WO2015071518A1 - Translucent glass-ceramic material comprising albite - Google Patents

Translucent glass-ceramic material comprising albite Download PDF

Info

Publication number
WO2015071518A1
WO2015071518A1 PCT/ES2014/070838 ES2014070838W WO2015071518A1 WO 2015071518 A1 WO2015071518 A1 WO 2015071518A1 ES 2014070838 W ES2014070838 W ES 2014070838W WO 2015071518 A1 WO2015071518 A1 WO 2015071518A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic material
glass
sample
weight
shows
Prior art date
Application number
PCT/ES2014/070838
Other languages
Spanish (es)
French (fr)
Inventor
Juan Francisco Aparisi Ventura
Antonio José Ramos Clemen
Fidel Granel Cabedo
Manuel Sanz Pesudo
Original Assignee
Esmalglass, Sau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esmalglass, Sau filed Critical Esmalglass, Sau
Publication of WO2015071518A1 publication Critical patent/WO2015071518A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • C04B41/5023Glass-ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes

Definitions

  • the present invention is generally framed in the field of crystalline materials and specifically refers to glass ceramic materials comprising albite as the predominant crystalline phase being translucent in the visible spectrum.
  • Vitroceramic materials are microcrystalline materials obtained from a glass after heat treatment. The properties of said material are determined by the main microcrystalline phases and their final microstructures.
  • the translucent glass ceramics obtained so far have a solid solution of ⁇ -quartz as the main crystalline phase, (W. Hoeland and G. Beall, in "Glass-ceramic technology", Am. Ceram. Soc, Westerville (2002), pages 88-96).
  • These materials are generally obtained by heat treatment of a precursor glass (more conventionally a mixture of the constituents of said glass: a mineral filler, a precursor of said glass) whose composition is of the type Li0 2 - Al 2 0 3 - Si0 2 ( THE).
  • the heat treatment includes a nucleation stage followed by a crystal growth stage.
  • the present invention relates to translucent glass-ceramic material (hereinafter, glass-ceramic material of the present invention) which comprises albite as the main crystalline phase and does not contain lead, Ti0 2 , As 2 0 3 , Sb 2 0 3i or halides.
  • the glass-ceramic material of the present invention comprises a composition in percentages by weight of the total composition referred to the oxides, of:
  • the present invention relates to a process for obtaining the glass ceramic material (hereinafter, process of the present invention) of the present invention comprising the following steps: a) Cooling of the molten glass obtained in the step a) with water by quenching
  • step b) grinding of the material obtained in step b) until a granulometry of less than 63 microns is achieved.
  • the glass ceramic material is processed in a mill for its breakage and to obtain material in granular form with a specific granulometry by sieving it.
  • the material obtained is a ceramic enamel.
  • the material is ground together with specific additives and water in a ball mill until a specific rejection to obtain a ceramic enamel.
  • the glass ceramic material in a first stage, is milled in a ball mill with specific additives and water until a determined rejection until a liquid suspension is achieved. After grinding a drying process of the suspension is carried out until a powder material is obtained with a specific rejection.
  • the glass-ceramic material in a first stage, is milled in a ball mill with specific additives and binders and water until a specific rejection until a liquid suspension is achieved.
  • the material is processed in two different ways:
  • the fusion of the precursor vitreous material from step a) is carried out at a temperature between 1400-1500 e C.
  • step c) is carried out for a maximum of 120 minutes at a temperature between 1 180-1220 e C.
  • the present invention relates to the use of the glass ceramic material of the present invention for coating materials.
  • the present invention relates to the use of the ceramic hob of the present invention on cooking surfaces and kitchen utensils.
  • the present invention relates to the use of the glass ceramic material of the present invention in structural elements.
  • Figure 1 shows the diffractogram obtained from sample 1.
  • Figure 2 shows the cross section of the sample 1 to the scanning electron microscope.
  • Figure 3 shows the global EDX analysis of sample 1
  • Figure 4 shows the cross section of the sample 1 to the scanning electron microscope with a resolution of 50 microns (a), with a resolution of 10 microns (b) and the EDX analysis of its main constituents (c, d and e).
  • Figure 5 shows the cross section of sample 2 under the scanning electron microscope.
  • Figure 6 shows the cross-section of the sample 2 to the scanning electron microscope with a resolution of 50 microns.
  • Figure 7 shows the cross section of sample 3 to the scanning electron microscope
  • Figure 8 shows the cross section of sample 3 to the scanning electron microscope with a resolution of 200 microns
  • Figure 9 shows the cross section of the sample 3 to the scanning electron microscope with a resolution of 10 microns
  • Figure 10 shows the overall EDX analysis of sample 3.
  • Figure 1 1 shows the cross section of the sample 3 to the scanning electron microscope with a resolution of 50 microns (e) and EDC analysis of its main constituents (a, b, c and d).
  • Figure 12 shows the cross section of sample 4 to the MEB with a resolution of 500 microns
  • Figure 13 shows the cross section of sample 4 to the MEB with a resolution of 200 microns
