WO2015064701A1 - Glycoalbumin measurement kit and measurement method - Google Patents

Glycoalbumin measurement kit and measurement method Download PDF

Info

Publication number
WO2015064701A1
WO2015064701A1 PCT/JP2014/078925 JP2014078925W WO2015064701A1 WO 2015064701 A1 WO2015064701 A1 WO 2015064701A1 JP 2014078925 W JP2014078925 W JP 2014078925W WO 2015064701 A1 WO2015064701 A1 WO 2015064701A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
glycoalbumin
albumin
solid phase
measurement
Prior art date
Application number
PCT/JP2014/078925
Other languages
French (fr)
Japanese (ja)
Inventor
淳子 田中
悠 石毛
釜堀 政男
麦 前川
理子 岩田
中村 英博
健 澤崎
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015064701A1 publication Critical patent/WO2015064701A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/76Assays involving albumins other than in routine use for blocking surfaces or for anchoring haptens during immunisation
    • G01N2333/765Serum albumin, e.g. HSA
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • Diabetes is a disease in which the blood sugar level increases due to insufficient insulin action, and it can cause stroke and heart disease, so early diagnosis and treatment are necessary.
  • measurement of blood glucose level has been used for diagnosis of diabetes, but there has been a problem that blood glucose level fluctuates due to meals and drinking.
  • the amount of glycated protein such as hemoglobin A1c (HbA1c) and glycoalbumin (GA) is a stable index reflecting blood glucose level over a longer period (several weeks to several months). Therefore, it is useful for determining the success or failure of blood glucose control.
  • the abundance ratio of the glycated protein per specific protein reflects the long-term blood glucose level.
  • the abundance ratio of HbA1c to hemoglobin HbA1c / hemoglobin ratio
  • the abundance ratio of GA to albumin GA / albumin ratio
  • the period in which the abundance ratio of glycated protein is reflected is determined by the half-life of the glycated protein in the body, it is a value that reflects the change in blood glucose level over the past 1 to 2 months for HbA1c and for the past 2 weeks for GA. Become. For this reason, GA is attracting attention as a marker that shows a glycemic control state in a shorter period of time than HbA1c.
  • HbA1c was standardized by the International Clinical Chemistry Association (IFCC) and defined as a glycated product of the valine residue at the N-terminal of the ⁇ chain of hemoglobin.
  • IFCC International Clinical Chemistry Association
  • GA is albumin having a lysine residue to which glucose is bound according to the project of the Japanese Association of Clinical Chemistry, Diabetes Related Indicators Special Committee “Establishment of Standard Method for Glycoalbumin Measurement”. Defined as the molar ratio of groups to albumin. That is, the number of sites for judging saccharification is one in HbA1c, whereas in GA, at least four sites known as main saccharification sites are targeted.
  • HbA1c and GA are different in definition even though they are glycated proteins.
  • the HPLC method (Diabetologia, 31, pp.627-631, 1988) was first developed, and then the enzyme method (JP-A-5-192193) and the immunization method (JP-A-2010-261196).
  • the reaction can be measured easily and in a shorter time than the previous HPLC method.
  • the amount of albumin and the amount of GA need to be measured separately and converted into a GA / albumin ratio, which makes the measurement operation complicated. Therefore, albumin can be obtained by adsorbing a certain amount of albumin to a solid phase (Japanese Patent Laid-Open No.
  • the object of the present invention is to 1) normalize the total amount of albumin without separately measuring 2) normalization of the total amount of albumin and GA
  • the purpose is to facilitate control of the measurement system in detection and to reduce factors that lower measurement accuracy.
  • the total amount of albumin captured using the anti-albumin antibody is normalized, and the GA amount of the albumin captured using the anti-GA antibody is measured.
  • the amount of the anti-albumin antibody immobilized on the solid phase is made smaller than the amount of albumin in the specimen.
  • the amount of captured albumin is measured using an anti-albumin antibody that recognizes an epitope different from the immobilized albumin antibody.
  • albumin captured using an anti-albumin antibody is measured by physically adsorbing albumin in a sample solution to a solid phase, first measuring the GA amount of the albumin captured using an anti-GA antibody. Measure the amount.
