WO2015064797A1 - Supply connection system for individual heat/electric energy and central heat/electric energy built as cogeneration system, and method for operating same - Google Patents

Supply connection system for individual heat/electric energy and central heat/electric energy built as cogeneration system, and method for operating same Download PDF

Info

Publication number
WO2015064797A1
WO2015064797A1 PCT/KR2013/009916 KR2013009916W WO2015064797A1 WO 2015064797 A1 WO2015064797 A1 WO 2015064797A1 KR 2013009916 W KR2013009916 W KR 2013009916W WO 2015064797 A1 WO2015064797 A1 WO 2015064797A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
thermal
individual
heat
electrical energy
Prior art date
Application number
PCT/KR2013/009916
Other languages
French (fr)
Korean (ko)
Inventor
이재용
임용훈
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2015064797A1 publication Critical patent/WO2015064797A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/13Heat from a district heating network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the present invention relates to an individual thermal / electrical energy and central thermal / electrical energy supply linkage system constructed with a cogeneration system, and a method of operating the same.
  • a cogeneration system or a co-generation system is a system that can produce more than two kinds of energy (heat and electricity) from a single energy source at the same time. It is a device for producing and recovering the exhaust gas or the coolant array generated at this time and supplying it to a heat source such as a hot water supply or an air conditioner.
  • the infrastructure can be built in such a way as to purchase heat and electricity produced by a small cogeneration system, as in the business of purchasing electricity produced in a home equipped with power generation facilities using solar energy or wind energy
  • the Stirling engine Compact or ultra-compact cogeneration systems using technologies such as the Stirling engine, Rankine engine, Fuel cell, Reciprocating engine, Turbine, and photovoltaic thermal (PVT) systems It will be more feasible to install them by building, building, or household in a building or apartment.
  • a thermal energy and an electric energy network are inevitably required, and in the thermal energy and electrical energy network, a pipe and electric power supplying the demand side and the heat medium are provided by the heat energy and electrical energy supply side. It is a system that supplies heat energy and electric energy by being connected by an electric cable to supply power.
  • the conventional thermal energy network system or electrical energy network system has been a unidirectional heat / electric supply method of supplying thermal energy or electrical energy from a supply side to a demand side.
  • the demand side obtains thermal energy from the high temperature heat medium.
  • the heat-reduced heat medium is returned to the supply side.
  • the supply side supplies the electric energy to the demand side through the electric cable.
  • the bidirectional thermal / electrical trading system not only supplies heat energy and electric energy to the demand side, but also generates excess heat / electric energy through its own heat and electric energy generating equipment on the demand side. And a method of supplying and selling electrical energy.
  • the demand side can produce and supply heat / electricity when the cogeneration system owned by each consumer is idle or when surplus heat / surplus electricity is generated, so that the demand side can respond quickly to the rapidly changing neighboring heat / electricity demands compared to the remote suppliers.
  • the company will benefit from thermal / electrical production and expect a shorter payback period for equipment installation and operating costs.
  • the supplier side can manage the rapidly changing consumer's heat / electricity demand more consistently, thereby reducing the frequent load fluctuations, and enabling stable operation.
  • the cogeneration plant when the cogeneration plant operates, it is resilient to the recent increase in electricity demand during the winter season. It will have the advantage of having operational effects that can be coped with. Accordingly, when such a bidirectional thermal / electrical trading system is established, the central supply-distributed heat source combination-based thermal / electric energy network that can be a supplier as needed, out of the fixed relationship of the existing consumer-supplier relationship. You can implement the system.
  • Such bidirectional thermal / electricity transactions can be made not only between the supply side and the demand side, but also between different demand sides.
  • the relationship between the supply side and the demand side may vary depending on the situation in the case of excess heat generation due to the operation of the cogeneration system or heat production according to the heat sales demand, so that the structure and the purchase or It is necessary to accurately measure the flow rate of thermal energy generated at the time of sale.
  • An object of the present invention is to build a thermal energy and electrical energy network system between each demand side, supply side and another demand side in a separate heat / electric energy and central heat / electric energy supply linkage system constructed as a cogeneration system,
  • the present invention provides a thermal / electric energy network system capable of purchasing and selling mutual thermal energy and electrical energy, and a method of operating the same.
  • the central heat / electric supply unit 200 connected to the individual generation or building 100 by a central pipe 300 and having one or more central heat / electric energy supply devices 210 capable of producing thermal energy and electric energy. ;
  • the electric load 520 of the individual household or building 100 is installed between the individual heat / electric energy generator 110 and the external commercial system 700 and between the electrical load 520 and the external commercial system 700.
  • the central pipe 300 may include a supply pipe 310 and a return pipe 320 through which the heat energy transfer medium may move.
  • the individual thermal / electric energy generator 110 includes a Stirling engine, a Rankine engine, a fuel cell, a reciprocating engine, a turbine, It may be one or more selected from the group consisting of photovoltaic thermal (PVT) system, energy generators utilizing renewable energy such as solar and geothermal.
  • PVT photovoltaic thermal
  • three-way valve (3-way valve 131 and a check valve 132 may be further mounted.
  • the supply pipe 310 receives the heat energy generated from the individual heat / electric energy generator 110, or separates the heat energy generated from the central heat / electric energy supply device 210 Connected with individual households or buildings 100 to supply to households or buildings 100,
  • the return pipe 320 may supply the heat energy transfer medium to the individual heat / electric energy generator 110 or recover the heat energy transfer medium flowing to the supply pipe 310. It can be connected to an individual household or building 100.
  • the return pipe 320 and the individual heat / electrical energy generator 110 is interconnected by a connection pipe 321 through which the heat energy transfer medium can move,
  • Two-way calorimeters 400a and 400b may be installed in the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110.
  • the bidirectional calorimeter includes a check valve disposed in different directions in the branch pipe and each flow meter (not shown) installed in each branch line as shown in FIG. 1. Can be.
  • the present invention also provides a method for operating the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 600, the individual thermal / electrical energy and central thermal / electrical energy supply according to one aspect of the present invention.
  • Linked system operation method (S100)
  • thermal and electrical energy generator 110 If there is no demand for thermal and electrical energy of individual households or buildings 100 and is willing to sell thermal and electrical energy, the thermal and electrical energy generator 110 is used to produce thermal and electrical energy; The process of selling electrical energy; And
  • the individual thermal / electric energy generator 110 is used to produce thermal energy and electrical energy to produce individual households or Supplying thermal energy and electrical energy to the individual heat use part 120 and the electric load part 520 of the building 100;
  • the individual thermal / electric energy generator 110 produces thermal energy and electrical energy, and the individual household or building ( Supplying thermal energy to the individual heat-use unit 120 of 100 and selling surplus thermal energy and electrical energy;
  • connection pipe 321 through which the heat energy transfer medium can move.
  • Two-way calorimeters 400a and 400b may be installed in the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110.
  • FIG. 1 and 2 are schematic diagrams of individual thermal / electrical energy and central thermal / electrical energy supply linkage systems according to one embodiment of the invention.
  • 3 and 4 is a conceptual diagram of a bidirectional calorimeter according to the present invention.
  • FIG. 5 is a flow chart illustrating a method of operating separate thermal / electrical energy and central thermal / electrical energy supply linkage systems in accordance with one embodiment of the present invention.
  • 6 to 11 is a schematic diagram showing a method of operating the individual thermal / electrical energy and the central thermal / electrical energy supply connection system according to an embodiment of the present invention.
  • FIG. 1 and 2 are schematic diagrams of individual thermal / electrical energy and central thermal / electrical energy supply linkage systems according to one embodiment of the invention.
  • the individual thermal / electrical energy and central thermal / electrical energy supply connection system 600 may include individual households or buildings 100, central thermal / electrical supply units 200, and individual households.
  • the central pipe 300 connecting the building 100 and the central heat / electricity supply unit 200, the bidirectional calorimeters 400a and 400b mounted between the individual households or the building 100, and the central pipe 300 and external commercial use It may be a configuration that includes a bi-directional bidirectional electricity meter 510 mounted between the system 700 and the individual household or building 100.
  • the individual thermal / electric energy generator 110 is not particularly limited as long as it is a generator capable of producing thermal energy and electrical energy, for example, a Stirling engine, a Rankine engine, a fuel cell. (Fuel cell), a reciprocating engine (Reciprocating Engine), a turbine (Turbine), may be one or more generators selected from the group consisting of PVT (photovoltaic thermal) system.
  • PVT photovoltaic thermal
  • the individual thermal / electric energy generator 110 may be an energy generator that utilizes renewable energy such as solar heat and geothermal heat.
  • the heat energy produced from the individual heat / electric energy generator 110 may be supplied to the individual heat using unit 120 including the heating distributor 121 and the hot water supply and power supply 122.
  • the electric energy produced from the individual heat / electric energy generator 110 may be supplied to the electric load 520 or the external commercial system 700.
  • the individual heat use unit 120 may include a generation hot water supply unit 123, as shown in FIG. 1, and the generation hot water supply unit 123 may receive the water supplied from the external municipal water supply source 124. Heated by the supplied thermal energy, the heated hot water supply can be used through the hot water supply faucet (122).
  • the individual generation or building 100 may supply surplus heat energy produced from the individual heat / electric energy generator 110 to the central heat / electric supply unit 200 through the connection pipe 311 and the supply pipe 310.
  • the flow rate of the heat energy supplied to the central heat / electric supply unit 200 may be measured through the bidirectional calorimeters 400a and 400b.
  • the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 600 including such a configuration may include each individual household or building 100, a central thermal / electrical supply unit 200, and another. It is possible to build thermal and electrical energy network systems between individual households or buildings (not shown), to measure the exact flow of thermal energy and the capacity of electrical energy, and to purchase and sell thermal and electrical energy.
  • three-way valve (3-way) to adjust the flow direction of the thermal energy valves 131 and 131a and check valves 132 and 132a may be further mounted.
  • the device capable of adjusting the flow direction of the thermal energy is not limited thereto.
  • the supply pipe 310 may receive heat energy generated from the individual heat / electric energy generator 110 or supply heat energy generated from the central heat / electric energy supply device 210 to the individual household or the building 100. It may be a configuration connected to the individual household or building 100 to be.
  • the return pipe 320 may supply the heat energy transfer medium to the individual heat / electric energy generator 110, or recover the heat energy transfer medium flowing into the supply pipe 310, so that the supply pipe 310 and the individual generations may be recovered. Or it may be a configuration connected to the building (100).
  • the return pipe 320 and the individual heat / electric energy generator 110 may be connected to each other by a connection pipe 321 through which a heat energy transfer medium may move.
  • the bidirectional calorimeters 400a and 400b may be mounted on the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110. .
  • the individual generation or building 100 may be composed of a separate heat / electric energy generator 110 and a separate heat using unit 120, it is specified by the two-way calorimeter (400a, 400b) and the three-way valve 131 A bond can be achieved.
  • one side of the three-way valve 131 is connected to the bi-directional calorimeters (400a, 400b), the other side is connected to the individual heat / electrical energy generator 110, the other side is to be connected to the individual heat using unit 120 Can be.
  • the individual heat / electric energy generator 110 has another three-way valve 131a therein, and may be connected to the supply pipe 310 and the individual heat use part 120 of the central pipe 300. .
  • the supply pipe 310 of the central pipe 300 may be connected to the individual heat using portion 120 by the connection pipe 312, wherein the connection between the supply pipe 310 and the individual heat using portion 120
  • the pipe 312 has a check valve 132 that allows only the flow of thermal energy from the supply pipe 310 to the individual heat-use part 120 is another three-way valve 131a inside the individual heat / electric energy generator 110.
  • the individual heat use unit 120 may be mounted on the supply piping side, that is, upstream side.
  • FIG. 1 only one individual household or building is shown for the sake of simplicity, but in the case of a joint policy such as an apartment, a plurality of individual households or buildings are provided for a plurality of households as shown in FIG. 2.
  • the individual thermal / electrical energy and central thermal / electrical energy supply connection system 600 may be configured to include two or more individual households or buildings 100.
  • the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 500 includes a multi-unit house 100 ′ and a central plumbing composed of two or more individual households or buildings 100.
  • the 300 may be connected to each other to implement the purchase and sale of thermal energy.
  • the individual generation or building 100 may be connected to the external commercial system through the electricity sales / purchase cable 512 to implement the purchase and sale of electricity.
  • the multi-unit house 100 ′ shown in FIG. 2 may be replaced by another large-scale housing complex, apartment complex, industrial complex or city.
  • the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 600 according to the present invention may enable more stable thermal energy purchase and sale management.
  • a more detailed description of a method for managing thermal energy and electrical energy purchase and sale using the individual thermal / electrical energy and central thermal / electrical energy supply linked system 600 according to the present invention will be described later.
  • 3 and 4 are conceptual views of the bidirectional calorimeter according to the present invention.
  • a bidirectional calorimeter 400a may include a first branch pipe part 411a and 421a and a second branch pipe part branched on the pipes 410a and 420a. 412a, 422a, a first flow meter 441a, a second flow meter 442a, and a controller 450a.
  • first branch pipe parts 411a and 421a and the second branch pipe parts 412a and 422a may include the first three-way valve 431a and the second three-way valve 432a mounted on the pipe lines 410a and 420a. It may be a structure branched by.
  • the first flow meter 441a may be mounted on the first branch pipe parts 411a and 421a to measure the flow rate of the fluid flowing through the first branch pipe parts 411a and 421a, and the second flow meter 442a may be used.
  • the flow rate of the fluid flowing through the second branch pipe parts 412a and 422a and flowing through the second branch pipe parts 412a and 422a may be measured.
  • the first flow meter 441a and the second flow meter 442a are not particularly limited as long as they can measure the flow rate of the internal fluid, but may be, for example, an impeller flow meter.
  • the bidirectional calorimeter includes a temperature measuring unit for measuring the temperature of the heat energy in the first branch pipe 411a, 421a or the second branch pipe 412a, 422a; And a calculator configured to calculate a calorific value based on the flow rate measured by the first flow meter 441a or the second flow meter 442a and the temperature measured by the temperature measurer. More specifically, the calorific value may be calculated using two temperature differences by installing a separate temperature sensor connected to a temperature (return temperature) and an operation unit (not shown) measured inside the bidirectional calorimeter.
  • controller 450a may change the states of the first three-way valve 431a and the second three-way valve 432a to control the flow direction of the fluid.
  • the bidirectional calorimeter 400b according to another embodiment of the present invention, the first branch pipe 411b, 422b and the second branch pipe branched in both directions on the pipe (410b, 420b) It may be configured to include a portion (412b, 421b), four check valves (431b, 432b, 433b, 434b) and the flow meter (440b).
  • first check valve 431b and the fourth check valve 434b may be mounted to the first branch pipe parts 411b and 422b to control the flow direction of the internal fluid.
  • second check valve 432b and the third check valve 433b may be mounted to the second branch pipe parts 412b and 421b to control the flow direction of the internal fluid.
  • the flow meter 440b may be mounted to the first branch pipe parts 411b and 422b and the second branch pipe parts 412b and 421b to measure the flow rate of the internal fluid. More specifically, the flow meter 440b is not particularly limited as long as it can measure the flow rate of the internal fluid, but may be, for example, an impeller flow meter.
  • the bidirectional calorimeters 400a and 400b may control the flow of fluid using three-way valves 431a and 432a or check valves 431b, 432b, 433b and 434b.
  • the flow of fluid controlled by the three-way valves 431a and 432a or the check valves 431b, 432b, 433b, and 434b can be accurately measured through the flowmeters 441a, 442a, and 440b.
  • the bidirectional calorimeter includes a check valve disposed in different directions in the branch pipe and each flow meter (not shown) installed in each branch line as shown in FIG. 1. Can be.
  • the bidirectional calorimeter according to the present invention is not limited to those shown in FIGS. 3 and 4, and is provided with a three-way valve or a check valve to control the flow of the fluid flowing through the inside of the pipe located on the pipe. If the configuration can measure the flow rate of the fluid is not particularly limited.
  • the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 500 including the bidirectional calorimeters 400a and 400b of such a structure may include individual households or buildings 100 and central thermal / electrical electricity. It is possible to accurately measure the amount of heat energy purchased and sold between the supply unit 200.
  • FIG. 5 is a flowchart illustrating a method of operating an individual thermal / electrical energy and a central thermal / electrical energy supply linkage system according to an embodiment of the present invention
  • FIGS. 6 to 10 illustrate one embodiment of the present invention.
  • a schematic diagram showing how to operate individual thermal / electrical energy and a central thermal / electrical energy supply linked system according to an example is shown.
  • the individual thermal / electric energy generator 110 may be used. Producing thermal energy and electrical energy using the step of supplying thermal energy and electrical energy to the individual heat-use unit 120 and the electric load unit 520 of the individual household or building 100 (S135);
  • the return pipe 320 and the individual heat / electric energy generator 110 may be connected to each other by a connection pipe 321 through which the heat energy transfer medium may move.
  • the bidirectional calorimeters 400a and 400b may be mounted on the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110. .
  • the cogeneration generator is installed in each individual household or building, and the individual household or building is connected to the central heat / electric supply unit.
  • a thermal / electric energy network system can be established between each thermal / electric energy demand side, supply side, and another demand side.
  • it is possible to measure the exact flow rate of the heat energy and the exact capacity of the electric energy and it is possible to purchase and sell the heat / electric energy based on this.
  • the technical advantages that can efficiently operate the thermal and electrical energy network system that can be purchased and sold thermal / electrical energy Will have
  • the cogeneration system is installed in each individual household or building, and the individual heat-use unit and the central thermal / electrical supply
  • a thermal / electric energy network system can be constructed between each thermal / electric energy demand side, supply side, and another demand side, and the accurate flow rate of thermal / electric energy can be measured. Based on this, it is possible to purchase and sell thermal / electric energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Disclosed are a supply connection system for individual heat/electric energy and central heat/electric energy built as a cogeneration system, and a method for operating same. According to an embodiment of the present invention, the supply connection system for the individual heat/electric energy and the central heat/electric energy built as a cogeneration system comprises: one or more individual household or building (100) which is provided with an individual heat/electric energy generation device (110) able to produce heat energy and electric energy; a central heat/electricity supply unit (200) which is connected to the individual household or building (100) by means of central piping (300), and which is provided with one or more central heat/electric energy supply device (210) able to produce heat energy and electric energy; one or more bidirectional calorimeter (400a, 400b) which is (are) installed inside the central pipe (300) connecting the individual household or building (100) and the central heat/electricity supply unit (200), and which measures (measure) the flux of heat energy moving one way and the other way inside the central pipe (300); and a bidirectional power meter (510) which is installed between the individual heat/electric energy generation device (110) and an external commercial system (700), and between an electrical load unit (520) and the external commercial system (700), so as to be able to measure the power of electric energy moving from the individual heat/electric energy generation device (110) to the external commercial system (700), or so as to be able to measure the power of electric energy moving from the external commercial system (700) to the electrical load unit (520) of the individual household or building (100), and, in the present invention, the central piping (300) is composed of supply piping (310) and recovery piping (320) through which a heat energy transfer medium can move.