  • Figure 14 shows the overall EDX analysis of sample 4.
  • Figure 15 shows the cross section of sample 4, with a resolution of 50 microns (e), with a resolution of 10 microns (f) and the EDX analysis of its main constituents (a, b, c and d).
  • Figure 16 shows the ceramic enamel prepared with the glass ceramic material of the present invention.
  • Figure 17 shows the granular material obtained with the glass ceramic material of the present invention.
  • Example 1 Procedure for preparing the glass ceramic material
  • the precursor composition was formed, it was melted, for which the temperature was raised to 1400-1500 e C and then subjected to quenching with water. Once the material cooled, the material was cooled. grinding of the glass-ceramic material in a ball mill until obtaining a material in granular form with a granulometry of less than 63 microns. Then a stage of wetting the material with a water content of 5.5% and homogenization of the same was carried out to avoid the presence of lumps of greater granulometry. Then the cylindrical specimens were pressed at a pressure of 350kg / cm 2 and dried for 1 hour in an oven at 1 10 e C. Finally It was subjected to a laboratory electric flask firing at different temperatures: 1 .180, 1 .200 and 1 .220 e C.
  • Example 2 Microstructural characterization of the samples obtained in example 1
  • microstructural characterization of the samples of glass ceramic material obtained in example 1 was carried out, which consisted in the quantification of crystalline phases by X-ray diffraction, as well as the Observation and analysis of the samples by scanning electron microscopy.
  • the quantification of crystalline phases was carried out by means of a calibration curve with reference materials and the percentage of the crystalline phases was determined by comparison of the area of the majority peaks.
  • Sample 1 presented a percentage of vitreous / amorphous phase of 78 ⁇ 8%.
  • Figure 2 shows a photograph of the cross-section of the sample 1, in which the presence of closed porosity can be seen, as well as some darker particles whose appearance resembles infused, these areas seem to correspond to the crystalline phase of silicon dioxide determined by X-ray diffraction.
  • Sample 1 is mainly composed of a crystalline phase embedded in a vitreous phase of very similar analysis. The analysis of the vitreous phase and the crystals is very similar, the main difference lies in the enrichment in aluminum and sodium and the potassium depletion of the crystalline phase. This phase could correspond to the albite phase identified by X-ray diffraction (figure 1), which also contains calcium that would correspond to the possible substitution.
  • Figures 5 and 6 show the micrographs corresponding to sample 2, in this case the analyzes of the different phases were similar to those obtained for sample 1.
  • Figure 6 clearly shows the areas where a quartz particle existed, which has generated a vitreous phase rich in silica that prevents the formation of the crystalline phase.
  • Figures 7 and 8 show the micrographs corresponding to sample 3.
  • Figure 7 shows the presence of a large amount of porosity and very irregular, which indicates the greater refractoriness of this sample.
  • Figure 8 shows the tortuousness of the pores as well as the presence of particles of different types and of a large size.
  • Figure 9 shows that the crystals are similar to those shown in sample 1. Also in Figure 1 1 It shows an area where you can see all the types of heterogeneities present. It shows the existence of alumina particles, quartz, vitreous phase areas without crystals and crystals richer in aluminum, sodium and calcium.
  • Figures 12 and 13 show the micrographs corresponding to sample 4, in this case, the porosity seems more rounded than in sample 3, this indicates its greater functionality.
  • Figure 14 shows the overall analysis of the sample. A detail of the cross section of this sample is included in Figure 15, where it can be verified by analysis, the presence of alumina particles, quartz, vitreous areas and areas with crystals rich in aluminum, mainly. In this case, the comparison of the analyzes of the crystalline vitreous phase are not very different, the main difference is in the lower aluminum content and higher potassium content of the vitreous phase. In addition, the morphology of the crystals seems different from that observed in the two previous samples, they are larger crystals and appear to be in greater proportion.
  • Example 3 Coatings with the glass ceramic material of the invention
  • the glass ceramic material was applied as a ceramic glaze on cake of different technologies and after a cooking stage, a high gloss ceramic finish with high Mohs hardness was achieved. As shown in Figure 16, the ceramic coating obtained had a high gloss and high scratch resistance.
  • vitroceramic material of the invention after a cooking process and subsequent lapping / polishing, gave rise to a granular material that as shown in Figure 17 had a high gloss surface (greater than 91 e ) with high Mohs hardness and high scratch resistance .
  • the glass ceramic material of the present invention was used both as a ceramic coating and a glass ceramic panel for structural and concine use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The invention relates to a translucent glass-ceramic material comprising albite as a main crystalline phase, and not containing lead, TiO2, As2O3, Sb2O3 or halides. The invention also relates to the method for producing the material, and to the use of said glass-ceramic material for coating materials, as well as for use in cooking surfaces and kitchen utensils and in structural elements.