  • a filter for introducing the specimen is installed on the flow path, and the specimen that has been dropped onto the filter and diffused into the solution in the flow path is used as the specimen. Since the present invention is a method for directly determining the abundance ratio of GA to albumin, the measurement value is not greatly affected by the dilution factor, and such a simple dilution method can be measured with sufficient accuracy.
  • the glycoalbumin measurement kit of the present invention comprises a solid phase provided with an immobilized anti-albumin antibody and an electrode, and an enzyme-labeled anti-glycoalbumin antibody.
  • the electrode is preferably used for potential measurement.
  • the solid phase can have a sample introduction port and a sample holding unit, and the sample holding unit can use any of filter paper, non-woven fabric, and porous fiber. It is preferable that the anti-albumin antibody and the electrode are disposed in the flow path, and the anti-albumin antibody is disposed at least upstream and downstream of the electrode.
  • the solid phase can have a sample inlet connected to the flow path.
  • the method for measuring glycoalbumin of the present invention uses an anti-albumin antibody and an enzyme-labeled anti-glycoalbumin antibody to quantify the ratio of glycoalbumin to albumin in a sample by potential measurement.
  • the anti-albumin antibody is an immobilized antibody immobilized on a solid phase
  • the step of supplying a specimen to the solid phase the step of binding albumin and glycoalbumin in the specimen to the immobilized antibody, Supplying an enzyme-labeled anti-glycoalbumin antibody to the phase, and binding the enzyme-labeled antibody to glycoalbumin bound to the solid phase to form an immobilized anti-albumin antibody-glycoalbumin-enzyme-labeled anti-glycoalbumin antibody complex
  • the solid phase has a sample holding unit, and has a step of supplying a diluent to the solid phase after the step of supplying the sample to the solid phase, and the sample held in the sample holding unit is brought into contact with the diluent. In this way, the specimen can be diluted.
  • albumin is captured with an anti-albumin antibody, and then the amount of albumin captured using an anti-GA antibody is measured.
  • the abundance ratio of GA to albumin can be accurately measured.
  • an anti-albumin antibody for capturing albumin variation in the amount of albumin captured can be suppressed. Since the amount of albumin to be captured can be predicted, the amount of anti-GA antibody used can be minimized. Since it is sufficient that the amount of albumin in the sample is larger than the amount of anti-albumin antibody immobilized on the solid phase, the necessary dilution rate can be predicted.
  • the amount of albumin captured using an anti-albumin antibody that recognizes an epitope different from that of the immobilized albumin antibody the influence of the immobilized antibody activity can be suppressed even if it fluctuates. It can be measured stably.
  • the figure which showed the outline of the measurement of GA / albumin ratio The figure which showed the outline of the procedure which measures GA / albumin ratio.
  • summary of a glycoalbumin measuring kit The figure which shows the external appearance of the apparatus for measuring with the cartridge of FIG.
  • FIG. 1 schematically shows a method for measuring a GA / albumin ratio using the present invention.
  • An anti-human albumin antibody 102 is immobilized on the solid phase 101, and the human albumin 103 and GA104 in the sample solution are captured by the anti-human albumin antibody 102.
  • Alkaline phosphatase (AP) -labeled anti-GA antibody (hereinafter referred to as enzyme-labeled anti-GA antibody) 105 recognizes and binds to the saccharification site of GA104 (shown schematically in FIG. 1).
  • AP alkaline phosphatase
  • enzyme-labeled anti-GA antibody 105 recognizes and binds to the saccharification site of GA104 (shown schematically in FIG. 1).
  • the substrate 106 is added, it is converted into the product 107 by the labeling enzyme of the enzyme-labeled anti-GA antibody 105 (in this case, alkaline phosphatase).
  • FIGS. 1A and 1B The cases where the GA / albumin ratio in the sample solution is high and low are shown in FIGS. 1A and 1B, respectively. Since the amount of GA104 captured by the anti-human albumin antibody 102 differs depending on the GA / albumin ratio, and the amount of the enzyme-labeled anti-GA antibody 105 that binds changes accordingly, comparing the amount of the product 107 with the GA / albumin The ratio can be determined. Note that beads or the like may be used instead of the solid phase 101 as long as the anti-human albumin antibody 102 can be immobilized on the solid phase.
  • FIG. 2 shows an outline of the procedure for measuring the GA / albumin ratio.
  • Step 1 Sample solution is added, and human albumin 103 and GA104 in the sample solution are captured by anti-human albumin antibody 102 immobilized on solid phase 101.