Description

열병합발전 시스템으로 구축된 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템, 및 이를 운용하는 방법Individual thermal / electrical energy and central thermal / electrical energy supply linkage system constructed by the cogeneration system, and a method of operating the same
본 발명은 열병합발전 시스템으로 구축된 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템, 및 이를 운용하는 방법에 관한 것이다.The present invention relates to an individual thermal / electrical energy and central thermal / electrical energy supply linkage system constructed with a cogeneration system, and a method of operating the same.
일반적으로 열병합발전 시스템 또는 열병합발전시스템(Co-Generation System)은 하나의 에너지원으로부터 2종류(열과 전기) 이상의 에너지를 동시에 생산해 낼 수 있는 시스템으로서, 엔진 또는 터빈을 구동, 발전기를 회전시켜 전력을 생산하고, 이때 발생되는 배기가스 또는 냉각수의 배열을 회수하여 급탕이나 공기조화기 등의 열수요처로 공급하는 장치이다.In general, a cogeneration system or a co-generation system (co-generation system) is a system that can produce more than two kinds of energy (heat and electricity) from a single energy source at the same time. It is a device for producing and recovering the exhaust gas or the coolant array generated at this time and supplying it to a heat source such as a hot water supply or an air conditioner.
발전과 배열의 이용을 통해 에너지를 활용하므로 종래 화력발전소의 효율이 35 % 내외인데 반하여, 열병합발전 시스템의 효율은 70 내지 85 % 수준으로 매우 높아, 목동, 분당, 일산 등의 신도시 계획 및 건설시 대형의 집중형 열병합발전시스템이 주요 인프라로 구축된 바 있지만, 최근에는 주민들의 반대 등으로 입지 선정이 여의치 않고 설비 투자비가 많이 드는 집중형 열병합 설비보다는 1 MW 급 이하의 분산형 열병합시스템에 대한 관심이 증대되고 있다. 열병합 시스템은 발전용량에 따라 수십 ~ 수백 kW는 소형 열병합, 수 kW는 초소형 열병합발전 시스템으로 불리며 실제로 전력 열수요가 많은 호텔 등의 대형 빌딩에 분산형 소형 열병합발전시스템이 설치되고 있다. 또한 최근 많은 연구를 통해 전세계적으로 각 세대에서 사용이 가능한 초소형 열병합발전 시스템의 시제품 및 초기 보급사업이 이루어지고 있는 상태이다.Since energy is utilized through the use of power generation and arrangement, the efficiency of a conventional thermal power plant is around 35%, while the efficiency of a cogeneration system is very high, ranging from 70 to 85%, when planning and constructing new cities such as Mokdong, Bundang, and Ilsan. Although a large centralized cogeneration system has been built as a major infrastructure, recently, interest in distributed cogeneration systems of less than 1 MW level is lower than centralized cogeneration systems, which cannot be selected due to the opposition of the residents and costly facility investment. Is increasing. The cogeneration system is called small cogeneration system for tens to hundreds of kW and micro cogeneration system for several kW depending on the power generation capacity. In fact, distributed small cogeneration system is installed in large buildings such as hotels that have high power demand. In recent years, many studies have been conducted on prototypes and early dissemination projects of ultra-small cogeneration systems that can be used in each generation worldwide.
이와 같이 높은 열효율을 갖는 소형 열병합시스템이 많이 보급된다면 에너지 효율 측면에서 많은 잇점을 누릴 수 있으나, 아직까지는 해당 시스템의 구축을 위해서 많은 비용이 소요되고, 운영 비용이 높아 회수기간이 길어지는 문제로 인해 보급이 촉진되기에는 어려운 실정이다.If a large number of small cogeneration system with high thermal efficiency is widely used, it may have many advantages in terms of energy efficiency. However, due to the problem that the cost of building the system is high, and the recovery period is long due to high operating costs. Distribution is difficult to promote.
그러나 태양광에너지나 풍력에너지 등을 이용한 발전설비를 갖춘 가정에서 생산한 전기를 구매해주는 사업과 마찬가지로, 소형 열병합발전시스템에 의해 생산된 열과 전기를 구매해주는 방식으로 인프라가 구축될 수 있다면, 스털링 엔진(Stirling engine), 랭킨 엔진(Rankine engine), 연료전지(Fuel cell), 왕복동식 엔진(Reciprocating Engine), 터빈(Turbine), PVT(photovoltaic thermal) 시스템 등의 기술을 채택한 소형 또는 초소형의 열병합발전 시스템을 건물 또는 공동주택의 각 단지별, 동별, 또는 세대별로 설치하는 것이 좀더 실현 가능해질 것이다.However, if the infrastructure can be built in such a way as to purchase heat and electricity produced by a small cogeneration system, as in the business of purchasing electricity produced in a home equipped with power generation facilities using solar energy or wind energy, the Stirling engine Compact or ultra-compact cogeneration systems using technologies such as the Stirling engine, Rankine engine, Fuel cell, Reciprocating engine, Turbine, and photovoltaic thermal (PVT) systems It will be more feasible to install them by building, building, or household in a building or apartment.
이와 같이 열병합발전 시스템을 수요측 자체 내부에 설치하여 운용하기 위해서는, 열에너지 및 전기에너지 네크워크는 필연적으로 필요하며, 열에너지 및 전기에너지 네트워크는 열에너지 및 전기에너지 공급측이 수요측과 열매체를 수송하는 배관 및 전력을 공급하는 전기 케이블로 연결되어 열에너지 및 전기에너지를 공급하는 시스템이다.Thus, in order to install and operate a cogeneration system inside the demand side itself, a thermal energy and an electric energy network are inevitably required, and in the thermal energy and electrical energy network, a pipe and electric power supplying the demand side and the heat medium are provided by the heat energy and electrical energy supply side. It is a system that supplies heat energy and electric energy by being connected by an electric cable to supply power.
종래의 열에너지 네트워크 시스템 또는 전기에너지 네크워크 시스템은 공급측에서 수요측으로 열에너지 또는 전기에너지를 공급하는 단방향 열/전기 공급 방식이었다.The conventional thermal energy network system or electrical energy network system has been a unidirectional heat / electric supply method of supplying thermal energy or electrical energy from a supply side to a demand side.
구체적으로, 공급측에서 고온의 열매체를 수요측으로 공급하면, 수요측에서는 고온의 열매체로부터 열에너지를 획득하게 된다. 열에너지를 수요측으로 제공하여 저온화된 열매체는 다시 공급측으로 환수되게 된다. 또한, 공급측은 전기 케이블을 통해 전기에너지를 수요측으로 공급한다.Specifically, if the supply side supplies the high temperature heat medium to the demand side, the demand side obtains thermal energy from the high temperature heat medium. By supplying the heat energy to the demand side, the heat-reduced heat medium is returned to the supply side. In addition, the supply side supplies the electric energy to the demand side through the electric cable.
그러나 앞서 언급된 바와 같이 수요측에 설치되어 있는 소형 열병합발전 시스템에서 생산된 열과 전기를 외부의 다른 수요측으로 공급하기 위해서는 종래와는 전혀 다른 방식의 네트워크 시스템이 갖춰져야만 한다. 즉, 종래의 일방향 거래 시스템을 탈피하여 양방향 거래 시스템이 필요한 것이다.However, as mentioned above, in order to supply the heat and electricity produced in the small cogeneration system installed on the demand side to the other demand side, a network system of a completely different method must be provided. In other words, a two-way trading system is needed to overcome the conventional one-way trading system.
양방향 열/전기 거래 시스템은 공급측이 수요측으로 열에너지 및 전기에너지를 공급하는 것은 물론, 수요측에서 자체의 열에너지 및 전기에너지 발생기기를 통해 잉여 열/전기 에너지를 발생시킨 경우, 수요측에서 공급측으로 열 및 전기에너지를 공급 및 판매하는 방식이다. 이러한 방식을 통해 수요측은 각 수요자가 보유한 열병합발전 시스템의 유휴시 또는 잉여열/잉여전기 발생시 열/전기를 생산/공급하여 급변하는 인근의 열/전기 수요에 원거리 공급자에 비해 신속하게 대응이 가능하여 열/전기 공급 만족도를 높일 수 있는 것과 동시에, 열/전기 생산을 통해 이득을 취하여 기기 설치 및 운영비의 회수기간 단축을 기대할 수 있게 된다. 또한 공급자측은 급변하는 수요자측 열/전기 수요를 보다 일정하게 관리할 수 있게 되어 잦은 부하변동을 줄여 안정적인 운전이 가능하게 되며, 또한 열병합발전 설비를 운영하는 경우 최근 동절기에도 급증하고 있는 전기수요에 탄력적으로 대응할 수 있는 운영효과를 겸비하는 장점을 가지게 된다. 이에 따라 이러한 양방향 열/전기 거래 시스템이 구축되는 경우 기존의 수요자-공급자의 관계로 고정되어 있는 관계를 벗어나 수요자측도 필요에 따라 공급자가 될 수 있는 중앙공급 - 분산열원 결합 기반의 열/전기 에너지 네트워크 시스템을 구현할 수 있다.The bidirectional thermal / electrical trading system not only supplies heat energy and electric energy to the demand side, but also generates excess heat / electric energy through its own heat and electric energy generating equipment on the demand side. And a method of supplying and selling electrical energy. In this way, the demand side can produce and supply heat / electricity when the cogeneration system owned by each consumer is idle or when surplus heat / surplus electricity is generated, so that the demand side can respond quickly to the rapidly changing neighboring heat / electricity demands compared to the remote suppliers. In addition to improving thermal / electrical supply satisfaction, the company will benefit from thermal / electrical production and expect a shorter payback period for equipment installation and operating costs. In addition, the supplier side can manage the rapidly changing consumer's heat / electricity demand more consistently, thereby reducing the frequent load fluctuations, and enabling stable operation.In addition, when the cogeneration plant operates, it is resilient to the recent increase in electricity demand during the winter season. It will have the advantage of having operational effects that can be coped with. Accordingly, when such a bidirectional thermal / electrical trading system is established, the central supply-distributed heat source combination-based thermal / electric energy network that can be a supplier as needed, out of the fixed relationship of the existing consumer-supplier relationship. You can implement the system.
이러한 양방향 열/전기 거래는 공급측과 수요측 간에도 이루어질 수 있을 뿐만 아니라, 서로 다른 수요측 간에도 이루어질 수 있다.Such bidirectional thermal / electricity transactions can be made not only between the supply side and the demand side, but also between different demand sides.
따라서, 열병합발전 시스템 운전에 따른 잉여열 발생 또는 열판매수요에 따른 열생산시에 따른 열거래 시 공급측과 수요측의 관계가 상황에 따라 가변 될 수 있으므로 이를 조절할 수 있는 구조 및 이때 발생하는 구매 혹은 판매 시 발생하는 열에너지의 유량을 정확히 측정할 필요가 있다.Therefore, the relationship between the supply side and the demand side may vary depending on the situation in the case of excess heat generation due to the operation of the cogeneration system or heat production according to the heat sales demand, so that the structure and the purchase or It is necessary to accurately measure the flow rate of thermal energy generated at the time of sale.
그러나 종래 기술에 있어서, 전기의 경우 현재에도 전세계적으로 신재생 발전원 또는 열병합발전 시스템을 보유한 세대 또는 건물의 경우 양방향으로 계측이 가능한 양방향 전력계를 이용하여 전력회사에 판매하는 것이 가능하다. 하지만 열에너지의 경우는 수요처에서 발생한 열을 양방향으로 제어, 판매할 수 있는 네트워크 배관구조, 측정방법 및 제어방법이 전무하여 열병합발전 시스템이 전기 수요에 대응하기 위해 발전하는 경우 같이 발생하는 열은 버려질 수 밖에 없도록 구성되어 있다. 더욱이 종래 기술에 따른 열에너지 네트워크 시스템은 열거래 시 발생하는 열에너지의 유량을 일방향 흐름에 관해서만 측정할 수 있을 뿐, 양방향 모두에 관해서 측정할 수 없는 문제점이 있다.However, in the prior art, it is possible to sell electricity to a power company using a bi-directional power meter that can measure in both directions in the case of electricity, in the case of a generation or a building having a renewable energy source or a cogeneration system worldwide. However, in the case of thermal energy, there is no network piping structure, measurement method, and control method that can control and sell heat generated at the demand source in both directions. Therefore, the heat generated when the cogeneration system generates power to meet the demand of electricity will be discarded. It is configured to be forced. Moreover, the thermal energy network system according to the prior art can measure the flow rate of thermal energy generated during heat transactions only in one-way flow, and cannot measure in both directions.
