WO2015068227A1 - Turbine blade and manufacturing method therefor - Google Patents

Turbine blade and manufacturing method therefor Download PDF

Info

Publication number
WO2015068227A1
WO2015068227A1 PCT/JP2013/080028 JP2013080028W WO2015068227A1 WO 2015068227 A1 WO2015068227 A1 WO 2015068227A1 JP 2013080028 W JP2013080028 W JP 2013080028W WO 2015068227 A1 WO2015068227 A1 WO 2015068227A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine blade
shroud
manufacturing
metal powder
contact portion
Prior art date
Application number
PCT/JP2013/080028
Other languages
French (fr)
Japanese (ja)
Inventor
田中良造
玉井亮嗣
武藤吉彦
岩崎勇人
壁義郎
今村嘉秀
辻敏郎
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2013/080028 priority Critical patent/WO2015068227A1/en
Priority to JP2015546194A priority patent/JPWO2015068227A1/en
Publication of WO2015068227A1 publication Critical patent/WO2015068227A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/506Hardness

Definitions

  • the present invention relates to a turbine blade having a wear-resistant build-up on a shroud contact surface and a method for manufacturing the same.
  • a shroud is formed at the blade tip (tip) of a turbine blade, and the shrouds of adjacent turbine blades are brought into contact with each other at a contact surface, thereby suppressing leakage of high-temperature combustion gas and vibration of the turbine blade. Is reduced.
  • the contact surface between the shrouds needs to have wear resistance, but since the operating temperature of the turbine blade is high, the contact surface is required to have wear resistance at a particularly high temperature.
  • An object of the present invention is to provide a turbine blade that suppresses cracks in the build-up on the shroud contact surface and a method for manufacturing the same.
  • a turbine blade according to the present invention is a plurality of turbine blades arranged in a circumferential direction, and a shroud at the blade tip is in contact with an adjacent turbine blade,
  • the contact portion is provided with a wear-resistant overlay made of a melt of metal powder by a high-density energy beam.
  • a laser beam is used as the high-density energy beam, but an electron beam can also be used.
  • the high-density energy beam since the high-density energy beam has excellent directivity and energy density, the shape accuracy of the metal powder build-up at the contact portion of the shroud is high, the wear resistance is excellent, and the hardness at high temperature is high. It becomes high, and it is possible to obtain a buildup that is homogeneous and excellent in durability without cracking.
  • the directivity of the high-density energy beam is high, it is possible to build up stable quality even in a complicated shape such as a contact portion of the shroud.
  • the metal powder is preferably made of a cobalt-based alloy. According to this configuration, since the cobalt-based alloy is excellent in heat resistance and wear resistance, the build-up using the cobalt-based alloy is excellent in heat resistance and wear resistance and can suppress generation of cracks.
  • the cobalt base alloy is preferably stellite or trivalloy. According to this structure, stellite and trivalloy can simultaneously achieve wear resistance, corrosion resistance, and heat resistance environment among cobalt-based alloys, so the build-up at the contact portion of the shroud is more excellent in heat resistance and wear resistance, and cracking occurs. Can be more effectively suppressed.
  • the base material of the shroud is preferably a nickel base alloy.
  • the cobalt-based alloy containing stellite and trivalloy contains Ni in its chemical composition, and the shroud base material is extremely compatible with the nickel-based alloy.
  • the adhesion density is high, the build-up is further solid, and the occurrence of cracks is further suppressed.
  • a contact portion of a shroud at a blade tip that contacts an adjacent turbine blade is preheated to 200 ° C. or more and below the aging temperature of the base material of the shroud, and then a high-density energy beam is applied.
  • a high-density energy beam is applied.
  • the metal powder and the contact portion are melted by heat of a high-density energy beam to form the overlay.
  • a laser beam is used as the high-density energy beam, but an electron beam can also be used.
  • the contact portion of the shroud is preheated to 200 ° C. or more and below the aging temperature of the shroud base material before irradiation with the high-density energy beam. There is little temperature gap at the contact area when irradiating with a density energy beam. Thereby, generation
  • after-heating is applied at 350 ° C. or higher to perform soaking.
  • the temperature drop of the build-up portion proceeds over time. As a result, the temperature of the build-up does not drop sharply, and the occurrence of cracks is further suppressed.
  • FIG. 1 is a perspective view of a turbine blade according to a preferred embodiment of the present invention. It is a perspective view which shows the buildup part which is the principal part of the same turbine blade. It is a schematic diagram which shows the manufacturing method of the turbine blade by laser irradiation.
  • a turbine blade 1 of a gas turbine has a blade portion 2 attached to a turbine disk 4 via a base attachment portion 3, and a shroud 5 is provided at the blade tip.
  • a plurality of turbine blades 1 are arranged in the circumferential direction P of the turbine disk 4.
  • the shroud 5 is in contact with the shroud 5 of the adjacent turbine blade 1, and as shown in FIG. Abrasive build-up 7 is applied.
  • the outer surface of the build-up 7 becomes a contact surface 5aa that contacts the shroud 5 of the adjacent turbine blade 1.