Description

MATERIAL VITROCERÁMICO TRASLÚCIDO ESTRUCTURA ALBITA  VITROCERAMIC MATERIAL TRANSFER ALBITA STRUCTURE
Campo de la invención Field of the Invention
La presente invención se encuadra en general en el campo de los materiales cristalinos y en concreto se refiere a materiales vitrocerámicos que comprenden albita como fase cristalina predominante siendo traslúcido en el espectro visible.  The present invention is generally framed in the field of crystalline materials and specifically refers to glass ceramic materials comprising albite as the predominant crystalline phase being translucent in the visible spectrum.
Estado de la técnica State of the art
Los materiales vitrocerámicos son materiales microcristalinos obtenidos a partir de un vidrio después de un tratamiento térmico. Las propiedades de dicho material vienen determinadas por las fases microcristalinas principales y sus microestructuras finales. Vitroceramic materials are microcrystalline materials obtained from a glass after heat treatment. The properties of said material are determined by the main microcrystalline phases and their final microstructures.
En general, los vitrocerámicos traslúcidos obtenidos hasta el momento presentan una solución sólida de cuarzo β como fase cristalina principal, (W. Hoeland y G. Beall, en "Glass-ceramic technology", Am. Ceram. Soc, Westerville (2002), páginas 88-96). Estos materiales se obtienen generalmente mediante tratamiento térmico de un vidrio precursor (más convencionalmente una mezcla de los constituyentes de dicho vidrio: una carga mineral, una precursora de dicho vidrio) cuya composición es del tipo Li02- Al203-Si02 (LAS). El tratamiento térmico incluye una etapa de nucleacion seguida de una etapa de crecimiento de cristal. In general, the translucent glass ceramics obtained so far have a solid solution of β-quartz as the main crystalline phase, (W. Hoeland and G. Beall, in "Glass-ceramic technology", Am. Ceram. Soc, Westerville (2002), pages 88-96). These materials are generally obtained by heat treatment of a precursor glass (more conventionally a mixture of the constituents of said glass: a mineral filler, a precursor of said glass) whose composition is of the type Li0 2 - Al 2 0 3 - Si0 2 ( THE). The heat treatment includes a nucleation stage followed by a crystal growth stage.
Existen numerosas patentes referidas a los materiales vitrocerámicos traslúcidos con estructura cuarzo β como fase cristalina principal, como las patentes americanas US5.017.519, US6.750.167, JP 0696460. There are numerous patents referring to translucent glass-ceramic materials with β-quartz structure as the main crystalline phase, such as US patents US5,017,519, US6,750,167, JP 0696460.
Hasta el momento los pocos vitrocerámicos traslúcidos que se han desarrollado tienen una estructura cuarzo, estos materiales presentan una opacidad bastante considerable, debido a su composición presentan los cantos redondeados/fundidos y no son muy estables. Existe pues la necesidad de proporcionar un vitrocerámico que presente una mayor traslucidez que sean estables con la temperatura, capaces de presentar cantos rectos y que tengan un coeficiente de dilatación de acuerdo al uso al que vaya destinado dicho materia. Descripción de la invención So far, the few translucent glass ceramic that have been developed have a quartz structure, these materials have a considerable opacity, due to their composition they have rounded / molten edges and are not very stable. There is therefore a need to provide a ceramic hob that has a greater translucency that is stable with temperature, capable of presenting straight edges and that have a coefficient of expansion according to the intended use of said material. Description of the invention
Así pues en un primer aspecto, la presente invención se refiere material vitrocerámico traslúcido (de aquí en adelante, material vitrocerámico de la presente invención) que comprende albita como fase cristalina principal y no contiene plomo, Ti02, As203, Sb203i ni haluros. Thus, in a first aspect, the present invention relates to translucent glass-ceramic material (hereinafter, glass-ceramic material of the present invention) which comprises albite as the main crystalline phase and does not contain lead, Ti0 2 , As 2 0 3 , Sb 2 0 3i or halides.
En un aspecto más en particular el material vitrocerámico de la presente invención comprende una composición en porcentajes en peso de la composición total referidos a los óxidos, de:  In a more particular aspect the glass-ceramic material of the present invention comprises a composition in percentages by weight of the total composition referred to the oxides, of:
- Si02: 52 - 58 % en peso, - Si0 2 : 52 - 58% by weight,
- Al203 : 20 - 28 % en peso, - At 2 0 3 : 20 - 28% by weight,
- CaO: 8 - 1 1 % en peso,  - CaO: 8 - 1 1% by weight,
- SrO: 8 - 1 1 % en peso,  - SrO: 8 - 1 1% by weight,
- K20: 1 - 3 % en peso, - K 2 0: 1 - 3% by weight,
- Na20: 1 - 3 % en peso, - Na 2 0: 1 - 3% by weight,
- BaO: 0 - 1 % en peso,  - BaO: 0 - 1% by weight,
- Li20: 0 - 1 % en peso, - Li 2 0: 0 - 1% by weight,
- MgO: 0 - 1 % en peso,  - MgO: 0-1% by weight,
- ZnO: 0 - 1 % en peso,  - ZnO: 0 - 1% by weight,
- B203: 0 - 0,5 % en peso, - B 2 0 3 : 0 - 0.5% by weight,
- P205: 0 - 0,5 % en peso - P 2 0 5 : 0 - 0.5% by weight
En un segundo aspecto, la presente invención se refiere a un procedimiento para la obtención del material vitrocerámico (de aquí en adelante, procedimiento de la presente invención) de la presente invención que comprende los siguientes pasos: a) Enfriamiento del vidrio fundido obtenido en el paso a) con agua mediante quenching  In a second aspect, the present invention relates to a process for obtaining the glass ceramic material (hereinafter, process of the present invention) of the present invention comprising the following steps: a) Cooling of the molten glass obtained in the step a) with water by quenching
b) molturación del material obtenido en el paso b) hasta conseguir una granulometría inferior a 63 mieras.  b) grinding of the material obtained in step b) until a granulometry of less than 63 microns is achieved.
En una realización preferente, el material vitrocerámico se procesa en un molino para su rotura y obtención de material en forma granular con una granulometría específica mediante el tamizado del mismo. En otra realización preferente, el material obtenido es un esmalte cerámico. Para ello, el material se moltura junto con aditivos específicos y agua en un molino de bolas hasta un rechazo determinado para obtener un esmalte cerámico. In a preferred embodiment, the glass ceramic material is processed in a mill for its breakage and to obtain material in granular form with a specific granulometry by sieving it. In another preferred embodiment, the material obtained is a ceramic enamel. For this, the material is ground together with specific additives and water in a ball mill until a specific rejection to obtain a ceramic enamel.
