WO2015068765A1 - Decoding device - Google Patents

Decoding device Download PDF

Info

Publication number
WO2015068765A1
WO2015068765A1 PCT/JP2014/079455 JP2014079455W WO2015068765A1 WO 2015068765 A1 WO2015068765 A1 WO 2015068765A1 JP 2014079455 W JP2014079455 W JP 2014079455W WO 2015068765 A1 WO2015068765 A1 WO 2015068765A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoding
packet
calculation
packets
matrix
Prior art date
Application number
PCT/JP2014/079455
Other languages
French (fr)
Japanese (ja)
Inventor
松本 渉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015068765A1 publication Critical patent/WO2015068765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/373Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with erasure correction and erasure determination, e.g. for packet loss recovery or setting of erasures for the decoding of Reed-Solomon codes

Definitions

  • the present invention is based on the premise that an encoded packet is transmitted from an encoding device included in a transmitter that encodes an error correction code for correcting a transmission error that occurs on a transmission path.
  • the present invention relates to a decoding device for decoding received packets.
  • the erasure correction code is used for encoding in units of packets on the transmitter side, and the receiver side receives a packet sequence partially lost by the communication path, Based on the successfully received packet, the lost packet is decoded by Gaussian elimination or the like.
  • a lost packet is a packet that has failed to be received, and a packet that has failed to be received is expressed as lost because information on all the bits constituting the packet cannot be obtained.
  • Non-Patent Document 1 there has been one as shown in Non-Patent Document 1, for example.
  • a group of information bits is expressed as a packet, but it may be expressed as a block, and has the same effect.
  • the description will be limited to the expression packet.
  • the decoding method generally requires a calculation amount corresponding to the number of “1” s in the parity check matrix, and requires a memory amount and a calculation amount depending on the size of the number of rows ⁇ the number of columns.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a decoding device that can reduce the amount of calculation in decoding calculation.
  • the decoding device is a decoding device that performs decoding of an error correction code for correcting a transmission error that occurs on a transmission line, and includes an erasure correction decoding unit that performs decoding calculation using a generation matrix instead of a check matrix It is provided.
  • the decoding apparatus performs the decoding calculation using the generator matrix when decoding the error correction code, the calculation amount of the decoding calculation can be reduced.
  • the decoding apparatus since it is possible to operate even with a CPU having a low processing capability, there is an effect that an erasure correction coding / decoding function can be mounted in a lower-cost communication system.
  • a CPU with processing capability there is an effect that higher-speed processing can be realized.
  • FIG. 1 is a block diagram showing a communication system to which a decoding device according to Embodiment 1 of the present invention is applied.
  • the illustrated communication system includes a transmitter 10 and a receiver 20.
  • the transmitter 10 is an encoding device, and includes a packet generation unit 11, an erasure correction encoding unit 12, and a transmission unit 13.
  • the receiver 20 is a decoding device, and includes a receiving unit 21, an erasure correction decoding unit 22, and an information bit reproduction unit 23.
  • the packet generator 11 is a processor that generates a packet from information bits using a check matrix.
  • the erasure correction encoding unit 12 is a processing unit that performs erasure error correction encoding on a packet.
  • the transmission unit 13 is a processing unit for transmitting the encoded packet to the receiver 20 via the communication path 30.
  • the receiver 21 receives a packet transmitted from the transmitter 10 via the communication path 30.
  • the erasure correction decoding unit 22 is a processing unit that performs error detection and erasure correction on these packets.
  • the information bit reproduction unit 23 is a processing unit that combines the decoded packets to generate information bits.
  • each packet is composed of 1-bit information.
  • the processing shown below includes a plurality of bits in each packet, and the same processing is executed in parallel.
  • An encoded packet vector v (u
  • a parity packet vector consisting of
  • an encoded packet vector v (u
  • an expression describing a vector of an encoded packet on a generator matrix is used as appropriate.
  • the blank part means element 0, and hereinafter the same expression is used. It is assumed that the calculation is performed on GF (2) expressed by 0 and 1 hereinafter.
  • the decoding side uses the check matrix H to perform decoding by the Gaussian elimination method or the like.
  • an expression describing a vector of a code packet on a check matrix is used as appropriate.
  • the reception success packet and the reception failure packet are first exchanged.
  • decoding calculation is performed using a generator matrix, (i) a method of decoding using only successfully received packets, and (ii) information packets are lost
  • a method of decoding using only successful reception packets related to packets and (iii) a method in which the number of successfully received packets is the upper limit of the number of information packets ⁇ ⁇ and is not subject to decoding calculation.
  • the successful reception packet is 9 out of 15 encoded packets u 1 , u 3 , u 4 , u 6 , u 7 , p 2 , p 4 , p 5 , p 7, and lost packets.
  • the successful reception packet is 9 out of 15 encoded packets u 1 , u 3 , u 4 , u 6 , u 7 , p 2 , p 4 , p 5 , p 7, and lost packets.
  • u 2 , u 5 , p 1 , p 3 , p 4 , p 8 are lost packets.
  • the generator matrix G is shown as the equation (4) as a packet in which the square frame ⁇ mark is lost.