  • Step 2 Human in sample solution not bound to antibody by washing
  • Step 3 Add enzyme-labeled anti-GA antibody 105 and bind to GA104 captured by anti-human albumin antibody 102
  • Step 4 Wash away excess unlabeled enzyme-labeled anti-GA antibody 105 by washing Exclude
  • the antibody concentration Ab can be expressed by the equation (2) using the antibody fixing density D, the reaction field volume V, and the antibody fixing area S in the reaction field.
  • the conditions under which the anti-human albumin antibody was fixed at a fixed density of 6.5 ⁇ 10 ⁇ 9 mol / m 2 in a reaction field having a volume of 100 ⁇ l and an antibody fixing area of 154 mm 2 were as follows: antibody concentration 10 ⁇ 8 M It corresponds to. Since the human albumin concentration in blood is 5.6 to 7.4 ⁇ 10 ⁇ 4 M (37 to 49 mg / ml), the anti-human albumin antibody is immobilized at a fixed density of 6.5 ⁇ 10 ⁇ 9 mol / m 2. For the reaction field (reaction field volume 100 ⁇ l, antibody immobilization area 154 mm 2 ), the serum sample has an albumin concentration sufficient for binding of human albumin to all of the anti-human albumin antibodies on the solid phase.
  • the immobilization density of the anti-human albumin antibody is preferably 1.7 ⁇ 10 ⁇ 14 to 3.6 ⁇ 10 ⁇ 4 mol / m 2 . If the immobilization density of the anti-human albumin antibody is lower than 1.7 ⁇ 10 ⁇ 14 , three significant digits of the measured value cannot be secured. Conversely, in the reaction field in which the anti-human albumin antibody is immobilized at a fixed density higher than 3.6 ⁇ 10 ⁇ 4 mol / m 2 , depending on the performance of the antibody, all human albumin contained in the serum sample is anti-human albumin. Since it binds to the antibody, the total amount of human albumin captured on the solid phase varies depending on the concentration of human albumin in the serum sample, and a certain amount of human albumin cannot be captured for each measurement.
  • FIG. 3 shows that by using the solid phase 101 on which the anti-human albumin antibody 102 is immobilized, a certain amount of human albumin can be captured by the antibody if the concentration of human albumin in the sample solution is a certain level or more. Detailed experimental procedures are shown below.
  • Biotinylated monoclonal anti-human albumin antibody (capture antibody) was added to a streptavidin-coated microplate and immobilized. After washing with 0.1% Tween20-containing Tris Buffered Saline (hereinafter referred to as TBST), 2% bovine serum albumin (BSA) -containing TBST was added for blocking. The plate was washed with TBST to prepare an anti-human albumin antibody fixed plate.
  • Tween20-containing Tris Buffered Saline hereinafter referred to as TBST
  • BSA bovine serum albumin
  • a dilution series in which human albumin (containing GA) and TBST were mixed was prepared and used as a sample solution.
  • the sample solution was introduced into the anti-human albumin antibody fixed plate, human albumin and GA in the sample solution were reacted with the capture antibody, and excess human albumin was washed with TBST.
  • An alkaline phosphatase-modified monoclonal anti-human albumin antibody (detection antibody) was added to the plate and reacted, and then the excess antibody was washed with TBST.
  • BCIP Bromochloroindolyl phosphate
  • NTB nitro blue tetrazolium
  • EDTA ethylenediaminetetraacetic acid
  • FIG. 4 is a diagram showing that the GA / albumin ratio can be measured with a small dependence on the total human albumin concentration by detecting GA contained in human albumin captured by the anti-human albumin antibody with the anti-GA antibody. It is. Detailed experimental procedures are shown below.
  • An anti-human albumin antibody fixed plate was prepared in the same manner as in the measurement in FIG.
  • a serum specimen with a known GA / albumin ratio and TBST were mixed to dilute the serum specimen 100-fold and 1000-fold to obtain a sample solution.
  • the human albumin concentration in the sample solution is desirably equal to or higher than the concentration at which human albumin can bind to all of the immobilized anti-human albumin antibodies. That is, when the anti-human albumin antibody is immobilized at a fixed density of 6.5 ⁇ 10 ⁇ 9 mol / m 2 in a reaction field having a volume of 100 ⁇ l and an antibody immobilization area of 154 mm 2 , dilution can be performed up to 5000 times.
