, 1 H), 6.72 - 6.61 (m, 2H), 6.35 - 6.22 (m, 1 H), 4.07 (s, 3H), 1.62 (s, 15H). 13C NMR (75 MHz, CDCI3) δ 157.1 , 131.2, 131 .1 , 130.7, 129.8, 129.0, 128.6, 127.7, 127.2, 126.2, 125.9, 125.6, 125.5, 124.7, 123.1 , 122.5, 122.3, 88.9, 52.1 , 38.9, 9.2. Electrospray MS (20V. m/zY 659.3 [M-CI]+. iii) Obtención del compuesto rGO-lr NHC: 1 H NMR (300 MHz, CDCI 3 ) δ 8.40 - 8.35 (m, 1 H), 8.26 - 8.00 (m, 7H), 7.87 - 7.82 (m, 1 H), 6.90 (d, J = 2.0 Hz, 1 H), 6.72 - 6.61 (m, 2H), 6.35 - 6.22 (m, 1 H), 4.07 (s, 3H), 1.62 (s, 15H). 13 C NMR (75 MHz, CDCI 3 ) δ 157.1, 131.2, 131 .1, 130.7, 129.8, 129.0, 128.6, 127.7, 127.2, 126.2, 125.9, 125.6, 125.5, 124.7, 123.1, 122.5, 122.3, 88.9, 52.1 , 38.9, 9.2. MS electrospray (20V. M / zY 659.3 [M-CI] + . Iii) Obtaining the rGO-lr NHC compound:
En un matraz de fondo redondo se introducen 90 mg de rGO y 10 mL de DCM. La suspensión se sónica durante 10 min. A continuación se añaden 10 mg de compuesto B y la mezcla se deja reaccionar hasta que el color de la disolución desaparece por completo, 10h. Se filtra el sólido obtenido y se lava con DCM, obteniéndose el producto deseado como un sólido de color negro. La caracterización se realizó utilizando las siguientes técnicas: RAMAN, DRX, ICP-MS, SEM, UV, IR, XPS y ATD. A modo de ejemplo se muestra en las figuras 1 y 2 la difracción de rayos X y la imagen SEM de este material. In a round bottom flask 90 mg of rGO and 10 mL of DCM are introduced. The suspension was sonic for 10 min. Then 10 mg of compound are added B and the mixture is allowed to react until the color of the solution disappears completely, 10h. The solid obtained is filtered and washed with DCM, obtaining the desired product as a black solid. The characterization was performed using the following techniques: RAMAN, DRX, ICP-MS, SEM, UV, IR, XPS and ATD. As an example, X-ray diffraction and the SEM image of this material are shown in Figures 1 and 2.
Ejemplos 2 y 3: Obtención de un catalizadores con base de grafeno oxidado reducido y complejos de Ru y Pd funcionalizados con grupos pireno. Examples 2 and 3: Obtaining a catalyst with reduced oxidized graphene base and Ru and Pd complexes functionalized with pyrene groups.
Figure imgf000012_0001
Figure imgf000012_0001
rGO-Ru-NHC rGO-Pd-NHC  rGO-Ru-NHC rGO-Pd-NHC
El procedimiento general para la obtención de rGO-Ru-NHC y rGO-Pd-NHC es el mismo que el empleado en el ejemplo 1. La sal de imidazolio A y el soporte son los mismos que los descritos anteriormente. Los complejos organometálicos C y D se han sintetizado como se describe a continuación. i) Síntesis del compuesto de Rutenio C: The general procedure for obtaining rGO-Ru-NHC and rGO-Pd-NHC is the same as that used in example 1. The imidazolium salt A and the support are the same as those described above. Organometallic complexes C and D have been synthesized as described below. i) Synthesis of the compound of Ruthenium C:
En un matraz de fondo redondo de 100 mL se introduce la sal de imidazolio A (124,2 mg, 0.326 mmol), Ag20 (75,5 mg, 0.326 mmo!) y se añade 10 mL de acetonitrilo. En ausencia de luz se deja reaccionar durante 5 horas a temperatura de reflujo. A continuación se añade [RuCÍ2(r|6p-cymene)]2 (100 mg, 0,163 rnml) y KCI (243 mg, 3,25 mmol) y la mezcla de reacción se deja agitando a temperatura ambiente 15 horas. La suspensión resultante se filtra a través de ceiite y se elimina el disolvente a presión reducida, obteniéndose un crudo que se purifica mediante columna cromatografica eluyendo con una mezcla DCM/Acetona (9:2) obteniéndose el producto deseado como un sólido color naranja. Rendimiento: 120 mg, 61 % 1H NMR (300 MHz, CDCI3) δ 8.38 (d, J = 9.3 Hz, 1 H), 8.27 - 8.00 (m, 7H), 7.70 (d, J = 8.0 Hz, 1 H), 7.04 (d, J = 1 .9 Hz, 1 H), 6.92 (d, J = 1.8 Hz, 1 H), 6.75 - 6.33 (m, 2H), 5.26 (broad s, 2H), 4.89 (d, J = 5.9 Hz, 2H), 4.1 1 (s, 3H), 2.98 - 2.76 (m, 1 H), 2.02 (s, 3H), 1.18 (d, J = 6.7 Hz, 6H). In a 100 mL round bottom flask the imidazolium salt A (124.2 mg, 0.326 mmol), Ag 2 0 (75.5 mg, 0.326 mmo!) Is introduced and 10 mL of acetonitrile is added. In the absence of light, it is allowed to react for 5 hours at reflux temperature. Then [RuCÍ 2 (r | 6 p-cymene)] 2 (100 mg, 0.163 rnml) and KCI (243 mg, 3.25 mmol) are added and the reaction mixture is allowed to stir at room temperature for 15 hours. The resulting suspension is filtered through ceiite and the solvent is removed under reduced pressure, obtaining a crude which is purified by chromatographic column eluting with a DCM / Acetone mixture (9: 2) obtaining the desired product as an orange solid. Yield: 120 mg, 61% 1 H NMR (300 MHz, CDCI 3 ) δ 8.38 (d, J = 9.3 Hz, 1 H), 8.27 - 8.00 (m, 7H), 7.70 (d, J = 8.0 Hz, 1 H), 7.04 (d, J = 1 .9 Hz, 1 H), 6.92 (d, J = 1.8 Hz, 1 H), 6.75 - 6.33 (m, 2H), 5.26 (broad s, 2H), 4.89 (d, J = 5.9 Hz, 2H), 4.1 1 (s, 3H), 2.98 - 2.76 (m, 1 H), 2.02 (s, 3H), 1.18 (d, J = 6.7 Hz, 6H).
13C NMR (75 MHz, CDCI3) δ 174.8, 131 .3, 131 .1 , 130.8, 130.8, 128.7, 128.4, 127.8, 127.2, 126.3, 125.6, 125.6, 124.9, 124.7, 124.6, 124.6, 123.8, 123.6, 122.4, 108.1 , 98.9, 52.8, 39.9, 30.7, 18.7. 1 3 C NMR (75 MHz, CDCI 3 ) δ 174.8, 131 .3, 131 .1, 130.8, 130.8, 128.7, 128.4, 127.8, 127.2, 126.3, 125.6, 125.6, 124.9, 124.7, 124.6, 124.6, 123.8, 123.6, 122.4, 108.1, 98.9, 52.8, 39.9, 30.7, 18.7.
Electrosprav MS (20V, m/z): 567.2 [M-CI]+. ii) Síntesis de! compuesto de Paladio D: Electrosprav MS (20V, m / z): 567.2 [M-CI] + . ii) Synthesis of! Palladium D compound:
En un matraz Schlenk se introduce la sal de imidazolio A (127 mg, 0.334 mmol), [Pd(dmba)OAc]2 (100 mg, 0.167 mmol), KBr (40 mg, 0,334 mmol) y se realizan tres ciclos de vacio/N2. Se añaden 10 mL de acetonitrilo y se deja reaccionar durante 15 horas temperatura de reflujo. La suspensión resultante se filtra a través de celite y se elimina el disolvente a presión reducida, obteniéndose un crudo que se purifica mediante columna cromatografica eiuyendo con una mezcla DCM/Acetona (9:1 ) obteniéndose el producto deseado como un sólido color blanco. Rendimiento: 120 mg, 58%. In a Schlenk flask the imidazolium salt A (127 mg, 0.334 mmol), [Pd (dmba) OAc] 2 (100 mg, 0.167 mmol), KBr (40 mg, 0.334 mmol) is introduced and three vacuum cycles are performed / N 2 . 