  • the columns corresponding to the successful reception packet and the lost packet are exchanged.
  • the column having the 1 in the i-th row and the i-th column are switched. Thereafter, the replaced i-th column is fixed, and the replaced i-column is added in units of columns to the column where 1 exists in the i-th row in the other columns. At the same time, the value of the received packet corresponding to the column is added and stored as a new value corresponding to the column. For example:
  • the lost packet can be decoded with a small amount of calculation.
  • the packet error rate PER Packet Error Rate
  • PER Packet Error Rate
  • a generator matrix is used instead of a check matrix. Since the erasure correction decoding unit for decoding is provided, the amount of decoding calculation can be reduced.
  • the erasure correction decoding unit performs the decoding calculation using only the packet that has been successfully received and the partial matrix of the check matrix corresponding to this packet. The amount of calculation can be reduced.
  • the erasure correction decoding unit rearranges the columns or rows of the generation matrix corresponding to the successfully received packet, and configures the partial matrix corresponding to the successfully received packet, Since the matrix corresponding to the lost packet is deleted and the decoding calculation is performed, the calculation amount of the decoding calculation can be reduced.
  • Embodiment 2 a method of decoding using only reception success packets related to lost packets among information packets will be described as a second embodiment.
  • the generation matrix G is used to associate the reception success packet and the lost packet as shown in Expression (4).
  • the difference from the decoding method 1 of the present invention is that the columns corresponding to successful reception packets and lost packets are not exchanged thereafter.
  • all the elements of the column corresponding to the lost packet are set to 0 from the equation (4), and the following matrix G ′ is generated.
  • a Gaussian elimination method in the row direction is performed on this G ′ in units of columns.
  • the calculation is performed diagonally from the left end, and when the successful reception packet is the i-th packet in the encoded packet, since there is definitely 1 in the i-th row, the i-th row in the i-th column Without checking whether or not there is 1 in the eye, the i-th column is fixed, and the i-th column is added in units of columns to the other column in which 1 exists in the i-th row. At the same time, the value of the received packet corresponding to the column is added and stored as a new value corresponding to the column.
  • the lost packet is the i-th packet in the encoded packet, there is no 1 in the i-th row and no i-th row, so it is not checked whether there is a 1 in the i-th row.
  • the column with 1 in the i-th row is exchanged with the i-th column. Thereafter, the replaced i-th column is fixed, and the replaced i-column is added in units of columns to the column where 1 exists in the i-th row in the other columns. At the same time, the value of the received packet corresponding to the column is added and stored as a new value corresponding to the column.
  • the erasure correction decoding unit uses an irreducible standard generation matrix whose information packet part is composed of a diagonal matrix, and supports packets that have been successfully received.
  • the lost packet is not calculated without calculating the packet that has been successfully received. Since only the calculation for decoding is performed, the calculation amount of the decoding calculation can be further reduced.
  • Embodiment 3 a third embodiment will be described as a method in which the number of successfully received packets is the upper limit of the number of information packets.times..alpha.
  • the number of information packets 5, the number of parity packets 10, and the number of encoded packets 15 are transmitted from the transmitter, and the reception success packets are u 1 , u 2 , u 4 , u 5 , p 1 , p 2 , p.
  • 13 packets of 3 , p 5 , p 6 , p 7 , p 8 , p 9 and p 10 and 2 lost packets are u 3 and p 4 packets.
  • a generator matrix G is shown as a formula (5) as a packet in which the square frame ⁇ mark is lost.
  • the packet error rate when it is desired to set the packet error rate to 10 ⁇ 8 or less, the value shown in FIG. 2 is taken. This number may be appropriately changed according to the number of information packets, the target performance, and the code performance, and an arbitrary value can be set.
  • the erasure correction decoding unit sets an upper limit for the number of successful reception packets necessary for decoding to be equal to or greater than the number of information packets, and receives successful reception packets exceeding the upper limit. Since it is excluded from the decryption calculation target, the calculation amount of the decryption calculation can be further reduced.
  • the processing unit has been expressed as a packet in the expression so far, but it can be applied to any data processed in a lump of bits regardless of the name of the packet, and it may be called a block. is there.
  • the encoding / decoding method described above can be applied to an error correction code such as a physical layer corresponding to a check matrix in bit units in addition to an erasure correction code in which error correction is performed in packet units or block units.
  • an error correction code such as a physical layer corresponding to a check matrix in bit units in addition to an erasure correction code in which error correction is performed in packet units or block units.
  • the present invention can be freely combined with each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
  • the decoding apparatus includes the erasure correction decoding unit that performs decoding calculation using a generation matrix instead of a check matrix, the amount of decoding calculation can be reduced, and the decoding apparatus is used for a low-cost communication system. Suitable for

