WO2015070658A1 - 一种光纤旋转挤压型偏振控制器 - Google Patents

一种光纤旋转挤压型偏振控制器 Download PDF

Info

Publication number
WO2015070658A1
WO2015070658A1 PCT/CN2014/085473 CN2014085473W WO2015070658A1 WO 2015070658 A1 WO2015070658 A1 WO 2015070658A1 CN 2014085473 W CN2014085473 W CN 2014085473W WO 2015070658 A1 WO2015070658 A1 WO 2015070658A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
polarization controller
rotating shaft
type polarization
extrusion
Prior art date
Application number
PCT/CN2014/085473
Other languages
English (en)
French (fr)
Inventor
刘得光
钱亦非
张益华
Original Assignee
江苏昂德光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏昂德光电科技有限公司 filed Critical 江苏昂德光电科技有限公司
Priority to US14/763,846 priority Critical patent/US9513496B2/en
Publication of WO2015070658A1 publication Critical patent/WO2015070658A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2726Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide
    • G02B6/274Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide based on light guide birefringence, e.g. due to coupling between light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3898Tools, e.g. handheld; Tuning wrenches; Jigs used with connectors, e.g. for extracting, removing or inserting in a panel, for engaging or coupling connectors, for assembling or disassembling components within the connector, for applying clips to hold two connectors together or for crimping

