WO2015068195A1 - Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell - Google Patents

Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell Download PDF

Info

Publication number
WO2015068195A1
WO2015068195A1 PCT/JP2013/079810 JP2013079810W WO2015068195A1 WO 2015068195 A1 WO2015068195 A1 WO 2015068195A1 JP 2013079810 W JP2013079810 W JP 2013079810W WO 2015068195 A1 WO2015068195 A1 WO 2015068195A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
negative electrode
active material
electrode active
Prior art date
Application number
PCT/JP2013/079810
Other languages
French (fr)
Japanese (ja)
Inventor
岡井 誠
京谷 隆
康人 干川
孝文 石井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/079810 priority Critical patent/WO2015068195A1/en
Publication of WO2015068195A1 publication Critical patent/WO2015068195A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery, a method for producing a negative electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Graphite-based carbon materials are widely used as negative electrode active materials for lithium ion secondary batteries.
  • the stoichiometric composition when graphite is filled with lithium ions is LiC 6 , and its theoretical capacity can be calculated as 372 mAh / g.
  • the stoichiometric composition when silicon is filled with lithium ions is Li 15 Si 4 , and its theoretical capacity can be calculated as 3571 mAh / g.
  • silicon is an attractive material that can store 9.6 times as much lithium as graphite.
  • the silicon particles are filled with lithium ions, the volume expands to about 3.1 times, so that the silicon particles are dynamically destroyed during repeated filling and releasing of lithium ions.
  • the silicon particles are broken, the broken fine silicon particles are electrically isolated, and a new electrochemical coating layer is formed on the broken surface, whereby the irreversible capacity is increased and the charge / discharge cycle characteristics are remarkably lowered.
  • Patent Document 1 describes an example in which carbon is coated on the surface of a silicon nanowire.
  • Patent Document 2 relates to a negative electrode active material and a lithium battery that employs the negative electrode active material.
  • the negative electrode active material is formed of a silicon-based nanowire on a crystalline carbon-based core having a silicon-based nanowire disposed on the surface.
  • An example is described that includes primary particles that are coated with an amorphous carbon-based coating layer such that at least a portion is not exposed.
  • Patent Document 1 describes that PVDF (poly (vinylidene fluoride)) is decomposed and coated with carbon, and the coated carbon is considered to have an amorphous structure. Also in Patent Document 2, the carbon covering the silicon-based nanowire has an amorphous structure. In this case, the carbon coating film has no electrical conductivity, and it is difficult to prevent electrical isolation of silicon particles.
  • PVDF poly (vinylidene fluoride)
  • An object of the present invention is to provide a negative electrode active material for a lithium ion secondary battery that can prevent electrical isolation of silicon particles.
  • a negative electrode active material for a lithium ion secondary battery having a silicon nanowire and a carbon coating layer formed on the surface of the silicon nanowire, wherein the carbon coating layer has a nanographene structure .
  • a negative electrode active material for a lithium ion secondary battery that can prevent electrical isolation of silicon particles can be provided.
  • 2 is a scanning electron micrograph of silicon nanowires grown on a graphite surface.
  • 2 is a transmission electron micrograph of silicon nanowires grown on a graphite surface.
  • 2 is the figure which expressed typically the structure of the negative electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention.
  • 2 is a scanning electron micrograph of silicon nanoparticles grown on a graphite surface. It is a scanning electron micrograph of a carbon covering silicon nanowire. It is a scanning electron microscope enlarged photograph of a carbon covering silicon nanowire.
  • 2 is a transmission electron micrograph of carbon-coated silicon nanowires.
  • FIG. 2 is a transmission electron micrograph of carbon-coated silicon nanowires. It is the schematic of the thermal vapor phase growth apparatus for forming the carbon covering silicon nanowire on the surface of a carbon substrate. It is the schematic of the thermal vapor phase growth apparatus for forming the carbon covering silicon nanowire on the surface of a carbon substrate. It is an internal structure of the lithium ion secondary battery which concerns on one Embodiment of this invention. It is the figure which expressed typically the structure of the negative electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention. It is the figure which expressed typically the structure of the negative electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention.
  • FIG. 1 is a diagram schematically showing the structure of a carbon-coated silicon nanowire according to an embodiment of the present invention.
  • the carbon-coated silicon nanowire 202 has a silicon nanowire 101 and a carbon coating layer 102.
  • the surface of the silicon nanowire 101 is partially or entirely covered with the carbon coating layer 102.
  • the carbon coating layer 102 is formed on the surface of the silicon nanowire 101.
  • the carbon coating layer 102 has a structure in which nanographene is laminated in multiple layers, and has an electric conductivity of 1000 S / m or more, preferably 10,000 S / m or more. Electrical conductivity can be added to the silicon nanowire 101 by covering the silicon nanowire 101 partially or entirely with the carbon coating layer 102 having a nanographene structure. Thereby, even when the silicon nanowire 101 is broken in the middle or when the silicon nanowire 101 is peeled off from the carbon coating layer 102, electrical conduction with the current collector can be ensured, and electrical isolation can be prevented. The irreversible capacity of the lithium ion secondary battery can be reduced.
  • the film thickness L c of the carbon coating layer 102 is preferably 0.2 nm to 100 nm, particularly 1 nm to 30 nm, and more preferably 3 nm to 20 nm.
  • the film thickness L c of the carbon coating layer 102 is less than 0.2 nm, the coating strength is insufficient and there is a possibility of partial peeling. In that case, sufficient electrical conductivity can be ensured. Can not.
  • the film thickness L c of the carbon coating layer 102 exceeds 100 nm, it is difficult to set the weight of silicon with respect to the total weight to a desired value, for example, 20 wt%, and as a result, sufficient electric capacity can be obtained. Is difficult.
  • the diameter D si of the silicon nanowire 101 2 nm or more 100nm or less, particularly 5nm or 80nm or less, more desirably at 10nm or more 50nm or less.
  • D si sufficiently thin as 100 nm or less, mechanical destruction of the silicon nanowire 101 can be prevented, and the irreversible capacity can be reduced.
  • the diameter D si of the silicon nanowire 101 is less than 2 nm, there is a possibility that the whole is naturally oxidized in the atmosphere is SiO 2, in this case, may not function as an anode active material.
  • the diameter D si of the silicon nanowire 101 exceeds 100 nm, the volume expansion when filled with lithium ions, mechanically disrupted, there is a possibility that the electric capacity of the lithium ion secondary battery decreases.
  • the length of the silicon nanowire 101 is not limited, but a length of several microns to several tens of microns is considered optimal for the electrode manufacturing process.
  • FIG. 2 is a scanning electron micrograph of silicon nanowires grown on the graphite surface. It is a pure silicon nanowire 101 in which the carbon coating layer 102 is not formed. Thus, silicon nanowires can be produced very densely on the graphite surface.
  • FIG. 3 is a transmission electron micrograph of the same sample as FIG.
  • the diameter of the silicon nanowire 101 is 30 nm. Since silicon lattice stripes are seen inside the silicon nanowire 101, the silicon nanowire 101 has crystallinity. In particular, the silicon nanowire 101 is considered to have a polycrystalline structure. When the silicon nanowire 101 has crystallinity, the diffusion rate of lithium ions is increased. As a result, the charging and discharging speed of lithium ions is fast, and the high-speed charge / discharge characteristics are improved. Further, a natural oxide film layer 103 of slightly less than 3 nm exists on the surface of the silicon nanowire.
  • FIG. 4 is a diagram schematically showing the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the negative electrode active material 1 for a lithium ion secondary battery has a carbon substrate 201 and carbon-coated silicon nanowires 202.
  • carbon-coated silicon nanowires 202 were formed on the surface of the carbon substrate 201.
  • the carbon-coated silicon nanowire 202 is directly bonded to the surface of the carbon substrate 201 and grows from the surface of the carbon substrate 201.
  • the carbon substrate 201 graphite, thermally expanded graphite oxide, graphite oxide, carbon nanotubes, carbon nanohorns, ketjen black, acetylene black, various nanocarbon structures produced by a template method, and the like can be used.
  • a graphene structure such as ketjen black or acetylene black having an edge as the carbon substrate 201, more silicon nanoparticles can be attached to the carbon substrate 201.
  • FIG. 5 is a scanning electron micrograph of silicon nanoparticles grown on the graphite surface. As can be seen from FIG. 5, the nanoparticles are localized at the edge portion of the graphite. Further, as can be seen from FIG. 5, innumerable silicon nanoparticles having a diameter of several tens of nanometers exist on the surface of the carbon substrate 201. From this fact, it can be inferred that silicon nanoparticles first grow on the surface of the carbon substrate 201 and the silicon nanoparticles grow into carbon-coated silicon nanowires 202.
  • FIG. 6 is a scanning electron micrograph of carbon-coated silicon nanowires. As described above, the carbon-coated silicon nanowires 202 grow very densely on the surface of the carbon base material 201.
  • FIG. 7 is an enlarged photograph of the same sample as FIG. It is considered that the surface of the carbon-coated silicon nanowire 202 is uniformly covered with the carbon coating layer 102.
  • FIG. 8 is a transmission electron micrograph of carbon-coated silicon nanowires.
  • the silicon nanowire 101 having a lattice pattern can be observed.
  • the carbon coating layer 102 having a nanographene multilayer structure oriented along the axial direction of the silicon nanowire 101 can be observed. Since the carbon coating layer 102 is oriented along the axial direction of the silicon nanowire 101, the carbon coating layer 102 becomes a strong film that is difficult to peel off.
