WO2015069518A1 - Polygonal seismic isolation systems - Google Patents

Polygonal seismic isolation systems Download PDF

Info

Publication number
WO2015069518A1
WO2015069518A1 PCT/US2014/062916 US2014062916W WO2015069518A1 WO 2015069518 A1 WO2015069518 A1 WO 2015069518A1 US 2014062916 W US2014062916 W US 2014062916W WO 2015069518 A1 WO2015069518 A1 WO 2015069518A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolation
bearing
component
bearing plate
platform
Prior art date
Application number
PCT/US2014/062916
Other languages
French (fr)
Inventor
Gil A. Moreno
Donald A. HUBBARD
Original Assignee
Worksafe Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Worksafe Technologies filed Critical Worksafe Technologies
Priority to JP2016525994A priority Critical patent/JP2017502182A/en
Priority to CA2930193A priority patent/CA2930193C/en
Publication of WO2015069518A1 publication Critical patent/WO2015069518A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/36Bearings or like supports allowing movement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02447Supporting structures
    • E04F15/02452Details of junctions between the supporting structures and the panels or a panel-supporting framework
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02447Supporting structures
    • E04F15/02494Supporting structures with a plurality of base plates or like, each base plate having a plurality of pedestals upstanding therefrom to receive the floor panels

Definitions

  • the objects or payload articles are made strong enough to withstand the largest anticipated earthquake.
  • this method in addition to the relative unpredictability of damage caused by tremors of high magnitude and long duration and of the directionality of shaking, use of this method alone can be quite expensive and is not necessarily suitable for payloads to be housed within a structure. Particularly for delicate, sensitive or easily damaged payload, this approach alone is not especially useful.
  • the objects are isolated from the vibration such that the objects fail to experience the full force and acceleration of the seismic shock waves.
  • Various methods have been proposed for accomplishing isolation or energy dissipation of a structure or object from seismic tremors, and these methods may depend in some measure on the nature of the object to be isolated.
  • buildings and other structures may be isolated using, for example, passive systems, active systems, or hybrid systems.
  • Such systems may include the use of one or more of a torsional beam device, a lead extrusion device, a flexural beam device, a flexural plate device, and a lead- rubber device; these generally involves the use of
  • Active control systems require an energy source and computerized control actuators to operate braces or dampers located throughout the structure to be protected. Such active systems are complex, and require service or routine maintenance .
  • isolation platforms or flooring systems may be preferable to such active or deformable devices.
  • isolation platforms or flooring systems may be preferable to such active or deformable devices.
  • an isolation system may provide a simpler, effective, and less maintenance- intensive
  • Isolation systems are designed to decouple the objects to be protected (hereinafter the "payload” ) from damage due to the seismic ground motion.
  • Isolators have a variety of designs.
  • such systems have generally comprised a combination of some or all of the following features: a sliding plate, a support frame slidably mounted on the plate with low friction elements interposed therebetween, a plurality of springs and/or axial guides disposed horizontally between the support frame and the plate, a floor mounted on the support frame through vertically disposed springs, a number of dampers disposed vertically between the support frame and the floor, and/or a latch means to secure the vertical springs during normal use.
  • Certain disadvantages to such pre-existing systems include the fact that it is difficult to establish the minimum acceleration at which the latch means is released; it is difficult to reset the latch means after the floor has been released; it may be difficult to restore the floor to its original position after it has moved in the
  • adjustment means for presetting the minimum acceleration required to initiate the isolation effects of the flooring in part by adjusting the length of the springs.
  • U.S. Patent No. 4,917,211 discloses a sliding type seismic isolator comprising a friction device having an upper friction plate and a lower friction plate, the friction plates having a characteristic of Coulomb friction, and horizontally placed springs which reduce a relative displacement and a residual displacement to under a desired value.
  • the upper friction plate comprises a material impregnated with oil, while a lower friction plate comprises a hard chromium or nickel plate.
  • Stahl discloses a seismic isolator for protecting e.g., art objects, instruments, cases or projecting housing comprising a base plate connected to a floor and a frame.
  • a moving pivoted lever is connected to a spring in the frame and to the base plate.
  • the object is placed on top of the frame. Movement of the foundation and base plate relative to the frame and object causes compression of the lever and extension of the spring, which then exerts a restoring force through a cable anchored to the base plate; initial resistance to inertia is caused due to friction between the base plate and the frame .
  • U.S. Pat. No. 4,662,133 describes a floor system for seismic isolation of objects placed thereupon comprising a floor disposed above a foundation, a plurality of support members for supporting the floor in a manner that permits the movement of the floor relative to the foundation in a horizontal direction, and a number of restoring devices comprising springs disposed between the foundation and the floor member.
  • the restoring members comprise two pair of slidable members, each pair of slidable members being movable towards and away from each other wherein each pair of slidable members is disposed at right angles from each other in the horizontal plane.
  • Stiles et al . U.S. Pat. No. 6,324,795 disclose a seismic isolation system between a floor and a foundation comprising a plurality of ball and socket joints disposed between a floor and a plurality of foundation pads or piers.
  • the bearing comprises a movable joint attached to a hardened elastomeric material (or a spring) ; the elastic material is attached on an upper surface of the ball and socket joint and thus sandwiched between the floor and the ball and socket joint; the bearing thus tilts in relation to the floor in response to vertical movement.
  • the floor is therefore able to adjust to buckling pressure due to distortion of the ground beneath the foundation piers.
  • the device disclosed is not designed to move horizontally in an acceleration-resisting manner .
  • Fujimoto, U.S. Pat. No. 5,816,559 discloses a seismic isolation device quite similar to that of Kondo, as well as various other devices including one in which a rolling ball is disposed within the tip of a strut projecting downward from the floor in a manner similar to that of a ball point pen.
  • Bakker, U.S. Pat. No. 2,014,643 is drawn to a balance block for buildings comprising opposed inner concave surfaces with a bearing ball positioned between the surfaces to support the weight of a building
  • U.S. Patents No. 8,156,696 and 8,511,004 discloses apparatus and methods involving raised access flooring structure for isolation of a payload placed thereupon . Moreno and Hubbard, U.S. Patent No. 8,342,752 disclose isolation bearing restraint devices.
  • U.S. Patent No. 5,791,096 discloses a raised floor system.
  • Denton, U.S. Patent No. 3,606,704 discloses an elevated floor structure suitable for missile launching installations with vertically compressible spring units to accommodate vertical displacements of the subfloor.
  • U.S. Patent No. 4,922,670 is drawn to a raised double flooring structure which is resistant to deformation under load.
  • the floor employs columnar leg members that contain a pivot mounting near the floor surface, which permits to floor to disperse a load in response to a side load .
  • the present invention is directed in part to an improved seismic isolation system.
  • the system may comprise isolation flooring and/or seismic isolation platforms.
  • preferred examples of the invention may involve, or may be used in conjunction with, a "low rise" platform or flooring system such as that disclosed in International Patent Application No.
  • Isolation bearings and systems such as, without limitation, those disclosed in e.g., U.S. Patents No.
  • isolation bearings comprising at least one (and usually two) horizontally extending bearing plate (s) with a first generally concave surface and a second surface.
  • a cross- sectional profile through a midline vertical axis of such a bearing plate shows that the generally concave surface comprises a shape, generally symmetrical around a central vertical axis, comprising a substantially conical shape, a substantially spherical shape, or a shape, comprising a linked combination of linear and radial shapes.
  • At least one bearing plate supports, or is supported by a rolling ball, such as a ball bearing.
