WO2015068503A1 - Polymer, method for producing same, and adhesive composition - Google Patents

Polymer, method for producing same, and adhesive composition Download PDF

Info

Publication number
WO2015068503A1
WO2015068503A1 PCT/JP2014/076343 JP2014076343W WO2015068503A1 WO 2015068503 A1 WO2015068503 A1 WO 2015068503A1 JP 2014076343 W JP2014076343 W JP 2014076343W WO 2015068503 A1 WO2015068503 A1 WO 2015068503A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
dopa
tyrosine
acid
adhesive composition
Prior art date
Application number
PCT/JP2014/076343
Other languages
French (fr)
Japanese (ja)
Inventor
大作 金子
思乾 王
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to JP2015546347A priority Critical patent/JP6461001B2/en
Publication of WO2015068503A1 publication Critical patent/WO2015068503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/046Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids

Definitions

  • the present invention relates to a polymer, a production method thereof, and an adhesive composition.
  • Cyanoacrylate-based instant adhesives and epoxy-based adhesives are widely known as general adhesives. These adhesives are synthesized mainly from fossil fuel-derived raw materials, and resource depletion has become a problem in recent years. For this reason, a polymer composition using biomass abundant in nature has been studied.
  • the present inventors are also advancing various studies on bioplastic adhesives having both biodegradability, high heat resistance and high adhesiveness.
  • a copolymer obtained by subjecting a monomer constituting hydrocaffeic acid or a derivative thereof to a ester having a carboxyl group and a hydroxyl group capable of ester linkage in a solvent-free transesterification reaction under an esterification catalyst is a hot melt type.
  • the adhesive strength when used in the above shows a value that surpasses the epoxy resin that is said to be the strongest industrial adhesive (see Patent Document 1).
  • the problem to be solved is that the biocompatibility of conventional adhesives used for osteosynthesis is not sufficient.
  • the polymer according to the present invention comprises any one or both selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid, and 3,4-dihydroxyphenylalanine and 4-hydroxyphenylalanine.
  • One or both selected from among them are ester copolymerized.
  • the polymer according to the present invention is preferably characterized by introducing a long-chain alkyl group.
  • the polymer production method according to the present invention is a polymer production method described above, characterized in that ester copolymerization is performed using acetic anhydride and apatite as a catalyst.
  • the polymer production method according to the present invention is preferably characterized in that the apatite is hydroxyapatite.
  • the adhesive composition according to the present invention contains the above polymer. *
  • the polymer according to the present invention comprises any one or both selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid, and 3,4-dihydroxyphenylalanine and 4-hydroxyphenylalanine. Since one or both of them are ester copolymerized, they have high adhesive strength and alcohol solubility, particularly ethanol solubility. In addition, since the polymer production method according to the present invention is ester copolymerized using acetic anhydride and apatite as a catalyst, the production process is simple. Moreover, since the adhesive composition according to the present invention contains the above-described polymer, it is excellent in biocompatibility when used as an adhesive in a living body.
  • FIG. 1 is a diagram showing an example of a reaction scheme of a polymer in which a long chain alkyl group is introduced into the polymer.
  • FIG. 2 is a diagram showing an example of a reaction scheme for copolymerizing 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxyphenylalanine.
  • FIG. 3 shows an example of a reaction scheme for copolymerizing 3,4-dihydroxycinnamic acid and 4-hydroxyphenylalanine.
  • FIG. 4 is a view showing the result of structural analysis of Poly (DOPA-co-3HPPA) HP of Example 1 by infrared spectroscopy.
  • FIG. 5 is a diagram different from FIG.
  • FIG. 4 showing the result of structural analysis of Poly (DOPA-co-3HPPA) IV by infrared spectroscopy.
  • FIG. 6 is a diagram further different from FIG. 5 showing the result of structural analysis of Poly (DOPA-co-3HPPA) IV by infrared spectroscopy.
  • FIG. 7 is a diagram showing the result of structural analysis of Poly (DHHCA-co-Tyrosine) by infrared spectroscopy.
  • FIG. 8 is a diagram different from FIG. 7 showing the result of structural analysis of Poly (DHHCA-co-Tyrosine) by infrared spectroscopy.
  • FIG. 9 is a view different from FIG. 8 showing the result of structural analysis of Poly (DHHCA-co-Tyrosine) by infrared spectroscopy.
  • FIG. 10 is a diagram showing the adhesion strength results of glass-glass bonded with hot melt for the polymer of Example 1.
  • FIG. 11 is a diagram showing the adhesion strength results obtained by adhering glass-glass with the polymer of Example 1 dissolved in ethanol.
  • FIG. 12 is a graph showing the results of examining the change in decomposition rate over time for the polymers of Example 1 and Example 4.
  • the polymer according to the present embodiment includes any one or both selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid, 3,4-dihydroxyphenylalanine and 4 —Ester copolymerization of one or both selected from hydroxyphenylalanine.
  • the copolymerization may be any of alternating copolymerization, random copolymerization, block copolymerization, and graft copolymerization.
  • polymers that can be abbreviated as Poly include 3,4-dihydroxyphenyl alanine (abbreviated as DOPA) and 3- (3-hydroxyphenyl) propionic acid (3- It is a copolymer of (3-Hydroxyphenyl) propionic acid (abbreviation 3HPPA).
  • DOPA is an adhesive amino acid contained in mussels and can be extracted.
  • DOPA as a raw material monomer can be obtained as a commercially available reagent.
  • 3HPPA is abundant in berries and can be extracted.
  • 3HPPA as a raw material monomer can be obtained as a commercially available reagent.