  • the diameter of the silicon nanowire 101 was 18 nm, and the film thickness of the carbon coating layer 102 was 6.44-8.17 nm.
  • FIG. 9 shows a transmission electron micrograph of a carbon-coated silicon nanowire of a sample different from FIG.
  • the diameter of the silicon nanowire 101 was 18 nm, and the film thickness of the carbon coating layer 102 was 10 nm.
  • FIG. 10 is a schematic diagram of a thermal vapor deposition apparatus for forming carbon-coated silicon nanowires on the surface of a carbon substrate.
  • Liquid silicon tetrachloride was used as the silicon raw material and was introduced into the reactor by bubbling with hydrogen gas.
  • the vapor pressure of silicon tetrachloride at 20 ° C. is 30 kPa, and when bubbling is introduced, the amount of silicon tetrachloride introduced is 34%. Therefore, when introducing a smaller amount of silicon tetrachloride, it is necessary to cool the silicon tetrachloride or provide another line of hydrogen gas.
  • a hydrogen line that is not bubbled is provided separately, joined with the bubbling line, and introduced into the reactor.
  • the growth procedure of the carbon-coated silicon nanowire 202 is as follows.
  • the reactor is made of quartz and has a diameter of 5 cm and a length of 40 cm.
  • hydrogen is allowed to flow at a flow rate of 200 mL / min, and the lower bubbling hydrogen line is closed, and the growth furnace is heated from room temperature to 1000 ° C. at a rate of 10 ° C./min. did.
  • the flow rate of the upper hydrogen line was changed to 100 mL / min, and the flow rate of the hydrogen line of the lower bubbling hydrogen line was set to 100 mL / min. Under this condition, 17% silicon tetrachloride can be introduced.
  • the lower bubbling hydrogen line was closed, the flow rate of the upper hydrogen line was changed to 200 mL / min, and the temperature was maintained at 1000 ° C. for 30 minutes. Thereby, it is possible to produce the silicon nanowire 101 having a diameter of 20 nm on the surface of the carbon substrate 201.
  • both hydrogen lines were closed, and argon gas (the argon line is not shown in FIG. 10) was allowed to flow at a flow rate of 200 mL / min, the temperature was lowered at a rate of 10 ° C./min, and the temperature was lowered to 800 ° C.
  • propylene gas (the propylene line is not shown in FIG. 10) was introduced at a flow rate of 10 mL / min, and at the same time, the flow rate of argon gas was set to 190 mL / min, and the carbon coating layer 102 was kept for 1 hour. grown.
  • the propylene gas line was closed, and argon gas was allowed to flow at a flow rate of 200 mL / min, kept for 30 minutes, and then naturally cooled.
  • the carbon coating layer 102 (film thickness 10 nm) having a nanographene multilayer structure can be formed on the surface of the silicon nanowire 101.
  • the silicon nanowire 101 and the subsequent carbon coating layer 102 are continuously formed, thereby preventing the formation of a natural oxide film and eliminating the process of reducing and removing the natural oxide film.
  • the silicon nanowire 101 and the subsequent carbon coating layer 102 were continuously formed. After the silicon nanowire 101 is grown, it can be taken out once in the air and then heat-treated in a reducing atmosphere to remove the natural oxide film on the surface of the silicon nanowire 101, and then the carbon coating layer 102 can be produced. Productivity is improved by performing the growth of the silicon nanowire 101 and the production of the carbon coating layer 102 in separate reaction furnaces. Further, the diameter and growth weight of the silicon nanowire 101 can be changed by changing the temperature at the time of growing the silicon nanowire 101, the amount of silicon tetrachloride introduced, and the growth time.
  • the film thickness of the carbon coating layer 102 can be controlled by changing the growth time of the carbon coating layer 102.
  • various hydrocarbon gases such as acetylene gas, propane gas, and methane gas can be used for producing the carbon coating layer 102.
  • FIG. 11 is a result of calculating the dependence of the negative electrode electric capacity on the weight ratio Si / (Si + C) of silicon with respect to the total weight with respect to the negative electrode active material for a lithium ion secondary battery.
  • the stoichiometric composition when filled with lithium ions was assumed to be LiC 6 and its electric capacity was 372 mAh / g.
  • the stoichiometric composition when lithium ions are filled is assumed to be Li 15 Si 4, and the electric capacity is assumed to be 3577 mAh / g, and Li 22 Si 5 is assumed, It calculated about the case where the electric capacity was 4197 mAh / g.
  • the weight ratio of the negative electrode active material for lithium ion secondary battery is 20% or more, particularly 40% or more, and further 80 It is desirable to contain more than% silicon.
  • FIG. 12 shows the internal structure of a lithium ion secondary battery according to an embodiment of the present invention.
  • 1301 is a positive electrode
  • 1302 is a separator
  • 1303 is a negative electrode
  • 1304 is a battery can
  • 1305 is a positive electrode current collecting tab
  • 1306 is a negative electrode current collecting tab
  • 1307 is an inner lid
  • 1308 is an internal pressure release valve
  • 1309 is a gasket
  • 1310 is a positive temperature coefficient (PTC) resistive element
  • 1311 is a battery lid.
  • the battery lid 1311 is an integrated part including an inner lid 1307, an internal pressure release valve 1308, a gasket 1309, and a positive temperature coefficient resistance element 1310.
  • the positive electrode 1301 can be manufactured by the following procedure. LiMn 2 O 4 is used as the positive electrode active material. 7.0 wt% and 2.0 wt% of graphite powder and acetylene black are added as conductive materials to 85.0 wt% of the positive electrode active material, respectively. Further, a solution dissolved in 6.0 wt% polyvinylidene fluoride (hereinafter abbreviated as PVDF) and 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is added as a binder, and the mixture is mixed with a planetary mixer. Further, air bubbles in the slurry are removed under vacuum to prepare a homogeneous positive electrode mixture slurry.
  • PVDF polyvinylidene fluoride
  • NMP 1-methyl-2-pyrrolidone
  • This slurry is uniformly and evenly applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m using an applicator. After the application, compression molding is performed by a roll press so that the electrode density is 2.55 g / cm 3 . This is cut with a cutting machine to produce a positive electrode 1301 having a thickness of 100 ⁇ m, a length of 900 mm, and a width of 54 mm.
  • the negative electrode 1303 can be manufactured by the following procedure.
  • the negative electrode active material the negative electrode active material for the lithium ion secondary battery in the present invention such as the negative electrode active material for the lithium ion secondary battery of FIG. 4 can be used.
  • a solution obtained by dissolving 5.0 wt% of PVDF as a binder in NMP is added to 95.0 wt% of the negative electrode active material. It is mixed with a planetary mixer, and bubbles in the slurry are removed under vacuum to prepare a homogeneous negative electrode mixture slurry. This slurry is uniformly and evenly applied to both surfaces of a rolled copper foil having a thickness of 10 ⁇ m with an applicator.
  • the electrode After application, the electrode is compression-molded by a roll press to make the electrode density 1.3 g / cm 3 . This is cut with a cutting machine to produce a negative electrode 1303 having a thickness of 110 ⁇ m, a length of 950 mm, and a width of 56 mm.
  • the positive electrode current collecting tab 1305 and the negative electrode current collecting tab 1306 are ultrasonically welded to the positive electrode 1301 and the uncoated part (current collector exposed surface) of the negative electrode 1303, respectively, which can be produced as described above.
  • the positive electrode current collecting tab 1305 may be an aluminum lead piece, and the negative electrode current collecting tab 1306 may be a nickel lead piece.
  • a separator 1302 made of a porous polyethylene film having a thickness of 30 ⁇ m is inserted into the positive electrode 1301 and the negative electrode 1303, and the positive electrode 1301, the separator 1302, and the negative electrode 1303 are wound.
  • the wound body is accommodated in the battery can 1304, and the negative electrode current collecting tab 1306 is connected to the bottom of the battery can 1304 by a resistance welding machine.
  • the positive electrode current collecting tab 1305 is connected to the bottom surface of the inner lid 1307 by ultrasonic welding.
  • a non-aqueous electrolyte Before attaching the upper battery lid 1311 to the battery can 1304, a non-aqueous electrolyte can be injected.
  • the solvent of the electrolytic solution includes, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), and has a volume ratio of 1: 1: 1.
  • the electrolyte is LiPF 6 at a concentration of 1 mol / L (about 0.8 mol / kg). Such an electrolytic solution is dropped from above the wound body, and the battery lid 1311 is caulked and sealed in the battery can 1304, whereby the lithium ion secondary battery 1000 can be obtained.
  • FIG. 13 is a diagram schematically showing the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • This embodiment is different from the first embodiment in that carbon nanotubes 301 are used as a carbon base material and carbon-coated silicon nanowires 302 are formed on the surface thereof.
  • the silicon has a larger specific surface area than the graphite, so that more silicon nanowires 302 can be grown. it can.
  • FIG. 14 is a diagram schematically representing the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • carbon-coated silicon nanowires 401 are grown on a carbon substrate, and then the carbon substrate and the carbon-coated silicon nanowires 401 are separated, and only the carbon-coated silicon nanowires 401 are used as a negative electrode active for a lithium ion secondary battery.
  • the point used as a substance is different from Example 1 and Example 2. That is, in this example, the negative electrode active material for a lithium ion secondary battery is composed of carbon-coated silicon nanowires 401. As a result, the weight ratio of silicon to the total weight can be greatly increased, so that the electric capacity can be dramatically increased.
  • Negative electrode active material 101 for lithium ion secondary batteries Silicon nanowire 102 Carbon coating layer 103 Oxide layer 201 Carbon base material 202 302 401 Carbon coating silicon nanowire 301 Carbon nanotube 1000 Lithium ion secondary battery 1301 Positive electrode 1302 Separator 1303 Negative electrode 1304 Battery can 1305 Positive current collecting tab 1306 Negative current collecting tab 1307 Inner lid 1308 Pressure release valve 1309 Gasket, 1310 Positive temperature coefficient resistance element 1311 Battery cover