  • a rolling ball is between opposing upward- facing and downward- facing isolation bearing plates in such a manner that when a seismic event occurs, horizontal ground movement of the floor or foundation is isolated from the payload supported by the isolation bearings.
  • Horizontal ground movement of the lower bearing plate is attenuated by the inertia of the payload mass on the upper bearing plate so that the rolling ball, located at rest in the center of the bearing plates, is free to move out of the center of the lower plate as the plate moves under it in any direction (relative to the lower plate) opposite to the direction of lower plate movement .
  • a major advantage to such a bearing is that, since it is substantially equally free to move the same distance in any horizontal direction (i.e., along the x and y axes) given a constant force, the bearing does not require additional means to translate and isolate non-linear forces, or forces having both x and y components, as is necessary with isolation equipment using rollers, springs, skids or the like as the primary means of isolating the payload. Additionally, because of the use of a generally concave, generally symmetrical bearing surface, the bearing is "self-initializing" , with the rolling ball returning to the center of the bearing plate following a seismic tremor, thus restoring the bearing to its initial resting position.
  • the present invention is directed to methods and apparatus which involve improved seismic isolation bearings and systems utilizing such seismic isolation bearings, as well as methods of making and using such bearings and systems.
  • the present invention involves seismic isolation systems utilizing one or more "rolling ball" isolation bearing comprising a bearing plate having a polygonal shape. That is, the isolation bearing comprises at least one payload-supporting "pan” or bearing plate having a polygonal shape in a plan view comprising a load-bearing surface having a cross-sectional profile comprising a generally conical shape, a generally spherical shape, or a shape, generally symmetrical around a central vertical axis, comprising a linked combination of linear and radial shapes.
  • the pan or bearing plate extends horizontally, generally radiating symmetrically about a central point, for example a central apex (or inverted apex) .
  • the pan or bearing plate is polygonal in shape when seen in plan view; for example, the plan view of the pan (and/or its frame) may comprise a triangle, a square, a pentagon, a hexagon, a heptagon, an octagon or another polygonal shape.
  • the bearing plate may be substantially circular in plan view and surrounded by a polygonal frame.
  • the polygonal shape is other than a square; preferably the polygonal shape is other than a triangle.
  • each seismic isolation bearing comprised in a seismic flooring or platform system may comprise at least two opposing bearing plates, separated by a rigid ball, such as a metallic ball bearing.
  • the rigid balls of two or more such bearings support the payload upon a frame, flooring element, or platform.
  • a seismic isolation bearing comprised in a seismic flooring or platform system comprises two bearing plates, separated by a rigid ball, such as a metallic ball bearing; in such arrangements an upper bearing plate may be joined to a frame, flooring element, or platform, while a lower bearing plate may be placed upon or affixed to a floor, foundation, or other similar support surface.
  • a lower bearing plate may be oriented "upward” , so that when the system is at rest the rigid ball is nested at a central point on the bearing surface of the lower bearing plate.
  • An upper bearing plate may be oriented "downward” , so that when the system is at rest the rigid ball rests within a central point on the bearing surface of the upper bearing plate.
  • At least a lower bearing plate comprises a polygonal outline shape in a plan view.
  • a polygonal shape particularly preferably (but not necessarily) an octagonal shape, can add to the stability of the seismic isolation system in at least two ways.
  • polygonal seismic isolation bearings may be assembled so that straight sides of the upper and/or lower polygonal bearing plates of at least two adjoining upper or lower isolation bearings may be joined or linked together, thereby reinforcing the stability of these bearings during a seismic event.
  • a single upper or lower polygonal bearing plate may be joined to more than one adjoining bearing plate and/or to a flooring, frame, or platform element.
  • the frame, platform and/or flooring elements and the bearings may thus be linked together into a single
  • the polygonal shape facilitates linking the bearing plates to the frame, platform and/or flooring elements.
  • a circular isolation bearing plate has only one point (the point of tangency) at which it makes contact with a straight -edged surface.
  • the joint between framing, platform, and/or flooring element and the bearing plate is made much more strong and firm when a straight edged segment of the perimeter of the bearing plate (or the bearing plate frame) is joined to a straight segment of such element .
  • seismic isolation systems comprising polygonal isolation bearings substantially easier than systems employing circular isolation bearings. Due to the straight edges of the isolation bearing plates of the present invention, seismic isolation systems can be designed to fit together more strongly and precisely than those having circular bearing plates. Furthermore, when an isolation system employs an array of three or more, or four or more, or five or more, or six or more, isolation bearings having the same or
  • the polygonal bearing plates of the present invention may either be manufactured as circular bearing plates with a polygonal "frame" joined thereto by, for example, welds, appropriate fasteners (such as screws, bolts and the like) .
  • the polygonal bearing plates may be manufactured as a polygon, again, preferably surrounded by a polygonal frame.
  • polygonal frames, bearing plates and the like may have rounded or “radiused” corners without departing from the scope of the invention.
  • polygonal or polygon shall be interpreted to mean “generally polygonal”; that is, comprising at least two (and preferably at least three) straight sides wherein the sum of all curves and angles totals 360°.
  • connector components can be fabricated easily of, for example, metal tubing, flat plates, or angle iron with standardized placement of connection fittings such as (without limitation) screw or bolt holes, or brackets, for being joined to the polygonal bearing plate (s) and/or framing, flooring or platform elements.
  • connection fittings such as (without limitation) screw or bolt holes, or brackets, for being joined to the polygonal bearing plate (s) and/or framing, flooring or platform elements.
  • each of opposing sets of polygonal top and bottom bearing plates are linked by, and joined to, connector components to form top and bottom flooring or platform assemblies.
  • two or more adjacent polygonal top and/or bottom bearing plates may be joined to each other to form a strong and rigid isolation assembly.
  • the top and/or bottom isolation assembly may be constructed without the use of separate connector components.
  • the polygonal shape of the seismic bearing plates facilitates directly joining one bearing plate to at least one
  • One or more of the bottom bearing plates may also be directly or indirectly joined to a foundation or floor.
  • one or more bearing plate may be fastened directly to the foundation using, for example, concrete anchored fasteners or an adhesive for fastening plastics or metals to concrete, such as the 3M Scotch-Weld ® brands of urethane, acrylic and epoxy adhesives.
  • One or more of the top bearing plates are preferably directly or indirectly fastened to a platform or flooring element.
  • a top bearing plate may be fastened directly to one or more flooring support "tile" or region using bolts, screws or other similar fasteners, or may be joined to a frame for supporting the payload, bearing plate, or tiles.
  • the present invention is drawn to a polygonal seismic isolation bearing plate comprising: a) a recessed hardened load-bearing surface
  • the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
  • the load-bearing surface component may be welded or otherwise securely joined to a
  • the frame component is preferably polygonal in shape, and is structured to be joined to other bearing plate assemblies, or to other components of the isolation flooring or platform assembly.
  • the polygonal shape is not a square, or not a rectangle .
  • the invention is drawn to a polygonal seismic isolation bearing assembly comprising: a) a hardened ball disposed between b) a top isolation bearing plate, and c) a bottom isolation bearing plate; wherein each said top and bottom isolation bearing plates comprise : i) a recessed hardened load-bearing surface
  • the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
  • the frame element of one or both of the top bearing plate or the bottom bearing plate is welded or otherwise joined to its respective load-bearing surface component.
  • the frame component is preferably polygonal in shape, and is structured to be joined to other bearing plate assemblies, or to other components of the isolation flooring or platform assembly.
  • the polygonal shape is not a square, or not a rectangle.
  • top and bottom isolation bearing plates may be directly or indirectly joined to one or more other isolation bearing plate in substantially the same plane.
