WO2015070782A1 - 一种室内分布系统、近端机和远端机 - Google Patents

一种室内分布系统、近端机和远端机 Download PDF

Info

Publication number
WO2015070782A1
WO2015070782A1 PCT/CN2014/091025 CN2014091025W WO2015070782A1 WO 2015070782 A1 WO2015070782 A1 WO 2015070782A1 CN 2014091025 W CN2014091025 W CN 2014091025W WO 2015070782 A1 WO2015070782 A1 WO 2015070782A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
frequency
channel
different
Prior art date
Application number
PCT/CN2014/091025
Other languages
English (en)
French (fr)
Inventor
龚兰平
袁震
张利琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015070782A1 publication Critical patent/WO2015070782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to an indoor distribution system, a near-end machine, and a remote machine.
  • 3G 3rd-generation, 3rd generation mobile communication technology
  • WLAN Wireless Local Area Networks
  • Video images, and fourth-generation mobile communications and their technologies (4th-generation, 4G) whose image transmission quality is comparable to that of high-definition television, have begun to rise.
  • LTE Long Term Evolution
  • MIMO Multiple Input Multiple Output
  • the so-called MIMO technology refers to using multiple transmit antennas and multiple receive antennas at the transmitting end and the receiving end respectively, and the signals are transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving the quality of service of each user (bit error rate or Data rate). It can connect the base station signals to multiple independent channels and implement multiple MIMO transceiving of the indoor distribution system through multiple independent antennas. This means that in an indoor distribution system, multiple feeder connections are required between the base station and each coverage point.
  • Embodiments of the present invention provide an indoor distribution system, a near-end machine, and a remote unit, which can realize high-speed transmission of multiple signals under the premise of saving resources and avoiding difficulty in power supply of the remote unit.
  • a first aspect of the present invention provides an indoor distribution system including a proximal end machine and a remote end machine, the near end machine being placed at an end close to a source, the remote machine being distributed at various coverage points in the room,
  • the proximal machine and the remote machine are connected by a single feeder cable, the near-end machine includes a near-end mixing part, the remote machine includes a remote mixing part, and the remote mixing part is Passive components;
  • the near-end machine receives N-channel co-frequency signals from the source, and converts the N-channel co-frequency signals into signals of different N-channel frequencies through the near-end mixing unit, and passes through the near-end
  • the path/splitting device synthesizes the N-channel frequency different signal and the local-end signal of the near-end mixing unit into a downlink multi-frequency signal, and sends the signal to the remote machine via the feeder cable; Separating the downlink multi-frequency signal into a signal of different N frequency and a local oscillation signal of the near-end mixing part by a remote combining/splitting device, and transmitting the local oscillator signal through the remote mixing unit Transmitting a signal having a different N frequency and a local oscillator signal of the near-end mixing portion to the N-channel co-frequency signal;
  • the remote device receives the N-channel co-frequency signal from the user terminal through the antenna, and converts the N-channel co-frequency signal into a signal with a different N-channel frequency through the remote mixing unit, and passes the remote end
  • the combining/splitting device synthesizes the signals of different N frequencies into one uplink multi-frequency signal, and sends the signal to the near-end machine via the feeder cable; the near-end machine passes the proximal end combination/minute
  • the circuit device separates the uplink multi-frequency signal into signals of different N-channel frequencies, and reduces, by the near-end mixing unit, the signals with different N-channel frequencies to the N-channel co-frequency signals; wherein, N Is any natural number greater than or equal to 2.
  • the near-end mixing section includes N-1 mixers, specifically:
  • the remote mixing section includes N-1 passive mixers, specifically for:
  • N-1 passive mixers are mixed to respectively restore the signals of different N-1 frequencies to N-1 channels of the same frequency
  • the near-end mixing section includes N mixers, specifically:
  • the N channels of the same frequency are respectively converted into signals of different N frequencies by the N mixers, and the N mixers respectively correspond to N local oscillator signals;
  • the signals with different N channels are respectively reduced to the N-channel co-frequency signals by the N mixers;
  • the remote mixing section includes N passive mixers, specifically for:
  • the signals of the N channels having different frequencies and the corresponding local oscillator signals of the near-end mixing section are respectively mixed by the N passive mixers, so that the N channels are respectively different in frequency
  • the signal is restored to the N-channel co-frequency signal
  • the N-channel co-frequency signals received by the antenna are respectively converted into signals of different N-channel frequencies by the N passive mixers.
  • the near-end device further includes an uplink and downlink signal isolation device, where The downlink signal isolation device is disposed between the near-end mixing unit and the near-end combining/splitting device, and is configured to isolate an uplink signal on each channel from a downlink signal.
  • the uplink and downlink signal isolation device includes a frequency division signal isolation device or a time division signal isolation device.
  • the frequency division signal isolating device comprises a duplexer
  • the time division signal isolating device comprises a circulator or a switch .
  • a second aspect of the present invention provides a near-end machine, the indoor distribution system of any one of the above-mentioned various possible implementations of the first aspect or the first aspect, the near-end machine comprising End mixing section, near-end combining/splitting device;
  • the near-end mixing section is used to:
  • the N-channel co-frequency signals received from the source are converted into N-channel signals having different frequencies
  • the signals of different N frequencies from the near-end combining/splitting device are restored to N-channel signals of the same frequency;
  • the proximal combiner/splitting device is used to:
  • For the downlink synthesizing the N-channel frequency different signals from the near-end mixing section and the local oscillator signal of the near-end mixing section into one downlink multi-frequency signal for transmitting to the remote machine via the feeder cable ;
  • N is any natural number greater than or equal to 2.
  • the near-end mixing section includes N-1 Mixer, specifically for:
  • the near-end mixing section includes N mixers, specifically for:
  • the N channels of the same frequency are respectively converted into signals of different N frequencies by the N mixers, and the N mixers respectively correspond to N local oscillator signals;
  • the signals with different N frequencies are respectively reduced to the N-channel signals by the N mixers.
  • the near-end machine further includes N first uplink and downlink signal isolation devices, where the first uplink and downlink The signal isolating device is respectively connected to the near-end mixing unit and the near-end combining/splitting device for isolating the uplink signal and the downlink signal on each channel.
  • the first uplink and downlink signal isolation device includes a first frequency division signal isolation device or a first time division signal Isolation device.
  • the first frequency division signal isolating device includes a duplexer, and the first time division signal isolating device Includes a circulator or switch.
  • the near-end machine further includes N first signal amplifying devices, N second signal amplifying devices, and N third signal amplifying devices,
  • the downlink signal output ports of the N first uplink and downlink signal isolation devices are respectively connected to the near-end combining/splitting device through the N first signal amplifying devices, and are used to respectively separate the downlink signals of the N channels. amplification;
  • the N-way signal-splitting device is connected to the uplink signal input ports of the N first uplink-downlink signal isolation devices by the N second signal amplifying devices, respectively, for respectively performing the N-channel uplink signals amplification;
  • the local oscillator signal output ends of the near-end mixing section are respectively connected to the near-end combining/splitting device through the N third signal amplifying devices, and are used for respectively amplifying the N local oscillator signals.
  • the near-end machine further includes N second uplink and downlink signal isolation devices,
  • the N first signal amplifying device downlink signal output port and the N second signal amplifying device uplink signal input ports are respectively connected to the proximal combining/splitting device through the second uplink and downlink signal isolating device;
  • the second uplink and downlink signal isolation device is configured to simultaneously transmit the uplink signal and the downlink signal amplified by the first signal amplifying device.
  • a third aspect of the present invention provides a remote machine for use in an indoor distribution system according to any one of the foregoing various possible implementations of the first aspect, wherein the remote machine is
  • the source device comprises a remote combining/splitting device and a remote mixing unit;
  • the distal combiner/splitter device is used to:
  • the remote mixing section is used to:
  • the signals of different N frequencies and the local oscillator signals of the near-end mixing section are reduced to N-channel signals of the same frequency;
  • N is any natural number greater than or equal to 2.
  • the remote mixing section includes N-1 passive mixers, specifically:
  • N-1 passive mixers are mixed to respectively reduce signals of different N-1 frequencies to N-1 channels of the same frequency, wherein the frequency of the signal with the same frequency is equal to The frequency of the same frequency signal;
  • the remote mixing section includes N passive mixers, specifically configured to:
  • the signals of the N channels having different frequencies and the corresponding local oscillator signals of the near-end mixing section are respectively mixed by the N passive mixers, so that the N channels are respectively different in frequency
  • the signal is restored to the N-channel co-frequency signal
  • the N-channel co-frequency signals received by the antenna are respectively converted into signals of different N-channel frequencies by the N passive mixers.
  • the remote device further includes N filtering devices, where the filtering device is separately mixed with the passive
  • the frequency converter is coupled to the antenna for filtering the co-frequency signal from the mixed signal.
  • another indoor distribution system comprising a proximal end machine and a remote end machine, wherein the near end machine is placed at an end close to a source, and the remote machine is distributed at each coverage point in the room.
  • the near-end machine and the remote machine are connected by a single feed cable, the near-end machine includes a near-end mixing part, the remote machine includes a remote mixing part, and the remote mixing part As a passive device;
  • the near-end machine receives the N-channel co-frequency signal of the LTE system and the signal of the 2G and/or 3G system from the source, and transforms the N-channel co-frequency signal by the near-end mixing unit to make Signals with different N frequencies, through the near-end combining/splitting device, the signals of different N frequencies and the local oscillator signals of the near-end mixing part, and the signals of the 2G and/or 3G systems Synthesizing one downlink multi-frequency signal, which is sent to the remote machine via the feeder cable; the remote machine separates the downlink multi-frequency signal into different N-channel frequencies by a remote combining/splitting device a signal and a local oscillator signal of the near-end mixing section and a signal of the 2G and/or 3G system, wherein the signal of the N-channel frequency is mixed with the near-end by the far-end mixing section The local oscillator signal of the portion is restored to the N-channel co-frequency signal;
  • the remote machine receives the N-channel co-frequency signal of the LTE system from the user terminal and the signal of the 2G and/or 3G system through the antenna, and the remote mixing unit transforms the N-channel co-frequency signal Signals having different frequencies of N channels, and synthesizing signals of different N frequencies and signals of 2G and/or 3G systems into one uplink multi-frequency signal through a remote combining/splitting device, Transmitting the near-end machine; the near-end machine separates the uplink multi-frequency signal into signals of different N-channel frequencies and signals of 2G and/or 3G systems through the near-end combining/splitting device, The near-end mixing section restores the signals of different N-channel frequencies to the N-channel co-frequency signals; wherein N is an arbitrary natural number greater than or equal to 2.
  • the near-end machine and the remote machine for the downlink, can convert the multi-channel co-frequency signals received from the source into signals of different frequencies through the near-end mixing unit. And the signals with different frequencies and the local oscillator signal of the near-end mixing part are sent to the remote machine through a single feeding cable, so that no multi-feed cable is arranged, the resources are saved, and the near-end mixing is also used.
  • the local oscillator signal of the frequency part is sent to the remote machine, so that the remote machine can use the local oscillator signal to restore multiple signals with different frequencies to multiple multi-channel signals through the passive device, thereby solving the power supply problem of the remote machine. .
  • the remote unit can convert the multi-channel co-frequency signals from the user terminal into signals of different frequencies through the passive remote mixing unit and send them to the near-end machine through a single feeder cable, which can also save resources. High-speed transmission of multiple signals is realized under the premise of avoiding difficulty in power supply to the remote unit.
  • FIG. 1 is a schematic structural diagram of an indoor distribution system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a near-end mixing part of a near-end machine and a far-end mixing part of a remote machine according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another near-end mixing part of a near-end machine and another far-end mixing part of a remote machine according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another indoor distribution system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a near-end machine according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another near-end machine according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another near-end machine according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another near-end machine according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another near-end machine according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another near-end machine according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another near-end machine according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a remote machine according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another remote device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another remote machine according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another remote device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another indoor distribution system according to an embodiment of the present invention.
  • an embodiment of the present invention provides an indoor distribution system, including a near-end machine 11 and a remote machine 12 .
  • the near-end machine 11 is placed at one end close to the source 13 , and the remote machine 12 is distributed indoors. Covering point, the proximal machine 11 and the remote machine 12 are connected by a single feeder 14, and the proximal machine 11 includes a near
  • the end mixing unit 111 includes a remote mixing unit 121, and the remote mixing unit 121 is a passive device.
  • the solid line with arrows between the respective devices represents the flow direction of the N-channel co-frequency signal or the N-channel frequency with different frequency.
  • the dotted line with arrows between the devices represents the local oscillator of the near-end mixing portion 111. The flow of the signal.
  • the near-end machine 11 receives the N-channel co-frequency signal from the base station 13, and converts the N-channel co-frequency signal into a signal having a different N-channel frequency through the near-end mixing unit 111, and passes through the near-end combining/splitting device 112.
  • the signals of different N frequencies and the local signal of the near-end mixing unit 111 are combined into one downlink multi-frequency signal, and transmitted to the remote unit 12 via the feeder cable 14; the remote unit 12 passes through the remote combining/dividing device 122.
  • the downlink multi-frequency signal is separated into a signal having a different N frequency and a local oscillation signal of the near-end mixing unit 111, and a signal having a different N frequency and a local oscillation signal of the near-end mixing unit 111 are transmitted through the remote mixing unit 121. Restore to N-channel co-frequency signals.
  • the remote unit 12 receives the N-channel co-frequency signal from the user terminal through the antenna 123, and converts the N-channel co-frequency signal into a signal with a different N-channel frequency through the far-end mixing unit 121, and passes through the remote combining path/
  • the branching device 122 synthesizes signals of different N frequencies into one uplink multi-frequency signal, and transmits the signal to the near-end machine 11 via the feeder cable 14; the near-end machine 11 separates the uplink multi-frequency signal by the near-end combining/splitting device 112.
  • the signals of different N frequencies are reduced to N-channel signals by the near-end mixing unit 111; wherein N is an arbitrary natural number greater than or equal to 2.