Abstract

Provided is a negative electrode active material for a lithium ion secondary cell capable of preventing electrical isolation of silicon particles. A negative electrode active material for a lithium ion secondary cell having a silicon nanowire and a carbon coating layer formed on the surface of the silicon nanowire, wherein the carbon coating layer has a nanographene structure, the electrical conductivity of the carbon coating layer is, e.g., 1000 S/m or higher, the carbon coating layer is oriented along, e.g., the surface of the silicon nanowire, the thickness of the carbon coating layer is, e.g., 0.2-100 nm, and the diameter of the silicon nanowire is, e.g., 2-100 nm.

Description

リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池Negative electrode active material for lithium ion secondary battery, method for producing negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
 本発明は、リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池に関する。 The present invention relates to a negative electrode active material for a lithium ion secondary battery, a method for producing a negative electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery.
 リチウムイオン二次電池の負極活物質として、黒鉛系の炭素材料が広く用いられている。黒鉛にリチウムイオンを充填した際の化学量論的組成は、LiC6であり、その理論容量は372mAh/gと算出できる。 Graphite-based carbon materials are widely used as negative electrode active materials for lithium ion secondary batteries. The stoichiometric composition when graphite is filled with lithium ions is LiC 6 , and its theoretical capacity can be calculated as 372 mAh / g.
 これに対して、シリコンにリチウムイオンを充填した際の化学量論的組成は、Li15Si4であり、その理論容量は3571mAh/gと算出できる。このようにシリコンは黒鉛に比べて、9.6倍のリチウムを貯蔵できる魅力的な材料である。しかしながら、シリコン粒子にリチウムイオンを充填すると、体積が3.1倍程度に膨張するため、リチウムイオンの充填と放出を繰り返す間に、シリコン粒子が力学的に破壊する。シリコン粒子が破壊することにより、破壊した微細シリコン粒子が電気的に孤立し、また、破壊面に新しい電気化学的被覆層ができることにより不可逆容量が増加し、充放電サイクル特性が著しく低下する。 On the other hand, the stoichiometric composition when silicon is filled with lithium ions is Li 15 Si 4 , and its theoretical capacity can be calculated as 3571 mAh / g. Thus, silicon is an attractive material that can store 9.6 times as much lithium as graphite. However, when the silicon particles are filled with lithium ions, the volume expands to about 3.1 times, so that the silicon particles are dynamically destroyed during repeated filling and releasing of lithium ions. When the silicon particles are broken, the broken fine silicon particles are electrically isolated, and a new electrochemical coating layer is formed on the broken surface, whereby the irreversible capacity is increased and the charge / discharge cycle characteristics are remarkably lowered.
 リチウムイオン二次電池の負極活物質としてシリコンを用いた従来技術として、特許文献1には、シリコンナノワイヤの表面に、炭素被覆する例が記載されている。また、特許文献2には、負極活物質及び該負極活物質を採用したリチウム電池に係り、負極活物質は、表面にシリコン系ナノワイヤが配置された結晶質炭素系コア上に、シリコン系ナノワイヤの少なくとも一部が露出されないように非晶質炭素系コーティング層がコーティングされている一次粒子を含む例が記載されている。 As a conventional technique using silicon as a negative electrode active material of a lithium ion secondary battery, Patent Document 1 describes an example in which carbon is coated on the surface of a silicon nanowire. Patent Document 2 relates to a negative electrode active material and a lithium battery that employs the negative electrode active material. The negative electrode active material is formed of a silicon-based nanowire on a crystalline carbon-based core having a silicon-based nanowire disposed on the surface. An example is described that includes primary particles that are coated with an amorphous carbon-based coating layer such that at least a portion is not exposed.
特表2012-527735号公報Special table 2012-527735 gazette 特開2013-84601号公報JP 2013-84601 A
 特許文献1には、PVDF(ポリ(フッ化ビニリデン))を分解して炭素被覆すると記載されており、被覆された炭素はアモルファス構造であると考えられる。また、特許文献2においても、シリコン系ナノワイヤを被覆する炭素はアモルファス構造である。この場合、炭素被覆膜に電気伝導性は無く、シリコン粒子の電気的な孤立を防止することは難しい。 Patent Document 1 describes that PVDF (poly (vinylidene fluoride)) is decomposed and coated with carbon, and the coated carbon is considered to have an amorphous structure. Also in Patent Document 2, the carbon covering the silicon-based nanowire has an amorphous structure. In this case, the carbon coating film has no electrical conductivity, and it is difficult to prevent electrical isolation of silicon particles.
 本発明では、シリコン粒子の電気的な孤立を防止できるリチウムイオン二次電池用負極活物質を提供することを課題とする。 An object of the present invention is to provide a negative electrode active material for a lithium ion secondary battery that can prevent electrical isolation of silicon particles.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are as follows, for example.
 シリコンナノワイヤと、シリコンナノワイヤの表面に形成された炭素被覆層と、を有するリチウムイオン二次電池用負極活物質であって、炭素被覆層は、ナノグラフェン構造を有するリチウムイオン二次電池用負極活物質。 A negative electrode active material for a lithium ion secondary battery having a silicon nanowire and a carbon coating layer formed on the surface of the silicon nanowire, wherein the carbon coating layer has a nanographene structure .
 本発明により、シリコン粒子の電気的な孤立を防止できるリチウムイオン二次電池用負極活物質を提供できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。 According to the present invention, a negative electrode active material for a lithium ion secondary battery that can prevent electrical isolation of silicon particles can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施形態に係る炭素被覆シリコンナノワイヤの構造を模式的に表現した図である。It is the figure which expressed typically the structure of the carbon covering silicon nanowire concerning one embodiment of the present invention. 黒鉛表面に成長したシリコンナノワイヤの走査型電子顕微鏡写真である。2 is a scanning electron micrograph of silicon nanowires grown on a graphite surface. 黒鉛表面に成長したシリコンナノワイヤの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of silicon nanowires grown on a graphite surface. 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現した図である。It is the figure which expressed typically the structure of the negative electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention. 黒鉛表面に成長したシリコンナノ粒子の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of silicon nanoparticles grown on a graphite surface. 炭素被覆シリコンナノワヤの走査型電子顕微鏡写真である。It is a scanning electron micrograph of a carbon covering silicon nanowire. 炭素被覆シリコンナノワヤの走査型電子顕微鏡拡大写真である。It is a scanning electron microscope enlarged photograph of a carbon covering silicon nanowire. 炭素被覆シリコンナノワイヤの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of carbon-coated silicon nanowires. 炭素被覆シリコンナノワイヤの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of carbon-coated silicon nanowires. 炭素基材の表面に炭素被覆シリコンナノワイヤを形成するための熱気相成長装置の概略図である。It is the schematic of the thermal vapor phase growth apparatus for forming the carbon covering silicon nanowire on the surface of a carbon substrate. 炭素基材の表面に炭素被覆シリコンナノワイヤを形成するための熱気相成長装置の概略図である。It is the schematic of the thermal vapor phase growth apparatus for forming the carbon covering silicon nanowire on the surface of a carbon substrate. 本発明の一実施形態に係るリチウムイオン二次電池の内部構造である。It is an internal structure of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現した図である。It is the figure which expressed typically the structure of the negative electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現した図である。It is the figure which expressed typically the structure of the negative electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 本発明の第1の実施例について、図1を用いて説明する。図1は、本発明の一実施形態に係る炭素被覆シリコンナノワイヤの構造を模式的に表現した図である。 A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram schematically showing the structure of a carbon-coated silicon nanowire according to an embodiment of the present invention.
 炭素被覆シリコンナノワイヤ202は、シリコンナノワイヤ101および炭素被覆層102を有する。シリコンナノワイヤ101の表面が、部分的または全体に炭素被覆層102で覆われた構造である。換言すると、シリコンナノワイヤ101の表面に炭素被覆層102が形成されている。 The carbon-coated silicon nanowire 202 has a silicon nanowire 101 and a carbon coating layer 102. The surface of the silicon nanowire 101 is partially or entirely covered with the carbon coating layer 102. In other words, the carbon coating layer 102 is formed on the surface of the silicon nanowire 101.