  • the contact portion 5 a is located at the center portion in the turbine axial direction C on both sides of the shroud 5 and is inclined with respect to the turbine axial direction C.
  • the front and rear side portions 5b and 5c of the contact portion 5a forming the central side portion of the shroud 5 are substantially parallel to the axial direction C. Therefore, the side portions 5a to 5c of the shroud 5 are bent and have complicated shapes. It has become.
  • the shroud 5 is formed of a heat resistant alloy having a nickel base alloy (for example, Mar-M247 (trade name) or Inconel-713C (trade name)) as a base material.
  • a nickel base alloy for example, Mar-M247 (trade name) or Inconel-713C (trade name)
  • a cobalt-based alloy is used, and in detail, Stellite (trade name) or Tribaloy (trade name).
  • Stellite 6, 12, 694, 720 is used as Stellite
  • Trivalloy T-800, T-400, T-900 is used as Triballoy.
  • the chemical composition of Stellite 6 is Cr 26-32%, W 3-6%, Fe ⁇ 3%, Mo ⁇ 1%, Ni ⁇ 3%, C 0.9-1.4%, Si ⁇ 2%, Mn ⁇ 1 %, Balance Co.
  • the chemical composition of Trivalloy T-800 is C0.04%, Cr17.4%, Ni0.8%, Co; Bal, Mo28.2%, Si3.4%.
  • the contact portion 5a of the blade shroud 5 is 200 ° C. or higher, preferably 500 ° C. or higher, and the aging temperature of the base material (nickel-based alloy) of the shroud 5 (Mar-M247: 870 ° C./Inconel- 713C: 760 ° C.) or less.
  • the preheating time is 5 to 10 minutes.
  • FIG. 3 schematically shows the LMD method.
  • the nozzle 10 has a double tube structure of an inner tube 10a in the center and an outer tube 5b provided on the outer periphery thereof.
  • a laser beam LB from a beam generation source (not shown) is applied to the contact portion 5a of the shroud 5 as the work W from the inner tube 10a.
  • a shield gas (argon gas) SG is injected as indicated by an arrow.
  • Trivalloy T-800 which is the metal powder 6, is injected from the outer tube 10b toward the irradiation region (contact portion 5a) of the laser beam LB indicated by a broken line.
  • the shroud base material (nickel-based alloy) 11 under the Trivalloy T-800 build-up is melted by the laser beam LB, and the Trivalloy T-800 build-up 7 is formed on the melted base material 11. It is formed.
  • the thickness T of the overlay 7 is about 3 mm.
  • post-heating is applied to the build-up 7 at 350 ° C. or higher, and a soaking process is performed to make the temperature of the build-up 7 uniform.
  • the post-heating temperature is 500 to 600 ° C.
  • the post-heating time is 20 minutes or longer, for example, 20 to 40 minutes. Cool gradually after post-heating. Note that the post-heat treatment in the third stage is not necessarily required.
  • Trivalloy T-400, T-800, T-900, Stellite 6, 12, 694, 720 such as Stellite have a sufficiently high HRC hardness of 54 or higher up to a high temperature of 800 ° C. Therefore, it is speculated that all of the trivalloy and stellite systems exhibiting this level of HRC hardness can be used as the material for the build-up 7 having excellent wear resistance according to the present invention.
  • the wear-resistant build-up 7 of the metal powder 6 applied to the contact portion 5a of the shroud 5 shown in FIG. 2 is excellent in directivity and energy density of the laser, so that the contact portion 5a of the shroud 5 is used.
  • the shape 7 of the build-up 7 of the metal powder 6 is high, the wear resistance is excellent, the hardness at high temperature is high, it is homogeneous and does not generate cracks, and is excellent in durability.
  • the directivity of the laser beam LB is high, a stable quality overlay 7 can be formed even in a complicated shape such as the contact portion 5a of the shroud 5.
  • the build-up 7 in the contact portion 5a of the shroud 5 using this is excellent in heat resistance and wear resistance and generation of cracks. Can be suppressed.
  • the build-up 7 in the contact portion 5a has more heat resistance and wear resistance. It is excellent and can suppress the generation of cracks more effectively.
  • the cobalt-based alloy containing stellite and trivalloy used to form the overlay 7 contains Ni in its chemical composition and is extremely compatible with the nickel-based alloy of the base material of the shroud 5.
  • the contact density at the contact portion 5a is high, and the build-up 7 is more robust and the occurrence of cracks is further suppressed.
  • the contact portion 5a of the shroud 5 is preheated to 200 ° C. or more and lower than the aging temperature of the base material of the shroud 5, and thereafter, the contact portion 5a of the shroud 5 is applied to the contact portion 5a. Since the metal powder 6 and the contact portion 5a are melted by irradiation with the laser shown in FIG. 3 to form the build-up 7, the temperature at the contact portion 5a at the time of laser irradiation with the base material of the shroud 5 is compared with the case where preheating is not performed. There are few gaps. Thereby, generation
  • a laser is used as the high-density energy beam, but the present invention is not limited to this.
  • An electron beam may be used as the high-density energy beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

The present invention provides a turbine blade, and a manufacturing method therefor, for which the durability of a thick section at a shroud contact part is improved. A plurality of turbine blades (1) are disposed lined up in the circumferential direction, and blade-end shrouds (5) make contact between adjacent turbine blades (1). At a contact section (5a) of the shroud, provided is a thick section (7) having abrasion resistance and formed of the product that results from melting metal powder (6) with a high-density energy beam. The metal powder (6) is, for example, Stellite or Triballoy, which are cobalt base alloys.