따라서, 열에너지 공급측, 수요측 및 또 다른 수요측 간의 열에너지 네크워크 시스템에 대한 구체적인 해결방안이 필요한 실정이다.Therefore, there is a need for a concrete solution for the thermal energy network system between the heat energy supply side, demand side, and another demand side.
본 발명의 목적은, 열병합발전 시스템으로 구축된 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템에 있어서, 각 수요측, 공급측 및 또 다른 수요측 간의 열에너지 및 전기에너지 네트워크 시스템을 구축하여, 상호 열에너지 및 전기에너지의 구매 및 판매가 가능한 열/전기에너지 네크워크 시스템 및 이를 운용하는 방법을 제공하는 것이다.An object of the present invention is to build a thermal energy and electrical energy network system between each demand side, supply side and another demand side in a separate heat / electric energy and central heat / electric energy supply linkage system constructed as a cogeneration system, The present invention provides a thermal / electric energy network system capable of purchasing and selling mutual thermal energy and electrical energy, and a method of operating the same.
이러한 목적을 달성하기 위한 본 발명의 일 측면에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)은,Individual heat / electrical energy and central heat / electrical energy supply linkage system 600 according to an aspect of the present invention for achieving this object,
열에너지 및 전기에너지를 생산할 수 있는 개별 열/전기 에너지 발생기기(110)를 구비한 하나 이상의 개별 세대 혹은 건물(100);One or more individual households or buildings 100 having individual thermal / electrical energy generators 110 capable of producing thermal and electrical energy;
중앙 배관(300)에 의해 상기 개별 세대 혹은 건물(100)과 연결되고, 열에너지 및 전기에너지를 생산할 수 있는 중앙 열/전기 에너지 공급기기(210)를 하나 이상 구비한 중앙 열/전기 공급부(200);The central heat / electric supply unit 200 connected to the individual generation or building 100 by a central pipe 300 and having one or more central heat / electric energy supply devices 210 capable of producing thermal energy and electric energy. ;
상기 개별 세대 혹은 건물(100)과 중앙 열/전기 공급부(200)를 연결하는 중앙 배관(300)에 하나 이상 장착되고, 중앙 배관(300) 내부에서 일방향 및 타방향으로 이동하는 열에너지의 유량을 측정하는 양방향 열량계(400a, 400b); 및At least one mounted on the central pipe 300 connecting the individual household or building 100 and the central heat / electricity supply unit 200, and measures the flow rate of the thermal energy moving in one direction and the other direction inside the central pipe (300) Bidirectional calorimeters 400a and 400b; And
상기 개별 열/전기 에너지 발생기기(110)로부터 외부 상용계통(700)으로 이동하는 전기에너지의 전력량을 측정하거나, 외부 상용계통(700)으로부터 개별 세대 혹은 건물(100)의 전기부하부(520)로 이동하는 전기에너지의 전력량을 측정할 수 있도록, 상기 개별 열/전기 에너지 발생기기(110)와 외부 상용계통(700) 사이 및 전기부하부(520)와 외부 상용계통(700) 사이에 장착되는 양방향 전력량계(510);Measures the amount of electric energy moving from the individual thermal / electrical energy generator 110 to the external commercial system 700, or the electric load 520 of the individual household or building 100 from the external commercial system 700. In order to measure the amount of power of the electric energy moving to the, is installed between the individual heat / electric energy generator 110 and the external commercial system 700 and between the electrical load 520 and the external commercial system 700. Two-way electricity meter 510;
를 포함하되,Including,
상기 중앙 배관(300)은, 열에너지 전달매체가 이동할 수 있는 공급 배관(310) 및 환수 배관(320)으로 구성될 수 있다.The central pipe 300 may include a supply pipe 310 and a return pipe 320 through which the heat energy transfer medium may move.
이 경우, 상기 개별 열/전기 에너지 발생기기(110)는, 스털링 엔진(Stirling engine), 랭킨 엔진(Rankine engine), 연료전지(Fuel cell), 왕복동식 엔진(Reciprocating Engine), 터빈(Turbine), PVT(photovoltaic thermal) 시스템, 태양열, 지열 등의 신재생 에너지를 활용하는 에너지 발생기기로 이루어진 군에서 하나 이상 선택되는 것일 수 있다.In this case, the individual thermal / electric energy generator 110 includes a Stirling engine, a Rankine engine, a fuel cell, a reciprocating engine, a turbine, It may be one or more selected from the group consisting of photovoltaic thermal (PVT) system, energy generators utilizing renewable energy such as solar and geothermal.
본 발명의 일 실시예에서, 상기 개별 세대 혹은 건물(100)과 중앙 열/전기 공급부(200)를 연결하는 중앙 배관(300)에는, 열에너지의 흐름 방향을 조절할 수 있도록, 삼방밸브(3-way valve, 131) 및 체크밸브(check valve, 132)가 더 장착될 수 있다.In one embodiment of the present invention, in the central pipe 300 connecting the individual generation or building 100 and the central heat / electricity supply unit 200, to control the flow direction of the thermal energy, three-way valve (3-way valve 131 and a check valve 132 may be further mounted.
본 발명의 또 다른 실시예에서, 상기 공급 배관(310)은, 개별 열/전기 에너지 발생기기(110)로부터 발생된 열에너지를 공급받거나, 중앙 열/전기 에너지 공급기기(210)로부터 발생한 열에너지를 개별 세대 혹은 건물(100)로 공급할 수 있도록 개별 세대 혹은 건물(100)과 연결되고,In another embodiment of the present invention, the supply pipe 310 receives the heat energy generated from the individual heat / electric energy generator 110, or separates the heat energy generated from the central heat / electric energy supply device 210 Connected with individual households or buildings 100 to supply to households or buildings 100,
상기 환수 배관(320)은, 개별 열/전기 에너지 발생기기(110)에 열에너지 전달매체를 공급하거나, 공급 배관(310)으로 유동하는 열에너지 전달매체를 회수할 수 있도록, 상기 공급 배관(310) 및 개별 세대 혹은 건물(100)과 연결될 수 있다.The return pipe 320 may supply the heat energy transfer medium to the individual heat / electric energy generator 110 or recover the heat energy transfer medium flowing to the supply pipe 310. It can be connected to an individual household or building 100.
본 발명의 또 다른 실시예에서, 상기 환수 배관(320)과 개별 열/전기 에너지 발생기기(110)는 열에너지 전달매체가 이동할 수 있는 연결 배관(321)에 의해 상호 연결되어 있고,In another embodiment of the present invention, the return pipe 320 and the individual heat / electrical energy generator 110 is interconnected by a connection pipe 321 through which the heat energy transfer medium can move,
상기 환수 배관(320)으로부터 개별 열/전기 에너지 발생기기(110)로 유동하는 열에너지 전달매체의 유량을 측정할 수 있도록, 연결 배관(321)에 양방향 열량계(400a, 400b)가 장착될 수 있다.Two- way calorimeters 400a and 400b may be installed in the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110.
본 발명의 또 다른 일 실시예로서, 상기 양방향 열량계는 도 1에 도시된 바와 같이 분기관에 서로 다른 방향으로 배치된 체크밸브와 각 분기 라인에 설치된 각각의 유량계(도시 생략)를 포함하는 구성일 수 있다.As another embodiment of the present invention, the bidirectional calorimeter includes a check valve disposed in different directions in the branch pipe and each flow meter (not shown) installed in each branch line as shown in FIG. 1. Can be.
본 발명은 또한 상기 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)을 운용하는 방법을 제공하는 바, 본 발명의 일 측면에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법(S100)은,The present invention also provides a method for operating the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 600, the individual thermal / electrical energy and central thermal / electrical energy supply according to one aspect of the present invention. Linked system operation method (S100),
(a) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 있고 열에너지 및 전기에너지 판매 의사가 없는 경우, 개별 열/전기 에너지 발생기기(110)의 운용을 중지하는 과정;(a) stopping the operation of the individual heat / electric energy generator 110 when there is a demand for thermal energy and electrical energy of the individual household or building 100 and there is no intention to sell the thermal energy and electrical energy;
(b) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 없고 열에너지 및 전기에너지 판매 의사가 있는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 열에너지 및 전기에너지를 판매하는 과정; 및(b) If there is no demand for thermal and electrical energy of individual households or buildings 100 and is willing to sell thermal and electrical energy, the thermal and electrical energy generator 110 is used to produce thermal and electrical energy; The process of selling electrical energy; And
(c) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 있고 열에너지 및 전기에너지 판매 의사가 없는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하여 개별 세대 혹은 건물(100)의 개별 열사용부(120) 및 전기부하부(520)에 열에너지 및 전기에너지를 공급하는 과정;(c) When there is a demand for thermal and electrical energy of individual households or buildings 100 and there is no intention of selling thermal and electrical energy, the individual thermal / electric energy generator 110 is used to produce thermal energy and electrical energy to produce individual households or Supplying thermal energy and electrical energy to the individual heat use part 120 and the electric load part 520 of the building 100;
(d) 개별 세대 혹은 건물(100)의 전기에너지 수요만 있고 열에너지 및 전기에너지 판매 의사가 있는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 개별 세대 혹은 건물(100)의 전기부하부(520)에 전기에너지를 공급하고 잉여 전기에너지 및 열에너지를 판매하는 과정; 및(d) If there is only the demand for electrical energy of an individual household or building 100 and is willing to sell thermal energy and electrical energy, the individual thermal / electric energy generator 110 produces thermal energy and electrical energy, and the individual household or building Supplying electrical energy to the electrical load unit 520 of 100 and selling surplus electrical energy and thermal energy; And
(e) 개별 세대 혹은 건물(100)의 열에너지 수요만 있고 열에너지 및 전기에너지 판매 의사가 있는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 개별 세대 혹은 건물(100)의 개별 열사용부(120)에 열에너지를 공급하고 잉여 열에너지 및 전기에너지를 판매하는 과정;(e) If there is only a thermal energy demand of an individual household or building 100 and is willing to sell thermal energy and electrical energy, the individual thermal / electric energy generator 110 produces thermal energy and electrical energy, and the individual household or building ( Supplying thermal energy to the individual heat-use unit 120 of 100 and selling surplus thermal energy and electrical energy;
을 포함하는 구성일 수 있다.It may be a configuration including a.
이 경우, 상기 환수 배관(320)과 개별 열/전기 에너지 발생기기(110)는 열에너지 전달매체가 이동할 수 있는 연결 배관(321)에 의해 상호 연결되어 있고,In this case, the return pipe 320 and the individual heat / electric energy generator 110 are interconnected by a connection pipe 321 through which the heat energy transfer medium can move.
상기 환수 배관(320)으로부터 개별 열/전기 에너지 발생기기(110)로 유동하는 열에너지 전달매체의 유량을 측정할 수 있도록, 연결 배관(321)에 양방향 열량계(400a, 400b)가 장착될 수 있다.Two- way calorimeters 400a and 400b may be installed in the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110.
또한, 상기 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법은,In addition, the individual thermal / electrical energy and the central thermal / electrical energy supply system operating method,
(f) 개별 열/전기 에너지 발생기기(110)에 의해 생산된 열에너지가 개별 열사용부의 열에너지 수요에 미치지 못하고 부족할 경우, 공급 배관(310) 및 연결 배관(312)을 통해 열에너지를 공급 받아 개별 세대 혹은 건물(100)의 개별 열사용부(120)에 공급하는 과정;(f) When the heat energy produced by the individual heat / electric energy generator 110 is insufficient to meet the heat energy demand of the individual heat-use part, the heat generation is supplied through the supply pipe 310 and the connection pipe 312 to receive the individual generation. Or the process of supplying to the individual heat using unit 120 of the building 100;