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 A decoding device performs decoding of an error correction signal for correcting transmission errors occurring on a transmission path, wherein the decoding device is provided with a loss correction decoding unit (22) for performing decoding calculations using a generator matrix instead of a check matrix. The loss correction decoding unit (22) reorders the column or row of the generator matrix corresponding to a successfully received packet and forms a sub-matrix corresponding to the successfully received packet, decoding calculation being performed after removing matrices corresponding to lost packets.

Description

復号装置Decoding device
 本発明は、伝送路上で発生する伝送誤りを訂正するための誤り訂正符号の符号化を行う送信機に含まれる符号化装置から符号化されたパケットが伝送された前提で、受信機側で受信したパケットを復号する復号装置に関する。 The present invention is based on the premise that an encoded packet is transmitted from an encoding device included in a transmitter that encodes an error correction code for correcting a transmission error that occurs on a transmission path. The present invention relates to a decoding device for decoding received packets.
 一般的な消失訂正の符号化/復号は、例えば消失訂正符号を用いて送信機側でパケット単位で符号化を行い、受信機側は、通信路により部分的に消失したパケット列を受信し、受信成功したパケットに基づいてガウス消去法等により消失したパケットを復号する。なお、消失したパケットとは受信に失敗したパケットの事であり、受信に失敗したパケットはそのパケットを構成するすべてのビットに関する情報が得られないため、消失したと表現する。このような従来の復号法としては例えば非特許文献1に示されているようなものがあった。なお、明細書中、情報ビットの固まりをパケットと表現しているが、ブロックという表現でも構わず、同じ効果を奏する。ここでは便宜上パケットという表現に限定して説明する。 In general erasure correction encoding / decoding, for example, the erasure correction code is used for encoding in units of packets on the transmitter side, and the receiver side receives a packet sequence partially lost by the communication path, Based on the successfully received packet, the lost packet is decoded by Gaussian elimination or the like. Note that a lost packet is a packet that has failed to be received, and a packet that has failed to be received is expressed as lost because information on all the bits constituting the packet cannot be obtained. As such a conventional decoding method, there has been one as shown in Non-Patent Document 1, for example. In the specification, a group of information bits is expressed as a packet, but it may be expressed as a block, and has the same effect. Here, for the sake of convenience, the description will be limited to the expression packet.
 しかしながら、復号法は一般に検査行列の“1”の数に相当する計算量が必要となり行数×列数の大きさに依存したメモリ量と計算量が必要となる。
 従来手順では、受信成功パケットをすべて保存し、検査行列からガウス消去法の結果に従って計算する必要がある。この場合、検査行列と受信成功パケットの積が全て0になる事を確認する必要があり、受信時のパケット誤り率に係わらず、少なくともほぼ“1”の数に比例する計算量以上の計算が必要になり、計算量が多いという問題があった。
However, the decoding method generally requires a calculation amount corresponding to the number of “1” s in the parity check matrix, and requires a memory amount and a calculation amount depending on the size of the number of rows × the number of columns.
In the conventional procedure, it is necessary to store all successful reception packets and calculate from the check matrix according to the result of the Gaussian elimination method. In this case, it is necessary to confirm that the product of the check matrix and the reception success packet is all 0. Regardless of the packet error rate at the time of reception, the calculation more than the calculation amount proportional to the number of “1” is at least approximately. There was a problem that it was necessary and the calculation amount was large.
 この発明は上記のような課題を解決するためになされたもので、復号計算における計算量を削減する事のできる復号装置を得る事を目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain a decoding device that can reduce the amount of calculation in decoding calculation.
 この発明に係る復号装置は、伝送路上で発生する伝送誤りを訂正するための誤り訂正符号の復号を行う復号装置において、検査行列に代えて生成行列を用いて復号計算を行う消失訂正復号部を備えたものである。 The decoding device according to the present invention is a decoding device that performs decoding of an error correction code for correcting a transmission error that occurs on a transmission line, and includes an erasure correction decoding unit that performs decoding calculation using a generation matrix instead of a check matrix It is provided.
 この発明の復号装置は、誤り訂正符号の復号を行う際、生成行列を用いて復号計算を行うようにしたので、復号計算の計算量を削減する事ができる。その結果、処理能力の低いCPUでも動作できるため、より低価格の通信システムに消失訂正符号化復号機能を搭載できる効果がある。または、処理能力のCPUの場合は、より高速な処理を実現できる効果がある。 Since the decoding apparatus according to the present invention performs the decoding calculation using the generator matrix when decoding the error correction code, the calculation amount of the decoding calculation can be reduced. As a result, since it is possible to operate even with a CPU having a low processing capability, there is an effect that an erasure correction coding / decoding function can be mounted in a lower-cost communication system. Alternatively, in the case of a CPU with processing capability, there is an effect that higher-speed processing can be realized.
この発明の実施の形態1による復号装置を示す構成図である。It is a block diagram which shows the decoding apparatus by Embodiment 1 of this invention. この発明の実施の形態3による復号装置の情報パケット数に対応したαの値を示す説明図である。It is explanatory drawing which shows the value of (alpha) corresponding to the number of information packets of the decoding apparatus by Embodiment 3 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1による復号装置を適用した通信システムを示す構成図である。
 図示の通信システムは、送信機10と受信機20とを備える。送信機10は符号化装置であり、パケット生成部11、消失訂正符号化部12、送信部13を備える。受信機20は復号装置であり、受信部21、消失訂正復号部22、情報ビット再生部23を備える。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 is a block diagram showing a communication system to which a decoding device according to Embodiment 1 of the present invention is applied.
The illustrated communication system includes a transmitter 10 and a receiver 20. The transmitter 10 is an encoding device, and includes a packet generation unit 11, an erasure correction encoding unit 12, and a transmission unit 13. The receiver 20 is a decoding device, and includes a receiving unit 21, an erasure correction decoding unit 22, and an information bit reproduction unit 23.
 送信機10において、パケット生成部11は、検査行列を用いて、情報ビットからパケットを生成する処理部である。消失訂正符号化部12は、パケットを消失誤り訂正符号化する処理部である。送信部13は、符号化されたパケットを通信路30を経由して受信機20へ送信するための処理部である。 In the transmitter 10, the packet generator 11 is a processor that generates a packet from information bits using a check matrix. The erasure correction encoding unit 12 is a processing unit that performs erasure error correction encoding on a packet. The transmission unit 13 is a processing unit for transmitting the encoded packet to the receiver 20 via the communication path 30.