Description

タービン翼およびその製造方法Turbine blade and method for manufacturing the same
 本発明は、シュラウドの接触面に耐摩耗性の肉盛りが施されたタービン翼およびその製造方法に関する。 The present invention relates to a turbine blade having a wear-resistant build-up on a shroud contact surface and a method for manufacturing the same.
 従来、ガスタービンエンジンではタービン翼の翼端(先端)にシュラウドを形成し、隣接するタービン翼のシュラウド同士を接触面で接触させることにより、高温の燃焼ガスの漏れを抑えるとともに、タービン翼の振動を低減させている。シュラウド同士の接触面は耐摩耗性が必要となるが、タービン翼の使用温度は高温であるため、接触面には特に高温での耐摩耗性が要求される。 Conventionally, in a gas turbine engine, a shroud is formed at the blade tip (tip) of a turbine blade, and the shrouds of adjacent turbine blades are brought into contact with each other at a contact surface, thereby suppressing leakage of high-temperature combustion gas and vibration of the turbine blade. Is reduced. The contact surface between the shrouds needs to have wear resistance, but since the operating temperature of the turbine blade is high, the contact surface is required to have wear resistance at a particularly high temperature.
 ガスタービンの高効率化に伴い、タービン翼の使用環境は高温になる。また、ガスタービンが幅広い回転数もしくは出力範囲で使用される場合、接触面はより激しい摩耗を来たすと考えられる。このような厳しい使用環境に対応するために、接触面の形成には高温での耐摩耗性に優れる材料の使用が求められる。例えば、コバルト基合金のような耐摩耗性材料を、TIG溶接やプラズマ溶接によって接触面に肉盛りする方法がある(例えば特許文献1,2)。 As the efficiency of gas turbines increases, the usage environment of turbine blades becomes high. In addition, when the gas turbine is used in a wide range of rotation speeds or power ranges, the contact surface is considered to cause more severe wear. In order to cope with such a severe use environment, the formation of the contact surface requires the use of a material having excellent wear resistance at high temperatures. For example, there is a method of depositing a wear-resistant material such as a cobalt-based alloy on the contact surface by TIG welding or plasma welding (for example, Patent Documents 1 and 2).
特開平11-336502号JP-A-11-336502 特開2001-152803号JP 2001-152803 A
 しかしながら、このような接触面形成方法による場合、入熱が大きいため、シュラウド接触面の肉盛り部分に熱応力の増加に起因する割れが発生しやすい。そして、その割れは、使用環境がきわめて厳しいために、進展しやすいものとなる。また、大きい入熱のため、シュラウドの母材のひずみも大きくなり、求められる製品形状から大きく外れる傾向があった。さらに、シュラウドの接触面のような複雑な形状をTIG溶接やプラズマ溶接で施工する場合、ワークであるタービン翼と加工ヘッドの距離の取り方が難しいために接触面への安定した品質の肉盛りが難しい。 However, according to such a contact surface forming method, since heat input is large, cracks due to an increase in thermal stress are likely to occur in the built-up portion of the shroud contact surface. And the crack becomes easy to progress because use environment is very severe. Further, due to the large heat input, the distortion of the shroud base material also increased, and there was a tendency to deviate greatly from the required product shape. Furthermore, when a complex shape such as a shroud contact surface is to be constructed by TIG welding or plasma welding, it is difficult to determine the distance between the turbine blade, which is the workpiece, and the machining head. Is difficult.
 本発明の目的は、シュラウド接触面での肉盛りにおける割れを抑制したタービン翼およびその製造方法を提供することにある。 An object of the present invention is to provide a turbine blade that suppresses cracks in the build-up on the shroud contact surface and a method for manufacturing the same.
 前記目的を達成するために、本発明に係るタービン翼は、周方向に並べて複数個が配置されるタービン翼であって、隣接するタービン翼との間で翼端のシュラウドが接触しており、その接触部に、高密度エネルギービームによる金属粉末の溶融物からなる耐摩耗性の肉盛りが施されている。高密度エネルギービームとしては、例えばレーザビームが使用されるが、電子ビームを使用することもできる。 In order to achieve the above object, a turbine blade according to the present invention is a plurality of turbine blades arranged in a circumferential direction, and a shroud at the blade tip is in contact with an adjacent turbine blade, The contact portion is provided with a wear-resistant overlay made of a melt of metal powder by a high-density energy beam. For example, a laser beam is used as the high-density energy beam, but an electron beam can also be used.
 この構成によれば、高密度エネルギービームは指向性、エネルギー密度に優れているため、シュラウドの接触部における金属粉末の肉盛りの形状精度が高く、耐摩耗性に優れ、かつ高温での硬度が高くなり、均質で割れの発生のない耐久性に優れた肉盛りが得られる。また、高密度エネルギービームの指向性が高いことから、シュラウドの接触部のような複雑な形状にも、安定した品質の肉盛りができる。 According to this configuration, since the high-density energy beam has excellent directivity and energy density, the shape accuracy of the metal powder build-up at the contact portion of the shroud is high, the wear resistance is excellent, and the hardness at high temperature is high. It becomes high, and it is possible to obtain a buildup that is homogeneous and excellent in durability without cracking. In addition, since the directivity of the high-density energy beam is high, it is possible to build up stable quality even in a complicated shape such as a contact portion of the shroud.
 本発明のタービン翼において、前記金属粉末はコバルト基合金からなることが好ましい。この構成によれば、コバルト基合金は、耐熱性および耐摩耗性に優れるため、これを用いた肉盛りは,耐熱性および耐摩耗性に優れ、かつ割れの発生を抑制できる。 In the turbine blade of the present invention, the metal powder is preferably made of a cobalt-based alloy. According to this configuration, since the cobalt-based alloy is excellent in heat resistance and wear resistance, the build-up using the cobalt-based alloy is excellent in heat resistance and wear resistance and can suppress generation of cracks.