을 더 포함하는 구성일 수 있다.It may be a configuration that further includes.
상기 운용방법에 의해 시스템이 운영되는 경우 개별 열에너지 발생기기(110)가 한대 이상 중앙 열/전기에너지 공급기기(210)와 연계되어 운영되는 경우 다수의 열에너지 판매 의사가 열수요를 초과하면서 공급온도가 과도하게 상승하는 경우에는 중앙 열/전기공급부(200)내의 열에너지 저장부(220)를 이용하여 잉여열을 저장할 수 있도록 하고, 반대로 열수요가 많은데도 불구하고 열에너지 판매 의사가 없고 중앙 열/전기공급부(200)의 공급능력을 초과하는 경우에는 중앙 열/전기공급부(200)내의 열에너지 저장부(220)에 저장된 열을 활용할 수 있는 방법을 더 포함하는 구성일 수 있다.When the system is operated by the above operating method, when the individual thermal energy generating device 110 is operated in connection with at least one central heat / electric energy supply device 210, a plurality of thermal energy sales intentions exceed the heat demand and supply temperature is increased. In case of excessive rise, it is possible to store excess heat by using the thermal energy storage unit 220 in the central heat / electric supply unit 200, and on the contrary, despite the high demand for heat, there is no intention of selling heat energy and the central heat / electric supply unit 200 In the case of exceeding the supply capacity of) may be a configuration further comprising a method that can utilize the heat stored in the thermal energy storage unit 220 in the central heat / electricity supply unit 200.
도 1 및 도 2는 본 발명의 하나의 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템의 모식도이다.1 and 2 are schematic diagrams of individual thermal / electrical energy and central thermal / electrical energy supply linkage systems according to one embodiment of the invention.
도 3 및 도 4는 본 발명에 따른 양방향 열량계의 개념도이다.3 and 4 is a conceptual diagram of a bidirectional calorimeter according to the present invention.
도 5는 본 발명의 하나의 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템을 운용하는 방법을 나타내는 순서도이다.5 is a flow chart illustrating a method of operating separate thermal / electrical energy and central thermal / electrical energy supply linkage systems in accordance with one embodiment of the present invention.
도 6 내지 도 11은 본 발명의 하나의 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템의 운용방법을 나타내는 모식도이다.6 to 11 is a schematic diagram showing a method of operating the individual thermal / electrical energy and the central thermal / electrical energy supply connection system according to an embodiment of the present invention.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하지만 본 발명의 범주가 그것에 한정되는 것은 아니다. 본 발명을 설명함에 있어 공지된 구성에 대해서는 그 상세한 설명을 생략하며, 또한 발명의 요지를 불필요하게 흐릴 소지가 있는 구성에 대해서도 그 상세한 설명은 생략하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the scope of the present invention is not limited thereto. In the description of the present invention, a detailed description of known configurations will be omitted, and a detailed description thereof will be omitted for configurations that may unnecessarily obscure the subject matter of the present invention.
도 1 및 도 2에는 본 발명의 하나의 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템의 모식도가 도시되어 있다.1 and 2 are schematic diagrams of individual thermal / electrical energy and central thermal / electrical energy supply linkage systems according to one embodiment of the invention.
우선 도 1을 참조하면, 본 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)은, 개별 세대 혹은 건물(100), 중앙 열/전기 공급부(200), 개별 세대 혹은 건물(100)과 중앙 열/전기 공급부(200)를 연결하는 중앙 배관(300), 개별 세대 혹은 건물(100)과 중앙 배관(300) 사이에 장착되는 양방향 열량계(400a, 400b) 및 외부 상용계통(700)과 개별 세대 혹은 건물(100) 사이에 장착되는 양방향 양방향 전력량계(510)를 포함하는 구성일 수 있다.First, referring to FIG. 1, the individual thermal / electrical energy and central thermal / electrical energy supply connection system 600 according to the present embodiment may include individual households or buildings 100, central thermal / electrical supply units 200, and individual households. Alternatively, the central pipe 300 connecting the building 100 and the central heat / electricity supply unit 200, the bidirectional calorimeters 400a and 400b mounted between the individual households or the building 100, and the central pipe 300 and external commercial use It may be a configuration that includes a bi-directional bidirectional electricity meter 510 mounted between the system 700 and the individual household or building 100.
구체적으로, 개별 열/전기 에너지 발생기기(110)는 열에너지 및 전기에너지를 생산할 수 있는 발전기기라면 특별히 제한되는 것은 아니며, 예를 들어 스털링 엔진(Stirling engine), 랭킨 엔진(Rankine engine), 연료전지(Fuel cell), 왕복동식 엔진(Reciprocating Engine), 터빈(Turbine), PVT(photovoltaic thermal) 시스템으로 이루어진 군에서 하나 이상 선택되는 발전기기일 수 있다. 여기서 PVT 란, 태양광과 태양열을 동시에 생산하는 신재생 전원/열원 생산 시스템의 일종을 말한다. 또한, 개별 열/전기 에너지 발생기기(110)는 태양열, 지열 등의 신재생 에너지를 활용하는 에너지 발생기기일 수도 있다.Specifically, the individual thermal / electric energy generator 110 is not particularly limited as long as it is a generator capable of producing thermal energy and electrical energy, for example, a Stirling engine, a Rankine engine, a fuel cell. (Fuel cell), a reciprocating engine (Reciprocating Engine), a turbine (Turbine), may be one or more generators selected from the group consisting of PVT (photovoltaic thermal) system. Here, PVT means a kind of renewable power / heat source production system that produces solar light and solar heat at the same time. In addition, the individual thermal / electric energy generator 110 may be an energy generator that utilizes renewable energy such as solar heat and geothermal heat.
개별 열/전기 에너지 발생기기(110)로부터 생산된 열에너지는 난방분배기(121) 및 급탕수전(122) 등으로 구성되는 개별 열사용부(120)에 공급될 수 있다. 또한, 개별 열/전기 에너지 발생기기(110)로부터 생산된 전기에너지는 전기부하부(520) 또는 외부 상용계통(700)으로 공급될 수 있다.The heat energy produced from the individual heat / electric energy generator 110 may be supplied to the individual heat using unit 120 including the heating distributor 121 and the hot water supply and power supply 122. In addition, the electric energy produced from the individual heat / electric energy generator 110 may be supplied to the electric load 520 or the external commercial system 700.
더욱 구체적으로, 개별 열사용부(120)는 도 1에 도시된 바와 같이, 세대 급탕 유닛(123)을 포함할 수 있으며, 세대 급탕 유닛(123)은 외부 시수 공급원(124)으로부터 공급된 시수를 공급된 열에너지로 가열시키며, 가열된 급탕은 급탕수전(122)을 통해 이용할 수 있다.More specifically, the individual heat use unit 120 may include a generation hot water supply unit 123, as shown in FIG. 1, and the generation hot water supply unit 123 may receive the water supplied from the external municipal water supply source 124. Heated by the supplied thermal energy, the heated hot water supply can be used through the hot water supply faucet (122).
개별 세대 혹은 건물(100)은 개별 열/전기 에너지 발생기기(110)로부터 생산된 잉여 열에너지를 연결 배관(311) 및 공급 배관(310)을 통해 중앙 열/전기 공급부(200)에 공급할 수 있다. 이때, 중앙 열/전기 공급부(200)에 공급되는 열에너지의 유량은 양방향 열량계(400a, 400b)를 통해 측정될 수 있다.The individual generation or building 100 may supply surplus heat energy produced from the individual heat / electric energy generator 110 to the central heat / electric supply unit 200 through the connection pipe 311 and the supply pipe 310. In this case, the flow rate of the heat energy supplied to the central heat / electric supply unit 200 may be measured through the bidirectional calorimeters 400a and 400b.
따라서, 이러한 구성을 포함하는 본 발명에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)은, 각 개별 세대 혹은 건물(100), 중앙 열/전기 공급부(200) 및 또 다른 개별 세대 혹은 건물(도시하지 않음) 간의 열에너지 및 전기에너지 네트워크 시스템을 구축할 수 있고, 열에너지의 정확한 유량 및 전기에너지의 용량을 측정할 수 있으며, 이를 바탕으로 열에너지 및 전기에너지 구매 및 판매가 가능하다.Accordingly, the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 600 according to the present invention including such a configuration may include each individual household or building 100, a central thermal / electrical supply unit 200, and another. It is possible to build thermal and electrical energy network systems between individual households or buildings (not shown), to measure the exact flow of thermal energy and the capacity of electrical energy, and to purchase and sell thermal and electrical energy.
한편, 도 1에 도시된 바와 같이, 개별 세대 혹은 건물(100)과 중앙 열/전기 공급부(200)를 연결하는 배관(300)에는, 열에너지의 흐름 방향을 조절할 수 있도록, 삼방밸브(3-way valve, 131, 131a) 및 체크밸브(check valve, 132, 132a)가 더 장착될 수 있다. 열에너지의 흐름 방향을 조절할 수 있는 장치라면 이에 한정되지 않음은 물론이다.On the other hand, as shown in Figure 1, in the pipe 300 connecting the individual generation or building 100 and the central heat / electricity supply unit 200, three-way valve (3-way) to adjust the flow direction of the thermal energy valves 131 and 131a and check valves 132 and 132a may be further mounted. Of course, if the device capable of adjusting the flow direction of the thermal energy is not limited thereto.
또한, 공급 배관(310)은, 개별 열/전기 에너지 발생기기(110)로부터 발생된 열에너지를 공급받거나, 중앙 열/전기 에너지 공급기기(210)로부터 발생한 열에너지를 개별 세대 혹은 건물(100)로 공급할 수 있도록 개별 세대 혹은 건물(100)과 연결된 구성일 수 있다. 환수 배관(320)은, 개별 열/전기 에너지 발생기기(110)에 열에너지 전달매체를 공급하거나, 공급 배관(310)으로 유동하는 열에너지 전달매체를 회수할 수 있도록, 공급 배관(310) 및 개별 세대 혹은 건물(100)과 연결된 구성일 수 있다.In addition, the supply pipe 310 may receive heat energy generated from the individual heat / electric energy generator 110 or supply heat energy generated from the central heat / electric energy supply device 210 to the individual household or the building 100. It may be a configuration connected to the individual household or building 100 to be. The return pipe 320 may supply the heat energy transfer medium to the individual heat / electric energy generator 110, or recover the heat energy transfer medium flowing into the supply pipe 310, so that the supply pipe 310 and the individual generations may be recovered. Or it may be a configuration connected to the building (100).
도 1에 도시된 바와 같이, 환수 배관(320)과 개별 열/전기 에너지 발생기기(110)는 열에너지 전달매체가 이동할 수 있는 연결 배관(321)에 의해 상호 연결되어 있는 구성일 수 있다. 이때, 환수 배관(320)으로부터 개별 열/전기 에너지 발생기기(110)로 유동하는 열에너지 전달매체의 유량을 측정할 수 있도록, 연결 배관(321)에 양방향 열량계(400a, 400b)가 장착될 수 있다.As shown in FIG. 1, the return pipe 320 and the individual heat / electric energy generator 110 may be connected to each other by a connection pipe 321 through which a heat energy transfer medium may move. In this case, the bidirectional calorimeters 400a and 400b may be mounted on the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110. .