  • a polymer that can be abbreviated as Poly is 3,4-dihydroxyhydrocinnamic acid (abbreviation DHCHA) and tyrosin (Tyrosine: 4-Hydroxyphenil-alanine tyrosine).
  • DHCHA 3,4-dihydroxyhydrocinnamic acid
  • tyrosin Teyrosine: 4-Hydroxyphenil-alanine tyrosine
  • Copolymer DHHCA can be extracted from cinnamon.
  • DHHCA as a raw material monomer can be obtained as a commercially available reagent.
  • Tyrosin can be extracted from potatoes.
  • tyrosin as a raw material monomer can be obtained as a commercially available reagent.
  • a polymer that can be abbreviated as Poly is a copolymer of DHHCA and DOPA.
  • a polymer that can be abbreviated as Poly (3HPPA-co- Tyrosine) is a copolymer of 3HPPA and Tyrosine.
  • alcohol solubility is imparted by the presence of the amino group of DOPA or Tyrosine.
  • a polymer in which a long-chain alkyl group is introduced into the polymer according to this embodiment has an aromatic rigid main chain
  • water molecules are likely to enter the gaps in the polymer structure.
  • the water resistance in other words, the decomposability can be controlled, and the polymer is decomposed into oligomers and monomers having low toxicity.
  • a long-chain carboxylic acid such as decanoic acid, lauric acid or stearic acid can be suitably used.
  • An example of a reaction scheme of a polymer in which a long-chain alkyl group is introduced into the polymer according to this embodiment is shown in FIG.
  • any of the polymers according to the present embodiment can be suitably used as an adhesive composition.
  • these polymers are alcohol-soluble, especially ethanol-soluble, they can be handled at room temperature when dissolved in ethanol and used as an adhesive, for example, when bones are joined. There are few, and it is excellent in biocompatibility (it may be called biocompatibility).
  • any polymer in which a long-chain alkyl group is introduced into the polymer according to this embodiment can be suitably used as an adhesive composition.
  • These polymers can be expected not to be decomposed in vivo for a long period of time, for example, when used as an adhesive when joining bones.
  • the method for producing a polymer according to the present embodiment is a method for producing the polymer described above, and is any one selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid.
  • One or both and one or both selected from 3,4-dihydroxyphenylalanine and 4-hydroxyphenylalanine are ester copolymerized using acetic anhydride and apatite as catalysts.
  • the copolymerization method a bulk polymerization method or a solution polymerization method is preferable, and among these, the bulk polymerization method is more preferable.
  • the raw material monomer is acetylated as necessary and then esterified.
  • the reaction temperature is preferably 100 to 300 ° C, more preferably 150 to 200 ° C.
  • the reaction time is preferably 3 to 30 hours, more preferably 12 to 24 hours.
  • An example of a reaction scheme for copolymerizing 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxyphenylalanine is shown in FIG. 2, and a reaction for copolymerizing 3,4-dihydroxycinnamic acid and 4-hydroxyphenylalanine. Examples of schemes are illustrated in FIG.
  • the amount of acetic anhydride and apatite used as the esterification catalyst is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the total amount of raw material monomers.
  • hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) as the apatite is a preferred embodiment.
  • the polymer production method according to this embodiment can obtain a polymer by a simple one-point-to-step method.
  • Example 2 Production of Poly (DHHCA-co-Tyrosine) 3.6 g of 3,4-dihydroxycinnamic acid (manufactured by Sigma-Aldrich, product code: 102601) and 13.3 g of L-Tyrosine (manufactured by Wako, product code: WEG2496) 10 g of acetic anhydride and 0.2 g of hydroxyapatite (product code: 59272-1606) are added to the mixture and heated at normal pressure at a temperature of 150 ° C. for 2 hours to give 3,4-dihydroxycinnamic acid and L -Tyrosine was acetylated.
  • Example 3 Manufacture of Poly (DOPA-co-Tyrosine) 3.6 g of 3, (3,4-dihydroxyphenyl) -L-alanine (DOPA) (manufactured by Tokyo Chemical Industry Co., Ltd., product code: MFCD00002598) and L-Tyrosine (Wako) (Product code: WEG2496) Add 1 g of acetic anhydride and 0.2 g of hydroxyapatite (product code: 59272-1606) to 13.3 g of mixture and heat at normal pressure and 150 ° C for 2 hours Then, 3, (3,4-dihydroxyphenyl-L-alanine (DOPA) and L-Tyrosine were acetylated. Subsequently, the mixture was further heated at a temperature of 180 ° C. for
  • Example 4 Example of introduction of alkyl group 0.05 g of lauric acid (product code: 81071-9001) as a surfactant is added to 1 g of each polymer produced in Example 1, and vacuuming conditions of 500 Pa or less Under heating at 180 ° C. for 5 hours, ester copolymerization was carried out.
  • lauric acid product code: 81071-9001
  • FIG. 11 shows the result of bonding glass-glass by dissolving 1 g of the polymer of Example 1 in 5 g of ethanol. 10 and 11, Displacement on the horizontal axis indicates the displacement length of the adhesion site.
  • the adhesive strength is in the range of 10 to 15 MPa in the case of hot melt, and in the range of 1 to 10 MPa in the case of ethanol dissolution.
  • FIG. 12 shows the results of examining the change in the decomposition rate over time for the polymer of Example 4. For comparison, the results of the polymer of Example 1 are also shown. It can be seen that the decrease rate due to decomposition of the polymer of Example 4 is significantly suppressed as compared with the polymer of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Surgery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyamides (AREA)

Abstract

Provided is a polymer which has a high adhesion and is alcohol soluble, in particular, ethanol soluble. This polymer is produced by copolymerizing any one or both of a 3-(3-hydroxyphenyl)propionic acid and a 3,4-dihydroxy cinnamic acid, and any one or both of a 3,4-dihydroxyphenylalanine and a 4-hydroxyphenylalanine. Acetic anhydride and apatite are used as a catalyst.