 本発明のタービン翼において、前記コバルト基合金はステライトまたはトリバロイであることが好ましい。この構成によれば、ステライトおよびトリバロイはコバルト基合金類の中でも耐摩耗、耐食、耐熱環境を同時に実現できるので、シュラウドの接触部における肉盛りは耐熱性および耐摩耗性が一層優れ、割れの発生を一層効果的に抑制できる。 In the turbine blade of the present invention, the cobalt base alloy is preferably stellite or trivalloy. According to this structure, stellite and trivalloy can simultaneously achieve wear resistance, corrosion resistance, and heat resistance environment among cobalt-based alloys, so the build-up at the contact portion of the shroud is more excellent in heat resistance and wear resistance, and cracking occurs. Can be more effectively suppressed.
 本発明のタービン翼において、前記シュラウドの母材はニッケル基合金であることが好ましい。この構成によれば、ステライトおよびトリバロイを含むコバルト基合金は、その化学組成中にNiを含んでおり、シュラウドの母材はニッケル基合金との相溶性が極めて高いことから、シュラウドの母材との密着密度が高く、肉盛りは一層堅牢となって、割れの発生がより一層抑制される。 In the turbine blade of the present invention, the base material of the shroud is preferably a nickel base alloy. According to this configuration, the cobalt-based alloy containing stellite and trivalloy contains Ni in its chemical composition, and the shroud base material is extremely compatible with the nickel-based alloy. The adhesion density is high, the build-up is further solid, and the occurrence of cracks is further suppressed.
 本発明に係るタービン翼を製造する方法は、隣接するタービン翼と接触する翼端のシュラウドの接触部を、200℃以上でシュラウドの母材の時効温度以下に予熱したのち、高密度エネルギービームを前記接触部に照射し、その照射領域に金属粉末を噴射することにより、高密度エネルギービームの熱で前記金属粉末および前記接触部を溶融させて前記肉盛りを形成する。高密度エネルギービームとしては、例えばレーザビームが使用されるが、電子ビームを使用することもできる。 In the method of manufacturing a turbine blade according to the present invention, a contact portion of a shroud at a blade tip that contacts an adjacent turbine blade is preheated to 200 ° C. or more and below the aging temperature of the base material of the shroud, and then a high-density energy beam is applied. By irradiating the contact portion and injecting metal powder onto the irradiated region, the metal powder and the contact portion are melted by heat of a high-density energy beam to form the overlay. For example, a laser beam is used as the high-density energy beam, but an electron beam can also be used.
 この構成によれば、高密度エネルギービームの照射前に、シュラウドの接触部を、200℃以上でシュラウドの母材の時効温度以下に予熱するので、予熱しない場合に比べ、シュラウドの母材と高密度エネルギービーム照射時の接触部での温度ギャップが少ない。これにより、肉盛りでの割れの発生を抑制できる。 According to this configuration, the contact portion of the shroud is preheated to 200 ° C. or more and below the aging temperature of the shroud base material before irradiation with the high-density energy beam. There is little temperature gap at the contact area when irradiating with a density energy beam. Thereby, generation | occurrence | production of the crack by the buildup can be suppressed.
 本発明に係るタービン翼を製造する方法において、前記肉盛りの形成後に350℃以上で後熱を加え均熱処理を行うことが好ましい。この構成によれば、後熱を行わない場合に比べ、肉盛り部分の温度低下が時間をかけて進むことになる。これにより、肉盛りは急激に温度低下しないことから、割れの発生が一層抑制される。 In the method of manufacturing a turbine blade according to the present invention, it is preferable that after the formation of the build-up, after-heating is applied at 350 ° C. or higher to perform soaking. According to this structure, compared with the case where after-heating is not performed, the temperature drop of the build-up portion proceeds over time. As a result, the temperature of the build-up does not drop sharply, and the occurrence of cracks is further suppressed.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定しめるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の好ましい実施形態にかかるタービン翼の斜視図である。 同タービン翼の要部である肉盛り部分を示す斜視図である。 レーザ照射によるタービン翼の製造方法を示す模式図である。
The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are merely for illustration and description, and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
1 is a perspective view of a turbine blade according to a preferred embodiment of the present invention. It is a perspective view which shows the buildup part which is the principal part of the same turbine blade. It is a schematic diagram which shows the manufacturing method of the turbine blade by laser irradiation.
 以下、本発明の好ましい実施形態について図1および図2を参照しながら説明する。図1に示すように、ガスタービンのタービン翼1は、翼部2が根元の取付部3を介してタービンディスク4に取り付けられ、その翼端にはシュラウド5が設けられている。タービン翼1はタービンディスク4の周方向Pに並べて複数個が配置されている。シュラウド5は、隣接するタービン翼1のシュラウド5との間で接触しており、その接触部5aに、図2に示すように、高密度エネルギービームの一種であるレーザの照射による金属粉末の耐摩耗性の肉盛り7が施されている。この肉盛り7の外側面が隣接するタービン翼1のシュラウド5と接触する接触面5aaとなる。接触部5aはシュラウド5の両側部におけるタービン軸心方向Cの中央部に位置しており、タービン軸心方向Cに対して傾斜している。シュラウド5における中央の側部を形成する接触部5aの前後両側部5b、5cは、軸心方向Cにほぼ平行であり、したがって、シュラウド5の側部5a~5cは、曲折した複雑な形状となっている。 Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG. 1 and FIG. As shown in FIG. 1, a turbine blade 1 of a gas turbine has a blade portion 2 attached to a turbine disk 4 via a base attachment portion 3, and a shroud 5 is provided at the blade tip. A plurality of turbine blades 1 are arranged in the circumferential direction P of the turbine disk 4. As shown in FIG. 2, the shroud 5 is in contact with the shroud 5 of the adjacent turbine blade 1, and as shown in FIG. Abrasive build-up 7 is applied. The outer surface of the build-up 7 becomes a contact surface 5aa that contacts the shroud 5 of the adjacent turbine blade 1. The contact portion 5 a is located at the center portion in the turbine axial direction C on both sides of the shroud 5 and is inclined with respect to the turbine axial direction C. The front and rear side portions 5b and 5c of the contact portion 5a forming the central side portion of the shroud 5 are substantially parallel to the axial direction C. Therefore, the side portions 5a to 5c of the shroud 5 are bent and have complicated shapes. It has become.