또한, 개별 세대 혹은 건물(100)은 개별 열/전기 에너지 발생기기(110) 및 개별 열사용부(120)로 구성될 수 있고, 양방향 열량계(400a, 400b) 및 삼방밸브(131)에 의해 특정 결합관계를 이룰 수 있다. 구체적으로, 삼방밸브(131)의 일측은 양방향 열량계(400a, 400b)와 연결되고, 타측은 개별 열/전기 에너지 발생기기(110)와 연결되며, 나머지 한 측은 개별 열사용부(120)와 연결될 수 있다. 또한, 개별 열/전기 에너지 발생기기(110)는 내부에 또 다른 삼방밸브(131a)를 구비하고 있어, 중앙 배관(300)의 공급 배관(310)과 개별 열사용부(120)와 연결될 수 있다. 또한, 중앙 배관(300)의 공급 배관(310)은 연결 배관(312)에 의해 개별 열사용부(120)와 연결될 수 있으며, 이때 공급 배관(310)과 개별 열사용부(120) 사이의 연결 배관(312)에는 공급 배관(310)으로부터 개별 열사용부(120)로 향하는 열에너지의 흐름만을 허용하는 체크밸브(132)가 개별 열/전기 에너지 발생기기(110) 내부의 또 다른 삼방밸브(131a)와 개별 열사용부(120)가 연결되는 지점보다 공급배관측 즉 상류측에 장착될 수 있다.In addition, the individual generation or building 100 may be composed of a separate heat / electric energy generator 110 and a separate heat using unit 120, it is specified by the two-way calorimeter (400a, 400b) and the three-way valve 131 A bond can be achieved. Specifically, one side of the three-way valve 131 is connected to the bi-directional calorimeters (400a, 400b), the other side is connected to the individual heat / electrical energy generator 110, the other side is to be connected to the individual heat using unit 120 Can be. In addition, the individual heat / electric energy generator 110 has another three-way valve 131a therein, and may be connected to the supply pipe 310 and the individual heat use part 120 of the central pipe 300. . In addition, the supply pipe 310 of the central pipe 300 may be connected to the individual heat using portion 120 by the connection pipe 312, wherein the connection between the supply pipe 310 and the individual heat using portion 120 The pipe 312 has a check valve 132 that allows only the flow of thermal energy from the supply pipe 310 to the individual heat-use part 120 is another three-way valve 131a inside the individual heat / electric energy generator 110. ) And the individual heat use unit 120 may be mounted on the supply piping side, that is, upstream side.
도 1에서는 간략한 도시를 위해 개별 세대 혹은 건물을 하나만 나타내었으나, 아파트 등과 같은 공동 주책의 경우, 도 2와 같이 다수의 세대를 위한 개별 세대 혹은 건물이 다수 개 마련됨은 물론이다.In FIG. 1, only one individual household or building is shown for the sake of simplicity, but in the case of a joint policy such as an apartment, a plurality of individual households or buildings are provided for a plurality of households as shown in FIG. 2.
도 2를 참조하면, 본 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)은, 개별 세대 혹은 건물(100)을 둘 이상 포함하는 구성일 수 있다.Referring to FIG. 2, the individual thermal / electrical energy and central thermal / electrical energy supply connection system 600 according to the present embodiment may be configured to include two or more individual households or buildings 100.
구체적으로, 도 2에 도시된 바와 같이, 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(500)은 둘 이상의 개별 세대 혹은 건물(100)로 구성되는 공동주택(100')과 중앙 배관(300)에 의해 서로 연결되어 열에너지의 구매 및 판매를 구현할 수 있다. 또한, 개별 세대 혹은 건물(100)은 전기 판매/구매 케이블(512)를 통해 외부 상용계통과 연결되어 전기의 구매 및 판매를 구현할 수 있다. 또한, 도 2에 도시된 공동주택(100')은 또 다른 대단위 주택 단지, 아파트 단지, 산업 단지 또는 도시 등으로 대체될 수 있음은 물론이다.Specifically, as shown in FIG. 2, the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 500 includes a multi-unit house 100 ′ and a central plumbing composed of two or more individual households or buildings 100. The 300 may be connected to each other to implement the purchase and sale of thermal energy. In addition, the individual generation or building 100 may be connected to the external commercial system through the electricity sales / purchase cable 512 to implement the purchase and sale of electricity. In addition, the multi-unit house 100 ′ shown in FIG. 2 may be replaced by another large-scale housing complex, apartment complex, industrial complex or city.
따라서, 이러한 구성을 포함하는 본 발명에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)은, 더욱 더 안정적으로 열에너지 구매 및 판매 관리가 가능할 수 있다. 본 발명에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)을 이용하여 열에너지 및 전기에너지 구매 및 판매 관리하는 방법에 대한 더욱 구체적인 설명은 후술하기로 한다.Accordingly, the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 600 according to the present invention including such a configuration may enable more stable thermal energy purchase and sale management. A more detailed description of a method for managing thermal energy and electrical energy purchase and sale using the individual thermal / electrical energy and central thermal / electrical energy supply linked system 600 according to the present invention will be described later.
도 3 및 도 4에는 본 발명에 따른 양방향 열량계의 개념도가 도시되어 있다.3 and 4 are conceptual views of the bidirectional calorimeter according to the present invention.
우선 도 3을 참조하면, 본 발명의 하나의 실시예에 따른 양방향 열량계(400a)는, 관로(410a, 420a) 상에 분기된 제 1 분기배관부(411a, 421a) 및 제 2 분기배관부(412a, 422a), 제 1 유량계(441a), 제 2 유량계(442a), 및 제어부(450a)를 포함하는 구성일 수 있다.First, referring to FIG. 3, a bidirectional calorimeter 400a according to an embodiment of the present invention may include a first branch pipe part 411a and 421a and a second branch pipe part branched on the pipes 410a and 420a. 412a, 422a, a first flow meter 441a, a second flow meter 442a, and a controller 450a.
이러한 구성은 본 출원인이 출원한 출원번호 10-2012-0126295호에 개시된 발명의 구성과 동일한 것으로서, 본 발명은 출원번호 10-2012-0126295호에 개시된 양방향 열량계를 채택하여 적용할 수 있다.This configuration is the same as the configuration of the invention disclosed in the applicant No. 10-2012-0126295 filed by the present applicant, the present invention can be applied by adopting the bidirectional calorimeter disclosed in the application number 10-2012-0126295.
구체적으로, 제 1 분기배관부(411a, 421a) 및 제 2 분기배관부(412a, 422a)는 관로(410a, 420a) 상에 장착된 제 1 삼방밸브(431a) 및 제 2 삼방밸브(432a)에 의해 분기된 구조일 수 있다.Specifically, the first branch pipe parts 411a and 421a and the second branch pipe parts 412a and 422a may include the first three-way valve 431a and the second three-way valve 432a mounted on the pipe lines 410a and 420a. It may be a structure branched by.
제 1 유량계(441a)는 제 1 분기배관부(411a, 421a)에 장착되어 제 1 분기배관부(411a, 421a)를 통해 유동하는 유체의 유량을 측정할 수 있고, 제 2 유량계(442a)는 제 2 분기배관부(412a, 422a)에 장착되어 제 2 분기배관부(412a, 422a)를 통해 유동하는 유체의 유량을 측정할 수 있다. 더욱 구체적으로, 제 1 유량계(441a) 및 제 2 유량계(442a)는 내부 유체의 유량을 측정할 수 있는 것이라면 특별히 제한되는 것은 아니나, 예를 들어 임펠러 유량계(impeller flow meter)일 수 있다. 또한, 본 발명에 따른 양방향 열량계는 제 1 분기배관부(411a, 421a) 또는 제 2 분기배관부(412a, 422a) 내 열에너지의 온도를 측정하는 온도 측정부; 및 제 1 유량계(441a) 또는 제 2 유량계(442a)에 의해 측정되는 유량과 온도 측정부에서 측정되는 온도를 기초로 열량을 산출하는 연산부;를 포함하는 구성일 수 있다. 더욱 구체적으로, 열량은 양방향 열량계 내부에서 측정되는 온도(환수 온도)와 연산부(도시하지 않음)로 연결되는 별도의 온도센서를 공급측에 설치하여 두 개의 온도 차이를 이용하여 열량을 산출할 수 있다.The first flow meter 441a may be mounted on the first branch pipe parts 411a and 421a to measure the flow rate of the fluid flowing through the first branch pipe parts 411a and 421a, and the second flow meter 442a may be used. The flow rate of the fluid flowing through the second branch pipe parts 412a and 422a and flowing through the second branch pipe parts 412a and 422a may be measured. More specifically, the first flow meter 441a and the second flow meter 442a are not particularly limited as long as they can measure the flow rate of the internal fluid, but may be, for example, an impeller flow meter. In addition, the bidirectional calorimeter according to the present invention includes a temperature measuring unit for measuring the temperature of the heat energy in the first branch pipe 411a, 421a or the second branch pipe 412a, 422a; And a calculator configured to calculate a calorific value based on the flow rate measured by the first flow meter 441a or the second flow meter 442a and the temperature measured by the temperature measurer. More specifically, the calorific value may be calculated using two temperature differences by installing a separate temperature sensor connected to a temperature (return temperature) and an operation unit (not shown) measured inside the bidirectional calorimeter.
또한, 도 3에 도시된 바와 같이, 제어부(450a)는 제 1 삼방밸브(431a) 및 제 2 삼방밸브(432a)의 상태를 변경하여 유체의 흐름 방향을 제어할 수 있다.In addition, as shown in FIG. 3, the controller 450a may change the states of the first three-way valve 431a and the second three-way valve 432a to control the flow direction of the fluid.
한편 도 4를 참조하면, 본 발명의 또 다른 실시예에 따른 양방향 열량계(400b)는, 관로(410b, 420b) 상에 양방향으로 분기된 제 1 분기배관부(411b, 422b) 및 제 2 분기배관부(412b, 421b), 네 개의 체크밸브(431b, 432b, 433b, 434b) 및 유량계(440b)를 포함하는 구성일 수 있다.On the other hand, referring to Figure 4, the bidirectional calorimeter 400b according to another embodiment of the present invention, the first branch pipe 411b, 422b and the second branch pipe branched in both directions on the pipe (410b, 420b) It may be configured to include a portion (412b, 421b), four check valves (431b, 432b, 433b, 434b) and the flow meter (440b).
구체적으로, 제 1 체크밸브(431b) 및 제 4 체크밸브(434b)는, 제 1 분기배관부(411b, 422b)에 장착되어 내부 유체의 흐름 방향을 제어할 수 있다. 또한, 제 2 체크밸브(432b) 및 제 3 체크밸브(433b)는 제 2 분기배관부(412b, 421b)에 장착되어 내부 유체의 흐름 방향을 제어할 수 있다.Specifically, the first check valve 431b and the fourth check valve 434b may be mounted to the first branch pipe parts 411b and 422b to control the flow direction of the internal fluid. In addition, the second check valve 432b and the third check valve 433b may be mounted to the second branch pipe parts 412b and 421b to control the flow direction of the internal fluid.
또한, 유량계(440b)는 제 1 분기배관부(411b, 422b) 및 제 2 분기배관부(412b, 421b)에 장착되어 내부 유체의 유량을 측정할 수 있다. 더욱 구체적으로, 유량계(440b)는 내부 유체의 유량을 측정할 수 있는 것이라면 특별히 제한되는 것은 아니나, 예를 들어 임펠러 유량계(impeller flow meter)일 수 있다.In addition, the flow meter 440b may be mounted to the first branch pipe parts 411b and 422b and the second branch pipe parts 412b and 421b to measure the flow rate of the internal fluid. More specifically, the flow meter 440b is not particularly limited as long as it can measure the flow rate of the internal fluid, but may be, for example, an impeller flow meter.
상기 언급한 바와 같이, 본 발명에 따른 양방향 열량계(400a, 400b)는, 유체의 흐름을 삼방밸브(431a, 432a) 또는 체크밸브(431b, 432b, 433b, 434b)를 활용하여 제어할 수 있고, 삼방밸브(431a, 432a) 또는 체크밸브(431b, 432b, 433b, 434b)에 의해 제어된 유체의 흐름을 유량계(441a, 442a, 440b)를 통해 정확히 측정할 수 있다.As mentioned above, the bidirectional calorimeters 400a and 400b according to the present invention may control the flow of fluid using three- way valves 431a and 432a or check valves 431b, 432b, 433b and 434b. The flow of fluid controlled by the three- way valves 431a and 432a or the check valves 431b, 432b, 433b, and 434b can be accurately measured through the flowmeters 441a, 442a, and 440b.
본 발명의 또 다른 일 실시예로서, 상기 양방향 열량계는 도 1에 도시된 바와 같이 분기관에 서로 다른 방향으로 배치된 체크밸브와 각 분기 라인에 설치된 각각의 유량계(도시 생략)를 포함하는 구성일 수 있다. As another embodiment of the present invention, the bidirectional calorimeter includes a check valve disposed in different directions in the branch pipe and each flow meter (not shown) installed in each branch line as shown in FIG. 1. Can be.