  • the sample solution was introduced into the anti-human albumin antibody fixed plate, human albumin and GA in the sample solution were reacted with the anti-human albumin antibody, and excess specimen was washed with TBST.
  • Monoclonal anti-GA antibody (antibody for detection) modified with alkaline phosphatase was added, reacted with GA captured by the anti-human albumin antibody, and then washed with TBST.
  • the concentration of the detection antibody is about one-tenth of that of the capture antibody.
  • human albumin is captured by all of the anti-human albumin antibodies that are capture antibodies.
  • the concentration of a certain anti-GA antibody is preferably higher than the concentration of the immobilized anti-human albumin antibody depending on the antibody performance.
  • concentration of the anti-GA antibody is preferably 33 nM or more.
  • the anti-GA antibody may be a mixture of a plurality of types of monoclonal antibodies or may be a polyclonal antibody. Since there are multiple glycation sites of human albumin, sensitivity and reproducibility can be improved by mixing multiple types of monoclonal anti-GA antibodies having different epitopes.
  • the relationship between the density of the capture antibody and the concentration of the detection antibody can be generalized using the equations (1) and (2).
  • the human albumin concentration in the sample solution is equal to or higher than the concentration capable of binding to all of the anti-human albumin antibodies, the total amount of human albumin captured on the solid phase can be approximated by the number of molecules of the anti-human albumin antibodies. Therefore, by substituting the anti-human albumin antibody concentration Ab of the formula (2) into the human albumin concentration Ag captured by the antibody in the formula (1), the relationship between the density of the captured antibody and the concentration of the detection antibody can be expressed by one formula ( It can be expressed by 3).
  • FIG. 4 shows a graph summarizing the relationship between the GA / albumin ratio and the absorbance in the sample solution. Although some background signal was added, absorbance corresponding to the GA / albumin ratio was obtained. According to the equation (3), the GA / albumin ratio and the GA / anti-GA antibody complex concentration theoretically have a linear relationship as shown in FIG. Also in FIG. 4, the relationship between the GA / albumin ratio and the absorbance can be expressed linearly, and the GA / albumin ratio could be measured according to the theory.
  • the sample was diluted 100 times and 1000 times, but the GA / albumin ratio in the sample solution can be obtained in the same manner even at undiluted and low dilution ratios.
  • the measured value is likely to fluctuate due to non-specific adsorption of human albumin.
  • an enzyme-labeled anti-human albumin antibody 108 that recognizes an epitope different from the capture antibody is added, and the anti-antibody immobilized as shown in FIG. 6B is immobilized.
  • the measured value with the anti-GA antibody can be corrected to further suppress the variation.
  • FIG. 7 is a view showing an example of a cartridge for GA ratio measurement.
  • 7A is a schematic plan view
  • FIGS. 7B to 7D are schematic cross-sectional views.
  • the cartridge includes a solid phase 701, a flow path section 702, and a liquid holding section 703.
  • the solid phase 701 includes solution introduction detection electrodes 713 and 714, a potential measurement electrode 715, an antibody fixing site 716, and terminals 724 to 726.
  • the flow path unit 702 has a sample introduction port 712, reagent supply ports 717, 718, 727, 728, and a waste liquid reservoir connection port 720.
  • the liquid holding unit 703 includes a sample holding unit 711, a waste liquid reservoir 719, and an air hole. 721 and boundary portions 722 and 723.
  • the solution introduction detection electrode 713, the antibody immobilization site 716, the potential measurement electrode 715, the antibody immobilization site 716, and the solution introduction detection electrode 714 flow in this order. It is provided inside the road.
  • a sample introduction port 712 is provided in the upper part of the flow path between the antibody fixing site 716 and the sample introduction detection electrode 714.
  • the approximate dimensions of the cartridge were 20 mm x 10 mm, and the flow path was 1 mm wide x 13 mm long x 0.25 mm high.
  • a semiconductor substrate such as silicon, a circuit substrate such as glass epoxy, or a film substrate such as polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), or polyimide (PI) is used.
  • a film substrate such as polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), or polyimide (PI) is used.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PC polycarbonate
  • PI polyimide
  • EVA ethylene vinyl acetate copolymer
  • a thermoplastic resin, an epoxy resin, or a silicone resin such as polydimethylsiloxane (PDMS) can be used.