En otra realización preferente, el material vitrocerámico, en una primera etapa, se moltura en un molino de bolas con aditivos específicos y agua hasta un rechazo determinado hasta conseguir una suspensión líquida. Tras la molturación se realiza un proceso de secado de la suspensión hasta obtener un material en forma de polvo con un rechazo determinado.  In another preferred embodiment, the glass ceramic material, in a first stage, is milled in a ball mill with specific additives and water until a determined rejection until a liquid suspension is achieved. After grinding a drying process of the suspension is carried out until a powder material is obtained with a specific rejection.
En otra realización preferente, el material vitrocerámico, en una primera etapa, se moltura en un molino de bolas con aditivos y ligantes específicos y agua hasta un rechazo determinado hasta conseguir una suspensión líquida. En una segunda etapa, se procesa el material de dos formas distintas:  In another preferred embodiment, the glass-ceramic material, in a first stage, is milled in a ball mill with specific additives and binders and water until a specific rejection until a liquid suspension is achieved. In a second stage, the material is processed in two different ways:
Atomización de la suspensión líquida hasta obtener un material esférico con una granulometría específica.  Atomization of the liquid suspension until obtaining a spherical material with a specific granulometry.
Granulación de la suspensión líquida hasta la obtención de un material esférico de gran dureza con una granulometría específica.  Granulation of the liquid suspension until obtaining a spherical material of great hardness with a specific granulometry.
c) obtención del acabado traslúcido mediante tratamiento térmico del producto obtenido en el paso b)  c) obtaining the translucent finish by heat treatment of the product obtained in step b)
Más en particular, la fusión del material vitreo precursor del paso a) se realiza a una temperatura comprendida entre 1400-1500eC. More particularly, the fusion of the precursor vitreous material from step a) is carried out at a temperature between 1400-1500 e C.
Más en particular, el paso c) se lleva a cabo como máximo durante 120 minutos a una temperatura comprendida entre 1 180-1220 eC. More particularly, step c) is carried out for a maximum of 120 minutes at a temperature between 1 180-1220 e C.
En otro aspecto la presente invención se refiere al uso del material vitrocerámico de la presente invención para el recubrimiento de materiales.  In another aspect the present invention relates to the use of the glass ceramic material of the present invention for coating materials.
En otro aspecto la presente invención se refiere al uso del material vitrocerámico de la presente invención en superficies de cocción y utensilios de cocina.  In another aspect the present invention relates to the use of the ceramic hob of the present invention on cooking surfaces and kitchen utensils.
En otro aspecto la presente invención se refiere al uso del material vitrocerámico de la presente invención en elementos estructurales. Figuras In another aspect the present invention relates to the use of the glass ceramic material of the present invention in structural elements. Figures
La figura 1 muestra el difractograma obtenido de la muestra 1 .  Figure 1 shows the diffractogram obtained from sample 1.
La figura 2 muestra la sección transversal de la muestra 1 al microscopio electrónico de barrido.  Figure 2 shows the cross section of the sample 1 to the scanning electron microscope.
La figura 3 muestra el análisis EDX global de la muestra 1  Figure 3 shows the global EDX analysis of sample 1
La figura 4 muestra la sección transversal de la muestra 1 al microscopio electrónico de barrido con una resolución de 50 mieras (a), con una resolución de 10 mieras (b) y el análisis EDX de sus principales constituyentes (c, d y e).  Figure 4 shows the cross section of the sample 1 to the scanning electron microscope with a resolution of 50 microns (a), with a resolution of 10 microns (b) and the EDX analysis of its main constituents (c, d and e).
La figura 5 muestra la sección transversal de la muestra 2 al microscopio electrónico de barrido. Figure 5 shows the cross section of sample 2 under the scanning electron microscope.
La figura 6 muestra la sección transversal de la muestra 2 al microscopio electrónico de barrido con una resolución de 50 mieras.  Figure 6 shows the cross-section of the sample 2 to the scanning electron microscope with a resolution of 50 microns.
La figura 7 muestra la sección transversal de la muestra 3 al microscopio electrónico de barrido  Figure 7 shows the cross section of sample 3 to the scanning electron microscope
La figura 8 muestra la sección transversal de la muestra 3 al microscopio electrónico de barrido con una resolución de 200 mieras  Figure 8 shows the cross section of sample 3 to the scanning electron microscope with a resolution of 200 microns
La figura 9 muestra la sección transversal de la muestra 3 al microscopio electrónico de barrido con una resolución de 10 mieras  Figure 9 shows the cross section of the sample 3 to the scanning electron microscope with a resolution of 10 microns
La figura 10 muestra el análisis EDX global de la muestra 3. Figure 10 shows the overall EDX analysis of sample 3.
La figura 1 1 muestra la sección transversal de la muestra 3 al microscopio electrónico de barrido con una resolución de 50 mieras (e) y análisis EDC de sus principales constituyentes (a, b, c y d).  Figure 1 1 shows the cross section of the sample 3 to the scanning electron microscope with a resolution of 50 microns (e) and EDC analysis of its main constituents (a, b, c and d).
La figura 12 muestra la sección transversal de la muestra 4 al MEB con una resolución de 500 mieras  Figure 12 shows the cross section of sample 4 to the MEB with a resolution of 500 microns
La figura 13 muestra la sección transversal de la muestra 4 al MEB con una resolución de 200 mieras  Figure 13 shows the cross section of sample 4 to the MEB with a resolution of 200 microns
La figura 14 muestra el análisis EDX global de la muestra 4. La figura 15 muestra la sección transversal de la muestra 4, con una resolución de 50 mieras (e), con una resolución de 10 mieras (f) y el análisis EDX de sus principales constituyentes (a, b, c y d). Figure 14 shows the overall EDX analysis of sample 4. Figure 15 shows the cross section of sample 4, with a resolution of 50 microns (e), with a resolution of 10 microns (f) and the EDX analysis of its main constituents (a, b, c and d).