또한, 본 발명에 따른 양방향 열량계는 도 3 및 도 4에 도시된 바에 한정되는 것은 아니며, 관로 상에 위치하여 관로 내부를 통해 유동하는 유체의 흐름을 제어할 수 있도록, 삼방밸브 또는 체크밸브를 구비하여 유체의 유량을 측정할 수 있는 구성이라면 특별히 제한되는 것은 아니다.In addition, the bidirectional calorimeter according to the present invention is not limited to those shown in FIGS. 3 and 4, and is provided with a three-way valve or a check valve to control the flow of the fluid flowing through the inside of the pipe located on the pipe. If the configuration can measure the flow rate of the fluid is not particularly limited.
따라서, 이러한 구조의 양방향 열량계(400a, 400b)를 포함하는 본 발명에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(500)은, 개별 세대 혹은 건물(100)과 중앙 열/전기 공급부(200) 간의 열에너지 구매 및 판매량을 정확하게 측정할 수 있다.Accordingly, the individual thermal / electrical energy and central thermal / electrical energy supply linkage system 500 according to the present invention including the bidirectional calorimeters 400a and 400b of such a structure may include individual households or buildings 100 and central thermal / electrical electricity. It is possible to accurately measure the amount of heat energy purchased and sold between the supply unit 200.
도 5에는 본 발명의 하나의 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템을 운용하는 방법을 나타내는 순서도가 도시되어 있고, 도 6 내지 도 10에는 본 발명의 하나의 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템의 운용방법을 나타내는 모식도가 도시되어 있다.FIG. 5 is a flowchart illustrating a method of operating an individual thermal / electrical energy and a central thermal / electrical energy supply linkage system according to an embodiment of the present invention, and FIGS. 6 to 10 illustrate one embodiment of the present invention. A schematic diagram showing how to operate individual thermal / electrical energy and a central thermal / electrical energy supply linked system according to an example is shown.
이들 도면을 참조하면, 본 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법(S100)은,Referring to these drawings, the individual thermal / electrical energy and the central thermal / electrical energy supply system operating method (S100) according to the present embodiment,
(a) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 있고 열에너지 및 전기에너지 판매 의사가 없는 경우(S110)에는 도 6에 도시된 바와 같이, 개별 열/전기 에너지 발생기기(110)의 운용을 중지하는 과정(S115);(a) When there is a demand for thermal energy and electrical energy of an individual household or building 100 and there is no intention of selling thermal energy and electrical energy (S110), as shown in FIG. 6, the individual heat / electric energy generator 110 Stopping operation (S115);
(b) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 없고 열에너지 및 전기에너지 판매 의사가 있는 경우(S120)에는 도 7에 도시된 바와 같이, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 열에너지 및 전기에너지를 판매하는 과정(S125)으로 운용될 수 있고,(b) When there is no demand for thermal energy and electrical energy of individual households or buildings 100 and there is a willingness to sell thermal energy and electrical energy (S120), as shown in FIG. 7, the individual thermal / electric energy generator 110 may be used. Production of thermal energy and electrical energy using, can be operated in the process of selling thermal energy and electrical energy (S125),
(c) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 있고 열에너지 및 전기에너지 판매 의사가 없는 경우(S130)에는 도 8에 도시된 바와 같이, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하여 개별 세대 혹은 건물(100)의 개별 열사용부(120) 및 전기부하부(520)에 열에너지 및 전기에너지를 공급하는 과정(S135);(c) When there is a demand for thermal energy and electrical energy of an individual household or building 100 and there is no intention of selling thermal energy and electrical energy (S130), as shown in FIG. 8, the individual thermal / electric energy generator 110 may be used. Producing thermal energy and electrical energy using the step of supplying thermal energy and electrical energy to the individual heat-use unit 120 and the electric load unit 520 of the individual household or building 100 (S135);
(d) 개별 세대 혹은 건물(100)의 전기에너지의 수요만 있고 열에너지 및 전기에너지 판매 의사가 있는 경우(S140)에는 도 9에 도시된 바와 같이, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 개별 세대 혹은 건물(100)의 전기부하부(520)에 전기에너지를 공급하고 잉여 전기에너지 및 열에너지를 판매하는 과정(S145)으로 운용될 수 있으며,(d) When there is only a demand for electric energy of individual households or buildings 100 and there is a willingness to sell heat energy and electric energy (S140), as shown in FIG. 9, the individual heat / electric energy generator 110 is used. Produces thermal energy and electrical energy, supplying electrical energy to the electrical load 520 of the individual household or building 100 and may be operated in the process of selling surplus electrical energy and thermal energy (S145),
(e) 개별 세대 혹은 건물(100)의 열에너지의 수요만 있고 전기에너지 판매 의사가 있는 경우(S150)에는 도 10에 도시된 바와 같이, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 개별 세대 혹은 건물(100)의 개별 열사용부(120)에 열에너지를 공급하고 전기에너지를 판매하는 과정(S155)으로 운용될 수 있다.(e) When there is only a demand for thermal energy of an individual household or building 100 and there is a willingness to sell electric energy (S150), as shown in FIG. 10, the thermal energy and electricity using the individual thermal / electric energy generator 110 is shown. Producing energy, and supplying thermal energy to the individual heat-use unit 120 of the individual generation or building 100 may be operated in the process of selling the electrical energy (S155).
또한, 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법(S100)은, 도 5의 순서도에 도시된 바와 같이,In addition, the individual thermal / electrical energy and the central thermal / electrical energy supply system operating method (S100), as shown in the flow chart of Figure 5,
(f) 개별 세대 혹은 건물(100)의 열에너지의 수요만 있고 개별 열/전기 에너지 발생기기(110)에 의해 생산된 열에너지가 개별 열사용부의 열에너지 수요에 미치지 못하고 부족할 경우(S160)에는 도 11에 도시된 바와 같이, 공급 배관(310) 및 연결 배관(312)을 통해 열에너지를 공급 받아 개별 세대 혹은 건물(100)의 개별 열사용부(120)에 공급하는 과정(S165)으로 운용될 수 있다.(f) If there is only a demand for the heat energy of the individual household or building 100 and the heat energy produced by the individual heat / electric energy generator 110 is insufficient to meet the heat energy demand of the individual heat use unit (S160), As shown in the drawing, the heat energy is supplied through the supply pipe 310 and the connection pipe 312 may be operated in the process of supplying to the individual heat-use unit 120 of the individual household or building 100 (S165).
한편, 환수 배관(320)과 개별 열/전기 에너지 발생기기(110)는 열에너지 전달매체가 이동할 수 있는 연결 배관(321)에 의해 상호 연결될 수 있다. 이때, 환수 배관(320)으로부터 개별 열/전기 에너지 발생기기(110)로 유동하는 열에너지 전달매체의 유량을 측정할 수 있도록, 연결 배관(321)에 양방향 열량계(400a, 400b)가 장착될 수 있다.Meanwhile, the return pipe 320 and the individual heat / electric energy generator 110 may be connected to each other by a connection pipe 321 through which the heat energy transfer medium may move. In this case, the bidirectional calorimeters 400a and 400b may be mounted on the connection pipe 321 to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110. .
따라서, 본 실시예에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템에 따르면, 열병합 발전기기를 각 개별 세대 혹은 건물에 설치하고, 개별 세대 혹은 건물과 중앙 열/전기 공급부를 연결하는 중앙 배관에 양방향 열량계를 설치하고, 외부 상용계통과 개별 세대 혹은 건물 사이에 양방향 전력량계를 설치함으로써, 각 열/전기 에너지 수요측, 공급측 및 또 다른 수요측 간의 열/전기 에너지 네트워크 시스템을 구축할 수 있고, 열에너지의 정확한 유량 및 전기에너지의 정확한 용량을 측정할 수 있으며, 이를 바탕으로 열/전기 에너지 구매 및 판매가 가능하다. 또한, 본 발명에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템을 운용하는 방법에 의하면, 열/전기 에너지 구매 및 판매가 가능한 열에너지 및 전기에너지 네트워크 시스템을 효율적으로 운용할 수 있는 기술적 이점을 가지게 된다.Therefore, according to the individual heat / electric energy and the central heat / electric energy supply linkage system according to the present embodiment, the cogeneration generator is installed in each individual household or building, and the individual household or building is connected to the central heat / electric supply unit. By installing a two-way calorimeter in the central piping and a two-way calorimeter between the external commercial system and the individual household or building, a thermal / electric energy network system can be established between each thermal / electric energy demand side, supply side, and another demand side. In addition, it is possible to measure the exact flow rate of the heat energy and the exact capacity of the electric energy, and it is possible to purchase and sell the heat / electric energy based on this. In addition, according to the method for operating the individual thermal / electrical energy and the central thermal / electrical energy supply connection system according to the present invention, the technical advantages that can efficiently operate the thermal and electrical energy network system that can be purchased and sold thermal / electrical energy Will have
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.In the foregoing detailed description of the invention, only specific embodiments thereof have been described. It is to be understood, however, that the present invention is not limited to the specific forms referred to in the description, but rather includes all modifications, equivalents, and substitutions within the spirit and scope of the invention as defined by the appended claims. Should be.
이상에서 설명한 바와 같이, 본 발명에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템에 따르면, 열병합발전 시스템을 각 개별 세대 혹은 건물에 설치하고, 개별 열사용부와 중앙 열/전기 공급부를 연결하는 중앙 배관에 양방향 열량계를 설치함으로써, 각 열/전기 에너지 수요측, 공급측 및 또 다른 수요측 간의 열/전기 에너지 네트워크 시스템을 구축할 수 있고, 열/전기 에너지의 정확한 유량을 측정할 수 있으며, 이를 바탕으로 열/전기 에너지 구매 및 판매가 가능하다.As described above, according to the individual thermal / electrical energy and the central thermal / electrical energy supply linked system according to the present invention, the cogeneration system is installed in each individual household or building, and the individual heat-use unit and the central thermal / electrical supply By installing a two-way calorimeter in the central pipe connecting the parts, a thermal / electric energy network system can be constructed between each thermal / electric energy demand side, supply side, and another demand side, and the accurate flow rate of thermal / electric energy can be measured. Based on this, it is possible to purchase and sell thermal / electric energy.
또한, 본 발명에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템을 운용하는 방법에 의하면, 열/전기 에너지 구매 및 판매가 가능한 열에너지 네트워크 시스템을 효율적으로 운용할 수 있다.In addition, according to the method for operating the individual thermal / electrical energy and the central thermal / electrical energy supply linked system according to the present invention, it is possible to efficiently operate a thermal energy network system capable of purchasing and selling thermal / electrical energy.