 ここで、シュラウド5は、ニッケル基合金(例えば、Mar-M247(商品名)やInconel-713C(商品名))を母材とする耐熱性合金で形成されている。シュラウド5の接触部5aにレーザ照射により肉盛りされる耐摩耗性の金属粉末6としては、コバルト基合金を使用し、詳しくは、ステライト(Stellite(商品名))やトリバロイ(Tribaloy(商品名))を使用する。例えば、ステライトとしては、ステライト6,12、694、720を用い、トリバロイとしては、トリバロイT-800、T-400、T-900を用いる。ステライト6の化学組成は、Cr26~32%、W3~6%、Fe<3%、Mo<1%、Ni<3%、C 0.9~1.4%、Si<2%、Mn<1%、残部Coである。トリバロイT-800の化学組成は、C0.04%、Cr17.4%、Ni0.8%、Co;Bal、Mo28.2%、Si3.4%である。 Here, the shroud 5 is formed of a heat resistant alloy having a nickel base alloy (for example, Mar-M247 (trade name) or Inconel-713C (trade name)) as a base material. As the wear-resistant metal powder 6 that is built up on the contact portion 5a of the shroud 5 by laser irradiation, a cobalt-based alloy is used, and in detail, Stellite (trade name) or Tribaloy (trade name). ). For example, Stellite 6, 12, 694, 720 is used as Stellite, and Trivalloy T-800, T-400, T-900 is used as Triballoy. The chemical composition of Stellite 6 is Cr 26-32%, W 3-6%, Fe <3%, Mo <1%, Ni <3%, C 0.9-1.4%, Si <2%, Mn <1 %, Balance Co. The chemical composition of Trivalloy T-800 is C0.04%, Cr17.4%, Ni0.8%, Co; Bal, Mo28.2%, Si3.4%.
 つぎに、タービン翼1の製造方法の一例について説明する。第1段階では、翼端のシュラウド5の接触部5aを、200℃以上、好ましくは500℃以上で、シュラウド5の母材(ニッケル基合金)の時効温度(Mar-M247:870℃ / Inconel-713C:760℃)以下に予熱する。予熱時間は5~10分である。 Next, an example of a method for manufacturing the turbine blade 1 will be described. In the first stage, the contact portion 5a of the blade shroud 5 is 200 ° C. or higher, preferably 500 ° C. or higher, and the aging temperature of the base material (nickel-based alloy) of the shroud 5 (Mar-M247: 870 ° C./Inconel- 713C: 760 ° C.) or less. The preheating time is 5 to 10 minutes.
 第2段階では、LMD法(laser metal deposition)により、シュラウド5の接触部5aに、耐摩耗性金属粉末6として、トリバロイT-800を用いて肉盛りを形成する。図3はLMD法を模式的に示す。同図に示すように、ノズル10は中央部の内管10aとその外周囲に設けられた外管5bの二重管構造になっている。内管10aから図示しないビーム発生源からのレーザビームLBがワークWであるシュラウド5の接触部5aに照射される。このとき、レーザビームLBの照射と同時に、シールドガス(アルゴンガス)SGが矢印で示すように噴射される。 In the second stage, a build-up is formed on the contact portion 5a of the shroud 5 using triballoy T-800 as the wear-resistant metal powder 6 by the LMD method (laser metal deposition). FIG. 3 schematically shows the LMD method. As shown in the figure, the nozzle 10 has a double tube structure of an inner tube 10a in the center and an outer tube 5b provided on the outer periphery thereof. A laser beam LB from a beam generation source (not shown) is applied to the contact portion 5a of the shroud 5 as the work W from the inner tube 10a. At this time, simultaneously with the irradiation of the laser beam LB, a shield gas (argon gas) SG is injected as indicated by an arrow.
 つづいて、外管10bから金属粉末6であるトリバロイT-800を、破線で示すレーザビームLBの照射領域(接触部5a)に向けて噴射する。このトリバロイT-800の肉盛りの下にあるシュラウドの母材(ニッケル基合金)11は、レーザビームLBにより溶融され、この溶融された母材11の上にトリバロイT-800の肉盛り7が形成される。肉盛り7の厚さTは、3mm程度である。 Subsequently, Trivalloy T-800, which is the metal powder 6, is injected from the outer tube 10b toward the irradiation region (contact portion 5a) of the laser beam LB indicated by a broken line. The shroud base material (nickel-based alloy) 11 under the Trivalloy T-800 build-up is melted by the laser beam LB, and the Trivalloy T-800 build-up 7 is formed on the melted base material 11. It is formed. The thickness T of the overlay 7 is about 3 mm.
 第3段階では、接触部5aに所定の肉盛り7が形成された後に、この肉盛り7に対して350℃以上で後熱を加え、肉盛り7全体の温度を均一化する均熱処理を行う。より好ましくは、後熱温度は500~600℃、後熱時間は20分以上、例えば20~40分の範囲である。後熱後には徐々に冷却する。なお、この第3段階の後熱処理は必ずしもなくてもよい。 In the third stage, after the predetermined build-up 7 is formed on the contact portion 5a, post-heating is applied to the build-up 7 at 350 ° C. or higher, and a soaking process is performed to make the temperature of the build-up 7 uniform. . More preferably, the post-heating temperature is 500 to 600 ° C., and the post-heating time is 20 minutes or longer, for example, 20 to 40 minutes. Cool gradually after post-heating. Note that the post-heat treatment in the third stage is not necessarily required.
 トリバロイT-400、T-800、T-900、ステライト6、12、694、720のようなトリバロイ系、ステライト系は800℃の高温までHRC硬度が54以上と十分に高い。したがって、この程度のHRC硬度を示すトリバロイ系、ステライト系はすべて、本発明の耐摩耗性に優れた肉盛り7の材料として使用できると推察される。 Trivalloy T-400, T-800, T-900, Stellite 6, 12, 694, 720 such as Stellite have a sufficiently high HRC hardness of 54 or higher up to a high temperature of 800 ° C. Therefore, it is speculated that all of the trivalloy and stellite systems exhibiting this level of HRC hardness can be used as the material for the build-up 7 having excellent wear resistance according to the present invention.