La figura 16 muestra el esmalte cerámico preparado con el material vitrocerámico de la presente invención.  Figure 16 shows the ceramic enamel prepared with the glass ceramic material of the present invention.
La figura 17 muestra el material granular obtenido con el material vitrocerámico de la presente invención.  Figure 17 shows the granular material obtained with the glass ceramic material of the present invention.
Descripción detallada de la invención Detailed description of the invention
Ejemplo 1: Procedimiento de preparación del material vitrocerámico Example 1: Procedure for preparing the glass ceramic material
Se prepararon cuatro muestras mediante el siguiente procedimiento: En primer lugar, preparó la mezcla de la composición precursora que contenía:  Four samples were prepared by the following procedure: First, he prepared the mixture of the precursor composition containing:
- 54,8 % en peso de Si02, - 54.8% by weight of Si0 2 ,
- 25 % en peso de Al203 , - 25% by weight of Al 2 0 3 ,
- 8,5 % en peso de CaO,  - 8.5% by weight of CaO,
- 8,5 % en peso de SrO,  - 8.5% by weight of SrO,
- 1 ,1 % en peso de K20, - 1, 1% by weight of K 2 0,
- 1 ,1 % en peso de Na20, - 1, 1% by weight of Na 2 0,
- 0,8 % en peso de MgO,  - 0.8% by weight MgO,
- 0.2 % en peso de ZnO  - 0.2% by weight of ZnO
Una vez formada la composición precursora, se procedió a la fusión de la misma, para ello se elevó la temperatura hasta 1400-1500eC y a continuación se sometió a un enfriamiento con agua mediante quenching.Una vez enfriado el material, se procedió a la molturación del material vitrocerámico en molino de bolas hasta obtener un material en forma granular con una granulometría inferior a 63 micras.A continuación se procedió a una etapa de humectación del material con un contenido de agua del 5,5% y homogeneización del mismo para evitar la presencia de grumos de mayor granulometría. Después se procedió al prensado de probetas cilindricas a una presión de 350kg/cm2 y secado de las mismas durante 1 hora en estufa a 1 10eC. Finalmente se sometió a una cocción en mufla eléctrica de laboratorio a diferentes temperaturas: 1 .180, 1 .200 y 1 .220eC. Once the precursor composition was formed, it was melted, for which the temperature was raised to 1400-1500 e C and then subjected to quenching with water. Once the material cooled, the material was cooled. grinding of the glass-ceramic material in a ball mill until obtaining a material in granular form with a granulometry of less than 63 microns. Then a stage of wetting the material with a water content of 5.5% and homogenization of the same was carried out to avoid the presence of lumps of greater granulometry. Then the cylindrical specimens were pressed at a pressure of 350kg / cm 2 and dried for 1 hour in an oven at 1 10 e C. Finally It was subjected to a laboratory electric flask firing at different temperatures: 1 .180, 1 .200 and 1 .220 e C.
Mediante este procedimiento se obtuvieron 4 muestras: muestra 1 , 2, 3 y 4.  Through this procedure, 4 samples were obtained: sample 1, 2, 3 and 4.
Ejemplo 2: Caracterización microestructural de las muestras obtenidas en el ejemplo 1 A continuación se procedió caracterización microestructural de la las muestras de material vitrocerámico obtenidas en el ejemplo 1 , que consistió en la cuantificación de de fases cristalinas mediante difracción de rayos X, así como la observación y análisis de las muestras mediante microscopía electrónica de barrido.  Example 2: Microstructural characterization of the samples obtained in example 1 Next, microstructural characterization of the samples of glass ceramic material obtained in example 1 was carried out, which consisted in the quantification of crystalline phases by X-ray diffraction, as well as the Observation and analysis of the samples by scanning electron microscopy.
La identificación de estructuras cristalinas se realizó por difracción de rayos X de la muestra en polvo, usando un difractómetro BRUKER Theta-Theta modelo D8 Advance. (figura 1 ) (SOLO 1 MUESTRA 1 ). (figura 22 del informe C131220)  The identification of crystalline structures was performed by X-ray diffraction of the powder sample, using a BRUKER Theta-Theta model D8 Advance diffractometer. (figure 1) (ONLY 1 SAMPLE 1). (figure 22 of report C131220)
La siguiente tabla muestra la difracción de rayos X de la muestra 1 .  The following table shows the X-ray diffraction of sample 1.
Tubo: Cu Tube: Cu
Voltaje: 30 kV  Voltage: 30 kV
Intensidad: 45 mA  Intensity: 45 mA
Monocromador: no  Monochromator: no
Rendija de divergencia: 0,6 mm  Divergence slit: 0.6 mm
Constante de tiempo: 1 ,2 s  Time constant: 1, 2 s
Tamaño de paso: 0,015e Step size: 0.015 e
Desde 29=5e hasta 29=90e From 29 = 5 e to 29 = 90 e
Figure imgf000008_0001
Figure imgf000008_0001
Tabla 1 : difracción RY muestra 1 a 1220eC Table 1: RY diffraction shows 1 to 1220 e C
La cuantificación de fases cristalinas se realizó mediante una curva de calibrado con materiales de referencia y se determinó el porcentaje de las fases cristalinas por comparación de área de los picos mayoritarios.  The quantification of crystalline phases was carried out by means of a calibration curve with reference materials and the percentage of the crystalline phases was determined by comparison of the area of the majority peaks.
En la muestra 1 se identificaron dos fases: - Ab: albita (NaAISi308): 18 ± 5% In sample 1 two phases were identified: - Ab: albite (NaAISi 3 0 8): 18 ± 5%
- Si02: Dióxido de silicio: 4 ± 2% - Si0 2 : Silicon dioxide: 4 ± 2%
La muestra 1 presentó un porcentaje de fase vitrea/amorfo del 78 ± 8%.  Sample 1 presented a percentage of vitreous / amorphous phase of 78 ± 8%.
Todas las muestras fueron sometidas a un análisis mediante microscopía electrónica de barrido. Las micrografías y análisis EDX efectuados se muestran en las figuras 2-6. All samples were subjected to analysis by scanning electron microscopy. The micrographs and EDX analyzes performed are shown in Figures 2-6.
La figura 2 muestra una fotografía de la sección transversal de la muestra 1 , en la cual se puede ver la presencia de porosidad cerrada, así como unas partículas de tonalidad más oscura cuyo aspecto se asemeja a infundidos, estas zonas parecen corresponder a la fase cristalina de dióxido de silicio determinada mediante difracción de rayos X. La muestra 1 está compuesta principalmente por una fase cristalina embebida en una fase vitrea de análisis muy similar. El análisis de la fase vitrea y de los cristales es muy similar, la principal diferencia radica en el enriquecimiento en aluminio y sodio y el empobrecimiento en potasio de la fase cristalina. Dicha fase podría corresponder a la fase albita identificada mediante difracción de rayos X (figura 1 ), la cual también contiene calcio que correspondería a la posible sustitución. Figure 2 shows a photograph of the cross-section of the sample 1, in which the presence of closed porosity can be seen, as well as some darker particles whose appearance resembles infused, these areas seem to correspond to the crystalline phase of silicon dioxide determined by X-ray diffraction. Sample 1 is mainly composed of a crystalline phase embedded in a vitreous phase of very similar analysis. The analysis of the vitreous phase and the crystals is very similar, the main difference lies in the enrichment in aluminum and sodium and the potassium depletion of the crystalline phase. This phase could correspond to the albite phase identified by X-ray diffraction (figure 1), which also contains calcium that would correspond to the possible substitution.