Definitions

  • the invention relates to a fiber optic rotary extrusion type polarization controller, belonging to the field of optical fibers.
  • polarization controllers are used to overcome the aforementioned impairments, which are capable of converting any given polarization state to any desired polarization state.
  • the current polarization controllers mainly include: manual or electric adjustable polarization control, three-ring polarization controller, etc., but all have defects such as large volume and poor performance.
  • the existing three-ring polarization controller fiber is completely fixed at both ends, and the fixing method causes the fiber to be twisted at both ends, so the fixing method has great damage to the fiber.
  • existing controllers generally rotate the fiber and then rotate it, which also increases the distortion of the fiber itself. In order to reduce the distortion of the fiber, people can only increase the volume of the polarization controller to increase the fiber and reduce the relative length of the distortion.
  • the present invention provides a fiber optic rotary extrusion type polarization controller that eliminates distortion of the fiber and reduces the size of the polarization controller.
  • the technical solution adopted by the present invention is a fiber optic rotary extrusion type polarization controller, comprising a base, a left bracket and a right bracket mounted on both ends of the base, and a rotation shaft is assembled between the left bracket and the right bracket.
  • the rotating shaft defines a channel for placing the optical fiber through the length direction, and the rotating shaft is further provided with a pressing device corresponding to the channel.
  • the pressing device is composed of an upper cover, an optical fiber pressing block and an adjusting knob, the adjusting knob is installed in the upper cover, the upper cover is fixed on the rotating shaft, and the optical fiber pressing block is controlled by the adjusting knob Press down or away from the channel.
  • It may further comprise a spring located between the adjustment knob and the fiber optic compact, the adjustment knob varying the pressure exerted on the fiber optic compact by varying the deformation of the spring.
  • a steel ball may be further included, the steel ball being located between the adjustment knob and the spring, the adjustment knob controlling the deformation of the spring by the steel ball.
  • the pressing device is a piezoelectric ceramic actuator. Piezoelectric ceramic actuators are controlled by electrical signals and are easier to operate.
  • the left bracket and the right bracket are each provided with a fastening bolt. When the shaft is rotated into position, secure the shaft with the fastening bolts.
  • the rotating shaft is rotated by an ultrasonic motor. Both ends of the rotating shaft are provided with optical fiber jumpers which are interference-fitted with the rotating shaft. The fiber jumper is easy to connect.
  • the base is further provided with a pair of grooves. The left bracket and the right bracket are provided with grooves.
  • the present invention changes the optical fiber fixing mode of the prior art extrusion type bias controller, and eliminates the briquetting at both ends of the optical fiber.
  • the squeezing device is rotated by the rotating shaft to the required angle, and the optical fiber does not rotate under the action of its own tension. Since the fiber extends from both ends of the shaft, it does not follow the rotation of the shaft by its own pulling force. Therefore, the distortion damage of the optical fiber caused by the fixing of the existing ends of the optical fiber and the distortion of the rotation after the optical fiber pressing are completely eliminated. Since there is no distortion damage, the extruded polarization controller does not have to be made large, reducing the volume of the extruded polarization controller.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a rotating shaft according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing Embodiment 1 of the present invention.
  • Embodiment 2 of the present invention is a schematic structural view of Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a fiber jumper and an adapter according to Embodiment 2 of the present invention.
  • Embodiment 1 As shown in FIG. 1, this embodiment includes a base 6 at the bottom, and a central portion of the base 6 is provided with a pair of radial grooves 12 for better fixing the base 6.
  • the left bracket 1 and the right bracket 4 are vertically disposed at both ends of the base 6, and both brackets are provided with through holes for fixing the rotating shaft 5.
  • the rotating shaft 5 has a cylindrical shape at both ends and is installed in the through holes of the left bracket 1 and the right bracket 4.
  • the rotating shaft 5 is provided with a channel 13 penetratingly along its length for the optical fiber to be placed. It can be seen from Fig. 2 and Fig.