Description

ポリマーおよびその製造方法ならびに接着組成物Polymer, method for producing the same, and adhesive composition
 本発明は、ポリマーおよびその製造方法ならびに接着組成物に関する。 The present invention relates to a polymer, a production method thereof, and an adhesive composition.
 シアノアクリレート系の瞬間接着剤やエポキシ系接着剤等が一般的な接着剤として広く知られている。
 これらの接着剤は主に化石燃料由来の原料から合成されたものであり、資源の枯渇が近年の課題となっている。このため、自然界に豊富なバイオマスを利用したポリマー組成物の検討が進められている。
Cyanoacrylate-based instant adhesives and epoxy-based adhesives are widely known as general adhesives.
These adhesives are synthesized mainly from fossil fuel-derived raw materials, and resource depletion has become a problem in recent years. For this reason, a polymer composition using biomass abundant in nature has been studied.
 本発明者らも、生分解性、高耐熱性および高接着性を併せもつバイオプラスチック接着剤の検討を種々進めている。
 この中で、ヒドロカフェ酸またはその誘導体を構成するモノマーとエステル結合可能なカルボキシル基および水酸基を有するモノマーを、エステル化触媒下で無溶媒エステル交換反応して得られる共重合体は、ホットメルトタイプで使用するときの接着強度が、ガラス・炭素・鉄を用いたずり剥離試験において、工業用最強の接着剤と言われるエポキシ樹脂を凌駕する値を示すものである(特許文献1参照)。
The present inventors are also advancing various studies on bioplastic adhesives having both biodegradability, high heat resistance and high adhesiveness.
Among these, a copolymer obtained by subjecting a monomer constituting hydrocaffeic acid or a derivative thereof to a ester having a carboxyl group and a hydroxyl group capable of ester linkage in a solvent-free transesterification reaction under an esterification catalyst is a hot melt type. In the shear peeling test using glass, carbon, and iron, the adhesive strength when used in the above shows a value that surpasses the epoxy resin that is said to be the strongest industrial adhesive (see Patent Document 1).
 ところで、生体の骨の接合について、通常の骨折の場合ギブスで固定し、また複雑な骨折の場合は一度金属類で固定し、治癒後にそれらを取り除く手術が施されている。
 アパタイト(人工骨)と骨の接合に有効な接着剤は無く、ポリメタクリル酸メチル等の樹脂を重合させて接着する方法が主に用いられている(非特許文献1参照)。但し、この場合、約80℃の反応熱を伴うため、周辺の細胞が壊死するおそれがある。
By the way, with regard to the joining of bones in a living body, in the case of a normal fracture, it is fixed with a cast, and in the case of a complicated fracture, it is fixed once with a metal, and an operation for removing them after healing is performed.
There is no adhesive effective for joining apatite (artificial bone) and bone, and a method of polymerizing and bonding a resin such as polymethyl methacrylate is mainly used (see Non-Patent Document 1). However, in this case, the reaction heat of about 80 ° C. accompanies, so that the surrounding cells may be necrotized.
国際公開番号W02012/102174公報International Publication Number W02012 / 102174
 解決しようとする問題点は、骨接合に用いられる従来の接着剤の生体適合性が十分でない点である。 The problem to be solved is that the biocompatibility of conventional adhesives used for osteosynthesis is not sufficient.
 本発明に係るポリマーは、3-(3-ヒドロキシフェニル)プロピオン酸および3,4-ジヒドロキシ桂皮酸のうちからから選ばれるいずれか1つまたは双方と、3,4-ジヒドロキシフェニルアラニンおよび4-ヒドロキフェニルアラニンのうちから選ばれるいずれか1つまたは双方をエステル共重合化してなる。 The polymer according to the present invention comprises any one or both selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid, and 3,4-dihydroxyphenylalanine and 4-hydroxyphenylalanine. One or both selected from among them are ester copolymerized.
 また、本発明に係るポリマーは、好ましくは、長鎖アルキル基を導入してなることを特徴とする。  In addition, the polymer according to the present invention is preferably characterized by introducing a long-chain alkyl group. *
 また、本発明に係るポリマーの製造方法は、上記のポリマーの製造方法であって、無水酢酸およびアパタイトを触媒としてエステル共重合化することを特徴とする。 The polymer production method according to the present invention is a polymer production method described above, characterized in that ester copolymerization is performed using acetic anhydride and apatite as a catalyst.
 また、本発明に係るポリマーの製造方法は、好ましくは、前記アパタイトがヒドロキシアパタイトであることを特徴とする。 The polymer production method according to the present invention is preferably characterized in that the apatite is hydroxyapatite.
 また、本発明に係る接着組成物は、上記のポリマーを含有する。  The adhesive composition according to the present invention contains the above polymer. *
 本発明に係るポリマーは、3-(3-ヒドロキシフェニル)プロピオン酸および3,4-ジヒドロキシ桂皮酸のうちからから選ばれるいずれか1つまたは双方と、3,4-ジヒドロキシフェニルアラニンおよび4-ヒドロキフェニルアラニンのうちから選ばれるいずれか1つまたは双方をエステル共重合化したものであるので、高い接着力を有するとともに、アルコール溶解性、特に、エタノール溶解性を有する。
 また、本発明に係るポリマーの製造方法は、無水酢酸およびアパタイトを触媒としてエステル共重合化するので、製造工程が簡易である。
 また、本発明に係る接着組成物は、上記のポリマーを含有するため、接着剤として生体に用いるときに、生体適合性に優れる。
The polymer according to the present invention comprises any one or both selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid, and 3,4-dihydroxyphenylalanine and 4-hydroxyphenylalanine. Since one or both of them are ester copolymerized, they have high adhesive strength and alcohol solubility, particularly ethanol solubility.
In addition, since the polymer production method according to the present invention is ester copolymerized using acetic anhydride and apatite as a catalyst, the production process is simple.
Moreover, since the adhesive composition according to the present invention contains the above-described polymer, it is excellent in biocompatibility when used as an adhesive in a living body.