Comparación entre muestras 2, 3 y 4  Comparison between samples 2, 3 and 4
Las micrografías y análisis EDX efectuados se muestran en las figuras 1 -. Como puede observarse, se trata de muestras muy heterogéneas con presencia de gran cantidad de porosidad interna, cuyo aspecto varía en función de la muestra. Las tres muestras presentaron cristales pero de diferente morfología, principalmente de diferente tamaño.  The micrographs and EDX analyzes performed are shown in Figures 1 -. As can be seen, these are very heterogeneous samples with the presence of a large amount of internal porosity, whose appearance varies depending on the sample. The three samples presented crystals but of different morphology, mainly of different sizes.
Las figuras 5 y 6 se muestran las micrografías correspondientes a la muestra 2, en este caso los análisis de las distintas fases fueron similares a los obtenidos para la muestra 1 . En la figura 6 se observa claramente las zonas en las que existía una partícula de cuarzo, la cual ha generado una fase vitrea rica en sílice que impide la formación de la fase cristalina.  Figures 5 and 6 show the micrographs corresponding to sample 2, in this case the analyzes of the different phases were similar to those obtained for sample 1. Figure 6 clearly shows the areas where a quartz particle existed, which has generated a vitreous phase rich in silica that prevents the formation of the crystalline phase.
En las figuras 7 y 8 se muestran las micrografías correspondiente a la muestra 3. En la figura 7 se observa la presencia de gran cantidad de porosidad y muy irregular, lo cual indica la mayor refractariedad de esta muestra.  Figures 7 and 8 show the micrographs corresponding to sample 3. Figure 7 shows the presence of a large amount of porosity and very irregular, which indicates the greater refractoriness of this sample.
En la figura 8 se puede observar la tortuosidad de los poros así como la presencia de partículas de distinto tipo y de elevado tamaño. En la figura 9 se observa que los cristales son similares a los que presenta la muestra 1 . Asimismo en la figura 1 1 se muestra una zona donde se pueden ver todo el tipo de heterogeneidades presentes. En ella se comprueba la existencia de partículas de alúmina, cuarzo, zonas de fase vitrea sin cristales y cristales más ricos en aluminio, sodio y calcio. Figure 8 shows the tortuousness of the pores as well as the presence of particles of different types and of a large size. Figure 9 shows that the crystals are similar to those shown in sample 1. Also in Figure 1 1 It shows an area where you can see all the types of heterogeneities present. It shows the existence of alumina particles, quartz, vitreous phase areas without crystals and crystals richer in aluminum, sodium and calcium.
En las figuras 12 y 13 se muestran las micrografías correspondientes a la muestra 4, en este caso, la porosidad parece más redondeada que en la muestra 3, esto indica su mayor fundencia. En la figura 14 se muestra el análisis global de la muestra. En la figura 15 se incluye un detalle de la sección transvesal de esta muestra donde se puede comprobar mediante el análisis, la presencia de partículas de alúmina, cuarzo, zonas vitreas y zonas con cristales más ricos en aluminio, principalmente. En este caso, la comparación de los análisis de la fase vitrea cristalina no son muy diferentes, la principal diferencia estriba en el menor contenido en aluminio y mayor contenido en potasio de la fase vitrea. Además, la morfología de los cristales parece diferente a la observada en las dos muestras anteriores, se trata de cristales de mayor tamaño y parecen estar en mayor proporción.  Figures 12 and 13 show the micrographs corresponding to sample 4, in this case, the porosity seems more rounded than in sample 3, this indicates its greater functionality. Figure 14 shows the overall analysis of the sample. A detail of the cross section of this sample is included in Figure 15, where it can be verified by analysis, the presence of alumina particles, quartz, vitreous areas and areas with crystals rich in aluminum, mainly. In this case, the comparison of the analyzes of the crystalline vitreous phase are not very different, the main difference is in the lower aluminum content and higher potassium content of the vitreous phase. In addition, the morphology of the crystals seems different from that observed in the two previous samples, they are larger crystals and appear to be in greater proportion.
Ejemplo 3: recubrimientos con el material vitrocerámico de la invención Example 3: Coatings with the glass ceramic material of the invention
El material vitrocerámico se aplicó como un esmalte cerámico sobre bizcocho de diferentes tecnologías y tras una etapa de cocción, se consiguió un acabado cerámico de alto brillo con alta dureza Mohs. Como muestra la figura 16 el recubrimiento cerámico obtenido tenía un alto brillo y una alta resistencia al rayado.  The glass ceramic material was applied as a ceramic glaze on cake of different technologies and after a cooking stage, a high gloss ceramic finish with high Mohs hardness was achieved. As shown in Figure 16, the ceramic coating obtained had a high gloss and high scratch resistance.
El material vitrocerámico de la invención tras un proceso de cocción y posterior lapado/pulido, dio lugar a un material granular que como muestra la figura 17 tenía una superficie de alto brillo (superior a 91 e) con elevada dureza Mohs y alta resistencia al rayado. The vitroceramic material of the invention after a cooking process and subsequent lapping / polishing, gave rise to a granular material that as shown in Figure 17 had a high gloss surface (greater than 91 e ) with high Mohs hardness and high scratch resistance .
El material vitrocerámico de la presente invención se empleó tanto como recubrimiento cerámico como panel vitrocerámico para uso estructural y en concinas.  The glass ceramic material of the present invention was used both as a ceramic coating and a glass ceramic panel for structural and concine use.