 以上説明したとおり、図2に示すシュラウド5の接触部5aに施した金属粉末6の耐摩耗性の肉盛り7は、レーザが指向性、エネルギー密度に優れているため、シュラウド5の接触部5aにおける金属粉末6の肉盛り7の形状精度が高く、耐摩耗性に優れ、かつ高温での硬度が高くなり、均質で割れの発生もなく、耐久性に優れている。また、レーザビームLBの指向性が高いことから、シュラウド5の接触部5aのような複雑な形状にも、安定した品質の肉盛り7ができる。 As described above, the wear-resistant build-up 7 of the metal powder 6 applied to the contact portion 5a of the shroud 5 shown in FIG. 2 is excellent in directivity and energy density of the laser, so that the contact portion 5a of the shroud 5 is used. The shape 7 of the build-up 7 of the metal powder 6 is high, the wear resistance is excellent, the hardness at high temperature is high, it is homogeneous and does not generate cracks, and is excellent in durability. In addition, since the directivity of the laser beam LB is high, a stable quality overlay 7 can be formed even in a complicated shape such as the contact portion 5a of the shroud 5.
 金属粉末6として耐熱性および耐摩耗性に優れたコバルト基合金を用いたので、これを用いた、シュラウド5の接触部5aにおける肉盛り7は、耐熱性および耐摩耗性に優れ、割れの発生を抑制できる。 Since the cobalt-based alloy having excellent heat resistance and wear resistance is used as the metal powder 6, the build-up 7 in the contact portion 5a of the shroud 5 using this is excellent in heat resistance and wear resistance and generation of cracks. Can be suppressed.
 コバルト基合金として用いたステライトおよびトリバロイは、コバルト基合金類の中でも優れた耐摩耗性、耐食性および耐熱性を同時に実現できるので、接触部5aにおける肉盛り7は、耐熱性および耐摩耗性が一層優れ、割れの発生を一層効果的に抑制できる。 Since the stellite and trivalloy used as the cobalt-based alloy can simultaneously achieve excellent wear resistance, corrosion resistance and heat resistance among the cobalt-based alloys, the build-up 7 in the contact portion 5a has more heat resistance and wear resistance. It is excellent and can suppress the generation of cracks more effectively.
 肉盛り7の形成に用いたステライトおよびトリバロイを含むコバルト基合金は、その化学組成中にNiを含んでおり、シュラウド5の母材のニッケル基合金との相溶性がきわめてよいから、シュラウド5の接触部5aでの密着密度が高く、肉盛り7は一層堅牢となって割れの発生がより一層抑制される。 The cobalt-based alloy containing stellite and trivalloy used to form the overlay 7 contains Ni in its chemical composition and is extremely compatible with the nickel-based alloy of the base material of the shroud 5. The contact density at the contact portion 5a is high, and the build-up 7 is more robust and the occurrence of cracks is further suppressed.
 タービン翼1を製造する方法において、レーザの照射前に、シュラウド5の接触部5aを、200℃以上でシュラウド5の母材の時効温度以下に予熱し、その後に、シュラウド5の接触部5aに図3に示すレーザを照射して金属粉末6および接触部5aを溶融させて肉盛り7を形成したので、予熱しない場合に比べ、シュラウド5の母材とレーザ照射時の接触部5aでの温度ギャップが少ない。これにより、肉盛り7での割れの発生を抑制できる。 In the method of manufacturing the turbine blade 1, before the laser irradiation, the contact portion 5a of the shroud 5 is preheated to 200 ° C. or more and lower than the aging temperature of the base material of the shroud 5, and thereafter, the contact portion 5a of the shroud 5 is applied to the contact portion 5a. Since the metal powder 6 and the contact portion 5a are melted by irradiation with the laser shown in FIG. 3 to form the build-up 7, the temperature at the contact portion 5a at the time of laser irradiation with the base material of the shroud 5 is compared with the case where preheating is not performed. There are few gaps. Thereby, generation | occurrence | production of the crack in the overlay 7 can be suppressed.
 また、前記肉盛り7の形成後に、350℃以上で後熱を加え均熱処理を行ったので、後熱を行わない場合に比べ、時間をかけて温度低下がすすみ、肉盛り7を急激に温度低下させることがないから、肉盛り7での割れの発生を一層抑制できる。 Further, after the formation of the build-up 7, post-heating was performed at 350 ° C. or higher, so that the temperature decreased over time as compared with the case where no post-heating was performed, and the build-up 7 was rapidly heated. Since it does not reduce, the generation | occurrence | production of the crack in the build-up 7 can be suppressed further.
 以上のとおり、図面を参照しながら好適な実施形態および応用形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる本発明の範囲内のものと解釈される。例えば、上述の実施形態では、高密度エネルギービームとしてレーザを使用しているが、これに限定されない。高密度エネルギービームとして、電子ビームを使用してもよい。 As described above, the preferred embodiments and applications have been described with reference to the drawings. However, those skilled in the art can easily assume various changes and modifications within the obvious range by looking at the present specification. I will. Accordingly, such changes and modifications are to be construed as within the scope of the present invention as defined by the claims. For example, in the above-described embodiment, a laser is used as the high-density energy beam, but the present invention is not limited to this. An electron beam may be used as the high-density energy beam.
1…タービン翼
2…翼部
3…取付部
4…タービンディスク
5…シュラウド
5a…接触部
6…金属粉末
7…肉盛り
10…ノズル
LB…レーザビーム
SG…シールドガス(アルゴンガス)
DESCRIPTION OF SYMBOLS 1 ... Turbine blade 2 ... Blade | wing part 3 ... Mounting part 4 ... Turbine disk 5 ... Shroud 5a ... Contact part 6 ... Metal powder 7 ... Overlay 10 ... Nozzle LB ... Laser beam SG ... Shielding gas (argon gas)