10 mL of acetonitrile are added and the reflux temperature is allowed to react for 15 hours. The resulting suspension is filtered through celite and the solvent is removed under reduced pressure, obtaining a crude that is purified by chromatographic column by being mixed with a DCM / Acetone mixture (9: 1) to obtain the desired product as a white solid. Yield: 120 mg, 58%.
1H NMR (300 MHz, CDCI3) δ 8.38 (d, J = 9.3 Hz, 1 H), 8.19 - 7.89 (m, 8H), 7.09 - 7.01 (m, 2H), 6.87 (td, J = 7.4, 2.8 Hz, 1 H), 6.77 (d, J = 1.9 Hz, 1 H), 6.43 (d, J = 1 .9 Hz, 1 H), 6.31 (d, J = 14.5 Hz, 1 H), 6.18 (d, J = 14.5 Hz, 1 H), 6.15 (d, J = 6,9 Hz , 1 H), 4.01 (d, J = 14.0 Hz, 1 H), 3.99 (s, 3H), 3.87 (d, J = 14.0 Hz, 1 H), 2.95 (s, 3H), 2.92 (s, 3H). 1 H NMR (300 MHz, CDCI 3 ) δ 8.38 (d, J = 9.3 Hz, 1 H), 8.19 - 7.89 (m, 8H), 7.09 - 7.01 (m, 2H), 6.87 (td, J = 7.4, 2.8 Hz, 1 H), 6.77 (d, J = 1.9 Hz, 1 H), 6.43 (d, J = 1 .9 Hz, 1 H), 6.31 (d, J = 14.5 Hz, 1 H), 6.18 ( d, J = 14.5 Hz, 1 H), 6.15 (d, J = 6.9 Hz, 1 H), 4.01 (d, J = 14.0 Hz, 1 H), 3.99 (s, 3H), 3.87 (d, J = 14.0 Hz, 1 H), 2.95 (s, 3H), 2.92 (s, 3H).
13C NMR (75 MHz, CDCI3) δ 172.9, 150.3, 148.7, 135.6, 131 .8, 131 .1 , 130.7, 129.7, 128.8, 128.6, 128.1 , 127.9, 127.2, 126.1 , 125.7, 125.6, 125.5, 124.9, 124.7, 124.5, 124.1 , 123.7, 122.5, 122.1 , 120.3, 72.2, 53.7, 51.2, 50.6, 38.7. 1 3 C NMR (75 MHz, CDCI 3 ) δ 172.9, 150.3, 148.7, 135.6, 131 .8, 131 .1, 130.7, 129.7, 128.8, 128.6, 128.1, 127.9, 127.2, 126.1, 125.7, 125.6, 125.5, 124.9, 124.7, 124.5, 124.1, 123.7, 122.5, 122.1, 120.3, 72.2, 53.7, 51.2, 50.6, 38.7.
Electrosprav MS (20V. m/z): 536,3 [M-Br]+. Electrosprav MS (20V. M / z): 536.3 [M-Br] + .
Ejemplos 4: Evaluación catalítica de rGO-Ru-NHC El material rGO-Ru-NHC ha sido empleado en la oxidación de alcoholes para la generación de las correspondientes cetonas o aldehidos, siendo una de ellas la siguiente reacción:
Figure imgf000014_0001
Examples 4: Catalytic evaluation of rGO-Ru-NHC The rGO-Ru-NHC material has been used in the oxidation of alcohols for the generation of the corresponding ketones or aldehydes, one of them being the following reaction:
Figure imgf000014_0001
Este material es muy activo alcanzando rendimientos cuantitativos bajo condiciones de reacción suaves (80 °C, 12h), tal y como se muestra en la figura 3. La principal ventaja de este sistema, es que ha sido reutilizado hasta seis veces consecutivas sin una apreciable desactivación del catalizador (ver Fig. 3). Después de cada ciclo catalítico el material se ha separado del medio de reacción mediante una simple filtración. This material is very active reaching quantitative yields under mild reaction conditions (80 ° C, 12h), as shown in Figure 3. The main advantage of this system is that it has been reused up to six consecutive times without an appreciable catalyst deactivation (see Fig. 3). After each catalytic cycle the material has been separated from the reaction medium by simple filtration.

