WO2015065236A1 - Dispositif de conversion d'énergie d'électricité statique - Google Patents

Dispositif de conversion d'énergie d'électricité statique Download PDF

Info

Publication number
WO2015065236A1
WO2015065236A1 PCT/RU2014/000584 RU2014000584W WO2015065236A1 WO 2015065236 A1 WO2015065236 A1 WO 2015065236A1 RU 2014000584 W RU2014000584 W RU 2014000584W WO 2015065236 A1 WO2015065236 A1 WO 2015065236A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
voltage
static electricity
spark gap
circuit
Prior art date
Application number
PCT/RU2014/000584
Other languages
English (en)
Russian (ru)
Inventor
Александр Николаевич ГЕРАСИМОВ
Игорь Леонидович МИСЮЧЕНКО
Original Assignee
Александр Николаевич ГЕРАСИМОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Николаевич ГЕРАСИМОВ filed Critical Александр Николаевич ГЕРАСИМОВ
Publication of WO2015065236A1 publication Critical patent/WO2015065236A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the invention relates to the field of conversion of electrical energy, namely, devices for converting static electricity into electrical energy of low voltages at low currents.
  • a known converter of electrical energy for example, from a lightning rod, patent DE102009035167, publication 02/18/2010, in which the lightning rod is connected to the primary winding of the transformer, and the secondary winding is connected to the rectifier.
  • publication 07/21/2010 describes the design of the apparatus for the production of electricity by collecting static electricity from the air.
  • the apparatus also contains a transformer converter of static electricity to direct current.
  • the disadvantage of this device is the need for high-voltage switches and a device for controlling them.
  • Also known patent RU2255406 “Method and device for the transmission of electrical energy” in which the transmission of electrical energy is carried out by transmitting resonant vibrations of high frequency in a circuit consisting of a high frequency generator and two Tesla transformers, raising and lowering. From the high-voltage winding of the Tesla step-up transformer, energy is transmitted through a single-wire line to the Tesla step-down transformer. Further, from the low voltage winding of the Tesla step-down transformer, the current is transmitted to the inputs of the bridge rectifier and further to the load.
  • the present invention provides a device for transmitting conventional energy over a distance, and not a device for converting static electricity into direct and alternating current energy.
  • the objective of the present invention is to provide a device for converting static electricity energy, which would have a sufficiently high efficiency, be simple and have acceptable dimensions.
  • the device for converting static electricity energy contains a series-connected source of static electricity, a spark gap and a step-down transformer, while the first one is connected in parallel with the transformer primary winding connected to the spark gap capacity, and the output of the secondary winding of the transformer through the second capacity is connected to the load.
  • the resonance frequency of the first circuit formed by the primary winding of the transformer and connected in parallel to the winding of the first capacitance is approximately equal to the resonance frequency of the second circuit formed by the secondary winding and connected in series to the secondary winding of the second capacitor.
  • the spark gap is designed to control the voltage of the discharge and contains a circuit for controlling the voltage of the discharge of the spark gap, including a circuit for measuring the voltage of a static electricity source.
  • This device uses a resonant transformer to convert high voltage to low, that is, a transformer whose primary and secondary windings are supplemented with electrical capacitors in such a way that they are resonant LC circuits tuned to the same frequency.
  • a transformer whose primary and secondary windings are supplemented with electrical capacitors in such a way that they are resonant LC circuits tuned to the same frequency.
  • a variant of such a transformer is known as a “Tesla transformer” and is used, as a rule, to increase the voltage to very large values.
  • the transformer is used in the opposite way, that is, to reduce very high voltages to low voltage.
  • the input circuit is made according to a parallel LC resonance circuit. Moreover, its input impedance at the resonance frequency is very large.
  • the input circuit is connected to the source through a spark gap, which provides periodic spark breakdown of the circuit and, therefore, pulsed, that is, the broadband current consumed from the source.
  • damped oscillations of the resonant frequency develop in the circuit of the input LC circuit after each spark breakdown.
  • the current strength in the primary winding of the resonant transformer increases many times. Due to the phenomenon of mutual induction, this current induces in the secondary winding of the transformer N times greater current than in the primary, where N is the transformation coefficient, depending on the ratio of the number of turns of the windings.
  • the output circuit is made according to a series LC-resonance circuit; a load is connected in series to its circuit.
  • the spark gap can be configured to control the discharge voltage. In this case, better conditions for the use of energy are achieved, with a higher efficiency. Thus, the parameters of the spark gap must be consistent with the parameters of the drive.
  • a circuit for controlling the voltage of the discharge of the spark gap including a circuit for measuring the voltage of a source of static electricity, can be additionally introduced into the device.
  • the step-down transformer can be implemented as a high-voltage transformer without a core, which operates at relatively high frequencies. This reduces the size and weight of the transformer and eliminates energy loss in the core.
  • the first capacitance may be the own capacitance of the primary winding of the transformer.
  • a rectifier and a capacitor such as a supercapacitor, can be used as a load in series.
  • a voltage limiter can be connected after the rectifier.
  • this device may contain a spark gap of a fixed discharge voltage, or a spark gap with an adjustable discharge voltage.
  • FIG. 1 shows an electrical diagram of a device with a load calculated on alternating current.
  • FIG. 2 shows an electrical diagram of a device with rectifiers, a voltage regulator, and a DC rated load.
  • FIG. 3 is a structural diagram of controlling the voltage of a discharge of a spark gap.
  • the static electricity energy conversion device (Fig. 1) contains a static electricity source 1, a spark gap 10 and a step-down transformer 3. In parallel with the primary winding of the transformer, a first capacitance 2 is connected. The resonance frequency of the first circuit formed by the primary winding of the transformer 3 and connected in parallel to the winding by the first capacitance 2 is approximately equal to the resonance frequency of the second circuit formed by the secondary winding and connected in series to the secondary winding by a second capacitance 4. Out One of the secondary windings of the transformer 3 is connected to the load 5 through the second capacitance 4. Any load operating on alternating current can be used as load 5.
  • FIG. 2 shows a diagram of a device for producing direct current energy.
  • the device contains a source of static electricity 1, a spark gap 10 and a step-down transformer 3.
  • the first capacitance 2 is connected in parallel with the primary winding of the transformer.
  • the output of the secondary winding of the transformer 3 through the second capacitance 4 is connected to the rectifier b, which is connected to the drive, capacitor 8, in particular supercapacitor.
  • Far load 5 can be connected via switch 9.
  • This circuit as well as the circuit in FIG. 1 can be used both in low-power devices and in devices of sufficiently high power.
  • Transformer 3 is used to reduce very high voltages to values of a few tens of volts.
  • the resonant transformer is usually made without a core and operates at relatively high frequencies (usually tens to hundreds of kilohertz).
  • the device can convert the energy of static electricity with constant or alternating high voltage (thousands - hundreds of thousands of volts) at low currents (microamps-hundreds of microamps), into energy with relatively low voltage (units-tens of volts) at relatively high currents (tens of milliamps - amperes )
  • the device operates as follows.
  • a spark gap 10 (Fig., Fig. 2).
  • a current discharge occurs, and current and voltage fluctuations with a wide spectrum occur.
  • Transformer 3 converts these oscillations in the secondary circuit into current oscillations of increased force at a voltage of reduced amplitude.
  • the circuit for controlling the voltage of the discharge of the spark gap includes a circuit 11 for measuring the voltage of the source of static electricity and the actual circuit 12 for controlling the voltage of the discharge of the spark gap.
  • the measurement circuit gives a command to lower the discharge voltage Up, for example, by switching from one spark gap to a spark gap with a low discharge voltage.
  • the resonant frequency of the loops itself can also change, for example, by changing the capacitance of capacitors 2 and 4.
  • the device can maintain optimal parameters for converting the energy of static electricity depending on changes in the parameters of source 1.
  • the proposed device can be used in a wide range of devices for using static electricity energy, both domestic and industrial.
  • the device can be used in various ways.
  • the device can be used in various ways