 炭素被覆層102は、ナノグラフェンが多層に積層した構造を有し、1000S/m以上、好ましくは10000S/m以上の電気伝導度を有する。シリコンナノワイヤ101が部分的または全体にナノグラフェン構造を有する炭素被覆層102で被覆されることにより、シリコンナノワイヤ101に電気伝導性を付加することができる。これにより、シリコンナノワイヤ101が途中で折れた場合、あるいはシリコンナノワイヤ101が炭素被覆層102から剥離した場合にも、集電体との電気伝導を確保し、電気的孤立を防ぐことができるので、リチウムイオン二次電池の不可逆容量を低減できる。 The carbon coating layer 102 has a structure in which nanographene is laminated in multiple layers, and has an electric conductivity of 1000 S / m or more, preferably 10,000 S / m or more. Electrical conductivity can be added to the silicon nanowire 101 by covering the silicon nanowire 101 partially or entirely with the carbon coating layer 102 having a nanographene structure. Thereby, even when the silicon nanowire 101 is broken in the middle or when the silicon nanowire 101 is peeled off from the carbon coating layer 102, electrical conduction with the current collector can be ensured, and electrical isolation can be prevented. The irreversible capacity of the lithium ion secondary battery can be reduced.
 炭素被覆層102の膜厚Lcは、0.2nm以上100nm以下、特に1nm以上30nm以下、更には3nm以上20nm以下であることが望ましい。炭素被覆層102の膜厚Lcが、0.2nm未満である場合、被覆強度が不十分で、部分的に剥がれる可能性があり、その場合には、十分な電気伝導性を確保することができない。また、炭素被覆層102の膜厚Lcが、100nmを超える場合、全体の重量に対するシリコンの重量を所望の値、例えば20wt%にすることが困難であり、結果として十分な電気容量を得ることが難しい。 The film thickness L c of the carbon coating layer 102 is preferably 0.2 nm to 100 nm, particularly 1 nm to 30 nm, and more preferably 3 nm to 20 nm. When the film thickness L c of the carbon coating layer 102 is less than 0.2 nm, the coating strength is insufficient and there is a possibility of partial peeling. In that case, sufficient electrical conductivity can be ensured. Can not. Further, when the film thickness L c of the carbon coating layer 102 exceeds 100 nm, it is difficult to set the weight of silicon with respect to the total weight to a desired value, for example, 20 wt%, and as a result, sufficient electric capacity can be obtained. Is difficult.
 シリコンナノワイヤ101の直径Dsiは、2nm以上100nm以下、特に5nm以上80nm以下、更には10nm以上50nm以下であることが望ましい。Dsiを100nm以下と充分に細くすることにより、シリコンナノワイヤ101の力学的な破壊を防止でき、不可逆容量を低減できる。シリコンナノワイヤ101の直径Dsiが2nm未満の場合、大気中で自然酸化されて全体がSiO2になる可能性があり、この場合、負極活物質として機能しない可能性がある。また、シリコンナノワイヤ101の直径Dsiが100nmを超える場合、リチウムイオンを充填した際の体積膨張により、機械的に破壊し、リチウムイオン二次電池の電気容量が減少する可能性がある。シリコンナノワイヤ101の長さに制限はないが、数ミクロンから数十ミクロンぐらいの長さが、電極作製プロセスに対して、最適であると考えられる。 The diameter D si of the silicon nanowire 101, 2 nm or more 100nm or less, particularly 5nm or 80nm or less, more desirably at 10nm or more 50nm or less. By making D si sufficiently thin as 100 nm or less, mechanical destruction of the silicon nanowire 101 can be prevented, and the irreversible capacity can be reduced. If the diameter D si of the silicon nanowire 101 is less than 2 nm, there is a possibility that the whole is naturally oxidized in the atmosphere is SiO 2, in this case, may not function as an anode active material. Further, if the diameter D si of the silicon nanowire 101 exceeds 100 nm, the volume expansion when filled with lithium ions, mechanically disrupted, there is a possibility that the electric capacity of the lithium ion secondary battery decreases. The length of the silicon nanowire 101 is not limited, but a length of several microns to several tens of microns is considered optimal for the electrode manufacturing process.
 図2は、黒鉛表面に成長したシリコンナノワイヤの走査型電子顕微鏡写真である。炭素被覆層102を形成していない、純粋なシリコンナノワイヤ101である。このように、黒鉛表面に非常に密にシリコンナノワイヤを作製できる。 FIG. 2 is a scanning electron micrograph of silicon nanowires grown on the graphite surface. It is a pure silicon nanowire 101 in which the carbon coating layer 102 is not formed. Thus, silicon nanowires can be produced very densely on the graphite surface.
 図3は、図2と同じサンプルの透過型電子顕微鏡写真である。シリコンナノワイヤ101の直径は30nmである。シリコンナノワイヤ101の内部にシリコンの格子縞がみえていることから、シリコンナノワイヤ101は結晶性を有する、特に、シリコンナノワイヤ101は多結晶構造であると考えられる。シリコンナノワイヤ101が結晶性を有することにより、リチウムイオンの拡散速度が大きくなる。結果として、リチウムイオンの充填および放出速度が速く、高速充放電特性が向上する。また、シリコンナノワイヤの表面には、3nm弱の自然酸化膜層103が存在している。 FIG. 3 is a transmission electron micrograph of the same sample as FIG. The diameter of the silicon nanowire 101 is 30 nm. Since silicon lattice stripes are seen inside the silicon nanowire 101, the silicon nanowire 101 has crystallinity. In particular, the silicon nanowire 101 is considered to have a polycrystalline structure. When the silicon nanowire 101 has crystallinity, the diffusion rate of lithium ions is increased. As a result, the charging and discharging speed of lithium ions is fast, and the high-speed charge / discharge characteristics are improved. Further, a natural oxide film layer 103 of slightly less than 3 nm exists on the surface of the silicon nanowire.
 図4は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現した図である。リチウムイオン二次電池用負極活物質1は、炭素基材201および炭素被覆シリコンナノワイヤ202を有する。本実施例では、炭素基材201の表面に、炭素被覆シリコンナノワイヤ202を形成した。炭素被覆シリコンナノワイヤ202は、炭素基材201表面に直接結合しており、炭素基材201の表面から成長している。 FIG. 4 is a diagram schematically showing the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention. The negative electrode active material 1 for a lithium ion secondary battery has a carbon substrate 201 and carbon-coated silicon nanowires 202. In this example, carbon-coated silicon nanowires 202 were formed on the surface of the carbon substrate 201. The carbon-coated silicon nanowire 202 is directly bonded to the surface of the carbon substrate 201 and grows from the surface of the carbon substrate 201.
 炭素基材201として、黒鉛、熱膨張酸化黒鉛、酸化黒鉛、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラック、アセチレンブラック、鋳型法で作製した各種ナノカーボン構造体等を用いることができる。ケッチェンブラック、アセチレンブラック等のグラフェン構造でエッジを有するものを炭素基材201として用いることにより、炭素基材201により多くのシリコンナノ粒子を付着させることができる。 As the carbon substrate 201, graphite, thermally expanded graphite oxide, graphite oxide, carbon nanotubes, carbon nanohorns, ketjen black, acetylene black, various nanocarbon structures produced by a template method, and the like can be used. By using a graphene structure such as ketjen black or acetylene black having an edge as the carbon substrate 201, more silicon nanoparticles can be attached to the carbon substrate 201.
 炭素基材201表面での炭素被覆シリコンナノワイヤ202の成長メカニズムを明確にするために、炭素被覆シリコンナノワイヤ202成長の初期段階で成長を中断し、試料を取出して、走査型電子顕微鏡で観察した。図5は、黒鉛表面に成長したシリコンナノ粒子の走査型電子顕微鏡写真である。図5からわかるように、ナノ粒子が黒鉛のエッジ部分に局在している。また、図5からわかるように、炭素基材201の表面に、直径が数十nmのシリコンナノ粒子が無数に存在していた。この事実より、炭素基材201表面に、まずシリコンナノ粒子が成長し、そのシリコンナノ粒子が、炭素被覆シリコンナノワイヤ202へと成長すると推察できる。 In order to clarify the growth mechanism of the carbon-coated silicon nanowires 202 on the surface of the carbon substrate 201, the growth was interrupted at the initial stage of the growth of the carbon-coated silicon nanowires 202, the sample was taken out, and observed with a scanning electron microscope. FIG. 5 is a scanning electron micrograph of silicon nanoparticles grown on the graphite surface. As can be seen from FIG. 5, the nanoparticles are localized at the edge portion of the graphite. Further, as can be seen from FIG. 5, innumerable silicon nanoparticles having a diameter of several tens of nanometers exist on the surface of the carbon substrate 201. From this fact, it can be inferred that silicon nanoparticles first grow on the surface of the carbon substrate 201 and the silicon nanoparticles grow into carbon-coated silicon nanowires 202.
 図6は、炭素被覆シリコンナノワヤの走査型電子顕微鏡写真である。このように、炭素基材201の表面に非常に密に炭素被覆シリコンナノワヤ202が成長している。 FIG. 6 is a scanning electron micrograph of carbon-coated silicon nanowires. As described above, the carbon-coated silicon nanowires 202 grow very densely on the surface of the carbon base material 201.
 図7は、図6と同じサンプルの拡大写真である。炭素被覆シリコンナノワイヤ202の表面が、炭素被覆層102で均一に覆われていると考えられる。 7 is an enlarged photograph of the same sample as FIG. It is considered that the surface of the carbon-coated silicon nanowire 202 is uniformly covered with the carbon coating layer 102.
 図8は、炭素被覆シリコンナノワイヤの透過型電子顕微鏡写真である。炭素被覆シリコンナノワイヤ202の中央付近には、格子縞を有するシリコンナノワイヤ101を観察することができる。また、シリコンナナワイヤ101の表面には、シリコンナノワイヤ101の軸方向に沿って配向したナノグラフェン多層構造を有する炭素被覆層102を観察することができる。シリコンナノワイヤ101の軸方向に沿って炭素被覆層102が配向していることにより、炭素被覆層102が剥がれにくい強固な膜に成る。図8において、シリコンナノワイヤ101の直径は18nmであり、炭素被覆層102の膜厚は6.44-8.17nmであった。 FIG. 8 is a transmission electron micrograph of carbon-coated silicon nanowires. In the vicinity of the center of the carbon-coated silicon nanowire 202, the silicon nanowire 101 having a lattice pattern can be observed. Further, on the surface of the silicon nanowire 101, the carbon coating layer 102 having a nanographene multilayer structure oriented along the axial direction of the silicon nanowire 101 can be observed. Since the carbon coating layer 102 is oriented along the axial direction of the silicon nanowire 101, the carbon coating layer 102 becomes a strong film that is difficult to peel off. In FIG. 8, the diameter of the silicon nanowire 101 was 18 nm, and the film thickness of the carbon coating layer 102 was 6.44-8.17 nm.
