WO2015064871A1 - Sound generation device - Google Patents

Sound generation device Download PDF

Info

Publication number
WO2015064871A1
WO2015064871A1 PCT/KR2014/004417 KR2014004417W WO2015064871A1 WO 2015064871 A1 WO2015064871 A1 WO 2015064871A1 KR 2014004417 W KR2014004417 W KR 2014004417W WO 2015064871 A1 WO2015064871 A1 WO 2015064871A1
Authority
WO
WIPO (PCT)
Prior art keywords
support frame
vibrating membrane
magnetic field
membrane
graphene layer
Prior art date
Application number
PCT/KR2014/004417
Other languages
French (fr)
Korean (ko)
Inventor
이영주
이정수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2015064871A1 publication Critical patent/WO2015064871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials

Definitions

  • the present invention relates to an acoustic generator, and more particularly, to an acoustic generator having a graphene diaphragm.
  • a sound generating device such as a speaker is a device for converting an electrical signal into a voice signal, and has been applied to various acoustic devices such as earphones, mobile phones, MP3 players, and the like.
  • Such a speaker uses various driving methods, such as a voice coil driving method, a balanced armature driving method, an electrostatic driving method, and the like.
  • the speaker using the voice coil drive system is a winding coil and a permanent magnet to drive the vibrating membrane, and while the price is low, there is a problem that the high frequency characteristics are not good.
  • the speaker using the balanced armature driving method is a method of driving the vibrating membrane by a displacement proportional to the magnetization of the balanced armature.
  • the speaker can be miniaturized, but there is a problem that the high frequency characteristics are poor and the price is relatively expensive.
  • the speaker using the electrostatic driving method has a problem that the high frequency characteristic is good as the method of driving the vibrating membrane by the electric field change, while the low frequency characteristic is not good, and the speaker is driven at a high voltage of about 100 V or more.
  • 1 is a cross-sectional view showing a speaker using an electrostatic driving method.
  • the speaker may be composed of the first and second fixed electrodes 1a and 1b and the vibrating membrane 2, and a high alternating current is applied to the first and second fixed electrodes 1a and 1b.
  • a voltage is applied, the vibrating membrane 2 vibrates due to electric force between charges.
  • the 1st, 2nd fixed electrode 1a, 1b can be arrange
  • the vibrating membrane 2 is coated with a metal on a thin film of plastic, and may have a thickness of about 10-20 ⁇ m.
  • the vibrating membrane 2 is formed by coating a metal on a thin film of plastic.
  • the vibrating membrane 2 has a thickness of about 10-20 ⁇ m, and is very thin, so that a delicate sound range, particularly a high frequency sound range, can be reproduced well.
  • the vibration membrane and the driving unit for supporting the periphery of the vibration membrane generating a magnetic field proportional to the input current, vibrating the vibration membrane, the vibration membrane, It includes a graphene layer
  • the bending direction can be determined according to the magnetic field direction of the drive unit.
  • the vibrating membrane may include a substrate and a graphene layer disposed on the substrate.
  • the graphene layer may be a graphene single layer or a graphene plural layer.
  • an organic layer may be formed between the substrate and the graphene layer.
  • one or more organic layers and one or more graphene layers may be alternately formed to form an organic-inorganic composite layer.
  • a protective film in contact with at least one surface of the graphene layer and the substrate may be formed.
  • the driving unit may include a first support frame supporting the upper surface of the vibration membrane, a second support frame supporting the lower surface of the vibration membrane, and a conductive coil surrounding the outer surfaces of the first and second support frames. have.
  • the first support frame is disposed along the peripheral region of the upper surface of the vibrating membrane, and includes a first through hole exposing the central region of the upper surface of the vibrating membrane
  • the second supporting frame includes a peripheral portion of the lower surface of the vibrating membrane.
  • a second through hole may be disposed along the region and expose a central region of the lower surface of the vibrating membrane.
  • the inner surfaces of the first and second support frames may be inclined with respect to the surface of the vibrating membrane, and the angle between the inner surfaces of the first and second supporting frames and the surface of the vibrating membrane may be an obtuse angle.
  • the number of times of winding the outer side of the first support frame and the number of times of winding the outer side of the second support frame may be the same as that of the conductive coil.
  • the driving unit includes a first support frame for supporting the upper surface of the vibration membrane, a second support frame for supporting the lower surface of the vibration membrane, a first stator armature disposed on the first support frame, and a second It may include a second fixed armature disposed on the support frame, a magnetic core structure connecting one side of the first fixed armature and the second fixed armature, and a conductive coil surrounding the outer surface of the magnetic core structure.
  • the first fixed armature has a peripheral region in contact with the first support frame, the central region is disposed at a first distance from the upper surface of the vibrating membrane, and the second fixed armature has a peripheral region in contact with the second support frame.
  • the central region may be disposed apart from the lower surface of the vibrating membrane at a second interval.
  • a plurality of holes may be formed in the central region of the first fixed armature and the central region of the second fixed armature.
  • the conductive coils may be arranged to be spaced apart from the outer surfaces of the first and second support frames at a predetermined interval.
  • the vibrating membrane may generate an internal magnetic field by an external magnetic field generated from the driver, and the direction of the internal magnetic field of the vibrating membrane may be opposite to the direction of the external magnetic field generated by the driver.
  • the graphene acoustic vibration membrane by using the graphene acoustic vibration membrane, it is possible to minimize the thickness of the vibration membrane, and by driving the graphene acoustic vibration membrane in an electromagnetic drive method, there is an advantage that can be driven at a low voltage.
  • the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
  • 1 is a cross-sectional view showing a speaker using an electrostatic driving method.
  • FIG. 2 is a view schematically showing a sound generating apparatus according to the present invention.
  • 3 and 4 are views illustrating a driving principle of the vibrating membrane of FIG. 2.
  • 5 to 9 are cross-sectional views showing the structure of the vibration membrane of FIG.
  • FIG. 10 is a cross-sectional view illustrating the driving unit of FIG. 2 according to the first embodiment.
  • FIG. 10 is a cross-sectional view illustrating the driving unit of FIG. 2 according to the first embodiment.
  • FIG. 11 is a cross-sectional view illustrating the supporting frame of FIG. 10.
  • FIG. 12 to 14 are cross-sectional views illustrating the conductive coil of FIG. 10.
  • FIG. 15 is a cross-sectional view illustrating a driving part of FIG. 2 according to a second embodiment.
  • FIG. 16 is a cross-sectional view illustrating the supporting frame of FIG. 15.
  • FIG. 2 is a view schematically showing a sound generating apparatus according to the present invention.
  • the vibration membrane 100 and the driving unit 200 may be included.
  • the vibrating membrane 100 may include a graphene layer, the bending direction may be determined according to the magnetic field direction of the driving unit 200.
  • the reason why the vibrating membrane 100 is formed of graphene is because the mechanical rigidity of the graphene is high, so that the vibrating membrane 100 may be manufactured to have a very thin thickness.
  • the spring constant k related to the driving direction of the vibrating membrane 100 is lowered and the sound quality distortion can be lowered so that the mass m of the vibrating membrane itself can be negligible.
  • the phenomenon can be greatly reduced, and sound can be accurately reproduced.
  • the thickness t1 of the vibration membrane 100 may be manufactured to about several nm-about several tens of nm.
  • the thickness t1 of the vibration membrane 100 may be about 10 nm to about 600 nm, but is not limited thereto.
  • the vibrating membrane 100 may include a substrate and a graphene layer disposed on the substrate.
  • a plurality of carbon atoms are covalently linked to each other, the graphene to form a polycyclic aromatic molecule may be formed in the form of a film or sheet.
  • the carbon atoms connected by covalent bonds forms a 6-membered ring, but may further include a 5-membered and / or 7-membered.
  • the graphene layer may be, but is not limited to, a graphene monolayer or a graphene plural layer.
  • an organic layer may be formed between the substrate and the graphene layer.
  • the graphene layer and the organic layer may be formed by alternately forming one or more organic layers and one or more graphene layers, respectively, to form an organic-inorganic composite layer.
  • the reason why the organic layer is formed is because the surface strength of the vibrating membrane 100 is increased, the moisture absorption barrier property is excellent, and the life of the vibrating membrane 100 can be extended.
  • a protective film in contact with at least one surface of the graphene layer and the substrate may be formed.
  • the reason for forming the protective film is to protect the graphene layer from external impact.
  • the protective layer may be selected from the group consisting of PEDOT (poly (3,4-ethylenedioxythiophene)), thiophene polymer, polypyrrole, polyaniline, polyvinylidene fluoride (PVDF), PZT, and combinations thereof, but is not limited thereto. Does not.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • thiophene polymer polypyrrole
  • polyaniline polyaniline
  • PVDF polyvinylidene fluoride
  • PZT polyvinylidene fluoride
  • the vibrating membrane 100 may generate an internal magnetic field by an external magnetic field generated from the driving unit 200.
  • the direction of the internal magnetic field of the vibrating membrane 100 may be opposite to the direction of the external magnetic field generated from the driver 200.
  • the direction of the internal magnetic field of the vibrating membrane 100 may be generated in the lower direction.
  • the direction of the external magnetic field generated from the driving unit 200 when the direction of the external magnetic field generated from the driving unit 200 is in the lower direction, the direction of the internal magnetic field of the vibration membrane 100 may be generated in the upper direction.
  • the bending direction of the vibrating membrane 100 may be the upper or lower direction.
  • the vibrating membrane 100 may vibrate by the interaction force between the direction of the internal magnetic field of the vibrating membrane 100 and the direction of the external magnetic field of the driving unit 200.
  • the amplitude of the vibration membrane 100 may be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane 100 and the strength of the external magnetic field of the driving unit 200.
  • the driving unit 200 may support the periphery of the vibrating membrane 100, generate a magnetic field proportional to the input current, and vibrate the vibrating membrane 100.
  • the driving part 200 may include a support part 210 supporting a peripheral part of the vibrating membrane 100.
  • the support part 210 may be disposed at the periphery of the upper surface of the vibrating membrane 100 and the periphery of the lower surface of the vibrating membrane 100, and may expose the central portion of the vibrating membrane 100 to the outside.
  • the support unit 210 may be formed of a material capable of transmitting a magnetic field generated by the driving unit 200.
  • the support unit 210 may be made of an insulating material through which the magnetic field generated by the driver 200 is not transmitted.
  • the driving unit 200 may be manufactured in various structures having an electromagnetic driving method.
  • the driving unit 200 may include a first, a second support frame and a conductive coil.
  • the first support frame can support the upper surface of the vibration membrane
  • the second support frame can support the lower surface of the vibration membrane
  • the first support frame may be disposed along a peripheral area of the upper surface of the vibrating membrane 100, and may include a first through hole exposing a central area of the upper surface of the vibrating membrane 100.
  • the second support frame may include a second through hole disposed along a peripheral area of the lower surface of the vibrating membrane 100 and exposing a central area of the lower surface of the vibrating membrane 100.
  • the conductive coils may be arranged to surround outer surfaces of the first and second support frames.
  • the driving unit 200 may induce a magnetic field inside the first and second support frames in which the conductive coil is wound.
  • the direction of the magnetic field induced inside the first and second support frames may be determined according to the direction of the current input to the conductive coil.
  • the drive unit 200 may include a first and a second support frame, a first and a second stationary armature, a magnetic core structure, and a conductive coil.
  • the first support frame can support the upper surface of the vibration membrane
  • the second support frame can support the lower surface of the vibration membrane
  • the first and second support frames may be insulators.
  • first fixed armature may be disposed on the first support frame
  • second fixed armature may be disposed on the second support frame
  • the magnetic core structure may connect one side of the first fixed armature and the second fixed armature, and the conductive coil may be disposed to surround the outer surface of the magnetic core structure.
  • the first fixed armature has a peripheral region in contact with the first support frame, the central region is disposed at a first distance from the upper surface of the vibrating membrane, and the second fixed armature has a peripheral region in contact with the second support frame.
  • the central region may be disposed apart from the lower surface of the vibrating membrane at a second interval.
  • a plurality of holes may be formed in the central region of the first fixed armature and the central region of the second fixed armature.
  • the driving unit 200 may generate a magnetic field between the connected first and second fixed armatures through the magnetic core structure in which the conductive coil is wound.
  • the vibration membrane 100 may be determined by the driving unit 200 configured according to the magnetic field direction and the intensity generated from the driving unit 200.
  • the present invention can minimize the thickness of the vibration membrane by using the graphene acoustic vibration membrane, and drive the graphene acoustic vibration membrane by an electromagnetic driving method, thereby driving at a low voltage.
  • the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
  • 3 and 4 are views illustrating a driving principle of the vibrating membrane of FIG. 2.
  • the vibrating membrane may include a graphene layer 110.
  • the graphene layer 110 a plurality of carbon atoms are covalently connected to each other, the graphene to form a polycyclic aromatic molecule may be formed in a film or sheet form.
  • the carbon atoms connected by covalent bonds forms a 6-membered ring, but may further include a 5-membered and / or 7-membered.
  • the graphene layer 110 may generate an internal magnetic field by an external magnetic field.
  • the lattice structure of the graphene layer 110 has a lattice structure similar to the benzene ring.
  • the induction current ig may be generated in the graphene layer 110 having a lattice structure similar to that of the benzene ring by the external magnetic field Bo, and the internal magnetic field Bg may be generated in the graphene layer 110 by the induction current ig.
  • the external magnetic field Bo and the internal magnetic field Bg of the graphene layer 110 may generate displacement in the vibrating membrane including the graphene layer by an interaction force.
  • the sound pressure may be generated in proportion to the displacement of the vibration membrane.
  • the displacement of the vibrating membrane can be controlled by adjusting the size of the external magnetic field, so that the acoustic control It is possible.
  • the direction of the internal magnetic field of the graphene layer 110 may be opposite to the direction of the external magnetic field.
  • the induced current ig induced in the graphene layer 110 is generated in a clockwise direction on the plane, and the graphene layer 110 is induced by the induced current ig.
  • the direction of the internal magnetic field Bg of) may be generated in the downward direction.
  • the induced current ig induced in the graphene layer 110 is generated counterclockwise on the plane, and the graphene layer 110 is induced by the induced current ig.
  • the direction of the internal magnetic field Bg of, may be generated in the upper direction.
  • the bending direction of the vibration membrane may be the upper or lower direction.
  • the vibrating membrane can vibrate by the interaction force between the direction of the inner magnetic field of the vibrating membrane and the direction of the outer magnetic field.
  • the amplitude of the vibration membrane can be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane and the strength of the external magnetic field.
  • FIG. 5 to 9 are cross-sectional views showing the structure of the vibration membrane of Figure 2
  • Figure 5 is a vibration membrane according to the first embodiment
  • Figure 6 is a vibration membrane according to the second embodiment
  • Figure 7 is a third embodiment 8 is a vibration membrane according to the fourth embodiment
  • FIG. 9 is a vibration membrane according to the fifth embodiment.
  • the vibrating membrane 100 may include a substrate 10 and a graphene layer 120 disposed on the substrate 110.
  • the substrate is a polyethylene terephthalate (PET), polypropylene (PP), polymethyl methacrylate (PMMA), polycarbonate (PC), polyether sulfone (PES), It may be selected from the group consisting of polyvinylchloride (PVC), polypyrrole, polyimide, polyethylene (PE) and combinations thereof, but is not limited thereto.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PES polyether sulfone
  • PVC polyvinylchloride
  • PE polypyrrole
  • PE polyimide
  • PE polyethylene
  • graphene layer 120 a plurality of carbon atoms are covalently linked to each other, and thus, graphene, which forms polycyclic aromatic molecules, may be formed in a film or sheet form.
  • the carbon atoms connected by covalent bonds forms a 6-membered ring, but may further include a 5-membered and / or 7-membered.
  • the reason why the vibrating membrane 100 is formed of graphene is because the mechanical rigidity of the graphene is high, so that the vibrating membrane 100 may be manufactured to have a very thin thickness.
  • the spring constant k related to the driving direction of the vibrating membrane 100 is lowered and the sound quality distortion can be lowered so that the mass m of the vibrating membrane itself can be negligible.
  • the phenomenon can be greatly reduced, and sound can be accurately reproduced.
  • the thickness t1 of the vibration membrane 100 may be manufactured to about several nm-about several tens of nm.
  • the thickness t1 of the vibration membrane 100 may be about 10 nm to about 600 nm, but is not limited thereto.
  • the vibrating membrane 100 may include a substrate 110 and a graphene layer 120 disposed on the substrate 110.
  • the graphene layer 120 may be formed by stacking the first graphene layer 122 and the second graphene layer 124.
  • the graphene layer 120 may be formed of a single graphene layer, but in some cases, may be formed of a plurality of graphene layers.
  • the vibrating membrane 100 including the graphene plural layers may have better mechanical rigidity 120 than the vibrating membrane 100 including the graphene single layer.
  • the vibrating membrane 100 includes a substrate 110 and a graphene layer 120 disposed on the substrate 110.
  • the organic layer 130 may be further formed between the graphene layers 120.
  • the vibration membrane 100 may include a substrate 110 and a graphene layer 120 disposed on the substrate 110.
  • the graphene layer 120 may be formed by stacking the first graphene layer 122 and the second graphene layer 124.
  • an organic layer 130 may be further formed between the substrate 110 and the first graphene layer 122 and between the first graphene layer 122 and the second graphene layer 124.
  • the graphene layer 120 and the organic layer 130 may have one or more organic layers 130 and one or more graphene layers 120 alternately formed to form an organic-inorganic composite layer.
  • the reason why the organic layer 130 is formed is because the surface strength of the vibration membrane 100 is increased, the moisture absorption barrier property is excellent, and the life of the vibration membrane 100 can be extended.
  • the vibrating membrane 100 includes a substrate 110 and a graphene layer 120 disposed on the substrate 110, and the graphene layer A protective layer 140 may be formed to contact at least one surface of the 120 and the substrate 110.
  • the reason for forming the protective film 140 is to protect the graphene layer 120 from an external impact.
  • the protective layer may be selected from the group consisting of PEDOT (poly (3,4-ethylenedioxythiophene)), thiophene polymer, polypyrrole, polyaniline, polyvinylidene fluoride (PVDF), PZT, and combinations thereof, but is not limited thereto. Does not.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • thiophene polymer polypyrrole
  • polyaniline polyaniline
  • PVDF polyvinylidene fluoride
  • PZT polyvinylidene fluoride
  • the vibration membrane of the present invention including the graphene layer may be manufactured in various structures.
  • FIG. 10 is a cross-sectional view illustrating the driving unit of FIG. 2 according to the first embodiment.
  • FIG. 10 is a cross-sectional view illustrating the driving unit of FIG. 2 according to the first embodiment.
  • the driving unit 200 may include first and second support frames 220 and 230 and a conductive coil 240.
  • the first support frame 220 may support the upper surface 101 of the vibrating membrane 100.
  • the second support frame 230 may support the lower surface 102 of the vibrating membrane 100.
  • the first support frame 220 is disposed along the peripheral region of the upper surface 101 of the vibrating membrane 100, and exposes a first through hole exposing the central region of the upper surface 101 of the vibrating membrane 100. 221).
  • the second support frame 230 is disposed along the peripheral region of the lower surface 102 of the vibration membrane 100, and exposes a second through hole exposing the central region of the lower surface 102 of the vibration membrane 100. 231).
  • first and second support frames 220 and 230 may be bobbins.
  • the conductive coil 240 may be disposed to surround the outer side surface 224 of the first support frame 220 and the outer side surface 234 of the second support frame 230.
  • the inner side surface 222 of the first support frame 220 may be perpendicular to the upper surface 101 of the vibrating membrane 100.
  • the inner surface 232 of the second support frame 230 may be perpendicular to the lower surface 102 of the vibration membrane 100.
  • the inner surface 222 of the first support frame 220 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 232 of the second support frame 230 may be inclined. ) May be inclined with respect to the lower surface 102 of the vibrating membrane 100.
  • the number of times of winding the outer surface 224 of the first support frame 220 and the number of times of winding the outer surface 234 of the second support frame 230 may be the same as the conductive coil 240. .
  • the number of times that the conductive coil 240 is wound around the outer surface 224 of the first support frame 220 and the number of times that the outer surface 234 of the second support frame 230 is wound may be different.
  • the driving unit 200 may induce a magnetic field inside the first and second support frames 220 and 230 in which the conductive coil 240 is wound.
  • the direction of the magnetic field induced inside the first and second support frames 220 and 230 may be determined according to the direction of the current input to the conductive coil 240.
  • the first and second external magnetic fields proportional to the input current i are wound by the conductive coil 240. It may be organic in the support frame (220, 230).
  • an induced current may be induced by an external magnetic field, and a diamagnetic magnetic field may be generated inside the vibrating membrane 100 by the induced current.
  • the vibration membrane 100 may be displaced and vibrate up and down.
  • a sound pressure may be generated in proportion to the displacement of the vibrating membrane 100.
  • the displacement of the vibrating membrane can be controlled by adjusting the size of the external magnetic field, so that the acoustic control It is possible.
  • the vibrating membrane can vibrate by the interaction force between the direction of the inner magnetic field of the vibrating membrane and the direction of the outer magnetic field.
  • the amplitude of the vibration membrane can be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane and the strength of the external magnetic field.
  • FIG. 11 is a cross-sectional view illustrating the supporting frame of FIG. 10.
  • the driving unit 200 may include first and second support frames 220 and 230 and a conductive coil 240.
  • first support frame 220 may support the upper surface 101 of the vibrating membrane 100
  • second support frame 230 supports the lower surface 102 of the vibrating membrane 100. can do.
  • the inner surface 222 of the first support frame 220 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 232 of the second support frame 230 may be inclined. , With respect to the lower surface 102 of the vibrating membrane 100.
  • the inner side surface 222 of the first support frame 220 may be inclined at a first angle ⁇ 1 with respect to the upper surface 101 of the vibrating membrane 100.
  • the inner side surface 232 of the second support frame 230 may be inclined at a second angle ⁇ 2 with respect to the lower side surface 102 of the vibrating membrane 100.
  • first angle ⁇ 1 and the second angle ⁇ 2 may be the same, but may be different from each other in some cases.
  • first angle ⁇ 1 and the second angle ⁇ 2 may be obtuse angles.
  • the reason why the first angle ⁇ 1 and the second angle ⁇ 2 are obtuse angles is to allow the generated sound to be better diffused to the outside by the displacement of the vibration membrane 100.
  • FIG. 12 to 14 are cross-sectional views illustrating the conductive coil of FIG. 10.
  • the conductive coil 240 may be disposed to surround the outer side surface 224 of the first support frame 220 and the outer side surface 234 of the second support frame 230. Can be.
  • the conductive coil 240 includes a first conductive coil 241 winding the outer surface 224 of the first support frame 220 and an outer surface 234 of the second support frame 230. ) May include a second conductive coil 242 wound.
  • the conductive coil 240 may be wound around the outer surface 224 of the first support frame 220 and the outer surface 234 of the second support frame 230. ) The number of turns may be different.
  • the number of turns of the first conductive coil 241 wound around the outer surface 224 of the first support frame 220 may wind the outer surface 234 of the second support frame 230. It may be less than the number of turns of the second conductive coil 242.
  • the number of windings of the first conductive coil 241 winding the outer surface 224 of the first supporting frame 220 may be the winding of the outer surface 234 of the second supporting frame 230.
  • the number of turns of the two conductive coils 242 may be greater.
  • the number of turns of the first conductive coil 241 winding the outer surface 224 of the first support frame 220 and the second conductive coil winding the outer surface 234 of the second support frame 230 may affect the strength of the internal magnetic field of the vibrating membrane, and may also affect the displacement of the vibrating membrane.
  • FIG. 15 is a cross-sectional view illustrating a driving part of FIG. 2 according to a second embodiment.
  • the driving unit 200 includes first and second support frames 250 and 260, first and second fixed armatures 290a and 290b, magnetic core structure 270, and a conductive coil 280. ) May be included.
  • the first support frame 250 may support the upper surface 101 of the vibrating membrane 100.
  • the second support frame 260 may support the lower surface 102 of the vibrating membrane 100.
  • first and second support frames 250 and 260 may be insulators.
  • the inner surface 252 of the first support frame 250 may be perpendicular to the upper surface 101 of the vibration membrane 100.
  • the inner surface 262 of the second support frame 260 may be perpendicular to the lower surface 102 of the vibrating membrane 100.
  • the inner surface 252 of the first support frame 250 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 262 of the second support frame 260 may be inclined. ) May be inclined with respect to the lower surface 102 of the vibrating membrane 100.
  • first fixed armature 290a may be disposed on the first support frame 250
  • second fixed armature 290b may be disposed on the second support frame 260.
  • the magnetic core structure 270 may connect one side of the first fixed armature 290a and the second fixed armature 290b.
  • one end of the magnetic core structure 270 may be connected to one end of the first fixed armature 290a, and the other end of the magnetic core structure 270 may be connected to one end of the second fixed armature 290b. .
  • the conductive coil 280 may be disposed to surround the outer surface of the magnetic core structure 270.
  • the conductive coils 280 may be spaced apart from the outer surfaces of the first and second support frames 250 and 260 at predetermined intervals.
  • the conductive coils 280 may be disposed at regular intervals from the outer surface 254 of the first support frame 250, and may be spaced apart from the outer surface 264 of the second support frame 260 at regular intervals. Can be arranged.
  • the first fixed armature 290a may have a peripheral area in contact with the first support frame 250 and a central area may be disposed at a first interval from the upper surface 101 of the vibrating membrane 100.
  • the second fixed armature 290b may have a peripheral area in contact with the second support frame 260, and a central area of the second fixed armature 290b spaced apart from the lower surface 102 of the vibrating membrane 100 at a second interval.
  • first interval and the second interval may be identical to each other, but may be different from each other in some cases.
  • a plurality of holes 300 may be formed in the central region of the first fixed armature 290a and the central region of the second fixed armature 290b.
  • the size of the hole 300 formed in the center region of the first fixed armature 290a and the size of the hole 300 formed in the center region of the second fixed armature 290b may be the same. In some cases, they may be different.
  • the size of the hole 300 may increase gradually from the central area of the first fixed armature 290a to the edge area, and the hole (rear) from the central area of the second fixed armature 290b to the edge area.
  • the size of 300 may be gradually increased.
  • the reason is to make the intensity of the sound pressure output to the outside through the hole 300 uniform.
  • the sound pressure generated in the center region of the vibrating membrane 100 is greater than the sound pressure generated in the edge region of the vibrating membrane 100, a hole located above the center region of the vibrating membrane 100 ( By decreasing the size of 300 and increasing the size of the hole 300 located above the edge region of the vibrating membrane 100, the intensity of the sound pressure output to the outside through the hole 300 may be uniform throughout. .
  • the driving unit 200 connects the first and second fixed armatures 290a and 290b through the magnetic core structure 270 in which the conductive coil 280 is wound.
  • a magnetic field can be generated in between.
  • the direction of the magnetic field generated between the first and second fixed armatures 290a and 290b may be determined according to the direction of the current input to the conductive coil 280.
  • an induced current may be induced by an external magnetic field, and a diamagnetic magnetic field may be generated inside the vibrating membrane 100 by the induced current.
  • the vibration membrane 100 may be displaced and vibrate up and down.
  • a sound pressure may be generated in proportion to the displacement of the vibrating membrane 100.
  • the displacement of the vibrating membrane can be controlled by adjusting the size of the external magnetic field, so that the acoustic control It is possible.
  • the vibrating membrane can vibrate by the interaction force between the direction of the inner magnetic field of the vibrating membrane and the direction of the outer magnetic field.
  • the amplitude of the vibration membrane can be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane and the strength of the external magnetic field.
  • the vibration membrane 100 may be determined by the driving unit 200 configured according to the magnetic field direction and the intensity generated from the driving unit 200.
  • the present invention can minimize the thickness of the vibration membrane by using the graphene acoustic vibration membrane, and drive the graphene acoustic vibration membrane by an electromagnetic driving method, thereby driving at a low voltage.
  • the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
  • FIG. 16 is a cross-sectional view illustrating the supporting frame of FIG. 15.
  • the driving unit 200 includes the first and second support frames 250 and 260, the first and second fixed armatures 290a and 290b, the magnetic core structure 270, and the conductive coil 280. ) May be included.
  • the first support frame 250 may support the upper surface 101 of the vibrating membrane 100
  • the second support frame 260 supports the lower surface 102 of the vibrating membrane 100. can do.
  • the inner surface 252 of the first support frame 250 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 262 of the second support frame 260 may be inclined. , With respect to the lower surface 102 of the vibrating membrane 100.
  • the inner side surface 252 of the first support frame 250 may be inclined at a first angle ⁇ 1 with respect to the upper surface 101 of the vibrating membrane 100.
  • the inner side surface 262 of the second support frame 260 may be inclined at a second angle ⁇ 2 with respect to the lower surface 102 of the vibrating membrane 100.
  • first angle ⁇ 1 and the second angle ⁇ 2 may be the same, but may be different from each other in some cases.
  • first angle ⁇ 1 and the second angle ⁇ 2 may be obtuse angles.
  • the reason why the first angle ⁇ 1 and the second angle ⁇ 2 are obtuse angles is to allow the generated sound to be better diffused to the outside by the displacement of the vibration membrane 100.
  • the present invention is configured, by using the graphene acoustic vibration membrane can minimize the thickness of the vibration membrane, by driving the graphene acoustic vibration membrane by the electromagnetic drive method, it is possible to drive at a low voltage.
  • the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
  • the sound generating apparatus according to the present invention is not limited to the configuration and method of the embodiments described as described above, but the embodiments are a combination of all or part of each embodiment selectively so that various modifications can be made. It may be configured.
  • the present invention relates to an acoustic generator having a graphene diaphragm. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

The present invention relates to a sound generation device having a graphene diaphragm, comprising: a diaphragm; and a driving unit for supporting the surroundings of the diaphragm and vibrating the diaphragm by generating a magnetic field proportional to an inputted current, wherein the diaphragm includes a graphene layer, and a curved direction of the diaphragm can be determined according to a magnetic field direction of the driving unit. Here, the driving unit can comprise: a first support frame for supporting the upper surface of the diaphragm; a second support frame for supporting the lower surface of the diaphragm; and a conductive coil surrounding the outer side surfaces of the first and second support frames, or the driving unit can comprise: a first support frame for supporting the upper surface of the diaphragm; a second support frame for supporting the lower surface of the diaphragm; a first fixed armature disposed on the first support frame; a second fixed armature disposed on the second support frame; a magnetic core structure for connecting one side of the first and second fixed armatures; and a conductive coil surrounding the outer surface of the magnetic core structure.

Description

음향 발생 장치Sound generator
본 발명은 음향 발생 장치에 관한 것으로, 보다 상세하게는 그래핀 음향 진동막(graphene diaphragm)을 갖는 음향 발생 장치에 관한 것이다.The present invention relates to an acoustic generator, and more particularly, to an acoustic generator having a graphene diaphragm.
일반적으로, 스피커와 같은 음향 발생 장치는, 전기적인 신호를 음성 신호로 전환시키는 장치로서, 이어폰, 휴대폰, MP3 플레이어 등과 같이 다양한 음향 기기에 적용되고 있다.In general, a sound generating device such as a speaker is a device for converting an electrical signal into a voice signal, and has been applied to various acoustic devices such as earphones, mobile phones, MP3 players, and the like.
이러한, 스피커는, 보이스 코일(voiced coil) 구동 방식, 밸런스드 아마추어(balanced armature) 구동 방식, 정전(electrostatic) 구동 방식 등 다양한 구동 방식을 이용하고 있다.Such a speaker uses various driving methods, such as a voice coil driving method, a balanced armature driving method, an electrostatic driving method, and the like.
여기서, 보이스 코일 구동 방식을 이용하는 스피커는, 권선 코일 및 영구 자석으로, 진동막을 구동시키는 방식으로서, 가격이 저렴한 반면에, 고주파 특성이 좋지 않은 문제가 있었다.Here, the speaker using the voice coil drive system is a winding coil and a permanent magnet to drive the vibrating membrane, and while the price is low, there is a problem that the high frequency characteristics are not good.
그리고, 밸런스드 아마추어 구동 방식을 이용하는 스피커는, 밸런스드 아마추어의 자화에 비례한 변위에 의해, 진동막을 구동하는 방식으로서, 소형화가 가능한 반면에, 고주파 특성이 좋지 않고 가격이 상대적으로 비싼 문제가 있었다.In addition, the speaker using the balanced armature driving method is a method of driving the vibrating membrane by a displacement proportional to the magnetization of the balanced armature. However, the speaker can be miniaturized, but there is a problem that the high frequency characteristics are poor and the price is relatively expensive.
이어, 정전 구동 방식을 이용하는 스피커는, 전계(electric field) 변화에 의해, 진동막을 구동하는 방식으로서, 고주파 특성이 좋은 반면에, 저주파 특성이 좋지 않고, 약 100V 이상의 고전압으로 구동된다는 문제가 있었다.Subsequently, the speaker using the electrostatic driving method has a problem that the high frequency characteristic is good as the method of driving the vibrating membrane by the electric field change, while the low frequency characteristic is not good, and the speaker is driven at a high voltage of about 100 V or more.
도 1은 정전 구동 방식을 이용하는 스피커를 보여주는 단면도이다.1 is a cross-sectional view showing a speaker using an electrostatic driving method.
도 1에 도시된 바와 같이, 스피커는, 제 1, 제 2 고정 전극(1a, 1b)과 진동막(2)으로 구성될 수 있는데, 제 1, 제 2 고정 전극(1a, 1b)에 높은 교류 전압을 인가하면, 전하 간의 전기력에 의하여, 진동막(2)이 진동하는 방식이다.As shown in FIG. 1, the speaker may be composed of the first and second fixed electrodes 1a and 1b and the vibrating membrane 2, and a high alternating current is applied to the first and second fixed electrodes 1a and 1b. When a voltage is applied, the vibrating membrane 2 vibrates due to electric force between charges.
여기서, 제 1, 제 2 고정 전극(1a, 1b)을 서로 마주보게 배치하고, 그들 사이에 진동막(2)을 배치할 수 있다.Here, the 1st, 2nd fixed electrode 1a, 1b can be arrange | positioned facing each other, and the diaphragm 2 can be arrange | positioned between them.
이때, 진동막(2)은, 플라스틱의 박막에 금속을 코팅한 것으로, 두께가 약 10 - 20um일 수 있다.In this case, the vibrating membrane 2 is coated with a metal on a thin film of plastic, and may have a thickness of about 10-20 μm.
그리고, 제 1, 제 2 고정 전극(1a, 1b)에 높은 교류 전압을 인가하여, 정전계를 형성시킨 후, 변조 트랜스(3)의 1차 측에 음성 신호를 인가하면, 전압의 변동이 정전하의 변동을 발생시켜, 진동막(2)과 제 1, 제 2 고정 전극(1a, 1b)이 밀고 당겨지는 원리에 의해, 소리로 변환될 수 있다.When a high alternating current voltage is applied to the first and second fixed electrodes 1a and 1b to form an electrostatic field, and then a voice signal is applied to the primary side of the modulation transformer 3, the voltage fluctuations are interrupted. By generating the following fluctuations, the vibration membrane 2 and the first and second fixed electrodes 1a and 1b can be converted into sound by the principle of being pushed and pulled.
여기서, 진동막(2)은, 플라스틱의 박막에 금속을 코팅한 것으로, 두께가 약 10 - 20um로, 매우 얇아 섬세한 음역, 특히 고주파 음역을 잘 재연할 수 있다.Here, the vibrating membrane 2 is formed by coating a metal on a thin film of plastic. The vibrating membrane 2 has a thickness of about 10-20 μm, and is very thin, so that a delicate sound range, particularly a high frequency sound range, can be reproduced well.
그러나, 여전히, 저주파 특성이 좋지 않고, 약 100V 이상의 고전압으로 구동된다는 문제가 있었다.However, there is still a problem that the low frequency characteristics are not good and are driven at a high voltage of about 100V or more.
따라서, 향후, 진동막의 두께를 최소화하여, 고주파 특성뿐만 아니라 저주파 특성까지 향상시켜 음질의 왜곡을 최소화하면서도 최고의 음질을 구현할 수 있는 스피커의 개발이 요구되고 있다.Therefore, in the future, the development of a speaker capable of minimizing the distortion of sound quality by minimizing the thickness of the vibrating membrane to improve not only high frequency characteristics but also low frequency characteristics is required.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다. 또 다른 목적은, 그래핀 음향 진동막을 사용하여, 낮은 구동 전압으로 무왜곡 및 고음질을 구현할 수 있는 음향 발생 장치를 제공하는 것을 그 목적으로 한다.It is an object of the present invention to solve the above and other problems. It is another object of the present invention to provide a sound generating device capable of realizing distortion-free and high sound quality with a low driving voltage using a graphene acoustic vibration membrane.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 진동막과, 진동막의 주변을 지지하고, 입력되는 전류에 비례하는 자계를 발생하여, 진동막을 진동시키는 구동부를 포함하고, 진동막은, 그래핀층을 포함하고, 구동부의 자계 방향에 따라, 휨 방향이 결정될 수 있다.According to an aspect of the present invention to achieve the above or another object, the vibration membrane and the driving unit for supporting the periphery of the vibration membrane, generating a magnetic field proportional to the input current, vibrating the vibration membrane, the vibration membrane, It includes a graphene layer, the bending direction can be determined according to the magnetic field direction of the drive unit.
여기서, 진동막은, 기판과, 기판 위에 배치되는 그래핀층을 포함할 수 있다.Here, the vibrating membrane may include a substrate and a graphene layer disposed on the substrate.
그리고, 그래핀층은, 그래핀 단일층 또는 그래핀 복수층일 수 있다.The graphene layer may be a graphene single layer or a graphene plural layer.
경우에 따라, 기판과 그래핀층 사이에는, 유기층이 형성될 수 있다.In some cases, an organic layer may be formed between the substrate and the graphene layer.
여기서, 그래핀층과 유기층은, 한층 이상의 유기층과 한층 이상의 그래핀층이 각각 교대로 형성되어, 유기-무기 복합층을 이룰 수도 있다.Here, in the graphene layer and the organic layer, one or more organic layers and one or more graphene layers may be alternately formed to form an organic-inorganic composite layer.
또한, 그래핀층 및 기판 중, 적어도 어느 한 면에 접촉되는 보호막이 형성될 수도 있다.In addition, a protective film in contact with at least one surface of the graphene layer and the substrate may be formed.
그리고, 구동부는, 진동막의 상부면을 지지하는 제 1 지지 프레임과, 진동막의 하부면을 지지하는 제 2 지지 프레임과, 제 1, 제 2 지지 프레임의 외측면을 둘러싸는 도전 코일을 포함할 수 있다.The driving unit may include a first support frame supporting the upper surface of the vibration membrane, a second support frame supporting the lower surface of the vibration membrane, and a conductive coil surrounding the outer surfaces of the first and second support frames. have.
여기서, 제 1 지지 프레임은, 진동막 상부면의 주변 영역을 따라 배치되고, 진동막 상부면의 중앙 영역을 노출시키는 제 1 관통홀을 포함하고, 제 2 지지 프레임은, 진동막 하부면의 주변 영역을 따라 배치되고, 진동막 하부면의 중앙 영역을 노출시키는 제 2 관통홀을 포함할 수 있다.Here, the first support frame is disposed along the peripheral region of the upper surface of the vibrating membrane, and includes a first through hole exposing the central region of the upper surface of the vibrating membrane, and the second supporting frame includes a peripheral portion of the lower surface of the vibrating membrane. A second through hole may be disposed along the region and expose a central region of the lower surface of the vibrating membrane.
이어, 제 1, 제 2 지지 프레임의 내측면은, 진동막의 표면에 대해, 경사질 수 있는데, 제 1, 제 2 지지 프레임의 내측면과 진동막의 표면 사이의 각도는, 둔각일 수 있다.Subsequently, the inner surfaces of the first and second support frames may be inclined with respect to the surface of the vibrating membrane, and the angle between the inner surfaces of the first and second supporting frames and the surface of the vibrating membrane may be an obtuse angle.
다음, 도전 코일은, 제 1 지지 프레임의 외측면을 감기는 횟수와, 제 2 지지 프레임의 외측면을 감기는 횟수가 동일할 수 있다.Next, the number of times of winding the outer side of the first support frame and the number of times of winding the outer side of the second support frame may be the same as that of the conductive coil.
그리고, 구동부는, 진동막의 상부면을 지지하는 제 1 지지 프레임과, 진동막의 하부면을 지지하는 제 2 지지 프레임과, 제 1 지지 프레임 위에 배치되는 제 1 고정 전기자(stator armature)와, 제 2 지지 프레임 위에 배치되는 제 2 고정 전기자와, 제 1 고정 전기자와 제 2 고정 전기자의 일측을 연결하는 자심(magnetic core) 구조체와, 자심 구조체의 외면을 둘러싸는 도전 코일을 포함할 수 있다.The driving unit includes a first support frame for supporting the upper surface of the vibration membrane, a second support frame for supporting the lower surface of the vibration membrane, a first stator armature disposed on the first support frame, and a second It may include a second fixed armature disposed on the support frame, a magnetic core structure connecting one side of the first fixed armature and the second fixed armature, and a conductive coil surrounding the outer surface of the magnetic core structure.
여기서, 제 1 고정 전기자는, 주변 영역이 제 1 지지 프레임에 접촉되고, 중앙 영역이 진동막의 상부면으로부터 제 1 간격으로 떨어져 배치되며, 제 2 고정 전기자는, 주변 영역이 제 2 지지 프레임에 접촉되고, 중앙 영역이 진동막의 하부면으로부터 제 2 간격으로 떨어져 배치될 수 있다.Here, the first fixed armature has a peripheral region in contact with the first support frame, the central region is disposed at a first distance from the upper surface of the vibrating membrane, and the second fixed armature has a peripheral region in contact with the second support frame. The central region may be disposed apart from the lower surface of the vibrating membrane at a second interval.
이어, 제 1 고정 전기자의 중앙 영역과 제 2 고정 전기자의 중앙 영역에는, 다수의 홀들이 형성될 수 있다.Subsequently, a plurality of holes may be formed in the central region of the first fixed armature and the central region of the second fixed armature.
또한, 도전 코일은, 제 1, 제 2 지지 프레임의 외측면으로부터 일정 간격으로 떨어져 배치될 수 있다.In addition, the conductive coils may be arranged to be spaced apart from the outer surfaces of the first and second support frames at a predetermined interval.
그리고, 진동막은, 구동부로부터 생성되는 외부 자계에 의해, 내부 자계를 생성하고, 진동막의 내부 자계의 방향은, 구동부로부터 생성되는 외부 자계의 방향과 반대일 수 있다.The vibrating membrane may generate an internal magnetic field by an external magnetic field generated from the driver, and the direction of the internal magnetic field of the vibrating membrane may be opposite to the direction of the external magnetic field generated by the driver.
본 발명에 따른 음향발생장치의 효과에 대해 설명하면 다음과 같다.Referring to the effects of the sound generating apparatus according to the present invention.
본 발명의 실시 예들 중 적어도 하나에 의하면, 그래핀 음향 진동막을 사용하여, 진동막의 두께를 최소화할 수 있고, 전자기 구동 방식으로 그래핀 음향 진동막을 구동시킴으로써, 낮은 전압으로 구동이 가능한 장점이 있다.According to at least one of the embodiments of the present invention, by using the graphene acoustic vibration membrane, it is possible to minimize the thickness of the vibration membrane, and by driving the graphene acoustic vibration membrane in an electromagnetic drive method, there is an advantage that can be driven at a low voltage.
따라서, 본 발명은, 낮은 구동 전압으로, 음질의 왜곡을 최소화하면서도 최고의 음질을 구현할 수 있다.Therefore, the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다.Further scope of the applicability of the present invention will become apparent from the following detailed description. However, various changes and modifications within the spirit and scope of the present invention can be clearly understood by those skilled in the art, and therefore, specific embodiments, such as the detailed description and the preferred embodiments of the present invention, should be understood as given by way of example only.
도 1은 정전 구동 방식을 이용하는 스피커를 보여주는 단면도이다.1 is a cross-sectional view showing a speaker using an electrostatic driving method.
도 2는 본 발명에 따른 음향 발생 장치를 개략적으로 보여주는 도면이다.2 is a view schematically showing a sound generating apparatus according to the present invention.
도 3 및 도 4는 도 2의 진동막의 구동 원리를 보여주는 도면이다.3 and 4 are views illustrating a driving principle of the vibrating membrane of FIG. 2.
도 5 내지 도 9은 도 2의 진동막의 구조를 보여주는 단면도이다.5 to 9 are cross-sectional views showing the structure of the vibration membrane of FIG.
도 10은 제 1 실시예에 따른 도 2의 구동부를 보여주는 단면도이다.FIG. 10 is a cross-sectional view illustrating the driving unit of FIG. 2 according to the first embodiment. FIG.
도 11은 도 10의 지지 프레임을 보여주는 단면도이다.FIG. 11 is a cross-sectional view illustrating the supporting frame of FIG. 10.
도 12 내지 도 14는 도 10의 도전 코일을 보여주는 단면도이다.12 to 14 are cross-sectional views illustrating the conductive coil of FIG. 10.
도 15는 제 2 실시예에 따른 도 2의 구동부를 보여주는 단면도이다.FIG. 15 is a cross-sectional view illustrating a driving part of FIG. 2 according to a second embodiment. FIG.
도 16은 도 15의 지지 프레임을 보여주는 단면도이다.FIG. 16 is a cross-sectional view illustrating the supporting frame of FIG. 15.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, and the same or similar components are denoted by the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other. In addition, in describing the embodiments disclosed herein, when it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted. In addition, the accompanying drawings are intended to facilitate understanding of the embodiments disclosed herein, but are not limited to the technical spirit disclosed herein by the accompanying drawings, all changes included in the spirit and scope of the present invention. It should be understood to include equivalents and substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
도 2는 본 발명에 따른 음향 발생 장치를 개략적으로 보여주는 도면이다.2 is a view schematically showing a sound generating apparatus according to the present invention.
도 2에 도시된 바와 같이, 진동막(100) 및 구동부(200)를 포함할 수 있다.As shown in FIG. 2, the vibration membrane 100 and the driving unit 200 may be included.
여기서, 진동막(100)은, 그래핀층을 포함할 수 있는데, 구동부(200)의 자계 방향에 따라, 휨 방향이 결정될 수 있다.Here, the vibrating membrane 100 may include a graphene layer, the bending direction may be determined according to the magnetic field direction of the driving unit 200.
이처럼, 그래핀으로 진동막(100)을 형성하는 이유는, 그래핀의 기계적 강성이 높아 매우 얇은 두께로 제작할 수 있기 때문이다.As such, the reason why the vibrating membrane 100 is formed of graphene is because the mechanical rigidity of the graphene is high, so that the vibrating membrane 100 may be manufactured to have a very thin thickness.
진동막(100)의 두께가 줄어들면, 진동막(100)의 구동 방향에 관련된 스프링 상수(k)가 낮아지고, 진동막 자체의 질량(m)을 무시할 수 있을 정도로 낮출 수 있기 때문에, 음질 왜곡 현상을 크게 낮출 수 있어, 정확하게 음을 재생할 수 있다.When the thickness of the vibrating membrane 100 is reduced, the spring constant k related to the driving direction of the vibrating membrane 100 is lowered and the sound quality distortion can be lowered so that the mass m of the vibrating membrane itself can be negligible. The phenomenon can be greatly reduced, and sound can be accurately reproduced.
따라서, 진동막(100)의 두께 t1은, 약 수 nm - 약 수십 nm로 제작될 수 있다.Therefore, the thickness t1 of the vibration membrane 100 may be manufactured to about several nm-about several tens of nm.
일 예로, 진동막(100)의 두께 t1은, 약 10 - 600nm일 수 있지만, 이에 한정되지는 않는다.For example, the thickness t1 of the vibration membrane 100 may be about 10 nm to about 600 nm, but is not limited thereto.
그리고, 진동막(100)은, 기판과, 기판 위에 배치되는 그래핀층을 포함할 수 있다.The vibrating membrane 100 may include a substrate and a graphene layer disposed on the substrate.
여기서, 그래핀층은, 복수개의 탄소 원자들이 서로 공유 결합으로 연결되어, 폴리시 클릭 방향족 분자를 형성하는 그래핀이 막 또는 시트 형태로 형성될 수 있다.Here, in the graphene layer, a plurality of carbon atoms are covalently linked to each other, the graphene to form a polycyclic aromatic molecule may be formed in the form of a film or sheet.
이때, 공유 결합으로 연결된 탄소 원자들은, 기본 반복 단위로서, 6원환을 형성하나, 5환원 및/또는 7환원을 더 포함할 수도 있다.In this case, the carbon atoms connected by covalent bonds, as a basic repeating unit, forms a 6-membered ring, but may further include a 5-membered and / or 7-membered.
또한, 그래핀층은, 그래핀 단일층 또는 그래핀 복수층일 수 있지만, 이에 제한되지는 않는다.In addition, the graphene layer may be, but is not limited to, a graphene monolayer or a graphene plural layer.
경우에 따라, 기판과 그래핀층 사이에는, 유기층이 형성될 수도 있다.In some cases, an organic layer may be formed between the substrate and the graphene layer.
다른 경우로서, 그래핀층과 유기층은, 한층 이상의 유기층과 한층 이상의 그래핀층이 각각 교대로 형성되어, 유기-무기 복합층을 이룰 수도 있다.As another example, the graphene layer and the organic layer may be formed by alternately forming one or more organic layers and one or more graphene layers, respectively, to form an organic-inorganic composite layer.
여기서, 유기층을 형성하는 이유는, 진동막(100)의 표면 강도를 증가시키고, 수분 흡수 차단성이 우수하여, 진동막(100)의 수명을 연장시킬 수 있기 때문이다.The reason why the organic layer is formed is because the surface strength of the vibrating membrane 100 is increased, the moisture absorption barrier property is excellent, and the life of the vibrating membrane 100 can be extended.
또 다른 경우로서, 그래핀층 및 기판 중, 적어도 어느 한 면에 접촉되는 보호막이 형성될 수도 있다.As another case, a protective film in contact with at least one surface of the graphene layer and the substrate may be formed.
보호막을 형성하는 이유는, 외부의 충격으로부터 그래핀층을 보호하기 위함이다.The reason for forming the protective film is to protect the graphene layer from external impact.
일 예로, 보호막은, PEDOT(poly(3,4-ethylenedioxythiophene)), 티오펜계 폴리머, 폴리피롤, 폴리아닐린, PVDF(polyvinylidene Fluoride), PZT 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있지만, 이에 제한되지는 않는다.For example, the protective layer may be selected from the group consisting of PEDOT (poly (3,4-ethylenedioxythiophene)), thiophene polymer, polypyrrole, polyaniline, polyvinylidene fluoride (PVDF), PZT, and combinations thereof, but is not limited thereto. Does not.
또한, 진동막(100)은, 구동부(200)로부터 생성되는 외부 자계에 의해, 내부 자계를 생성할 수 있다.In addition, the vibrating membrane 100 may generate an internal magnetic field by an external magnetic field generated from the driving unit 200.
따라서, 진동막(100)의 내부 자계의 방향은, 구동부(200)로부터 생성되는 외부 자계의 방향과 반대일 수 있다.Therefore, the direction of the internal magnetic field of the vibrating membrane 100 may be opposite to the direction of the external magnetic field generated from the driver 200.
일 예로서, 구동부(200)로부터 생성되는 외부 자계의 방향이, 상부 방향이면, 진동막(100)의 내부 자계의 방향은, 하부 방향으로 생성될 수 있다.As an example, when the direction of the external magnetic field generated from the driver 200 is in the upper direction, the direction of the internal magnetic field of the vibrating membrane 100 may be generated in the lower direction.
또한, 구동부(200)로부터 생성되는 외부 자계의 방향이, 하부 방향이면, 진동막(100)의 내부 자계의 방향은, 상부 방향으로 생성될 수 있다.In addition, when the direction of the external magnetic field generated from the driving unit 200 is in the lower direction, the direction of the internal magnetic field of the vibration membrane 100 may be generated in the upper direction.
따라서, 진동막(100)의 내부 자계의 방향과, 구동부(200)로부터 생성되는 외부 자계의 방향 사이의 상호 작용력에 의해, 진동막(100)의 휨 방향은, 상부 또는 하부 방향이 될 수 있다.Therefore, due to the interaction force between the direction of the internal magnetic field of the vibrating membrane 100 and the direction of the external magnetic field generated from the driving unit 200, the bending direction of the vibrating membrane 100 may be the upper or lower direction. .
이처럼, 진동막(100)의 내부 자계의 방향과, 구동부(200)의 외부 자계의 방향 사이의 상호 작용력에 의해, 진동막(100)은, 진동할 수 있다.As described above, the vibrating membrane 100 may vibrate by the interaction force between the direction of the internal magnetic field of the vibrating membrane 100 and the direction of the external magnetic field of the driving unit 200.
여기서, 진동막(100)의 진폭은, 진동막(100)의 내부 자계의 세기와, 구동부(200)의 외부 자계의 세기 사이의 상호 작용력에 의해, 결정될 수 있다.Here, the amplitude of the vibration membrane 100 may be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane 100 and the strength of the external magnetic field of the driving unit 200.
다음, 구동부(200)는, 진동막(100)의 주변을 지지하고, 입력되는 전류에 비례하는 자계를 발생하여, 진동막(100)을 진동시킬 수 있다.Next, the driving unit 200 may support the periphery of the vibrating membrane 100, generate a magnetic field proportional to the input current, and vibrate the vibrating membrane 100.
여기서, 구동부(200)는, 진동막(100)의 주변부를 지지하는 지지부(210)를 포함할 수 있다.Here, the driving part 200 may include a support part 210 supporting a peripheral part of the vibrating membrane 100.
지지부(210)는, 진동막(100)의 상면의 주변부 및 진동막(100)의 하면의 주변부에 배치되고, 진동막(100)의 중앙부를 외부에 노출시킬 수 있다.The support part 210 may be disposed at the periphery of the upper surface of the vibrating membrane 100 and the periphery of the lower surface of the vibrating membrane 100, and may expose the central portion of the vibrating membrane 100 to the outside.
그리고, 지지부(210)는, 구동부(200)에서 생성되는 자계가 전달될 수 있는 재질로 이루어질 수 있다.In addition, the support unit 210 may be formed of a material capable of transmitting a magnetic field generated by the driving unit 200.
경우에 따라, 지지부(210)는, 구동부(200)에서 생성되는 자계가 전달되지 않는 절연 물질로 이루어질 수도 있다.In some cases, the support unit 210 may be made of an insulating material through which the magnetic field generated by the driver 200 is not transmitted.
이어, 구동부(200)는, 전자기 구동 방식을 갖는 다양한 구조로 제작될 수 있다.Subsequently, the driving unit 200 may be manufactured in various structures having an electromagnetic driving method.
일 실시예로, 구동부(200)는, 제 1, 제 2 지지 프레임 및 도전 코일을 포함할 수 있다.In one embodiment, the driving unit 200 may include a first, a second support frame and a conductive coil.
여기서, 제 1 지지 프레임은, 진동막의 상부면을 지지할 수 있고, 제 2 지지 프레임은, 진동막의 하부면을 지지할 수 있다.Here, the first support frame can support the upper surface of the vibration membrane, and the second support frame can support the lower surface of the vibration membrane.
이때, 제 1 지지 프레임은, 진동막(100) 상부면의 주변 영역을 따라 배치되고, 진동막(100) 상부면의 중앙 영역을 노출시키는 제 1 관통홀을 포함할 수 있다.In this case, the first support frame may be disposed along a peripheral area of the upper surface of the vibrating membrane 100, and may include a first through hole exposing a central area of the upper surface of the vibrating membrane 100.
또한, 제 2 지지 프레임은, 진동막(100) 하부면의 주변 영역을 따라 배치되고, 진동막(100) 하부면의 중앙 영역을 노출시키는 제 2 관통홀을 포함할 수 있다.In addition, the second support frame may include a second through hole disposed along a peripheral area of the lower surface of the vibrating membrane 100 and exposing a central area of the lower surface of the vibrating membrane 100.
그리고, 도전 코일은, 제 1, 제 2 지지 프레임의 외측면을 둘러싸여 배치될 수 있다.The conductive coils may be arranged to surround outer surfaces of the first and second support frames.
따라서, 구동부(200)는, 음향 신호에 대응하는 전류가 인가되면, 그에 상응하여 도전 코일이 감긴 제 1, 제 2 지지 프레임 내부에 자계가 유기될 수 있다.Therefore, when a current corresponding to the acoustic signal is applied, the driving unit 200 may induce a magnetic field inside the first and second support frames in which the conductive coil is wound.
여기서, 도전 코일에 입력되는 전류의 방향에 따라, 제 1, 제 2 지지 프레임 내부에 유기되는 자계의 방향이 결정될 수 있다.Here, the direction of the magnetic field induced inside the first and second support frames may be determined according to the direction of the current input to the conductive coil.
다른 경우로서, 구동부(200)는, 제 1, 제 2 지지 프레임, 제 1, 제 2 고정 전기자, 자심 구조체 및 도전 코일을 포함할 수도 있다.As another case, the drive unit 200 may include a first and a second support frame, a first and a second stationary armature, a magnetic core structure, and a conductive coil.
여기서, 제 1 지지 프레임은, 진동막의 상부면을 지지할 수 있고, 제 2 지지 프레임은, 진동막의 하부면을 지지할 수 있다.Here, the first support frame can support the upper surface of the vibration membrane, and the second support frame can support the lower surface of the vibration membrane.
이때, 제 1, 제 2 지지 프레임은, 절연체일 수 있다.In this case, the first and second support frames may be insulators.
그리고, 제 1 고정 전기자는, 제 1 지지 프레임 위에 배치될 수 있고, 제 2 고정 전기자는, 제 2 지지 프레임 위에 배치될 수 있다.And, the first fixed armature may be disposed on the first support frame, and the second fixed armature may be disposed on the second support frame.
이어, 자심 구조체는, 제 1 고정 전기자와 제 2 고정 전기자의 일측을 연결할 수 있고, 도전 코일은, 자심 구조체의 외면을 둘러싸여 배치될 수 있다.Subsequently, the magnetic core structure may connect one side of the first fixed armature and the second fixed armature, and the conductive coil may be disposed to surround the outer surface of the magnetic core structure.
여기서, 제 1 고정 전기자는, 주변 영역이 제 1 지지 프레임에 접촉되고, 중앙 영역이 진동막의 상부면으로부터 제 1 간격으로 떨어져 배치되며, 제 2 고정 전기자는, 주변 영역이 제 2 지지 프레임에 접촉되고, 중앙 영역이 진동막의 하부면으로부터 제 2 간격으로 떨어져 배치될 수 있다.Here, the first fixed armature has a peripheral region in contact with the first support frame, the central region is disposed at a first distance from the upper surface of the vibrating membrane, and the second fixed armature has a peripheral region in contact with the second support frame. The central region may be disposed apart from the lower surface of the vibrating membrane at a second interval.
그리고, 제 1 고정 전기자의 중앙 영역과 제 2 고정 전기자의 중앙 영역에는, 다수의 홀들이 형성될 수 있다.In addition, a plurality of holes may be formed in the central region of the first fixed armature and the central region of the second fixed armature.
따라서, 구동부(200)는, 음향 신호에 대응하는 전류가 인가되면, 그에 상응하여 도전 코일이 감긴 자심 구조체를 통해, 연결된 제 1, 제 2 고정 전기자 사이에 자계가 발생될 수 있다.Therefore, when a current corresponding to the acoustic signal is applied, the driving unit 200 may generate a magnetic field between the connected first and second fixed armatures through the magnetic core structure in which the conductive coil is wound.
이와 같이, 구성되는 구동부(200)에 의해, 진동막(100)은, 구동부(200)로부터 생성되는 자계 방향 및 세기에 따라, 진동 방향 및 진폭이 결정될 수 있다.As such, the vibration membrane 100 may be determined by the driving unit 200 configured according to the magnetic field direction and the intensity generated from the driving unit 200.
이처럼, 본 발명은, 그래핀 음향 진동막을 사용하여, 진동막의 두께를 최소화할 수 있고, 전자기 구동 방식으로 그래핀 음향 진동막을 구동시킴으로써, 낮은 전압으로 구동이 가능하다.As such, the present invention can minimize the thickness of the vibration membrane by using the graphene acoustic vibration membrane, and drive the graphene acoustic vibration membrane by an electromagnetic driving method, thereby driving at a low voltage.
따라서, 본 발명은, 낮은 구동 전압으로, 음질의 왜곡을 최소화하면서도 최고의 음질을 구현할 수 있다.Therefore, the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
도 3 및 도 4는 도 2의 진동막의 구동 원리를 보여주는 도면이다.3 and 4 are views illustrating a driving principle of the vibrating membrane of FIG. 2.
도 3 및 도 4에 도시된 바와 같이, 진동막은, 그래핀층(110)을 포함할 수 있다.As shown in FIG. 3 and FIG. 4, the vibrating membrane may include a graphene layer 110.
여기서, 그래핀층(110)은, 복수개의 탄소 원자들이 서로 공유 결합으로 연결되어, 폴리시 클릭 방향족 분자를 형성하는 그래핀이 막 또는 시트 형태로 형성될 수 있다.Here, in the graphene layer 110, a plurality of carbon atoms are covalently connected to each other, the graphene to form a polycyclic aromatic molecule may be formed in a film or sheet form.
이때, 공유 결합으로 연결된 탄소 원자들은, 기본 반복 단위로서, 6원환을 형성하나, 5환원 및/또는 7환원을 더 포함할 수도 있다.In this case, the carbon atoms connected by covalent bonds, as a basic repeating unit, forms a 6-membered ring, but may further include a 5-membered and / or 7-membered.
이러한 그래핀층(110)은, 외부 자계에 의해, 내부 자계를 생성할 수 있다.The graphene layer 110 may generate an internal magnetic field by an external magnetic field.
그 이유는, 그래핀층(110)의 격자 구조가, 벤젠 링(benzene ring)과 유사한 격자 구조를 가지기 때문이다.This is because the lattice structure of the graphene layer 110 has a lattice structure similar to the benzene ring.
즉, 외부 자계 Bo에 의해, 벤젠 링과 유사한 격자 구조를 갖는 그래핀층(110)에 유도 전류 ig가 생성되고, 유도 전류 ig에 의해, 그래핀층(110)에 내부 자계 Bg가 생성될 수 있다.That is, the induction current ig may be generated in the graphene layer 110 having a lattice structure similar to that of the benzene ring by the external magnetic field Bo, and the internal magnetic field Bg may be generated in the graphene layer 110 by the induction current ig.
따라서, 외부 자계 Bo와, 그래핀층(110)의 내부 자계 Bg는, 서로 상호 작용력(interaction force)에 의해, 그래핀층을 포함하는 진동막에 변위(displacement)를 발생시킬 수 있다.Therefore, the external magnetic field Bo and the internal magnetic field Bg of the graphene layer 110 may generate displacement in the vibrating membrane including the graphene layer by an interaction force.
그리고, 음압(sound pressure)은, 진동막의 변위에 비례하여 생성될 수 있다.The sound pressure may be generated in proportion to the displacement of the vibration membrane.
즉, 본 발명은, 외부 자계의 크기에 따라, 그래핀층을 포함하는 진동막에 유도되는 내부 자계의 크기가 변화하므로, 외부 자계의 크기를 조절함으로써, 진동막의 변위를 조절할 수 있어, 음향 조절이 가능하다.That is, according to the present invention, since the size of the internal magnetic field induced in the vibrating membrane including the graphene layer is changed according to the size of the external magnetic field, the displacement of the vibrating membrane can be controlled by adjusting the size of the external magnetic field, so that the acoustic control It is possible.
여기서, 그래핀층(110)의 내부 자계의 방향은, 외부 자계의 방향과 반대일 수 있다.Here, the direction of the internal magnetic field of the graphene layer 110 may be opposite to the direction of the external magnetic field.
일 예로서, 도 3과 같이, 외부 자계 Bo의 방향이, 상부 방향이면, 그래핀층(110)에 유도되는 유도 전류 ig가 평면상에서 시계방향으로 생성되고, 유도 전류 ig에 의해, 그래핀층(110)의 내부 자계 Bg의 방향은, 하부 방향으로 생성될 수 있다.For example, as shown in FIG. 3, when the direction of the external magnetic field Bo is upward, the induced current ig induced in the graphene layer 110 is generated in a clockwise direction on the plane, and the graphene layer 110 is induced by the induced current ig. The direction of the internal magnetic field Bg of) may be generated in the downward direction.
또한, 도 4와 같이, 외부 자계 Bo의 방향이, 하부 방향이면, 그래핀층(110)에 유도되는 유도 전류 ig가 평면상에서 반시계방향으로 생성되고, 유도 전류 ig에 의해, 그래핀층(110)의 내부 자계 Bg의 방향은, 상부 방향으로 생성될 수 있다.In addition, as shown in FIG. 4, when the direction of the external magnetic field Bo is downward, the induced current ig induced in the graphene layer 110 is generated counterclockwise on the plane, and the graphene layer 110 is induced by the induced current ig. The direction of the internal magnetic field Bg of, may be generated in the upper direction.
따라서, 그래핀층(110)의 내부 자계의 방향과, 외부 자계의 방향 사이의 상호 작용력에 의해, 진동막의 휨 방향은, 상부 또는 하부 방향이 될 수 있다.Therefore, due to the interaction force between the direction of the internal magnetic field of the graphene layer 110 and the direction of the external magnetic field, the bending direction of the vibration membrane may be the upper or lower direction.
이처럼, 진동막의 내부 자계의 방향과, 외부 자계의 방향 사이의 상호 작용력에 의해, 진동막은, 진동할 수 있다.Thus, the vibrating membrane can vibrate by the interaction force between the direction of the inner magnetic field of the vibrating membrane and the direction of the outer magnetic field.
여기서, 진동막의 진폭은, 진동막의 내부 자계의 세기와, 외부 자계의 세기 사이의 상호 작용력에 의해, 결정될 수 있다.Here, the amplitude of the vibration membrane can be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane and the strength of the external magnetic field.
도 5 내지 도 9는 도 2의 진동막의 구조를 보여주는 단면도로서, 도 5는 제 1 실시예 따른 진동막이고, 도 6는 제 2 실시예에 따른 진동막이며, 도 7은 제 3 실시예에 따른 진동막이고, 도 8은 제 4 실시예에 따른 진동막이며, 도 9는 제 5 실시예에 따른 진동막이다.5 to 9 are cross-sectional views showing the structure of the vibration membrane of Figure 2, Figure 5 is a vibration membrane according to the first embodiment, Figure 6 is a vibration membrane according to the second embodiment, Figure 7 is a third embodiment 8 is a vibration membrane according to the fourth embodiment, and FIG. 9 is a vibration membrane according to the fifth embodiment.
도 5에 도시된 바와 같이, 제 1 실시예에 따른 진동막(100)은, 기판(10)과, 기판(110) 위에 배치되는 그래핀층(120)을 포함할 수 있다.As shown in FIG. 5, the vibrating membrane 100 according to the first embodiment may include a substrate 10 and a graphene layer 120 disposed on the substrate 110.
여기서, 기판은, 폴리에틸렌테레프탈레이트(polyethylenterephthalate:PET), 폴리프로필렌(polypropylene:PP), 폴리메틸메타크릴레이트(polymethylmetacrylate: PMMA), 폴리카보네이트(polycarbonate:PC), 폴리에테르술폰(polyethersulfone: PES), 폴리비닐클로라이드(polyvinylchloride:PVC), 폴리피롤, 폴리이미드, 폴리에틸렌(polyethylene:PE) 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있지만, 이에 한정되지는 않는다.Here, the substrate is a polyethylene terephthalate (PET), polypropylene (PP), polymethyl methacrylate (PMMA), polycarbonate (PC), polyether sulfone (PES), It may be selected from the group consisting of polyvinylchloride (PVC), polypyrrole, polyimide, polyethylene (PE) and combinations thereof, but is not limited thereto.
그리고, 그래핀층(120)은, 복수개의 탄소 원자들이 서로 공유 결합으로 연결되어, 폴리시 클릭 방향족 분자를 형성하는 그래핀이 막 또는 시트 형태로 형성될 수 있다.In addition, in the graphene layer 120, a plurality of carbon atoms are covalently linked to each other, and thus, graphene, which forms polycyclic aromatic molecules, may be formed in a film or sheet form.
이때, 공유 결합으로 연결된 탄소 원자들은, 기본 반복 단위로서, 6원환을 형성하나, 5환원 및/또는 7환원을 더 포함할 수도 있다.In this case, the carbon atoms connected by covalent bonds, as a basic repeating unit, forms a 6-membered ring, but may further include a 5-membered and / or 7-membered.
이처럼, 그래핀으로 진동막(100)을 형성하는 이유는, 그래핀의 기계적 강성이 높아 매우 얇은 두께로 제작할 수 있기 때문이다.As such, the reason why the vibrating membrane 100 is formed of graphene is because the mechanical rigidity of the graphene is high, so that the vibrating membrane 100 may be manufactured to have a very thin thickness.
진동막(100)의 두께가 줄어들면, 진동막(100)의 구동 방향에 관련된 스프링 상수(k)가 낮아지고, 진동막 자체의 질량(m)을 무시할 수 있을 정도로 낮출 수 있기 때문에, 음질 왜곡 현상을 크게 낮출 수 있어, 정확하게 음을 재생할 수 있다.When the thickness of the vibrating membrane 100 is reduced, the spring constant k related to the driving direction of the vibrating membrane 100 is lowered and the sound quality distortion can be lowered so that the mass m of the vibrating membrane itself can be negligible. The phenomenon can be greatly reduced, and sound can be accurately reproduced.
따라서, 진동막(100)의 두께 t1은, 약 수 nm - 약 수십 nm로 제작될 수 있다.Therefore, the thickness t1 of the vibration membrane 100 may be manufactured to about several nm-about several tens of nm.
일 예로, 진동막(100)의 두께 t1은, 약 10 - 600nm일 수 있지만, 이에 한정되지는 않는다.For example, the thickness t1 of the vibration membrane 100 may be about 10 nm to about 600 nm, but is not limited thereto.
이어, 도 6에 도시된 바와 같이, 제 2 실시예에 따른 진동막(100)은, 기판(110)과, 기판(110) 위에 배치되는 그래핀층(120)을 포함할 수 있다.6, the vibrating membrane 100 according to the second embodiment may include a substrate 110 and a graphene layer 120 disposed on the substrate 110.
여기서, 그래핀층(120)은, 제 1 그래핀층(122)과 제 2 그래핀층(124)이 적층되어 형성될 수 있다.Here, the graphene layer 120 may be formed by stacking the first graphene layer 122 and the second graphene layer 124.
즉, 그래핀층(120)은, 그래핀 단일층으로 형성될 수 있지만, 경우에 따라, 그래핀 복수층으로 형성될 수도 있다.That is, the graphene layer 120 may be formed of a single graphene layer, but in some cases, may be formed of a plurality of graphene layers.
그래핀 복수층을 포함하는 진동막(100)은, 그래핀 단일층을 포함하는 진동막(100)에 비해 기계적 강성(120)이 더 우수할 수 있다.The vibrating membrane 100 including the graphene plural layers may have better mechanical rigidity 120 than the vibrating membrane 100 including the graphene single layer.
그리고, 도 7에 도시된 바와 같이, 제 3 실시예에 따른 진동막(100)은, 기판(110)과, 기판(110) 위에 배치되는 그래핀층(120)을 포함하고, 기판(110)과 그래핀층(120) 사이에, 유기층(130)이 더 형성될 수도 있다.As shown in FIG. 7, the vibrating membrane 100 according to the third embodiment includes a substrate 110 and a graphene layer 120 disposed on the substrate 110. The organic layer 130 may be further formed between the graphene layers 120.
또한, 도 7에 도시된 바와 같이, 제 4 실시예에 따른 진동막(100)은, 기판(110), 기판(110) 위에 배치되는 그래핀층(120)을 포함할 수 있다.In addition, as shown in FIG. 7, the vibration membrane 100 according to the fourth embodiment may include a substrate 110 and a graphene layer 120 disposed on the substrate 110.
여기서, 그래핀층(120)은, 제 1 그래핀층(122)과 제 2 그래핀층(124)이 적층되어 형성될 수 있다.Here, the graphene layer 120 may be formed by stacking the first graphene layer 122 and the second graphene layer 124.
그리고, 기판(110)과 제 1 그래핀층(122) 사이와, 제 1 그래핀층(122)와 제 2 그래핀층(124) 사이에, 유기층(130)이 더 형성될 수도 있다.In addition, an organic layer 130 may be further formed between the substrate 110 and the first graphene layer 122 and between the first graphene layer 122 and the second graphene layer 124.
이와 같이, 그래핀층(120)과 유기층(130)은, 한층 이상의 유기층(130)과 한층 이상의 그래핀층(120)이 각각 교대로 형성되어, 유기-무기 복합층을 이룰 수 있다.As such, the graphene layer 120 and the organic layer 130 may have one or more organic layers 130 and one or more graphene layers 120 alternately formed to form an organic-inorganic composite layer.
여기서, 유기층(130)을 형성하는 이유는, 진동막(100)의 표면 강도를 증가시키고, 수분 흡수 차단성이 우수하여, 진동막(100)의 수명을 연장시킬 수 있기 때문이다.The reason why the organic layer 130 is formed is because the surface strength of the vibration membrane 100 is increased, the moisture absorption barrier property is excellent, and the life of the vibration membrane 100 can be extended.
또 다른 경우로서, 도 9에 도시된 바와 같이, 제 5 실시예에 따른 진동막(100)은, 기판(110)과, 기판(110) 위에 배치되는 그래핀층(120)을 포함하고, 그래핀층(120) 및 기판(110) 중, 적어도 어느 한 면에 접촉되는 보호막(140)이 형성될 수도 있다.As another case, as shown in FIG. 9, the vibrating membrane 100 according to the fifth embodiment includes a substrate 110 and a graphene layer 120 disposed on the substrate 110, and the graphene layer A protective layer 140 may be formed to contact at least one surface of the 120 and the substrate 110.
여기서, 보호막(140)을 형성하는 이유는, 외부의 충격으로부터 그래핀층(120)을 보호하기 위함이다.Here, the reason for forming the protective film 140 is to protect the graphene layer 120 from an external impact.
일 예로, 보호막은, PEDOT(poly(3,4-ethylenedioxythiophene)), 티오펜계 폴리머, 폴리피롤, 폴리아닐린, PVDF(polyvinylidene Fluoride), PZT 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있지만, 이에 제한되지는 않는다.For example, the protective layer may be selected from the group consisting of PEDOT (poly (3,4-ethylenedioxythiophene)), thiophene polymer, polypyrrole, polyaniline, polyvinylidene fluoride (PVDF), PZT, and combinations thereof, but is not limited thereto. Does not.
이와 같이, 그래핀층을 포함하는 본 발명의 진동막은, 다양한 구조로 제작될 수 있다.As such, the vibration membrane of the present invention including the graphene layer may be manufactured in various structures.
도 10은 제 1 실시예에 따른 도 2의 구동부를 보여주는 단면도이다.FIG. 10 is a cross-sectional view illustrating the driving unit of FIG. 2 according to the first embodiment. FIG.
도 10에 도시된 바와 같이, 구동부(200)는, 제 1, 제 2 지지 프레임(220, 230) 및 도전 코일(240)을 포함할 수 있다.As shown in FIG. 10, the driving unit 200 may include first and second support frames 220 and 230 and a conductive coil 240.
여기서, 제 1 지지 프레임(220)은, 진동막(100)의 상부면(101)을 지지할 수 있다.Here, the first support frame 220 may support the upper surface 101 of the vibrating membrane 100.
그리고, 제 2 지지 프레임(230)은, 진동막(100)의 하부면(102)을 지지할 수 있다.The second support frame 230 may support the lower surface 102 of the vibrating membrane 100.
이때, 제 1 지지 프레임(220)은, 진동막(100) 상부면(101)의 주변 영역을 따라 배치되고, 진동막(100) 상부면(101)의 중앙 영역을 노출시키는 제 1 관통홀(221)을 포함할 수 있다.In this case, the first support frame 220 is disposed along the peripheral region of the upper surface 101 of the vibrating membrane 100, and exposes a first through hole exposing the central region of the upper surface 101 of the vibrating membrane 100. 221).
또한, 제 2 지지 프레임(230)은, 진동막(100) 하부면(102)의 주변 영역을 따라 배치되고, 진동막(100) 하부면(102)의 중앙 영역을 노출시키는 제 2 관통홀(231)을 포함할 수 있다.In addition, the second support frame 230 is disposed along the peripheral region of the lower surface 102 of the vibration membrane 100, and exposes a second through hole exposing the central region of the lower surface 102 of the vibration membrane 100. 231).
일 예로, 제 1, 제 2 지지 프레임(220, 230)은, 보빈(bobbin)일 수 있다.For example, the first and second support frames 220 and 230 may be bobbins.
그리고, 도전 코일(240)은, 제 1 지지 프레임(220)의 외측면(224)과, 제 2 지지 프레임(230)의 외측면(234)을 둘러싸여 배치될 수 있다.The conductive coil 240 may be disposed to surround the outer side surface 224 of the first support frame 220 and the outer side surface 234 of the second support frame 230.
이어, 제 1 지지 프레임(220)의 내측면(222)은, 진동막(100)의 상부면(101)에 대해, 수직할 수 있다.Subsequently, the inner side surface 222 of the first support frame 220 may be perpendicular to the upper surface 101 of the vibrating membrane 100.
그리고, 제 2 지지 프레임(230)의 내측면(232)은, 진동막(100)의 하부면(102)에 대해, 수직할 수 있다.In addition, the inner surface 232 of the second support frame 230 may be perpendicular to the lower surface 102 of the vibration membrane 100.
경우에 따라, 제 1 지지 프레임(220)의 내측면(222)은, 진동막(100)의 상부면(101)에 대해, 경사질 수 있고, 제 2 지지 프레임(230)의 내측면(232)은, 진동막(100)의 하부면(102)에 대해, 경사질 수도 있다.In some cases, the inner surface 222 of the first support frame 220 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 232 of the second support frame 230 may be inclined. ) May be inclined with respect to the lower surface 102 of the vibrating membrane 100.
또한, 도전 코일(240)은, 제 1 지지 프레임(220)의 외측면(224)을 감기는 횟수와, 제 2 지지 프레임(230)의 외측면(234)을 감기는 횟수가 동일할 수 있다.In addition, the number of times of winding the outer surface 224 of the first support frame 220 and the number of times of winding the outer surface 234 of the second support frame 230 may be the same as the conductive coil 240. .
하지만, 경우에 따라, 도전 코일(240)은, 제 1 지지 프레임(220)의 외측면(224)을 감기는 횟수와, 제 2 지지 프레임(230)의 외측면(234)을 감기는 횟수가 다를 수도 있다.However, in some cases, the number of times that the conductive coil 240 is wound around the outer surface 224 of the first support frame 220 and the number of times that the outer surface 234 of the second support frame 230 is wound It may be different.
따라서, 구동부(200)는, 음향 신호에 대응하는 전류가 인가되면, 그에 상응하여 도전 코일(240)이 감긴 제 1, 제 2 지지 프레임(220, 230) 내부에 자계가 유기될 수 있다.Therefore, when a current corresponding to the acoustic signal is applied, the driving unit 200 may induce a magnetic field inside the first and second support frames 220 and 230 in which the conductive coil 240 is wound.
여기서, 도전 코일(240)에 입력되는 전류의 방향에 따라, 제 1, 제 2 지지 프레임(220, 230) 내부에 유기되는 자계의 방향이 결정될 수 있다.Here, the direction of the magnetic field induced inside the first and second support frames 220 and 230 may be determined according to the direction of the current input to the conductive coil 240.
즉, 구동부(200)의 도전 코일(240)에, 출력하고자 하는 음향 신호에 대응하는 전류 i를 입력하면, 입력 전류 i에 비례하는 외부 자계가, 도전 코일(240)이 감긴 제 1, 제 2 지지 프레임(220, 230) 내부에 유기될 수 있다.That is, when the current i corresponding to the sound signal to be output is input to the conductive coil 240 of the driving unit 200, the first and second external magnetic fields proportional to the input current i are wound by the conductive coil 240. It may be organic in the support frame (220, 230).
그리고, 그래핀층을 포함하는 진동막(100)은, 외부 자계에 의해, 유도 전류가 유도되고, 유도 전류에 의해, 진동막(100) 내부에, 반자성(diamagnetic) 자계가 생성될 수 있다.In the vibrating membrane 100 including the graphene layer, an induced current may be induced by an external magnetic field, and a diamagnetic magnetic field may be generated inside the vibrating membrane 100 by the induced current.
이어, 외부 자계와 내부 반자성 자계의 상호 작용력에 의해, 진동막(100)은 변위가 발생하여, 상하로 진동할 수 있다.Subsequently, due to the interaction force between the external magnetic field and the internal diamagnetic magnetic field, the vibration membrane 100 may be displaced and vibrate up and down.
따라서, 진동막(100)의 변위에 비례하여, 음압이 생성될 수 있다.Therefore, a sound pressure may be generated in proportion to the displacement of the vibrating membrane 100.
즉, 본 발명은, 외부 자계의 크기에 따라, 그래핀층을 포함하는 진동막에 유도되는 내부 자계의 크기가 변화하므로, 외부 자계의 크기를 조절함으로써, 진동막의 변위를 조절할 수 있어, 음향 조절이 가능하다.That is, according to the present invention, since the size of the internal magnetic field induced in the vibrating membrane including the graphene layer is changed according to the size of the external magnetic field, the displacement of the vibrating membrane can be controlled by adjusting the size of the external magnetic field, so that the acoustic control It is possible.
이처럼, 진동막의 내부 자계의 방향과, 외부 자계의 방향 사이의 상호 작용력에 의해, 진동막은, 진동할 수 있다.Thus, the vibrating membrane can vibrate by the interaction force between the direction of the inner magnetic field of the vibrating membrane and the direction of the outer magnetic field.
여기서, 진동막의 진폭은, 진동막의 내부 자계의 세기와, 외부 자계의 세기 사이의 상호 작용력에 의해, 결정될 수 있다.Here, the amplitude of the vibration membrane can be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane and the strength of the external magnetic field.
도 11은 도 10의 지지 프레임을 보여주는 단면도이다.FIG. 11 is a cross-sectional view illustrating the supporting frame of FIG. 10.
도 11에 도시된 바와 같이, 구동부(200)는, 제 1, 제 2 지지 프레임(220, 230) 및 도전 코일(240)을 포함할 수 있다.As illustrated in FIG. 11, the driving unit 200 may include first and second support frames 220 and 230 and a conductive coil 240.
여기서, 제 1 지지 프레임(220)은, 진동막(100)의 상부면(101)을 지지할 수 있고, 제 2 지지 프레임(230)은, 진동막(100)의 하부면(102)을 지지할 수 있다.Here, the first support frame 220 may support the upper surface 101 of the vibrating membrane 100, and the second support frame 230 supports the lower surface 102 of the vibrating membrane 100. can do.
이때, 제 1 지지 프레임(220)의 내측면(222)은, 진동막(100)의 상부면(101)에 대해, 경사질 수 있고, 제 2 지지 프레임(230)의 내측면(232)은, 진동막(100)의 하부면(102)에 대해, 경사질 수 있다.In this case, the inner surface 222 of the first support frame 220 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 232 of the second support frame 230 may be inclined. , With respect to the lower surface 102 of the vibrating membrane 100.
일 예로, 제 1 지지 프레임(220)의 내측면(222)은, 진동막(100)의 상부면(101)에 대해, 제 1 각도 θ1으로 경사질 수 있다.For example, the inner side surface 222 of the first support frame 220 may be inclined at a first angle θ1 with respect to the upper surface 101 of the vibrating membrane 100.
그리고, 제 2 지지 프레임(230)의 내측면(232)은, 진동막(100)의 하부면(102)에 대해, 제 2 각도 θ2로 경사질 수 있다.The inner side surface 232 of the second support frame 230 may be inclined at a second angle θ2 with respect to the lower side surface 102 of the vibrating membrane 100.
여기서, 제 1 각도 θ1과 제 2 각도 θ2는 서로 동일할 수 있지만, 경우에 따라, 서로 다를 수도 있다.Here, the first angle θ1 and the second angle θ2 may be the same, but may be different from each other in some cases.
또한, 제 1 각도 θ1과 제 2 각도 θ2는 둔각일 수 있다.Also, the first angle θ1 and the second angle θ2 may be obtuse angles.
이처럼, 제 1 각도 θ1과 제 2 각도 θ2가 둔각인 이유는, 진동막(100)의 변위에 의해, 생성되는 음향이 외부로 더 잘 확산되도록 하기 위함이다.As such, the reason why the first angle θ1 and the second angle θ2 are obtuse angles is to allow the generated sound to be better diffused to the outside by the displacement of the vibration membrane 100.
이어, 나머지 구성은 본 발명 제 1 실시예의 구동부와 동일하므로, 상세한 설명은 생략한다.Subsequently, the rest of the configuration is the same as that of the driving unit of the first embodiment of the present invention, and thus detailed description thereof will be omitted.
도 12 내지 도 14는 도 10의 도전 코일을 보여주는 단면도이다.12 to 14 are cross-sectional views illustrating the conductive coil of FIG. 10.
도 12 내지 도 14에 도시된 바와 같이, 도전 코일(240)은, 제 1 지지 프레임(220)의 외측면(224)과, 제 2 지지 프레임(230)의 외측면(234)을 둘러싸여 배치될 수 있다.12 to 14, the conductive coil 240 may be disposed to surround the outer side surface 224 of the first support frame 220 and the outer side surface 234 of the second support frame 230. Can be.
여기서, 도 12와 같이, 도전 코일(240)은, 제 1 지지 프레임(220)의 외측면(224)을 감는 제 1 도전 코일(241)과, 제 2 지지 프레임(230)의 외측면(234)을 감는 제 2 도전 코일(242)을 포함할 수 있다.Here, as shown in FIG. 12, the conductive coil 240 includes a first conductive coil 241 winding the outer surface 224 of the first support frame 220 and an outer surface 234 of the second support frame 230. ) May include a second conductive coil 242 wound.
그리고, 제 1 지지 프레임(220)의 외측면(224)을 감는 제 1 도전 코일(241)의 감긴 횟수와, 제 2 지지 프레임(230)의 외측면(234)을 감는 제 2 도전 코일(242)의 감긴 횟수는, 서로 동일할 수 있다.The number of turns of the first conductive coil 241 winding the outer side surface 224 of the first support frame 220 and the second conductive coil 242 winding the outer side surface 234 of the second support frame 230. ), The number of turns may be the same.
경우에 따라, 도 13 및 도 14와 같이, 도전 코일(240)은, 제 1 지지 프레임(220)의 외측면(224)을 감기는 횟수와, 제 2 지지 프레임(230)의 외측면(234)을 감기는 횟수가 다를 수도 있다.In some cases, as shown in FIGS. 13 and 14, the conductive coil 240 may be wound around the outer surface 224 of the first support frame 220 and the outer surface 234 of the second support frame 230. ) The number of turns may be different.
일 예로, 도 13과 같이, 제 1 지지 프레임(220)의 외측면(224)을 감는 제 1 도전 코일(241)의 감긴 횟수는, 제 2 지지 프레임(230)의 외측면(234)을 감는 제 2 도전 코일(242)의 감긴 횟수보다 더 적을 수도 있다.For example, as shown in FIG. 13, the number of turns of the first conductive coil 241 wound around the outer surface 224 of the first support frame 220 may wind the outer surface 234 of the second support frame 230. It may be less than the number of turns of the second conductive coil 242.
또한, 도 14와 같이, 제 1 지지 프레임(220)의 외측면(224)을 감는 제 1 도전 코일(241)의 감긴 횟수는, 제 2 지지 프레임(230)의 외측면(234)을 감는 제 2 도전 코일(242)의 감긴 횟수보다 더 많을 수도 있다.In addition, as shown in FIG. 14, the number of windings of the first conductive coil 241 winding the outer surface 224 of the first supporting frame 220 may be the winding of the outer surface 234 of the second supporting frame 230. The number of turns of the two conductive coils 242 may be greater.
이와 같이, 제 1 지지 프레임(220)의 외측면(224)을 감는 제 1 도전 코일(241)의 감긴 횟수와, 제 2 지지 프레임(230)의 외측면(234)을 감는 제 2 도전 코일(242)의 감긴 횟수는, 진동막의 내부 자계의 세기에 영향을 줄 수 있어, 진동막의 변위에도 영향을 줄 수 있다.In this way, the number of turns of the first conductive coil 241 winding the outer surface 224 of the first support frame 220 and the second conductive coil winding the outer surface 234 of the second support frame 230 ( The number of turns of 242 may affect the strength of the internal magnetic field of the vibrating membrane, and may also affect the displacement of the vibrating membrane.
따라서, 도전 코일의 감긴 횟수를 토대로, 출력되는 음향 조절 및 보정이 가능할 수 있다.Therefore, based on the number of turns of the conductive coil, it is possible to adjust and correct the sound output.
도 15는 제 2 실시예에 따른 도 2의 구동부를 보여주는 단면도이다.FIG. 15 is a cross-sectional view illustrating a driving part of FIG. 2 according to a second embodiment. FIG.
도 15에 도시된 바와 같이, 구동부(200)는, 제 1, 제 2 지지 프레임(250, 260), 제 1, 제 2 고정 전기자(290a, 290b), 자심 구조체(270) 및 도전 코일(280)을 포함할 수 있다.As shown in FIG. 15, the driving unit 200 includes first and second support frames 250 and 260, first and second fixed armatures 290a and 290b, magnetic core structure 270, and a conductive coil 280. ) May be included.
여기서, 제 1 지지 프레임(250)은, 진동막(100)의 상부면(101)을 지지할 수 있다.Here, the first support frame 250 may support the upper surface 101 of the vibrating membrane 100.
그리고, 제 2 지지 프레임(260)은, 진동막(100)의 하부면(102)을 지지할 수 있다.In addition, the second support frame 260 may support the lower surface 102 of the vibrating membrane 100.
여기서, 제 1, 제 2 지지 프레임(250, 260)은, 절연체일 수 있다.Here, the first and second support frames 250 and 260 may be insulators.
또한, 제 1 지지 프레임(250)의 내측면(252)은, 진동막(100)의 상부면(101)에 대해, 수직할 수 있다.In addition, the inner surface 252 of the first support frame 250 may be perpendicular to the upper surface 101 of the vibration membrane 100.
그리고, 제 2 지지 프레임(260)의 내측면(262)은, 진동막(100)의 하부면(102)에 대해, 수직할 수 있다.The inner surface 262 of the second support frame 260 may be perpendicular to the lower surface 102 of the vibrating membrane 100.
경우에 따라, 제 1 지지 프레임(250)의 내측면(252)은, 진동막(100)의 상부면(101)에 대해, 경사질 수 있고, 제 2 지지 프레임(260)의 내측면(262)은, 진동막(100)의 하부면(102)에 대해, 경사질 수도 있다.In some cases, the inner surface 252 of the first support frame 250 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 262 of the second support frame 260 may be inclined. ) May be inclined with respect to the lower surface 102 of the vibrating membrane 100.
다음, 제 1 고정 전기자(290a)는, 제 1 지지 프레임(250) 위에 배치될 수 있고, 제 2 고정 전기자(290b)는, 제 2 지지 프레임(260) 위에 배치될 수 있다.Next, the first fixed armature 290a may be disposed on the first support frame 250, and the second fixed armature 290b may be disposed on the second support frame 260.
이어, 자심 구조체(270)는, 제 1 고정 전기자(290a)와 제 2 고정 전기자(290b)의 일측을 연결할 수 있다.Subsequently, the magnetic core structure 270 may connect one side of the first fixed armature 290a and the second fixed armature 290b.
즉, 자심 구조체(270)의 일측 끝단은, 제 1 고정 전기자(290a)의 일측 끝단에 연결되고, 자심 구조체(270)의 타측 끝단은, 제 2 고정 전기자(290b)의 일측 끝단에 연결할 수 있다.That is, one end of the magnetic core structure 270 may be connected to one end of the first fixed armature 290a, and the other end of the magnetic core structure 270 may be connected to one end of the second fixed armature 290b. .
그리고, 도전 코일(280)은, 자심 구조체(270)의 외면을 둘러싸여 배치될 수 있다.In addition, the conductive coil 280 may be disposed to surround the outer surface of the magnetic core structure 270.
여기서, 도전 코일(280)은, 제 1, 제 2 지지 프레임(250, 260)의 외측면으로부터 일정 간격으로 떨어져 배치될 수 있다.The conductive coils 280 may be spaced apart from the outer surfaces of the first and second support frames 250 and 260 at predetermined intervals.
즉, 도전 코일(280)은, 제 1 지지 프레임(250)의 외측면(254)으로부터 일정 간격으로 떨어져 배치될 수 있고, 제 2 지지 프레임(260)의 외측면(264)으로부터 일정 간격으로 떨어져 배치될 수 있다.That is, the conductive coils 280 may be disposed at regular intervals from the outer surface 254 of the first support frame 250, and may be spaced apart from the outer surface 264 of the second support frame 260 at regular intervals. Can be arranged.
다음, 제 1 고정 전기자(290a)는, 주변 영역이 제 1 지지 프레임(250)에 접촉되고, 중앙 영역이 진동막(100)의 상부면(101)으로부터 제 1 간격으로 떨어져 배치될 수 있다.Next, the first fixed armature 290a may have a peripheral area in contact with the first support frame 250 and a central area may be disposed at a first interval from the upper surface 101 of the vibrating membrane 100.
또한, 제 2 고정 전기자(290b)는, 주변 영역이 제 2 지지 프레임(260)에 접촉되고, 중앙 영역이 진동막(100)의 하부면(102)으로부터 제 2 간격으로 떨어져 배치될 수 있다.In addition, the second fixed armature 290b may have a peripheral area in contact with the second support frame 260, and a central area of the second fixed armature 290b spaced apart from the lower surface 102 of the vibrating membrane 100 at a second interval.
여기서, 제 1 간격과 제 2 간격은, 서로 동일할 수 있지만, 경우에 따라서는 서로 다를 수도 있다.Here, the first interval and the second interval may be identical to each other, but may be different from each other in some cases.
그리고, 제 1 고정 전기자(290a)의 중앙 영역과 제 2 고정 전기자(290b)의 중앙 영역에는, 다수의 홀(300)들이 형성될 수 있다.In addition, a plurality of holes 300 may be formed in the central region of the first fixed armature 290a and the central region of the second fixed armature 290b.
여기서, 제 1 고정 전기자(290a)의 중앙 영역에 형성되는 홀(300)의 크기와, 제 2 고정 전기자(290b)의 중앙 영역에 형성되는 홀(300)의 크기는, 서로 동일할 수 있지만, 경우에 따라, 서로 다를 수도 있다.Here, the size of the hole 300 formed in the center region of the first fixed armature 290a and the size of the hole 300 formed in the center region of the second fixed armature 290b may be the same. In some cases, they may be different.
또한, 제 1 고정 전기자(290a)의 중앙 영역에서 가장자리 영역으로 갈수록, 홀(300)의 크기가 점차적으로 증가할 수도 있고, 제 2 고정 전기자(290b)의 중앙 영역에서 가장자리 영역으로 갈수록, 홀(300)의 크기 점차적으로 증가할 수도 있다.In addition, the size of the hole 300 may increase gradually from the central area of the first fixed armature 290a to the edge area, and the hole (rear) from the central area of the second fixed armature 290b to the edge area. The size of 300 may be gradually increased.
그 이유는, 홀(300)을 통해, 외부로 출력되는 음압의 세기를 균일하게 하기 위함이다.The reason is to make the intensity of the sound pressure output to the outside through the hole 300 uniform.
예를 들면, 진동막(100)의 중앙 영역에서 발생하는 음압은, 진동막(100)ㅇ의 가장자리 영역에서 발생하는 음압보다 더 크므로, 진동막(100)의 중앙 영역 상부에 위치하는 홀(300)의 크기를 작게 하고, 진동막(100)의 가장자리 영역 상부에 위치하는 홀(300)의 크기를 크게 함으로써, 홀(300)을 통해, 외부에 출력되는 음압의 세기는 전체적으로 균일할 수 있다.For example, since the sound pressure generated in the center region of the vibrating membrane 100 is greater than the sound pressure generated in the edge region of the vibrating membrane 100, a hole located above the center region of the vibrating membrane 100 ( By decreasing the size of 300 and increasing the size of the hole 300 located above the edge region of the vibrating membrane 100, the intensity of the sound pressure output to the outside through the hole 300 may be uniform throughout. .
따라서, 구동부(200)는, 음향 신호에 대응하는 전류 i가 인가되면, 그에 상응하여 도전 코일(280)이 감긴 자심 구조체(270)를 통해, 연결된 제 1, 제 2 고정 전기자(290a, 290b) 사이에 자계가 발생될 수 있다.Accordingly, when the current i corresponding to the acoustic signal is applied, the driving unit 200 connects the first and second fixed armatures 290a and 290b through the magnetic core structure 270 in which the conductive coil 280 is wound. A magnetic field can be generated in between.
여기서, 도전 코일(280)에 입력되는 전류의 방향에 따라, 제 1, 제 2 고정 전기자(290a, 290b) 사이에 발생되는 자계의 방향이 결정될 수 있다.Here, the direction of the magnetic field generated between the first and second fixed armatures 290a and 290b may be determined according to the direction of the current input to the conductive coil 280.
즉, 구동부(200)의 도전 코일(280)에, 출력하고자 하는 음향 신호에 대응하는 전류 i를 입력하면, 입력 전류 i에 비례하는 외부 자계가, 자심 구조체(270)를 통해, 연결된 제 1, 제 2 고정 전기자(290a, 290b) 사이에 발생될 수 있다.That is, when the current i corresponding to the acoustic signal to be output is input to the conductive coil 280 of the driving unit 200, an external magnetic field proportional to the input current i is connected through the magnetic core structure 270. It can be generated between the second fixed armature (290a, 290b).
그리고, 그래핀층을 포함하는 진동막(100)은, 외부 자계에 의해, 유도 전류가 유도되고, 유도 전류에 의해, 진동막(100) 내부에, 반자성(diamagnetic) 자계가 생성될 수 있다.In the vibrating membrane 100 including the graphene layer, an induced current may be induced by an external magnetic field, and a diamagnetic magnetic field may be generated inside the vibrating membrane 100 by the induced current.
이어, 외부 자계와 내부 반자성 자계의 상호 작용력에 의해, 진동막(100)은 변위가 발생하여, 상하로 진동할 수 있다.Subsequently, due to the interaction force between the external magnetic field and the internal diamagnetic magnetic field, the vibration membrane 100 may be displaced and vibrate up and down.
따라서, 진동막(100)의 변위에 비례하여, 음압이 생성될 수 있다.Therefore, a sound pressure may be generated in proportion to the displacement of the vibrating membrane 100.
즉, 본 발명은, 외부 자계의 크기에 따라, 그래핀층을 포함하는 진동막에 유도되는 내부 자계의 크기가 변화하므로, 외부 자계의 크기를 조절함으로써, 진동막의 변위를 조절할 수 있어, 음향 조절이 가능하다.That is, according to the present invention, since the size of the internal magnetic field induced in the vibrating membrane including the graphene layer is changed according to the size of the external magnetic field, the displacement of the vibrating membrane can be controlled by adjusting the size of the external magnetic field, so that the acoustic control It is possible.
이처럼, 진동막의 내부 자계의 방향과, 외부 자계의 방향 사이의 상호 작용력에 의해, 진동막은, 진동할 수 있다.Thus, the vibrating membrane can vibrate by the interaction force between the direction of the inner magnetic field of the vibrating membrane and the direction of the outer magnetic field.
여기서, 진동막의 진폭은, 진동막의 내부 자계의 세기와, 외부 자계의 세기 사이의 상호 작용력에 의해, 결정될 수 있다.Here, the amplitude of the vibration membrane can be determined by the interaction force between the strength of the internal magnetic field of the vibration membrane and the strength of the external magnetic field.
이와 같이, 구성되는 구동부(200)에 의해, 진동막(100)은, 구동부(200)로부터 생성되는 자계 방향 및 세기에 따라, 진동 방향 및 진폭이 결정될 수 있다.As such, the vibration membrane 100 may be determined by the driving unit 200 configured according to the magnetic field direction and the intensity generated from the driving unit 200.
이처럼, 본 발명은, 그래핀 음향 진동막을 사용하여, 진동막의 두께를 최소화할 수 있고, 전자기 구동 방식으로 그래핀 음향 진동막을 구동시킴으로써, 낮은 전압으로 구동이 가능하다.As such, the present invention can minimize the thickness of the vibration membrane by using the graphene acoustic vibration membrane, and drive the graphene acoustic vibration membrane by an electromagnetic driving method, thereby driving at a low voltage.
따라서, 본 발명은, 낮은 구동 전압으로, 음질의 왜곡을 최소화하면서도 최고의 음질을 구현할 수 있다.Therefore, the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
도 16은 도 15의 지지 프레임을 보여주는 단면도이다.FIG. 16 is a cross-sectional view illustrating the supporting frame of FIG. 15.
도 16에 도시된 바와 같이, 구동부(200)는, 제 1, 제 2 지지 프레임(250, 260), 제 1, 제 2 고정 전기자(290a, 290b), 자심 구조체(270) 및 도전 코일(280)을 포함할 수 있다.As shown in FIG. 16, the driving unit 200 includes the first and second support frames 250 and 260, the first and second fixed armatures 290a and 290b, the magnetic core structure 270, and the conductive coil 280. ) May be included.
여기서, 제 1 지지 프레임(250)은, 진동막(100)의 상부면(101)을 지지할 수 있고, 제 2 지지 프레임(260)은, 진동막(100)의 하부면(102)을 지지할 수 있다.Here, the first support frame 250 may support the upper surface 101 of the vibrating membrane 100, and the second support frame 260 supports the lower surface 102 of the vibrating membrane 100. can do.
이때, 제 1 지지 프레임(250)의 내측면(252)은, 진동막(100)의 상부면(101)에 대해, 경사질 수 있고, 제 2 지지 프레임(260)의 내측면(262)은, 진동막(100)의 하부면(102)에 대해, 경사질 수 있다.In this case, the inner surface 252 of the first support frame 250 may be inclined with respect to the upper surface 101 of the vibrating membrane 100, and the inner surface 262 of the second support frame 260 may be inclined. , With respect to the lower surface 102 of the vibrating membrane 100.
일 예로, 제 1 지지 프레임(250)의 내측면(252)은, 진동막(100)의 상부면(101)에 대해, 제 1 각도 θ1으로 경사질 수 있다.For example, the inner side surface 252 of the first support frame 250 may be inclined at a first angle θ1 with respect to the upper surface 101 of the vibrating membrane 100.
그리고, 제 2 지지 프레임(260)의 내측면(262)은, 진동막(100)의 하부면(102)에 대해, 제 2 각도 θ2로 경사질 수 있다.The inner side surface 262 of the second support frame 260 may be inclined at a second angle θ2 with respect to the lower surface 102 of the vibrating membrane 100.
여기서, 제 1 각도 θ1과 제 2 각도 θ2는 서로 동일할 수 있지만, 경우에 따라, 서로 다를 수도 있다.Here, the first angle θ1 and the second angle θ2 may be the same, but may be different from each other in some cases.
또한, 제 1 각도 θ1과 제 2 각도 θ2는 둔각일 수 있다.Also, the first angle θ1 and the second angle θ2 may be obtuse angles.
이처럼, 제 1 각도 θ1과 제 2 각도 θ2가 둔각인 이유는, 진동막(100)의 변위에 의해, 생성되는 음향이 외부로 더 잘 확산되도록 하기 위함이다.As such, the reason why the first angle θ1 and the second angle θ2 are obtuse angles is to allow the generated sound to be better diffused to the outside by the displacement of the vibration membrane 100.
이어, 나머지 구성은 본 발명 제 2 실시예의 구동부와 동일하므로, 상세한 설명은 생략한다.Subsequently, the rest of the configuration is the same as that of the driving unit of the second embodiment of the present invention, and thus detailed description thereof is omitted.
이와 같이, 구성되는 본 발명은, 그래핀 음향 진동막을 사용하여, 진동막의 두께를 최소화할 수 있고, 전자기 구동 방식으로 그래핀 음향 진동막을 구동시킴으로써, 낮은 전압으로 구동이 가능하다.Thus, the present invention is configured, by using the graphene acoustic vibration membrane can minimize the thickness of the vibration membrane, by driving the graphene acoustic vibration membrane by the electromagnetic drive method, it is possible to drive at a low voltage.
따라서, 본 발명은, 낮은 구동 전압으로, 음질의 왜곡을 최소화하면서도 최고의 음질을 구현할 수 있다.Therefore, the present invention can realize the best sound quality while minimizing distortion of sound quality with a low driving voltage.
본 발명에 따른 음향 발생 장치는 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The sound generating apparatus according to the present invention is not limited to the configuration and method of the embodiments described as described above, but the embodiments are a combination of all or part of each embodiment selectively so that various modifications can be made. It may be configured.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the specific embodiments described above, but the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
본 발명은 그래핀 음향 진동막(graphene diaphragm)을 갖는 음향 발생 장치에 관한 것이다. 따라서, 본 발명은 산업상 이용가능성이 있다.The present invention relates to an acoustic generator having a graphene diaphragm. Therefore, the present invention has industrial applicability.

Claims (20)

  1. 진동막; 그리고,Vibration membrane; And,
    상기 진동막의 주변을 지지하고, 입력되는 전류에 비례하는 자계를 발생하여, 상기 진동막을 진동시키는 구동부를 포함하고,And a driving unit supporting the periphery of the vibrating membrane and generating a magnetic field proportional to an input current to vibrate the vibrating membrane.
    상기 진동막은,The vibration membrane,
    그래핀층을 포함하고,Including a graphene layer,
    상기 구동부의 자계 방향에 따라, 휨 방향이 결정되는 것을 특징으로 하는 음향 발생 장치.The bending direction is determined according to the magnetic field direction of the drive unit.
  2. 제 1 항에 있어서, 상기 진동막은,The vibration membrane of claim 1,
    기판;Board;
    상기 기판 위에 배치되는 그래핀층을 포함하는 것을 특징으로 하는 음향 발생 장치.A sound generating device comprising a graphene layer disposed on the substrate.
  3. 제 2 항에 있어서, 상기 그래핀층은,The method of claim 2, wherein the graphene layer,
    그래핀 단일층 또는 그래핀 복수층인 것을 특징으로 하는 음향 발생 장치.An acoustic generator, characterized in that the graphene monolayer or graphene plural layers.
  4. 제 2 항에 있어서, 상기 기판과 그래핀층 사이에는,According to claim 2, Between the substrate and the graphene layer,
    유기층이 형성되는 것을 특징으로 하는 음향 발생 장치.An acoustic generator, characterized in that the organic layer is formed.
  5. 제 4 항에 있어서, 상기 그래핀층과 유기층은,The method of claim 4, wherein the graphene layer and the organic layer,
    상기 한층 이상의 유기층과 한층 이상의 그래핀층이 각각 교대로 형성되어, 유기-무기 복합층을 이루는 것을 특징으로 하는 음향 발생 장치.The at least one organic layer and at least one graphene layer are formed alternately to form an organic-inorganic composite layer.
  6. 제 2 항에 있어서, 상기 그래핀층 및 기판 중, 적어도 어느 한 면에 접촉되는 보호막이 형성되는 것을 특징으로 하는 음향 발생 장치.The sound generating device according to claim 2, wherein a protective film is formed in contact with at least one surface of the graphene layer and the substrate.
  7. 제 6 항에 있어서, 상기 보호막은,The method of claim 6, wherein the protective film,
    PEDOT(poly(3,4-ethylenedioxythiophene)), 티오펜계 폴리머, 폴리피롤, 폴리아닐린, PVDF(polyvinylidene Fluoride), PZT 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 음향 발생 장치.A sound generating device selected from the group consisting of poly (3,4-ethylenedioxythiophene) (PEDOT), thiophene-based polymer, polypyrrole, polyaniline, polyvinylidene fluoride (PVDF), PZT and combinations thereof.
  8. 제 2 항에 있어서, 상기 기판은,The method of claim 2, wherein the substrate,
    폴리에틸렌테레프탈레이트(polyethylenterephthalate:PET), 폴리프로필렌(polypropylene:PP), 폴리메틸메타크릴레이트(polymethylmetacrylate:PMMA), 폴리카보네이트(polycarbonate:PC), 폴리에테르술폰(polyethersulfone:PES), 폴리비닐클로라이드(polyvinylchloride:PVC), 폴리피롤, 폴리이미드, 폴리에틸렌(polyethylene:PE) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 음향 발생 장치.Polyethylene terephthalate (PET), polypropylene (PP), polymethylmethacrylate (PMMA), polycarbonate (PC), polyethersulfone (PES), polyvinylchloride : PVC), polypyrrole, polyimide, polyethylene (PE), and a combination thereof.
  9. 제 1 항에 있어서, 상기 구동부는,The method of claim 1, wherein the driving unit,
    상기 진동막의 상부면을 지지하는 제 1 지지 프레임;A first support frame supporting an upper surface of the vibrating membrane;
    상기 진동막의 하부면을 지지하는 제 2 지지 프레임; 그리고,A second support frame supporting a lower surface of the vibrating membrane; And,
    상기 제 1, 제 2 지지 프레임의 외측면을 둘러싸는 도전 코일을 포함하는 것을 특징으로 하는 음향 발생 장치.And a conductive coil surrounding outer surfaces of the first and second support frames.
  10. 제 9 항에 있어서, 상기 제 1 지지 프레임은,The method of claim 9, wherein the first support frame,
    상기 진동막 상부면의 주변 영역을 따라 배치되고, 상기 진동막 상부면의 중앙 영역을 노출시키는 제 1 관통홀을 포함하고,A first through hole disposed along a peripheral area of the upper surface of the vibration membrane and exposing a central area of the upper surface of the vibration membrane;
    상기 제 2 지지 프레임은,The second support frame,
    상기 진동막 하부면의 주변 영역을 따라 배치되고, 상기 진동막 하부면의 중앙 영역을 노출시키는 제 2 관통홀을 포함하는 것을 특징으로 하는 음향 발생 장치.And a second through hole disposed along a peripheral area of the lower surface of the vibration membrane and exposing a central area of the lower surface of the vibration membrane.
  11. 제 9 항에 있어서, 상기 제 1, 제 2 지지 프레임의 내측면은,The method of claim 9, wherein the inner surface of the first and second support frames,
    상기 진동막의 표면에 대해, 경사지는 것을 특징으로 하는 음향 발생 장치.And an incline with respect to the surface of the vibrating membrane.
  12. 제 11 항에 있어서, 상기 제 1, 제 2 지지 프레임의 내측면과 상기 진동막의 표면 사이의 각도는, 둔각인 것을 특징으로 하는 음향 발생 장치.The sound generating device according to claim 11, wherein an angle between the inner surfaces of the first and second support frames and the surface of the vibration membrane is an obtuse angle.
  13. 제 9 항에 있어서, 상기 도전 코일은,The method of claim 9, wherein the conductive coil,
    상기 제 1 지지 프레임의 외측면을 감기는 횟수와, 상기 제 2 지지 프레임의 외측면을 감기는 횟수가 동일한 것을 특징으로 하는 음향 발생 장치.And a number of turns of an outer side of the first support frame and a number of turns of an outer side of the second support frame are the same.
  14. 제 1 항에 있어서, 상기 구동부는,The method of claim 1, wherein the driving unit,
    상기 진동막의 상부면을 지지하는 제 1 지지 프레임;A first support frame supporting an upper surface of the vibrating membrane;
    상기 진동막의 하부면을 지지하는 제 2 지지 프레임;A second support frame supporting a lower surface of the vibrating membrane;
    상기 제 1 지지 프레임 위에 배치되는 제 1 고정 전기자(stator armature);A first stator armature disposed over the first support frame;
    상기 제 2 지지 프레임 위에 배치되는 제 2 고정 전기자;A second stationary armature disposed over the second support frame;
    상기 제 1 고정 전기자와 제 2 고정 전기자의 일측을 연결하는 자심(magnetic core) 구조체; 그리고,A magnetic core structure connecting one side of the first fixed armature and the second fixed armature; And,
    상기 자심 구조체의 외면을 둘러싸는 도전 코일을 포함하는 것을 특징으로 하는 음향 발생 장치.And a conductive coil surrounding an outer surface of the magnetic core structure.
  15. 제 14 항에 있어서, 상기 제 1, 제 2 지지 프레임은,The method of claim 14, wherein the first and second support frames,
    절연체인 것을 특징으로 하는 음향 발생 장치.An acoustic generator, characterized in that the insulator.
  16. 제 14 항에 있어서, 상기 제 1 고정 전기자는,The method of claim 14, wherein the first fixed armature,
    주변 영역이 상기 제 1 지지 프레임에 접촉되고, 중앙 영역이 상기 진동막의 상부면으로부터 제 1 간격으로 떨어져 배치되며,A peripheral region is in contact with the first support frame, a central region is disposed at a first interval away from an upper surface of the vibrating membrane,
    상기 제 2 고정 전기자는,The second fixed armature,
    주변 영역이 상기 제 2 지지 프레임에 접촉되고, 중앙 영역이 상기 진동막의 하부면으로부터 제 2 간격으로 떨어져 배치되는 것을 특징으로 하는 음향 발생 장치.And a peripheral region is in contact with the second support frame, and a central region is disposed at a second interval from a lower surface of the vibrating membrane.
  17. 제 16 항에 있어서, 상기 제 1 간격과 제 2 간격은, 서로 동일한 것을 특징으로 하는 음향 발생 장치.The sound generating device according to claim 16, wherein the first interval and the second interval are the same.
  18. 제 16 항에 있어서, 상기 제 1 고정 전기자의 중앙 영역과 상기 제 2 고정 전기자의 중앙 영역에는, 다수의 홀들이 형성되는 것을 특징으로 하는 음향 발생 장치.The sound generating apparatus of claim 16, wherein a plurality of holes are formed in a central region of the first fixed armature and a central region of the second fixed armature.
  19. 제 14 항에 있어서, 상기 도전 코일은,The method of claim 14, wherein the conductive coil,
    상기 제 1, 제 2 지지 프레임의 외측면으로부터 일정 간격으로 떨어져 배치되는 것을 특징으로 하는 음향 발생 장치.The sound generating device, characterized in that spaced apart from the outer surface of the first, second support frame at a predetermined interval.
  20. 제 1 항에 있어서, 상기 진동막은,The vibration membrane of claim 1,
    상기 구동부로부터 생성되는 외부 자계에 의해, 내부 자계를 생성하고,An internal magnetic field is generated by an external magnetic field generated from the driving unit,
    상기 진동막의 내부 자계의 방향은,The direction of the internal magnetic field of the vibrating membrane is
    상기 구동부로부터 생성되는 외부 자계의 방향과 반대되는 것을 특징으로 하는 음향 발생 장치.And a direction opposite to the direction of the external magnetic field generated from the driving unit.
PCT/KR2014/004417 2013-11-01 2014-05-16 Sound generation device WO2015064871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0131968 2013-11-01
KR1020130131968A KR20150050829A (en) 2013-11-01 2013-11-01 apparatus for generating sound

Publications (1)

Publication Number Publication Date
WO2015064871A1 true WO2015064871A1 (en) 2015-05-07

Family

ID=53004441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004417 WO2015064871A1 (en) 2013-11-01 2014-05-16 Sound generation device

Country Status (2)

Country Link
KR (1) KR20150050829A (en)
WO (1) WO2015064871A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248196A (en) * 2016-08-31 2016-12-21 杨霖 A kind of micro-acoustic detection analytical equipment and array audio signal processing method based on this device
WO2018066002A1 (en) * 2016-10-04 2018-04-12 Mohare Pradnesh Assemblies for generation of sound
EP3326386A4 (en) * 2015-07-22 2019-03-27 Google LLC Devices and methods for a high performance electromagnetic speaker based on monolayers
WO2020115739A1 (en) * 2018-12-06 2020-06-11 Waves Audio Ltd. Nanocomposite graphene polymer membrane assembly, and manufacturing method thereof
WO2022243317A1 (en) * 2021-05-18 2022-11-24 Paragraf Limited Graphene transducer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319490A (en) * 2002-04-19 2003-11-07 Sony Corp Diaphragm and manufacturing method thereof, and speaker
JP2010251816A (en) * 2009-04-10 2010-11-04 Toa Corp Thin acoustic electromechanical transducer
KR101058475B1 (en) * 2010-05-14 2011-08-24 한국기계연구원 Mems microphone based on graphene membrane and fabrication method therefor
KR20120064984A (en) * 2010-12-10 2012-06-20 한국전자통신연구원 Piezoelectric speaker
US20120250906A1 (en) * 2011-03-29 2012-10-04 Hon Hai Precision Industry Co., Ltd. Thermoacoustic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319490A (en) * 2002-04-19 2003-11-07 Sony Corp Diaphragm and manufacturing method thereof, and speaker
JP2010251816A (en) * 2009-04-10 2010-11-04 Toa Corp Thin acoustic electromechanical transducer
KR101058475B1 (en) * 2010-05-14 2011-08-24 한국기계연구원 Mems microphone based on graphene membrane and fabrication method therefor
KR20120064984A (en) * 2010-12-10 2012-06-20 한국전자통신연구원 Piezoelectric speaker
US20120250906A1 (en) * 2011-03-29 2012-10-04 Hon Hai Precision Industry Co., Ltd. Thermoacoustic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3326386A4 (en) * 2015-07-22 2019-03-27 Google LLC Devices and methods for a high performance electromagnetic speaker based on monolayers
CN106248196A (en) * 2016-08-31 2016-12-21 杨霖 A kind of micro-acoustic detection analytical equipment and array audio signal processing method based on this device
WO2018066002A1 (en) * 2016-10-04 2018-04-12 Mohare Pradnesh Assemblies for generation of sound
CN110546964A (en) * 2016-10-04 2019-12-06 普拉德内什·莫哈尔 Assembly for sound generation
US11289065B2 (en) 2016-10-04 2022-03-29 Pradnesh Mohare Assemblies for generation of sound
WO2020115739A1 (en) * 2018-12-06 2020-06-11 Waves Audio Ltd. Nanocomposite graphene polymer membrane assembly, and manufacturing method thereof
WO2022243317A1 (en) * 2021-05-18 2022-11-24 Paragraf Limited Graphene transducer

Also Published As

Publication number Publication date
KR20150050829A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2015064871A1 (en) Sound generation device
WO2012060521A1 (en) Voice coil motor and driving method thereof
WO2011013915A2 (en) Apparatus and method for generating vibration pattern
WO2018194208A1 (en) Stator of rotating electric apparatus
WO2018084447A1 (en) Planar magnet speaker
WO2020046039A2 (en) Voice coil plate having multi-patterned coil, and flat panel speaker comprising voice coil plate having multi-layered structure
WO2017039292A1 (en) Lens driving unit, camera module, and optical instrument
EP3539298A1 (en) Display apparatus
WO2018056770A1 (en) Camera lens barrel, camera module and optical device
WO2020004975A1 (en) Camera device and optical instrument
WO2018012813A1 (en) Dual camera module and optical device
WO2018182239A1 (en) Lens driving apparatus, and camera module and optical device comprising same
WO2018004119A1 (en) Apparatus for generating sound using car body
WO2021107225A1 (en) Electronic device for controlling size of display and method for controlling same
WO2013051806A2 (en) Vibrator having a piezoelectric element mounted thereon
WO2014178574A1 (en) Meta-material structure
WO2014073932A1 (en) Power supplying apparatus and wireless power transmitterpower transmitter
WO2014171799A1 (en) Mems device
WO2020149632A1 (en) Wireless power relaying device and display system that distributes power wirelessly
WO2014119871A1 (en) Wireless power transmitting apparatus and method thereof
WO2018084564A1 (en) Cover assembly and motor including same
WO2021246682A1 (en) Printed circuit board transmitting high-frequency band signal, and electronic device comprising same
WO2021054725A1 (en) Camera module
WO2022098159A1 (en) Attachment structure of flexible display in electronic device
WO2017131296A1 (en) Electric rotation machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857495

Country of ref document: EP

Kind code of ref document: A1