Claims (8)

  1. 열에너지 및 전기에너지를 생산할 수 있는 개별 열/전기 에너지 발생기기(110)를 구비한 하나 이상의 개별 세대 혹은 건물(100);One or more individual households or buildings 100 having individual thermal / electrical energy generators 110 capable of producing thermal and electrical energy;
    중앙 배관(300)에 의해 상기 개별 세대 혹은 건물(100)과 연결되고, 열에너지 및 전기에너지를 생산할 수 있는 중앙 열/전기 에너지 공급기기(210)를 하나 이상 구비한 중앙 열/전기 공급부(200);The central heat / electric supply unit 200 connected to the individual generation or building 100 by a central pipe 300 and having one or more central heat / electric energy supply devices 210 capable of producing thermal energy and electric energy. ;
    상기 개별 세대 혹은 건물(100)과 중앙 열/전기 공급부(200)를 연결하는 중앙 배관(300)에 하나 이상 장착되고, 중앙 배관(300) 내부에서 일방향 및 타방향으로 이동하는 열에너지의 유량을 측정하는 양방향 열량계(400a, 400b); 및At least one mounted on the central pipe 300 connecting the individual household or building 100 and the central heat / electricity supply unit 200, and measures the flow rate of the thermal energy moving in one direction and the other direction inside the central pipe (300) Bidirectional calorimeters 400a and 400b; And
    상기 개별 열/전기 에너지 발생기기(110)로부터 외부 상용계통(700)으로 이동하는 전기에너지의 전력량을 측정하거나, 외부 상용계통(700)으로부터 개별 세대 혹은 건물(100)의 전기부하부(520)로 이동하는 전기에너지의 전력량을 측정할 수 있도록, 상기 개별 열/전기 에너지 발생기기(110)와 외부 상용계통(700) 사이 및 전기부하부(520)와 외부 상용계통(700) 사이에 장착되는 양방향 전력량계(510);Measures the amount of electric energy moving from the individual thermal / electrical energy generator 110 to the external commercial system 700, or the electric load 520 of the individual household or building 100 from the external commercial system 700. In order to measure the amount of power of the electric energy moving to the, is installed between the individual heat / electric energy generator 110 and the external commercial system 700 and between the electrical load 520 and the external commercial system 700. Two-way electricity meter 510;
    를 포함하되,Including,
    상기 중앙 배관(300)은, 열에너지 전달매체가 이동할 수 있는 공급 배관(310) 및 환수 배관(320)으로 구성되는 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600).The central pipe 300, the individual heat / electric energy and central heat / electric energy supply connection system 600, characterized in that consisting of the supply pipe 310 and the return pipe 320 to which the heat energy transfer medium can move. .
  2. 제 1 항에 있어서,The method of claim 1,
    상기 개별 열/전기 에너지 발생기기(110)는, 스털링 엔진(Stirling engine), 랭킨 엔진(Rankine engine), 연료전지(Fuel cell), 왕복동식 엔진(Reciprocating Engine), 터빈(Turbine), PVT(photovoltaic thermal) 시스템, 태양열, 지열 등의 신재생 에너지를 활용하는 에너지 발생기기로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템.The individual thermal / electric energy generator 110 includes a Stirling engine, a Rankine engine, a fuel cell, a reciprocating engine, a turbine, a photovoltaic Thermal system, individual thermal / electrical energy and central thermal / electrical energy supply linked system, characterized in that at least one selected from the group consisting of energy generators utilizing renewable energy such as solar, geothermal and the like.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 개별 세대 혹은 건물(100)과 중앙 열/전기 공급부(200)를 연결하는 중앙 배관(300)에는, 열에너지의 흐름 방향을 조절할 수 있도록, 삼방밸브(3-way valve, 131) 및 체크밸브(check valve, 132)가 더 장착되는 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템.In the central pipe (300) connecting the individual household or building (100) and the central heat / electricity supply unit (200), a three-way valve (131) and a check valve (to adjust the flow direction of thermal energy) a separate thermal / electrical energy and central thermal / electrical energy supply linkage system, characterized in that the check valve 132 is further fitted.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 공급 배관(310)은, 개별 열/전기 에너지 발생기기(110)로부터 발생된 열에너지를 공급받거나, 중앙 열/전기 에너지 공급기기(210)로부터 발생한 열에너지를 개별 세대 혹은 건물(100)로 공급할 수 있도록 개별 세대 혹은 건물(100)과 연결되고,The supply pipe 310 may receive heat energy generated from the individual heat / electric energy generator 110 or supply heat energy generated from the central heat / electric energy supply device 210 to the individual household or the building 100. Connected with individual households or buildings (100),
    상기 환수 배관(320)은, 개별 열/전기 에너지 발생기기(110)에 열에너지 전달매체를 공급하거나, 공급 배관(310)으로 유동하는 열에너지 전달매체를 회수할 수 있도록, 상기 공급 배관(310) 및 개별 세대 혹은 건물(100)과 연결된 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템.The return pipe 320 may supply the heat energy transfer medium to the individual heat / electric energy generator 110 or recover the heat energy transfer medium flowing to the supply pipe 310. Individual thermal / electrical energy and central thermal / electrical energy supply linked system, characterized in that connected to the individual household or building (100).
  5. 제 1 항에 있어서,The method of claim 1,
    상기 환수 배관(320)과 개별 열/전기 에너지 발생기기(110)는 열에너지 전달매체가 이동할 수 있는 연결 배관(321)에 의해 상호 연결되어 있고,The return pipe 320 and the individual heat / electric energy generator 110 are connected to each other by a connection pipe 321 through which the heat energy transfer medium can move.
    상기 환수 배관(320)으로부터 개별 열/전기 에너지 발생기기(110)로 유동하는 열에너지 전달매체의 유량을 측정할 수 있도록, 연결 배관(321)에 양방향 열량계(400)가 장착되는 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템.The bidirectional calorimeter 400 is installed in the connection pipe 321 so as to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110. Thermal / electrical energy and central thermal / electrical energy supply linkage system.
  6. 상기 제 1 항 내지 제 5 항 중 어느 한 항에 따른 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템(600)을 운용하는 방법으로서,As a method of operating the individual thermal / electrical energy and the central thermal / electrical energy supply connection system 600 according to any one of claims 1 to 5,
    (a) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 있고 열에너지 및 전기에너지 판매 의사가 없는 경우, 개별 열/전기 에너지 발생기기(110)의 운용을 중지하는 과정;(a) stopping the operation of the individual heat / electric energy generator 110 when there is a demand for thermal energy and electrical energy of the individual household or building 100 and there is no intention to sell the thermal energy and electrical energy;
    (b) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 없고 열에너지 및 전기에너지 판매 의사가 있는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 열에너지 및 전기에너지를 판매하는 과정; 및(b) If there is no demand for thermal and electrical energy of individual households or buildings 100 and is willing to sell thermal and electrical energy, the thermal and electrical energy generator 110 is used to produce thermal and electrical energy; The process of selling electrical energy; And
    (c) 개별 세대 혹은 건물(100)의 열에너지 및 전기에너지 수요가 있고 열에너지 및 전기에너지 판매 의사가 없는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하여 개별 세대 혹은 건물(100)의 개별 열사용부(120) 및 전기부하부(520)에 열에너지 및 전기에너지를 공급하는 과정;(c) When there is a demand for thermal and electrical energy of individual households or buildings 100 and there is no intention of selling thermal and electrical energy, the individual thermal / electric energy generator 110 is used to produce thermal energy and electrical energy to produce individual households or Supplying thermal energy and electrical energy to the individual heat use part 120 and the electric load part 520 of the building 100;
    (d) 개별 세대 혹은 건물(100)의 전기에너지의 수요만 있고 열에너지 및 전기에너지 판매 의사가 있는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 개별 세대 혹은 건물(100)의 전기부하부(520)에 전기에너지를 공급하고 잉여 전기에너지 및 열에너지를 판매하는 과정; 및(d) If there is only a demand for the electrical energy of an individual household or building 100 and is willing to sell thermal energy and electrical energy, the individual thermal / electric energy generator 110 produces thermal energy and electrical energy, and the individual household or Supplying electrical energy to the electrical load unit 520 of the building 100 and selling surplus electrical energy and thermal energy; And
    (e) 개별 세대 혹은 건물(100)의 열에너지의 수요만 있고 열에너지 및 전기에너지 판매 의사가 있는 경우, 개별 열/전기 에너지 발생기기(110)를 이용해 열에너지 및 전기에너지를 생산하고, 개별 세대 혹은 건물(100)의 개별 열사용부(120)에 열에너지를 공급하고 잉여 열에너지 및 전기에너지를 판매하는 과정;(e) If there is only a demand for thermal energy of an individual household or building 100 and is willing to sell thermal energy and electrical energy, the individual thermal / electric energy generator 110 produces thermal energy and electrical energy, and individual households or buildings Supplying thermal energy to the individual heat-use unit 120 of 100 and selling surplus thermal energy and electrical energy;
    을 포함하는 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법.Individual heat / electric energy and central heat / electric energy supply system operating method comprising a.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 환수 배관(320)과 개별 열/전기 에너지 발생기기(110)는 열에너지 전달매체가 이동할 수 있는 연결 배관(321)에 의해 상호 연결되어 있고,The return pipe 320 and the individual heat / electric energy generator 110 are connected to each other by a connection pipe 321 through which the heat energy transfer medium can move.
    상기 환수 배관(320)으로부터 개별 열/전기 에너지 발생기기(110)로 유동하는 열에너지 전달매체의 유량을 측정할 수 있도록, 연결 배관(321)에 양방향 열량계(400)가 장착되는 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법.The bidirectional calorimeter 400 is installed in the connection pipe 321 so as to measure the flow rate of the heat energy transfer medium flowing from the return pipe 320 to the individual heat / electric energy generator 110. How to operate thermal / electrical energy and central thermal / electrical energy supply linkage system.
  8. 제 6 항에 있어서, 상기 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법은,The method of claim 6, wherein the individual thermal / electrical energy and the central thermal / electrical energy supply linkage system are operated.
    (f) 개별 열/전기 에너지 발생기기(110)에 의해 생산된 열에너지가 개별 열사용부의 열에너지 수요에 미치지 못하고 부족할 경우, 공급 배관(310) 및 연결 배관(312)을 통해 열에너지를 공급 받아 개별 세대 혹은 건물(100)의 개별 열사용부(120)에 공급하는 과정;(f) When the heat energy produced by the individual heat / electric energy generator 110 is insufficient to meet the heat energy demand of the individual heat-use part, the heat generation is supplied through the supply pipe 310 and the connection pipe 312 to receive the individual generation. Or the process of supplying to the individual heat using unit 120 of the building 100;
    을 더 포함하는 것을 특징으로 하는 개별 열/전기 에너지 및 중앙 열/전기 에너지 공급 연계 시스템 운용방법.Individual thermal / electrical energy and the central thermal / electrical energy supply system operating method further comprising a.
PCT/KR2013/009916 2013-11-04 2013-11-05 Supply connection system for individual heat/electric energy and central heat/electric energy built as cogeneration system, and method for operating same WO2015064797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130133181A KR101515374B1 (en) 2013-11-04 2013-11-04 Combined Individual and Central Heat Supply System Based on Apparatus of Cogenerator, and Operating Method thereof
KR10-2013-0133181 2013-11-04