図1はポリマーに長鎖アルキル基を導入したポリマーの反応スキームの一例を示す図である。FIG. 1 is a diagram showing an example of a reaction scheme of a polymer in which a long chain alkyl group is introduced into the polymer. 図2は3-(3-ヒドロキシフェニル)プロピオン酸と3,4-ジヒドロキシフェニルアラニンを共重合化する反応スキームの例を示す図である。FIG. 2 is a diagram showing an example of a reaction scheme for copolymerizing 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxyphenylalanine. 図3は3,4-ジヒドロキシ桂皮酸と4-ヒドロキフェニルアラニンを共重合化する反応スキームの例を示す図である。FIG. 3 shows an example of a reaction scheme for copolymerizing 3,4-dihydroxycinnamic acid and 4-hydroxyphenylalanine. 図4は実施例1のPoly(DOPA-co-3HPPA) について赤外分光法で構造解析した結果を示す図である。FIG. 4 is a view showing the result of structural analysis of Poly (DOPA-co-3HPPA) HP of Example 1 by infrared spectroscopy. 図5はPoly(DOPA-co-3HPPA) について赤外分光法で構造解析した結果を示す図4とは別の図である。FIG. 5 is a diagram different from FIG. 4 showing the result of structural analysis of Poly (DOPA-co-3HPPA) IV by infrared spectroscopy. 図6はPoly(DOPA-co-3HPPA) について赤外分光法で構造解析した結果を示す図5とはさらに別の図である。FIG. 6 is a diagram further different from FIG. 5 showing the result of structural analysis of Poly (DOPA-co-3HPPA) IV by infrared spectroscopy. 図7はPoly(DHHCA-co-Tyrosine) について赤外分光法で構造解析した結果を示す図である。FIG. 7 is a diagram showing the result of structural analysis of Poly (DHHCA-co-Tyrosine) by infrared spectroscopy. 図8はPoly(DHHCA-co-Tyrosine) について赤外分光法で構造解析した結果を示す図7とは別の図である。FIG. 8 is a diagram different from FIG. 7 showing the result of structural analysis of Poly (DHHCA-co-Tyrosine) by infrared spectroscopy. 図9はPoly(DHHCA-co-Tyrosine) について赤外分光法で構造解析した結果を示す図8とはさらに別の図であるFIG. 9 is a view different from FIG. 8 showing the result of structural analysis of Poly (DHHCA-co-Tyrosine) by infrared spectroscopy. 図10は実施例1のポリマーについて、ガラスーガラスをホットメルトで接着した接着強度結果を示す図である。FIG. 10 is a diagram showing the adhesion strength results of glass-glass bonded with hot melt for the polymer of Example 1. 図11は、実施例1のポリマーをエタノールに溶解したものでガラスーガラスを接着した接着強度結果を示す図である。FIG. 11 is a diagram showing the adhesion strength results obtained by adhering glass-glass with the polymer of Example 1 dissolved in ethanol. 図12は実施例1および実施例4のポリマーについて、時間経過による分解率の変化を調べた結果を示す図である。FIG. 12 is a graph showing the results of examining the change in decomposition rate over time for the polymers of Example 1 and Example 4.
 本発明の実施の形態(以下、本実施の形態例という。)について、以下に説明する。 Embodiments of the present invention (hereinafter referred to as “examples of the present embodiment”) will be described below.
 本実施の形態例に係るポリマーは、3-(3-ヒドロキシフェニル)プロピオン酸および3,4-ジヒドロキシ桂皮酸のうちからから選ばれるいずれか1つまたは双方と、3,4-ジヒドロキシフェニルアラニンおよび4-ヒドロキフェニルアラニンのうちから選ばれるいずれか1つまたは双方をエステル共重合化してなる。 The polymer according to the present embodiment includes any one or both selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid, 3,4-dihydroxyphenylalanine and 4 —Ester copolymerization of one or both selected from hydroxyphenylalanine.
 共重合は、交互共重合、ランダム共重合、ブロック共重合およびグラフト共重合のうちのいずれであってもよい。
 例えば、Poly(DOPA-co-3HPPA)と略称することができるポリマーは、3,4-ジヒドロキシフェニルアラニン(3,4-Dihydroxyphenyl alanine:略称DOPA)と3-(3-ヒドロキシフェニル)プロピオン酸(3-(3-Hydroxyphenyl)propionic acid:略称3HPPA)の共重合体である。DOPAは、ムール貝などに含まれる接着性アミノ酸であり、抽出可能である。本実施の形態例において、原料モノマーとしてのDOPAは市販試薬として入手することができる。3HPPAはベリー類に豊富に含まれ、抽出可能である。本実施の形態例において、原料モノマーとしての3HPPAは市販試薬として入手することができる。
The copolymerization may be any of alternating copolymerization, random copolymerization, block copolymerization, and graft copolymerization.
For example, polymers that can be abbreviated as Poly (DOPA-co-3HPPA) include 3,4-dihydroxyphenyl alanine (abbreviated as DOPA) and 3- (3-hydroxyphenyl) propionic acid (3- It is a copolymer of (3-Hydroxyphenyl) propionic acid (abbreviation 3HPPA). DOPA is an adhesive amino acid contained in mussels and can be extracted. In this embodiment, DOPA as a raw material monomer can be obtained as a commercially available reagent. 3HPPA is abundant in berries and can be extracted. In this embodiment, 3HPPA as a raw material monomer can be obtained as a commercially available reagent.
 また、例えば、Poly(DHHCA-co-Tyrosine)と略称することができるポリマーは、3,4-ジヒドロキシ桂皮酸(3,4-Dihydroxyhydrocinnamic acid:略称DHHCA)とタイロジン(Tyrosine:4-Hydroxyphenil alanine チロシンともいう)の共重合体である。DHHCAは、シナモンから抽出可能である。本実施の形態例において、原料モノマーとしてのDHHCAは市販試薬として入手することができる。タイロジンは、じゃがいもから抽出可能である。本実施の形態例において、原料モノマーとしてのタイロジンは市販試薬として入手することができる。 For example, a polymer that can be abbreviated as Poly (DHHCA-co-Tyrosine) is 3,4-dihydroxyhydrocinnamic acid (abbreviation DHCHA) and tyrosin (Tyrosine: 4-Hydroxyphenil-alanine tyrosine). Copolymer). DHHCA can be extracted from cinnamon. In this embodiment, DHHCA as a raw material monomer can be obtained as a commercially available reagent. Tyrosin can be extracted from potatoes. In this embodiment, tyrosin as a raw material monomer can be obtained as a commercially available reagent.
  また、例えば、Poly(DHHCA-co-DOPA)と略称することができるポリマーは、DHHCAとDOPAの共重合体である。また、例えば、Poly(3HPPA-co- Tyrosine)と略称することができるポリマーは、3HPPAとTyrosineの共重合体である。 Also, for example, a polymer that can be abbreviated as Poly (DHHCA-co-DOPA) is a copolymer of DHHCA and DOPA. For example, a polymer that can be abbreviated as Poly (3HPPA-co- Tyrosine) is a copolymer of 3HPPA and Tyrosine.
 本実施の形態例に係るポリマーは、いずれも、DOPAまたはTyrosineのアミノ基の存在により、アルコール可溶性が付与される。 In any of the polymers according to this embodiment, alcohol solubility is imparted by the presence of the amino group of DOPA or Tyrosine.