  • the near-end machine 11 can convert the multi-channel co-frequency signals received from the source 13 into signals of different frequencies through the near-end mixing unit 111, and the frequencies are different.
  • the signal is transmitted to the remote unit 12 through the single feed cable 14 together with the local oscillator signal of the near-end mixing unit 111, so that the multi-feed cable is not required to be disposed, which saves resources, and the near-end mixing unit is also used.
  • the local oscillator signal of 111 is sent to the remote unit 12, so that the remote unit 12 can use the local oscillator signal to restore multiple signals with different frequencies to multiple multi-channel signals through the passive device, thereby solving the remote machine 12 Power supply problem.
  • the remote unit 12 can convert the multi-channel co-frequency signals from the user terminal into signals of different frequencies through the passive far-end mixing unit 121 and transmit them to the near-end machine 11 through the single feeder cable 14, also
  • the signal transmission can be realized under the premise of saving resources and avoiding difficulty in power supply of the remote unit 12.
  • the indoor distribution system provided by the embodiment of the present invention only needs a single feeder cable 14, and can realize transmission of multiple signals, realize coverage of MIMO signals, and transmit multiple MIMOs through multiple independent channels.
  • Signal a larger number reduces the installation of multiple feeder cables, saving construction time and reducing investment costs; for buildings that have deployed indoor distribution systems, only need to install the near-end machine 11 at the source 13
  • the antenna of the coverage point is replaced with the remote unit 12, and the coverage of the MIMO signal can be realized by using the existing single feeder cable, without the need to install other multi-feed cables, and the power supply problem of the remote unit 12 does not need to be considered. Therefore, the construction amount is greatly saved, and the investment cost is effectively reduced.
  • the near-end combining/splitting device 112 and the remote combining/splitting device 122 in this embodiment may be any capable of synthesizing signals with different multiple frequencies into one multi-frequency signal, or more than one way.
  • the device is separated into multiple multi-frequency signals, for example, a multi-frequency combiner, a multiplexer, etc., which is not limited by the embodiment of the present invention.
  • the N equal frequency signals are first converted into N signals having different frequencies.
  • the N-channel co-frequency signal can be converted into signals with different N-channel frequencies by various methods, for example, the frequency of one of the N-channel co-frequency signals can be kept unchanged, and the remaining N-1-channel co-frequency signals can be maintained.
  • the frequency conversion is performed to the other N-1 different frequency bands.
  • all the N-channel signals can be converted to the other N different frequency bands, which is not limited by the embodiment of the present invention.
  • the near-end mixing section 111 only needs to include N-1 mixers 1111, and each of the N-1 mixers 1111 has its own local oscillation frequency.
  • the N-1 co-channel signal is converted into the N-1 mixers 1111 of the near-end mixing unit 111, respectively.
  • N-1 channels have different frequencies, and the other channel of the same frequency directly passes through the near-end mixing unit 111, and no frequency conversion is performed, so that the N-channel co-frequency signals are converted into N-channel frequencies by the near-end mixing unit 111.
  • signal of. For the uplink that is, the line through which the multi-channel co-frequency signal is transmitted from the user terminal to the source, the frequency of one of the signals having different N-channel frequencies is kept unchanged, so that it directly passes through the near-end mixing unit 111.
  • the N-1 mixers 1111 of the near-end mixing section 111 restore the signals of different N-1 frequencies to N-1 channels of the same frequency signal, wherein the frequency of one channel whose frequency is constant is equal to the same frequency signal.
  • the frequency is such that signals of different N frequencies are converted into N-channel signals by the near-end mixing section 111.
  • the far-end mixing unit 121 of the remote unit can also Only N-1 passive mixers 1211 are included.
  • the far-end mixing section 121 keeps the frequency of one of the signals of different N frequencies unchanged, so that it directly passes through the far-end mixing section 121, does not perform frequency conversion, and the remaining N-1 frequency
  • the different signals and the respective local oscillator signals of the corresponding near-end mixing section 111 pass through N-1 passive mixers 1211, respectively, to respectively restore signals of different N-1 frequencies to N-1 channels of the same frequency.
  • the frequency of one channel whose frequency is constant is equal to the frequency of the same frequency signal; for the uplink line, the frequency of one of the N channels of the same frequency signal received from the user terminal can be kept unchanged, so that it directly passes through the far end
  • the frequency mixing unit 121 does not perform frequency conversion, and converts the remaining N-1 channel co-frequency signals into N-1 passive mixers 1211 to form signals having different frequencies of N-1 channels.
  • the same frequency signal when the same frequency signal is changed into a signal with a different frequency, or vice versa, a signal having a different frequency is converted into a same frequency signal, and the same frequency signal is generally a high frequency signal, and each of the said The signals with different frequencies are generally intermediate frequency signals.
  • the high frequency signals and the intermediate frequency signals are respectively selected by using high frequency devices and intermediate frequency devices.
  • the near-end mixing section 111 and the far-end mixing section 121 are both composed of N-1 mixers, only the N-1 way signal is actually frequency-converted, and the remaining one-way signal is always maintained. The high frequency state, so the relevant device used to transmit this signal should use the corresponding high frequency device.
  • the near-end mixing section 111 converts the N-channel co-frequency signals into N by the N mixers 1111, respectively.
  • the near-end mixing unit 111 reduces the signals of different N frequencies to N channels of the same frequency by N mixers 1111, respectively.
  • the far-end mixing section 121 of the remote unit may also include N passive mixers 1211 for the downlink: remote mixing
  • the frequency unit 121 passes the signals of different N frequencies and the local oscillation signals of the corresponding near-end mixing unit 111 through the N passive mixers 1211, respectively, to respectively restore signals of different N frequencies to N channels of the same frequency.
  • the far-end mixing section 121 converts the N-channel co-frequency signals received from the user terminal by the antenna through the N passive mixers 1211 to N signals of different frequencies.
  • the mixer 1111 of the near-end machine in this embodiment may be an active mixer or a passive mixer. Since the active mixer itself has a local oscillator signal, the signal power after mixing is large, and it is generally easier for the near-end machine to take power. Therefore, an active mixer is preferred. If the mixer 1111 is a passive mixer, the local oscillator signal of the mixing unit 111 may be generated by a passive mixer to change the same frequency signal into a signal having a different frequency, due to the same frequency signal. Generally, for high-frequency signals, after frequency conversion by a passive mixer, two intermediate frequency signals are generated, one of which is regarded as a signal with a different frequency, and the other is regarded as a local oscillator signal.
  • the indoor distribution system can simultaneously transmit an uplink signal and a downlink signal, wherein the transmission path of the uplink signal is an uplink line, and the transmission path of the downlink signal is a downlink line.
  • the uplink and downlink lines mentioned here are defined on the basis of signal flow direction, and the uplink line and the downlink line are physically separate channels from each other, or may be shared channels with each other, or may be partially separated and partially shared.
  • the channel of the present invention is not limited thereto.
  • the near-end machine 11 of the system may further include an uplink and downlink signal isolation device 113.
  • the uplink and downlink signal isolation device 113 may be disposed between the near-end mixing unit 111 and the near-end combining/splitting device 112 for each channel.
  • the upstream signal is isolated from the downstream signal.
  • the uplink and downlink signal isolation device 113 may be a frequency division signal isolation device or a time division signal isolation device, which is used to separate the uplink and downlink signals from the frequency domain or from the time domain, respectively, according to different signal isolation modes.
  • the frequency division signal isolation device may include a duplexer or the like
  • the time division signal isolation device may include a device such as a circulator or a switch. In this way, the uplink signal and the downlink signal on each channel are isolated by the uplink and downlink signal isolation device 113, so that the uplink line and the downlink line can work normally at the same time.
  • the indoor distribution system includes a near-end machine and a remote machine in the above embodiment, the present invention is not limited thereto.
  • one base station generally corresponds to multiple terminals.
  • one near-end machine can also correspond to multiple remote machines, and each remote machine They are connected to the near-end machine through a single feeder cable.
  • the connection and working principle of each remote machine and the near-end machine are the same as or similar to those of the foregoing embodiment.
  • the embodiment of the present invention further provides a near-end machine 21 for use in any of the indoor distribution systems provided by the foregoing embodiments.
  • the solid line with arrows between the respective devices represents the flow direction of the N-channel co-frequency signal or the signal of the N-channel frequency after the frequency conversion
  • the dotted line with arrows between the respective devices represents the near-end mixing portion 111.
  • the near-end machine 21 includes a near-end mixing unit 211 and a near-end combining/splitting device 212.
  • the near-end mixing unit 211 is configured to: for the downlink: convert the N-channel co-frequency signals received from the source 23 Signals having different frequencies of N channels; for uplinks: signals of different N frequencies from the near-end combining/splitting device 212 are restored to N-channel signals of the same frequency.
  • the near-end combining/splitting device 212 is configured to: synthesize a signal having a different N-channel frequency from the near-end mixing unit 211 and a local-frequency signal of the near-end mixing unit 211 into one downlink multi-frequency signal, to The feeder cable 24 transmits to the remote unit; for the uplink line, the uplink multi-frequency signal from the feeder cable 24 is separated into N signals having different frequencies; wherein N is an arbitrary natural number greater than or equal to 2.
  • the near-end machine 21 converts the multi-channel co-frequency signals received from the source 23 into signals of different frequencies by the near-end mixing unit 211 for the downlink, and the signals of different frequencies and the near
  • the local oscillator signals of the end mixing section 211 are combined to form a multi-frequency signal, which is sent to the remote machine through a single feeder cable 24, so that no multi-feeder cable needs to be arranged, which saves resources, and also uses near-end mixing.
  • the local oscillator signal of the portion 211 is sent to the remote unit, so that the remote unit can directly utilize the local oscillator signal.
  • the near-end machine can also separate one multi-frequency signal received from the single feed cable 211 from each other and restore it to N-channel co-frequency signals.
  • the role of the near-end machine 21 is The multi-channel signal can realize the transmission of the single feeder cable 24, thereby greatly It saves construction and effectively reduces investment costs.
  • the near-end machine 31 is a near-end machine 31 including a near-end mixing unit 311 and a near-end combining/splitting device 312.
  • the near-end mixing unit 311 includes two active mixers. 3111 is used to convert the same-frequency signals S1 and S2 into two signals having different frequencies of 1620 to 1690 MHz and 1400 to 1470 MHz, respectively.
  • two equal-frequency signals S1, S2 from the source 33 are input to the near-end mixing section 311 of the near-end machine 31, specifically, the active mixer 3111 is input, and the active mixer 3111 will The two channels of the same frequency are respectively converted into two signals having a frequency of 1620 to 1690 MHz and 1400 to 1470 MHz, wherein each of the active mixers 3111 corresponds to one local oscillator signal, and the frequencies of the two local oscillator signals are different, for example
  • the frequency of the local oscillator signal of one of the active filters 3111 is 1000 MHz
  • the frequency of the local oscillator signal of the other active filter 3111 is 1220 MHz
  • the frequency of the local combining/splitting device 312 is 1620 to 1690 MHz and 1400 ⁇ .
  • Two signals of 1470MHz and two local oscillator signals with frequencies of 1000MHz and 1220MHz are combined to form one downlink multi-frequency signal, which is sent to the remote machine via the feeder cable 34.
  • the near-end machine 31 receives an uplink multi-frequency signal from the feeder cable 34, and separates it into two signals having frequencies of 1500 to 1570 MHz and 1280 to 1350 MHz through the near-end combining/splitting device 312.
  • the active mixer 3111 of the near-end mixing section 311 restores two signals of frequencies 1500 to 1570 MHz and 1280 to 1350 MHz to two equal-frequency signals S1, S2, respectively, and then uploads them to the source 33.
  • the near-end combining/splitting device in this embodiment may be any device capable of synthesizing signals with different multiple frequencies into one multi-frequency signal or separating one multi-frequency signal into signals with different multiple frequencies.
  • it may be a multi-frequency combiner, a multiplexer, etc., and the embodiment of the present invention does not limit this.
  • the near-end machine 31 may further include two first uplink and downlink signal isolation devices 313-1, and the first uplink and downlink signal isolation device 313. -1 is connected to the near-end mixing section 311 and the near-end combining/splitting means 312, respectively, for isolating the upstream signal and the downstream signal on each channel.
  • the first uplink and downlink signal isolation device 313-1 may be a frequency division signal isolation device or a time division signal isolation device, which is used for uplink and downlink signals, respectively, according to different signal isolation modes. Separate from the frequency domain or from the time domain.
  • the frequency division signal isolation device may include a duplexer or the like
  • the time division signal isolation device may include a device such as a circulator or a switch. In this way, the uplink signal and the downlink signal on each channel are isolated by the first uplink and downlink signal isolation device 313-1 to ensure that the uplink and downlink lines can work normally at the same time.
  • the remote unit is composed of passive components, in order for the remote unit to receive a sufficiently high power signal, preferably, a plurality of signal amplifying means can be added to the near end machine 31 to increase the power of the transmitted signal.
  • the near-end machine 31 may further include two first signal amplifying devices 314-1, two second signal amplifying devices 314-2, and two third signal amplifying devices.
  • 314-3 may be a signal amplifier or the like.
  • the downlink signal output ports of the two first uplink and downlink signal isolation devices 313-1 are respectively connected to the near-end combining/splitting device 312 through two first signal amplifying devices 314-1, and the two first signal amplifying devices 314 -1 is used to separately amplify the two downlink signals; the near-end combining/splitting device 312 also passes through the uplink of the two second signal amplifying devices 314-2 and the two first uplink and downlink signal isolating devices 313-1, respectively.
  • the signal input ports are connected, and the two second signal amplifying devices 314-2 are used to respectively amplify the two uplink signals; the local oscillator signal output terminals of the near-end mixing portion 311 respectively pass through the two third signal amplifying devices 314-3.
  • the two third signal amplifying devices 314-3 are used to amplify the two local oscillator signals, respectively.
  • the near-end machine 31 may further include two filtering means 315 for reducing or eliminating clutter interference signals other than the local oscillator signal, and the third signal amplifying means 314-3 passes
  • the filtering device 315 is coupled to the near-end combining/splitting device 312.
  • the filtering device 315 can be a filter.
  • the uplink signal and the downlink signal are respectively transmitted on separate lines, specifically,
  • the line between the downlink signal output port of the first uplink and downlink signal isolation device 313-1 and the near-end combining/splitting device 312 is used for transmitting a downlink signal, and the uplink signal input port of the first uplink and downlink signal isolation device 314-1 And the line between the near-end combining/splitting device 312 is used for transmission Line signal.
  • the lines for transmitting the upstream and downstream signals on each channel need to be connected to the near-end combining/splitting device 312, thus requiring the two input/output ports of the near-end combining/splitting device 312 to be occupied.
  • the manufacturing cost of the near-end combining/splitting device 312 is reduced, and at the same time, in order to enable the near-end machine 31 to transmit uplink signals and simultaneously.
  • the downlink signal avoids interference between the uplink and downlink signals.
  • the near-end machine 31 may further include two second uplink and downlink signal isolation devices 313-2.
  • the downlink signal output port of the first signal amplifying device 314-1 and the uplink signal input port of the second signal amplifying device 314-2 are respectively connected to the near-end combining/splitting device 312 through the second uplink-downlink signal isolating device 313-2.