Claims

REIVINDICACIONES
Producto que comprende: Product comprising:
a) un soporte de un material de carbono seleccionado de entre agregados de carbono, fibras de carbono, nanotubos de carbono, grafeno y derivados del grafeno y  a) a support of a carbon material selected from carbon aggregates, carbon fibers, carbon nanotubes, graphene and graphene derivatives and
b) un compuesto de fórmula general (I):  b) a compound of general formula (I):
A-X-B-[MLn]  A-X-B- [MLn]
(I)  (I)
unido mediante enlaces no covalentes al soporte donde:  joined by means of non-covalent bonds to the support where:
A es un hidrocarburo aromático policíclico,  A is a polycyclic aromatic hydrocarbon,
X es un grupo puente entre A y B que se selecciona de entre [-CH2-]m, [-CH2-0- ]m, [-arilo-CH2-]m ó [-CH2-NH-]m, siendo m un valor que se selecciona de entre 1 , 2, 3 ó 4, X is a bridge group between A and B that is selected from [-CH 2 -] m, [-CH 2 -0-] m, [-aryl-CH 2 -] m or [-CH 2 -NH-] m, m being a value that is selected from 1, 2, 3 or 4,
B es un N-heterociclo de 5 a 8 miembros opcionalmente sustituido por alquilo Cr C10 opcionalmente sustituido o arilo opcionalmente sustituido, B is a 5 to 8 membered N-heterocycle optionally substituted by optionally substituted C r C10 alkyl or optionally substituted aryl,
[MLn] es un grupo de coordinación donde M es un metal de transición, L es un ligando de coordinación y n tiene un valor que se selecciona de entre 1 , 2, 3 ó 4  [MLn] is a coordination group where M is a transition metal, L is a coordination ligand and n has a value that is selected from 1, 2, 3 or 4
Producto según la reivindicación 1 donde el soporte de material de carbono se selecciona de entre grafeno oxidado o grafeno oxidado reducido. Product according to claim 1 wherein the carbon material support is selected from oxidized graphene or reduced oxidized graphene.
Producto según cualquiera de las reivindicaciones anteriores donde A se selecciona de entre antraceno, benzopireno, criseno, coroneno, naftaceno, pentaceno, naftaleno, fenantreno, pireno, trifenileno. Product according to any of the preceding claims wherein A is selected from among anthracene, benzopyrene, chromene, coronen, naphthacene, pentacene, naphthalene, phenanthrene, pyrene, triphenylene.
Producto según la reivindicación 3 donde A es pireno. Product according to claim 3 wherein A is pyrene.
Producto según cualquiera de las reivindicaciones anteriores donde X es [-CH2-]m. Product according to any of the preceding claims wherein X is [-CH 2 -] m .
Producto según cualquiera de las reivindicaciones anteriores donde m se selecciona de entre 1 ó 2. Product according to any of the preceding claims wherein m is selected from 1 or 2.
7. Producto según la reivindicación anterior donde m es 1. 7. Product according to the preceding claim wherein m is 1.
8. Producto según cualquiera de las reivindicaciones anteriores donde B se selecciona de entre piridina, pirimidina, pirazolina, quinolina, isoquinolina, pirrol, indol, purina, imidazol, pirazol, tiazol. 9. Producto según la reivindicación anterior donde B es imidazol. 8. Product according to any of the preceding claims wherein B is selected from pyridine, pyrimidine, pyrazoline, quinoline, isoquinoline, pyrrole, indole, purine, imidazole, pyrazole, thiazole. 9. Product according to the preceding claim wherein B is imidazole.
10. Producto según cualquiera de las reivindicaciones anteriores donde M se selecciona de entre Ru, Os, Rh, Ir, Pd, Pt, Ag, Au. 1 1 . Producto según la reivindicación anterior donde el metal es Ir. 10. Product according to any of the preceding claims wherein M is selected from Ru, Os, Rh, Ir, Pd, Pt, Ag, Au. eleven . Product according to the preceding claim wherein the metal is Ir.
12. Producto según cualquiera de las reivindicaciones anteriores donde L se selecciona de entre Cl, Br, p-cimeno, piridina, ciclopentadienilo, 1 ,5-ciclooctadieno, r -alilo, SMe2. 12. Product according to any of the preceding claims wherein L is selected from Cl, Br, p-cimeno, pyridine, cyclopentadienyl, 1,5-cyclooctadiene, r-allyl, SMe 2 .
13. Catalizador que comprende el producto según cualquiera de las reivindicaciones 1 a 12. 13. Catalyst comprising the product according to any of claims 1 to 12.
14. Procedimiento de obtención del producto según cualquiera de las reivindicaciones 1 a 12 que comprende la siguientes etapas: 14. Method of obtaining the product according to any of claims 1 to 12 comprising the following steps:
a) hacer reaccionar un compuesto de fórmula (II)  a) reacting a compound of formula (II)
A-X-Y  A-X-Y
(II)  (II)
con un compuesto B, donde A, X y B se definen como en la reivindicación 1 e Y se selecciona de entre Cl, I y Br, para dar un compuesto de fórmula (II):  with a compound B, wherein A, X and B are defined as in claim 1 and Y is selected from Cl, I and Br, to give a compound of formula (II):
A-X-B  A-X-B
(III)  (III)
b) hacer reaccionar el compuesto de fórmula (III) obtenido en la etapa (a) con un compuesto organometálico [MLn] donde M, L y n se definen como en la reivindicación 1 , para obtener el compuesto de fórmula (I):  b) reacting the compound of formula (III) obtained in step (a) with an organometallic compound [MLn] wherein M, L and n are defined as in claim 1, to obtain the compound of formula (I):
A-X-B-[MLn]  A-X-B- [MLn]
(I)  (I)
c) hacer reaccionar el producto obtenido en la etapa (b) con el soporte de material de carbono.  c) react the product obtained in step (b) with the support of carbon material.
PCT/ES2014/070848 2013-11-18 2014-11-18 Carrier for catalysts made of graphene derivatives WO2015071521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201331680 2013-11-18
ES201331680A ES2538407B1 (en) 2013-11-18 2013-11-18 SUPPORT OF CATALYZERS IN GRAPHENE DERIVATIVES