 また、本実施の形態例に係るポリマーに長鎖アルキル基を導入したポリマーは、芳香族の剛直な主鎖を有するため、ポリマー構造の隙間に水分子が入りやすい。また、ポリマーの隙間を疎水性のアルカリ基で埋めることにより、耐水性言い換えれば分解性を制御することができ、ポリマーは毒性の低いオリゴマーやモノマーに分解される。
 長鎖アルキル基原料としては、デカン酸、ラウリル酸、ステアリン酸等の長鎖カルボン酸を好適に用いることができる。
 本実施の形態例に係るポリマーに長鎖アルキル基を導入したポリマーの反応スキームの一例を図1に示す。
In addition, since a polymer in which a long-chain alkyl group is introduced into the polymer according to this embodiment has an aromatic rigid main chain, water molecules are likely to enter the gaps in the polymer structure. Further, by filling the gaps between the polymers with hydrophobic alkali groups, the water resistance, in other words, the decomposability can be controlled, and the polymer is decomposed into oligomers and monomers having low toxicity.
As the long-chain alkyl group raw material, a long-chain carboxylic acid such as decanoic acid, lauric acid or stearic acid can be suitably used.
An example of a reaction scheme of a polymer in which a long-chain alkyl group is introduced into the polymer according to this embodiment is shown in FIG.
 本実施の形態例に係るポリマーは、いずれも、接着組成物として好適に用いることができる。特に、これらのポリマーは、アルコール可溶性、特にエタノール可溶性を有するため、エタノールに溶解して、例えば骨を接合するときの接着剤として用いると、常温で取り扱うことができるため、生体へ損傷を与えるおそれが少なく、生体適合性(生体親和性といってもよい。)に優れる。 Any of the polymers according to the present embodiment can be suitably used as an adhesive composition. In particular, since these polymers are alcohol-soluble, especially ethanol-soluble, they can be handled at room temperature when dissolved in ethanol and used as an adhesive, for example, when bones are joined. There are few, and it is excellent in biocompatibility (it may be called biocompatibility).
 また、本実施の形態例に係るポリマーに長鎖アルキル基を導入したポリマーは、いずれも、接着組成物として好適に用いることができる。これらのポリマーは、例えば骨を接合するときの接着剤として用いると、生体内で長期間分解されないことが期待できる。 Also, any polymer in which a long-chain alkyl group is introduced into the polymer according to this embodiment can be suitably used as an adhesive composition. These polymers can be expected not to be decomposed in vivo for a long period of time, for example, when used as an adhesive when joining bones.
 以上説明した本実施の形態例に係るポリマーを好適に得ることができる本実施の形態例に係るポリマーの製造方法について、以下に説明する。 A method for producing a polymer according to this embodiment that can suitably obtain the polymer according to this embodiment described above will be described below.
 本実施の形態例に係るポリマーの製造方法は、上記のポリマーの製造方法であって、3-(3-ヒドロキシフェニル)プロピオン酸および3,4-ジヒドロキシ桂皮酸のうちからから選ばれるいずれか1つまたは双方と、3,4-ジヒドロキシフェニルアラニンおよび4-ヒドロキフェニルアラニンうちから選ばれるいずれか1つまたは双方を、無水酢酸およびアパタイトを触媒としてエステル共重合化する。 The method for producing a polymer according to the present embodiment is a method for producing the polymer described above, and is any one selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid. One or both and one or both selected from 3,4-dihydroxyphenylalanine and 4-hydroxyphenylalanine are ester copolymerized using acetic anhydride and apatite as catalysts.
 共重合方法は、任意の方法を採用することができるが、塊状重合法または溶液重合法が好ましく、このうち塊状重合法がより好ましい。
 例えば、塊状重合法の場合、原料モノマーを必要に応じてアセチル化した後、エステル化反応する。
 反応温度は、好ましくは100~300℃、より好ましくは150~200℃である。反応時間は、好ましくは3~30時間、より好ましくは12~24時間である。
 3-(3-ヒドロキシフェニル)プロピオン酸と3,4-ジヒドロキシフェニルアラニンを共重合化する反応スキームの例を図2に、および3,4-ジヒドロキシ桂皮酸と4-ヒドロキフェニルアラニンを共重合化する反応スキームの例を図3に、それぞれ例示する。
Although any method can be adopted as the copolymerization method, a bulk polymerization method or a solution polymerization method is preferable, and among these, the bulk polymerization method is more preferable.
For example, in the case of a bulk polymerization method, the raw material monomer is acetylated as necessary and then esterified.
The reaction temperature is preferably 100 to 300 ° C, more preferably 150 to 200 ° C. The reaction time is preferably 3 to 30 hours, more preferably 12 to 24 hours.
An example of a reaction scheme for copolymerizing 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxyphenylalanine is shown in FIG. 2, and a reaction for copolymerizing 3,4-dihydroxycinnamic acid and 4-hydroxyphenylalanine. Examples of schemes are illustrated in FIG.
 DOPAおよびTyrosineのうちから選ばれるいずれか1つまたは双方と3HPPAおよびDHHCAののうちから選ばれるいずれか1つまたは双方の配合比率は、質量比で、好ましくは、DOPAおよびTyrosineのうちから選ばれるいずれか1つまたは双方:3HPPAおよびDHHCAののうちから選ばれるいずれか1つまたは双方=10:90~90:10である。
 エステル化触媒として用いる無水酢酸およびアパタイトの量は、原料モノマーの総量100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~1質量部である。アパタイトとしてヒドロキシアパタイト(Ca10(PO4)6(OH)2)を用いることは、好適な実施態様である。
The blending ratio of either one or both selected from DOPA and Tyrosine and one or both selected from 3HPPA and DHCCA is a mass ratio, preferably selected from DOPA and Tyrosine. Any one or both: Any one or both selected from 3HPPA and DHCCA = 10: 90 to 90:10.
The amount of acetic anhydride and apatite used as the esterification catalyst is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the total amount of raw material monomers. The use of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) as the apatite is a preferred embodiment.
 本実施の形態例に係るポリマーの製造方法は、ポリマーをワンポイント・ツーステップのシンプルな方法で得ることができる。 The polymer production method according to this embodiment can obtain a polymer by a simple one-point-to-step method.