  • the uplink signal and the downlink signal jointly occupy one port of the near-end combining/splitting device 312, thereby saving the port resources of the near-end combining/splitting device 312; and the second uplink-downlink signal isolating device 314-2
  • the uplink signal and the downlink signal amplified by the first signal amplifying device 314-1 are simultaneously transmitted.
  • the second uplink and downlink signal isolation device 313-2 corresponds to the first signal isolation device 314-1, and may be a frequency division signal isolation device, such as a duplexer, or a time division signal isolation device, such as a ring. a switch or the like for separating the uplink signal and the downlink signal from the frequency domain or from the time domain, respectively.
  • the second uplink and downlink signal isolation device 313-2 and the first uplink-downlink signal isolation device 313-1 need to be the same as the frequency division signal isolation device, or the same as the time division signal isolation device. However, specifically, what type of frequency division signal isolation device or time division signal isolation device may be the same or different.
  • the first uplink and downlink signal isolation device 313-1 and the second uplink and downlink signal isolation device 313-2 may be the same as the duplexer, or the first uplink and downlink signal isolation device 313-1 may be a circulator, the second upper and lower
  • the row signal isolating device 313-2 may be a switch, which is not limited in the present invention.
  • the near-end mixing section 311 includes two active mixers 3111, and the two active mixers 3111 respectively convert the received two-channel co-frequency signals into two different paths. Frequency Signal, but embodiments of the invention are not limited thereto.
  • the near-end mixing section may also include an active mixer.
  • the manner in which the near-end mixing section converts two channels of the same-frequency signal into two signals of different frequencies may also be: The two channels of the same frequency are received, the frequency of one of them is kept unchanged, and the other is frequency-converted by the active mixer. This will be described below by way of a specific embodiment.
  • the near-end mixing section 411 of the near-end machine 41 includes an active mixer 4111 which itself carries a local oscillator signal.
  • the two-channel co-frequency signals also become two signals having different frequencies; the two signals having different frequencies pass through the first uplink-downlink signal isolation device 413-1 and the uplink signals respectively.
  • Phase isolation is amplified by the first signal amplifying device 413-1, and finally transmitted to the near-end combining/splitting device 44 via the second uplink-downlink signal isolating device 413-2; the active mixer 4111
  • the local oscillator signal is amplified by the third signal amplifying device 413-3, and then filtered by the filtering device 415 to filter out the spurious signals, and finally transmitted to the near-end combining/splitting device 412; the near-end combining/splitting device 412 will be two-way
  • the signals with different frequencies and the local oscillator signals are combined to form a downlink multi-frequency signal, which is sent to the remote machine via the feeder cable 44.
  • the near-end machine 41 receives an uplink multi-frequency signal from the feeder cable 44, and splits it into two signals with different frequencies through the near-end combining/splitting device 412, and the two signals having different frequencies pass through the first
  • the second uplink and downlink signal isolation device 413-2 is isolated from the downlink signal, and then amplified by the second signal amplification device 413-2, and then passed through the first uplink and downlink signal isolation device 413-1 to the near-end mixing portion. 411 transmission; one of the signals having a higher frequency is directly subjected to frequency conversion by the near-end mixing section 411, and the signal of the other lower frequency is frequency-converted by the active mixer 4111 of the near-end mixing section 411.
  • the frequency after the frequency conversion is made the same as the frequency of the signal directly passing through the near-end mixing section 411.
  • the signals of the two channels have different frequencies, they pass through the near-end mixing unit 411, and then are converted into two-channel signals, and are uploaded to the source 43.
  • the MIMO signal is generally a high frequency signal of about 2.6G, and when frequency conversion is performed, it is generally changed to an intermediate frequency signal.
  • the near-end mixing section 411 includes an active mixer 4111, the other signal directly passes through the near-end mixing section 411, and the relevant device for transmitting the signal should be selected correspondingly without the need for frequency conversion. Frequency device.
  • the signal transmitted in the channel is not frequency-transformed and is still transmitted to the remote unit at a higher frequency.
  • the signal transmitted in this channel can still be frequency-converted.
  • the embodiment of the present invention further provides a remote machine for use in any indoor distribution system provided by the embodiment of the present invention.
  • an embodiment of the present invention provides a remote unit 22, which is composed of passive components, including a remote combining/splitting device 222 and a remote mixing unit 211;
  • the end channel/divide device 222 is configured to: for the downlink: separate one downlink multi-frequency signal from the feeder cable 24 into N signals with different frequencies and local oscillator signals of the near-end mixing portion; for the uplink: The signals of different N frequencies from the remote mixing unit 221 are combined to form an uplink multi-frequency signal for transmission to the near-end machine via the feeder cable 24;
  • the remote mixing unit 211 is configured for: for the downlink: N-channel frequency The local signal of the different signal and the near-end mixing section 211 is restored to the N-channel co-frequency signal; for the uplink: the N-channel co-frequency signal received from the user terminal received by the antenna 223 is converted into a signal of N different frequencies; , N is any natural number greater than or equal to 2.
  • the remote unit 22 provided by the embodiment of the present invention can use the local oscillator signal of the near-end mixing part transmitted from the near-end machine for the downlink, and the multi-channel frequency is different by the passive component of the remote mixing unit 211. The signal is restored to multiple multi-channel signals, thereby solving the power supply problem of the remote unit 22.
  • the remote unit 22 can also convert the multi-channel co-frequency signals from the user terminal into signals of different frequencies through the passive remote mixing unit 211 to pass the single feeder cable 24 to the near-end machine. send.
  • the remote unit 22 can transmit the signal through the single feeder cable 24, and at the same time can solve the power supply problem, thereby reducing the cost, and since the remote unit 22 is The source device is composed with good stability.
  • FIG. 13 is a remote unit 32 corresponding to any one of the above embodiments; the remote unit 32 is composed of passive components, including a remote end.
  • the frequency section 321 is a remote combining/splitting device 322, wherein the far-end mixing section 321 includes two passive mixers 3211.
  • the downstream combined multi-frequency signal from the feeder cable 34 is separated into two signals of different frequencies of 1620 to 1690 MHz and 1400 to 1470 MHz by the remote combining/splitting device 322, and the frequencies are respectively 1000 MHz and
  • the local oscillator signals of the two near-end mixing sections 311 of 1220 MHz are respectively mixed with the signals of different frequencies and the local oscillator signals of the corresponding near-end mixing section 311 by the passive mixer 3211, that is, by a passive
  • the mixer 3211 mixes a signal having a frequency of 1620 to 1690 MHz with a local oscillation signal having a frequency of 1000 MHz into a signal S1, and a signal having a frequency of 1400 to 1470 MHz and a local oscillator having a frequency of 1220 MHz through another passive mixer 3211.
  • the signal is mixed into a signal S2, S1 and S2 are the same frequency signals, and then transmitted through the antenna 323, respectively.
  • Two signals with different frequencies are then combined by the remote combining/splitting device 322 to two signals of different frequencies of 1500 to 1570 MHz and 1280 to 1350 MHz, respectively, and one upstream multi-frequency signal is synthesized, and the cable 34 is near.
  • the terminal 31 transmits.
  • the remote combining/splitting device 322 may be a filter including six bandpasses, wherein the passbands of the six bandpass filters respectively correspond to the frequency of the downlink signals of the two signals of different frequencies of 1500 to 1570 MHz and The frequencies of 1280 to 1350 MHz and the uplink signals are 1500 to 1570 MHz and 1280 to 1350 MHz, and the frequencies of the local oscillation signals of the two near-end mixing sections 311 are 1000 MHz and 1220 MHz.
  • the remote unit 32 may further include two filtering devices 324, such as filters, etc., respectively disposed between the passive mixer 3211 and the antenna 323 for mixing the same frequency signals. The signal after the frequency is extracted.
  • filtering devices 324 such as filters, etc.
  • the remote mixing unit 321 includes two passive mixers 3211, but the embodiment of the present invention is not limited thereto, and corresponds to the near-end machine 41 of FIG. 11 described above.
  • the remote unit receiving the signal from the near-end unit 41 may also include a passive mixer.
  • the far-end mixing section 421 of the remote unit 42 may also include a passive mixer 4211.
  • a passive mixer 4211 For the downlink: one downstream downlink multi-frequency signal from the feeder cable 44 is separated into two signals of different frequencies and one local oscillator signal by the remote combining/splitting device 422, and one of the signals of two different frequencies is separated. Directly passing the remote mixing unit 421 to pass another signal together with the local oscillator signal.
  • the passive mixer 4211 performs frequency conversion, and the frequency after the frequency conversion is the same as the frequency of the signal directly passing through the remote mixing unit 421, and the signals of the two different frequencies pass through the remote mixing unit 421 and are converted into two paths.
  • the same frequency signals are respectively transmitted through the filtering device 424 and then transmitted via the antenna 423.
  • the uplink two channels of the same frequency signal from the user terminal are received through the antenna 423, and after passing through the filtering device 424, one of the signals is directly passed through the remote mixing unit 421, and the other signal is passed through the remote mixing unit 421.
  • the passive mixer 4211 performs frequency conversion. After passing through the remote mixing unit 421, the two channels of the same frequency are converted into two signals with different frequencies; the two channels have different frequencies through the remote combining/splitting device 422.
  • the signal is synthesized into an uplink multi-frequency signal and transmitted to the near-end machine 41 via the feeder cable 44.
  • the MIMO signal is generally a high-frequency signal of about 2.6G, and when frequency conversion is performed, it is generally changed to an intermediate frequency signal.
  • the remote mixing unit 421 includes a passive mixer 4211, the other signal passes directly through the remote mixing unit 421, and the relevant device for transmitting the signal should be correspondingly high.
  • Frequency devices such as remote combining/splitting device 422, filtering device 424, and the like.
  • the indoor distribution system provided by the foregoing embodiment is mainly used for transmitting MIMO signals of the LTE system, but the signals of the 2G and 3G systems still occupy a large share in the market, so when deploying the MIMO signal of the LTE system in the 4G system, It should be considered compatible with 2G and 3G signals to ensure that users who are currently using 2G and 3G systems can communicate normally.
  • an indoor distribution system compatible with 2G and 3G signals for simultaneously transmitting MIMO signals of the LTE system and 2G and/or 3G signals.
  • an indoor distribution system includes a near-end machine 51 and a remote unit 52.
  • the near-end machine 51 is placed at one end close to the source 53, and the remote unit 52 is distributed at various coverage points in the room, and the near end.
  • the machine 51 and the remote unit 52 are connected by a single feeder 54.
  • the near-end machine 51 includes a near-end mixing unit, the remote unit 52 includes a remote mixing unit 521, and the remote mixing unit 521 is Source device; for downlink: the near-end machine 51 receives the N-channel co-frequency signal of the LTE system and the signals of the 2G and/or 3G system from the source 53, and converts the N-channel co-frequency signal into N through the near-end mixing unit 511.
  • the signal with different path frequencies is combined with the local signal of the near-end mixing unit 511 and the signal of the 2G and/or 3G system by the near-end combining/splitting device 512 to synthesize a downlink multi-frequency.
  • the signal is sent to the remote unit 52 via the feeder cable 54; the remote unit
  • the remote combining/splitting device 522 separates the downlink multi-frequency signal into signals of different N frequencies and local signals of the near-end mixing unit 511 and signals of the 2G and/or 3G systems, and transmits the signals through the remote end.
  • the frequency unit 521 restores the signals of different N frequencies and the local signal of the near-end mixing unit 511 to N-channel signals; for the uplink: the remote unit 52 receives the N-channel of the LTE system from the user terminal through the antenna 523.
  • the far mixing unit 521 converts the N equal frequency signals into signals of different N frequencies, and the N channels are passed through the remote combining/splitting device 522.
  • Different signals and signals of the 2G and/or 3G systems are combined to form an uplink multi-frequency signal, which is sent to the near-end machine 51 via the feeder 54; the near-end machine 51 transmits the uplink multi-frequency signal through the near-end combining/splitting device 512.
  • the N-channel frequency difference signal and the 2G and/or 3G system signals are combined into one multi-frequency signal by the near-end machine through the near-end combining/splitting device 512, and then passed through a single root.
  • the feeder cable 54 is transmitted, so that the MIMO signal coverage can be achieved by the single feeder cable 54, and the signals of the 2G and/or 3G systems can be balanced, especially for buildings that have deployed indoor distribution systems, only in the source A near-end machine 51 is placed at 53, and the antennas of the respective coverage points are replaced with the remote unit 52, and the existing single feed cable 54 can be used to achieve coverage of the MIMO signal without affecting the 2G and/or 3G systems.
  • the indoor distribution system provided by the embodiment of the invention avoids the installation of multiple feeder cables, greatly reduces the construction amount, saves time and investment costs.
  • the indoor distribution system compatible with 2G and 3G signals provided by the embodiments of the present invention is consistent with the structure of the indoor distribution system described above, except that when considering 2G and/or 3G signals, The near-end machine 51 needs to combine the 2G and/or 3G signals, the multi-channel frequency signals of the LTE system after frequency conversion, and the local oscillator signals into one downlink multi-frequency signal through the near-end combining/splitting device 512.
  • the path/splitting device 522 separates one downlink multi-frequency signal into 2G and/or 3G signals, different frequency signals of the LTE system after frequency conversion, and local oscillator signals, or 2G and/or 3G signals, The multi-channel frequency signals and the local oscillator signals of the LTE system after frequency conversion are combined to form one uplink multi-frequency signal.
  • the proximal combining/splitting device 512 of the proximal machine 51 should also be capable of including the frequency of the 2G and/or 3G signals; correspondingly, the distal combining/splitting device of the remote unit 52
  • the 522 is similar in function to the proximal combining/splitting device 511 of the proximal machine 51 and should also include the frequency of the 2G and/or 3G signals.
  • the near-end combining/splitting device and the remote combining/splitting device of any of the indoor distribution systems provided in the above embodiments are adjusted correspondingly, the 2G and/or 3G signals can be realized.
  • the corresponding configuration of the near-end machine and the remote unit provided in the above embodiments can be applied to the indoor distribution system compatible with 2G and/or 3G signals provided by the embodiments of the present invention. This is not repeated.
  • the near-end machine shown in any one of FIG. 8 to FIG. 11 is adjusted accordingly, that is, the near-end combining/splitting device is replaced with the original LTE.
  • the signal frequency of the system also includes a near-end combining/splitting device for 2G and/or 3G signal frequencies, and the adjusted near-end machine is utilized in an indoor distribution system compatible with 2G and/or 3G signals.
  • the adjusted near-end machine includes the first signal amplifying device and the third signal amplifying device, for the downlink, the signal of each LTE system and the local oscillator signal are amplified to a certain power intensity, so when the signal and the 2G When the signal is transmitted to the remote unit together with the 3G signal, the signal strength of each LTE system can be greater than or equal to the strength of the 2G and/or 3G signals, thereby ensuring that the signal coverage area of the LTE system is greater than or equal to 2G and/or 3G.
  • the adjusted near-end machine includes a second signal amplifying device.
  • the signal of each LTE system is amplified to a certain power intensity, thereby ensuring that the signal of the LTE system is equal to or greater than 2G and/or 3G signal strength to ensure that both can be used simultaneously in the same range.
  • a combining device such as a combiner