Claims

REIVINDICACIONES
1 . Material vitrocerámico traslúcido caracterizado por que comprende albita como fase cristalina principal y no contiene plomo, Ti02, As203, Sb203, ni haluros. one . Translucent glass - ceramic material characterized by comprising albite as main crystalline phase and contains no lead, Ti0 2, As 2 0 3, Sb 2 0 3, or halides.
2. Material vitrocerámico según la reivindicación 1 , caracterizado por que comprende una composición en porcentajes en peso de la composición total referidos a los óxidos, de:  2. Vitroceramic material according to claim 1, characterized in that it comprises a composition in percentages by weight of the total composition referred to the oxides, of:
- Si02: 52 - 58 - Si0 2 : 52 - 58
- Al203 : 20 - 24 - At 2 0 3 : 20 - 24
- CaO: 8 - 1 1  - CaO: 8 - 1 1
- SrO: 8 - 1 1  - SrO: 8 - 1 1
- K20: 1 - 3 - K 2 0: 1 - 3
- Na20: 1 - 3 - Na 2 0: 1 - 3
- BaO: 0 - 1  - BaO: 0 - 1
- Li20: 0 - 1 - Li 2 0: 0 - 1
- MgO: 0 - 1  - MgO: 0 - 1
- ZnO: 0 - 1  - ZnO: 0 - 1
- B203: 0 - 0,5 - B 2 0 3 : 0 - 0.5
- P205: 0 - 0,5 - P 2 0 5 : 0 - 0.5
3. Procedimiento para la obtención del material vitrocerámico traslúcido según cualquiera de las reivindicaciones 1 -2, caracterizado por que comprende los siguientes pasos:  3. Method for obtaining the translucent glass ceramic material according to any of claims 1-2, characterized in that it comprises the following steps:
a) Fusión del material vitreo precursor que comprende una composición en porcentajes en peso de la composición total referidos a los óxidos de Si02: 52 - 58, Al203 : 20 - 28, CaO: 8 - 1 1 , SrO: 8 - 1 1 , K20: 1 - 3, Na20: 1 - 3, BaO: 0 - 1 , Li20: 0 - 1 , MgO: 0 - 1 , ZnO: 0 - 1 , B203: 0 - 0,5, P205: 0 - 0,5; a) Fusion of the precursor vitreous material comprising a composition in percentages by weight of the total composition referred to the oxides of Si0 2 : 52-58, Al 2 0 3 : 20-28, CaO: 8-1 1, SrO: 8 - 1 1, K 2 0: 1 - 3, Na 2 0: 1 - 3, BaO: 0 - 1, Li 2 0: 0 - 1, MgO: 0 - 1, ZnO: 0 - 1, B 2 0 3 : 0 - 0.5, P 2 0 5 : 0 - 0.5;
b) Enfriamiento del vidrio fundido obtenido en el paso a) con agua mediante quenching  b) Cooling of the molten glass obtained in step a) with water by quenching
c) molturación del material obtenido en el paso b) hasta conseguir una granulometría inferior a 63 mieras.  c) grinding of the material obtained in step b) until a granulometry of less than 63 microns is achieved.
d) obtención del acabado traslúcido mediante tratamiento térmico del producto obtenido en el paso c) d) obtaining the translucent finish by heat treatment of the product obtained in step c)
4. Procedimiento según la reivindicación 3 caracterizado por que la fusión del material vitreo precursor del paso a) se realiza a una temperatura comprendida entre 1400- 1500eC. 4. Method according to claim 3 characterized in that the fusion of the precursor vitreous material from step a) is carried out at a temperature between 1400- 1500 e C.
5. Procedimiento según cualquiera de las reivindicaciones 3-4, caracterizado por que el tratamiento térmico del paso d) se lleva a cabo a una temperatura comprendida entre 1 180-1220 eC y máximo 120 minutos. 5. Method according to any of claims 3-4, characterized in that the heat treatment of step d) is carried out at a temperature between 1 180-1220 e C and maximum 120 minutes.
6. Uso del material vitrocerámico según cualquiera de las reivindicaciones 1 -2 para el recubrimiento de materiales.  6. Use of the glass ceramic material according to any of claims 1-2 for the coating of materials.
7. Uso del material vitrocerámico según cualquiera de las reivindicaciones 1 -2 en superficies de cocción y utensilios de cocina.  7. Use of the ceramic hob according to any of claims 1-2 on cooking surfaces and cooking utensils.
8. Uso del material vitrocerámico según cualquiera de las reivindicaciones 1 -2 en elementos estructurales.  8. Use of the glass ceramic material according to any of claims 1-2 in structural elements.
PCT/ES2014/070838 2013-11-13 2014-11-12 Translucent glass-ceramic material comprising albite WO2015071518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201331651 2013-11-13
ES201331651A ES2444740B2 (en) 2013-11-13 2013-11-13 Translucent hob structure albite structure