 図8とは別のサンプルの炭素被覆シリコンナノワイヤの透過型電子顕微鏡写真を図9に示す。シリコンナノワイヤ101の直径は18nmであり、炭素被覆層102の膜厚は10nmであった。 FIG. 9 shows a transmission electron micrograph of a carbon-coated silicon nanowire of a sample different from FIG. The diameter of the silicon nanowire 101 was 18 nm, and the film thickness of the carbon coating layer 102 was 10 nm.
 図10は、炭素基材の表面に、炭素被覆シリコンナノワイヤを形成するための熱気相成長装置の概略図である。シリコン原料には、液体の四塩化シリコンを用い、水素ガスでバブリングすることにより、反応炉に導入した。四塩化シリコンの20℃における蒸気圧は30kPaであり、バブリング導入すると、四塩化シリコンの導入量は34%となる。そこで、それ以下の量の四塩化シリコンを導入する場合には、四塩化シリコンを冷却するか、水素ガスの別ラインを設ける必要がある。図10では、バブリングしない水素ラインを別に設け、バブリングラインと合流して、反応炉に導入した。炭素被覆シリコンナノワイヤ202の成長の手順は、下記の通りである。 FIG. 10 is a schematic diagram of a thermal vapor deposition apparatus for forming carbon-coated silicon nanowires on the surface of a carbon substrate. Liquid silicon tetrachloride was used as the silicon raw material and was introduced into the reactor by bubbling with hydrogen gas. The vapor pressure of silicon tetrachloride at 20 ° C. is 30 kPa, and when bubbling is introduced, the amount of silicon tetrachloride introduced is 34%. Therefore, when introducing a smaller amount of silicon tetrachloride, it is necessary to cool the silicon tetrachloride or provide another line of hydrogen gas. In FIG. 10, a hydrogen line that is not bubbled is provided separately, joined with the bubbling line, and introduced into the reactor. The growth procedure of the carbon-coated silicon nanowire 202 is as follows.
 サンプルボートに炭素基材を入れて、反応炉の中央付近に設置する。反応炉は、石英製であり、直径が5cm、長さが40cmである。図10の上の水素ラインには、水素を200mL/minの流速で流し、下のバブリング水素ラインは閉じた状態で、成長炉を室温から1000℃まで、10℃/minでの速度で昇温した。 炭素 Put the carbon base material in the sample boat and install it near the center of the reactor. The reactor is made of quartz and has a diameter of 5 cm and a length of 40 cm. In the upper hydrogen line of FIG. 10, hydrogen is allowed to flow at a flow rate of 200 mL / min, and the lower bubbling hydrogen line is closed, and the growth furnace is heated from room temperature to 1000 ° C. at a rate of 10 ° C./min. did.
 次に、1000℃に達したところで、上の水素ラインの流量を100mL/minに変更し、下のバブリング水素ラインの水素ラインの流量を100mL/minに設定した。この条件により、17%の四塩化シリコンを導入することができる。1000℃で1時間成長した後、下のバブリング水素ラインを閉じ、上の水素ラインの流量を200mL/minに変更して、1000℃で30分間保持した。これにより、直径が20nmのシリコンナノワイヤ101を炭素基材201表面に作製することが可能である。 Next, when the temperature reached 1000 ° C., the flow rate of the upper hydrogen line was changed to 100 mL / min, and the flow rate of the hydrogen line of the lower bubbling hydrogen line was set to 100 mL / min. Under this condition, 17% silicon tetrachloride can be introduced. After growing at 1000 ° C. for 1 hour, the lower bubbling hydrogen line was closed, the flow rate of the upper hydrogen line was changed to 200 mL / min, and the temperature was maintained at 1000 ° C. for 30 minutes. Thereby, it is possible to produce the silicon nanowire 101 having a diameter of 20 nm on the surface of the carbon substrate 201.
 その後、両水素ラインを閉じ、アルゴンガス(図10にアルゴンラインは記載していない)を200mL/minの流速で流し、10℃/minの速度で降温し、800℃まで降温した。800℃に達したところで、プロピレンガス(図10にプロピレンラインは記載していない)を10mL/minの流速で導入し、同時にアルゴンガスの流速を190mL/minにして、炭素被覆層102を1時間成長した。 Thereafter, both hydrogen lines were closed, and argon gas (the argon line is not shown in FIG. 10) was allowed to flow at a flow rate of 200 mL / min, the temperature was lowered at a rate of 10 ° C./min, and the temperature was lowered to 800 ° C. When the temperature reached 800 ° C., propylene gas (the propylene line is not shown in FIG. 10) was introduced at a flow rate of 10 mL / min, and at the same time, the flow rate of argon gas was set to 190 mL / min, and the carbon coating layer 102 was kept for 1 hour. grown.
 その後、プロピレンガスラインを閉じ、アルゴンガスを200mL/minの流速で流し、30分間保持した後、自然冷却した。これにより、シリコンナノワイヤ101の表面に、ナノグラフェン多層構造を有する炭素被覆層102(膜厚10nm)を作製することが可能である。このように、シリコンナノワイヤ101の作製と、それに続く炭素被覆層102の作製を、連続して行うことにより、自然酸化膜の形成を防止し、自然酸化膜の還元除去プロセスが不要になる。 Thereafter, the propylene gas line was closed, and argon gas was allowed to flow at a flow rate of 200 mL / min, kept for 30 minutes, and then naturally cooled. Thereby, the carbon coating layer 102 (film thickness 10 nm) having a nanographene multilayer structure can be formed on the surface of the silicon nanowire 101. In this way, the silicon nanowire 101 and the subsequent carbon coating layer 102 are continuously formed, thereby preventing the formation of a natural oxide film and eliminating the process of reducing and removing the natural oxide film.
 なお、図10では、シリコンナノワイヤ101の表面酸化を防ぐために、シリコンナノワイヤ101の作製と、それに続く炭素被覆層102の作製を、連続して行った。シリコンナノワイヤ101を成長後、一度空気中に取出し、その後還元雰囲気で熱処理して、シリコンナノワイヤ101の表面の自然酸化膜を取り除いた後に、引き続いて炭素被覆層102を作製することも可能である。シリコンナノワイヤ101の成長と炭素被覆層102の作製を別々の反応炉で行うことにより、生産性が向上する。また、シリコンナノワイヤ101成長時の温度、四塩化シリコン導入量、成長時間をかえることにより、シリコンナノワイヤ101の直径および成長重量を変えることが可能である。また、炭素被覆層102の成長時間を変えることにより、炭素被覆層102の膜厚を制御することが可能である。また、炭素被覆層102の作製には、プロピレンガス以外に、アセチレンガス、プロパンガス、メタンガス等の種々の炭化水素ガスを用いることが可能である。 In FIG. 10, in order to prevent the surface oxidation of the silicon nanowire 101, the silicon nanowire 101 and the subsequent carbon coating layer 102 were continuously formed. After the silicon nanowire 101 is grown, it can be taken out once in the air and then heat-treated in a reducing atmosphere to remove the natural oxide film on the surface of the silicon nanowire 101, and then the carbon coating layer 102 can be produced. Productivity is improved by performing the growth of the silicon nanowire 101 and the production of the carbon coating layer 102 in separate reaction furnaces. Further, the diameter and growth weight of the silicon nanowire 101 can be changed by changing the temperature at the time of growing the silicon nanowire 101, the amount of silicon tetrachloride introduced, and the growth time. Further, the film thickness of the carbon coating layer 102 can be controlled by changing the growth time of the carbon coating layer 102. In addition to the propylene gas, various hydrocarbon gases such as acetylene gas, propane gas, and methane gas can be used for producing the carbon coating layer 102.
 図11は、リチウムイオン二次電池用負極活物質に関して、全体重量に対するシリコンの重量比Si/(Si+C)に対する、負極電気容量の依存性を計算した結果である。炭素に対しては、リチウムイオンを充填した際の化学量論的組成を、LiC6と仮定し、その電気容量を372mAh/gとした。また、シリコンに対しては、リチウムイオンを充填した際の化学量論的組成を、Li15Si4と仮定し、その電気容量を3577mAh/gとした場合と、Li22Si5と仮定し、その電気容量を4197mAh/gとした場合について、計算した。 FIG. 11 is a result of calculating the dependence of the negative electrode electric capacity on the weight ratio Si / (Si + C) of silicon with respect to the total weight with respect to the negative electrode active material for a lithium ion secondary battery. For carbon, the stoichiometric composition when filled with lithium ions was assumed to be LiC 6 and its electric capacity was 372 mAh / g. For silicon, the stoichiometric composition when lithium ions are filled is assumed to be Li 15 Si 4, and the electric capacity is assumed to be 3577 mAh / g, and Li 22 Si 5 is assumed, It calculated about the case where the electric capacity was 4197 mAh / g.
 正極電気容量とのバランスから、負極電気容量として、1000mAh/g以上を実現できれば、当面は十分な性能であると考えられる。図11の計算結果より、負極電気容量として、1000mAh/g以上を実現するためには、重量比でリチウムイオン二次電池用負極活物質に対して20%以上、特に40%以上、更には80%以上のシリコンを含有することが望ましい。 From the balance with the positive electrode electric capacity, if the negative electrode electric capacity is 1000 mAh / g or more, it is considered that the performance is sufficient for the time being. From the calculation result of FIG. 11, in order to realize the negative electrode electric capacity of 1000 mAh / g or more, the weight ratio of the negative electrode active material for lithium ion secondary battery is 20% or more, particularly 40% or more, and further 80 It is desirable to contain more than% silicon.
 図12は、本発明の一実施形態に係るリチウムイオン二次電池の内部構造である。図12で、1301は正極、1302はセパレータ、1303は負極、1304は電池缶、1305は正極集電タブ、1306は負極集電タブ、1307は内蓋、1308は内圧開放弁、1309はガスケット、1310は正温度係数(PTC; Positive temperature coefficient)抵抗素子、1311は電池蓋である。電池蓋1311は、内蓋1307、内圧開放弁1308、ガスケット1309、正温度係数抵抗素子1310からなる一体化部品である。 FIG. 12 shows the internal structure of a lithium ion secondary battery according to an embodiment of the present invention. 12, 1301 is a positive electrode, 1302 is a separator, 1303 is a negative electrode, 1304 is a battery can, 1305 is a positive electrode current collecting tab, 1306 is a negative electrode current collecting tab, 1307 is an inner lid, 1308 is an internal pressure release valve, 1309 is a gasket, 1310 is a positive temperature coefficient (PTC) resistive element, and 1311 is a battery lid. The battery lid 1311 is an integrated part including an inner lid 1307, an internal pressure release valve 1308, a gasket 1309, and a positive temperature coefficient resistance element 1310.