Abstract

本发明提供了一种室内分布系统、近端机和远端机,涉及移动通信技术领域,为在节省资源和避免远端机供电困难的前提下实现多路信号的高速传送而设计。所述室内分布系统,包括近端机(11)和远端机(12),所述近端机(11)和所述远端机(12)之间通过单根馈缆连接,所述近端机(11)包括近端混频部(111),所述远端机(12)包括远端混频部(121),所述远端混频部(121)为无源器件。本发明适用于移动通信的网络结构。

Description

一种室内分布系统、近端机和远端机
本申请要求于2013年11月13日提交中国专利局、申请号201310571388.6、名称为“一种室内分布系统、近端机和远端机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术领域,尤其涉及一种室内分布系统、近端机和远端机。
背景技术
通信技术日新月异,随着数据通信与多媒体业务需求的不断发展,集3G(3rd-generation,第三代移动通信技术)与WLAN(Wireless Local Area Networks,无线局域网络)于一体,并能够传输高质量视频图像,且图像传输质量与高清晰度电视不相上下的第四代移动通信及其技术(4th-generation,4G)已经开始兴起。很多国家及地区都采用LTE(Long Term Evolution,长期演进)技术作为一种4G标准。
在LTE系统的室内分布系统中可引入MIMO(Multiple Input Multiple Output,多输入多输出)技术来极大地提高系统容量。所谓MIMO技术是指在发射端和接收端分别使用多个发射天线和多个接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的服务质量(误比特率或数据速率)。它可将基站信号分别连接到多路独立的通道中,并通过多个独立的天线,实现室内分布系统的多路MIMO收发。这就意味着,室内分布系统中,基站和每个覆盖点之间,都需要多路馈缆连接。
对于新建的大楼,可以通过布设多路馈缆实现多路信号的独立传输,但施 工周期长,投资成本高,并且施工过程中存在多路馈缆安装受限的特殊问题;对于已经部署了室内分布系统的大楼,其室内分布系统中只有一路馈缆,无法支持MIMO的多路信号,假如再安装其他路馈缆,将面临再次施工、投资成本高等诸多问题。
发明内容
本发明的实施例提供一种室内分布系统、近端机和远端机,能够在节省资源和避免远端机供电困难的前提下实现多路信号的高速传送。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明的第一方面,提供一种室内分布系统,包括近端机和远端机,所述近端机放置在靠近信源的一端,所述远端机分布在室内各个覆盖点,所述近端机和所述远端机之间通过单根馈缆连接,所述近端机包括近端混频部,所述远端机包括远端混频部,所述远端混频部为无源器件;
对于下行线路:所述近端机从所述信源接收N路同频信号,通过所述近端混频部将所述N路同频信号变换成N路频率不同的信号,通过近端合路/分路装置将所述N路频率不同的信号与所述近端混频部的本振信号合成一路下行多频信号,经所述馈缆向所述远端机发送;所述远端机通过远端合路/分路装置将所述下行多频信号分离为所述N路频率不同的信号和所述近端混频部的本振信号,通过所述远端混频部将所述N路频率不同的信号与所述近端混频部的本振信号还原成所述N路同频信号;
对于上行线路:所述远端机通过天线接收来自用户终端的N路同频信号,通过所述远端混频部将所述N路同频信号变换成N路频率不同的信号,通过远端合路/分路装置将所述N路频率不同的信号合成一路上行多频信号,经所述馈缆向所述近端机发送;所述近端机通过所述近端合路/分路装置将所述上行多频信号分离为所述N路频率不同的信号,通过所述近端混频部将所述N路频率不同的信号还原成所述N路同频信号;其中,N为大于或等于2的任意自然数。
在第一方面的第一种可能的实现方式中,所述近端混频部包括N-1个混频器,具体用于:
对于下行线路:保持所述N路同频信号中的其中一路同频信号的频率不变,将其余N-1路同频信号分别通过所述N-1个混频器变换成N-1路频率不同的信号,所述N-1个混频器分别对应N-1个本振信号;
对于上行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号分别通过所述N-1个混频器,以将所述N-1路频率不同的信号还原成N-1路同频信号,其中,所述频率不变的一路信号的频率等于所述同频信号的频率;
所述远端混频部包括N-1个无源混频器,具体用于:
对于下行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号和各自对应的所述近端混频部的本振信号分别通过所述N-1个无源混频器混频,以分别将所述N-1路频率不同的信号还原为N-1路同频信号;
对于上行线路:保持所述天线接收的N路同频信号中的其中一路的频率不变,将其余N-1路同频信号分别通过所述N-1个无源混频器变换成N-1路频率不同的信号,其中,所述频率不变的一路信号的频率等于所述同频信号的频率。
在第一方面的第二种可能的实现方式中,所述近端混频部包括N个混频器,具体用于:
对于下行线路:将所述N路同频信号分别通过所述N个混频器变换成N路频率不同的信号,所述N个混频器分别对应N个本振信号;
对于下行信号:将所述N路频率不同的信号分别通过所述N个混频器还原成所述N路同频信号;
所述远端混频部包括N个无源混频器,具体用于:
对于下行线路:将所述N路频率不同的信号和对应的所述近端混频部的本振信号分别通过所述N个无源混频器混频,以分别将所述N路频率不同的信号还原为所述N路同频信号;
对于上行线路:将所述天线接收的所述N路同频信号分别通过所述N个无源混频器变换成所述N路频率不同的信号。
结合第一方面或第一方面的上述各个可能的实现方式中的任意一个实现方式,在第一方面的第三种可能的实现方式中,所述近端机还包括上下行信号隔离装置,所述上下行信号隔离装置设置在所述近端混频部与所述近端合路/分路装置之间,用于将每路通道上的上行信号与下行信号隔离。
结合第一方面的第三种可能的实现方式,在第一方面的第四中可能的实现方式中,所述上下行信号隔离装置包括频分信号隔离装置或时分信号隔离装置。
结合第一方面的第四种可能的实现方式,在第一方面的第五中可能的实现方式中,所述频分信号隔离装置包括双工器,所述时分信号隔离装置包括环行器或开关。
本发明的第二方面,提供一种近端机,用于第一方面或第一方面的上述各个可能的实现方式中的任意一个实现方式所述的室内分布系统,所述近端机包括近端混频部,近端合路/分路装置;
所述近端混频部用于:
对于下行线路:将从信源接收的N路同频信号变换成N路频率不同的信号;
对于上行线路:将来自所述近端合路/分路装置的N路频率不同的信号还原成N路同频信号;
所述近端合路/分路装置用于:
对于下行线路:将来自所述近端混频部的所述N路频率不同的信号和所述近端混频部的本振信号合成一路下行多频信号,以经馈缆向远端机发送;
对于上行线路:将来自馈缆的一路上行多频信号分离为N路频率不同的信号;
其中,N为大于或等于2的任意自然数。
在第二方面的第一种可能的实现方式中,所述近端混频部包括N-1个 混频器,具体用于:
对于下行线路:保持所述N路同频信号中的其中一路同频信号的频率不变,将其余N-1路同频信号分别通过所述N-1个混频器变换成N-1路频率不同的信号,所述N-1个混频器分别对应N-1个本振信号;
对于上行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号分别通过所述N-1个混频器,以将所述N-1路频率不同的信号还原成N-1路同频信号,其中,所述频率不变的一路信号的频率等于所述同频信号的频率。
结合第二方面的第一种可能实现的方式,在第二方面的第二中可能的实现方式中,所述近端混频部包括N个混频器,具体用于:
对于下行线路:将所述N路同频信号分别通过所述N个混频器变换成N路频率不同的信号,所述N个混频器分别对应N个本振信号;
对于下行线路:将所述N路频率不同的信号分别通过所述N个混频器还原成所述N路同频信号。
结合第二方面的第二种可能实现的方式,在第二方面的第三中可能的实现方式中,所述近端机还包括N个第一上下行信号隔离装置,所述第一上下行信号隔离装置分别与所述近端混频部和所述近端合路/分路装置相连,用于将每路通道上的上行信号与下行信号隔离。
结合第二方面的第三种可能实现的方式,在第二方面的第四中可能的实现方式中,所述第一上下行信号隔离装置包括第一频分信号隔离装置或第一时分信号隔离装置。
结合第二方面的第四种可能实现的方式,在第二方面的第五中可能的实现方式中,所述第一频分信号隔离装置包括双工器,所述第一时分信号隔离装置包括环形器或开关。
结合第二方面的第三种可能实现的方式,在第二方面的第六中可能的实现方式中,所述近端机还包括N个第一信号放大装置、N个第二信号放大装置和N个第三信号放大装置,
所述N个第一上下行信号隔离装置的下行信号输出端口分别通过所述N个第一信号放大装置与所述近端合路/分路装置相连,用于将N路所述下行信号分别放大;
所述近端合路/分路装置分别通过所述N个第二信号放大装置与所述N个第一上下行信号隔离装置的上行信号输入端口相连,用于将N路所述上行信号分别放大;
所述近端混频部的本振信号输出端分别通过所述N个第三信号放大装置与所述近端合路/分路装置相连,用于将所述N个本振信号分别放大。
结合第二方面的第六种可能实现的方式,在第二方面的第七中可能的实现方式中,所述近端机还包括N个第二上下行信号隔离装置,
所述N个第一信号放大装置下行信号输出端口及N个第二信号放大装置上行信号输入端口分别N个通过第二上下行信号隔离装置与所述近端合路/分路装置相连;
所述第二上下行信号隔离装置用于同时传输所述上行信号和经所述第一信号放大装置放大后的所述下行信号。
本发明的第三方面,提供一种远端机,用于第一方面或第一方面的上述各个可能的实现方式中的任意一个实现方式所述的室内分布系统,所述远端机由无源器件组成,包括远端合路/分路装置、远端混频部;
所述远端合路/分路装置用于:
对于下行线路:将来自馈缆的一路下行多频信号分离为N路频率不同的信号和近端混频部的本振信号;
对于上行线路:将来自所述远端混频部的N路频率不同的信号合成一路上行多频信号,以经所述馈缆向近端机发送;
所述远端混频部用于:
对于下行线路:将所述N路频率不同的信号和所述近端混频部的本振信号还原成N路同频信号;
对于上行线路:将天线接收的N路同频信号变换成N路频率不同的信号;
其中,N为大于或等于2的任意自然数。
在第三方面的第一种可能实现的方式中,所述远端混频部包括N-1个无源混频器,具体用于:
对于下行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号和各自对应的所述近端混频部的本振信号分别通过所述N-1个无源混频器混频,以分别将所述N-1路频率不同的信号还原为N-1路同频信号,其中,所述频率不变的一路信号的频率等于所述同频信号的频率;
对于上行信号:保持所述天线接收的N路同频信号中的其中一路的频率不变,将其余N-1路同频信号分别通过所述N-1个无源混频器变换成N-1路频率不同的信号。
在第三方面的第二种可能实现的方式中,所述远端混频部包括N个无源混频器,具体用于:
对于下行线路:将所述N路频率不同的信号和对应的所述近端混频部的本振信号分别通过所述N个无源混频器混频,以分别将所述N路频率不同的信号还原为所述N路同频信号;
对于上行线路:将所述天线接收的所述N路同频信号分别通过所述N个无源混频器变换成所述N路频率不同的信号。
结合第三方面的第二种可能实现的方式,在第三方面的第三中可能的实现方式中,所述远端机还包括N个滤波装置,所述滤波装置分别与所述无源混频器和所述天线相连,用于将所述同频信号从混频后的信号中过滤出来。
本发明的第四方面,提供另一种室内分布系统,包括近端机和远端机,所述近端机放置在靠近信源的一端,所述远端机分布在室内各个覆盖点,所述近端机和所述远端机之间通过单根馈缆连接,所述近端机包括近端混频部,所述远端机包括远端混频部,所述远端混频部为无源器件;
对于下行线路:所述近端机从所述信源接收LTE系统的N路同频信号以及2G和/或3G系统的信号,通过所述近端混频部将所述N路同频信号变换成 N路频率不同的信号,通过近端合路/分路装置,将所述N路频率不同的信号与所述近端混频部的本振信号、以及所述2G和/或3G系统的信号合成一路下行多频信号,经所述馈缆向所述远端机发送;所述远端机通过远端合路/分路装置将所述下行多频信号分离为所述N路频率不同的信号和所述近端混频部的本振信号、以及所述2G和/或3G系统的信号,通过所述远端混频部将所述N路频率不同的信号与所述近端混频部的本振信号还原成所述N路同频信号;
对于上行线路:所述远端机通过天线接收来自用户终端的LTE系统的N路同频信号以及2G和/或3G系统的信号,所述远端混频部将所述N路同频信号变换成N路频率不同的信号,通过远端合路/分路装置将所述N路频率不同的信号以及2G和/或3G系统的信号合成一路上行多频信号,经所述馈缆向所述近端机发送;所述近端机通过所述近端合路/分路装置将所述上行多频信号分离为所述N路频率不同的信号以及2G和/或3G系统的信号,通过所述近端混频部将所述N路频率不同的信号还原成所述N路同频信号;其中,N为大于或等于2的任意自然数。
本发明实施例提供的室内分布系统、近端机及远端机,对于下行线路,近端机能够通过近端混频部将从信源接收的多路同频信号变换为频率不同的信号,并将这些频率不同的信号和近端混频部的本振信号一起通过单根馈缆向远端机发送,这样非但不需布置多路馈缆,节省了资源,而且,还将近端混频部的本振信号发送到远端机,可以使远端机利用该本振信号通过无源器件将多路频率不同的信号还原成多路同频信号,从而解决了远端机的供电难题。对于上行线路,远端机能够通过无源的远端混频部将来自用户终端的多路同频信号变换为频率不同的信号并通过单根馈缆向近端机发送,同样可以在节省资源和避免远端机供电困难的前提下实现多路信号的高速传送。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种室内分布系统的结构示意图;