  • the squeezing device consists of a fiber optic compact 8, an upper cover 3, a spring 10, a steel ball 9 and an adjustment knob 2.
  • the optical fiber compact 8 is directly in contact with the rotating shaft 5, and the upper cover 3 is fixed to the optical fiber compact 8 through two bolts at the middle thereof, and both ends of the upper cover 3 are directly fixed to the rotating shaft 5 through the other two bolts at both ends.
  • the fiber compact 8 and the rotating shaft 5 together form a closed space of the channel 13 which is open only at both ends, and this closed space is used for placing the optical fiber.
  • the upper cover 3 has a T shape, and a spring 10, a steel ball 9 and an adjustment knob 2 are built in the vertical direction.
  • the adjusting knob 2 is screwed to the end of the upper cover 3 vertically upward, and the lower end of the adjusting knob 2 passes through one of the steel ball 9 and the spring 10 The end is connected, and the other end of the spring 10 abuts against the fiber compact 8.
  • the adjustment knob 2 By rotating the adjustment knob 2, the operator moves up and down by means of the thread in the vertical direction, and the elastic deformation of the spring 10 is changed by the steel ball 9, so that the pressure exerted by the spring 10 on the optical fiber compact 8 also changes. This change in pressure causes the fiber compact 8 to compress the fiber within the channel 13, or to loosen the fiber block 8 to reduce the stress on the fiber.
  • the fiber is placed in channel 13 and can be rotated from 0 to 270 degrees.
  • a groove 14 is also formed in the left bracket 1, the right bracket 4, and the rotating shaft 5, so that the optical fiber is directly inserted into the channel 13 through the groove 14 in the case where the upper cover 3 is opened.
  • the optical fibers are not fixed by the compacts like the existing polarization controllers, but are placed directly in the channels 13, that is, the optical fibers are extended from both ends of the channels 13. Since only a part of one fiber is located in the polarization controller, when the shaft 5 rotates, the fiber does not rotate in the channel 13 under its own tension. In addition to passing through the trench 14, the optical fiber can also be inserted from one end of the channel 13 and passed out from the other end.
  • the clamping position is fixed by the fastening bolts 7.
  • the fastening bolts 7 are mounted on the sides of the left bracket 1 and the right bracket 4, which are screwed into the left and right brackets by internal threads, and are pressed against the ends of the shaft 5 so that they cannot be freely rotated.
  • the adjustment knob 2 can be rotated to extrude the fiber through the fiber compact 8 .
  • the refractive index of the fiber changes in this direction, which in turn causes a change in the polarization state. Since the shaft 5 can be arbitrarily rotated from 0 to 270 degrees with the squeezing device, an arbitrary polarization output can be produced.
  • Embodiment 2 As shown in Fig. 4, the adjustment knob 2 in this embodiment is replaced with a piezoelectric ceramic actuator 15, and the lower end of the piezoelectric ceramic actuator 15 is in direct contact with the optical fiber placed in the channel 13. This eliminates the need for manual adjustments and uses an external control circuit to squeeze the fiber.
  • the first ultrasonic motor 11A and the second ultrasonic motor 11B are also disposed at both ends of the rotating shaft 5, and the rotation of the rotating shaft 5 is controlled by an electric signal.
  • the optical fiber is mounted from one end of the channel 13 and passed out from the other end.
  • a fiber jumper 16 is added to both ends of the shaft 5 for convenience of wiring. Since the ultrasonic motor and the optical fiber jumper 16 are added to both ends of the rotating shaft 5, the optical fiber can no longer be mounted radially from the rotating shaft 5, so the groove 14 is eliminated.
  • one end of the fiber jumper 16 is inserted into one end of the rotating shaft 5 with an interference fit, and the other end is also inserted into the external adapter 17 with an interference fit.
  • the optical fiber jumper 16 of this embodiment cancels the inner spring on the basis of the existing optical fiber jumper. This not only reduces the lengthy redundant connection fastening structure, shortens the length of the jumper, but also helps prevent the fiber from breaking or deforming due to the spring force of the spring when it is stretched or twisted.
  • the other parts of this embodiment are the same as those of the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种光纤旋转挤压型偏振控制器,包括基座(6)、安装于基座(6)两端的左支架(1)和右支架(4),所述左支架(1)和右支架(4)之间转动装配有转轴(5),该转轴(5)沿长度方向贯穿地开设一条用于放置光纤的槽道(13),所述转轴(5)上还安装有对应于槽道(13)的挤压装置。该装置改变了现有挤压型偏置控制器的光纤固定方式,取消了光纤两端的压块。由转轴带动挤压装置旋转到所需要的角度,而光纤在自身张力的作用下并不转动。从而彻底消除了现有的光纤两端固定所造成的光纤的扭曲损伤以及光纤挤压后旋转的扭曲,减小了挤压型偏振控制器的体积。