 以下、本発明の実施例について説明する。本発明はこの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described. The present invention is not limited to this embodiment.
<ポリマーの製造>
(実施例1)
 Poly(DOPA-co-3HPPA)の製造
 3,(3、4-ジヒドロキシフェニル)―L―アラニン(DOPA)(東京化成工業株式会社製、商品コード:YBO8E)3.6gと3-(3-ヒドロキシフェニル)プロピオン酸(AK Scientific社製、商品コード:MFCD00002598)13.3gの混合物に無水酢酸10gおよびヒドロキシアパタイト(純正化学株式会社製、商品コード:59272-1606)0.2gを加え、常圧、150℃の温度で2時間加熱し、3,(3、4-ジヒドロキシフェニル―L―アラニン(DOPA)およびL-Tyrosineをアセチル化した。ついで、500Pa以下の真空引き条件下で180℃の温度で20時間さらに加熱し、エステル共重合化した。
(実施例2)
 Poly(DHHCA-co-Tyrosine)の製造
 3,4-ジヒドロキシ桂皮酸(Sigma-Aldrich社製、商品コード:102601)3.6gとL-Tyrosine(Wako社製、商品コード:WEG2496)13.3gの混合物に無水酢酸10gおよびヒドロキシアパタイト(純正化学株式会社製、商品コード:59272-1606)0.2gを加え、常圧、150℃の温度で2時間加熱し、3,4-ジヒドロキシ桂皮酸およびL-Tyrosineをアセチル化した。ついで、500Pa以下の真空引き条件下で180℃の温度で20時間さらに加熱し、エステル共重合化した。
(実施例3)
 Poly(DOPA-co-Tyrosine)の製造
 3,(3、4-ジヒドロキシフェニル)―L―アラニン(DOPA)(東京化成工業株式会社製、商品コード:MFCD00002598)3.6gとL-Tyrosine(Wako社製、商品コード:WEG2496)13.3gの混合物に無水酢酸10gおよびヒドロキシアパタイト(純正化学株式会社製、商品コード:59272-1606)0.2gを加え、常圧、150℃の温度で2時間加熱し、3,(3、4-ジヒドロキシフェニル―L―アラニン(DOPA)およびL-Tyrosineをアセチル化した。ついで、500Pa以下の真空引き条件下で180℃の温度で20時間さらに加熱し、エステル共重合化した。
<Manufacture of polymer>
Example 1
Manufacture of Poly (DOPA-co-3HPPA) 3.6 g of 3, (3,4-dihydroxyphenyl) -L-alanine (DOPA) (manufactured by Tokyo Chemical Industry Co., Ltd., product code: YBO8E) and 3- (3-hydroxy To a mixture of 13.3 g of phenyl) propionic acid (manufactured by AK Scientific, product code: MFCD00002598) was added 10 g of acetic anhydride and 0.2 g of hydroxyapatite (product code: 59272-1606), and normal pressure. Heating was performed at a temperature of 150 ° C. for 2 hours to acetylate 3, (3,4-dihydroxyphenyl-L-alanine (DOPA) and L-Tyrosine. Then, at a temperature of 180 ° C. under a vacuuming condition of 500 Pa or less. The mixture was further heated for 20 hours for ester copolymerization.
(Example 2)
Production of Poly (DHHCA-co-Tyrosine) 3.6 g of 3,4-dihydroxycinnamic acid (manufactured by Sigma-Aldrich, product code: 102601) and 13.3 g of L-Tyrosine (manufactured by Wako, product code: WEG2496) 10 g of acetic anhydride and 0.2 g of hydroxyapatite (product code: 59272-1606) are added to the mixture and heated at normal pressure at a temperature of 150 ° C. for 2 hours to give 3,4-dihydroxycinnamic acid and L -Tyrosine was acetylated. Subsequently, the mixture was further heated at a temperature of 180 ° C. for 20 hours under a vacuuming condition of 500 Pa or less to carry out ester copolymerization.
Example 3
Manufacture of Poly (DOPA-co-Tyrosine) 3.6 g of 3, (3,4-dihydroxyphenyl) -L-alanine (DOPA) (manufactured by Tokyo Chemical Industry Co., Ltd., product code: MFCD00002598) and L-Tyrosine (Wako) (Product code: WEG2496) Add 1 g of acetic anhydride and 0.2 g of hydroxyapatite (product code: 59272-1606) to 13.3 g of mixture and heat at normal pressure and 150 ° C for 2 hours Then, 3, (3,4-dihydroxyphenyl-L-alanine (DOPA) and L-Tyrosine were acetylated. Subsequently, the mixture was further heated at a temperature of 180 ° C. for 20 hours under a vacuuming condition of 500 Pa or less. Polymerized.
(実施例4) 
 アルキル基導入例
 実施例1で製造した各ポリマー1gに対して、界面活性剤であるラウリル酸(純正化学株式会社製、商品コード:81071-9001)を0.05g加え、500Pa以下の真空引き条件下で180℃で5時間加熱し、エステル共重合化した。
Example 4
Example of introduction of alkyl group 0.05 g of lauric acid (product code: 81071-9001) as a surfactant is added to 1 g of each polymer produced in Example 1, and vacuuming conditions of 500 Pa or less Under heating at 180 ° C. for 5 hours, ester copolymerization was carried out.
<ポリマーの構造解析>
 実施例1、2で製造したポリマーについて赤外分光法で構造解析した結果を、実施例1のポリマーについて図4~図6に、実施例2のポリマーについて図7~図9に、それぞれ示す。
<Structural analysis of polymer>
The structural analysis results of the polymers produced in Examples 1 and 2 by infrared spectroscopy are shown in FIGS. 4 to 6 for the polymer of Example 1, and FIGS. 7 to 9 for the polymer of Example 2, respectively.
<ポリマーの接着性能評価>
 実施例1のポリマーについて、ガラスーガラスをホットメルトで接着した結果を図10に示す。また、実施例1のポリマー1gをエタノール5gに溶解したものでガラスーガラスを接着した結果を図11に示す。図10、11中、横軸のDisplacementは接着部位の変位長さを示す。
 接着強度は、ホットメルトの場合で接着強度は10~15MPaの範囲であり、エタノール溶解の場合で1~10MPaの範囲である。
<Polymer adhesion performance evaluation>
About the polymer of Example 1, the result of having adhered glass-glass with the hot melt is shown in FIG. Further, FIG. 11 shows the result of bonding glass-glass by dissolving 1 g of the polymer of Example 1 in 5 g of ethanol. 10 and 11, Displacement on the horizontal axis indicates the displacement length of the adhesion site.
The adhesive strength is in the range of 10 to 15 MPa in the case of hot melt, and in the range of 1 to 10 MPa in the case of ethanol dissolution.
<ポリマーの耐水性能評価>
 実施例4のポリマーについて、時間経過による分解率の変化を調べた結果を図12に示す。比較として実施例1のポリマーの結果を併せて示す。実施例4のポリマーは実施例1のポリマーに比べて分解による減少率が大幅に抑制されていることが分かる。
<Evaluation of water resistance of polymer>
FIG. 12 shows the results of examining the change in the decomposition rate over time for the polymer of Example 4. For comparison, the results of the polymer of Example 1 are also shown. It can be seen that the decrease rate due to decomposition of the polymer of Example 4 is significantly suppressed as compared with the polymer of Example 1.