Claims (11)

  1.  周方向に並べて複数個が配置されるタービン翼であって、
     隣接するタービン翼との間で翼端のシュラウドが接触しており、
     その接触部に、金属粉末の高密度エネルギービームによる溶融物からなる耐摩耗性の肉盛りが施されているタービン翼。
    A plurality of turbine blades arranged side by side in the circumferential direction,
    The blade shroud is in contact with the adjacent turbine blade,
    A turbine blade having a wear-resistant buildup made of a melt of a metal powder with a high-density energy beam at its contact portion.
  2.  請求項1に記載のタービン翼において、前記高密度エネルギービームはレーザビームであるタービン翼。 The turbine blade according to claim 1, wherein the high-density energy beam is a laser beam.
  3.  請求項1または2に記載のタービン翼において、前記金属粉末はコバルト基合金からなるタービン翼。 3. The turbine blade according to claim 1 or 2, wherein the metal powder is made of a cobalt-based alloy.
  4.  請求項3に記載のタービン翼において、前記コバルト基合金はステライトまたはトリバロイであるタービン翼。 4. The turbine blade according to claim 3, wherein the cobalt-based alloy is stellite or trivalloy.
  5.  請求項1から4のいずれか一項に記載のタービン翼おいて、前記シュラウドの母材はニッケル基合金であるタービン翼。 The turbine blade according to any one of claims 1 to 4, wherein a base material of the shroud is a nickel base alloy.
  6.  請求項1に記載のタービン翼を製造する方法であって、隣接するタービン翼と接触する翼端のシュラウドの接触部を、200℃以上でシュラウドの母材の時効温度以下に予熱したのち、高密度エネルギービームを前記接触部に照射し、その照射領域に金属粉末を噴射することにより、前記高密度エネルギービームの熱で前記金属粉末および前記接触部を溶融させて前記肉盛りを形成するタービン翼の製造方法。 A method of manufacturing a turbine blade according to claim 1, wherein a contact portion of a shroud at a blade tip that is in contact with an adjacent turbine blade is preheated to 200 ° C or higher and lower than an aging temperature of a base material of the shroud. A turbine blade that forms the build-up by irradiating the contact portion with a density energy beam and injecting metal powder onto the irradiated region to melt the metal powder and the contact portion with the heat of the high-density energy beam. Manufacturing method.
  7.  請求項6に記載のタービン翼の製造方法において、前記高密度エネルギービームとしてレーザビームを使用するタービン翼の製造方法。 The method for manufacturing a turbine blade according to claim 6, wherein a laser beam is used as the high-density energy beam.
  8.  請求項6または7に記載のタービン翼を製造する方法において、前記肉盛りの形成後に350℃以上で後熱を加えて均熱処理を行うタービン翼の製造方法。 The method for manufacturing a turbine blade according to claim 6 or 7, wherein after the formation of the build-up, a soaking process is performed by applying post-heating at 350 ° C or higher.
  9.  請求項6から8のいずれか一項に記載のタービン翼を製造する方法において、前記金属粉末はコバルト基合金であるタービン翼の製造方法。 The method for manufacturing a turbine blade according to any one of claims 6 to 8, wherein the metal powder is a cobalt-based alloy.
  10.  請求項9に記載のタービン翼を製造する方法において、前記コバルト基合金はステライトまたはトリバロイであるタービン翼の製造方法。 10. The method for manufacturing a turbine blade according to claim 9, wherein the cobalt-based alloy is stellite or trivalloy.
  11.  請求項6から10のいずれか一項に記載のタービン翼の製造方法において、前記シュラウドの母材はニッケル基合金であるタービン翼の製造方法。 The method for manufacturing a turbine blade according to any one of claims 6 to 10, wherein a base material of the shroud is a nickel-based alloy.
PCT/JP2013/080028 2013-11-06 2013-11-06 Turbine blade and manufacturing method therefor WO2015068227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/080028 WO2015068227A1 (en) 2013-11-06 2013-11-06 Turbine blade and manufacturing method therefor
JP2015546194A JPWO2015068227A1 (en) 2013-11-06 2013-11-06 Turbine blade and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080028 WO2015068227A1 (en) 2013-11-06 2013-11-06 Turbine blade and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2015068227A1 true WO2015068227A1 (en) 2015-05-14