  • the specimen holder 711 may be outside the specimen inlet 712 as shown in FIG. 7B, or may be between the specimen inlet 712 and the flow path as shown in FIG. 7C, and the flow as shown in FIG. 7D. May be on the road. In FIG. 7B and FIG. 7C, since the specimen holding part 711 separates the flow path from the outside, the pressure loss is large and it is not necessary to close the specimen inlet 712 during measurement.
  • LDPE low density polyethylene
  • EVA ethylene vinyl acetate
  • PET polyethylene terephthalate
  • An antibody such as an anti-human albumin antibody is immobilized on the antibody immobilization site 716.
  • the immobilization method may be physical adsorption or chemical bonding.
  • avidin is immobilized, a biotinylated antibody is immobilized. It may be immobilized by an avidin-biotin bond, or an antibody may be immobilized via avidin after immobilizing a biotin-modified molecule.
  • FIG. 8 is a diagram showing an example of an apparatus for performing measurement with the cartridge of FIG.
  • FIG. 8A shows a top view of the positional relationship between the cartridge 810 and the apparatus 802
  • FIG. 8B shows a side view of the connection relationship between the cartridge 810 and the reagent supply port and the electrodes / terminals of the apparatus 802.
  • Antibody reagent solution 826 is supplied to reagent supply port 811 by pump 825, sample diluent 824 is supplied to reagent supply port 812 by pump 823, and cleaning solution 828 is supplied to reagent supply port 816 by pump 827. Then, the substrate supply liquid 822 is supplied to the reagent supply port 817 by the pump 821.
  • the sample diluent 824 and the cleaning solution 828 may be solutions having the same composition.
  • the reagent supply ports may be provided at one to three locations, and a plurality of reagents may be supplied by branching a flow path connected to the reagent supply port.
  • An AC power source 833 and an AC ammeter 834 are connected to the terminals 814 and 815.
  • a voltmeter 832 is connected to the terminal 813, and the other terminal of the voltmeter 832 is connected to a reference electrode 831 disposed in a flow path connected to the reagent supply port 817.
  • Control of the pumps 821, 823, 825, and 827 is performed by the control unit 803, and control and measurement of the AC power source 833, the AC ammeter 834, and the voltmeter 832 are performed by the measurement unit 804.
  • the apparatus 802 includes a display unit 805 for displaying measurement results and messages, and an input unit 806 for a user to input an operation.
  • the pumps 821, 823, 825, and 827 may be peristaltic pumps, syringe pumps, or diaphragm pumps.
  • the reference electrode 831 may be an internal liquid-type silver-silver chloride reference electrode, a bare silver-silver chloride electrode, or an ion-selective electrode as long as it exhibits a constant potential.
  • FIG. 9 is a diagram showing an example of a glycoalbumin measurement kit.
  • the glycoalbumin measurement kit 901 accommodated the solid phase 701 provided with the antibody immobilization site 716 on which the anti-albumin antibody is immobilized and the potential measurement electrode 715 shown in FIG. 7, and the antibody reagent solution 826 shown in FIG. It consists of a container.
  • FIG. 10 is a schematic diagram showing an example of a state in which the cartridge is mounted on the measuring apparatus.
  • the cartridge 801 is set in the measuring device 802 and the lid 1001 is closed.
  • FIG. 11 is a diagram showing an example of a measurement method using the cartridge of FIG. 7 and the apparatus of FIG.
  • a sample is added to the sample introduction port 712 provided on the flow path (S201).
  • the specimen may be a body fluid collected from a biological sample itself or a pretreatment such as centrifugation, filtration, or dilution as necessary.
  • the sample holding unit 711 is made of an absorbent material such as filter paper. Further, since the periphery of the sample holding unit 711 is surrounded by a boundary portion 722, the added sample is held by the sample holding unit 711.
  • the cartridge is set in the apparatus, and the sample diluent 824 is introduced from the reagent supply port 812 of the apparatus into the reagent supply port 718 of the cartridge using the pump 823 (S202).
  • a buffer solution such as Tris (Buffered Saline (hereinafter referred to as TBS) or Phosphate Buffered Saline (hereinafter referred to as PBS) is used.
  • TBS Tris
  • PBS Phosphate Buffered Saline
  • solution introduction detection electrodes 713 and 714 are used.