图2为本发明实施例提供的近端机的近端混频部和远端机的远端混频部的结构示意图;
图3为本发明实施例提供的近端机的另一种近端混频部和远端机的另一种远端混频部的结构示意图;
图4为本发明实施例提供的另一种室内分布系统的结构示意图;
图5为本发明实施例提供的一种近端机的结构示意图;
图6为本发明实施例提供的另一种近端机的结构示意图;
图7为本发明实施例提供的另一种近端机的结构示意图;
图8为本发明实施例提供的另一种近端机的结构示意图;
图9为本发明实施例提供的另一种近端机的结构示意图;
图10为本发明实施例提供的另一种近端机的结构示意图;
图11为本发明实施例提供的另一种近端机的结构示意图;
图12为本发明实施例提供的一种远端机的结构示意图;
图13为本发明实施例提供的另一种远端机的结构示意图;
图14为本发明实施例提供的另一种远端机的结构示意图;
图15为本发明实施例提供的另一种远端机的结构示意图;
图16为本发明实施例提供的另一种室内分布系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种室内分布系统,包括近端机11和远端机12,近端机11放置在靠近信源13的一端,远端机12分布在室内各个覆盖点,近端机11和远端机12之间通过单根馈缆14连接,近端机11包括近 端混频部111,远端机12包括远端混频部121,远端混频部121为无源器件。图1中,各个装置之间带箭头的实线代表N路同频信号或者变频后的N路频率不同的信号的流向,各个装置之间带箭头的虚线代表近端混频部111的本振信号的流向。
对于下行线路:近端机11从基站13接收N路同频信号,通过近端混频部111将N路同频信号变换成N路频率不同的信号,通过近端合路/分路装置112将N路频率不同的信号与近端混频部111的本振信号合成一路下行多频信号,经馈缆14向远端机12发送;远端机12通过远端合路/分路装置122将下行多频信号分离为N路频率不同的信号和近端混频部111的本振信号,通过远端混频部121将N路频率不同的信号与近端混频部111的本振信号还原成N路同频信号。
对于上行线路:远端机12通过天线123接收来自用户终端的N路同频信号,通过远端混频部121将N路同频信号变换成N路频率不同的信号,通过远端合路/分路装置122将N路频率不同的信号合成一路上行多频信号,经馈缆14向近端机11发送;近端机11通过近端合路/分路装置112将上行多频信号分离为N路频率不同的信号,通过近端混频部111将N路频率不同的信号还原成N路同频信号;其中,N为大于或等于2的任意自然数。
本发明实施例提供的室内分布系统,对于下行线路,近端机11能够通过近端混频部111将从信源13接收的多路同频信号变换为频率不同的信号,并将这些频率不同的信号和近端混频部111的本振信号一起通过单根馈缆14向远端机12发送,这样非但不需布置多路馈缆,节省了资源,而且,还将近端混频部111的本振信号发送到远端机12,可以使远端机12利用该本振信号通过无源器件将多路频率不同的信号还原成多路同频信号,从而解决了远端机12的供电难题。对于上行线路,远端机12能够通过无源的远端混频部121将来自用户终端的多路同频信号变换为频率不同的信号并通过单根馈缆14向近端机11发送,同样可以在节省资源和避免远端机12供电困难的前提下实现信号的传送。
也就是说,本发明实施例提供的室内分布系统,仅需要单根馈缆14,就能实现多路信号的传输,实现MIMO信号的覆盖,相对于通过多路独立的通道来传输多路MIMO信号,较大数量的减少了多路馈缆的安装,节省了施工时间,减少了投资成本;对于已经部署了室内分布系统的大楼,只需在信源13处安装近端机11,将各个覆盖点的天线换成远端机12,利用已有的单根馈缆,就可以实现MIMO信号的覆盖,而不需要再安装其他多路馈缆,也不需要考虑远端机12的供电问题,因此大大节省了施工量,有效的减少了投资成本。
需要说明的是,本实施例中的近端合路/分路装置112和远端合路/分路装置122可以是任何能够将多路频率不同的信号合成一路多频信号、或者将一路多频信号分离为多路频率不同的信号的装置,例如,可以为多频合路器、多工器等,本发明的实施例对此不做限制。
由于接收到的N路MIMO信号频率相同,为了使其通过单根馈缆14传输,要先将N路同频信号变换成N路频率不同的信号。具体而言,可以通过多种方法将N路同频信号变换成N路频率不同的信号,例如可以保持N路同频信号的其中一路信号频率不变,而将其余N-1路同频信号分别变频到其他N-1个不同的频段;当然,也可以将N路同频信号全部变频到其他N个不同的频段,本发明的实施例对此不作限定。
例如,如图2所示,在本发明的一个实施例中,需要保持其中一路同频信号的频率不变而仅将N-1路同频信号分别变频到其他N-1个不同的频段,则近端混频部111只需包括N-1个混频器1111,这N-1个混频器1111分别具有各自的本振频率。对于下行线路,即多路同频信号从信源向用户终端传输时所经过的线路,N-1路同频信号分别通过近端混频部111的这N-1个混频器1111变换成N-1路频率不同的信号,而另外一路同频信号则直接通过近端混频部111,不进行频率变换,这样N路同频信号通过近端混频部111即变换成N路频率不同的信号。对于上行线路,即多路同频信号从用户终端向信源传输时所经过的线路,保持N路频率不同的信号中的其中一路信号的频率不变,使其直接通过近端混频部111,不进行频率变换,将其余N-1路频率不同的信号分别通过 近端混频部111的N-1个混频器1111,以将N-1路频率不同的信号还原成N-1路同频信号,其中,频率不变的一路信号的频率等于同频信号的频率,这样,N路频率不同的信号通过近端混频部111即变换成N路同频信号。
由于近端机和远端机之间发送、接收信号是相互对应的,因此,当近端混频部111包括N-1个混频器时,远端机的远端混频部121也可以只包括N-1个无源混频器1211。对于下行线路:远端混频部121保持N路频率不同的信号中的其中一路信号的频率不变,使其直接通过远端混频部121,不进行频率变换,将其余N-1路频率不同的信号和各自对应的近端混频部111的本振信号分别通过N-1个无源混频器1211,以分别将N-1路频率不同的信号还原为N-1路同频信号,其中,频率不变的一路信号的频率等于同频信号的频率;对于上行线路:可以保持天线接收来自用户终端的N路同频信号中的其中一路的频率不变,使其直接通过远端混频部121,不进行频率变换,将其余N-1路同频信号分别通过N-1个无源混频器1211变频成N-1路频率不同的信号。
需要说明的是,将同频信号变为频率不同的信号,或者反过来将频率不同的信号变为同频信号的过程中,所说的同频信号一般为高频信号,而所说的各个频率不同的信号一般为中频信号,相应的,高频信号和中频信号分别选用高频器件和中频器件来处理。但是,当近端混频部111和远端混频部121都由N-1个混频器组成时,实际上只将N-1路信号进行频率的变换,而剩余的一路信号则一直保持着高频状态,因此用于传输这路信号的相关器件应该选用相应的高频率器件。
与图2所示的实施例不同,如图3所示,在本发明的另一个实施例中,需要将N路同频信号全部变频到其他N个不同的频段,则近端混频部111可以包括N个混频器1111,这N个混频器分别具有各自的本振频率,对于下行线路:近端混频部111将N路同频信号分别通过N个混频器1111变频成N路频率不同的信号;对于上行线路:近端混频部111将N路频率不同的信号分别通过N个混频器1111还原成N路同频信号。与近端混频部111相对应,远端机的远端混频部121也可以包括N个无源混频器1211,对于下行线路:远端混 频部121将N路频率不同的信号和对应的近端混频部111的本振信号分别通过N个无源混频器1211,以分别将N路频率不同的信号还原为N路同频信号;对于上行线路:远端混频部121将天线接收的来自用户终端的N路同频信号分别通过N个无源混频器1211变频成N路频率不同的信号。
需要说明的是,本实施例中所说的近端机的混频器1111可以为有源混频器,也可以为无源混频器。由于有源混频器本身具有本振信号,混频后的信号功率较大,并且,近端机取电一般比较容易,所以,优选有源混频器。而如果混频器1111为无源混频器,则混频部111的本振信号可以是由无源混频器将同频信号变为频率不同的信号的过程中产生的,由于同频信号一般为高频信号,则经过无源混频器变频后,会产生两路中频信号,把其中一路信号当作频率不同的信号,另一路则可以当作是本振信号。
还需要说明的是,上述实施例提供的室内分布系统能够同时传输上行信号和下行信号,其中,上行信号的传输路径为上行线路,下行信号的传输路径为下行线路。这里所说的上行线路和下行线路是以信号流向为基础定义的,而上行线路和下行线路在物理上既可以是彼此分开的通道,也可以是彼此共用通道,还可以是部分分开、部分共用的通道,本发明的实施例对此不作限定。
为了使室内分布系统能够更好的对上行信号和下行信号进行传输,避免上行信号和下行信号之间的相互干扰,优选的,如图4所示,在本发明的一个实施例中,室内分布系统的近端机11还可包括上下行信号隔离装置113,上下行信号隔离装置113可以设置在近端混频部111与近端合路/分路装置112之间,用于将每路通道上的上行信号与下行信号隔离。
可选的,根据信号隔离方式的不同,上下行信号隔离装置113可以为频分信号隔离装置,也可以为时分信号隔离装置,分别用于将上、下行信号从频域分开或从时域分开。其中,频分信号隔离装置可包括双工器等,时分信号隔离装置可包括环行器或开关等器件。这样,通过上下行信号隔离装置113将每路通道上的上行信号和下行信号隔离,即可保证上行线路和下行线路能同时正常工作。
需要说明的是,虽然上述实施例中,室内分布系统包括一个近端机和一个远端机,但本发明不限于此。在现代通信中,一个基站一般对应多个终端,同样道理,在本发明的其他实施例中,一套室内分布系统中,一个近端机也可以对应多个远端机,每个远端机都通过单根馈缆与近端机相连。每一个远端机与近端机的连接和工作原理都与前述实施例相同或相类似,前文已经进行了详细的说明,此处不再赘述。
相应的,如图5所示,本发明实施例还提供一种近端机21,用于前述实施例提供的任一种室内分布系统。图5中,各个装置之间的带箭头的实线条代表N路同频信号或者变频后的N路频率不同的信号的流向,各个装置之间的带箭头的虚线条代表近端混频部111的本振信号的流向。
近端机21包括近端混频部211、近端合路/分路装置212;其中,近端混频部211用于:对于下行线路:将从信源23接收的N路同频信号变换成N路频率不同的信号;对于上行线路:将来自近端合路/分路装置212的N路频率不同的信号还原成N路同频信号。近端合路/分路装置212用于:对于下行线路:将来自近端混频部211的N路频率不同的信号和近端混频部211的本振信号合成一路下行多频信号,以经馈缆24向远端机发送;对于上行线路:将来自馈缆24的一路上行多频信号分离为N路频率不同的信号;其中,N为大于或等于2的任意自然数。
本发明实施例提供的近端机21,对于下行线路,通过近端混频部211将从信源23接收的多路同频信号变换为频率不同的信号,并将这些频率不同的信号和近端混频部211的本振信号一起合成一路多频信号,通过单根馈缆24向远端机发送,这样非但不需布置多路馈缆,节省了资源,而且,还将近端混频部211的本振信号发送到远端机,可以使远端机直接利用该本振信号。对于上行线路,近端机还能将从单根馈缆211接收到的一路多频信号彼此分开,并将其还原为N路同频信号。这样,不论是多路同频信号从信源23向用户终端传输时的下行线路,还是多路同频信号从用户终端向信源23传输时的上行线路,通过近端机21的作用,都可以使多路信号实现单根馈缆24的传输,从而大大 节省了施工量,有效的减少了投资成本。
下面,以N=2为例,通过具体实施例对本发明提供的近端机进行详细说明。
图6为本发明实施例提供的一种近端机31,包括近端混频部311,近端合路/分路装置312,其中,近端混频部311包括两个有源混频器3111,分别用于将同频信号S1、S2变换为频率为1620~1690MHz和1400~1470MHz的两路频率不同的信号。对于下行线路:来自信源33的两路同频信号S1、S2输入到近端机31的近端混频部311,具体的,分别输入有源混频器3111,有源混频器3111将两路同频信号分别变换成频率为1620~1690MHz和1400~1470MHz的两路信号,其中,每个有源混频器3111分别对应一个本振信号,且两个本振信号的频率不同,例如其中一个有源滤波器3111的本振信号的频率为1000MHz,另一个有源滤波器3111的本振信号的频率为1220MHz;近端合路/分路装置312将频率为1620~1690MHz和1400~1470MHz的两路信号、以及频率为1000MHz和1220MHz的两个本振信号合成一路下行多频信号,经馈缆34向远端机发送。对于上行线路:近端机31从馈缆34接收一路上行多频信号,通过近端合路/分路装置312分别将其分离为频率为1500~1570MHz和1280~1350MHz的两路信号,通过近端混频部311的有源混频器3111将频率为1500~1570MHz和1280~1350MHz的两路信号分别还原为两路同频信号S1,S2,而后上传至信源33。具体的,本实施例中的近端合路/分路装置可以是任何能够将多路频率不同的信号合成一路多频信号、或者将一路多频信号分离为多路频率不同的信号的装置,例如,可以为多频合路器、多工器等,本发明的实施例对此不做限制。
为了避免上行信号和下行信号之间的相互干扰,优选的,如图7所示,近端机31还可以包括两个第一上下行信号隔离装置313-1,第一上下行信号隔离装置313-1分别与近端混频部311和近端合路/分路装置312相连,用于将每路通道上的上行信号和下行信号隔离。
可选的,根据信号隔离方式的不同,第一上下行信号隔离装置313-1可以为频分信号隔离装置,也可以为时分信号隔离装置,分别用于将上、下行信号 从频域分开或从时域分开。其中,频分信号隔离装置可包括双工器等,时分信号隔离装置可包括环行器或开关等器件。这样,通过第一上下行信号隔离装置313-1将每路通道上的上行信号和下行信号隔离,即可保证上行线路和下行线路能同时正常工作。
由于远端机由无源器件组成,为了使远端机接收到足够高功率的信号,优选的,可以在近端机31中增加多个信号放大装置以提高发送的信号的功率。