Family

ID=53041031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080028 WO2015068227A1 (en) 2013-11-06 2013-11-06 Turbine blade and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2015068227A1 (en)
WO (1) WO2015068227A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094292A1 (en) * 2015-12-01 2017-06-08 株式会社Ihi Sliding component provided with wear-resistant coating and method for forming wear-resistant coating
CN109070258A (en) * 2016-05-26 2018-12-21 赛峰飞机发动机公司 Gas turbine exhaust shell and its manufacturing method
WO2022107734A1 (en) * 2020-11-20 2022-05-27 川崎重工業株式会社 Gas turbine engine rotation unit constituent member and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483592B2 (en) * 2020-11-09 2024-05-15 住友重機械工業株式会社 Gearing and gears

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11336502A (en) * 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd Steam turbine moving blade and steam turbine having the same
JP2006016671A (en) * 2004-07-02 2006-01-19 Hitachi Ltd Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2008093725A (en) * 2006-10-13 2008-04-24 Toshiba Corp Erosion preventive method and member with erosion preventive section
JP2008538399A (en) * 2005-04-21 2008-10-23 シーメンス アクチエンゲゼルシヤフト Turbine blade having a cover plate and a protective layer deposited on the cover plate
JP2012232336A (en) * 2011-05-09 2012-11-29 Daido Steel Co Ltd High-hardness hardfacing alloy powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808655B2 (en) * 1999-02-24 2006-08-16 株式会社日立製作所 Turbine rotor and turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11336502A (en) * 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd Steam turbine moving blade and steam turbine having the same
JP2006016671A (en) * 2004-07-02 2006-01-19 Hitachi Ltd Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2008538399A (en) * 2005-04-21 2008-10-23 シーメンス アクチエンゲゼルシヤフト Turbine blade having a cover plate and a protective layer deposited on the cover plate
JP2008093725A (en) * 2006-10-13 2008-04-24 Toshiba Corp Erosion preventive method and member with erosion preventive section
JP2012232336A (en) * 2011-05-09 2012-11-29 Daido Steel Co Ltd High-hardness hardfacing alloy powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094292A1 (en) * 2015-12-01 2017-06-08 株式会社Ihi Sliding component provided with wear-resistant coating and method for forming wear-resistant coating
CN107849700A (en) * 2015-12-01 2018-03-27 株式会社Ihi Possess the slide unit of abrasion performance envelope and the forming method of abrasion performance envelope
JPWO2017094292A1 (en) * 2015-12-01 2018-08-30 株式会社Ihi Sliding part with wear-resistant coating and method for forming wear-resistant coating
US10894387B2 (en) 2015-12-01 2021-01-19 Ihi Corporation Sliding part with wear resistant coating and method of forming wear resistant coating
CN107849700B (en) * 2015-12-01 2021-05-11 株式会社Ihi Sliding member having abrasion-resistant coating and method for forming abrasion-resistant coating
CN109070258A (en) * 2016-05-26 2018-12-21 赛峰飞机发动机公司 Gas turbine exhaust shell and its manufacturing method
CN109070258B (en) * 2016-05-26 2021-01-15 赛峰飞机发动机公司 Turbine exhaust casing and method of manufacturing the same
WO2022107734A1 (en) * 2020-11-20 2022-05-27 川崎重工業株式会社 Gas turbine engine rotation unit constituent member and method for producing same

Also Published As

Publication number Publication date
JPWO2015068227A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5618643B2 (en) Gas turbine rotor blade repair method and gas turbine rotor blade
JP4318140B2 (en) Method for repairing stationary shrouds of gas turbine engines using plasma transfer arc welding
US20160069184A1 (en) Method of blade tip repair
EP2466070A2 (en) Method of repairing a transition piece of a gas turbine engine
US20160279734A1 (en) Component and method for fabricating a component
US10920595B2 (en) Turbine component having multiple controlled metallic grain orientations, apparatus and manufacturing method thereof
WO2015068227A1 (en) Turbine blade and manufacturing method therefor
US10086459B2 (en) Method for forming hybrid article
JP2015078686A (en) Erosion shield, method of fabricating shield, and method of fabricating article having shield
US11033987B2 (en) Hybrid article, method for forming hybrid article and method for welding
US20140065320A1 (en) Hybrid coating systems and methods
CN109070219A (en) Method for manufacturing the turbine shroud of turbine
JP5138149B2 (en) Surface oxide welding penetration strengthening method and article
CN114126786A (en) Additive manufacturing method for metal parts
US10265792B2 (en) Sinter-bonded hybrid article, method for forming hybrid article, and method for closing aperture
US10828701B2 (en) Near-net shape shield and fabrication processes
US10035329B2 (en) Hybrid article, method for forming hybrid article, and method for closing aperture
JP2018091333A (en) Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
JP2017136641A (en) Casting methods and articles
EP3184658B1 (en) Co alloy, welded article and welding process
US20190022786A1 (en) Method for hardfacing a metal article
US12042875B2 (en) Weld-brazing techniques
Arjakine et al. Advanced weld repair of gas turbine hot section components
US20080189946A1 (en) Dimensional restoration of stator inner shrouds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896913

Country of ref document: EP

Kind code of ref document: A1