  • An example of indirect joining is by each bearing plate in substantially the same plane being joined to the same connector component.
  • each bearing plate in substantially the same plane being joined to a common flooring or platform component.
  • the present invention is directed to a seismic isolation floor or platform assembly
  • each such bearing assembly comprising: a) a hardened ball disposed between b) a top isolation bearing plate, and c) a bottom isolation bearing plate; wherein each said top and bottom isolation bearing plates comprise : i) a recessed hardened load-bearing surface
  • the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
  • At least two of said plurality of polygonal isolation bearing assemblies may be joined in a manner selected from the group consisting of: i) said top isolation bearing plates are directly or indirectly joined together, or ii) said bottom isolation bearing plates are directly or indirectly joined together, or iii) both said top isolation bearing plates are directly or indirectly joined together and said bottom isolation bearing plates are directly or indirectly joined together.
  • Fig. 1 shows one example of a finished polygonal (octagonal) isolation bearing plate of the present
  • Fig. 2 shows an intermediate stage in the fabrication of the polygonal (octagonal) isolation bearing plate of Fig. 1, showing certain of the components.
  • Fig. 3 shows a cross sectional view of the finished of a polygonal (octagonal) isolation bearing plate of Fig. 1.
  • Fig. 4 shows another example of a finished polygonal (octagonal) isolation bearing plate of the present
  • Fig. 5 shows an intermediate stage in the fabrication of the polygonal (octagonal) isolation bearing plate of Fig. 4, showing certain of the components.
  • Fig. 6 shows a cross sectional view of the finished of a polygonal (octagonal) isolation bearing plate of Fig. 4.
  • Fig. 7A shows an example of a top view of an example of a connector component .
  • Fig. 7B is an end view of the connector component of Fig. 7A.
  • Fig. 8A shows an example of a top view of another example of a connector component .
  • Fig. 8B is an end view of the connector component of Fig. 8A.
  • Fig. 9A shows an example of a top view of another example of a connector component .
  • Fig. 9B is an end view of the connector component of Fig. 9A.
  • Fig. 10A shows a side view of an example of an L bracket for securing the bearing plate of Fig. 1.
  • Fig. 10B shows a end view of the bracket of Fig. 10A.
  • Fig. 11 is an example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system.
  • Fig. 12 is another example of an arrangement of polygonal bearings in an isolation platform or flooring system.
  • Fig. 13 is another example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system.
  • Fig. 14 is another example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system.
  • Fig. 15 is an example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system. Detailed Description of the Invention
  • Fig. 1 shows one example of a finished polygonal bearing plate of the present invention
  • Fig. 2 shows the same bearing plate at an intermediate state of construction
  • Fig. 3 is a cross section of the bearing plate of Fig. 1.
  • the load bearing surface component 100 is
  • a metal such as stainless steel
  • a central area 102 comprising a radius in cross section
  • a annular area Surrounding this central area is a annular area comprising a region of constant slope 104.
  • the bearing surface in this example is drilled and tapped with screw holes 106 for later securing of the bearing plate to an underlying or overlaying surface, if desired.
  • the load bearing surface 100 is welded to a circular steel band 110 and a flat bottom plate 112; this assembly is then joined, for example welded, to a frame component 114 comprising lengths of a hardened material (cold rolled steel ("CRS”) in this case) formed, for example, by welding, into an octagon.
  • CRS cold rolled steel
  • each side of the frame is drilled and tapped 118 for joining to, for example, framing or connector components or other bearing plates with screws or bolts.
  • CRS cold rolled steel
  • FIG. 2 comprises eight spaces 116 (appearing substantially as triangles in the two dimensional top view) between the steel band 110 and the frame component 114. Filler pieces of metal are then welded to the assembly to fill in the spaces, and the load- bearing surface 100 is polished to form the assembly shown in Fig. 1.
  • Fig. 5 shows another example of a finished polygonal (in this case octagonal) bearing plate of the present invention
  • Fig. 4 shows the same bearing plate at an intermediate state of construction
  • Fig. 6 is a cross section of the bearing plate of Fig. 4.
  • the construction and structure of this bearing plate example is similar in principle to that of the bearing plate shown in Fig. 1, 2, and 3.
  • the dimensions of the bearing plate are different, and four drilled and tapped connector holes are shown within the central area of the bearing plate surface (see Fig. 4 and Fig. 5) .
  • Fig. 7A shows a top view of a connector component; this connector component comprises lengths of steel tubing joined (for example, by welding) into a rectangular structure having two equally sized short end pieces 703, each joined to two equally sized longer spacer pieces 701.
  • this connector component comprises lengths of steel tubing joined (for example, by welding) into a rectangular structure having two equally sized short end pieces 703, each joined to two equally sized longer spacer pieces 701.
  • FIG. 7B shows an end view of the same connector component, in which two holes 705 are drilled and tapped in the two end pieces of the connector component for connection to, for example, the polygonal frame component (see e.g., 114 of Fig. 1) surrounding the bearing plates.
  • Fig. 8A shows an alternative arrangement of connector components, in which the side pieces are replaced with flat plates 801; as in Fig. 7A, the spacer pieces of this example are made of tubing, for example, stainless steel tubing.
  • Fig. 8B shows an end view of the connector component assembly shown in Fig. 8A, with holes drilled for connection with the frame component of the bearing plate, as before.
  • Fig. 9A is yet another example of a connector
  • the spacer pieces 901 are fashioned of lengths of angle iron, while the end pieces 902 are flat plates, as in Fig. 8A.
  • Fig. 9B shows an end view of this connector component assembly; the outline of the angle iron spacer pieces 901 is shown.
  • Fig. 10A shows a top view of an L bracket component for connecting to the frame component of the bearing plate assembly of e.g., Fig. 1.
  • Fig. 10B shows an end view of the same bracket assembly.
  • Fig. 11 shows an exemplary arrangement of polygonal bearing plate assemblies in an isolation flooring or isolation platform assembly.
  • pairs of octagonal isolation bearing plates 1101 are joined (for example bolted) together along shared flat sides.
  • Each bearing plate is also joined to a connector component 1103 and to at least one side of a frame 1105 surrounding the flooring or platform assembly. Similar or different configurations may be used for top and bottom bearing plates.
  • Bearing plates may also be joined to an underlying or overlying surface, such as a floor or foundation (for bottom bearing plates) or a platform or frame (for the top bearing plates) .
  • Fig. 12 shows another exemplary arrangement of polygonal bearing plates in an isolation flooring or isolation platform assembly.
  • isolation bearing plates 1201 are joined (for example bolted) together along shared flat sides; each pair of these and separated by single isolation bearing plates 1203 not joined together and either resting or joined to an underlying or overlying surface, such as a floor or foundation (e.g., for the bottom bearing plates) or a platform or frame (e.g., for the top bearing plates).
  • a floor or foundation e.g., for the bottom bearing plates
  • a platform or frame e.g., for the top bearing plates
  • top and bottom bearing plates Similar or different configurations may be used for top and bottom bearing plates.
  • Fig. 13 shows another exemplary arrangement of polygonal bearing plates in an isolation flooring or isolation platform assembly.
  • each of four polygonal isolation bearing plates 1301 are joined to two sides of a frame 1303 surrounding the flooring or platform assembly.
  • Each isolation bearing plate is also joined to a connector component 1305.
  • each connector component is joined to two isolation bearing plates.
  • Fig. 14 shows another exemplary arrangement of polygonal bearing plates in an isolation flooring or isolation platform assembly.
  • each of four polygonal isolation bearing plates are joined to two sides of a frame surrounding the flooring or platform assembly, and to one other isolation bearing plate.
  • Each isolation bearing plate is also joined to a connector component.
  • each connector component is joined to two isolation bearing plates.
  • each of four polygonal isolation bearing plates are joined to two sides of a frame surrounding the flooring or platform assembly, and to one other isolation bearing plate.
  • Each isolation bearing plate is also joined to a connector component.
  • each connector component is joined to two isolation bearing plates. This arrangement is similar to that shown in Fig. 14, except the connector components are elongated in comparison.