例如,如图8所示,在本实施例中,近端机31还可以包括两个第一信号放大装置314-1、两个第二信号放大装置314-2和两个第三信号放大装置314-3,例如可以为信号放大器等。两个第一上下行信号隔离装置313-1的下行信号输出端口分别通过两个第一信号放大装置314-1与近端合路/分路装置312相连,这两个第一信号放大装置314-1用于将两路下行信号分别放大;近端合路/分路装置312同时还分别通过两个第二信号放大装置314-2与两个第一上下行信号隔离装置313-1的上行信号输入端口相连,这两个第二信号放大装置314-2用于将两路上行信号分别放大;近端混频部311的本振信号输出端分别通过两个第三信号放大装置314-3与近端合路/分路装置312相连,这两个第三信号放大装置314-3用于将两个本振信号分别放大。
需要说明的是,在近端混频部311的本振信号经第三信号放大装置314-3进行放大的过程中,可能引入其他频率分量的干扰信号,为了减少或消除这种干扰信号对本振信号的影响,优选的,如图9所示,近端机31还可以包括两个滤波装置315,用于减少或消除本振信号以外的杂波干扰信号,第三信号放大装置314-3通过滤波装置315和近端合路/分路装置312相连,可选的,滤波装置315可以为滤波器。
上述实施例中,通过第一上下行信号隔离装置314-1将每路通道上同时传输的上行信号和下行信号进行隔离后,上行信号和下行信号分别在彼此分开的线路上传输,具体的,第一上下行信号隔离装置313-1的下行信号输出端口和近端合路/分路装置312之间的线路用于传输下行信号,第一上下行信号隔离装置314-1的上行信号输入端口和近端合路/分路装置312之间的线路用于传输上 行信号。每路通道上用于传输上行信号和下行信号的线路都需要与近端合路/分路装置312相连,这样就需要占用近端合路/分路装置312的两个输入/输出端口。对于N=2的室内分布系统,两路通道需要占用近端合路/分路装置312的四个输入/输出端口,那么当N值越大时,需要的输入/输出端口数量越多,对近端合路/分路装置312的要求也越多,则制造成本就越高。
为了在一定程度上节省近端合路/分路装置312的端口资源,降低近端合路/分路装置312的制造成本,同时也为了使近端机31能更好的同时传输上行信号和下行信号,避免上下行信号之间互相干扰,进一步的,如图10所示,近端机31还可以包括两个第二上下行信号隔离装置313-2。第一信号放大装置314-1的下行信号输出端口及第二信号放大装置314-2的上行信号输入端口分别通过第二上下行信号隔离装置313-2与近端合路/分路装置312相连,即上行信号和下行信号共同占用了近端合路/分路装置312的一个端口,从而节省了近端合路/分路装置312的端口资源;第二上下行信号隔离装置314-2用于同时传输上行信号和经第一信号放大装置314-1放大后的下行信号。
需要说明的是,第二上下行信号隔离装置313-2与第一信号隔离装置314-1相对应,可以为频分信号隔离装置,如双工器,也可以为时分信号隔离装置,如环行器或开关等,分别用于将上行信号和下行信号从频域分开或从时域分开。
还需要说明的是,对于同一个近端机,第二上下行信号隔离装置313-2和第一上下行信号隔离装置313-1需要同为频分信号隔离装置,或者同为时分信号隔离装置,但具体为何种类型的频分信号隔离装置或时分信号隔离装置,二者可以是相同的,也可以是不同的。例如,第一上下行信号隔离装置313-1和第二上下行信号隔离装置313-2可以同为双工器,或者,第一上下行信号隔离装置313-1可以为环形器,第二上下行信号隔离装置313-2可以为开关,本发明对此不作限定。
上述实施例中,近端混频部311包括两个有源混频器3111,两个有源混频器3111对接收到的两路同频信号分别进行变频,将其变换成了两路不同频率 的信号,但本发明的实施例不限于此。在本发明的其他实施例中,近端混频部也可以包括一个有源混频器,近端混频部将两路同频信号变换成两路频率不同的信号的方式还可以为:对于接收到的两路同频信号,保持其中一路频率不变,将另一路通过有源混频器进行变频,下面通过具体实施例对此进行说明。
如图11所示,近端机41的近端混频部411包括一个有源混频器4111,该有源混频器4111自身带有本振信号。对于下行线路:来自信源43的两路信号输入到近端机41,其中一路信号直接通过近端混频部411不进行频率变化,另一路信号则经过有源混频器4111进行频率变换,这样,通过近端混频部411后,两路同频信号也变成了两路频率不同的信号;两路频率不同的信号分别通过第一上下行信号隔离装置413-1后得以与上行信号相隔离,再分别通过第一信号放大装置413-1以被放大,最后分别经过第二上下行信号隔离装置413-2传输到近端合路/分路装置44;有源混频器4111的本振信号通过第三信号放大装置413-3放大,再通过滤波装置415滤除杂散信号,最后传输至近端合路/分路装置412;近端合路/分路装置412将两路频率不同的信号和本振信号合成一路下行多频信号,经馈缆44向远端机发送。
对于上行线路:近端机41从馈缆44接收一路上行多频信号,通过近端合路/分路装置412将其分离为两路频率不同的信号,两路频率不同的信号分别经过第二上下行信号隔离装置413-2以与下行信号相隔离,再分别通过第二信号放大装置413-2以将信号放大,然后通过第一上下行信号隔离装置413-1向近端混频部411传输;将其中频率较高的一路信号直接通过近端混频部411不做频率变换,而将另一路频率较低的信号通过近端混频部411的有源混频器4111进行变频,使变频后的频率与直接通过近端混频部411的那路信号的频率相同。这样,两路频率不同的信号通过近端混频部411后,即变换为两路同频信号,上传至信源43。需要说明的是,MIMO信号一般为约2.6G的高频信号,进行变频时,一般是将其变为中频信号。当近端混频部411包括一个有源混频器4111时,另一路信号则直接通过近端混频部411,不需进行变频,则用于传输这路信号的相关器件应该选用相应的高频器件。本实施例中,如果下行线路中某一 通道中传输的信号没有经过频率变换,仍然以较高频率向远端机发送,则对应的,在上行线路中,这个通道中传输的信号仍然可以是不经过频率变换的。
与近端机相对应的,本发明实施例还提供了一种远端机,用于本发明实施例提供的任一种室内分布系统。
如图12所示,本发明实施例提供了一种远端机22,远端机22由无源器件组成,包括远端合路/分路装置222和远端混频部211;其中,远端合路/分路装置222用于:对于下行线路:将来自馈缆24的一路下行多频信号分离为N路频率不同的信号和近端混频部的本振信号;对于上行线路:将来自远端混频部221的N路频率不同的信号合成一路上行多频信号,以经馈缆24向近端机发送;远端混频部211用于:对于下行线路:将N路频率不同的信号和近端混频部211的本振信号还原成N路同频信号;对于上行线路:将天线223接收的来自用户终端的N路同频信号变换成N路频率不同的信号;其中,N为大于或等于2的任意自然数。
本发明实施例提供的远端机22,对于下行线路,能利用从近端机传输过来的近端混频部的本振信号,通过远端混频部211的无源器件将多路频率不同的信号还原成多路同频信号,从而解决了远端机22的供电难题。同时,对于上行线路,远端机22也能够通过无源的远端混频部211将来自用户终端的多路同频信号变换成为频率不同的信号,以经单根馈缆24向近端机发送。这样,不论是下行信号的传输,还是上行信号的传输,远端机22都可以通过单根馈缆24传输信号,同时能解决供电的难题,从而降低了成本,并且由于远端机22由无源器件组成,稳定性较好。
关于远端机的工作原理,在前文的室内分布系统中已经进行了相应的解释和说明,下面,以N=2为例,通过具体实施例对本发明提供的远端机进行详细介绍。
图13为本发明实施例提供的一种远端机32,该远端机与上述实施例中的任一种近端机相对应;该远端机32由无源器件组成,包括远端混频部321,远端合路/分路装置322,其中,远端混频部321包含两个无源混频器3211。对于 下行线路:通过远端合路/分路装置322将来自馈缆34的一路下行多频信号分别分离为频率为1620~1690MHz和1400~1470MHz的两路频率不同的信号,以及频率分别为1000MHz和1220MHz的两个近端混频部311的本振信号,然后通过无源混频器3211分别将频率不同的信号与对应的近端混频部311的本振信号混频,即通过一个无源混频器3211将频率为1620~1690MHz的信号与频率为1000MHz的本振信号混频为信号S1,通过另一个无源混频器3211将频率为1400~1470MHz的信号与频率为1220MHz的本振信号混频为信号S2,S1与S2为同频信号,而后分别通过天线323发送。对于上行线路:通过天线323接收来自用户终端的两路同频信号S1,S2,通过无源混频器3211将两路同频信号S1,S2分别变频成频率为1500~1570MHz和1280~1350MHz的两路频率不同的信号,然后通过远端合路/分路装置322将频率分别为1500~1570MHz和1280~1350MHz的两路频率不同的信号合成一路上行多频信号,经馈缆34向近端机31发送。具体的,远端合路/分路装置322可以为包括6个带通的滤波器,其中6个带通滤波器的通频带分别对应两路不同频率的信号的下行信号的频率1500~1570MHz和1280~1350MHz以及上行信号的频率1500~1570MHz和1280~1350MHz,以及两个近端混频部311的本振信号的频率1000MHz和1220MHz。
优选的,如图14所示,远端机32还可以包括两个滤波装置324,例如滤波器等,分别设置在无源混频器3211和天线323之间,用于将同频信号从混频后的信号中提取出来。
需要说明的是,上述实施例中,远端混频部321包括两个无源混频器3211,但本发明实施例不限于此,与上述图11的近端机41相对应的,用于接收上述近端机41信号的远端机也可以包括一个无源混频器。
如图15所示,远端机42的远端混频部421也可以包含一个无源混频器4211。对于下行线路:通过远端合路/分路装置422将来自馈缆44的一路下行多频信号分离为两路频率不同的信号和一个本振信号,将两路频率不同的信号的其中一路信号直接通过远端混频部421,将另一路信号与本振信号一起通过 无源混频器4211进行变频,变频后的频率与直接通过远端混频部421的那路信号的频率相同,则两路频率不同的信号通过远端混频部421后,变换为两路同频信号,再分别通过滤波装置424后,分别经天线423发送。对于上行线路:通过天线423接收来自用户终端的两路同频信号,分别经过滤波装置424后,将其中一路信号直接通过远端混频部421,将另一路信号通过远端混频部421的无源混频器4211进行变频,通过远端混频部421后,两路同频信号则变换成了两路频率不同的信号;通过远端合路/分路装置422将两路频率不同的信号合成一路上行多频信号,经馈缆44向近端机41发送。
需要说明的是,与近端机41相对应的,MIMO信号一般为约2.6G的高频信号,进行变频时,一般是将其变为中频信号。当远端混频部421包括一个无源混频器4211时,另一路信号则直接通过远端混频部421,不需进行变频,则用于传输这路信号的相关器件应该选用相应的高频器件,比如远端合路/分路装置422、滤波装置424等。
上述实施例提供的室内分布系统,主要用于传输LTE系统的MIMO信号,但2G和3G系统的信号在市场上仍占有大部分的份额,所以,在部署4G系统中的LTE系统的MIMO信号时,应当考虑到兼容2G和3G信号,以保证现在使用2G和3G系统的用户能正常通信。
所以,本发明实施例还提供了一种兼容2G和3G信号的室内分布系统,用于同时传输LTE系统的MIMO信号以及2G和/或3G信号。具体如图16所示:一种室内分布系统,包括近端机51和远端机52,近端机51放置在靠近信源53的一端,远端机52分布在室内各个覆盖点,近端机51和远端机52之间通过单根馈缆54连接,其中,近端机51包括近端混频部,远端机52包括远端混频部521,远端混频部521为无源器件;对于下行线路:近端机51从信源53接收LTE系统的N路同频信号以及2G和/或3G系统的信号,通过近端混频部511将N路同频信号变换成N路频率不同的信号,通过近端合路/分路装置512,将N路频率不同的信号与近端混频部511的本振信号、以及2G和/或3G系统的信号合成一路下行多频信号,经馈缆54向远端机52发送;远端机 52通过远端合路/分路装置522将下行多频信号分离为N路频率不同的信号和近端混频部511的本振信号、以及2G和/或3G系统的信号,通过远端混频部521将N路频率不同的信号与近端混频部511的本振信号还原成N路同频信号;对于上行线路:远端机52通过天线523接收来自用户终端的LTE系统的N路同频信号以及2G和/或3G系统的信号,远端混频部521将N路同频信号变换成N路频率不同的信号,通过远端合路/分路装置522将所述N路频率不同的信号以及2G和/或3G系统的信号合成一路上行多频信号,经馈缆54向近端机51发送;近端机51通过近端合路/分路装置512将上行多频信号分离为N路频率不同的信号以及2G和/或3G系统的信号,通过近端混频部511将N路频率不同的信号还原成N路同频信号;其中,N为大于或等于2的任意自然数。
本发明实施例提供的室内分布系统,在近端机通过近端合路/分路装置512将N路频率不同的信号以及2G和/或3G系统的信号合成一路多频信号,然后通过单根馈缆54传输,这样,通过单根馈缆54,既可以实现MIMO信号的覆盖,同时能兼顾2G和/或3G系统的信号,尤其对于已经部署室内分布系统的建筑物,只需在信源53处放置一个近端机51,将各个覆盖点的天线换成远端机52,利用已有的单根馈缆54,即可实现MIMO信号的覆盖,同时又不影响2G和/或3G系统的信号的传输,并且,由于远端机52由无源器件组成,可靠性强,且不需要考虑远端机52的供电问题。本发明实施例提供的室内分布系统,避免了安装多路馈缆,大大减少了施工量,节约时间与投资成本。