 受信機20において、受信部21は、通信路30を経由して送信機10から送信されたパケットを受信する。消失訂正復号部22は、これらパケットに対して、誤り検出及び消失訂正を行う処理部である。情報ビット再生部23は、復号化したパケットを結合して、情報ビットを生成する処理部である。 In the receiver 20, the receiver 21 receives a packet transmitted from the transmitter 10 via the communication path 30. The erasure correction decoding unit 22 is a processing unit that performs error detection and erasure correction on these packets. The information bit reproduction unit 23 is a processing unit that combines the decoded packets to generate information bits.
 実施の形態1の動作説明に先立ち、先ず、消失訂正符号の符号化方法及び復号方法について説明する。説明を簡略化するため、以降各パケットは1ビットの情報で構成されているものとする。実際には以降で示す処理は各パケットに複数ビット含まれており、同じ処理が並列して実行される。
 符号化パケットベクトルv=(u|p)としu=(u1 u2…uk)をk個のパケットからなる情報パケットベクトル、p=(p1 p2…pm)をm個のパケットからなるパリティパケットベクトルとする。
Prior to the description of the operation of the first embodiment, first, an erasure correction code encoding method and decoding method will be described. In order to simplify the description, it is assumed that each packet is composed of 1-bit information. Actually, the processing shown below includes a plurality of bits in each packet, and the same processing is executed in parallel.
An encoded packet vector v = (u | p), u = (u 1 u 2 ... U k ) is an information packet vector composed of k packets, and p = (p 1 p 2 ... P m ) is m packets. A parity packet vector consisting of
 例えばk=7個のパケットからなる情報パケットベクトルuからn=k+m=15個(nは符号化パケット数)のパケットからなる符号化パケットベクトルvを生成する為のk×nの生成行列を
Figure JPOXMLDOC01-appb-I000001
とする。このGを用いてv=u・Gにより符号化パケットベクトルv=(u|p)を生成する。以後、理解を助けるために生成行列の上に符号化パケットのベクトルを記載する表現を適宜使用する。なお、空白部分は要素0を意味し、以降同様な表現を使うものとする。
また、以降0と1で表現されるGF(2)上で計算するものとする。
For example, a k × n generator matrix for generating an encoded packet vector v composed of n = k + m = 15 (n is the number of encoded packets) from an information packet vector u composed of k = 7 packets.
Figure JPOXMLDOC01-appb-I000001
And Using this G, an encoded packet vector v = (u | p) is generated by v = u · G. Hereinafter, in order to help understanding, an expression describing a vector of an encoded packet on a generator matrix is used as appropriate. The blank part means element 0, and hereinafter the same expression is used.
It is assumed that the calculation is performed on GF (2) expressed by 0 and 1 hereinafter.
 一例としてu=(1 0 1 1 0 1 0)とすると下式により
Figure JPOXMLDOC01-appb-I000002
となる。
As an example, if u = (1 0 1 1 0 1 0),
Figure JPOXMLDOC01-appb-I000002
It becomes.
 一方、復号側では検査行列Hを用いガウス消去法等で復号する。
 例えばvに対応する誤り訂正符号のm×nのパリティ検査行列を
Figure JPOXMLDOC01-appb-I000003
とする。丸付き数字は行番号を示す。このHはH・vT=0を満たす。以後、理解を助けるために検査行列の上に符号パケットのベクトルを記載する表現を適宜使用する。
On the other hand, the decoding side uses the check matrix H to perform decoding by the Gaussian elimination method or the like.
For example, an m × n parity check matrix of an error correction code corresponding to v is
Figure JPOXMLDOC01-appb-I000003
And Circled numbers indicate line numbers. This H satisfies H · v T = 0. Hereinafter, in order to help understanding, an expression describing a vector of a code packet on a check matrix is used as appropriate.
 今、受信機20において受信パケット成功が符号化パケット15パケット中9パケットの、u1,u3,u4,u6,u7,p2,p4,p5,p7とすると、ガウス消去法のステップとしてまず受信成功パケットと受信失敗のパケットの入れ替えを行う。
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
Assuming that the successful reception packet at the receiver 20 is 9 out of 15 encoded packets, u 1 , u 3 , u 4 , u 6 , u 7 , p 2 , p 4 , p 5 , p 7 , Gaussian. As a step of the erasing method, the reception success packet and the reception failure packet are first exchanged.
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
 この問題を解決する為に従来の様な検査行列ではなく、生成行列を用いて復号計算し、(i)受信成功したパケットのみを用いて復号する手法、(ii)情報パケットの内、消失したパケットに関連する受信成功パケットのみを用いて復号する手法、(iii)受信成功したパケット数が情報パケット数×αを上限としそれ以上は復号計算対象としない手法、を提案する。 In order to solve this problem, instead of the conventional check matrix, decoding calculation is performed using a generator matrix, (i) a method of decoding using only successfully received packets, and (ii) information packets are lost We propose a method of decoding using only successful reception packets related to packets, and (iii) a method in which the number of successfully received packets is the upper limit of the number of information packets × α and is not subject to decoding calculation.
 まずは(i)受信成功したパケットのみを用いて復号する手法を説明する。
[本発明の復号法1]
 本発明では復号の為に(2)式に示す検査行列ではなく(1)式に示す生成行列を用いる。上記にて説明したように符号化パケットvはv=u・Gにより生成される。さらに詳細に説明すると、パリティパケットp1、p2、…、pmは、情報パケットu1、u2、…、ukの一部を加算して生成されている。分かり易く説明する為に式(1)の各行に対応する情報パケットを以下の様に記述し式(3)とする。
 例えばp1=u1+u2+u4であり、他のパリティパケットも同様に計算する。つまり、パリティパケットは情報パケットから生成できるものである為、この特性を復号に適用する。
Figure JPOXMLDOC01-appb-I000011
 今、受信機20において受信成功パケットが符号化パケット15パケット中9パケットのu1,u3,u4,u6,u7,p2,p4,p5,p7とし、消失したパケットをu2,u5,p1,p3,p4,p8とする。
First, (i) a method of decoding using only successfully received packets will be described.
[Decoding method 1 of the present invention]
In the present invention, the generator matrix shown in the equation (1) is used for decoding instead of the parity check matrix shown in the equation (2). As described above, the encoded packet v is generated by v = u · G. In more detail, parity packets p 1, p 2, ..., p m , the information packet u 1, u 2, ..., are generated by adding a portion of u k. For easy understanding, the information packet corresponding to each row of the equation (1) is described as follows and is represented by the equation (3).
For example, p 1 = u 1 + u 2 + u 4 , and other parity packets are calculated in the same manner. That is, since the parity packet can be generated from the information packet, this characteristic is applied to decoding.
Figure JPOXMLDOC01-appb-I000011
Now, in the receiver 20, the successful reception packet is 9 out of 15 encoded packets u 1 , u 3 , u 4 , u 6 , u 7 , p 2 , p 4 , p 5 , p 7, and lost packets. Are u 2 , u 5 , p 1 , p 3 , p 4 , p 8 .
 処理の手順を説明する為に、四角枠×印を消失したパケットとして(4)式の様に生成行列Gを示す。
Figure JPOXMLDOC01-appb-I000012
 ガウス消去法のステップとして、まず受信成功パケットと消失パケットに対応する列の入れ替えを行う。
Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015
In order to explain the processing procedure, the generator matrix G is shown as the equation (4) as a packet in which the square frame × mark is lost.
Figure JPOXMLDOC01-appb-I000012
As a step of the Gaussian elimination method, first, the columns corresponding to the successful reception packet and the lost packet are exchanged.
Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019
 一方、i列目のi行目に1が無かった場合、i行目に1がある列とi列を入れ替える。その後入れ替えたi列目は固定して、他の列でi行目に1が存在する列に対し、入れ替えたi列を列単位で加算する。同時に列に対応する受信パケットの値も加算し新たに列に対応する値として保存する。例えば以下の様になる。