Publications (1)

Publication Number Publication Date
WO2015071521A1 true WO2015071521A1 (en) 2015-05-21

Family

ID=53056828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070848 WO2015071521A1 (en) 2013-11-18 2014-11-18 Carrier for catalysts made of graphene derivatives

Country Status (2)

Country Link
ES (1) ES2538407B1 (en)
WO (1) WO2015071521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2651161A1 (en) * 2017-07-11 2018-01-24 Universitat Jaume I Procedure for the production and storage of hydrogen through catalytic dehydrogenation, and use of a transition metal catalyst anchored on a support of a carbon material to obtain hydrogen by catalytic dehydrogenation reactions (Machine-translation by Google Translate, not legally binding)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J-P. ZHONG ET AL.: "Highly active Pt nanoparticles on nickel phthalocyanine functionalized graphene nanosheets for methanol electrooxidation", ELECTROCHIMICA ACTA, vol. 113, 2013, pages 653 - 660, XP028804651, DOI: doi:10.1016/j.electacta.2013.09.092 *
Q. LIANG ET AL.: "Preparation and characterization of Pt/functionalized grapheee and its electrocatalysis for methanol oxidation", ELECTROCHIMICA ACTA, vol. 111, 2013, pages 275 - 283 *
S. GUO ET AL.: "Graphene decorated with Pd nanoparticles via electrostatic self-assembly: A high active alcohol oxidation electrocatalyst", ELECTROCHIMICA ACTA, vol. 109, 2013, pages 276 - 282, XP028754479, DOI: doi:10.1016/j.electacta.2013.07.155 *
S. SABATER ET AL.: "Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions", ACS CATALYSIS, vol. 4, no. 6, 14 May 2014 (2014-05-14), pages 2038 - 2047 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2651161A1 (en) * 2017-07-11 2018-01-24 Universitat Jaume I Procedure for the production and storage of hydrogen through catalytic dehydrogenation, and use of a transition metal catalyst anchored on a support of a carbon material to obtain hydrogen by catalytic dehydrogenation reactions (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
ES2538407B1 (en) 2016-04-13
ES2538407A1 (en) 2015-06-19