Abstract

The invention is drawn to a methods and systems employing at least one seismic isolation bearing having a substantially polygonal shape in a top and/or bottom view. Preferably the polygonal shape is other than a square shape; preferably the shape is other than a rectangular shape. Such polygonal isolation bearings can be easily and securely joined to other components o the flooring or platform, and are of particular use in modular seismic isolation systems, in which the floor or platform can be assembled tp suit the available space. In preferred systems the polygonal isolation bearings may be used in low profile systems, for example, in locations having restricted headroom.

Description

POLYGONAL SEISMIC ISOLATION SYSTEMS
Background of the Invention
Related Application
This application claims the benefit of U.S. Provisional Patent Application No. 61/902,420, filed November 11, 2013, the disclosure of which is hereby incorporated by reference in its entirety by reference.
Although minor earthquakes are common, with thousands of smaller earthquakes occurring daily, larger magnitude seismic events can cause personal injury, death and property and environmental damage, particularly in heavily populated areas.
Two approaches have been traditionally utilized to prevent or limit damage or injury to objects or payloads due to seismic events. In the first approach, used
particularly with structures themselves, the objects or payload articles are made strong enough to withstand the largest anticipated earthquake. However, in addition to the relative unpredictability of damage caused by tremors of high magnitude and long duration and of the directionality of shaking, use of this method alone can be quite expensive and is not necessarily suitable for payloads to be housed within a structure. Particularly for delicate, sensitive or easily damaged payload, this approach alone is not especially useful.
In the second approach, the objects are isolated from the vibration such that the objects fail to experience the full force and acceleration of the seismic shock waves. Various methods have been proposed for accomplishing isolation or energy dissipation of a structure or object from seismic tremors, and these methods may depend in some measure on the nature of the object to be isolated.
Thus, buildings and other structures may be isolated using, for example, passive systems, active systems, or hybrid systems. Such systems may include the use of one or more of a torsional beam device, a lead extrusion device, a flexural beam device, a flexural plate device, and a lead- rubber device; these generally involves the use of
specialized connectors that deform and yield during an earthquake. The deformation is focused in specialized devices and damage to other parts of the structure are minimized; however the deformed devices often must be repaired or replaced after the seismic event, and are therefore largely suitable for only one use.
Active control systems require an energy source and computerized control actuators to operate braces or dampers located throughout the structure to be protected. Such active systems are complex, and require service or routine maintenance .
For objects other than buildings, bridges and other structures, isolation platforms or flooring systems may be preferable to such active or deformable devices. Thus, for protection of delicate or sensitive equipment such as manufacturing or processing equipment, laboratory
equipment, computer servers and other hardware, optical equipment and the like an isolation system may provide a simpler, effective, and less maintenance- intensive
alternative. Isolation systems are designed to decouple the objects to be protected (hereinafter the "payload" ) from damage due to the seismic ground motion. Isolators have a variety of designs. Thus, such systems have generally comprised a combination of some or all of the following features: a sliding plate, a support frame slidably mounted on the plate with low friction elements interposed therebetween, a plurality of springs and/or axial guides disposed horizontally between the support frame and the plate, a floor mounted on the support frame through vertically disposed springs, a number of dampers disposed vertically between the support frame and the floor, and/or a latch means to secure the vertical springs during normal use.
Certain disadvantages to such pre-existing systems include the fact that it is difficult to establish the minimum acceleration at which the latch means is released; it is difficult to reset the latch means after the floor has been released; it may be difficult to restore the floor to its original position after it has moved in the
horizontal direction; the dissipative or damping force must be recalibrated to each load; there is a danger of rocking on the vertical springs; and since the transverse rigidity of the vertical springs cannot be ignored with regard to the horizontal springs, the establishment of the horizontal springs and an estimate of their effectiveness, are made difficult .
Ishida et al . , U.S. Pat. No. 4,371,143 have proposed a sliding-type isolation floor that comprises length
adjustment means for presetting the minimum acceleration required to initiate the isolation effects of the flooring in part by adjusting the length of the springs.
Yamada et al . , U.S. Patent No. 4,917,211 discloses a sliding type seismic isolator comprising a friction device having an upper friction plate and a lower friction plate, the friction plates having a characteristic of Coulomb friction, and horizontally placed springs which reduce a relative displacement and a residual displacement to under a desired value. The upper friction plate comprises a material impregnated with oil, while a lower friction plate comprises a hard chromium or nickel plate.
Stahl (U.S. Pat. No. 4,801,122) discloses a seismic isolator for protecting e.g., art objects, instruments, cases or projecting housing comprising a base plate connected to a floor and a frame. A moving pivoted lever is connected to a spring in the frame and to the base plate. The object is placed on top of the frame. Movement of the foundation and base plate relative to the frame and object causes compression of the lever and extension of the spring, which then exerts a restoring force through a cable anchored to the base plate; initial resistance to inertia is caused due to friction between the base plate and the frame .
Kondo et al . , U.S. Pat. No. 4,662,133 describes a floor system for seismic isolation of objects placed thereupon comprising a floor disposed above a foundation, a plurality of support members for supporting the floor in a manner that permits the movement of the floor relative to the foundation in a horizontal direction, and a number of restoring devices comprising springs disposed between the foundation and the floor member. The restoring members comprise two pair of slidable members, each pair of slidable members being movable towards and away from each other wherein each pair of slidable members is disposed at right angles from each other in the horizontal plane.
Stiles et al . , U.S. Pat. No. 6,324,795 disclose a seismic isolation system between a floor and a foundation comprising a plurality of ball and socket joints disposed between a floor and a plurality of foundation pads or piers. In this isolation device, the bearing comprises a movable joint attached to a hardened elastomeric material (or a spring) ; the elastic material is attached on an upper surface of the ball and socket joint and thus sandwiched between the floor and the ball and socket joint; the bearing thus tilts in relation to the floor in response to vertical movement. The floor is therefore able to adjust to buckling pressure due to distortion of the ground beneath the foundation piers. However, the device disclosed is not designed to move horizontally in an acceleration-resisting manner .
Fujimoto, U.S. Pat. No. 5,816,559 discloses a seismic isolation device quite similar to that of Kondo, as well as various other devices including one in which a rolling ball is disposed within the tip of a strut projecting downward from the floor in a manner similar to that of a ball point pen. Bakker, U.S. Pat. No. 2,014,643, is drawn to a balance block for buildings comprising opposed inner concave surfaces with a bearing ball positioned between the surfaces to support the weight of a building
superstructure.
Kemeny, U.S. Pat. No. 5,599,106 discloses ball-in-cone bearings .
Kemeny, U.S. Patents No. 7,784,225 and 8,104,236 discloses seismic isolation platforms containing rolling ball isolation bearings.
Hubbard and Moreno, U.S. Patents No. 8,156,696 and 8,511,004 discloses apparatus and methods involving raised access flooring structure for isolation of a payload placed thereupon . Moreno and Hubbard, U.S. Patent No. 8,342,752 disclose isolation bearing restraint devices.
Isolation bearings are disclosed in Hubbard and
Moreno, U.S. Patent Publication US 2013/0119224 filed on September 25, 2012. Moreno and Hubbard, U.S. Patent Publication No. U.S.
2011/0222800 disclose methods and compositions for
isolating a payload from vibration.
Chen, U.S. Patent No. 5,791,096 discloses a raised floor system. Denton, U.S. Patent No. 3,606,704 discloses an elevated floor structure suitable for missile launching installations with vertically compressible spring units to accommodate vertical displacements of the subfloor.
Naka, U.S. Patent No. 4,922,670 is drawn to a raised double flooring structure which is resistant to deformation under load. The floor employs columnar leg members that contain a pivot mounting near the floor surface, which permits to floor to disperse a load in response to a side load .
All patents, patent applications and other
publications cited in this patent application are hereby individually incorporated by reference in their entirety as part of this disclosure, regardless whether any specific citation is expressly indicated as incorporated by
reference or not.
Summary of the Invention
The present invention is directed in part to an improved seismic isolation system. The system may comprise isolation flooring and/or seismic isolation platforms.
Although not exclusively, preferred examples of the invention may involve, or may be used in conjunction with, a "low rise" platform or flooring system such as that disclosed in International Patent Application No.
PCT/US2013/028621, filed on March 1, 2013.
Isolation bearings and systems such as, without limitation, those disclosed in e.g., U.S. Patents No.
5,599,106; 7,784,225; 8,104,236; 8,156,696 and 8,511,004 provide seismic isolation through the utilization of isolation bearings comprising at least one (and usually two) horizontally extending bearing plate (s) with a first generally concave surface and a second surface. A cross- sectional profile through a midline vertical axis of such a bearing plate shows that the generally concave surface comprises a shape, generally symmetrical around a central vertical axis, comprising a substantially conical shape, a substantially spherical shape, or a shape, comprising a linked combination of linear and radial shapes. When the generally concave surface of the bearing plate is a top surface of the bearing plate the bearing plate shall be considered "upward" facing, whereas when this surface is the bottom surface of the bearing plate, the concave surface shall be considered "downward" facing.
Generally at least one bearing plate supports, or is supported by a rolling ball, such as a ball bearing. In preferred rolling ball isolation bearing systems a rolling ball is between opposing upward- facing and downward- facing isolation bearing plates in such a manner that when a seismic event occurs, horizontal ground movement of the floor or foundation is isolated from the payload supported by the isolation bearings. Horizontal ground movement of the lower bearing plate is attenuated by the inertia of the payload mass on the upper bearing plate so that the rolling ball, located at rest in the center of the bearing plates, is free to move out of the center of the lower plate as the plate moves under it in any direction (relative to the lower plate) opposite to the direction of lower plate movement .