 例えば、正極1301は以下の手順により作製できる。正極活物質には、LiMn24を用いる。正極活物質の85.0wt%に、導電材として黒鉛粉末とアセチレンブラックをそれぞれ7.0wt%と2.0wt%を添加する。さらに、結着剤として6.0wt%のポリフッ化ビニリデン(以下、PVDFと略記)、1-メチル-2-ピロリドン(以下、NMPと略記)に溶解した溶液を加えて、プラネタリ-ミキサーで混合し、さらに真空下でスラリー中の気泡を除去して、均質な正極合剤スラリーを調製する。このスラリーを、塗布機を用いて厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布する。塗布後ロールプレス機により電極密度が2.55g/cm3になるように圧縮成形する。これを切断機で裁断し、厚さ100μm、長さ900mm、幅54mmの正極1301を作製する。 For example, the positive electrode 1301 can be manufactured by the following procedure. LiMn 2 O 4 is used as the positive electrode active material. 7.0 wt% and 2.0 wt% of graphite powder and acetylene black are added as conductive materials to 85.0 wt% of the positive electrode active material, respectively. Further, a solution dissolved in 6.0 wt% polyvinylidene fluoride (hereinafter abbreviated as PVDF) and 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is added as a binder, and the mixture is mixed with a planetary mixer. Further, air bubbles in the slurry are removed under vacuum to prepare a homogeneous positive electrode mixture slurry. This slurry is uniformly and evenly applied to both surfaces of an aluminum foil having a thickness of 20 μm using an applicator. After the application, compression molding is performed by a roll press so that the electrode density is 2.55 g / cm 3 . This is cut with a cutting machine to produce a positive electrode 1301 having a thickness of 100 μm, a length of 900 mm, and a width of 54 mm.
 例えば、負極1303は以下の手順により作製できる。負極活物質は、図4のリチウムイオン二次電池用負極活物質等の本発明におけるチウムイオン二次電池用負極活物質を用いることができる。その負極活物質の95.0wt%に、結着剤として5.0wt%のPVDFをNMPに溶解した溶液を加える。それをプラネタリ-ミキサーで混合し、真空下でスラリー中の気泡を除去して、均質な負極合剤スラリーを調製する。このスラリーを塗布機で厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布する。塗布後、その電極をロールプレス機によって圧縮成形して、電極密度が1.3g/cm3とする。これを切断機で裁断し、厚さ110μm、長さ950mm、幅56mmの負極1303を作製する。 For example, the negative electrode 1303 can be manufactured by the following procedure. As the negative electrode active material, the negative electrode active material for the lithium ion secondary battery in the present invention such as the negative electrode active material for the lithium ion secondary battery of FIG. 4 can be used. A solution obtained by dissolving 5.0 wt% of PVDF as a binder in NMP is added to 95.0 wt% of the negative electrode active material. It is mixed with a planetary mixer, and bubbles in the slurry are removed under vacuum to prepare a homogeneous negative electrode mixture slurry. This slurry is uniformly and evenly applied to both surfaces of a rolled copper foil having a thickness of 10 μm with an applicator. After application, the electrode is compression-molded by a roll press to make the electrode density 1.3 g / cm 3 . This is cut with a cutting machine to produce a negative electrode 1303 having a thickness of 110 μm, a length of 950 mm, and a width of 56 mm.
 上のように作製できる正極1301と、負極1303の未塗布部(集電板露出面)に、それぞれ正極集電タブ1305および負極集電タブ1306を超音波溶接する。正極集電タブ1305はアルミニウム製リード片とし、負極集電タブ1306にはニッケル製リード片を用いることができる。 The positive electrode current collecting tab 1305 and the negative electrode current collecting tab 1306 are ultrasonically welded to the positive electrode 1301 and the uncoated part (current collector exposed surface) of the negative electrode 1303, respectively, which can be produced as described above. The positive electrode current collecting tab 1305 may be an aluminum lead piece, and the negative electrode current collecting tab 1306 may be a nickel lead piece.
 その後、厚み30μmの多孔性ポリエチレンフィルムからなるセパレータ1302を正極1301と負極1303に挿入し、正極1301、セパレータ1302、負極1303を捲回する。この捲回体を電池缶1304に収納し、負極集電タブ1306を電池缶1304の缶底に抵抗溶接機により接続する。正極集電タブ1305は、内蓋1307の底面に超音波溶接により接続する。 Thereafter, a separator 1302 made of a porous polyethylene film having a thickness of 30 μm is inserted into the positive electrode 1301 and the negative electrode 1303, and the positive electrode 1301, the separator 1302, and the negative electrode 1303 are wound. The wound body is accommodated in the battery can 1304, and the negative electrode current collecting tab 1306 is connected to the bottom of the battery can 1304 by a resistance welding machine. The positive electrode current collecting tab 1305 is connected to the bottom surface of the inner lid 1307 by ultrasonic welding.
 上部の電池蓋1311を電池缶1304に取り付ける前に、非水電解液を注入うる。電解液の溶媒は、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)からなり、体積比として1:1:1などがある。電解質は濃度1mol/L(約0.8mol/kg)のLiPF6である。このような電解液を捲回体の上から滴下し、電池蓋1311を電池缶1304に、かしめて密封し、リチウムイオン二次電池1000を得ることができる。 Before attaching the upper battery lid 1311 to the battery can 1304, a non-aqueous electrolyte can be injected. The solvent of the electrolytic solution includes, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), and has a volume ratio of 1: 1: 1. The electrolyte is LiPF 6 at a concentration of 1 mol / L (about 0.8 mol / kg). Such an electrolytic solution is dropped from above the wound body, and the battery lid 1311 is caulked and sealed in the battery can 1304, whereby the lithium ion secondary battery 1000 can be obtained.
 次に、本発明の第2の実施例について、図13を用いて説明する。図13は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現した図である。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 13 is a diagram schematically showing the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
 本実施例では、炭素基材に、カーボンナノチューブ301を用い、その表面に炭素被覆シリコンナノワイヤ302を形成した点が、第1の実施例と異なる。炭素基材にカーボンナノチューブ301を用いることにより、黒鉛を用いる場合に比べて、基材の比表面積が大きいために、より多くのシリコンナノワイヤ302を成長させることができるため、シリコンの重量比を大きくできる。 This embodiment is different from the first embodiment in that carbon nanotubes 301 are used as a carbon base material and carbon-coated silicon nanowires 302 are formed on the surface thereof. By using the carbon nanotubes 301 for the carbon base material, the silicon has a larger specific surface area than the graphite, so that more silicon nanowires 302 can be grown. it can.
 次に、本発明の第3の実施例について、図14を用いて説明する。図14は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現した図である。 Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 14 is a diagram schematically representing the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
 本実施例では、まず炭素基材上に炭素被覆シリコンナノワイヤ401を成長し、その後、炭素基材と炭素被覆シリコンナノワイヤ401を分離し、炭素被覆シリコンナノワイヤ401だけをリチウムイオン二次電池用負極活物質として用いた点が、実施例1および実施例2と異なる。つまり、本実施例では、リチウムイオン二次電池用負極活物質は、炭素被覆シリコンナノワイヤ401からなる。これにより、全重量に対するシリコンの重量比を大幅に増大することができるため、電気容量を飛躍的に増やすことが可能である。 In this embodiment, first, carbon-coated silicon nanowires 401 are grown on a carbon substrate, and then the carbon substrate and the carbon-coated silicon nanowires 401 are separated, and only the carbon-coated silicon nanowires 401 are used as a negative electrode active for a lithium ion secondary battery. The point used as a substance is different from Example 1 and Example 2. That is, in this example, the negative electrode active material for a lithium ion secondary battery is composed of carbon-coated silicon nanowires 401. As a result, the weight ratio of silicon to the total weight can be greatly increased, so that the electric capacity can be dramatically increased.
1 リチウムイオン二次電池用負極活物質
101 シリコンナノワイヤ
102 炭素被覆層
103 酸化物層
201 炭素基材
202 302 401炭素被覆シリコンナノワイヤ
301 カーボンナノチューブ
1000 リチウムイオン二次電池
1301 正極
1302 セパレータ
1303 負極
1304 電池缶
1305 正極集電タブ
1306 負極集電タブ
1307 内蓋
1308 圧力開放弁
1309 ガスケット、
1310 正温度係数抵抗素子
1311 電池蓋
DESCRIPTION OF SYMBOLS 1 Negative electrode active material 101 for lithium ion secondary batteries Silicon nanowire 102 Carbon coating layer 103 Oxide layer 201 Carbon base material 202 302 401 Carbon coating silicon nanowire 301 Carbon nanotube 1000 Lithium ion secondary battery 1301 Positive electrode 1302 Separator 1303 Negative electrode 1304 Battery can 1305 Positive current collecting tab 1306 Negative current collecting tab 1307 Inner lid 1308 Pressure release valve 1309 Gasket,
1310 Positive temperature coefficient resistance element 1311 Battery cover