Similar Documents

Publication Publication Date Title
Mondal et al. Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to azo compounds
Yu et al. Photocatalytic metal–organic frameworks for organic transformations
Su et al. Tandem catalysis of amines using porous graphene oxide
Kung et al. Metal–organic framework thin films as platforms for atomic layer deposition of cobalt ions to enable electrocatalytic water oxidation
Bahuguna et al. Carbon‐support‐based heterogeneous nanocatalysts: synthesis and applications in organic reactions
Chen et al. Fluorine-functionalized NbO-type {Cu2}-organic framework: enhanced catalytic performance on the cycloaddition reaction of CO2 with epoxides and deacetalization-knoevenagel condensation
Luo et al. Carbazolic porous organic framework as an efficient, metal-free visible-light photocatalyst for organic synthesis
Muhammad et al. Recyclable Cu@ C3N4-catalyzed hydroxylation of aryl boronic acids in water under visible light: synthesis of phenols under ambient conditions and room temperature
He et al. Diverting C–H annulation pathways: nickel-catalyzed dehydrogenative homologation of aromatic amides
Rashidizadeh et al. Graphitic carbon nitride nanosheets covalently functionalized with biocompatible vitamin B1: synthesis, characterization, and its superior performance for synthesis of quinoxalines
Li et al. Eosin Y covalently anchored on reduced graphene oxide as an efficient and recyclable photocatalyst for the aerobic oxidation of α-aryl halogen derivatives
Alsudairy et al. Covalent organic frameworks in heterogeneous catalysis: Recent advances and future perspective
Cheng et al. Chiral proline-decorated bifunctional Pd@ NH2-UiO-66 catalysts for efficient sequential Suzuki coupling/asymmetric aldol reactions
CN106563507A (en) Nanometer supported metal organic framework palladium composite catalyst, preparation method and applications thereof
Martina et al. Eco-friendly physical activation methods for Suzuki–Miyaura reactions
Che et al. Efficient Photocatalytic Oxidative Coupling of Benzylamine over Uranyl–Organic Frameworks
Buchgraber et al. Functionalization of Planar Chiral Fused Arene Ruthenium Complexes: Synthesis, X-ray Structures, and Spectroscopic Characterization of Monodentate Triarylphosphines
Xia et al. Metal-organic framework-based nanostructured catalysts: applications in efficient organic transformations
Si et al. Designing a polyoxometalate-incorporated metal–organic framework for reduction of nitroarenes to anilines by sequential proton-coupled electron transfers
Mohammadi et al. [ZrFe2O4@ SiO2–N–(TMSP)–ASP–Pd (0)] Complex: Synthesis, characterizations, and its application as a nanomagnetic catalyst in cross-coupling and click reactions
Mohammadi Metkazini et al. Sustainable visible light-driven Heck and Suzuki reactions using NiCu nanoparticles adorned on carbon nano-onions
Zvaigzne et al. Anisotropic nanomaterials for asymmetric synthesis
ES2538407B1 (en) SUPPORT OF CATALYZERS IN GRAPHENE DERIVATIVES
Biswas et al. Advances in Cu nanocluster catalyst design: Recent progress and promising applications
Shi et al. Synthesis of phenanthrothiazoles and 1, 2-di (heteroaryl) benzenes through successive Pd-catalyzed direct arylations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861302

Country of ref document: EP

Kind code of ref document: A1