Publications (1)

Publication Number Publication Date
WO2015071518A1 true WO2015071518A1 (en) 2015-05-21

Family

ID=50138122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070838 WO2015071518A1 (en) 2013-11-13 2014-11-12 Translucent glass-ceramic material comprising albite

Country Status (2)

Country Link
ES (1) ES2444740B2 (en)
WO (1) WO2015071518A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075714B1 (en) 2015-03-31 2017-08-09 Consejo Superior De Investigaciones Cientificas Glass-ceramic material of albite and/or anorthite exhibing warmth

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615987A (en) * 1985-04-15 1986-10-07 Corning Glass Works Reinforcement of alkaline earth aluminosilicate glass-ceramics
US5017519A (en) 1989-04-28 1991-05-21 Central Glass Company, Limited Transparent and nonexpansive glass-ceramic
JPH0696460A (en) 1992-09-14 1994-04-08 Nikon Corp Light pickup
EP1067099A1 (en) * 1999-07-05 2001-01-10 Ferro Corporation Crystallizing Glaze System
US6750167B2 (en) 2001-07-04 2004-06-15 National Institute Of Advanced Industrial Science And Technology Crystallized glass
US20090311538A1 (en) * 2008-05-13 2009-12-17 Mohawk Carpet Corporation Wear resistant coatings and tiles and methods of making same
US20120318022A1 (en) * 2009-07-03 2012-12-20 Nonnet Helene Glass compositions for gaskets of apparatuses operating at high temperatures and assembling method using them

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19725555A1 (en) * 1997-06-12 1998-12-24 Ivoclar Ag Translucent apatite glass-ceramic
US6303527B1 (en) * 1999-10-18 2001-10-16 Corning Incorporated Transparent glass-ceramics based on alpha- and beta-willemite
DE102011107831B4 (en) * 2010-09-02 2016-08-18 Schott Ag Transparent glass ceramics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615987A (en) * 1985-04-15 1986-10-07 Corning Glass Works Reinforcement of alkaline earth aluminosilicate glass-ceramics
US5017519A (en) 1989-04-28 1991-05-21 Central Glass Company, Limited Transparent and nonexpansive glass-ceramic
JPH0696460A (en) 1992-09-14 1994-04-08 Nikon Corp Light pickup
EP1067099A1 (en) * 1999-07-05 2001-01-10 Ferro Corporation Crystallizing Glaze System
US6750167B2 (en) 2001-07-04 2004-06-15 National Institute Of Advanced Industrial Science And Technology Crystallized glass
US20090311538A1 (en) * 2008-05-13 2009-12-17 Mohawk Carpet Corporation Wear resistant coatings and tiles and methods of making same
US20120318022A1 (en) * 2009-07-03 2012-12-20 Nonnet Helene Glass compositions for gaskets of apparatuses operating at high temperatures and assembling method using them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. HOELAND; G. BEALL: "Glass-ceramic technology", 2002, AM. CERAM. SOC., pages: 88 - 96

Also Published As

Publication number Publication date
ES2444740B2 (en) 2014-09-02
ES2444740A1 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
Chen et al. Mullite whisker network reinforced ceramic with high strength and lightweight
ES2645656T3 (en) Vitroceramic material of albite and / or anortite that presents warmth
ES2443592T3 (en) Transparent glass-ceramic spinel free of As2O3 and Sb2O3
Xie et al. Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds
ES2360781B1 (en) COMPOSITION AND PROCEDURE FOR OBTAINING MATERIALS FOR COATING CERAMIC BODIES AND THE ARTICLES SO OBTAINED.
Huang et al. Fabrication of a high-strength lithium disilicate glass-ceramic in a complex glass system
Leśniak et al. FTIR and MAS NMR study of the zinc aluminosilicate ceramic glazes
ES2784138T3 (en) Use of glass-ceramic with a mixed quartz crystalline phase as dental material
Enríquez et al. Study of the crystallization in fast sintered Na-rich plagioclase glass-ceramic
Xia et al. Nearly zero thermal expansion of β-spodumene glass ceramics prepared by sol–gel and hot pressing method
Barbi et al. Failure analysis of glazed LAS glass-ceramic containing cerium oxide
Xia et al. Mechanical and thermal expansion properties of β-eucryptite prepared by sol–gel methods and hot pressing
Soares et al. Effect of ion exchange on the sinter–crystallisation of low expansion Li2O. Al2O3. SiO2 glass-ceramics
ES2965376T3 (en) Method of manufacturing lithium aluminosilicate glass product for glass ceramic products
ES2444740B2 (en) Translucent hob structure albite structure
Mrázová et al. Leucite porcelain fused to metals for dental restoration
Vladislavova et al. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations
Roisine et al. The art of Bernard Palissy (1510–1590): Influence of firing conditions on the microstructure of iron-coloured high-lead glazes
Sorli et al. Effect of the major devitrifying phase on ceramic glaze microstructure and mechanical properties
Manda et al. The effect of high tempered firing cycle on the bioactive behavior of sol–gel derived dental porcelain modified by bioactive glass
Liu et al. Microstructure characteristics of the black-glazed shreds excavated from the Qingliangsi Kiln
Tunali et al. Effect of B_2O_3/SiO_2 Ratio on Transparency of Anorthite Based Glass-Ceramic Glazes
Gajek et al. Frits within a CaO–MgO–Al2O3–SiO2 System for Glass-Ceramic Glazes: a Comparison of Laboratory and Industrial Applications
Gajek et al. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion
Ibrahim et al. The effects of adding Oryza sativa straw ash to ceramic crystalline glaze

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14815774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14815774

Country of ref document: EP

Kind code of ref document: A1