Description

一种光纤旋转挤压型偏振控制器 技术领域
本发明涉及一种光纤旋转挤压型偏振控制器, 属于光纤领域。
背景技术
光线通信在传输速率不断提高的情况下, 对传输的过程中所产生的偏振模 色散等一系列由偏振引起的损害也越来越敏感。这些损害主要是由光纤本身的缺 陷造成的, 在理想化的光纤中, 传输光的偏振态不会发生变化, 这些由偏振效应 引起的损害也很容易消除。而在实际使用的标准通信光纤中,传输光的偏振态是 沿光纤不断变化的,产生这种变化的原因是光纤中由热应力、机械应力以及纤芯 的不规则性等因素引起的不规则双折射。
因此人们使用偏振控制器来克服上述损害, 它能够将任意给定的偏振态转变 为任何希望得到的偏振态。目前的偏振控制器主要有:手动或电动可调偏振控制, 三环偏振控制器等,但均存在体积较大及性能不良等的缺陷。如现有的三环偏振 控制器光纤在两端完全固定, 由于固定时会使光纤两端扭曲, 因此这种固定方式 对光纤损伤大。另外现有控制器一般都是挤压光纤后再旋转, 也增加了光纤自身 的扭曲。现在人们为了减小光纤的扭曲损伤, 只能增大偏振控制器体积以增长光 纤, 减小扭曲的相对长度。
发明内容
发明目的: 本发明提出一种光纤旋转挤压型偏振控制器, 消除光纤的扭曲损 伤, 缩小了偏振控制器尺寸。
技术方案: 本发明采用的技术方案为一种光纤旋转挤压型偏振控制器,包括 基座、安装于基座两端的左支架和右支架,所述左支架和右支架之间转动装配有 转轴, 该转轴沿长度方向贯穿地开设一条用于放置光纤的槽道,所述转轴上还安 装有对应于槽道的挤压装置。
作为本发明的一种改进, 所述挤压装置由上盖、 光纤压块和调节旋钮组成, 调节旋钮安装在上盖内, 上盖固定在转轴上,所述光纤压块在调节旋钮的控制下 压紧或远离槽道。还可以进一步包括弹簧,该弹簧位于调节旋钮和光纤压块之间, 所述调节旋钮通过改变弹簧的形变来改变施加在光纤压块上的压力。为了改善弹 簧与调节旋钮之间的连接稳定性,还可以更进一步还包括钢珠, 该钢珠位于调节 旋钮和弹簧之间, 所述调节旋钮通过钢珠来控制弹簧的形变。
作为本发明的进一步改进,所述挤压装置为压电陶瓷致动器。压电陶瓷致动 器受电信号控制, 更加易于操作。 作为本发明的进一步改进,所述左支架和右支架上均设有紧固螺栓。当转轴 旋转到位时, 利用紧固螺栓将转轴固定住。
作为本发明的更进一步改进,所述转轴由超声波电机带动旋转。所述转轴两 端均设有与转轴过盈配合的光纤跳线。光纤跳线便于连接方便。所述基座上还设 有一对凹槽。 所述左支架和右支架上设有沟槽。
有益效果: 本发明改变了现有挤压型偏置控制器的光纤固定方式,取消了光 纤两端的压块。 由转轴带动挤压装置旋转到所需要的角度, 而光纤在自身张力的 作用下并不转动。光纤由于是从转轴两端延伸出去, 依靠其自身的拉力并不跟随 转轴旋转。从而彻底消除了现有的光纤两端固定所造成的光纤的扭曲损伤以及光 纤挤压后旋转的扭曲。 由于没有了扭曲损伤,挤压型偏振控制器也就不必做的很 大, 减小了挤压型偏振控制器的体积。
附图说明
图 1为本发明实施例 1的结构示意图;
图 2为本发明实施例 1中转轴的结构示意图;
图 3为本发明实施例 1的剖面图;
图 4为本发明实施例 2的结构示意图;
图 5为本发明实施例 2中光纤跳线和适配器的结构示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于 说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员 对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围。
实施例 1 : 如图 1所示, 本实施例包括位于底部的基座 6, 基座 6的中部设 有径向的一对凹槽 12,用以更好的固定基座 6。在基座 6的两端垂直地设置左支 架 1和右支架 4, 两个支架均设有通孔用来固定转轴 5。 如图 2所示, 转轴 5两 端呈圆柱状并安装在左支架 1和右支架 4的通孔内。转轴 5沿其长度方向贯通地 设置了一条槽道 13, 供放置光纤。 从图 2和图 3可以看出在转轴 5的中间部分 仅保留下半部分, 与之对应的上半部分用来安装挤压装置。挤压装置由光纤压块 8、 上盖 3、 弹簧 10、 钢珠 9和调节旋钮 2组成。 光纤压块 8直接与转轴 5接触, 上盖 3通过其中部的两个螺栓固定在光纤压块 8上,上盖 3的两端通过两端的另 外两个螺栓直接固定在转轴 5上。 这样光纤压块 8与转轴 5共同将槽道 13围合 成只有两端开口的闭合空间, 这个闭合空间用来放置光纤。 从图 3 看, 上盖 3 呈 T形, 其竖直方向上内置了弹簧 10、钢珠 9和调节旋钮 2。调节旋钮 2通过螺 纹连接在上盖 3竖直朝上的端部, 调节旋钮 2的下端通过钢珠 9与弹簧 10的一 端连接, 弹簧 10的另一端抵住光纤压块 8。操作人员通过旋转调节旋钮 2, 使其 依靠螺纹沿着竖直方向上下移动, 进而通过钢珠 9改变弹簧 10的弹性形变, 这 样弹簧 10施加在光纤压块 8上的压力也会随之变化。 这种压力的变化会使光纤 压块 8压紧槽道 13内的光纤, 或者松开光纤压块 8以减小光纤受到的压力。 前 面说到上盖 3中部有两个螺栓将上盖 3固定在光纤压块 8上,这里需要说明的是, 弹簧 10会使光纤压块 8上下移动压紧或松开光纤, 但这种上下移动量很微小完 全在上盖 3中部两个螺栓的允许幅度内。
光纤放置在槽道 13内, 可以做 0到 270度旋转。 左支架 1、 右支架 4和转轴 5上还开设了沟槽 14, 这样在打开上盖 3的情况下, 直接通过沟槽 14将光纤放 入到槽道 13内。本实施例中光纤并没有像现有偏振控制器那样两端用压块固定, 而是直接放置在槽道 13内, 也就是说光纤由槽道 13两端延伸出去。 由于一根光 纤只有一部分位于偏振控制器内,当转轴 5旋转时,光纤在其自身的张力作用下, 在槽道 13内并不转动。 在除了通过沟槽 14外, 光纤也可以从槽道 13的一端插 入, 并从另一端穿出。转轴 5带着挤压装置围绕转轴 5长度方向旋转到所需要的 角度后,用紧固螺栓 7固定卡位。紧固螺栓 7安装在左支架 1和右支架 4的侧面, 其通过内螺纹旋入左右支架, 并且压紧转轴 5两端, 使其不能随意转动。待转轴 5固定后, 即可旋转调节旋钮 2通过光纤压块 8挤压光纤。 使得光纤在该方向上 的折射率发生变化, 进而引起偏振态的变化。 因为转轴 5带着挤压装置可以在 0 到 270度内任意转动, 所以能够产生任意偏振输出。 实施例 2: 如图 4所示,本实施例中调节旋钮 2被换成了压电陶瓷致动器 15, 压电陶瓷致动器 15的下端与放置在槽道 13内的光纤直接接触。这样不必再手动 调节, 而是利用外部控制电路, 来实现挤压光纤。在转轴 5两端还设置了第一超 声波电机 11A和第二超声波电机 11B, 实现了由电信号控制转轴 5的旋转。 本实 施例中光纤的安装是从槽道 13的一端插入, 并从另一端穿出。 为了方便接线在 转轴 5的两端均增设了光纤跳线 16。 由于在转轴 5的两端增设了超声波电机和 光纤跳线 16, 所以光纤无法再从转轴 5径向安装, 因此取消了沟槽 14。
如图 5所示,光纤跳线 16的一端过盈配合地插接在转轴 5的一端, 另一端也 同样过盈配合地插接在外部的适配器 17上。本实施例的光纤跳线 16在现有光纤 跳线的基础上, 取消了里面的弹簧。 这样不仅减少了冗长多余的连接紧固结构, 缩短了跳线长度, 而且有助于防止光纤在拉伸或扭曲时, 由于弹簧的弹性力而崩 断或变形。 本实施例的其他部分与实施例 1相同。

Claims

权 利 要 求 书
1、一种光纤旋转挤压型偏振控制器, 包括基座、安装于基座两端的左支架和 右支架, 其特征在于, 所述左支架和右支架之间转动装配有转轴, 该转轴沿长度 方向贯穿地开设一条用于放置光纤的槽道,所述转轴上还安装有对应于槽道的挤 压装置。
2、根据权利要求 1所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述挤 压装置由上盖、光纤压块和调节旋钮组成, 调节旋钮安装在上盖内, 上盖固定在 转轴上, 所述光纤压块在调节旋钮的控制下压紧或远离槽道。
3、根据权利要求 2所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述挤 压装置还包括弹簧, 该弹簧位于调节旋钮和光纤压块之间,所述调节旋钮通过改 变弹簧的形变来改变施加在光纤压块上的压力。
4、根据权利要求 3所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述挤 压装置还包括钢珠, 该钢珠位于调节旋钮和弹簧之间,所述调节旋钮通过钢珠来 控制弹簧的形变。
5、根据权利要求 1所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述挤 压装置为压电陶瓷致动器。
6、根据权利要求 1所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述左 支架和右支架上均设有紧固螺栓。
7、根据权利要求 1所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述转 轴由超声波电机带动旋转。
8、根据权利要求 1所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述转 轴两端均设有与转轴过盈配合的光纤跳线。
9、根据权利要求 1所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述基 座上设有一对凹槽。
10、 根据权利要求 1所述的光纤旋转挤压型偏振控制器, 其特征在于, 所述 左支架和右支架上设有沟槽。
PCT/CN2014/085473 2013-11-13 2014-08-29 一种光纤旋转挤压型偏振控制器 WO2015070658A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/763,846 US9513496B2 (en) 2013-11-13 2014-08-29 Optical fiber rotary squeezer polarization controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320714193.8U CN203658691U (zh) 2013-11-13 2013-11-13 一种光纤旋转挤压型偏振控制器
CN2013207141938 2013-11-13

Publications (1)

Publication Number Publication Date
WO2015070658A1 true WO2015070658A1 (zh) 2015-05-21

Family

ID=50925065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085473 WO2015070658A1 (zh) 2013-11-13 2014-08-29 一种光纤旋转挤压型偏振控制器

Country Status (3)

Country Link
US (1) US9513496B2 (zh)
CN (1) CN203658691U (zh)
WO (1) WO2015070658A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203658691U (zh) * 2013-11-13 2014-06-18 江苏昂德光电科技有限公司 一种光纤旋转挤压型偏振控制器
CN106159660A (zh) * 2015-03-31 2016-11-23 戴少阳 一种用于锁模激光谐振腔的反馈式光纤偏振控制器
CN107065173B (zh) * 2017-05-26 2020-07-28 西安科技大学 一种超小型偏振控制器
GB202012809D0 (en) 2020-07-31 2020-09-30 Corning Inc Polarization controller and method of manufacture
US11609381B2 (en) 2021-07-16 2023-03-21 Canon U.S.A., Inc. Polarization control module employing hollow shaft motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873783B1 (en) * 2000-09-30 2005-03-29 General Photonics Corporation Fiber devices with transverse-pressure-controlled squeezers
CN202339422U (zh) * 2011-11-30 2012-07-18 杭州电子科技大学 手动光纤挤压型偏振控制器
CN202351449U (zh) * 2011-11-07 2012-07-25 梁联长 新型的挤压式偏振控制器
CN203658691U (zh) * 2013-11-13 2014-06-18 江苏昂德光电科技有限公司 一种光纤旋转挤压型偏振控制器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3401964B2 (ja) * 1994-12-12 2003-04-28 株式会社ニコン 顕微鏡
US6644419B1 (en) * 2002-12-27 2003-11-11 Li Chen Chen Air-input speed regulator for pneumatic tool
US8373852B2 (en) * 2007-11-26 2013-02-12 Exfo Inc. Optical waveguide rotator mechanism, birefringence-inducing element and polarization control devices employing either or both and methods of using same
JP2010197474A (ja) * 2009-02-23 2010-09-09 Topcon Corp 偏光コントローラ、干渉計及び光画像計測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873783B1 (en) * 2000-09-30 2005-03-29 General Photonics Corporation Fiber devices with transverse-pressure-controlled squeezers
CN202351449U (zh) * 2011-11-07 2012-07-25 梁联长 新型的挤压式偏振控制器
CN202339422U (zh) * 2011-11-30 2012-07-18 杭州电子科技大学 手动光纤挤压型偏振控制器
CN203658691U (zh) * 2013-11-13 2014-06-18 江苏昂德光电科技有限公司 一种光纤旋转挤压型偏振控制器

Also Published As

Publication number Publication date
US9513496B2 (en) 2016-12-06
US20160070124A1 (en) 2016-03-10
CN203658691U (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
WO2015070658A1 (zh) 一种光纤旋转挤压型偏振控制器
CN103984074B (zh) 光学元件的夹具和角度调整机构
RU2009124484A (ru) Устройство для зажима и пластин проточного модуля, пластин реактора или пластин теплообменника
CN108775479B (zh) 一种旋转式摄像头机构
CN107999662B (zh) 弯管机中的弯管装置
CN219573785U (zh) 一种电力电缆保护管抗压强度检测装置
WO2021017596A1 (zh) 一种缓冲铰链
CN203858401U (zh) 光学元件的夹具和角度调整机构
CN107843503A (zh) 一种光缆扭转试验装置
CN104614180A (zh) 离合器从动盘扭转耐久试验装置
CN214843956U (zh) 一种用于家用电器的机械强度试验装置
CN103043483B (zh) 一种带料收料卷料机结构
CN218970823U (zh) 一种伸缩护栏装置
CN204479293U (zh) 离合器从动盘扭转耐久试验装置
CN100460105C (zh) 钢丝盒张力抽丝的防变形装置
CN104808294B (zh) 一种大角度旋转光纤装置
CN104578900A (zh) 基于球铰结构的协调驱动型多自由度超声电机及其工作方法
CN208444053U (zh) 一种光纤连接器旋转及压紧联动机构
CN202431874U (zh) 一种拉伸装置
CN107065173B (zh) 一种超小型偏振控制器
CN205799205U (zh) 光纤研磨机
CN203863901U (zh) 压延机调距装置
CN219510217U (zh) 一种多路阀用固定支架
CN203836149U (zh) 可调节位置的移动连接头
CN220245908U (zh) 一种拉边机开闭装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14763846

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862221

Country of ref document: EP

Kind code of ref document: A1