需要说明的是,本发明实施例提供的兼容2G和3G信号的室内分布系统,与前面所述的室内分布系统的结构一致,区别之处在于,当考虑到2G和/或3G信号时,对于近端机51,需要通过近端合路/分路装置512将2G和/或3G信号、经变频后的LTE系统的多路频率不同的信号、及本振信号一起合成一路下行多频信号,或者将一路上行多频信号分离为2G和/或3G信号、经变频后的LTE系统的多路频率不同的信号、及本振信号;相应的,对于远端机52,需要通过远端合路/分路装置522将一路下行多频信号分离为2G和/或3G信号、经变频后的LTE系统的多路频率不同的信号、及本振信号,或者将2G和/或3G信号、 经变频后的LTE系统的多路频率不同的信号、及本振信号一起合成一路上行多频信号。所以,本实施例中,近端机51的近端合路/分路装置512应该还能包括2G和/或3G信号的频率;相应的,远端机52的远端合路/分路装置522与近端机51的近端合路/分路装置511功能类似,也应该还能包括2G和/或3G信号的频率。
所以,只要对上述实施例中提供的任一种室内分布系统的近端合路/分路装置及远端合路/分路装置作相应的调整,都能实现兼容2G和/或3G信号的功能,相应的,对上述实施例中提供的任一种近端机及远端机作相应的调整,都能适用于本发明实施例提供的兼容2G和/或3G信号的室内分布系统,在此不再重复叙述。
需要说明的是,本发明实施例中,对如图8-图11任一种所示的近端机作相应的调整,即将它的近端合路/分路装置替换为在包含原有LTE系统各路信号频率的基础上还包括2G和/或3G信号频率的近端合路/分路装置,并将调整后的近端机利用到兼容2G和/或3G信号的室内分布系统中。
由于调整后的近端机中包含第一信号放大装置及第三信号放大装置,对于下行线路,每路LTE系统的信号及本振信号都会被放大到一定的功率强度,因而当该信号与2G和/或3G信号一同传输到远端机时,能够使每路LTE系统的信号强度大于或者等于2G和/或3G信号的强度,从而保证LTE系统的信号覆盖面积大于或等于2G和/或3G信号的覆盖面积,因而,可以使LTE系统的信号及2G和/或3G信号可以在相同的范围内同时使用,尤其对于已经部署室内分布系统的建筑物进行改造并利用已有的室内分布系统时,能够保证每个用户都能同时使用LTE系统的信号及2G和/或3G信号。同样的道理,调整后的近端机中包含第二信号放大装置,对于上行信号,每路LTE系统的信号都会被放大到一定的功率强度,从而保证LTE系统的信号等于或大于2G和/或3G信号强度,以保证二者可以在相同的范围内同时使用。
可选的,本实施例提供的远端机还可以包括合路装置,如合路器,设置在滤波装置、远端合路/分路装置以及天线之间,以使LTE系统的其中一路信号 与2G及3G信号通过合路装置共用一个天线。尤其是当N=2时,LTE系统的其中一路信号通过一个天线发送/接收信号,另一路信号与2G及3G信号通过合路装置共用一个天线发送/接收信号,则这两个天线可以是双极化天线,更加提高了信号收发强度,节省了远端机的空间。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种室内分布系统,包括近端机和远端机,所述近端机放置在靠近信源的一端,所述远端机分布在室内各个覆盖点,所述近端机和所述远端机之间通过单根馈缆连接,其特征在于,所述近端机包括近端混频部,所述远端机包括远端混频部,所述远端混频部为无源器件;
    对于下行线路:所述近端机从所述信源接收N路同频信号,通过所述近端混频部将所述N路同频信号变换成N路频率不同的信号,通过近端合路/分路装置将所述N路频率不同的信号与所述近端混频部的本振信号合成一路下行多频信号,经所述馈缆向所述远端机发送;所述远端机通过远端合路/分路装置将所述下行多频信号分离为所述N路频率不同的信号和所述近端混频部的本振信号,通过所述远端混频部将所述N路频率不同的信号与所述近端混频部的本振信号还原成所述N路同频信号;
    对于上行线路:所述远端机通过天线接收来自用户终端的N路同频信号,通过所述远端混频部将所述N路同频信号变换成N路频率不同的信号,通过远端合路/分路装置将所述N路频率不同的信号合成一路上行多频信号,经所述馈缆向所述近端机发送;所述近端机通过所述近端合路/分路装置将所述上行多频信号分离为所述N路频率不同的信号,通过所述近端混频部将所述N路频率不同的信号还原成所述N路同频信号;其中,N为大于或等于2的任意自然数。
  2. 根据权利要求1所述的室内分布系统,其特征在于,
    所述近端混频部包括N-1个混频器,具体用于:
    对于下行线路:保持所述N路同频信号中的其中一路同频信号的频率不变,将其余N-1路同频信号分别通过所述N-1个混频器变换成N-1路频率不同的信号,所述N-1个混频器分别对应N-1个本振信号;
    对于上行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号分别通过所述N-1个混频器,以将所述N-1路频率不同的信号还原成N-1路同频信号,其中,所述频率不变的一路信号的 频率等于所述同频信号的频率;
    所述远端混频部包括N-1个无源混频器,具体用于:
    对于下行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号和各自对应的所述近端混频部的本振信号分别通过所述N-1个无源混频器混频,以分别将所述N-1路频率不同的信号还原为N-1路同频信号;
    对于上行线路:保持所述天线接收的N路同频信号中的其中一路的频率不变,将其余N-1路同频信号分别通过所述N-1个无源混频器变换成N-1路频率不同的信号,其中,所述频率不变的一路信号的频率等于所述同频信号的频率。
  3. 根据权利要求1所述的室内分布系统,其特征在于,
    所述近端混频部包括N个混频器,具体用于:
    对于下行线路:将所述N路同频信号分别通过所述N个混频器变换成N路频率不同的信号,所述N个混频器分别对应N个本振信号;
    对于下行信号:将所述N路频率不同的信号分别通过所述N个混频器还原成所述N路同频信号;
    所述远端混频部包括N个无源混频器,具体用于:
    对于下行线路:将所述N路频率不同的信号和对应的所述近端混频部的本振信号分别通过所述N个无源混频器混频,以分别将所述N路频率不同的信号还原为所述N路同频信号;
    对于上行线路:将所述天线接收的所述N路同频信号分别通过所述N个无源混频器变换成所述N路频率不同的信号。
  4. 根据权利要求1-3任一项所述的室内分布系统,其特征在于,所述近端机还包括上下行信号隔离装置,所述上下行信号隔离装置设置在所述近端混频部与所述近端合路/分路装置之间,用于将每路通道上的上行信号与下行信号隔离。
  5. 根据权利要求4所述的室内分布系统,其特征在于,所述上下行信号隔离装置包括频分信号隔离装置或时分信号隔离装置。
  6. 根据权利要求5所述的室内分布系统,其特征在于,所述频分信号隔离装置包括双工器,所述时分信号隔离装置包括环行器或开关。
  7. 一种近端机,用于权利要求1-6中任一项所述的室内分布系统,其特征在于,所述近端机包括近端混频部,近端合路/分路装置;
    所述近端混频部用于:
    对于下行线路:将从信源接收的N路同频信号变换成N路频率不同的信号;
    对于上行线路:将来自所述近端合路/分路装置的N路频率不同的信号还原成N路同频信号;
    所述近端合路/分路装置用于:
    对于下行线路:将来自所述近端混频部的所述N路频率不同的信号和所述近端混频部的本振信号合成一路下行多频信号,以经馈缆向远端机发送;
    对于上行线路:将来自馈缆的一路上行多频信号分离为N路频率不同的信号;
    其中,N为大于或等于2的任意自然数。
  8. 根据权利要求7所述的近端机,其特征在于,
    所述近端混频部包括N-1个混频器,具体用于:
    对于下行线路:保持所述N路同频信号中的其中一路同频信号的频率不变,将其余N-1路同频信号分别通过所述N-1个混频器变换成N-1路频率不同的信号,所述N-1个混频器分别对应N-1个本振信号;
    对于上行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号分别通过所述N-1个混频器,以将所述N-1路频率不同的信号还原成N-1路同频信号,其中,所述频率不变的一路信号的频率等于所述同频信号的频率。
  9. 根据权利要求7所述的近端机,其特征在于,
    所述近端混频部包括N个混频器,具体用于:
    对于下行线路:将所述N路同频信号分别通过所述N个混频器变换成N 路频率不同的信号,所述N个混频器分别对应N个本振信号;
    对于下行线路:将所述N路频率不同的信号分别通过所述N个混频器还原成所述N路同频信号。
  10. 根据权利要求9所述的近端机,其特征在于,所述近端机还包括N个第一上下行信号隔离装置,所述第一上下行信号隔离装置分别与所述近端混频部和所述近端合路/分路装置相连,用于将每路通道上的上行信号与下行信号隔离。
  11. 根据权利要求10所述的近端机,其特征在于,所述第一上下行信号隔离装置包括第一频分信号隔离装置或第一时分信号隔离装置。
  12. 根据权利要求11所述的近端机,其特征在于,所述第一频分信号隔离装置包括双工器,所述第一时分信号隔离装置包括环形器或开关。
  13. 根据权利要求10所述的近端机,其特征在于,所述近端机还包括N个第一信号放大装置、N个第二信号放大装置和N个第三信号放大装置,
    所述N个第一上下行信号隔离装置的下行信号输出端口分别通过所述N个第一信号放大装置与所述近端合路/分路装置相连,用于将N路所述下行信号分别放大;
    所述近端合路/分路装置分别通过所述N个第二信号放大装置与所述N个第一上下行信号隔离装置的上行信号输入端口相连,用于将N路所述上行信号分别放大;
    所述近端混频部的本振信号输出端分别通过所述N个第三信号放大装置与所述近端合路/分路装置相连,用于将所述N个本振信号分别放大。
  14. 根据权利要求13所述的近端机,其特征在于,所述近端机还包括N个第二上下行信号隔离装置,
    所述N个第一信号放大装置下行信号输出端口及N个第二信号放大装置上行信号输入端口分别N个通过第二上下行信号隔离装置与所述近端合路/分路装置相连;
    所述第二上下行信号隔离装置用于同时传输所述上行信号和经所述第一 信号放大装置放大后的所述下行信号。
  15. 一种远端机,用于权利要求1-6中任一项所述的室内分布系统,其特征在于,所述远端机由无源器件组成,包括远端合路/分路装置、远端混频部;
    所述远端合路/分路装置用于:
    对于下行线路:将来自馈缆的一路下行多频信号分离为N路频率不同的信号和近端混频部的本振信号;
    对于上行线路:将来自所述远端混频部的N路频率不同的信号合成一路上行多频信号,以经所述馈缆向近端机发送;
    所述远端混频部用于:
    对于下行线路:将所述N路频率不同的信号和所述近端混频部的本振信号还原成N路同频信号;
    对于上行线路:将天线接收的N路同频信号变换成N路频率不同的信号;
    其中,N为大于或等于2的任意自然数。
  16. 根据权利要求15所述的远端机,其特征在于,
    所述远端混频部包括N-1个无源混频器,具体用于:
    对于下行线路:保持所述N路频率不同的信号中的其中一路信号的频率不变,将其余N-1路频率不同的信号和各自对应的所述近端混频部的本振信号分别通过所述N-1个无源混频器混频,以分别将所述N-1路频率不同的信号还原为N-1路同频信号,其中,所述频率不变的一路信号的频率等于所述同频信号的频率;
    对于上行信号:保持所述天线接收的N路同频信号中的其中一路的频率不变,将其余N-1路同频信号分别通过所述N-1个无源混频器变换成N-1路频率不同的信号。
  17. 根据权利要求15所述的远端机,其特征在于,
    所述远端混频部包括N个无源混频器,具体用于:
    对于下行线路:将所述N路频率不同的信号和对应的所述近端混频部的本振信号分别通过所述N个无源混频器混频,以分别将所述N路频率不同的信 号还原为所述N路同频信号;
    对于上行线路:将所述天线接收的所述N路同频信号分别通过所述N个无源混频器变换成所述N路频率不同的信号。
  18. 根据权利要求17所述的远端机,其特征在于,
    所述远端机还包括N个滤波装置,所述滤波装置分别与所述无源混频器和所述天线相连,用于将所述同频信号从混频后的信号中过滤出来。
  19. 一种室内分布系统,包括近端机和远端机,所述近端机放置在靠近信源的一端,所述远端机分布在室内各个覆盖点,所述近端机和所述远端机之间通过单根馈缆连接,其特征在于,所述近端机包括近端混频部,所述远端机包括远端混频部,所述远端混频部为无源器件;
    对于下行线路:所述近端机从所述信源接收LTE系统的N路同频信号以及2G和/或3G系统的信号,通过所述近端混频部将所述N路同频信号变换成N路频率不同的信号,通过近端合路/分路装置,将所述N路频率不同的信号与所述近端混频部的本振信号、以及所述2G和/或3G系统的信号合成一路下行多频信号,经所述馈缆向所述远端机发送;所述远端机通过远端合路/分路装置将所述下行多频信号分离为所述N路频率不同的信号和所述近端混频部的本振信号、以及所述2G和/或3G系统的信号,通过所述远端混频部将所述N路频率不同的信号与所述近端混频部的本振信号还原成所述N路同频信号;
    对于上行线路:所述远端机通过天线接收来自用户终端的LTE系统的N路同频信号以及2G和/或3G系统的信号,所述远端混频部将所述N路同频信号变换成N路频率不同的信号,通过远端合路/分路装置将所述N路频率不同的信号以及2G和/或3G系统的信号合成一路上行多频信号,经所述馈缆向所述近端机发送;所述近端机通过所述近端合路/分路装置将所述上行多频信号分离为所述N路频率不同的信号以及2G和/或3G系统的信号,通过所述近端混频部将所述N路频率不同的信号还原成所述N路同频信号;其中,N为大于或等于2的任意自然数。
PCT/CN2014/091025 2013-11-13 2014-11-13 一种室内分布系统、近端机和远端机 WO2015070782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310571388.6A CN104640121A (zh) 2013-11-13 2013-11-13 一种室内分布系统、近端机和远端机
CN201310571388.6 2013-11-13