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022
On the other hand, if there is no 1 in the i-th row and the i-th row, the column having the 1 in the i-th row and the i-th column are switched. Thereafter, the replaced i-th column is fixed, and the replaced i-column is added in units of columns to the column where 1 exists in the i-th row in the other columns. At the same time, the value of the received packet corresponding to the column is added and stored as a new value corresponding to the column. For example:

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024

Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024

Figure JPOXMLDOC01-appb-I000025
 このように、実施の形態1では、受信成功したパケットのみを用い、消失したパケットを復号するためだけの計算に限定したため、少ない計算量で消失パケットを復号する事ができる。例えば、パケット誤り率PER(Packet Error Rate)はPER=10-2程度を想定する事が多く、情報パケットを100パケットとした場合でも、平均1パケット程度しか消失しないため計算量は大幅に削減する事ができる。 As described above, in the first embodiment, since only the packet that has been successfully received is used and the calculation is limited to decoding the lost packet, the lost packet can be decoded with a small amount of calculation. For example, the packet error rate PER (Packet Error Rate) is often assumed to be about PER = 10 −2 , and even when information packets are set to 100 packets, only about 1 packet is lost on average, so the amount of calculation is greatly reduced. I can do things.
 以上説明したように、実施の形態1の復号装置によれば、伝送路上で発生する伝送誤りを訂正するための誤り訂正符号の復号を行う復号装置において、検査行列に代えて生成行列を用いて復号する消失訂正復号部を備えたので、復号計算の計算量を削減する事ができる。 As described above, according to the decoding apparatus of Embodiment 1, in a decoding apparatus that decodes an error correction code for correcting a transmission error that occurs on a transmission path, a generator matrix is used instead of a check matrix. Since the erasure correction decoding unit for decoding is provided, the amount of decoding calculation can be reduced.
 また、実施の形態1の復号装置によれば、消失訂正復号部は、受信成功したパケットとこのパケットに対応する検査行列の部分行列のみを用いて復号計算を行うようにしたので、復号計算の計算量を削減する事ができる。 Further, according to the decoding apparatus of the first embodiment, the erasure correction decoding unit performs the decoding calculation using only the packet that has been successfully received and the partial matrix of the check matrix corresponding to this packet. The amount of calculation can be reduced.
 また、実施の形態1の復号装置によれば、消失訂正復号部は、受信成功したパケットに対応する生成行列の列または行を並べ替えて、受信成功したパケットに対応する部分行列を構成し、消失したパケットに対応する行列に関しては削除した上で復号計算を行うようにしたので、復号計算の計算量を削減する事ができる。 Further, according to the decoding device of the first embodiment, the erasure correction decoding unit rearranges the columns or rows of the generation matrix corresponding to the successfully received packet, and configures the partial matrix corresponding to the successfully received packet, Since the matrix corresponding to the lost packet is deleted and the decoding calculation is performed, the calculation amount of the decoding calculation can be reduced.
実施の形態2.
Figure JPOXMLDOC01-appb-I000026
 そこで、更に計算量を削減する為に(ii)情報パケットの内、消失したパケットに関連する受信成功パケットのみを用いて復号する手法を実施の形態2として説明する。
Embodiment 2. FIG.
Figure JPOXMLDOC01-appb-I000026
Therefore, in order to further reduce the amount of calculation, (ii) a method of decoding using only reception success packets related to lost packets among information packets will be described as a second embodiment.
[本発明の復号法2]
Figure JPOXMLDOC01-appb-I000027
 これに対し、本発明の復号法2では、復号法1と同様に生成行列Gを用いて、受信成功パケットと消失パケットを式(4)の様に対応付ける。
 本発明の復号法1との違いはこの後受信成功パケットと消失パケットに対応する列の入れ替えを行わない事である。また、本発明の復号法2においては、情報パケットに対応する部分行列が対角行列になる既約標準形の生成行列を用いる必要がある。本発明の復号法2では(4)式から消失パケットに対応する列の要素を全て0にし、下記の行列G′を生成する。
Figure JPOXMLDOC01-appb-I000028
 このG′に対し列単位に行方向のガウス消去法を行う。手順としては左端から対角に計算を行い、受信成功パケットが符号化パケットの中でi番目のパケットの場合、i列目のi行目に確実に1がある為、i列目のi行目に1があるかどうかの確認を行わずに、i列目は固定して他の列でi行目に1が存在する列に対しi列を列単位で加算する。同時に列に対応する受信パケットの値も加算し新たに列に対応する値として保存する。
 一方、消失パケットが符号化パケットの中でi番目のパケットの場合、i列目のi行目に1が無い為、i列目のi行目に1があるかどうかの確認を行わずに、i行目に1がある列とi列を入れ替える。その後入れ替えたi列目は固定して、他の列でi行目に1が存在する列に対し、入れ替えたi列を列単位で加算する。同時に列に対応する受信パケットの値も加算し新たに列に対応する値として保存する。
[Decoding method 2 of the present invention]
Figure JPOXMLDOC01-appb-I000027
On the other hand, in the decoding method 2 of the present invention, similarly to the decoding method 1, the generation matrix G is used to associate the reception success packet and the lost packet as shown in Expression (4).