  • the solution introduction detection electrodes 713 and 714 when an AC voltage is applied between the solution introduction detection electrodes 713 and 714 using the AC power source 833, the current that was substantially zero before the sample diluent 824 was introduced, and the sample diluent 824 was introduced into the solution.
  • the solution introduction detection electrodes 713 and 714 are electrically connected to increase. By monitoring this increase in current by the measuring unit 804, it can be detected that the sample diluent 824 has reached the solution introduction detection electrode 714.
  • the solution introduction detection electrode 714 detects the arrival of the sample diluent 824 (S203), the introduction of the sample diluent 824 from the reagent supply port 718 is stopped (S204).
  • the components in the sample held in the sample holder 711 are diffused into the sample diluent 824. Since the amount of components in the specimen that diffuses into the specimen diluent 824 depends on the retention time, the dilution ratio of the specimen can be controlled by the retention time.
  • sample diluent 824 When a slight amount of the sample diluent 824 is aspirated from the reagent supply port 718 and the sample components diffused in the sample diluent 824 are transported to the antibody fixing site 716 (S206), human albumin in the sample is transferred to the antibody fixing site 716. Captured by immobilized anti-human albumin antibody. After holding for a certain period of time, the sample diluent is further introduced from the reagent supply port 718, and the sample diluent 824 containing the sample is discarded in the waste solution reservoir 719 through the waste fluid reservoir connection port 720 (S207).
  • the flow path is washed with the washing liquid 828 introduced from the reagent supply port 727 (S208), and human albumin not captured by the anti-human albumin antibody immobilized on the antibody immobilization site 716 is removed.
  • the cleaning liquid 828 used for cleaning is also discarded in the waste liquid reservoir 719.
  • the antibody reagent solution 826 is introduced from the reagent supply port 811 of the apparatus into the reagent supply port 717 of the cartridge using the pump 825 (S209).
  • As the antibody reagent solution 826 a solution containing an alkaline phosphatase-labeled anti-GA antibody (labeled anti-GA antibody) or the like is used.
  • the labeled anti-GA antibody in the antibody reagent solution 826 binds to GA captured by the anti-human albumin antibody.
  • a washing liquid 828 is introduced from the reagent supply port 727, and the flow path is washed (S210), thereby removing unbound labeled anti-GA antibody.
  • the antibody reagent solution 826 and the cleaning solution 828 are discarded in the waste solution reservoir 719.
  • the substrate solution 822 is introduced from the reagent supply port 817 of the apparatus into the reagent supply port 728 of the cartridge using the pump 821 (S211).
  • a solution containing ascorbic acid phosphate, which is a substrate of alkaline phosphatase, and potassium ferricyanide, which is a mediator, is used as the substrate solution.
  • the ascorbic acid phosphate in the substrate solution 822 is hydrolyzed by alkaline phosphatase of the anti-human albumin antibody-GA-labeled anti-GA antibody complex present at the antibody fixing site 716, and the generated ascorbic acid reacts with potassium ferricyanide. Potassium ferrocyanide is generated, and the potential of the potential measuring electrode 715 changes.
  • the amount of captured GA that is, the GA / albumin ratio in the sample is obtained.
  • a calibration curve representing the relationship between the GA / albumin ratio and the measurement potential is prepared using a sample with a known GA / albumin ratio in a separately prepared cartridge. An unknown sample value may be calculated.
  • FIG. 12 shows the details of the embodiment of the method for introducing the sample into the cartridge flow path in S201 to S206.
  • FIG. 12 is an explanatory diagram showing details of a method for introducing the sample into the cartridge flow path.
  • a sample is dropped onto a sample holding unit 711 made of a filter or the like provided in a part of the flow path.
  • a buffer solution is introduced into the flow path and is brought into contact with the specimen holding unit 711 and held for a certain period of time.
  • the sample components held in the sample holding unit 711 diffuse into the buffer solution. By this operation, a diluted specimen solution equivalent to the case where the specimen is diluted with a buffer solution is obtained.
  • the dilution rate of the diluted specimen solution can be controlled by the buffer retention time.
  • the diluted specimen solution is transferred to the antibody fixing site 716, and an antigen-antibody reaction is performed. Since the antibody fixing site 716 is upstream of the sample holding unit 711 with the buffer introduction side being upstream, the sample components diffused into the solution from the sample holding unit 711 in the subsequent introduction of the solution in S207 to S212 are antibody Passing through the fixed portion 716 can be suppressed.