Claims (5)

  1.  3-(3-ヒドロキシフェニル)プロピオン酸および3,4-ジヒドロキシ桂皮酸のうちからから選ばれるいずれか1つまたは双方と、3,4-ジヒドロキシフェニルアラニンおよび4-ヒドロキフェニルアラニンのうちから選ばれるいずれか1つまたは双方をエステル共重合化してなるポリマー。 Any one or both selected from 3- (3-hydroxyphenyl) propionic acid and 3,4-dihydroxycinnamic acid, and any one selected from 3,4-dihydroxyphenylalanine and 4-hydroxyphenylalanine A polymer obtained by ester copolymerizing one or both.
  2.  長鎖アルキル基を導入してなることを特徴とする請求項1記載のポリマー。  The polymer according to claim 1, wherein a long-chain alkyl group is introduced. *
  3.  無水酢酸およびアパタイトを触媒としてエステル共重合化することを特徴とする請求項1または2記載のポリマーの製造方法。 3. The method for producing a polymer according to claim 1, wherein ester copolymerization is performed using acetic anhydride and apatite as a catalyst.
  4.  前記アパタイトがヒドロキシアパタイトであることを特徴とする請求項3記載のポリマーの製造方法。 The method for producing a polymer according to claim 3, wherein the apatite is hydroxyapatite.
  5.  請求項1または2記載のポリマーを含有する接着組成物。  An adhesive composition containing the polymer according to claim 1 or 2. *
PCT/JP2014/076343 2013-11-05 2014-10-02 Polymer, method for producing same, and adhesive composition WO2015068503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015546347A JP6461001B2 (en) 2013-11-05 2014-10-02 Polymer, method for producing the same, and adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013229044 2013-11-05
JP2013-229044 2013-11-05

Publications (1)

Publication Number Publication Date
WO2015068503A1 true WO2015068503A1 (en) 2015-05-14

Family

ID=53041286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076343 WO2015068503A1 (en) 2013-11-05 2014-10-02 Polymer, method for producing same, and adhesive composition

Country Status (2)