A major advantage to such a bearing is that, since it is substantially equally free to move the same distance in any horizontal direction (i.e., along the x and y axes) given a constant force, the bearing does not require additional means to translate and isolate non-linear forces, or forces having both x and y components, as is necessary with isolation equipment using rollers, springs, skids or the like as the primary means of isolating the payload. Additionally, because of the use of a generally concave, generally symmetrical bearing surface, the bearing is "self-initializing" , with the rolling ball returning to the center of the bearing plate following a seismic tremor, thus restoring the bearing to its initial resting position.
However, this advantage also means that shape of the bearing plate (s) is usually circular; in this manner the rolling ball is free to travel the same distance in any direction, and thus the bearing will work equally well regardless of the direction of the seismic force. However, circular seismic bearing plates can possess practical disadvantages. Shipping, storage, manufacturing and assembly of isolation systems can all be at least somewhat made more difficult using bearing plates having a circular plan view. Such bearing plates need to be stacked
horizontally for storage; when placed side-by-side, the bearing plates only touch at a single point, and this substantially storage space is wasted. Furthermore, assembly of isolation equipment using circular bearing plates often requires specialized and somewhat inflexible designing, and this customizing design requirement lends itself less than optimally to, for example, a flexible modular isolation system that can be configured in many different ways. Finally the actual assembly of circular bearings in a system is difficult, and attachment of such bearing plates to frame elements may not be as robust as desired or may be necessary.
The present invention is directed to methods and apparatus which involve improved seismic isolation bearings and systems utilizing such seismic isolation bearings, as well as methods of making and using such bearings and systems. In particular examples, the present invention involves seismic isolation systems utilizing one or more "rolling ball" isolation bearing comprising a bearing plate having a polygonal shape. That is, the isolation bearing comprises at least one payload-supporting "pan" or bearing plate having a polygonal shape in a plan view comprising a load-bearing surface having a cross-sectional profile comprising a generally conical shape, a generally spherical shape, or a shape, generally symmetrical around a central vertical axis, comprising a linked combination of linear and radial shapes.
The pan or bearing plate extends horizontally, generally radiating symmetrically about a central point, for example a central apex (or inverted apex) . In the presently described examples, the pan or bearing plate is polygonal in shape when seen in plan view; for example, the plan view of the pan (and/or its frame) may comprise a triangle, a square, a pentagon, a hexagon, a heptagon, an octagon or another polygonal shape. In other examples, the bearing plate may be substantially circular in plan view and surrounded by a polygonal frame. Preferably, the polygonal shape is other than a square; preferably the polygonal shape is other than a triangle. Preferably, the polygonal shape is a hexagon or an octagon. In preferred examples, each seismic isolation bearing comprised in a seismic flooring or platform system may comprise at least two opposing bearing plates, separated by a rigid ball, such as a metallic ball bearing. The rigid balls of two or more such bearings support the payload upon a frame, flooring element, or platform. In particularly preferred examples a seismic isolation bearing comprised in a seismic flooring or platform system comprises two bearing plates, separated by a rigid ball, such as a metallic ball bearing; in such arrangements an upper bearing plate may be joined to a frame, flooring element, or platform, while a lower bearing plate may be placed upon or affixed to a floor, foundation, or other similar support surface. A lower bearing plate may be oriented "upward" , so that when the system is at rest the rigid ball is nested at a central point on the bearing surface of the lower bearing plate. An upper bearing plate may be oriented "downward" , so that when the system is at rest the rigid ball rests within a central point on the bearing surface of the upper bearing plate.
Preferably, at least a lower bearing plate comprises a polygonal outline shape in a plan view. A polygonal shape, particularly preferably (but not necessarily) an octagonal shape, can add to the stability of the seismic isolation system in at least two ways.
First, polygonal seismic isolation bearings may be assembled so that straight sides of the upper and/or lower polygonal bearing plates of at least two adjoining upper or lower isolation bearings may be joined or linked together, thereby reinforcing the stability of these bearings during a seismic event. In certain examples, a single upper or lower polygonal bearing plate may be joined to more than one adjoining bearing plate and/or to a flooring, frame, or platform element. Furthermore, when three or more isolation bearings are used in a single platform or flooring system, the frame, platform and/or flooring elements and the bearings may thus be linked together into a single
reinforced structure or network in which the entire upper and/or lower bearing element array is locked together as one.
Secondly, the polygonal shape facilitates linking the bearing plates to the frame, platform and/or flooring elements. For example, a circular isolation bearing plate has only one point (the point of tangency) at which it makes contact with a straight -edged surface. Thus, even in cases in which upper and/or lower polygonal bearing plates are not linked to each other, the joint between framing, platform, and/or flooring element and the bearing plate is made much more strong and firm when a straight edged segment of the perimeter of the bearing plate (or the bearing plate frame) is joined to a straight segment of such element .
Each of these advantages make the manufacture and assembly of seismic isolation systems comprising polygonal isolation bearings substantially easier than systems employing circular isolation bearings. Due to the straight edges of the isolation bearing plates of the present invention, seismic isolation systems can be designed to fit together more strongly and precisely than those having circular bearing plates. Furthermore, when an isolation system employs an array of three or more, or four or more, or five or more, or six or more, isolation bearings having the same or
complementary polygonal shapes, these bearings can be arranged in various ways depending on factors including, without limitation, the payload location, size, mass, and the size and/or and shape of the space in which the seismic isolation system is to be installed, in order to optimally support the load or conform with space limitations. The polygonal bearing plates of the present invention may either be manufactured as circular bearing plates with a polygonal "frame" joined thereto by, for example, welds, appropriate fasteners (such as screws, bolts and the like) . In another example, the polygonal bearing plates may be manufactured as a polygon, again, preferably surrounded by a polygonal frame.
It will be understood that the polygonal frames, bearing plates and the like may have rounded or "radiused" corners without departing from the scope of the invention. Thus the term "polygonal" or "polygon" shall be interpreted to mean "generally polygonal"; that is, comprising at least two (and preferably at least three) straight sides wherein the sum of all curves and angles totals 360°.
The use of polygonal bearing plates greatly
facilitates the manufacture and assembly of seismic
isolation systems. For example, connector components can be fabricated easily of, for example, metal tubing, flat plates, or angle iron with standardized placement of connection fittings such as (without limitation) screw or bolt holes, or brackets, for being joined to the polygonal bearing plate (s) and/or framing, flooring or platform elements. These connector component/bearing plate
assemblies can thus be extended for the desired length or width of the isolation system, with the length of
connectors and number of bearing plates being determined, at least in part, by the anticipated mass of the payload. In particular examples each of opposing sets of polygonal top and bottom bearing plates are linked by, and joined to, connector components to form top and bottom flooring or platform assemblies. Additionally, or alternatively, two or more adjacent polygonal top and/or bottom bearing plates may be joined to each other to form a strong and rigid isolation assembly. In other possible configurations, the top and/or bottom isolation assembly may be constructed without the use of separate connector components. For example, the polygonal shape of the seismic bearing plates facilitates directly joining one bearing plate to at least one
adjacent bearing plate, which is joined, in turn, to at least one additional bearing plate to form a firm, mutually stabilized structure.
One or more of the bottom bearing plates may also be directly or indirectly joined to a foundation or floor. For example, one or more bearing plate may be fastened directly to the foundation using, for example, concrete anchored fasteners or an adhesive for fastening plastics or metals to concrete, such as the 3M Scotch-Weld® brands of urethane, acrylic and epoxy adhesives. One or more of the top bearing plates are preferably directly or indirectly fastened to a platform or flooring element. For example, a top bearing plate may be fastened directly to one or more flooring support "tile" or region using bolts, screws or other similar fasteners, or may be joined to a frame for supporting the payload, bearing plate, or tiles.
In one example, the present invention is drawn to a polygonal seismic isolation bearing plate comprising: a) a recessed hardened load-bearing surface
component; and, b) a hardened frame component, sufficiently strong to support said load-bearing surface component during use in an isolation platform or flooring system during an earthquake, said frame component being directly or
indirectly joined to said load bearing surface component; wherein, in top view, the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
In such a system the load-bearing surface component may be welded or otherwise securely joined to a
circumferential ring (for this purpose considered part of the load bearing surface) , which can then be joined to a frame component, or may be joined directly to the frame component. The frame component is preferably polygonal in shape, and is structured to be joined to other bearing plate assemblies, or to other components of the isolation flooring or platform assembly. In a particularly preferred embodiment the polygonal shape is not a square, or not a rectangle . In another example, the invention is drawn to a polygonal seismic isolation bearing assembly comprising: a) a hardened ball disposed between b) a top isolation bearing plate, and c) a bottom isolation bearing plate; wherein each said top and bottom isolation bearing plates comprise : i) a recessed hardened load-bearing surface
component ; and, ii) a hardened frame component, sufficiently strong to support said load-bearing surface component during use in an isolation platform or flooring system during an earthquake, said frame component being directly or
indirectly joined to said load bearing surface component; wherein, in top view, the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