Claims (12)

  1. シリコンナノワイヤと、
    前記シリコンナノワイヤの表面に形成された炭素被覆層と、を有するリチウムイオン二次電池用負極活物質であって、
    前記炭素被覆層は、ナノグラフェン構造を有するリチウムイオン二次電池用負極活物質。
    Silicon nanowires,
    A carbon coating layer formed on the surface of the silicon nanowire, and a negative electrode active material for a lithium ion secondary battery,
    The carbon coating layer is a negative electrode active material for a lithium ion secondary battery having a nanographene structure.
  2. 請求項1において、
    前記炭素被覆層の電気伝導度は、1000S/m以上であるリチウムイオン二次電池用負極活物質。
    In claim 1,
    The negative electrode active material for a lithium ion secondary battery, wherein the carbon coating layer has an electric conductivity of 1000 S / m or more.
  3. 請求項1において、
    前記炭素被覆層が、前記シリコンナノワイヤの表面に沿って配向しているリチウムイオン二次電池用負極活物質。
    In claim 1,
    A negative electrode active material for a lithium ion secondary battery, wherein the carbon coating layer is oriented along the surface of the silicon nanowire.
  4. 請求項1において、
    前記炭素被覆層の膜厚が、0.2nm以上100nm以下であるリチウムイオン二次電池用負極活物質。
    In claim 1,
    The negative electrode active material for lithium ion secondary batteries whose film thickness of the said carbon coating layer is 0.2 nm or more and 100 nm or less.
  5. 請求項1乃至4のいずれかにおいて、
    前記シリコンナノワイヤの直径が、2nm以上100nm以下であるリチウムイオン二次電池用負極活物質。
    In any one of Claims 1 thru | or 4,
    The negative electrode active material for lithium ion secondary batteries whose diameter of the said silicon nanowire is 2 nm or more and 100 nm or less.
  6. 請求項1乃至5のいずれかにおいて、
    前記シリコンナノワイヤが、結晶性を有するリチウムイオン二次電池用負極活物質。
    In any one of Claims 1 thru | or 5,
    A negative electrode active material for a lithium ion secondary battery, wherein the silicon nanowire has crystallinity.
  7. 請求項1乃至6のいずれかにおいて、
    前記シリコンナノワイヤの前記リチウムイオン二次電池用負極活物質に対する重量比が20%以上であるリチウムイオン二次電池用負極活物質。
    In any one of Claims 1 thru | or 6.
    The negative electrode active material for lithium ion secondary batteries whose weight ratio with respect to the said negative electrode active material for lithium ion secondary batteries of the said silicon nanowire is 20% or more.
  8. 請求項1乃至7のいずれかにおいて、
    前記リチウムイオン二次電池用負極活物質は、炭素基材を含み、
    前記炭素基材の表面に前記シリコンナノワイヤが形成され、
    前記炭素基材は、ケッチェンブラックまたはアセチレンブラックであるリチウムイオン二次電池用負極活物質。
    In any one of Claims 1 thru | or 7,
    The negative electrode active material for a lithium ion secondary battery includes a carbon substrate,
    The silicon nanowire is formed on the surface of the carbon substrate,
    The carbon base material is a negative electrode active material for a lithium ion secondary battery, which is ketjen black or acetylene black.
  9. 請求項1乃至7のいずれかにおいて、
    前記リチウムイオン二次電池用負極活物質は、前記シリコンナノワイヤおよび前記炭素被覆層からなるリチウムイオン二次電池用負極活物質。
    In any one of Claims 1 thru | or 7,
    The negative electrode active material for a lithium ion secondary battery is a negative electrode active material for a lithium ion secondary battery comprising the silicon nanowire and the carbon coating layer.
  10. シリコンナノワイヤと、
    炭素被覆層と、を有するリチウムイオン二次電池用負極活物質の製造方法であって、
    前記炭素被覆層は、ナノグラフェン構造を有し、
    前記シリコンナノワイヤを作製後、連続して前記シリコンナノワイヤの表面に前記炭素被覆層を作製したリチウムイオン二次電池用負極活物質の製造方法。
    Silicon nanowires,
    A method for producing a negative electrode active material for a lithium ion secondary battery having a carbon coating layer,
    The carbon coating layer has a nanographene structure,
    The manufacturing method of the negative electrode active material for lithium ion secondary batteries which produced the said carbon coating layer on the surface of the said silicon nanowire continuously after producing the said silicon nanowire.
  11. シリコンナノワイヤと、
    炭素被覆層と、を有するリチウムイオン二次電池用負極活物質の製造方法であって、
    前記炭素被覆層は、ナノグラフェン構造を有し、
    前記シリコンナノワイヤを作製後、前記シリコンナノワイヤの表面を還元処理して前記シリコンナノワイヤの表面に形成された自然酸化膜を除去し、
    前記シリコンナノワイヤの表面に前記炭素被覆層を作製したリチウムイオン二次電池用負極活物質の製造方法。
    Silicon nanowires,
    A method for producing a negative electrode active material for a lithium ion secondary battery having a carbon coating layer,
    The carbon coating layer has a nanographene structure,
    After producing the silicon nanowire, the surface of the silicon nanowire is reduced to remove the natural oxide film formed on the surface of the silicon nanowire,
    The manufacturing method of the negative electrode active material for lithium ion secondary batteries which produced the said carbon coating layer on the surface of the said silicon nanowire.
  12. 請求項1乃至9のいずれかに記載のリチウムイオン二次電池用負極活物質を含むリチウムイオン二次電池。 The lithium ion secondary battery containing the negative electrode active material for lithium ion secondary batteries in any one of Claims 1 thru | or 9.
PCT/JP2013/079810 2013-11-05 2013-11-05 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell WO2015068195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079810 WO2015068195A1 (en) 2013-11-05 2013-11-05 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079810 WO2015068195A1 (en) 2013-11-05 2013-11-05 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell

Publications (1)

Publication Number Publication Date
WO2015068195A1 true WO2015068195A1 (en) 2015-05-14

Family

ID=53041003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079810 WO2015068195A1 (en) 2013-11-05 2013-11-05 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell

Country Status (1)

Country Link
WO (1) WO2015068195A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031146A1 (en) * 2014-08-27 2016-03-03 株式会社豊田自動織機 Method for producing carbon-coated silicon material
JPWO2016208314A1 (en) * 2015-06-22 2018-04-05 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN110729460A (en) * 2019-09-30 2020-01-24 山东玉皇新能源科技有限公司 Nano-silicon composite lithium-supplementing negative electrode material of lithium ion battery and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527735A (en) * 2009-05-19 2012-11-08 ナノシス・インク. Nanostructured materials for battery applications
JP2012528463A (en) * 2009-05-27 2012-11-12 アンプリウス、インコーポレイテッド Core-shell type high-capacity nanowires used for battery electrodes
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527735A (en) * 2009-05-19 2012-11-08 ナノシス・インク. Nanostructured materials for battery applications
JP2012528463A (en) * 2009-05-27 2012-11-12 アンプリウス、インコーポレイテッド Core-shell type high-capacity nanowires used for battery electrodes
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG JAE CHO ET AL.: "Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 115, no. 19, 2011, pages 9451 - 9457 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031146A1 (en) * 2014-08-27 2016-03-03 株式会社豊田自動織機 Method for producing carbon-coated silicon material
JPWO2016208314A1 (en) * 2015-06-22 2018-04-05 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN110729460A (en) * 2019-09-30 2020-01-24 山东玉皇新能源科技有限公司 Nano-silicon composite lithium-supplementing negative electrode material of lithium ion battery and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US10199642B2 (en) Electrode material comprising graphene-composite materials in a graphite network
JP6457590B2 (en) Negative electrode active material, negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6196192B2 (en) Negative electrode active material, method for producing negative electrode active material, and lithium ion secondary battery
JP5484570B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP6593330B2 (en) Nanocarbon composite and method for producing the same
JP2018048070A (en) Porous silicon composite cluster, carbon composite using the same, electrode, lithium battery, electron field emission element, biosensor, semiconductor element and thermoelectric element containing the same
JP5686441B2 (en) Silicon-based positive electrode active material and secondary battery including the same
JP2015111547A5 (en)
WO2016208314A1 (en) Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2013187097A (en) Composite body of silicon or silicon oxide and carbon nanohorn, electrode material, lithium ion secondary battery, and method for producing composite body of silicon or silicon oxide and carbon nanohorn
KR20150098453A (en) Surface coated porous silicon based anode active material, preparation method thereof, and lithium secondary battery comprising the same
WO2014204095A1 (en) Anode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery
Zhang et al. Chemical replacement route to Cu 2− x Se-coated CuO nanotube array anode for enhanced performance in lithium ion batteries
JP2018113187A (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2019520674A (en) Fast chargeable lithium ion battery with nanocarbon coated anode material and imide anion based lithium salt electrolyte
WO2015068195A1 (en) Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell
KR101568458B1 (en) Anode active material for secondary battery and preparation mathod for thereof
KR101488483B1 (en) Negative active material for rechargable lithium battery, preparation method thereof and rechargable lithium battery
KR101501804B1 (en) Silicon based negative active material and secondary battery comprising the same
JP2016143462A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP6394795B2 (en) Electrochemically modified carbon materials for lithium ion batteries
WO2015029128A1 (en) Negative electrode active material, negative electrode mixture using same, negative electrode and lithium ion secondary battery
JP5531347B2 (en) Self-supporting metal sulfide-based two-dimensional nanostructure negative electrode active material and method for producing the same
WO2016075798A1 (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2015136684A1 (en) Negative electrode active material for lithium ion secondary batteries, method for producing negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP