WO2015065033A1 - Method for producing nano-micro particles through continuous collision mode of two-way pulses, and apparatus therefor - Google Patents

Method for producing nano-micro particles through continuous collision mode of two-way pulses, and apparatus therefor Download PDF

Info

Publication number
WO2015065033A1
WO2015065033A1 PCT/KR2014/010228 KR2014010228W WO2015065033A1 WO 2015065033 A1 WO2015065033 A1 WO 2015065033A1 KR 2014010228 W KR2014010228 W KR 2014010228W WO 2015065033 A1 WO2015065033 A1 WO 2015065033A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
collision
pulse
particles
material mixture
Prior art date
Application number
PCT/KR2014/010228
Other languages
French (fr)
Korean (ko)
Inventor
이재호
원동연
Original Assignee
이재호
원동연
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재호, 원동연 filed Critical 이재호
Publication of WO2015065033A1 publication Critical patent/WO2015065033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for producing nanoparticles and a device using a bidirectional pulse continuous collision method that can produce raw materials such as metal, ceramics, organic polymers, etc. used in the industry as high quality nanoparticles.
  • the raw material particles that can be miniaturized are ejected with acceleration from both sides to be manufactured into nano-sized fine particles by a mutual pulse collision method.
  • the size of the raw material particles is 1 to 100 nm. It is used in the relevant fields that need to be manufactured.
  • nano-technical sensors can accurately measure biochemical phenomena in the body in a very short time. Also, when electronic devices using nanoparticles are developed, the computational speed becomes very fast. Industrial application will result.
  • the typical methods for producing metal nanoparticles include various methods such as gas phase method of colliding vapor of metal evaporated at high temperature with gas molecules and quenching it to make fine particles, liquid phase method of adding fine particles by adding reducing agent to solution in which metal ions are dissolved, and solid phase method. The method is being used.
  • the wet pulverization method of the above pulverization method is a method of making a fine particle through the impact by spraying the slurry containing a solid in the solution
  • dry and dry grinding method Is a method of injecting solid particles and colliding with the gas stream being accelerated to produce microparticles.
  • the gas phase method, the liquid phase method, and the solid phase method may cause structural deformation or change of physical properties of pure materials due to the input of expensive relative materials.
  • the use of catalysts and dispersants may cause damage to the natural environment or pollution. It also created a problem.
  • This method is inevitably used to solve the deceleration of the collision object due to the expansion of the material and the increase of pressure due to the high pressure and high pressure in the narrow reaction space, and also to use the simultaneous injection of compressed gas to solve these problems. Adopted the way.
  • the present invention has been proposed in order to solve the various problems of the prior art as described above, the object of which is to use nano-sized microparticles through direct collision of the same material without using a catalyst, plasma, electrical shock, etc.
  • the present invention provides a method for manufacturing nanoparticles and a device using a bidirectional pulse continuous collision method for manufacturing.
  • the present invention provides a method for manufacturing nanoparticles and a device using a bidirectional pulse continuous collision method.
  • the present invention for solving the above problems is characterized by a method for producing nano-sized fine particles by the mutual pulse collision method by mixing the raw material particles that can be miniaturized with a medium of water, and then artificially accelerated from both sides It is done.
  • the manufacturing apparatus includes a raw material supply part supplied with a raw material mixture in a state where raw material particles and water are mixed, a raw material accelerating part that can increase the speed of collision, and a collision that makes the raw material collide with each other to produce fine particles. It characterized by comprising a manufacturing unit.
  • the present invention was able to solve the problem of the decompression deceleration caused by the collision process by using a cylinder device and a nozzle that can always maintain the situation that the high-pressure or high-speed moving material may collide with the front face, thus It was possible to propose a method and a device that can perform a frontal collision work with high efficiency in miniaturization of particles.
  • the supply and collision process of the raw material is designed to work in conjunction so that the operator can perform a continuous repetition process until the desired particle size to enable the production of large-scale nano-size microparticles It is to be done.
  • the present invention is very pure and pure by being able to manufacture the raw particles by mixing with water and spraying at high pressure and high speed through the repeated process of mutual frontal collision by the pulse collision method. It has the effect of producing a large number of homogeneous nano-sized microparticles.
  • the present invention can be produced by the production of all the raw material particles, such as metal, ceramics, organic polymers to the size of the nano will also have the effect that can be widely used in various industrial fields.
  • FIG. 2 is a conceptual diagram of an overall manufacturing apparatus according to the present invention.
  • FIG. 3 is a block diagram of a raw material supply unit and a raw material mixing unit of the present invention.
  • FIG. 4 is a configuration diagram of the raw material accelerator of FIG.
  • FIG. 5 is a configuration diagram of the pulse generator of FIG.
  • Figure 6 is a block diagram of a raw material conflict manufacturing unit of the present invention.
  • FIG. 7 is a configuration diagram showing the main part of the present invention Figure 6
  • FIG. 1 of the accompanying drawings is a block diagram according to a method for manufacturing nano-microparticles by the mutual pulse (pulse) collision method according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram of a nano-particle manufacturing apparatus
  • Figures 3 to Figure 7 is a configuration diagram of the essential devices of the present invention
  • Figure 8 and below is a diagram showing the operation of the present invention.
  • the present invention provides a method for producing nanoparticles using a continuous pulse bi-directional pulse method in which a raw material supply step of supplying water (H) and raw material particles (P), a raw material mixing step of efficiently and evenly mixing the supplied raw material mixture solution, and a raw material mixture solution Raw material acceleration step to pressurize and spray at high speed, pulse generation step to spray the sprayed raw material mixture with a constant pulse, raw material collision manufacturing step to make the raw material sprayed by the pulse to the front to produce fine particles, nano size It consists of a raw material separation step to separate the water and the fine particles produced by the fine particles.
  • a raw material supply step of supplying water (H) and raw material particles (P)
  • a raw material mixing step of efficiently and evenly mixing the supplied raw material mixture solution
  • Raw material acceleration step to pressurize and spray at high speed
  • pulse generation step to spray the sprayed raw material mixture with a constant pulse
  • raw material collision manufacturing step to make the raw material sprayed by the pulse to the
  • the raw material supplying step has a raw material supplying step of supplying raw material particles (P) such as metal, ceramic, organic polymer, etc. for manufacturing to a nano size and water (H) for performing a medium role at an appropriate ratio.
  • P raw material particles
  • H nano size and water
  • the raw material particles (P) is a raw material for producing nano-sized fine particles, the size can be varied according to the type of raw material to be prepared, such raw material particles (P) can be sufficiently mixed in water Each is supplied in the ratio of degree, and water (H) uses water as usual.
  • the raw material particles mixed in the water are made of metal, ceramic, organic polymer, etc., since the specific gravity is higher than that of the medium, the raw material particles are prevented from sinking to the bottom of the water, and the raw material particles are evenly mixed in the water. This is to send the mixed solution as it is to the next step.
  • the raw material mixture mixed evenly with water is pressurized by the piston moving back and forth in the cylinder and accelerated to high temperature and high pressure, and then sent to the next step, and the raw material acceleration step presses the supplied raw material mixture to high temperature and high pressure to the next step. To send to.
  • the efficiency of the mutual collision may be reduced in the next step, the raw material collision manufacturing step, thereby increasing the mutual collision force by repeating the strength and weakness. Let's go.
  • the raw material mixture solution which is pressurized in the above-described raw material acceleration step and supplied at a high speed and at a constant pulse, has a step of being frontally collided with each other by a pair of injection nozzles having different diameters to produce fine particles.
  • the raw material mixture sprayed from the spray nozzle having a small aperture penetrates into the raw material mixture sprayed from the spray nozzle having a large aperture, and each raw material particle is frontally collided to produce fine particles.
  • each injection nozzle facing each other is composed of different diameters, while the injection nozzle of the large diameter is configured to have a size 1.5-2 times that of the injection nozzle of the small diameter, the raw material in the raw material mixture sprayed from each injection nozzle When the particles collide at the front, the grinding efficiency is improved.
  • This series of steps is carried out continuously and repeatedly until the size of the desired microparticles.
  • the separation step is to separate the nano-sized microparticles and water using a variety of known separation devices, and the separated microparticles are used in the industry as needed, and water is recovered and used.
  • the raw material particles are sequentially manufactured by nano-sized microparticles by going through the manufacturing method as described above, and the microparticles thus prepared are separated from water so that the microparticles can be utilized by industries that require fine grains. Water is used for many other purposes to prevent environmental pollution.
  • the manufacturing apparatus according to the manufacturing method as described above is shown in detail in Figure 2 below of the accompanying drawings, the present invention is largely divided into the raw material supply unit 100, the raw material mixing unit 200, the raw material acceleration unit 300 as shown in the drawings ), A pulse generator 400, a material collision manufacturing unit 500, and a material separation unit 600.
  • the raw material supply unit 100 is for supplying the raw material particles (P), such as metal, ceramics, organic polymers, etc. for manufacturing to a nano size with water (H), as shown in Figures 2 and 3 of the accompanying drawings
  • P raw material particles
  • H nano size with water
  • the raw material mixing unit 200 is for mixing the raw material particles and water to be supplied is configured with a cylindrical tank 210, the upper side of the tank 210, the injection hole 211 is supplied with the raw material and water It is connected to the supply hopper 110 is controlled by the valve 212, the reverse side is provided with a recovery port 213 for recycling.
  • the motor 220 is installed at the upper center of the tank 210, and the raw material supplied with a plurality of stirring blades 221, which are connected to the rotating shaft of the motor 220 and driven to rotate, are installed inside the tank 210. Stir evenly to mix.
  • the lower center of the tank 210 is provided with a discharge port 230 for discharging the raw material mixture sufficiently mixed in the tank 210 to the next step is also controlled by the valve 231.
  • the outside of the tank 210 may be further provided with a heat exchanger 240 connected to a separate cooling and heating device, the heat exchanger 240 is to maintain a constant temperature in the tank 210 at all times It is to minimize the conversion of the raw material mixture contained therein is oxidized or physical and chemical changes by the temperature change.
  • the raw material supply unit 100 supplies water and raw material particles at an appropriate ratio through the feed hopper 110, and the raw material mixing unit 200 mixes the raw material particles and water supplied as described above evenly.
  • the stirring blade 221 is rotated while the motor 220 is driven, and thus the tank Raw material particles supplied into the 210 are mixed evenly with water to form a raw material mixture.
  • a raw material particles such as metal, ceramics, organic polymers, etc. for manufacturing to a nano size has a higher specific gravity than water so as to be evenly mixed with water while preventing precipitation in the tank 210 To do this.
  • the raw material mixture liquid evenly mixed as described above is distributed and supplied to the raw material acceleration part 300 provided in two through the discharge port 230 at the lower portion thereof.
  • the raw material accelerating unit 300 is shown in more detail in Figure 4 of the accompanying drawings, which is provided with a pair of left and right identical structures facing each other to produce a raw material mixture solution supplied from the raw material mixing unit 200 It is to provide a function to spray each of the unit 500.
  • the raw material accelerator 300 has only the same structure as each other provided in a pair will be described only one.
  • the raw material acceleration part 300 includes a cylinder 310 having a long cylindrical shape, and a motor for moving the piston 320 and the piston 320 to compress the raw material mixture to move in and out of the cylinder 310.
  • the inlet 340 is connected to the one side of the front of the cylinder 310, the discharge port 350 is discharged at a high speed to discharge the raw material mixture pressurized in the cylinder 310 at the front end pipe 351 is provided with a connection.
  • the check valve 360 is provided on the inlet 340 and the discharge port 350 so as to smoothly compress the raw material mixture to be introduced and discharged.
  • the cylinder 310 is a raw material mixture is introduced to provide a function that is compressed by the piston 320, the piston 320 is a rotary motion of the motor 330 is converted into a linear motion through the crankshaft to move forward and backward cylinder It is compressed within 310.
  • a separate pulse generating unit 400 is installed as a pipe 351 at the front end of the discharge port 350, the pulse generating unit 400 is shown in more detail in Figure 5 of the accompanying drawings.
  • the rotating body 420 is rotated by receiving the power of the motor 410 to the pulley and the like
  • the shaft is coupled to the rotating body 420 to convert the rotational power into linear motion
  • It consists of a crank shaft 430 and a piston 450 that is moved back and forth in the cylinder 440 by the power of the crank shaft 430, the cylinder 440 is provided in communication with the pipe 351.
  • the rotational power generated by the motor 410 is converted into a linear motion by the rotor 420 and the crankshaft 430 is transmitted to the piston 450 in the pulse generator cylinder 440 to repeat the compression and expansion. .
  • the raw material collision manufacturing unit 500 is formed with a manufacturing cylinder 510 having a manufacturing space sealed inside the cylindrical shape as shown in Figures 6 and 7 of the drawings, on both sides of the manufacturing cylinder 510 A pair of injection nozzles 520 and 530 having different apertures are installed to face each other in a straight line, and a discharge port 540 through which the raw material mixture made of fine particles is discharged from the lower part of the manufacturing container 510. Is installed.
  • the discharge port 540 is connected to the recovery pipe 542 which is controlled by the valve 541 and the raw material mixture is recovered back to the raw material mixing unit 200, and at the same time the raw material mixture is completed, the raw material separating unit A discharge pipe 543 for sending to 600 is provided with a connection.
  • the manufacturing container 510 is configured to have a substantially cylindrical structure and has a sealed structure, and a discharge port 540 is installed at the bottom thereof, and at the same time, two injection nozzles 520 and 530 face each other. Has a structure to be installed.
  • the injection nozzles 520 and 530 have different apertures and are connected to the outlets 350 of the two raw material acceleration units 300 as pipes, respectively, and the injection nozzles 520 having a large aperture have a diameter. It is preferable to have a size of 1.5-2 times that of the small jet nozzle 530.
  • the two injection nozzles 520 and 530 have the same aperture, if the two injection nozzles eject the same amount at the time when the raw material mixture is ejected at a high pressure, the acceleration of each other may be canceled at the collision point. Therefore, to prevent this, the diameters of the injection nozzles 520 and 530 are different from each other.
  • the droplet mixture jetted from the small-bore injection nozzle 530 collides while passing through a large space of the droplet mixture jetted from the large-bore injection nozzle 520.
  • the collision may be more ideal.
  • the holes of the injection nozzles 520 and 530 are provided in a straight line so that the raw material mixture sprayed at high speed can be sprayed in a straight line without being diffused.
  • the raw material mixtures sprayed at both sides of the spray nozzles 520 and 530 simultaneously collide with each other precisely at the intermediate point of the spray nozzles 520 and 530.
  • the holes are provided in a straight line.
  • the interlocking control method that allows the optimum collision to occur by interlocking the injection and discharge of the raw material mixture at the time of collision. Designed to be a continuous circulation reaction will be performed automatically.
  • the outer surface of the injection nozzle 520, 530 is provided with a cooling means 550, heating means 560, adjusting means 570 as shown in FIG.
  • the cooling means 550 is a general known configuration, but is not shown in detail in the drawings, but when the temperature rises excessively by the raw material mixture injected through the injection nozzle, the cooling water is circulated to cool the tubular body of the injection nozzle to a predetermined temperature.
  • the heating means 560 is a concept opposite to the above-described cooling means 550 is configured to maintain a proper temperature at all times by heating the heater in connection with the electrical device when the temperature is too low.
  • the cooling means 550 and the heating means 560 may use the same method as usual, for example, the cooling means 550 may circulate the cooling water or use a refrigerant cycle, the heating means 560 is also As usual, by heating the heater wires therein, the proper temperature may be maintained at all times.
  • the adjusting means 570 is to adjust the position adjustment using the laser and the distance of the injection nozzles (520, 530), which also has a conventional structure as shown in Figure 9 of the drawing four front
  • the sensor 571 may be provided to adjust the distance between the two injection nozzles 520 and 530.
  • the raw material separating part 600 receives the raw material mixture prepared by the collision method from the raw material collision producing part 500 to separate the raw material particles prepared in water and nano size.
  • the raw material separator 600 may use a separator having a suitable structure such as a centrifugal separator or a filter separator as usual, and since the raw material particles to be separated are used in industry, and water is not contaminated. It can be used in many other ways.
  • the raw material particles are generally in a powder state and are supplied at a ratio that can be sufficiently mixed in the water in consideration of their type and size, and the water and raw material particles may be separately added or mixed as separate containers first. Can be.
  • the water and the raw material particles supplied to the raw material supply unit 100 are introduced into the tank 210 through the inlet 211 of the raw material mixing unit 200, and at the same time, the stirring blade 221 while the motor 220 is operated. As) rotates, water and raw particles are evenly mixed.
  • valve 231 of the outlet 230 is opened and the raw material mixture is sent to the next step, the raw material accelerator 300.
  • the raw material accelerating unit 300 is distributed to both sides through the discharge port 230 to form a pair of the same two, the raw material accelerating unit 300 through the inlet 340 as shown in the accompanying drawings
  • the piston 320 moves forward and backward as the motor 330 operates to pressurize the raw material mixture injected into the cylinder 310. Accordingly, the raw material mixture pressurized at high pressure causes the front discharge port 350 to be pressed. Is discharged to the next stage.
  • the rotational power of the motor 410 is converted into linear power via the rotor 420 and the crankshaft 430 to advance and retract the piston 450 in the cylinder 440. Acceleration and deceleration of the raw material mixture passing through the pipe 351 through the discharge port 350 are repeated.
  • the raw material mixture passing through the pipe 351 is sprayed into the manufacturing cylinder 510 through both injection nozzles 520 and 530 of the raw material collision manufacturing unit 500 which is the next step, and both injection nozzles 520 and 530. ),
  • the raw material mixture is injected at high pressure and high speed and with a constant pulse to the front in the center.
  • the raw material mixtures A sprayed through the respective injection nozzles 520 and 530 having different apertures collide with each other in front, and the raw material mixtures A thus collided are shown in FIGS. 8 and FIG.
  • a frontal collision occurs and pulverizes as the raw material mixture A injected into the small injection nozzle 530 is injected into the raw material mixture A injected through the large injection nozzle 520.
  • the raw material mixture (A) in which water (H) and raw material particles (P) are mixed is strongly frontally collided with the raw material particles (P) by frontal collision with each other, and is pulverized into fine particles. Discharged through the discharge port 540 in the barrel 510, the discharged fine particles are selected and discharged to the recovery pipe 542 or discharge pipe 543 by the operation of the valve 541.
  • the production is not made of the fine particles of the desired size by the primary manufacturing process, it is recovered to the recovery pipe 542 and circulated to the recovery port 213 of the raw material mixing unit 200 to undergo a repeated manufacturing process do.
  • the work according to the present invention can be completed by continuously performing a batch-type operation continuously until a desired nano-size microparticle is obtained.
  • the valve 541 is sent to the raw material separator 600, which is the next process through the discharge pipe (543).
  • the raw material separation unit 600 separates the raw material particles (P) of water (H) and fine particles in a number of ways as usual, and the separated raw material particles (P) are utilized as desired and water (H). ) Can be used in many other ways.
  • the present invention as described above, as the raw material mixture is injected in a constant pulse through the injection nozzle in a pressurized state at high pressure, depending on the raw material particles to be produced, the temperature change may be severely generated by cooling means for controlling this 550, the heating means 560 may be installed and used, and various adjustment means 570 of a known configuration may also be used to adjust the spacing or position of both injection nozzles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Disintegrating Or Milling (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to a method for producing nano-micro particles through a continuous collision mode of two-way pulses, and an apparatus therefor, capable of producing raw materials such as metal, ceramics, organic polymer, etc., which are used in industry, as high-quality nano-micro particles. More specifically, the present invention is capable of ejecting micronizable raw material particles at both sides at an acceleration rate, and of producing the raw material particles as nano-sized micro particles by means of a mutual pulse collision mode.

Description

양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조방법 및 그 장치Method for producing nanoparticles using bidirectional pulse continuous collision method and apparatus
본 발명은 산업에 사용되는 금속, 세라믹, 유기물고분자 등의 원료를 고품질의 나노 미세입자로 제조할 수 있는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조방법 및 그 장치에 관한 것으로, 더욱 상세하게는 미세화가 가능한 원료입자를 양측에서 가속으로 분출시켜 상호 펄스(Pulse) 충돌방식에 의해 나노 크기의 미세입자로 제조할 수 있도록 한 것이다.The present invention relates to a method for producing nanoparticles and a device using a bidirectional pulse continuous collision method that can produce raw materials such as metal, ceramics, organic polymers, etc. used in the industry as high quality nanoparticles. The raw material particles that can be miniaturized are ejected with acceleration from both sides to be manufactured into nano-sized fine particles by a mutual pulse collision method.
일반적으로 미세화가 가능한 원료입자(금속, 세라믹, 유기물고분자 등)를 나노수준(1 나노 = 1 × 10 -9 m )으로 미립자화 하는 나노기술의 경우에는 원료입자의 크기를 1 내지 100 nm의 크기로 제조하여서 필요로 하는 해당 분야에 사용하고 있다. In general, in the case of nanotechnology in which micronized raw material particles (metals, ceramics, organic polymers, etc.) are micronized (1 nano = 1 × 10 -9 m), the size of the raw material particles is 1 to 100 nm. It is used in the relevant fields that need to be manufactured.
이러한 나노기술의 응용분야는 생화학, 미생물, 섬유, 의료, 군사과학, 반도체, 에너지 등 인류가 생존하면서 필요한 모든 분야에 폭 넓게 적용되고 있을 뿐만 아니라 더 나아가 반드시 필요하게 되어 있다.These fields of application of nanotechnology are widely applied to all fields of human survival, such as biochemistry, microorganisms, textiles, medical, military science, semiconductors, energy, etc., and are required to further expand.
예컨데, 생명과학 분야의 경우에는 나노기술을 이용한 센서로 신체 내의 생화학적 현상들을 매우 짧은 시간 내에 정밀하게 측정할 수 있고, 또한 나노 입자를 활용한 전자소자가 개발되면 전산 속도는 매우 빨라지게 되어 새로운 산업적 적용이 생기게 된다. For example, in the case of the life science field, nano-technical sensors can accurately measure biochemical phenomena in the body in a very short time. Also, when electronic devices using nanoparticles are developed, the computational speed becomes very fast. Industrial application will result.
또한 정보통신 분야에서도 나노기술로 인한 통신 속도가 빨라지게 되면 전 세계 사람과 영상회의를 실시간으로 진행할 수 있는 등 다양한 응용이 가능하고, 더욱이 나노기술이 연료전지장치에 적용되면 소규모 연료전지를 고효율로 광범위하게 사용되어 공해를 최소화하면서 에너지 문제를 해결해 갈 수 있을 것이다. Also, in the field of information and communication, if the communication speed due to nano technology is increased, various applications are possible, such as video conference with people around the world in real time. Moreover, if nano technology is applied to fuel cell devices, small fuel cells can be It will be widely used to solve energy problems while minimizing pollution.
이와 같이 원료입자를 나노수준의 미립자화 하는 나노기술은 종래에도 이미 제안되어 있었다.As described above, a nanotechnology for converting raw material particles into nanoparticles has been proposed.
그 대표적인 금속 나노입자의 제조법들은 고온으로 증발시킨 금속의 증기를 가스 분자와 충돌시키고 이를 급냉시켜 미립자를 만드는 기상법, 금속 이온이 용해된 용액에 환원제를 첨가하여 미립자를 만드는 액상법 및 고상법 등 다양한 합성 방식이 사용되고 있다. The typical methods for producing metal nanoparticles include various methods such as gas phase method of colliding vapor of metal evaporated at high temperature with gas molecules and quenching it to make fine particles, liquid phase method of adding fine particles by adding reducing agent to solution in which metal ions are dissolved, and solid phase method. The method is being used.
또한 상기와 같은 방법 외에도 입자들을 서로 충돌시키는 분쇄법이 있으며, 상기 분쇄법 중에서 습식 분쇄법은 고체를 용액에 함유시킨 슬러리를 가압 분사하여 충돌을 통해 미세입자를 만드는 방법이고, 이와 달리 건습 분쇄법은 가속되는 기체류에 따라서 고체 입자를 분사하고 충돌을 통해 미세입자를 만드는 방법이다.In addition to the above-described method, there is a pulverization method that collides the particles with each other, and the wet pulverization method of the above pulverization method is a method of making a fine particle through the impact by spraying the slurry containing a solid in the solution, and dry and dry grinding method Is a method of injecting solid particles and colliding with the gas stream being accelerated to produce microparticles.
그러나 상기 기상법, 액상법, 고상법 등은 고가의 상대 물질을 투입함으로 인하여 순수한 재료의 구조적 변형 또는 물성의 변화를 초래하는 문제점이 있기도 하고, 더구나 촉매, 분산제 등의 사용은 자연환경의 훼손이나 공해의 문제를 만들어 내기도 하였다. However, the gas phase method, the liquid phase method, and the solid phase method may cause structural deformation or change of physical properties of pure materials due to the input of expensive relative materials. Moreover, the use of catalysts and dispersants may cause damage to the natural environment or pollution. It also created a problem.
또한 분쇄법의 건습 분쇄법의 경우 고체의 입자가 작아질수록 안정적 가속이 어려워져 나노입자 단위의 분체를 만들어 내는데는 그 한계와 어려움이 있었으며, 습식 분쇄법에 있어서도 원료의 고속 분사 문제, 고압으로 가압되는 노즐의 마모 문제 등에 따른 비용 면에서 큰 어려움이 있으며 대규모의 미세입자 생산에도 어려움이 있었다.In addition, in the case of the wet and dry grinding method, the smaller the solid particles, the more difficult the stable acceleration is, and thus there is a limit and difficulty in producing powders in the unit of nanoparticles. There is a great difficulty in terms of cost due to the wear problem of the nozzle, and there is also a difficulty in producing large-scale fine particles.
특히 종래 금속나노미립자 제조는 금속수용액을 이용해서 만들었기 때문에 특정한 산화제나 금속염 등을 반드시 사용하여야만 하고, 또한 기판증착분리 등을 통해 나노입자를 만드는 경우도 그 제조과정에서 사용되어지는 촉매 등으로 인한 공해문제 들을 해결해야만 한다. Particularly, since conventional metal nanoparticles are manufactured using a metal aqueous solution, a specific oxidizing agent or a metal salt must be used. Also, in the case of making nanoparticles through deposition and separation of a substrate, due to the catalyst used in the manufacturing process, Pollution problems must be solved.
그래서 산화제의 사용 후 제거, 환원제를 활용한 공해 물질 제거 등에 관한 많은 연구를 해오고 있으나 적절한 해결책을 얻기가 쉽지 않았다. Thus, many studies have been conducted on the removal of oxidants after use and the removal of pollutants using reducing agents.
따라서 제조과정의 개선을 통해 제조 공정을 간소화시킬 수 있는 방안을 찾는 연구, 또는 화학적 방법이 아닌 입자들을 충돌시켜 미세화 시키는 물리적 제조공정에 대한 연구가 진행되고 있다. Therefore, researches to find a way to simplify the manufacturing process through the improvement of the manufacturing process, or research on the physical manufacturing process of miniaturizing by colliding particles rather than chemical methods are in progress.
하지만 이런 공정을 통해 고순도의 나노 물질을 대량으로 생산할 수 있는 방법은 아직 답보상태에 있는 것이 현실이다.However, the reality of mass production of high-purity nanomaterials through this process is still in a state of stalemate.
최근에 이르러서도 'Bio templated inorganic materials'(특허 US 8431506 B2 참조)에서 보는 바와 같이 미생물을 이용하여 나노입자 제조를 시도하는 등의 연구가 진행되기도 하지만, 이런 방법들도 생산에 따른 2차 공해의 문제점을 여전히 가지고 있어 종래의 제조 방법에서 크게 벗어나지 못하고 있다.Recently, as shown in 'Bio templated inorganic materials' (see patent US 8431506 B2), researches such as attempting to manufacture nanoparticles using microorganisms have been conducted. There is still a problem, it does not deviate significantly from the conventional manufacturing method.
또한 충돌 방식을 통한 나노입자 제조에 관한 최근의 연구를 보면(일본 P 2003358557) 충돌의 효율을 높이기 위해서는 정면충돌을 해야만 하는데 이 특허는 측면충돌을 하고 있다. In addition, recent studies on nanoparticle production using collision methods (Japan P 2003358557) require frontal collisions to increase the efficiency of collisions.
이러한 방식은 좁은 반응 공간에서 고속 고압에 의한 물질의 팽창 및 압력 상승으로 인한 충돌물체의 감속현상을 해결하기 위하여 불가피하게 사용하게 되었으며, 또한 이런 문제들을 보완하기 위해 압축가스를 동시에 분사하는 방식을 사용하는 방식을 채택하였다. This method is inevitably used to solve the deceleration of the collision object due to the expansion of the material and the increase of pressure due to the high pressure and high pressure in the narrow reaction space, and also to use the simultaneous injection of compressed gas to solve these problems. Adopted the way.
그러나 이러한 방식 역시 압축가스를 사용하는데 따른 공해, 환경 등은 물론 구조적인 문제점이 있었으며, 이런 방식으로는 나노입자의 대량생산에는 한계가 있었다.However, this method also had a structural problem as well as pollution, environment, etc. using the compressed gas, there was a limit to the mass production of nanoparticles in this way.
본 발명은 상기와 같은 종래 기술의 여러 가지 문제점을 해결하기 위하여 제안된 것으로, 그 목적은 촉매, 프라즈마, 전기적충격 등을 사용하지 않고, 동종의 물질의 상호 직접 충돌을 통해 나노 크기의 미세입자를 제조할 수 있도록 하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조방법 및 그 장치를 제공함에 있다.The present invention has been proposed in order to solve the various problems of the prior art as described above, the object of which is to use nano-sized microparticles through direct collision of the same material without using a catalyst, plasma, electrical shock, etc. The present invention provides a method for manufacturing nanoparticles and a device using a bidirectional pulse continuous collision method for manufacturing.
본 발명의 다른 목적은 제조되는 미세입자의 구조 변화가 없고, 원소 물질이 보유하는 물리적 내지는 화학적 특성을 그대로 가지고 있는 순수하고도 균질한 나노 입자를 만들 수 있으면서도 값싼 설비비용으로 대량생산 할 수 있도록 하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조방법 및 그 장치를 제공함에 있다.It is another object of the present invention to produce pure and homogeneous nanoparticles without the structural change of the manufactured microparticles and retaining the physical or chemical properties of the elemental materials, while allowing mass production at a low equipment cost. The present invention provides a method for manufacturing nanoparticles and a device using a bidirectional pulse continuous collision method.
상기의 과제를 해결하기 위한 본 발명은 미세화가 가능한 원료입자를 물이라는 매개체와 혼합한 후, 양측에서 인위적으로 가속시켜 상호 펄스 충돌방식에 의해 나노 크기의 미세입자를 제조할 수 있도록 하는 방법을 특징으로 한다.The present invention for solving the above problems is characterized by a method for producing nano-sized fine particles by the mutual pulse collision method by mixing the raw material particles that can be miniaturized with a medium of water, and then artificially accelerated from both sides It is done.
이러한 방법에 따른 제조장치는 원료입자와 물이 혼합된 상태의 원료혼합액이 공급되는 원료공급부와, 충돌의 속도를 높여 줄 수 있는 원료가속부와, 원료를 상호 충돌시켜 미세입자로 제조토록 하는 충돌제조부를 포함하여 이루어지는 것을 특징으로 한다.The manufacturing apparatus according to this method includes a raw material supply part supplied with a raw material mixture in a state where raw material particles and water are mixed, a raw material accelerating part that can increase the speed of collision, and a collision that makes the raw material collide with each other to produce fine particles. It characterized by comprising a manufacturing unit.
특히 본 발명에서는 고압이나 고속의 진행물질이 정면으로 충돌할 수 있는 상황을 항상 유지할 수 있게 해 줄 수 있는 실린더 장치와 노즐을 사용함으로 충돌과정에서 발생하는 감압 감속에 대한 문제를 해결할 수 있었으며, 따라서 입자의 미세화에 효율이 높은 정면충돌 작업을 할 수 있는 방법과 장치를 제시할 수 있었다. In particular, the present invention was able to solve the problem of the decompression deceleration caused by the collision process by using a cylinder device and a nozzle that can always maintain the situation that the high-pressure or high-speed moving material may collide with the front face, thus It was possible to propose a method and a device that can perform a frontal collision work with high efficiency in miniaturization of particles.
또한 본 발명에서는 원료의 공급과 충돌과정이 연동 작동하도록 설계하여 작업자가 원하는 입자의 크기가 될 때까지 연속반복공정을 수행할 수 있도록 함으로써 대규모의 나노 크기의 미세입자의 생산이 가능하도록 함을 특징으로 하는 것이다.In addition, in the present invention, the supply and collision process of the raw material is designed to work in conjunction so that the operator can perform a continuous repetition process until the desired particle size to enable the production of large-scale nano-size microparticles It is to be done.
상기와 같이 본 발명은 원료입자를 물과 함께 혼합하여 고압 고속으로 분사시켜 펄스(pulse) 충돌방식에 의한 상호 정면충돌의 반복과정을 통하여 나노 크기의 미세입자로 제조할 수가 있음으로써 매우 순수하고도 균질한 나노 크기의 미세입자를 대량으로 제조할 수 있는 효과를 가지게 된다.As described above, the present invention is very pure and pure by being able to manufacture the raw particles by mixing with water and spraying at high pressure and high speed through the repeated process of mutual frontal collision by the pulse collision method. It has the effect of producing a large number of homogeneous nano-sized microparticles.
즉, 본 발명은 제조공정에 따라 기존의 미립자 제조과정에서 수반하여 발생하는 공해물질의 사용이 전혀 필요가 없이 물을 매개체로 함으로써 고순도의 나노 물질을 경제적이면서도 대량으로 생산할 수 있음은 물론이고, 환경 오염을 시키지 않는 효과를 가지게 되는 것이다. In other words, according to the manufacturing process, high purity nanomaterials can be produced economically and in large quantities by using water as a medium, without requiring the use of pollutants generated in the existing fine particle manufacturing process. It will have the effect of not polluting.
특히 본 발명은 금속, 세라믹, 유기물고분자 등의 모든 원료입자를 나노의 크기로 제조할 수 있음으로써 다양한 산업분야에 폭넓게 활용할 수 있는 효과도 가지게 되는 것이다.In particular, the present invention can be produced by the production of all the raw material particles, such as metal, ceramics, organic polymers to the size of the nano will also have the effect that can be widely used in various industrial fields.
도 1은 본 발명 제조방법에 따른 블럭도1 is a block diagram according to the manufacturing method of the present invention
도 2는 본 발명에 관한 전체적인 제조장치의 개념도2 is a conceptual diagram of an overall manufacturing apparatus according to the present invention.
도 3은 본 발명 도2의 원료공급부 및 원료혼합부의 구성도3 is a block diagram of a raw material supply unit and a raw material mixing unit of the present invention Figure 2
도 4는 본 발명 도2의 원료가속부의 구성도4 is a configuration diagram of the raw material accelerator of FIG.
도 5는 본 발명 도2의 펄스발생부의 구성도5 is a configuration diagram of the pulse generator of FIG.
도 6은 본 발명 도2의 원료충돌제조부의 구성도Figure 6 is a block diagram of a raw material conflict manufacturing unit of the present invention Figure 2
도 7은 본 발명 도6의 요부를 보인 구성도7 is a configuration diagram showing the main part of the present invention Figure 6
도8 및 도9는 본 발명 원료혼합액의 충돌에 따른 작동설명도8 and 9 is an operation diagram according to the collision of the raw material mixture of the present invention
도 10은 본 발명 조절수단의 일부구성도10 is a partial configuration of the present invention adjusting means
이하에서 본 발명을 실시하기 위한 구체적인 내용을 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings for carrying out the present invention in detail.
첨부된 도면의 도1은 본 발명에 의한 일실시예인 상호 펄스(pulse) 충돌방식에 의한 나노 미세입자 제조방법에 따른 블럭도이고, 도2는 나노 미세입자 제조장치의 개념도이며, 도3 내지 도7은 본 발명의 핵심적인 장치들의 구성도이며, 도8 이하는 본 발명의 작동설명도를 나타낸 도면이다.Figure 1 of the accompanying drawings is a block diagram according to a method for manufacturing nano-microparticles by the mutual pulse (pulse) collision method according to an embodiment of the present invention, Figure 2 is a conceptual diagram of a nano-particle manufacturing apparatus, Figures 3 to Figure 7 is a configuration diagram of the essential devices of the present invention, Figure 8 and below is a diagram showing the operation of the present invention.
본 발명은 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조방법은 물(H)과 원료입자(P)가 공급되는 원료공급단계, 공급되는 원료혼합액을 효과적이고도 고르게 혼합하는 원료혼합단계, 원료혼합액을 가압하여 고속으로 분사토록 하는 원료가속단계, 분사되는 원료혼합액을 일정한 펄스로 분사시키기 위한 펄스발생단계, 펄스로 분사되는 원료를 정면으로 충돌시켜 미세입자로 제조토록 하는 원료충돌제조단계, 나노 크기의 미세입자로 제조된 물과 미세입자를 분리토록 하는 원료분리단계로 구성된다.The present invention provides a method for producing nanoparticles using a continuous pulse bi-directional pulse method in which a raw material supply step of supplying water (H) and raw material particles (P), a raw material mixing step of efficiently and evenly mixing the supplied raw material mixture solution, and a raw material mixture solution Raw material acceleration step to pressurize and spray at high speed, pulse generation step to spray the sprayed raw material mixture with a constant pulse, raw material collision manufacturing step to make the raw material sprayed by the pulse to the front to produce fine particles, nano size It consists of a raw material separation step to separate the water and the fine particles produced by the fine particles.
이를 보다 구체적으로 설명하면 다음과 같다.This will be described in more detail as follows.
[원료공급단계]Raw material supply stage
상기 원료공급단계는 나노 크기로 제조하기 위한 금속, 세라믹, 유기물고분자 등과 같은 원료입자(P)와 매개체 역할을 수행하기 위한 물(H)을 적정한 비율로 공급하는 원료공급단계를 가진다.The raw material supplying step has a raw material supplying step of supplying raw material particles (P) such as metal, ceramic, organic polymer, etc. for manufacturing to a nano size and water (H) for performing a medium role at an appropriate ratio.
*상기 원료입자(P)는 나노 크기의 미세입자로 제조하기 위한 원료로서, 제조하고자 하는 원료의 종류에 따라 그 크기를 달리할 수 있고, 이러한 원료입자(P)는 물에 충분히 혼합될 수 있는 정도의 비율로 각각 공급하게 되며, 물(H)은 통상에서와 같은 물을 사용하게 된다.* The raw material particles (P) is a raw material for producing nano-sized fine particles, the size can be varied according to the type of raw material to be prepared, such raw material particles (P) can be sufficiently mixed in water Each is supplied in the ratio of degree, and water (H) uses water as usual.
[원료혼합단계][Mixing raw materials]
상기 원료공급단계에 의해 공급되는 원료입자(P)를 탱크에 주입하여 모터의 구동력에 의해 회전되는 교반날개를 통하여 강제적으로 고르게 혼합하는 단계를 가진다.Injecting the raw material particles (P) supplied by the raw material supply step into the tank forcibly mixed evenly through the stirring blade rotated by the driving force of the motor.
이의 단계는 물속에 혼합되는 원료입자가 금속, 세라믹, 유기물고분자 등으로 이루어짐에 따라 매개체인 물 보다는 그 비중이 높기 때문에 물 속의 바닥으로 가라앉는 것을 방지하고, 물 속에서 원료입자가 고르게 혼합된 원료혼합액을 그대로의 상태로 다음 단계에 보내기 위함이다.In this step, since the raw material particles mixed in the water are made of metal, ceramic, organic polymer, etc., since the specific gravity is higher than that of the medium, the raw material particles are prevented from sinking to the bottom of the water, and the raw material particles are evenly mixed in the water. This is to send the mixed solution as it is to the next step.
[원료가속단계][Raw Material Acceleration Step]
물과 함께 고르게 혼합된 원료혼합액은 실린더에서 진퇴작동되는 피스톤에 의해 가압되어 고온 고압으로 가속된 상태로 다음 단계로 보내지게 되며, 이의 원료가속단계는 공급되는 원료혼합액을 고온 고압으로 가압하여 다음 단계로 보내기 위함이다.The raw material mixture mixed evenly with water is pressurized by the piston moving back and forth in the cylinder and accelerated to high temperature and high pressure, and then sent to the next step, and the raw material acceleration step presses the supplied raw material mixture to high temperature and high pressure to the next step. To send to.
[펄스발생단계][Pulse generation stage]
상기와 같이 가압되어 배출되는 원료혼합액을 일정한 주기로 가속과 감속을 반복하도록 함으로써 상호 정면충돌에 따른 분쇄효율을 향상시키게 위한 것으로, 모터의 회전력을 직선으로 변환시켜 진퇴작동되는 피스톤의 압축 및 팽창으로 배관을 통과하는 원료혼합액이 일정한 주기로 급가속이 이루어지게 하여 펄스에 의한 충돌력을 향상시키게 되는 것이다.It is to improve the grinding efficiency due to mutual frontal collision by repeating the acceleration and deceleration of the raw material mixture discharged by pressing at regular intervals, and by converting the rotational force of the motor into a straight line and compressing and expanding the piston that moves forward and backward. The raw material mixture passing through the rapid acceleration is made at regular intervals to improve the impact force by the pulse.
즉, 원료가속단계에 의해 가속된 상태로 공급되는 원료혼합액을 동일한 속도로 공급할 경우 다음 단계인 원료충돌제조단계에서 상호 충돌에 따른 효율이 저하될 수 있음으로써 강약을 반복되게 하여 상호 충돌력을 증대시키게 된다.In other words, if the raw material mixture supplied in the accelerated state by the raw material acceleration step is supplied at the same speed, the efficiency of the mutual collision may be reduced in the next step, the raw material collision manufacturing step, thereby increasing the mutual collision force by repeating the strength and weakness. Let's go.
[원료충돌제조단계][Material Collision Manufacturing Step]
전술한 원료가속단계에서 가압되어 고속이면서도 일정한 펄스로 공급되는 원료혼합액은 서로 다른 크기의 구경을 가진 한 쌍의 분사노즐에 의해 상호 정면충돌되어 미세입자로 제조되는 단계를 가진다.The raw material mixture solution, which is pressurized in the above-described raw material acceleration step and supplied at a high speed and at a constant pulse, has a step of being frontally collided with each other by a pair of injection nozzles having different diameters to produce fine particles.
작은 구경을 가지는 분사노즐에서 분사되는 원료혼합액이 큰 구경을 가지는 분사노즐에서 분사되는 원료혼합액 속으로 파고들면서 각각의 원료입자가 정면충돌되어 미세입자로 제조된다.The raw material mixture sprayed from the spray nozzle having a small aperture penetrates into the raw material mixture sprayed from the spray nozzle having a large aperture, and each raw material particle is frontally collided to produce fine particles.
이때 서로 마주보는 각각의 분사노즐은 그 구경이 서로 달리 구성되면서 큰 구경의 분사노즐은 작은 구경의 분사노즐에 비하여 1.5 - 2배의 크기를 가지도록 구성됨으로써 각 분사노즐에서 분사되는 원료혼합액 속의 원료입자가 정면 충돌시 분쇄효율을 향상시키게 된다.At this time, each injection nozzle facing each other is composed of different diameters, while the injection nozzle of the large diameter is configured to have a size 1.5-2 times that of the injection nozzle of the small diameter, the raw material in the raw material mixture sprayed from each injection nozzle When the particles collide at the front, the grinding efficiency is improved.
상기와 같은 일련의 단계는 원하는 미세입자의 크기가 될 때까지 연속 반복적으로 이루어지게 된다.This series of steps is carried out continuously and repeatedly until the size of the desired microparticles.
[원료분리단계]Raw material separation step
상기와 같은 일련의 제조단계를 연속 반복적으로 이룬 후, 원하는 미세입자의 크기로 제조가 이루어지고 나면, 회수탱크로 회수하여 물과 나노 크기의 미세입자를 분리하는 단계를 가진다.After successively repeating a series of manufacturing steps as described above, after the production is made in the size of the desired microparticles, there is a step of recovering to the recovery tank to separate the water and nano-sized microparticles.
분리단계는 공지된 여러 가지 분리장치들을 이용하여 나노 크기의 미세입자와 물로 분리하게 되는 것이며, 이렇게 분리된 미세입자는 필요로 하는 산업에 활용함과 아울러, 물은 회수하여 사용하게 되는 것이다.The separation step is to separate the nano-sized microparticles and water using a variety of known separation devices, and the separated microparticles are used in the industry as needed, and water is recovered and used.
따라서 상기와 같은 제조방법을 순차적으로 거침으로써 원료입자는 나노 크기의 미세입자로 제조가 완료되는 것이고, 이렇게 제조되는 미세입자는 물과 분리되어 미세입자는 필요로 하는 산업이 활용하게 됨과 동시에, 순수한 물은 다른 여러 가지 용도로 사용하게 됨으로써 환경오염을 방지하게 되는 것이다.Therefore, the raw material particles are sequentially manufactured by nano-sized microparticles by going through the manufacturing method as described above, and the microparticles thus prepared are separated from water so that the microparticles can be utilized by industries that require fine grains. Water is used for many other purposes to prevent environmental pollution.
상기와 같은 제조방법에 따른 제조장치는 첨부된 도면의 도2 이하에서 상세히 나타내고 있으며, 본 발명은 도면에서 보듯이 크게 구분하여 원료공급부(100), 원료혼합부(200), 원료가속부(300), 펄스발생부(400), 원료충돌제조부(500), 원료분리부(600)로 구성된다.The manufacturing apparatus according to the manufacturing method as described above is shown in detail in Figure 2 below of the accompanying drawings, the present invention is largely divided into the raw material supply unit 100, the raw material mixing unit 200, the raw material acceleration unit 300 as shown in the drawings ), A pulse generator 400, a material collision manufacturing unit 500, and a material separation unit 600.
상기 원료공급부(100)는 나노 크기로 제조하기 위한 금속, 세라믹, 유기물고분자 등과 같은 원료입자(P)를 물(H)과 공급하기 위한 것으로, 이는 첨부된 도면의 도2 및 도3 에서 보듯이 공급호퍼(110)를 통하여 원료입자와 물을 적정비율로 혼합하여 공급하거나 또는 원료입자와 물을 각각 별도로 공급하게 된다.The raw material supply unit 100 is for supplying the raw material particles (P), such as metal, ceramics, organic polymers, etc. for manufacturing to a nano size with water (H), as shown in Figures 2 and 3 of the accompanying drawings Through the feed hopper 110, the raw material particles and water are mixed and supplied at an appropriate ratio, or the raw material particles and water are separately supplied.
상기 원료혼합부(200)는 공급되는 원료입자와 물을 혼합하기 위한 것으로 원통형의 탱크(210)를 갖추어 구성되고, 이 탱크(210)의 상부 일측에는 원료와 물이 공급되는 주입구(211)가 공급호퍼(110)와 연결되어 밸브(212)에 의해 제어되며, 반대측에는 리사이클에 따른 회수구(213)가 구비된다.The raw material mixing unit 200 is for mixing the raw material particles and water to be supplied is configured with a cylindrical tank 210, the upper side of the tank 210, the injection hole 211 is supplied with the raw material and water It is connected to the supply hopper 110 is controlled by the valve 212, the reverse side is provided with a recovery port 213 for recycling.
또 탱크(210)의 상부 중심부에는 모터(220)가 설치됨과 동시에, 탱크(210)의 내부에는 모터(220)의 회전축과 연결되어 회전구동되는 교반날개(221)가 다수로 설치되어 공급되는 원료를 고르게 교반하여 혼합하게 된다.In addition, the motor 220 is installed at the upper center of the tank 210, and the raw material supplied with a plurality of stirring blades 221, which are connected to the rotating shaft of the motor 220 and driven to rotate, are installed inside the tank 210. Stir evenly to mix.
또한 탱크(210)의 하단 중심부에는 탱크(210)의 내부에서 충분히 혼합된 원료혼합액을 다음 단계로 배출하기 위한 배출구(230)가 설치되어 역시 밸브(231)에 의해 제어된다.In addition, the lower center of the tank 210 is provided with a discharge port 230 for discharging the raw material mixture sufficiently mixed in the tank 210 to the next step is also controlled by the valve 231.
한편, 상기 탱크(210)의 외부에는 별도의 냉,난방장치와 연결되는 열교환기(240)가 더 설치될 수 있으며, 이의 열교환기(240)는 탱크(210)내의 온도를 항상 일정하게 유지하여 그 속에 담겨지는 원료혼합액이 온도 변화에 의해 산화되거나 또는 물리적, 화학적 변화를 일으켜 변환되는 것을 최소화하기 위한 것이다.On the other hand, the outside of the tank 210 may be further provided with a heat exchanger 240 connected to a separate cooling and heating device, the heat exchanger 240 is to maintain a constant temperature in the tank 210 at all times It is to minimize the conversion of the raw material mixture contained therein is oxidized or physical and chemical changes by the temperature change.
따라서 상기 원료공급부(100)에서는 공급호퍼(110)를 통해 물과 원료입자를 적정한 비율로 공급하게 되고, 원료혼합부(200)에서는 상기와 같이 공급되는 원료입자와 물을 고르게 혼합하게 된다.Accordingly, the raw material supply unit 100 supplies water and raw material particles at an appropriate ratio through the feed hopper 110, and the raw material mixing unit 200 mixes the raw material particles and water supplied as described above evenly.
즉, 원료혼합부(200)의 주입구(211)를 통하여 물과 함께 원료입자가 탱크(210)의 내부로 공급되면, 모터(220)가 구동되면서 교반날개(221)가 회전되고, 이에 따라 탱크(210)의 내부로 공급되는 원료입자는 물과 함께 고르게 혼합되어 원료혼합액을 이루게 된다.That is, when the raw material particles are supplied to the inside of the tank 210 together with water through the inlet 211 of the raw material mixing unit 200, the stirring blade 221 is rotated while the motor 220 is driven, and thus the tank Raw material particles supplied into the 210 are mixed evenly with water to form a raw material mixture.
상기와 같이 원료혼합액을 혼합하는 것은 나노 크기로 제조하기 위한 금속, 세라믹, 유기물고분자 등과 같은 원료입자들이 물보다는 비중이 높기 때문에 탱크(210)내에서 침전되는 것을 방지하면서도 물과 고르게 혼합될 수 있도록 하기 위함이다.Mixing the raw material mixture as described above is a raw material particles, such as metal, ceramics, organic polymers, etc. for manufacturing to a nano size has a higher specific gravity than water so as to be evenly mixed with water while preventing precipitation in the tank 210 To do this.
상기와 같이 고르게 혼합된 원료혼합액은 그 하부의 배출구(230)를 통하여 두 개로 구비되는 원료가속부(300) 측으로 분배되어 각각 공급된다.The raw material mixture liquid evenly mixed as described above is distributed and supplied to the raw material acceleration part 300 provided in two through the discharge port 230 at the lower portion thereof.
상기 원료가속부(300)은 첨부된 도면의 도4 에서 더욱 상세히 나타내고 있으며, 이는 좌, 우 동일한 구조가 상호 마주보게 한 쌍으로 구비되어 원료혼합부(200)에서 공급되는 원료혼합액을 원료충돌제조부(500)로 각각 분사하는 기능을 제공하게 된다.The raw material accelerating unit 300 is shown in more detail in Figure 4 of the accompanying drawings, which is provided with a pair of left and right identical structures facing each other to produce a raw material mixture solution supplied from the raw material mixing unit 200 It is to provide a function to spray each of the unit 500.
상기 원료가속부(300)는 한 쌍으로 구비되는 상호 동일한 구조를 가짐에 따라 그 하나만을 설명하기로 한다.The raw material accelerator 300 has only the same structure as each other provided in a pair will be described only one.
원료가속부(300)는 긴원통형으로 이루어지는 실린더(310)와, 이 실린더(310)의 내부에서 진퇴작동되어 원료혼합액을 압축토록 피스톤(320)과, 피스톤(320)을 작동시키도록 하는 모터(330)로 구성되고, 실린더(310)의 전면 일측에는 원료혼합액이 투입되는 투입구(340)가 연결됨과 동시에 전단에는 실린더(310)내에서 가압되는 원료혼합액이 고속으로 토출되는 토출구(350)가 배관(351)과 연결 구비된다.The raw material acceleration part 300 includes a cylinder 310 having a long cylindrical shape, and a motor for moving the piston 320 and the piston 320 to compress the raw material mixture to move in and out of the cylinder 310. 330, the inlet 340 is connected to the one side of the front of the cylinder 310, the discharge port 350 is discharged at a high speed to discharge the raw material mixture pressurized in the cylinder 310 at the front end pipe 351 is provided with a connection.
이때 상기 투입구(340)와 토출구(350)상에는 원료혼합액이 원활하게 압축되어 유입 및 토출이 이루어지도록 역지밸브(360)가 각각 구비된다.At this time, the check valve 360 is provided on the inlet 340 and the discharge port 350 so as to smoothly compress the raw material mixture to be introduced and discharged.
상기 실린더(310)는 원료혼합액이 유입되어 피스톤(320)에 의해 압축되는 기능을 제공하게 되는 것이며, 피스톤(320)은 모터(330)의 회전력이 크랭크축을 통하여 직선운동으로 변환되므로 진퇴작동되어져 실린더(310)내를 압축시키게 된다.The cylinder 310 is a raw material mixture is introduced to provide a function that is compressed by the piston 320, the piston 320 is a rotary motion of the motor 330 is converted into a linear motion through the crankshaft to move forward and backward cylinder It is compressed within 310.
즉, 모터(330)의 회전력에 의해 피스톤(320)이 전진작동되면, 투입구(340)를 통하여 유입되는 원료혼합액을 강하게 압축하여 그 전단의 토출구(350)를 통하여 토출시키게 되고, 이와는 반대로 후진작동되면, 토출구(350)는 역지밸브(360)에 의해 폐쇄되면서 투입구(340)측으로 원료혼합액이 투입되는 것을 반복하게 됨으로써 원료혼합액을 고압, 고속으로 토출시키게 된다.That is, when the piston 320 is moved forward by the rotational force of the motor 330, the raw material mixture flowing through the inlet 340 is strongly compressed and discharged through the discharge port 350 of the front end, on the contrary, the reverse operation When the discharge port 350 is closed by the check valve 360, the raw material mixture is repeatedly injected into the inlet 340 to discharge the raw material mixture at high pressure and high speed.
또한 상기 토출구(350)의 전단에는 배관(351)으로서 별도의 펄스발생부(400)가 설치되며, 이의 펄스발생부(400)는 첨부된 도면의 도5 에서 더욱 상세히 나타내고 있다.In addition, a separate pulse generating unit 400 is installed as a pipe 351 at the front end of the discharge port 350, the pulse generating unit 400 is shown in more detail in Figure 5 of the accompanying drawings.
이는 회전동력을 발생시키는 모터(410)와, 모터(410)의 동력을 풀리 등으로 전달받아 회전되는 회전체(420)와, 회전체(420)와 축결합되어 회전동력을 직선운동으로 변환시키기 위한 크랭크축(430)과, 크랭크축(430)의 동력에 의해 실린더(440)내에서 진퇴작동되는 피스톤(450)으로 구성되고, 상기 실린더(440)는 배관(351)과 연통되어 구비된다.This is the motor 410 for generating the rotational power, the rotating body 420 is rotated by receiving the power of the motor 410 to the pulley and the like, the shaft is coupled to the rotating body 420 to convert the rotational power into linear motion It consists of a crank shaft 430 and a piston 450 that is moved back and forth in the cylinder 440 by the power of the crank shaft 430, the cylinder 440 is provided in communication with the pipe 351.
따라서 모터(410)에서 발생되는 회전동력은 회전체(420) 및 크랭크축(430)에 의해 직선운동으로 변환되어 펄스 제너레이터 실린더(440)내의 피스톤(450)으로 전달되어 압축 및 팽창을 반복하게 된다.Therefore, the rotational power generated by the motor 410 is converted into a linear motion by the rotor 420 and the crankshaft 430 is transmitted to the piston 450 in the pulse generator cylinder 440 to repeat the compression and expansion. .
즉, 피스톤(450)의 진퇴작동에 따라 배관(351)내로 통과되는 원료혼합액의 토출압력을 가감함으로써 일정한 펄스로 가속과 감속을 반복하게 되어 상호 충돌에 따른 효율을 향상시키게 된다.That is, by increasing or decreasing the discharge pressure of the raw material mixture passed into the pipe 351 as the piston 450 moves forward and backward, acceleration and deceleration are repeated with a constant pulse, thereby improving efficiency due to mutual collision.
상기 원료충돌제조부(500)는 도면의 도6 및 도7 에서 보는 바와 같이 원통형을 이루면서 내부에는 밀폐되는 제조공간을 가지는 제조통(510)을 갖추어 구성되고, 이 제조통(510)의 양측에는 상호 마주보게 일직선상으로 설치되면서 서로 다른 구경을 가지는 한 쌍의 분사노즐(520)(530)이 설치되며, 제조통(510)의 하부에는 미세입자로 제조된 원료혼합액이 배출되는 배출구(540)가 설치된다.The raw material collision manufacturing unit 500 is formed with a manufacturing cylinder 510 having a manufacturing space sealed inside the cylindrical shape as shown in Figures 6 and 7 of the drawings, on both sides of the manufacturing cylinder 510 A pair of injection nozzles 520 and 530 having different apertures are installed to face each other in a straight line, and a discharge port 540 through which the raw material mixture made of fine particles is discharged from the lower part of the manufacturing container 510. Is installed.
또한 상기 배출구(540)에는 밸브(541)에 의해 제어되면서 원료혼합액이 원료혼합부(200)로 다시 회수되는 회수관(542)이 연결됨과 동시에, 제조가 완료된 원료혼합액을 다음 단계의 원료분리부(600)로 보내기 위한 배출관(543)이 연결 구비된다.In addition, the discharge port 540 is connected to the recovery pipe 542 which is controlled by the valve 541 and the raw material mixture is recovered back to the raw material mixing unit 200, and at the same time the raw material mixture is completed, the raw material separating unit A discharge pipe 543 for sending to 600 is provided with a connection.
상기 제조통(510)은 대략 원통형의 구조를 가지면서 밀폐되는 구조를 갖추어 구성되고, 하부에는 배출구(540)가 설치됨과 동시에 중심부의 양측에는 두 개의 분사노즐(520)(530)이 상호 마주보게 설치되는 구조를 가진다.The manufacturing container 510 is configured to have a substantially cylindrical structure and has a sealed structure, and a discharge port 540 is installed at the bottom thereof, and at the same time, two injection nozzles 520 and 530 face each other. Has a structure to be installed.
상기 분사노즐(520)(530)은 서로 다른 구경을 가지면서 전술한 두 개의 원료가속부(300)의 토출구(350)와 각각 배관으로서 연결되어 구성되며, 구경이 큰 분사노즐(520)은 구경이 작은 분사노즐(530)에 비하여 1.5 - 2배의 크기를 가지는 것이 바람직하다.The injection nozzles 520 and 530 have different apertures and are connected to the outlets 350 of the two raw material acceleration units 300 as pipes, respectively, and the injection nozzles 520 having a large aperture have a diameter. It is preferable to have a size of 1.5-2 times that of the small jet nozzle 530.
*만약, 두 개의 분사노즐(520)(530)의 구경이 동일하다면, 원료혼합액이 고압으로 분출하는 시점에서 두 개의 분사노즐이 같은 양을 분출하는 경우, 충돌 지점에서 서로의 가속도가 상쇄될 수 있으므로 이것을 방지하기 위하여 분사노즐(520)(530)의 구경을 서로 달리하게 된다.* If the two injection nozzles 520 and 530 have the same aperture, if the two injection nozzles eject the same amount at the time when the raw material mixture is ejected at a high pressure, the acceleration of each other may be canceled at the collision point. Therefore, to prevent this, the diameters of the injection nozzles 520 and 530 are different from each other.
따라서 첨부된 도면의 도8 및 도9 에서 보는 바와 같이 구경이 작은 분사노즐(530)에서 분사된 원료혼합액 방울은 구경이 큰 분사노즐(520)에서 분사된 원료혼합액 방울의 넓은 공간을 통과하면서 충돌하게 되는데, 구경이 큰 분사노즐(520)에서 분사된 원료혼합액의 방울이 구경이 작은 분사노즐(530)에서 분사된 원료혼합액 방울을 감싸고 진행하게 되므로 더욱 이상적인 충돌효과를 가져 올 수 있다. Therefore, as shown in FIGS. 8 and 9 of the accompanying drawings, the droplet mixture jetted from the small-bore injection nozzle 530 collides while passing through a large space of the droplet mixture jetted from the large-bore injection nozzle 520. However, since the droplets of the raw material mixture sprayed from the large injection nozzle 520 wrap around the raw material droplets injected from the small injection nozzle 530, the collision may be more ideal.
또한 분사노즐(520)(530)의 구멍은 일직선상으로 구비되어 고속으로 분사되는 원료혼합액이 확산되지 않고 일직선상으로 분사될 수 있도록 구성된다.In addition, the holes of the injection nozzles 520 and 530 are provided in a straight line so that the raw material mixture sprayed at high speed can be sprayed in a straight line without being diffused.
고속 충돌에 사용되는 대부분의 노즐 형태는 입구는 넓고 출구는 입구보다 좁게 하여 제트현상을 만들어 팽창을 유도하고 있으나, 이러한 방식은 급속한 팽창 효과는 있지만 직진성이 현저히 떨어지게 되어 크기가 다른 용액 방울 관통에 따른 충돌 효과를 약화시킬 수 있다. Most nozzle types used for high-speed collisions induce jet expansion by making the inlet wider and the outlet narrower than the inlet, but this method has a rapid expansion effect, but the straightness is significantly reduced, resulting in penetration of solution droplets of different sizes. It can weaken the collision effect.
따라서 본 발명에서는 충돌의 효과를 극대화하기 위하여 분사노즐(520)(530)의 양측에서 동시에 분사되는 원료혼합액이 그 중간지점에서 정확히 상호 정면 충돌될 수 있도록 하기 위하여 분사노즐(520)(530)의 구멍을 일직선상으로 구비하게 된다.Therefore, in the present invention, in order to maximize the effect of the collision, the raw material mixtures sprayed at both sides of the spray nozzles 520 and 530 simultaneously collide with each other precisely at the intermediate point of the spray nozzles 520 and 530. The holes are provided in a straight line.
이때 충돌장치에서의 작업을 통해 제조통(510)에 팽배하는 압력만큼 충돌 속도가 저하되는 것을 방지하기 위하여 원료혼합액의 주입 및 배출을 충돌 시점에 연동하여 최적의 충돌이 일어날 수 있도록 하는 연동제어방식으로 설계되어 연속순환 반응이 자동으로 수행하게 될 것이다. In this case, in order to prevent the collision speed from dropping by the pressure prevailing in the manufacturing vessel 510 through the operation in the collision device, the interlocking control method that allows the optimum collision to occur by interlocking the injection and discharge of the raw material mixture at the time of collision. Designed to be a continuous circulation reaction will be performed automatically.
한편, 상기 분사노즐(520)(530)의 외표면에는 도7 에서 나타낸 바와 같이 냉각수단(550), 가열수단(560), 조절수단(570)이 구비된다.On the other hand, the outer surface of the injection nozzle 520, 530 is provided with a cooling means 550, heating means 560, adjusting means 570 as shown in FIG.
상기 냉각수단(550)은 일반적인 공지된 구성으로서 도면에서는 상세히 도시하지 않았지만, 분사노즐을 통하여 분사되는 원료혼합액에 의해 지나치게 온도가 상승할 경우 냉각수를 순환시켜 분사노즐의 관체를 일정온도로 냉각시키도록 한 구성이다.The cooling means 550 is a general known configuration, but is not shown in detail in the drawings, but when the temperature rises excessively by the raw material mixture injected through the injection nozzle, the cooling water is circulated to cool the tubular body of the injection nozzle to a predetermined temperature. One configuration.
또한 가열수단(560)은 전술한 냉각수단(550)와 반대의 개념으로서 온도가 지나치게 하강할 경우 전기적인 장치와 연결하여 히터를 히팅하여 항상 적정온도를 유지할 수 있도록 구성한 것이다.In addition, the heating means 560 is a concept opposite to the above-described cooling means 550 is configured to maintain a proper temperature at all times by heating the heater in connection with the electrical device when the temperature is too low.
이러한 냉각수단(550) 및 가열수단(560)은 통상에서와 같은 방법을 사용할 수 있으며, 예컨데 냉각수단(550)은 냉각수를 순환시키거나 또는 냉매사이클을 이용할 수 있고, 가열수단(560)은 역시 통상에서와 같은 방법으로서 내부에 히터선을 구비하여 히팅함으로써 항상 적정온도를 유지할 수 있을 것이다.The cooling means 550 and the heating means 560 may use the same method as usual, for example, the cooling means 550 may circulate the cooling water or use a refrigerant cycle, the heating means 560 is also As usual, by heating the heater wires therein, the proper temperature may be maintained at all times.
그리고, 조절수단(570)은 레이저를 이용한 위치조절과 분사노즐(520)(530)의 거리를 조절할 수 있도록 한 것으로, 이 역시 통상의 구조를 가지는 것으로 도면의 도9 에서 보듯이 전면에 4개의 센서(571)를 구비하여 양측 분사노즐(520)(530)의 거리를 조절할 수 있다.And, the adjusting means 570 is to adjust the position adjustment using the laser and the distance of the injection nozzles (520, 530), which also has a conventional structure as shown in Figure 9 of the drawing four front The sensor 571 may be provided to adjust the distance between the two injection nozzles 520 and 530.
상기 원료분리부(600)는 원료충돌제조부(500)에서 충돌방식에 의해 제조 완료된 원료혼합액을 공급받아 물과 나노 크기로 제조된 원료입자를 분리하게 된다.The raw material separating part 600 receives the raw material mixture prepared by the collision method from the raw material collision producing part 500 to separate the raw material particles prepared in water and nano size.
이러한 원료분리부(600)는 통상에서와 같은 원심분리기나 또는 필터분리기 등 적합한 여러 가지를 구조의 분리기를 사용할 수 있으며, 분리되는 원료입자는 산업에 활용하게 됨과 아울러, 물은 오염이 되지 않았기 때문에 기타 여러 가지로 활용이 가능하게 되는 것이다.The raw material separator 600 may use a separator having a suitable structure such as a centrifugal separator or a filter separator as usual, and since the raw material particles to be separated are used in industry, and water is not contaminated. It can be used in many other ways.
따라서 상기와 같이 구성되는 본 발명의 작동상태를 살펴보면, 일정한 크기의 입자를 이루는 금속, 세라믹, 유기물고분자 등의 원료입자를 나노 크기의 미세입자로 제조하고자 할 경우, 이에 따른 원료입자를 물에 혼합하여 원료공급부(100)의 공급호퍼(110)로 투입하게 된다.Therefore, when looking at the operating state of the present invention configured as described above, if you want to produce a raw material particles, such as metal, ceramic, organic polymers of a certain size of particles to the nano-size microparticles, mixing the raw material particles according to the water To the feed hopper 110 of the raw material supply unit 100.
이때 원료입자는 대체적으로 분말상태로서 그 종류와 크기 등을 감안하여 물속에 충분히 혼합될 수 있는 비율로 공급하게 되는 것으로, 물과 원료입자를 각각 따로 투입하거나 또는 별도의 용기로서 먼저 혼합하여 투입할 수 있다.In this case, the raw material particles are generally in a powder state and are supplied at a ratio that can be sufficiently mixed in the water in consideration of their type and size, and the water and raw material particles may be separately added or mixed as separate containers first. Can be.
상기 원료공급부(100)로 공급되는 물과 원료입자는 원료혼합부(200)의 주입구(211)을 통하여 탱크(210)의 내부로 유입되고, 이와 동시에 모터(220)가 작동되면서 교반날개(221)가 회전됨에 따라 물과 원료입자는 고르게 혼합된다.The water and the raw material particles supplied to the raw material supply unit 100 are introduced into the tank 210 through the inlet 211 of the raw material mixing unit 200, and at the same time, the stirring blade 221 while the motor 220 is operated. As) rotates, water and raw particles are evenly mixed.
이렇게 혼합이 적절히 이루어지면 배출구(230)의 밸브(231)가 열리면서 원료혼합액은 다음 단계인 원료가속부(300)로 보내지게 된다.When the mixing is made properly, the valve 231 of the outlet 230 is opened and the raw material mixture is sent to the next step, the raw material accelerator 300.
상기 원료가속부(300)는 동일한 두 개가 한 조를 이루는 것으로 배출구(230)를 통하여 양측으로 분배되어 보내지게 되고, 이의 원료가속부(300)에서는 첨부된 도면에서 보듯이 투입구(340)를 통하여 원료혼합액이 투입되면 모터(330)의 작동에 따라 피스톤(320)이 진퇴작동되어 실린더(310)내로 투입된 원료혼합액을 가압하게 되고, 이에 따라 고압으로 가압된 원료혼합액은 그 전단 토출구(350)를 통하여 다음 단계로 토출된다.The raw material accelerating unit 300 is distributed to both sides through the discharge port 230 to form a pair of the same two, the raw material accelerating unit 300 through the inlet 340 as shown in the accompanying drawings When the raw material mixture is introduced, the piston 320 moves forward and backward as the motor 330 operates to pressurize the raw material mixture injected into the cylinder 310. Accordingly, the raw material mixture pressurized at high pressure causes the front discharge port 350 to be pressed. Is discharged to the next stage.
상기 피스톤(320)이 후진하면 토출구(350)는 역지밸브(360)에 의해 폐쇄됨과 동시에 투입구(340)측의 역지밸브(360)가 개방되면서 원료혼합액이 실린더(310)의 내부로 투입되고, 이와는 반대로 피스톤(320)이 전진되면 투입구(340)는 폐쇄되면서 토출구(350)는 개방되므로 가압되는 원료혼합액은 토출구(350)를 통하여 배관(351)을 거쳐 펄스발생부(400)로 토출된다.When the piston 320 is backward, the discharge port 350 is closed by the check valve 360 and at the same time the check valve 360 of the inlet 340 is opened, the raw material mixture is introduced into the cylinder 310, On the contrary, when the piston 320 is advanced, the inlet 340 is closed and the discharge port 350 is opened, so that the pressurized raw material mixture is discharged to the pulse generator 400 through the pipe 351 through the discharge port 350.
펄스발생부(400)에서는 모터(410)의 회전동력이 회전체(420) 및 크랭크축(430)을 거쳐 직선동력으로 변환되어 실린더(440)내의 피스톤(450)을 진퇴작동시키게 되고, 이에 따라 상기 토출구(350)을 거쳐 배관(351)을 통과하는 원료혼합액을 가속 및 감속을 반복시키게 된다.In the pulse generator 400, the rotational power of the motor 410 is converted into linear power via the rotor 420 and the crankshaft 430 to advance and retract the piston 450 in the cylinder 440. Acceleration and deceleration of the raw material mixture passing through the pipe 351 through the discharge port 350 are repeated.
즉, 피스톤(450)이 전진하는 경우에는 배관(351)내를 통과 중인 원료혼합액이 진행하던 압력보다 피스톤(450)이 밀어주는 실린더(440)내의 용량만큼 추가되므로 갑작스런 압축현상을 가져오게 되므로써 원료가속부(300)에 의해 배관(351)을 통하여 강제적으로 진행하던 원료혼합액은 그 순간 급가속에 따른 순간추력(pik)이 발생되는 것이다.That is, when the piston 450 moves forward, the piston 450 is added as much as the capacity in the cylinder 440 pushed by the piston 450 rather than the pressure of the raw material mixture passing through the pipe 351, thereby causing a sudden compression phenomenon. The raw material mixture liquid that is forcibly progressed through the pipe 351 by the accelerator 300 generates instantaneous thrust (pik) according to rapid acceleration.
이와는 반대로 피스톤(450)이 후퇴하면 배관(351)내를 통과하던 원료혼합액이 순간적으로 실린더(440)의 내부로 빨려 들어가게 되므로 흡입된 순간의 물량만큼 감속 감량현상이 발생되는 것이고, 이로 인하여 배관(351)의 내부는 주기적으로 압축과 팽창의 과정이 발생하게 되어 다음 단계인 원료충돌제조부(500)의 양측 분사노즐(520)(530)에서 펄스에 의한 충돌을 일으키게 된다.On the contrary, when the piston 450 is retracted, the raw material mixture that has passed through the pipe 351 is sucked into the cylinder 440 instantaneously, and thus a deceleration loss phenomenon occurs as much as the amount of water sucked in. The inside of the 351 is periodically a process of compression and expansion occurs to cause a collision by the pulses in the injection nozzles (520, 530) of both sides of the raw material collision manufacturing unit 500, which is the next step.
이어서 배관(351)을 통과하는 원료혼합액은 다음 단계인 원료충돌제조부(500)의 양측 분사노즐(520)(530)을 통하여 제조통(510)내로 분사되고, 양측 분사노즐(520)(530)을 통하여 고압 및 고속과, 일정한 펄스로 분사되는 원료혼합액은 그 중심부에서 정면으로 충돌된다.Subsequently, the raw material mixture passing through the pipe 351 is sprayed into the manufacturing cylinder 510 through both injection nozzles 520 and 530 of the raw material collision manufacturing unit 500 which is the next step, and both injection nozzles 520 and 530. ), The raw material mixture is injected at high pressure and high speed and with a constant pulse to the front in the center.
즉, 그 구경이 서로 다른 양측 분사노즐(520)(530)을 통하여 각각 분사되는 원료혼합액(A)은 상호 정면으로 충돌되고, 이렇게 충돌되는 원료혼합액(A)은 첨부된 도면의 도8 및 도9 에서 보는 바와 같이 큰 구경의 분사노즐(520)을 통하여 분사되는 원료혼합액(A)으로 작은 구경의 분사노즐(530)에 분사되는 원료혼합액(A)이 파고들면서 정면충돌이 일어나 분쇄되는 것이다.That is, the raw material mixtures A sprayed through the respective injection nozzles 520 and 530 having different apertures collide with each other in front, and the raw material mixtures A thus collided are shown in FIGS. 8 and FIG. As shown in FIG. 9, a frontal collision occurs and pulverizes as the raw material mixture A injected into the small injection nozzle 530 is injected into the raw material mixture A injected through the large injection nozzle 520.
상기와 같이 물(H)과 원료입자(P)가 혼합된 원료혼합액(A)은 상호 정면충돌에 의해 원료입자(P) 끼리 강하게 정면 충돌되어 미세입자로 분쇄되고, 이렇게 분쇄되는 미세입자는 제조통(510)내의 배출구(540)를 통해 배출되며, 배출되는 미세입자는 밸브(541)의 작동에 의해 회수관(542) 또는 배출관(543)으로 선택되어 배출된다.As described above, the raw material mixture (A) in which water (H) and raw material particles (P) are mixed is strongly frontally collided with the raw material particles (P) by frontal collision with each other, and is pulverized into fine particles. Discharged through the discharge port 540 in the barrel 510, the discharged fine particles are selected and discharged to the recovery pipe 542 or discharge pipe 543 by the operation of the valve 541.
즉, 1차 제조과정에 의해 원하는 크기의 미세입자로 제조가 이루어지지 않을 경우, 회수관(542)으로 회수하여 원료혼합부(200)의 회수구(213)로 순환시킴으로써 반복되는 제조공정을 거치게 된다.That is, if the production is not made of the fine particles of the desired size by the primary manufacturing process, it is recovered to the recovery pipe 542 and circulated to the recovery port 213 of the raw material mixing unit 200 to undergo a repeated manufacturing process do.
이와 같이 원하는 나노 크기의 미세입자를 얻을 때 까지 연속 반복되는 배치(batch) 타입의 작업을 계속적으로 실시함으로써 본 발명에 따른 작업을 완료할 수가 있는 것이고, 이러한 결과 원하는 크기의 미세입자를 얻은 경우에는 밸브(541)의 작동에 의해 배출관(543)을 통하여 다음 공정인 원료분리부(600)로 보내지게 된다. As described above, the work according to the present invention can be completed by continuously performing a batch-type operation continuously until a desired nano-size microparticle is obtained. By the operation of the valve 541 is sent to the raw material separator 600, which is the next process through the discharge pipe (543).
상기 원료분리부(600)에서는 통상에서와 같은 여러 방법으로 물(H)과 미세입자의 원료입자(P)를 분리하고, 분리된 원료입자(P)는 원하는 바와 같이 활용함과 아울러 물(H)은 기타 여러 가지 방법으로 활용하게 된다.The raw material separation unit 600 separates the raw material particles (P) of water (H) and fine particles in a number of ways as usual, and the separated raw material particles (P) are utilized as desired and water (H). ) Can be used in many other ways.
한편, 상기와 같은 본 발명은 원료혼합액이 고압으로 가압된 상태에서 분사노즐을 통해 일정한 펄스로 분사됨에 따라 제조하고자 하는 원료입자에 따라서는 온도변화가 심하게 발생될 수 있음으로써 이를 컨트롤 하기 위하여 냉각수단(550), 가열수단(560) 등을 설치하여 사용할 수 있고, 또한 양측 분사노즐의 간격이나 위치 등을 조절하기 위하여 이미 공지된 구성의 각종 조절수단(570)을 적용하여 사용할 수도 있을 것이다.On the other hand, the present invention as described above, as the raw material mixture is injected in a constant pulse through the injection nozzle in a pressurized state at high pressure, depending on the raw material particles to be produced, the temperature change may be severely generated by cooling means for controlling this 550, the heating means 560 may be installed and used, and various adjustment means 570 of a known configuration may also be used to adjust the spacing or position of both injection nozzles.

Claims (10)

  1. 나노입자의 크기로 제조하고자 하는 각종 원료입자(P)와 물(H)을 혼합하여 공급시키도록 하는 원료공급단계;Raw material supply step to supply a mixture of various raw material particles (P) and water (H) to be prepared in the size of nanoparticles;
    공급되는 원료입자와 물, 또는 한번 제조된 미세입자를 연속적으로 순환시켜 고르게 혼합하는 원료혼합단계;A raw material mixing step of continuously circulating and supplying the raw material particles and water or the fine particles prepared once;
    원료혼합단계에서 혼합된 원료혼합액을 양측으로 분배시켜 피스톤의 작동으로 가압하여 고압,고속으로 토출시키도록 하는 원료가속단계;A raw material acceleration step of distributing the raw material mixture mixed in the raw material mixing step to both sides to pressurize by the operation of the piston to discharge at high pressure and high speed;
    원료혼합액을 일정한 펄스로 급가속시키도록 하는 펄스발생단계;A pulse generating step of rapidly accelerating the raw material mixture with a constant pulse;
    상기 고압의 원료혼합액을 서로 다른 구경을 가지면서 일직선상으로 마주보게 설치되는 분사노즐을 통하여 고속으로 분사시켜 상호 정면충돌에 의해 미세한 미세입자로 제조토록 하는 원료충돌제조단계;A raw material collision manufacturing step of spraying the high-pressure raw material mixture solution at high speed through the injection nozzles installed to face each other in a straight line while producing different fine particles by frontal collision;
    상기와 같이 제조되는 미세입자의 원료입자(P)와 물(H)을 분리시키도록 하는 원료분리단계;로 이루어져 구성됨을 특징으로 하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조방법.Raw material separation step of separating the raw material particles (P) and water (H) of the fine particles produced as described above; Nano-fine particle manufacturing method through a two-way pulse continuous collision method, characterized in that consisting of.
  2. 각종 원료입자(P)와 물(H)을 혼합하여 공급호퍼를 통하여 공급토록 하는 원료공급부:Raw material supply unit for mixing the various raw material particles (P) and water (H) through the supply hopper:
    원료입자와 물, 또는 한번 제조된 미세입자를 연속적으로 탱크로 순환시켜 모터에 의해 회전되는 교반날개로서 고르게 혼합하는 원료혼합부;A raw material mixing part for circulating the raw material particles and water or fine particles prepared once in a tank and mixing them evenly as a stirring blade rotated by a motor;
    혼합된 원료혼합액을 양측으로 분배시켜 모터의 회전동력으로 실린더내에서 진퇴작동되는 피스톤에 의해 가압하여 고압,고속으로 토출시키도록 하는 한 쌍의 원료가속부;A pair of raw material accelerators for distributing the mixed raw material mixture liquid to both sides and discharging the mixed raw material mixture to both sides by pressurizing the piston to move back and forth in the cylinder by high pressure and high speed;
    상기 각 원료가속부에서 가압되는 원료혼합액을 일정한 펄스로 가속 및 감속시켜 양방향으로 공급토록 하는 펄스발생부;A pulse generator configured to accelerate and decelerate the raw material mixture pressurized by each of the raw material accelerators in a predetermined pulse so as to be supplied in both directions;
    상기 펄스발생부의 원료혼합액을 서로 다른 구경을 가지면서 일직선상으로 마주보게 설치되는 각 분사노즐을 통하여 고속으로 분사시켜 상호 정면충돌에 의해 미세한 미세입자로 제조토록 하는 원료충돌제조부;A raw material collision manufacturing unit for spraying the raw material mixture solution of the pulse generating unit at high speed through each injection nozzle installed to face each other in a straight line to produce fine particles by frontal collision with each other;
    상기와 같이 제조되는 미세입자의 원료입자(P)와 물(H)을 분리시키도록 하는 원료분리부;로 구성됨을 특징으로 하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.Raw material separator (P) for separating the raw material particles (P) and water (H) of the microparticles prepared as described above; Nano-fine particle manufacturing apparatus through a two-way pulse continuous collision method, characterized in that consisting of.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 원료혼합액은 원료가속부에서 모터의 회전 구동을 실린더내에서 피스톤의 왕복운동으로 변환되는 진퇴작동으로 가압시켜 고압 고속의 상태로 펄스발생부를 거쳐 원료충돌제조부의 양측 분사노즐을 통해 공급토록 하는 것을 포함하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.The raw material mixture is pressurized by the forward and backward operation in which the rotational drive of the motor is converted into a reciprocating motion of the piston in the cylinder in the raw material acceleration part to be supplied through both injection nozzles of the raw material collision manufacturing part through the pulse generating part at a high pressure and high speed. Nano-particle manufacturing apparatus through a bidirectional pulse continuous collision method comprising.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 펄스발생부의 펄스(pulse)를 이용한 순간추력(pik)을 발생시켜 양 분사노즐 사이에서의 충돌 효과를 높일 수 있도록 하는 것을 포함하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.Generating an instantaneous thrust (pik) using the pulse (pulse) of the pulse generator portion of the nano-particle manufacturing apparatus through a bidirectional pulse continuous collision method comprising the step of increasing the collision effect between the two injection nozzles.
  5. 제 2 항에 있어서,The method of claim 2,
    양 분사노즐의 구경을 서로 다르게 하여 원료혼합액의 정면 충돌이 일어나게 함으로써 작은 구경의 분사노즐에서 분사된 원료혼합액을 큰 구경의 분사노즐에서 분사된 원료혼합액이 감싼 형태로 충돌이 일어나도록 하여 충돌효과를 배가시키도록 한 것을 특징으로 하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.The collision of the raw material mixture caused by the injection nozzles of the small-caliber injection nozzle is caused by the collision of the raw material mixture sprayed from the injection nozzle of the large diameter by the collision of the raw material mixture liquid by changing the diameters of the two injection nozzles. Nano-particle manufacturing apparatus through a bidirectional pulse continuous collision method, characterized in that to be doubled.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 양 분사노즐의 구경이 작은 분사노즐에 비하여 큰 구경을 가지는 분사노즐의 구경이 적어도 1.2 - 2 배의 크기를 갖도록 구성한 것을 특징으로 하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.Apparatus for producing nanoparticles using a bidirectional pulse continuous collision method, characterized in that the diameter of the injection nozzle having a larger diameter than the small injection nozzle of the two injection nozzles are configured to have a size of at least 1.2-2 times.
  7. 제 2 항에 있어서,The method of claim 2,
    상기 양측 분사노즐의 입구는 그 내경의 크기와 동일하게 일직선 형태의 부나노즐로 구성하여 원료혼합액의 분사시 직진성을 계속 유지할 수 있도록 하는 것을 포함하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.The inlet of the two injection nozzles comprises nano-particles of a bidirectional pulse continuous collision method comprising a continuous form of the same as the size of the inner diameter to maintain the straightness during the injection of the raw material mixture.
  8. 제 2 항에 있어서,The method of claim 2,
    상기 분사노즐상에 적정온도를 유지하기 위하여 냉각수단을 구비하는 것을 포함하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.Apparatus for producing nanoparticles through a bidirectional pulse continuous collision method comprising providing a cooling means to maintain a proper temperature on the injection nozzle.
  9. 제 2 항에 있어서,The method of claim 2,
    상기 분사노즐상에 적정온도를 유지하기 위하여 가열수단을 구비하는 것을 포함하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.Apparatus for producing nanoparticles through a bidirectional pulse continuous collision method comprising the heating means to maintain a proper temperature on the injection nozzle.
  10. 제 2 항에 있어서,The method of claim 2,
    상기 분사노즐상에 분사노즐의 위치와 거리를 조절하기 위한 조절수단을 구비하는 것을 포함하는 양방향 펄스 연속충돌 방식을 통한 나노 미세입자 제조장치.Apparatus for producing nanoparticles through a bidirectional pulse continuous collision method comprising a control means for adjusting the position and distance of the injection nozzle on the injection nozzle.
PCT/KR2014/010228 2013-10-30 2014-10-29 Method for producing nano-micro particles through continuous collision mode of two-way pulses, and apparatus therefor WO2015065033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0129766 2013-10-30
KR20130129766A KR101485833B1 (en) 2013-10-30 2013-10-30 Nano-micro particles manufacturing method and device

Publications (1)

Publication Number Publication Date
WO2015065033A1 true WO2015065033A1 (en) 2015-05-07

Family

ID=52592462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010228 WO2015065033A1 (en) 2013-10-30 2014-10-29 Method for producing nano-micro particles through continuous collision mode of two-way pulses, and apparatus therefor

Country Status (2)

Country Link
KR (1) KR101485833B1 (en)
WO (1) WO2015065033A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422061B1 (en) * 1995-09-29 2004-05-20 유키히코 가라사와 Method and Device for Crushing Solid Particles
KR20040110306A (en) * 2003-06-18 2004-12-31 한국생산기술연구원 Particle-collision type nanofluidizer
KR20100116399A (en) * 2009-04-22 2010-11-01 한국세라믹기술원 Graphene coating method and graphen nano-structure
KR20130031043A (en) * 2011-09-20 2013-03-28 주식회사 제이오 Carbon nano tubes or graphite collecting device, and carbon nano tubes or graphite functionalizing-collecting device using supercritical process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465662B1 (en) * 2002-02-27 2005-01-13 조용래 breakup apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422061B1 (en) * 1995-09-29 2004-05-20 유키히코 가라사와 Method and Device for Crushing Solid Particles
KR20040110306A (en) * 2003-06-18 2004-12-31 한국생산기술연구원 Particle-collision type nanofluidizer
KR20100116399A (en) * 2009-04-22 2010-11-01 한국세라믹기술원 Graphene coating method and graphen nano-structure
KR20130031043A (en) * 2011-09-20 2013-03-28 주식회사 제이오 Carbon nano tubes or graphite collecting device, and carbon nano tubes or graphite functionalizing-collecting device using supercritical process

Also Published As

Publication number Publication date
KR101485833B1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
CN103977870B (en) Air-flow crushing stripping technology is adopted to prepare the method for Graphene presoma two-dimensional nano graphite powder
CN109719114B (en) Recycling process of slag of aluminum smelting furnace
CN108656524A (en) Micro-nano 3D printing device driven by integrated nozzle electric field and working method thereof
CN1608832A (en) Device and process for producing a three-dimensional object
CN108568966A (en) Integrated nozzle for electric field driven injection of multi-material 3D printing
KR101402731B1 (en) Novel copper phthalocyanine pigment and process for producing copper phthalocyanine fine particles
KR102054770B1 (en) Dry ice cleaning machine
WO2015065033A1 (en) Method for producing nano-micro particles through continuous collision mode of two-way pulses, and apparatus therefor
JP2004522579A (en) High-pressure medium and method for producing ultrafine powder
KR20110089630A (en) Apparatus for synthesizing nano particles, and method for synthesizing the nano particles with the same
CN113997565B (en) 3D printing equipment and method for integrally manufacturing functionally graded material and three-dimensional structure
CN1240471C (en) Device and method for mixing a solid and a fluid
WO1995015402A1 (en) Process and device for granulating and crushing molten materials and grinding stocks
CN1350475A (en) Method and device for forming particles
CN1903420A (en) Method and system for high speed fluid electric jetting for preparing super-fine material
CN112354631A (en) Ball milling device and method based on plasma field
WO2023152044A1 (en) Method and jet mill for supercritical jet milling
WO2020256435A1 (en) Rotor-rotor type impeller structure having cooling system
CN115008625B (en) High-efficient mixing arrangement of raw and other materials for wire and cable production
CN105088367B (en) A kind of solvent-free electrostatic spinning apparatus based on UV solidifications
CN100469452C (en) Method and system of electric projectile through high-speed liquid for preparing superfine material
CN2678760Y (en) Prodn. appts. for synthetizing multi-kind of nano powders by utilizing plasma
RU2353584C2 (en) Method of nano-dispersed powder of aluminium receiving
CN106743674A (en) A kind of device that solid powder is sent into high velocity air
CN116375107A (en) Manufacturing method and manufacturing system of sodium ion battery anode material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.08.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14857982

Country of ref document: EP

Kind code of ref document: A1