Country Link
JP (1) JP6461001B2 (en)
WO (1) WO2015068503A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218178A (en) * 2014-05-14 2015-12-07 国立大学法人九州工業大学 Monomer for adhesive raw material
WO2018197706A1 (en) 2017-04-28 2018-11-01 Evonik Röhm Gmbh Biodegradable bone glue
US20210115238A1 (en) * 2019-10-21 2021-04-22 Ggb Llc Hot-Melt Pressure Sensitive Adhesive Composition and Uses Thereof
CN114775287A (en) * 2022-05-20 2022-07-22 济南大学 Modified regenerated fiber for waste wind power blades and preparation method thereof
US12077685B2 (en) 2020-03-13 2024-09-03 Nautilus Solutions, Llc Bearings and components thereof comprising a hot-melt pressure sensitive adhesive and methods of their preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294292A (en) * 1990-04-11 1991-12-25 O Brugio Louis Peptide useful as adhesive agent and preparation thereof
JP2004175894A (en) * 2002-11-26 2004-06-24 Ricoh Co Ltd Thermally activated adhesive and thermally activated adhesive sheet
JP2007517776A (en) * 2003-12-09 2007-07-05 スフェリックス, インコーポレイテッド Bioadhesive polymers with catechol functional groups
JP2007527871A (en) * 2004-02-27 2007-10-04 ノースウエスタン ユニバーシティ Polymerized compounds and related methods of use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159945B (en) * 2011-12-08 2015-09-30 江南大学 A kind of Photosensitive amphiphilic aromatic polyester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294292A (en) * 1990-04-11 1991-12-25 O Brugio Louis Peptide useful as adhesive agent and preparation thereof
JP2004175894A (en) * 2002-11-26 2004-06-24 Ricoh Co Ltd Thermally activated adhesive and thermally activated adhesive sheet
JP2007517776A (en) * 2003-12-09 2007-07-05 スフェリックス, インコーポレイテッド Bioadhesive polymers with catechol functional groups
JP2007527871A (en) * 2004-02-27 2007-10-04 ノースウエスタン ユニバーシティ Polymerized compounds and related methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOGO KINUKAWA ET AL.: "Development of Biomimetic Strong Adhesives from a Component of Cinnamon", BIO INDUSTRY, vol. 30, no. 7, 12 July 2013 (2013-07-12), pages 58 - 64 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218178A (en) * 2014-05-14 2015-12-07 国立大学法人九州工業大学 Monomer for adhesive raw material
WO2018197706A1 (en) 2017-04-28 2018-11-01 Evonik Röhm Gmbh Biodegradable bone glue
US20210115238A1 (en) * 2019-10-21 2021-04-22 Ggb Llc Hot-Melt Pressure Sensitive Adhesive Composition and Uses Thereof
US12077685B2 (en) 2020-03-13 2024-09-03 Nautilus Solutions, Llc Bearings and components thereof comprising a hot-melt pressure sensitive adhesive and methods of their preparation
CN114775287A (en) * 2022-05-20 2022-07-22 济南大学 Modified regenerated fiber for waste wind power blades and preparation method thereof

Also Published As

Publication number Publication date
JP6461001B2 (en) 2019-01-30
JPWO2015068503A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6461001B2 (en) Polymer, method for producing the same, and adhesive composition
Jenkins et al. Integrating mussel chemistry into a bio-based polymer to create degradable adhesives
Han et al. Synthesis and degradation behavior of poly (ethyl cyanoacrylate)
Choi et al. Degradable shape-memory polymer networks from oligo [(L-lactide)-ran-glycolide] dimethacrylates
Mehdizadeh et al. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure
Gottschalk et al. Hyperbranched polylactide copolymers
WO2020041184A1 (en) Poly(alkyl carbonate) adhesives
Numata et al. Bacterial cellulose gels with high mechanical strength
Li et al. A comparative study on poly (xylitol sebacate) and poly (glycerol sebacate): mechanical properties, biodegradation and cytocompatibility
Balcioglu et al. Design of xylose-based semisynthetic polyurethane tissue adhesives with enhanced bioactivity properties
PT779908E (en) CURRENT RADIATION RESINS UNDERSTANDING HYPER-RAMPED POLYESTERS
Yao et al. Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly (2-dimethylamino-ethylmethacrylate) for controllable protein adsorption
Zhang et al. Hydrolytically degradable hyperbranched PEG‐polyester adhesive with low swelling and robust mechanical properties
Su et al. Designing a castor oil-based polyurethane as bioadhesive
Djordjevic et al. Poly [octanediol‐co‐(citric acid)‐co‐(sebacic acid)] elastomers: novel bio‐elastomers for tissue engineering
Marques et al. Photocurable bioadhesive based on lactic acid
Malberg et al. Design of elastomeric homo-and copolymer networks of functional aliphatic polyester for use in biomedical applications
Rydz et al. Forensic engineering of advanced polymeric materials. Part 1–degradation studies of polylactide blends with atactic poly [(R, S)-3-hydroxybutyrate] in paraffin
Vacogne et al. Fibrillar gels via the self-assembly of poly (L-glutamate)-based statistical copolymers
Wang et al. Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta-or para-hydroxyphenylpropionic acid segments on their properties
CN105315412B (en) Maleic anhydride is directly grafted the technology that poly- third glycolide prepares HMW MPLGA
Wright et al. Synthesis of functionalized poly (lactic acid) using 2-Bromo-3-hydroxypropionic acid
Tan et al. Covalently crosslinked chitosan-poly (ethylene glycol) hybrid hydrogels to deliver insulin for adipose-derived stem cells encapsulation
Lim et al. Enhanced biocompatibility and adhesive properties by aromatic amino acid-modified allyl 2-cyanoacrylate-based bio-glue
JP5467997B2 (en) Bioabsorbable material and in vivo indwelling material using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861022

Country of ref document: EP

Kind code of ref document: A1