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

L'invention concerne un dispositif comprenant, montés en série, une source d'électricité statique, une unité de décharge à étincelle et un transformateur de diminution de tension ; une première capacité est connectée à l'unité de décharge, tandis que la sortie de l'enroulement secondaire du transformateur est connectée à une charge via une seconde capacité. La fréquence de résonance du premier circuit, formé par l'enroulement primaire du transformateur et la première capacité connectée en parallèle à l'enroulement est essentiellement égale à la fréquence de résonance du second circuit formé par l'enroulement secondaire et la seconde capacité connectée en série à l'enroulement secondaire. L'unité de décharge à étincelle permet de réguler la tension de décharge et comprend un circuit de commande de tension de décharge de l'unité de décharge à étincelle comprenant un circuit de mesure de tension de la source d'électricité statique. Le dispositif possède un coefficient d'efficacité assez élevé, des dimensions acceptables, et est facile à produire. Le dispositif peut être utilisé dans une grande plage de dispositifs utilisant l'énergie de l'électricité statique, tant domestiques qu'industriels.
PCT/RU2014/000584 2013-11-01 2014-08-05 Dispositif de conversion d'énergie d'électricité statique WO2015065236A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013149119 2013-11-01
RU2013149119/07A RU2013149119A (ru) 2013-11-01 2013-11-01 Устройство преобразования энергии статического электричества

Publications (1)

Publication Number Publication Date
WO2015065236A1 true WO2015065236A1 (fr) 2015-05-07

Family

ID=53004686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000584 WO2015065236A1 (fr) 2013-11-01 2014-08-05 Dispositif de conversion d'énergie d'électricité statique

Country Status (2)

Country Link
RU (1) RU2013149119A (fr)
WO (1) WO2015065236A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136515C1 (ru) * 1998-02-26 1999-09-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Способ питания электротранспортных средств и устройство для его осуществления
RU2330373C2 (ru) * 2003-05-07 2008-07-27 Магнус ЛИНДМАРК Блок питания, имеющий автоколебательный преобразователь последовательного резонанса
GB2467045A (en) * 2009-01-16 2010-07-21 Steven John Thomas Apparatus for generating electricity by collecting static electricity from an airflow
RU2504129C1 (ru) * 2012-09-10 2014-01-10 Александр Николаевич Герасимов Устройство преобразования энергии статического электричества

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136515C1 (ru) * 1998-02-26 1999-09-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Способ питания электротранспортных средств и устройство для его осуществления
RU2330373C2 (ru) * 2003-05-07 2008-07-27 Магнус ЛИНДМАРК Блок питания, имеющий автоколебательный преобразователь последовательного резонанса
GB2467045A (en) * 2009-01-16 2010-07-21 Steven John Thomas Apparatus for generating electricity by collecting static electricity from an airflow
RU2504129C1 (ru) * 2012-09-10 2014-01-10 Александр Николаевич Герасимов Устройство преобразования энергии статического электричества

Also Published As

Publication number Publication date
RU2013149119A (ru) 2015-05-10

Similar Documents

Publication Publication Date Title
RU2619396C2 (ru) Система и способ контроля приборов высоковольтной техники
CN103155714A (zh) 一种带功率补偿的led驱动芯片及电路
RU2517378C1 (ru) Резонансный усилитель мощности
RU2335841C1 (ru) Высоковольтный преобразователь постоянного напряжения с фильтрокомпенсирующей цепью и способ управления его выходной мощностью
WO2015053246A1 (fr) Système de transmission d'énergie sans fil
CN105391192A (zh) 一种电能发射端和无线充电装置
RU2504129C1 (ru) Устройство преобразования энергии статического электричества
Yalong et al. Design of wireless power supply system for the portable mobile device
Iqbal Interleaved LLC resonant converter with integrated dual transformer for PV power systems
KR100966966B1 (ko) 다중출력 직류/직류 컨버터
WO2015065236A1 (fr) Dispositif de conversion d'énergie d'électricité statique
RU2571952C1 (ru) Корректор коэффициента мощности
JPWO2016132471A1 (ja) 電力変換装置及びその初期充電方法
RU77517U1 (ru) Индуктивно-емкостный преобразователь
RU123266U1 (ru) Зарядное устройство
CN203967807U (zh) 一种阻尼充电装置
RU184462U1 (ru) Интегратор токов и напряжений высоковольтный ИТН-В
JP2014017893A (ja) 非接触電力伝送装置
CN102200306B (zh) 微波炉
US20170346339A1 (en) Inductive power transfer system
RU2346379C1 (ru) Парарезонансный способ стабилизации напряжения и защиты разрядно-импульсной установки и устройство для его реализации
RU2015150522A (ru) Устройство и способ усиления электрических сигналов
US20190109580A1 (en) Converter and power device with such a converter
RU128801U1 (ru) Источник постоянного тока импульсного действия
KR102428009B1 (ko) 무선 전력 송신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858516

Country of ref document: EP

Kind code of ref document: A1