The difference from the decoding method 1 of the present invention is that the columns corresponding to successful reception packets and lost packets are not exchanged thereafter. Further, in the decoding method 2 of the present invention, it is necessary to use an irreducible standard generation matrix in which a partial matrix corresponding to an information packet is a diagonal matrix. In the decoding method 2 of the present invention, all the elements of the column corresponding to the lost packet are set to 0 from the equation (4), and the following matrix G ′ is generated.
Figure JPOXMLDOC01-appb-I000028
A Gaussian elimination method in the row direction is performed on this G ′ in units of columns. As a procedure, the calculation is performed diagonally from the left end, and when the successful reception packet is the i-th packet in the encoded packet, since there is definitely 1 in the i-th row, the i-th row in the i-th column Without checking whether or not there is 1 in the eye, the i-th column is fixed, and the i-th column is added in units of columns to the other column in which 1 exists in the i-th row. At the same time, the value of the received packet corresponding to the column is added and stored as a new value corresponding to the column.
On the other hand, if the lost packet is the i-th packet in the encoded packet, there is no 1 in the i-th row and no i-th row, so it is not checked whether there is a 1 in the i-th row. , The column with 1 in the i-th row is exchanged with the i-th column. Thereafter, the replaced i-th column is fixed, and the replaced i-column is added in units of columns to the column where 1 exists in the i-th row in the other columns. At the same time, the value of the received packet corresponding to the column is added and stored as a new value corresponding to the column.
 これを情報パケット数k個分繰り返す。結果下記G″を得る。
Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031
 これらの操作の本発明の復号法1との違いはi列目のi行目の1の有無を確認しない事と、受信成功パケットに対しては列の入れ替えを一切行わない事である。これによりガウス消去法における計算量が削減できる。
This is repeated for k information packets. As a result, the following G ″ is obtained.
Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031
The difference between these operations and the decoding method 1 of the present invention is that the presence / absence of 1 in the i-th row and the i-th row is not confirmed, and that no column replacement is performed for a reception success packet. Thereby, the calculation amount in the Gaussian elimination method can be reduced.
 以上説明したように、実施の形態2の復号装置によれば、消失訂正復号部は、情報パケット部分が対角行列で構成される既約標準形の生成行列を用い、受信成功したパケットに対応する生成行列の列または行を並べ替えずに、消失パケットに対応する列要素または行要素を0にした状態でガウス消去法を行う事により、受信成功したパケットに関する計算は行わず、消失したパケットを復号するための計算のみを行うようにしたので、さらに復号計算の計算量を削減する事ができる。 As described above, according to the decoding apparatus of the second embodiment, the erasure correction decoding unit uses an irreducible standard generation matrix whose information packet part is composed of a diagonal matrix, and supports packets that have been successfully received. By performing Gaussian elimination with the column element or row element corresponding to the lost packet set to 0 without rearranging the columns or rows of the generated matrix, the lost packet is not calculated without calculating the packet that has been successfully received. Since only the calculation for decoding is performed, the calculation amount of the decoding calculation can be further reduced.
実施の形態3.
 次に(iii)受信成功したパケット数が情報パケット数×αを上限としそれ以上は復号計算対象としない手法を実施の形態3として説明する。
 生成行列Gを用いる場合、情報パケットとパリティパケットの関係だけで復号出来る為、検査行列の様にH・vT=0を確認する必要が無い。従って、検査行列H全体を使って符号化パケットv全てを計算対象にする必要は無く、十分な受信成功パケット数があれば、それ以上のパケット数は計算対象から除外してもよいという効果がある。
 例えば情報パケット数5、パリティパケット数10、符号化パケット数15が送信機より送信され、受信機にて受信成功パケットがu1,u2,u4,u5,p1,p2,p3,p5,p6,p7,p8,p9,p10の13パケット、消失パケットがu3,p4の2パケットとする。処理の手順を説明する為に四角枠×印を消失したパケットとして(5)式の様に生成行列Gを示す。
Figure JPOXMLDOC01-appb-I000032
Embodiment 3 FIG.
Next, (iii) a third embodiment will be described as a method in which the number of successfully received packets is the upper limit of the number of information packets.times..alpha.
When the generation matrix G is used, since decoding can be performed only by the relationship between the information packet and the parity packet, it is not necessary to confirm H · v T = 0 as in the check matrix. Therefore, it is not necessary to use the entire check matrix H as a calculation target for all the encoded packets v. If there is a sufficient number of successful reception packets, the number of packets larger than that may be excluded from the calculation target. is there.
For example, the number of information packets 5, the number of parity packets 10, and the number of encoded packets 15 are transmitted from the transmitter, and the reception success packets are u 1 , u 2 , u 4 , u 5 , p 1 , p 2 , p. Assume that 13 packets of 3 , p 5 , p 6 , p 7 , p 8 , p 9 and p 10 and 2 lost packets are u 3 and p 4 packets. In order to explain the processing procedure, a generator matrix G is shown as a formula (5) as a packet in which the square frame × mark is lost.
Figure JPOXMLDOC01-appb-I000032
 受信成功パケットに対する、計算対象の上限のパケット数をα=2.0として情報パケット数×α=10個とする。この場合左から数えてp7までで10個である為、p8,p9,p10とそれらのパケットに対応する生成行列Gの列を計算対象外とする。なお、受信成功パケットがこの上限のパケット数以下の場合は全ての受信成功パケットを計算対象とする。
Figure JPOXMLDOC01-appb-I000033
 このような構成とする事により、情報パケットに対する符号化パケット数が多い場合でも必要最小限の計算量で復号する事が出来る。
 このαの値は情報パケット数や消失誤り訂正符号の訂正能力により異なる。例えばパケット誤り率を10-8以下にしたいときは、図2に示す値をとるが、この数字は情報パケット数、目標性能や符号性能により適宜変更すればよく、任意の値を設定できる。
The upper limit number of packets to be calculated for a successful reception packet is α = 2.0, and the number of information packets × α = 10. In this case, since it is 10 from the left to p 7 , p 8 , p 9 , p 10 and the columns of the generator matrix G corresponding to those packets are excluded from the calculation target. If the number of successful reception packets is equal to or less than the upper limit number of packets, all successful reception packets are subject to calculation.
Figure JPOXMLDOC01-appb-I000033
With such a configuration, even when the number of encoded packets for an information packet is large, decoding can be performed with a minimum amount of calculation.
The value of α varies depending on the number of information packets and the correction capability of the erasure error correction code. For example, when it is desired to set the packet error rate to 10 −8 or less, the value shown in FIG. 2 is taken. This number may be appropriately changed according to the number of information packets, the target performance, and the code performance, and an arbitrary value can be set.
 以上説明したように、実施の形態3の復号装置によれば、消失訂正復号部は、復号に必要な受信成功パケット数を情報パケット数以上で上限値を設け、上限値を超える受信成功パケットを復号計算の対象外とするようにしたので、さらに復号計算の計算量を削減する事ができる。 As described above, according to the decoding apparatus of the third embodiment, the erasure correction decoding unit sets an upper limit for the number of successful reception packets necessary for decoding to be equal to or greater than the number of information packets, and receives successful reception packets exceeding the upper limit. Since it is excluded from the decryption calculation target, the calculation amount of the decryption calculation can be further reduced.
 なお、上記の各実施の形態における説明では、生成行列、検査行列の表示方法に応じて列及び行の表現で説明してきたが、場合によっては転置した行列で表示する場合もあるので、その表示方法により列及び行の説明も対応して変化する場合もある。 In the description of each of the above embodiments, column and row representations have been described according to the display method of the generator matrix and the check matrix. However, in some cases, a transposed matrix may be displayed. Depending on the method, the column and row descriptions may change correspondingly.
 また、ここまでの表現で処理単位をパケットと表現したが、パケットの名称にこだわらず、あるビットの塊で処理されるデータであれば何にでも適用でき、ブロックという呼ばれ方をする場合もある。 In addition, the processing unit has been expressed as a packet in the expression so far, but it can be applied to any data processed in a lump of bits regardless of the name of the packet, and it may be called a block. is there.
 以上説明した符号化/復号方法は、パケット単位やブロック単位で誤り訂正する消失訂正符号以外にも、ビット単位に検査行列と対応させる物理レイヤ等の誤り訂正符号でも適用可能である。 The encoding / decoding method described above can be applied to an error correction code such as a physical layer corresponding to a check matrix in bit units in addition to an erasure correction code in which error correction is performed in packet units or block units.
 さらに、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Furthermore, within the scope of the present invention, the present invention can be freely combined with each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
 この発明に係る復号装置は、検査行列に代えて生成行列を用いて復号計算を行う消失訂正復号部を備えたので、復号計算の計算量を削減する事ができ、低価格の通信システムに用いるのに適している。 Since the decoding apparatus according to the present invention includes the erasure correction decoding unit that performs decoding calculation using a generation matrix instead of a check matrix, the amount of decoding calculation can be reduced, and the decoding apparatus is used for a low-cost communication system. Suitable for
 10 送信機、11 パケット生成部、12 消失訂正符号化部、13 送信部、20 受信機、21 受信部、22 消失訂正復号部、23 情報ビット再生部、30 通信路。 10 transmitter, 11 packet generation unit, 12 erasure correction coding unit, 13 transmission unit, 20 receiver, 21 reception unit, 22 erasure correction decoding unit, 23 information bit reproduction unit, 30 communication path.

Claims (5)

  1.  伝送路上で発生する伝送誤りを訂正するための誤り訂正符号の復号を行う復号装置において、
     検査行列に代えて生成行列を用いて復号計算を行う消失訂正復号部を備えた事を特徴とする復号装置。
    In a decoding device that decodes an error correction code for correcting a transmission error that occurs on a transmission line,
    A decoding apparatus comprising an erasure correction decoding unit that performs decoding calculation using a generation matrix instead of a check matrix.
  2.  前記消失訂正復号部は、受信成功したパケットと当該パケットに対応する検査行列の部分行列のみを用いて復号計算を行う事を特徴とする請求項1記載の復号装置。 The decoding apparatus according to claim 1, wherein the erasure correction decoding unit performs decoding calculation using only a packet that has been successfully received and a partial matrix of a check matrix corresponding to the packet.
  3.  前記消失訂正復号部は、受信成功したパケットに対応する生成行列の列または行を並べ替えて、前記受信成功したパケットに対応する部分行列を構成し、消失したパケットに対応する行列に関しては削除した上で復号計算を行う事を特徴とする請求項1記載の復号装置。 The erasure correction decoding unit rearranges the columns or rows of the generation matrix corresponding to the successfully received packet to form a partial matrix corresponding to the successfully received packet, and deleted the matrix corresponding to the lost packet. The decoding apparatus according to claim 1, wherein the decoding calculation is performed as described above.
  4.  前記消失訂正復号部は、情報パケット部分が対角行列で構成される既約標準形の生成行列を用い、受信成功したパケットに対応する生成行列の列または行を並べ替えずに、消失パケットに対応する列要素または行要素を0にした状態でガウス消去法を行う事により、前記受信成功したパケットに関する計算は行わず、前記消失したパケットを復号するための計算のみを行う事を特徴とする請求項1記載の復号装置。 The erasure correction decoding unit uses an irreducible standard generation matrix in which the information packet part is composed of a diagonal matrix, and converts the generation matrix corresponding to the successfully received packet into an erasure packet without rearranging the columns or rows of the generation matrix. By performing Gaussian elimination with the corresponding column element or row element set to 0, the calculation for the successfully received packet is not performed, and only the calculation for decoding the lost packet is performed. The decoding device according to claim 1.
  5.  前記消失訂正復号部は、復号に必要な受信成功パケット数を情報パケット数以上で上限値を設け、当該上限値を超える受信成功パケットを復号計算の対象外とする事を特徴とする請求項1記載の復号装置。 The erasure correction decoding unit sets an upper limit for the number of successful reception packets necessary for decoding to be equal to or greater than the number of information packets, and excludes successful reception packets exceeding the upper limit from being subject to decoding calculation. The decoding device described.
PCT/JP2014/079455 2013-11-07 2014-11-06 Decoding device WO2015068765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-231076 2013-11-07
JP2013231076A JP2017005285A (en) 2013-11-07 2013-11-07 Decoder

Publications (1)

Publication Number Publication Date
WO2015068765A1 true WO2015068765A1 (en) 2015-05-14

Family

ID=53041541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079455 WO2015068765A1 (en) 2013-11-07 2014-11-06 Decoding device

Country Status (2)

Country Link
JP (1) JP2017005285A (en)
WO (1) WO2015068765A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107081A1 (en) * 2004-04-28 2005-11-10 Mitsubishi Denki Kabushiki Kaisha Retransmission control method and communication device
WO2007072721A1 (en) * 2005-12-20 2007-06-28 Mitsubishi Electric Corporation Inspection matrix generation method, encoding method, communication device, communication system, and encoder
US20110060960A1 (en) * 2008-05-14 2011-03-10 Zte Corporation Decoding method and device for low density generator matrix codes
JP5216099B2 (en) * 2007-12-07 2013-06-19 ゼットティーイー コーポレイション Encoding method and apparatus for low-density generation matrix code, and decoding method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107081A1 (en) * 2004-04-28 2005-11-10 Mitsubishi Denki Kabushiki Kaisha Retransmission control method and communication device
WO2007072721A1 (en) * 2005-12-20 2007-06-28 Mitsubishi Electric Corporation Inspection matrix generation method, encoding method, communication device, communication system, and encoder
JP5216099B2 (en) * 2007-12-07 2013-06-19 ゼットティーイー コーポレイション Encoding method and apparatus for low-density generation matrix code, and decoding method and apparatus
US20110060960A1 (en) * 2008-05-14 2011-03-10 Zte Corporation Decoding method and device for low density generator matrix codes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNITAKA MUROTSU ET AL., THE 27TH SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (SITA2004) YOKOSHU, 17 December 2004 (2004-12-17), pages 271 - 274 *

Also Published As

Publication number Publication date
JP2017005285A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US10680651B2 (en) Signature-enabled polar encoder and decoder
JP5863200B2 (en) Encoding and decoding using elastic codes with flexible source block mapping
EP1603268B1 (en) Quantum key distribution method and communication apparatus
CN105453466B (en) Rate matching method and device for polarization code
JP5875713B2 (en) Transmitter and receiver, and coding rate variable method
WO2004028074A1 (en) Quantum key distribution method and communication device
US8683301B2 (en) Error correction coding for recovering multiple packets in a group in view of limited bandwidth
US20140289590A1 (en) Systems, methods, apparatus and computer program products for highly reliable file delivery using compound and braided fec encoding and decoding
US8612842B2 (en) Apparatus for generating a checksum
EP3416332B1 (en) Quantum communication device, quantum communication system and quantum communication method
US9131393B2 (en) Method for optimizing the resources of a data transmission at the level of the MAC layer and device implementing the method
US9059735B2 (en) Decoding method and decoding device
JP6504162B2 (en) Terminal, packet decoding method, and storage medium storing program
WO2015068765A1 (en) Decoding device
US20130198582A1 (en) Supercharged codes
JP2017175495A (en) Transmitter, receiver, communication system, method and program
JP5595260B2 (en) Receiving machine
CN108737075B (en) Method, device and system for generating shared key
JP2010033181A (en) Error correction circuit and semiconductor memory system
CN107666367B (en) Coding method and device
JP2015032885A (en) Coding apparatus and decoding apparatus
US20220345338A1 (en) Apparatus and method for transmitting a bit in addition to a plurality of payload data symbols of a communication protocol, and apparatus and method for decoding a data signal
JP2010136279A (en) Encoding device, decoding device, method of creating generator matrix, and computer program
JP2004312684A (en) Large-capacity packet transmitter in wan, transmitting and receiving method thereof, and transceiving method thereof
RU2575399C1 (en) Method of decoding ldpc codes and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14860024

Country of ref document: EP

Kind code of ref document: A1