Publications (1)

Publication Number Publication Date
WO2015064797A1 true WO2015064797A1 (en) 2015-05-07

Family

ID=53004385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009916 WO2015064797A1 (en) 2013-11-04 2013-11-05 Supply connection system for individual heat/electric energy and central heat/electric energy built as cogeneration system, and method for operating same

Country Status (2)

Country Link
KR (1) KR101515374B1 (en)
WO (1) WO2015064797A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530306A (en) * 2014-09-18 2016-03-23 British Gas Trading Ltd Method and apparatus for combined heat and power generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102606786B1 (en) * 2022-10-04 2023-11-29 주식회사 젬백스링크 Energy share trading system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015882A (en) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd Distributed power supply system and method and operation program
KR20100120872A (en) * 2009-05-07 2010-11-17 (주)프라임솔루션 System and method for selling surplus power generated in building electricity facilities
KR20120033330A (en) * 2009-06-16 2012-04-06 디이씨 디자인 메카니컬 컨설턴츠 엘티디. District energy sharing system
KR101318891B1 (en) * 2013-01-18 2013-10-18 김혁 Power management system and operating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015882A (en) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd Distributed power supply system and method and operation program
KR20100120872A (en) * 2009-05-07 2010-11-17 (주)프라임솔루션 System and method for selling surplus power generated in building electricity facilities
KR20120033330A (en) * 2009-06-16 2012-04-06 디이씨 디자인 메카니컬 컨설턴츠 엘티디. District energy sharing system
KR101318891B1 (en) * 2013-01-18 2013-10-18 김혁 Power management system and operating method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530306A (en) * 2014-09-18 2016-03-23 British Gas Trading Ltd Method and apparatus for combined heat and power generation
GB2536158A (en) * 2014-09-18 2016-09-07 British Gas Trading Ltd Method and apparatus for combined heat and power generation
GB2530306B (en) * 2014-09-18 2017-07-26 British Gas Trading Ltd Method and apparatus for Temperature Control

Also Published As

Publication number Publication date
KR101515374B1 (en) 2015-05-04

Similar Documents

Publication Publication Date Title
Zhang et al. Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers
CN109492325B (en) Flow analysis method of multi-energy coupling system based on extended energy concentrator
Entchev et al. Application of hybrid micro-cogeneration system—Thermal and power energy solutions for Canadian residences
CN108830485A (en) A kind of electric-thermal integrated energy system method for evaluating reliability
Wang et al. A study of district heating systems with solar thermal based prosumers
WO2015064798A1 (en) Supply connection system for individual heat energy and central heat energy built with heating-dedicated equipment, and method for operating same
JP5799905B2 (en) Cogeneration system connection method, and housing complex, commercial facility or store combined house using the connection method
WO2015064797A1 (en) Supply connection system for individual heat/electric energy and central heat/electric energy built as cogeneration system, and method for operating same
CN113919754B (en) Block chain-based distributed state estimation method for comprehensive energy system
Aki et al. Operational strategies of networked fuel cells in residential homes
WO2014017688A1 (en) Integrated energy and fresh water supply device using microgrid
JP2016201869A (en) Energy management method and energy management system
WO2011049358A1 (en) Method of controlling network system
Liu et al. A smart and transparent district heating mode based on industrial Internet of things
JP2003028449A (en) System and method for supplying energy to local community
CN104836481A (en) Method and system for supplying power to equipment using thermoelectric generation
CN104836317A (en) Method and system for supplying power to equipment using thermoelectric generation of pipelines
Guelpa et al. Optimal configuration of power-to-cool technology in district cooling systems
Bellosio et al. Energy networks in sustainable cities: Towards a full integration of renewable systems in urban area
Lin et al. Dynamic modeling and uncertainty quantification of district heating systems considering renewable energy access
CN204761332U (en) System for utilize pipeline thermoelectric generation to supply power to equipment
CN204481557U (en) A kind of system utilizing thermo-electric generation to power to equipment
Buchholz et al. Long term European field tests for microgrids
CN111525840A (en) Thermal pipeline state parameter acquisition device based on semiconductor thermoelectric generation
CN109726906B (en) Heat and power cogeneration system day-ahead scheduling method based on heat supply network partial differential equation constraint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896794

Country of ref document: EP

Kind code of ref document: A1