Preferably the frame element of one or both of the top bearing plate or the bottom bearing plate is welded or otherwise joined to its respective load-bearing surface component. As above, the frame component is preferably polygonal in shape, and is structured to be joined to other bearing plate assemblies, or to other components of the isolation flooring or platform assembly. In a particularly preferred embodiment the polygonal shape is not a square, or not a rectangle.
Additionally, either or both the top and bottom isolation bearing plates may be directly or indirectly joined to one or more other isolation bearing plate in substantially the same plane. An example of indirect joining is by each bearing plate in substantially the same plane being joined to the same connector component.
Another example of indirect joining is by each bearing plate in substantially the same plane being joined to a common flooring or platform component.
In another example, the present invention is directed to a seismic isolation floor or platform assembly
comprising a plurality of polygonal isolation bearing assemblies, each such bearing assembly comprising: a) a hardened ball disposed between b) a top isolation bearing plate, and c) a bottom isolation bearing plate; wherein each said top and bottom isolation bearing plates comprise : i) a recessed hardened load-bearing surface
component ; and , ii) a hardened frame component, sufficiently strong to support said load-bearing surface component during use in an isolation platform or flooring system during an earthquake, said frame component being directly or
indirectly joined to said load bearing surface component; wherein, in top view, the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
In the seismic isolation floor or platform assembly at least two of said plurality of polygonal isolation bearing assemblies may be joined in a manner selected from the group consisting of: i) said top isolation bearing plates are directly or indirectly joined together, or ii) said bottom isolation bearing plates are directly or indirectly joined together, or iii) both said top isolation bearing plates are directly or indirectly joined together and said bottom isolation bearing plates are directly or indirectly joined together.
The inventions shall now be described by detailing specific, non- limiting examples. Brief Description of the Drawings
Fig. 1 shows one example of a finished polygonal (octagonal) isolation bearing plate of the present
invention .
Fig. 2 shows an intermediate stage in the fabrication of the polygonal (octagonal) isolation bearing plate of Fig. 1, showing certain of the components.
Fig. 3 shows a cross sectional view of the finished of a polygonal (octagonal) isolation bearing plate of Fig. 1.
Fig. 4 shows another example of a finished polygonal (octagonal) isolation bearing plate of the present
invention.
Fig. 5 shows an intermediate stage in the fabrication of the polygonal (octagonal) isolation bearing plate of Fig. 4, showing certain of the components.
Fig. 6 shows a cross sectional view of the finished of a polygonal (octagonal) isolation bearing plate of Fig. 4.
Fig. 7A shows an example of a top view of an example of a connector component .
Fig. 7B is an end view of the connector component of Fig. 7A.
Fig. 8A shows an example of a top view of another example of a connector component .
Fig. 8B is an end view of the connector component of Fig. 8A.
Fig. 9A shows an example of a top view of another example of a connector component .
Fig. 9B is an end view of the connector component of Fig. 9A.
Fig. 10A shows a side view of an example of an L bracket for securing the bearing plate of Fig. 1.
Fig. 10B shows a end view of the bracket of Fig. 10A.
Fig. 11 is an example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system.
Fig. 12 is another example of an arrangement of polygonal bearings in an isolation platform or flooring system. Fig. 13 is another example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system.
Fig. 14 is another example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system.
Fig. 15 is an example of an arrangement of polygonal bearings and connector components in an isolation platform or flooring system. Detailed Description of the Invention
The following examples provide details concerning various arrangements of polygonal bearing plates, isolation bearing assemblies and configurations of such bearings in a platform or flooring arrangement. It will be understood that the invention is limited only by the claims at the end of this specification.
Referring now to the drawings, Fig. 1 shows one example of a finished polygonal bearing plate of the present invention, while Fig. 2 shows the same bearing plate at an intermediate state of construction and Fig. 3 is a cross section of the bearing plate of Fig. 1. In this example, the load bearing surface component 100 is
preferably fashioned from a metal (such as stainless steel) as a circular, symmetrical item, having a central area 102 comprising a radius in cross section; see Fig. 3.
Surrounding this central area is a annular area comprising a region of constant slope 104. The bearing surface in this example is drilled and tapped with screw holes 106 for later securing of the bearing plate to an underlying or overlaying surface, if desired. The load bearing surface 100 is welded to a circular steel band 110 and a flat bottom plate 112; this assembly is then joined, for example welded, to a frame component 114 comprising lengths of a hardened material (cold rolled steel ("CRS") in this case) formed, for example, by welding, into an octagon. As shown, each side of the frame is drilled and tapped 118 for joining to, for example, framing or connector components or other bearing plates with screws or bolts. The assembly shown in Fig. 2 comprises eight spaces 116 (appearing substantially as triangles in the two dimensional top view) between the steel band 110 and the frame component 114. Filler pieces of metal are then welded to the assembly to fill in the spaces, and the load- bearing surface 100 is polished to form the assembly shown in Fig. 1.
Fig. 5 shows another example of a finished polygonal (in this case octagonal) bearing plate of the present invention, while Fig. 4 shows the same bearing plate at an intermediate state of construction and Fig. 6 is a cross section of the bearing plate of Fig. 4. The construction and structure of this bearing plate example is similar in principle to that of the bearing plate shown in Fig. 1, 2, and 3. The dimensions of the bearing plate are different, and four drilled and tapped connector holes are shown within the central area of the bearing plate surface (see Fig. 4 and Fig. 5) .
Fig. 7A shows a top view of a connector component; this connector component comprises lengths of steel tubing joined (for example, by welding) into a rectangular structure having two equally sized short end pieces 703, each joined to two equally sized longer spacer pieces 701. Those of ordinary skill in the art will immediately
recognize that various other connector component
arrangements can be envisioned, for example, a connector component in which all sides are of equal length. Fig. 7B shows an end view of the same connector component, in which two holes 705 are drilled and tapped in the two end pieces of the connector component for connection to, for example, the polygonal frame component (see e.g., 114 of Fig. 1) surrounding the bearing plates.
Fig. 8A shows an alternative arrangement of connector components, in which the side pieces are replaced with flat plates 801; as in Fig. 7A, the spacer pieces of this example are made of tubing, for example, stainless steel tubing. Fig. 8B shows an end view of the connector component assembly shown in Fig. 8A, with holes drilled for connection with the frame component of the bearing plate, as before.
Fig. 9A is yet another example of a connector
component. In this example, the spacer pieces 901 are fashioned of lengths of angle iron, while the end pieces 902 are flat plates, as in Fig. 8A. Fig. 9B shows an end view of this connector component assembly; the outline of the angle iron spacer pieces 901 is shown.
Fig. 10A shows a top view of an L bracket component for connecting to the frame component of the bearing plate assembly of e.g., Fig. 1. Fig. 10B shows an end view of the same bracket assembly.
Fig. 11 shows an exemplary arrangement of polygonal bearing plate assemblies in an isolation flooring or isolation platform assembly. As can be seen in this example, pairs of octagonal isolation bearing plates 1101 are joined (for example bolted) together along shared flat sides. Each bearing plate is also joined to a connector component 1103 and to at least one side of a frame 1105 surrounding the flooring or platform assembly. Similar or different configurations may be used for top and bottom bearing plates. Bearing plates may also be joined to an underlying or overlying surface, such as a floor or foundation (for bottom bearing plates) or a platform or frame (for the top bearing plates) . Fig. 12 shows another exemplary arrangement of polygonal bearing plates in an isolation flooring or isolation platform assembly. In this example, three pairs of isolation bearing plates 1201 are joined (for example bolted) together along shared flat sides; each pair of these and separated by single isolation bearing plates 1203 not joined together and either resting or joined to an underlying or overlying surface, such as a floor or foundation (e.g., for the bottom bearing plates) or a platform or frame (e.g., for the top bearing plates).
Similar or different configurations may be used for top and bottom bearing plates.
Fig. 13 shows another exemplary arrangement of polygonal bearing plates in an isolation flooring or isolation platform assembly. In this example, each of four polygonal isolation bearing plates 1301 are joined to two sides of a frame 1303 surrounding the flooring or platform assembly. Each isolation bearing plate is also joined to a connector component 1305. As shown, each connector component is joined to two isolation bearing plates. Fig. 14 shows another exemplary arrangement of polygonal bearing plates in an isolation flooring or isolation platform assembly. In this example, each of four polygonal isolation bearing plates are joined to two sides of a frame surrounding the flooring or platform assembly, and to one other isolation bearing plate. Each isolation bearing plate is also joined to a connector component. As shown, each connector component is joined to two isolation bearing plates. Fig. 15 shows another exemplary arrangement of polygonal bearing plates in an isolation flooring or isolation platform assembly. In this example, each of four polygonal isolation bearing plates are joined to two sides of a frame surrounding the flooring or platform assembly, and to one other isolation bearing plate. Each isolation bearing plate is also joined to a connector component. As shown, each connector component is joined to two isolation bearing plates. This arrangement is similar to that shown in Fig. 14, except the connector components are elongated in comparison.
Although the foregoing invention has been exemplified and otherwise described in detail for purposes of clarity of understanding, it will be clear that modifications, substitutions, and rearrangements to the explicit
descriptions may be practiced within the scope of the appended claims. For example, the inventions described in this specification can be practiced within elements of, or in combination with, other any features, elements, methods or structures described herein. Additionally, features illustrated herein as being present in a particular example are intended, in other aspects of the present invention, to to be explicitly lacking from the invention, or combinable with features described elsewhere in this patent
application, in a manner not otherwise illustrated in this patent application or present in that particular example. Solely the language of the claims shall define the invention. All publications and patent documents cited herein are hereby incorporated by reference in their entirety for all purposes to the same extent as if each were so individually denoted.

Claims

WHAT IS CLAIMED IS:
1) A polygonal seismic isolation bearing plate
comprising : a) a recessed hardened load-bearing surface
component; and, b) a hardened frame component, sufficiently strong to support said load-bearing surface component during use in an isolation platform or flooring system during an earthquake, said frame component being directly or
indirectly joined to said load bearing surface component; wherein, in top view, the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
2) The bearing plate of claim 1 wherein said frame element is welded to said load-bearing surface component.
3) The bearing plate of claim 1 wherein the load-bearing surface component thereof has a cross sectional profile comprising a shape selected from the group consisting of: i) a combination of linear and curved shapes; ii) a combination of different linear shapes, iii) a combination of different curved shapes. 4) The bearing plate of claim 1 wherein the frame
polygonal shape is an octagon.
5) The bearing plate of claim 1 wherein the frame
component comprises a series of holes for joining to at least one other component of said isolation platform or flooring system.
6) The bearing plate of claim 1 wherein at least one said component (s) is selected from the group consisting of: i) another isolation bearing plate, ii) a connecting component, iii) a frame element of said isolation platform or flooring system, and iv) a floor or foundation.
7) The bearing plate of claim 1 wherein said load-bearing surface component comprises a substantially circular shape in a top view.
8) The bearing plate of claim 1 wherein said load bearing surface component comprises a substantially polygonal shape in a top view.
9) A polygonal seismic isolation bearing assembly
comprising: a) a hardened ball disposed between b) a top isolation bearing plate, and c) a bottom isolation bearing plate; wherein each said top and bottom isolation bearing plates comprise: i) a recessed hardened load-bearing surface component; and, ii) a hardened frame component, sufficiently strong to support said load-bearing surface component during use in an isolation platform or flooring system during an earthquake, said frame component being directly or indirectly joined to said load bearing surface component; wherein, in top view, the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
10) The isolation bearing assembly of claim 9 wherein the frame element of at least said top bearing plate and said bottom bearing plate is welded to its respective load- bearing surface component .
11) The isolation bearing assembly of claim 9 wherein the frame element of both said top bearing plate and said bottom bearing plate is welded to its respective load- bearing surface component. 12) The isolation bearing assembly of either claim 10 or 11 wherein the load-bearing surface component thereof has a cross sectional profile comprising a shape selected from the group consisting of: i) a combination of linear and curved shapes; ii) a combination of different linear shapes, iii) a combination of different curved shapes.
13) The isolation bearing assembly of any of claims 9-12 wherein the frame component polygonal shape is an octagon.
14) The isolation bearing assembly of any of claims 9-13 wherein the frame component (s) comprises a series of holes for joining to at least one other component of said isolation platform or flooring system.
15) The isolation bearing assembly of claim 14 wherein at least one said component (s) is selected from the group consisting of: i) another isolation bearing plate in substantially the same plane, ii) a connecting component, iii) a frame element of said isolation platform or flooring system, and iv) a floor or foundation. 16) The isolation bearing assembly of any of claims 9-15 wherein said load-bearing surface component comprises a substantially circular shape in a top view.
17) The isolation bearing assembly of claim 1 wherein sa load bearing surface component comprises a substantially polygonal shape in a top view.
18) A seismic isolation floor or platform assembly comprising a plurality of polygonal isolation bearing assemblies, each such bearing assembly comprising: a) a hardened ball disposed between b) a top isolation bearing plate, and c) a bottom isolation bearing plate; wherein each said top and bottom isolation bearing plates comprise : i) a recessed hardened load-bearing surface component; and, ii) a hardened frame component, sufficiently strong to support said load-bearing surface component during use in an isolation platform or flooring system during an earthquake, said frame component being directly or indirectly joined to said load bearing surface component; wherein, in top view, the frame component comprises a polygonal shape, and wherein said frame component is structured to be joined along at least one straight edge to at least one other component of said isolation platform or flooring system.
19) The seismic isolation floor or platform assembly of claim 18 wherein, in at least two of said plurality of polygonal isolation bearing assemblies are joined in a manner selected from the group consisting of: i) said top isolation bearing plates are directly or indirectly joined together, or ii) said bottom isolation bearing plates are directly or indirectly joined together, or iii) both said top isolation bearing plates are directly or indirectly joined together and said bottom isolation bearing plates are directly or indirectly joined together .
20) The seismic isolation floor or platform assembly of claim 20 wherein at least two of said bearing plates are joined along straight edges of each bearing plate.
21) The seismic isolation floor or platform assembly of claim 20 wherein at least two of said bearing plates are each joined to a connector component along straight edges of each bearing plate. 22) The seismic isolation floor or platform assembly of either of claims 19-21 wherein at least two bearing plates are joined to at least one component selected from the group consisting of: i) another isolation bearing plate in substantially the same plane, ii) a connecting component, iii) a frame element of said isolation platform or flooring system, and iv) a floor or foundation.
23) The seismic isolation floor or platform assembly of either of claim 18 wherein at least two bearing plates are joined to at least one component selected from the group consisting of: i) another isolation bearing plate in substantially the same plane, ii) a connecting component, iii) a frame element of said isolation platform or flooring system, and iv) a floor or foundation.
PCT/US2014/062916 2013-11-11 2014-10-29 Polygonal seismic isolation systems WO2015069518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016525994A JP2017502182A (en) 2013-11-11 2014-10-29 Polygonal seismic isolation system
CA2930193A CA2930193C (en) 2013-11-11 2014-10-29 Polygonal seismic isolation systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361902420P 2013-11-11 2013-11-11
US61/902,420 2013-11-11

Publications (1)

Publication Number Publication Date
WO2015069518A1 true WO2015069518A1 (en) 2015-05-14

Family

ID=53041967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/062916 WO2015069518A1 (en) 2013-11-11 2014-10-29 Polygonal seismic isolation systems

Country Status (6)

Country Link
US (1) US20150128510A1 (en)
JP (1) JP2017502182A (en)
CA (1) CA2930193C (en)
CL (1) CL2016001117A1 (en)
PE (1) PE20161037A1 (en)
WO (1) WO2015069518A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016201109A1 (en) * 2015-06-10 2016-12-15 The Regents Of The University Of California Architected material design for seismic isolation
JP2019518154A (en) * 2016-06-06 2019-06-27 ワークセイフ テクノロジーズWorksafe Technologies Seismic isolation system with load bearing surface with polymeric material
WO2018026950A1 (en) 2016-08-02 2018-02-08 Worksafe Technologies Modular seismic isolation supports and floors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241245A1 (en) * 2004-04-29 2005-11-03 Chong-Shien Tsai Foundation shock eliminator
US20070261323A1 (en) * 2003-07-15 2007-11-15 Worksafe Technologies Seismically stable flooring
JP2011122602A (en) * 2009-12-08 2011-06-23 Chubu Electric Power Co Inc Multi-stage base isolation device
US20110222800A1 (en) * 2010-03-04 2011-09-15 Worksafe Technologies Methods and Compositions for Isolating a Payload from Vibration
US20130247505A1 (en) * 2002-07-15 2013-09-26 Worksafe Technologies Isolation Platform

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039831B2 (en) * 1979-11-12 1985-09-07 三菱製鋼株式会社 Seismic isolation floor
IT1262385B (en) * 1993-08-03 1996-06-19 Tis Tech Idraulico Stradali MULTIDIRECTIONAL MECHANICAL ENERGY DISPERSER PARTICULARLY SUITABLE FOR THE BINDING OF STRUCTURES IN SEISMIC AREA.
US5599106A (en) * 1994-02-09 1997-02-04 Tekton Ball-in-cone seismic isolation bearing
JP3409611B2 (en) * 1996-10-04 2003-05-26 良三 米田 Seismic support device for objects
ES2169683B1 (en) * 2000-09-22 2003-12-01 Innovacion Y Diseno Orovay S L MODULAR PROVISION OF PROTECTION ANTISEISMS APPLICABLE IN THE CONSTRUCTION OF BUILDINGS AND SIMILAR.
JP4836940B2 (en) * 2004-04-27 2011-12-14 ケメニー、ゾルタン、エー. Dynamic kinematic mount
IT1396455B1 (en) * 2009-11-16 2012-11-23 Tecnostrutture S R L SYSTEM OF PRE-MANUFACTURED SISMORESISTIC ELEMENTS FOR BUILDING AND ITS APPLICATION PROCEDURE.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130247505A1 (en) * 2002-07-15 2013-09-26 Worksafe Technologies Isolation Platform
US20070261323A1 (en) * 2003-07-15 2007-11-15 Worksafe Technologies Seismically stable flooring
US20050241245A1 (en) * 2004-04-29 2005-11-03 Chong-Shien Tsai Foundation shock eliminator
JP2011122602A (en) * 2009-12-08 2011-06-23 Chubu Electric Power Co Inc Multi-stage base isolation device
US20110222800A1 (en) * 2010-03-04 2011-09-15 Worksafe Technologies Methods and Compositions for Isolating a Payload from Vibration

Also Published As

Publication number Publication date
PE20161037A1 (en) 2016-10-21
CL2016001117A1 (en) 2017-06-30
JP2017502182A (en) 2017-01-19
CA2930193C (en) 2018-12-18
US20150128510A1 (en) 2015-05-14
CA2930193A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
US9109357B2 (en) Modular isolation systems
US10837192B2 (en) Seismic isolation systems comprising a load-bearing surface having a polymeric material
US10487526B2 (en) Modular seismic isolation supports and floors
US8156696B2 (en) Seismically stable flooring
US9399865B2 (en) Seismic isolation systems
US8844205B2 (en) Compressed elastomer damper for earthquake hazard reduction
JP2010007859A (en) Isolation platform
KR101701810B1 (en) Seismic equipment
CA2930193C (en) Polygonal seismic isolation systems
EP3530980A1 (en) Anti-vibration support system
CN111836932A (en) Anti-seismic device
JP2020133152A (en) Seismic isolator
WO2015133979A1 (en) Moving mechanism minimizing the destructive impacts of an earthquake
JP2927357B2 (en) Seismic isolation support device
RU2539475C2 (en) Earthquake-isolating support
JP2022068774A (en) Float resistor
JP5646845B2 (en) Bridge girder support device
WO2013103855A1 (en) Prefabricated isolation flooring
JP2024509176A (en) earthquake dissipator
WO2015099519A1 (en) Combined earthquake protection system (variants)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525994

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2930193

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 000613-2016

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 2016/07577

Country of ref document: TR

Ref document number: 2016/07580

Country of ref document: TR

122 Ep: pct application non-entry in european phase

Ref document number: 14860874

Country of ref document: EP

Kind code of ref document: A1