Publications (1)

Publication Number Publication Date
WO2015070782A1 true WO2015070782A1 (zh) 2015-05-21

Family

ID=53056783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091025 WO2015070782A1 (zh) 2013-11-13 2014-11-13 一种室内分布系统、近端机和远端机

Country Status (2)

Country Link
CN (1) CN104640121A (zh)
WO (1) WO2015070782A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547353B2 (en) 2015-06-29 2020-01-28 Huawei Technologies Co., Ltd. Distributed antenna system and signal transmission method
CN111464280A (zh) * 2019-01-22 2020-07-28 上海原动力通信科技有限公司 一种多路信号处理系统、方法及装置
CN111770506A (zh) * 2020-07-08 2020-10-13 展讯通信(上海)有限公司 近端及远端控制合路单元、近端及远端子系统和室分系统
CN114374413A (zh) * 2021-12-30 2022-04-19 陕西天基通信科技有限责任公司 一种实现5g微型室内分布系统检测通道功率的节能方法
CN114553271A (zh) * 2020-11-25 2022-05-27 中国电信股份有限公司 单缆mimo分布系统和单缆mimo信号处理方法
CN115276679A (zh) * 2022-06-21 2022-11-01 中国电信股份有限公司 移频系统、移频方法
WO2022227654A1 (zh) * 2021-04-29 2022-11-03 展讯通信(上海)有限公司 近端合路单元、远端合路单元及室内分布系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105721036B (zh) * 2016-02-03 2019-04-16 北京邮电大学 一种mimo变频系统
CN108233971B (zh) * 2016-12-14 2020-07-24 中国电信股份有限公司 全双工分布系统和全双工信号传输方法
CN107360142B (zh) * 2017-06-26 2019-10-08 京信通信系统(中国)有限公司 基于cpri架构的多制式混合组网传输系统及传输方法
CN109547105B (zh) * 2017-09-22 2021-11-02 罗森伯格(上海)通信技术有限公司 一种实现mimo传输的通信设备
CN111313939B (zh) * 2020-02-24 2021-03-16 中国电信股份有限公司 多通道室内分布系统及其mimo信号传输方法
CN111238487B (zh) * 2020-03-16 2023-01-17 陕西天基通信科技有限责任公司 一种室内定位系统及方法
CN112512055B (zh) * 2020-11-24 2023-07-07 中国移动通信集团黑龙江有限公司 一种室内分布单路覆盖系统
CN116647853B (zh) * 2023-07-26 2023-09-22 赛尔通信服务技术股份有限公司 增强5g信号功率的das末端无源装置
CN116760438B (zh) * 2023-08-07 2023-10-20 赛尔通信服务技术股份有限公司 5g多通道同频mimo信号并串行转换以及增强装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316475A (zh) * 2011-09-30 2012-01-11 武汉虹信通信技术有限责任公司 一种单馈线实现移动通信mimo室内覆盖的系统
CN202121782U (zh) * 2011-07-20 2012-01-18 中国联合网络通信集团有限公司 近端节点、远端节点及室内分布系统
CN102547771A (zh) * 2010-12-13 2012-07-04 中国移动通信集团北京有限公司 一种多通道室内分布系统及其信号传输方法
CN102932029A (zh) * 2012-09-20 2013-02-13 中国联合网络通信集团有限公司 Lte室内分布系统及其双路变频设备和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547771A (zh) * 2010-12-13 2012-07-04 中国移动通信集团北京有限公司 一种多通道室内分布系统及其信号传输方法
CN202121782U (zh) * 2011-07-20 2012-01-18 中国联合网络通信集团有限公司 近端节点、远端节点及室内分布系统
CN102316475A (zh) * 2011-09-30 2012-01-11 武汉虹信通信技术有限责任公司 一种单馈线实现移动通信mimo室内覆盖的系统
CN102932029A (zh) * 2012-09-20 2013-02-13 中国联合网络通信集团有限公司 Lte室内分布系统及其双路变频设备和方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547353B2 (en) 2015-06-29 2020-01-28 Huawei Technologies Co., Ltd. Distributed antenna system and signal transmission method
CN111464280A (zh) * 2019-01-22 2020-07-28 上海原动力通信科技有限公司 一种多路信号处理系统、方法及装置
CN111464280B (zh) * 2019-01-22 2023-10-20 上海原动力通信科技有限公司 一种多路信号处理系统、方法及装置
CN111770506A (zh) * 2020-07-08 2020-10-13 展讯通信(上海)有限公司 近端及远端控制合路单元、近端及远端子系统和室分系统
CN114553271A (zh) * 2020-11-25 2022-05-27 中国电信股份有限公司 单缆mimo分布系统和单缆mimo信号处理方法
CN114553271B (zh) * 2020-11-25 2023-07-28 中国电信股份有限公司 单缆mimo分布系统和单缆mimo信号处理方法
WO2022227654A1 (zh) * 2021-04-29 2022-11-03 展讯通信(上海)有限公司 近端合路单元、远端合路单元及室内分布系统
CN114374413A (zh) * 2021-12-30 2022-04-19 陕西天基通信科技有限责任公司 一种实现5g微型室内分布系统检测通道功率的节能方法
CN115276679A (zh) * 2022-06-21 2022-11-01 中国电信股份有限公司 移频系统、移频方法

Also Published As

Publication number Publication date
CN104640121A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2015070782A1 (zh) 一种室内分布系统、近端机和远端机
US10707924B2 (en) Distributed antenna system for supporting MIMO service
KR102161668B1 (ko) 분산형 안테나 시스템으로부터 소싱된 기지국 네트워크 인터페이스를 위한 마스터 기준
US9026036B2 (en) Method and system for integrating an RF module into a digital network access point
US9853683B2 (en) Radio frequency front end circuitry for uplink carrier aggregation
US11082122B2 (en) Frequency translating bi-directional amplifier
CN103906079B (zh) Catv与多种无线通信制式融合的室内分布系统及其实现方法
CN102163987B (zh) 离散频带信号时分双工射频收发电路
BRPI1105524A2 (pt) Método e aparelho para comunicar dentro de um sistema de microfone sem fio tendo uma pluralidade de canais de áudio
CN110958617B (zh) 信号传送系统及信号传送方法
KR101861803B1 (ko) 빌딩 내의 rf 케이블을 공유하는 5g 인빌딩 중계 시스템 및 5g 인빌딩 중계 방법
KR20130103732A (ko) 무선 네트워크에서 운용되는 다중대역 라디오 장치 및 방법
WO2015117433A1 (zh) 一种射频装置
JP2022013725A (ja) 二重接続電力増幅器システム
WO2014090038A1 (zh) 信号干扰处理方法、装置及中继设备
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
EP2733976A1 (en) System, device, and method for transmitting multi-input-multi-output signals
WO2021129662A1 (zh) Das合路系统
WO2007118356A1 (fr) Système permettant d'effectuer une distribution de signaux à l'aide d'un câble de télévision d'intérieur
KR101525739B1 (ko) 신호 분산 방법 및 신호 분산 장치
JP2006504364A (ja) 無線信号分配装置及び、無線信号分配装置を備える受信システム
EP3091668A1 (en) Receiver arrangement for use in a digital repeater system
KR101060582B1 (ko) 중계기 시스템 및 그 제어방법
WO2021244508A1 (zh) 通信设备及通信系统
WO2010130080A1 (zh) 一种共享射频接收单元的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862278

Country of ref document: EP

Kind code of ref document: A1