  • the side where the buffer solution is introduced may be upstream, and the antibody immobilization site 716 may be downstream from the specimen holding unit 711.
  • the diluted sample solution can be transported to the antibody fixing site 716 in the same procedure as in FIG. Since the antibody fixing part 716 is downstream of the specimen holding part 711, the specimen component diffused from the specimen holding part 711 is supplied to the antibody fixing part 716 even if the diluent is kept flowing. Therefore, instead of holding the diluent as in Steps 2 to 3, the diluent may be continuously fed. In this case, the dilution rate of the diluted specimen solution supplied is controlled by the feeding speed.
  • the introduction of the sample uses diffusion from a filter or the like, it is possible to suppress adsorption of non-specific sample components in the flow channel, which is a concern when introducing the sample into the flow channel, or in the flow channel. . In addition, it is not necessary to measure a trace amount of sample that can be a problem when realizing a high dilution factor of about 100 times. In addition, since the sample is held in the sample holding unit 711 by capillary force, scattering of the sample when handling the cartridge can be suppressed.
  • the specimen holder 711 can be made of aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, rayon fiber filter paper, nonwoven fabric, or porous fiber. . Alternatively, one or more pores can be used instead.
  • the sample holding portion 711 can remove or reduce substances in the sample that may cause clogging of the cartridge flow path.
  • activated carbon or hydrophobic resin with these materials, lipids or the like in the specimen that can be a factor of inhibition of the immune reaction system can be removed or reduced. At this time, these materials are desirably substances with low reactivity to proteins and carbohydrates in order to prevent an extreme decrease in the abundance of human albumin and GA and fluctuations in the GA / albumin ratio.
  • FIG. 13 shows the details of the embodiment of the potential measurement method using the electrochemical sensor in S212 below.
  • the antigen-antibody reaction can be detected as an electrochemical signal by adding ascorbic acid phosphate, which is a substrate of the detection antibody-modifying enzyme alkaline phosphatase, and mediator, potassium ferricyanide.
  • Ascorbic acid phosphate is hydrolyzed by alkaline phosphatase into ascorbic acid. Thereafter, dehydroascorbic acid is produced from ascorbic acid, and potassium ferricyanide is reduced to produce potassium ferrocyanide.
  • the concentration ratio of the oxidizing substance and the reducing substance in the reaction solution changes and the potential of the reaction solution varies.
  • FIG. 13A shows the measurement result of the potential that fluctuated with time due to the action of alkaline phosphatase present in the flow path. However, the potential does not fluctuate even if BSA which is a negative control is present instead of alkaline phosphatase.
  • FIG. 13B is a graph in which the potential is converted to the concentration of potassium ferrocyanide generated using Nernst equation (4).
  • a measurement result obtained by using an albumin / GA mixed sample having a predetermined GA / albumin abundance ratio is used for calibration, and a GA / albumin abundance ratio in the specimen is obtained from the measurement result of the specimen.
  • an inflection point as shown in FIG. 13A can be used in addition to the produced potassium ferrocyanide concentration after a certain time and the amount of produced potassium ferrocyanide per unit time.
  • This inflection point is an equivalent amount of potassium ferricyanide and potassium ferrocyanide according to equation (4).
  • the standard electrode potential is required to obtain the potassium ferrocyanide concentration from the potential at an arbitrary time, it is always the standard electrode potential at the inflection point. Therefore, the measurement using the inflection point is not affected by the fluctuation of the standard electrode potential that occurs every measurement.
  • the measurement sample can be made in a small amount without affecting the measurement sensitivity as compared with the oxidation-reduction current method or the absorptiometry.
  • the potential measurement method obtains a signal proportional to the logarithm of the concentration of the enzyme-labeled antibody, a wider dynamic range is obtained compared to the oxidation-reduction current method and the spectrophotometric method, which can obtain a signal proportional to the concentration of the enzyme-labeled antibody. It is done.
  • the combination of antibody modifying enzyme for detection, its substrate and mediator is not limited to the combination of hydrolyzing enzyme and substrate such as alkaline phosphatase, ascorbic acid phosphate and potassium ferricyanide, but also oxidoreductase such as glucose oxidase and glucose and potassium ferricyanide.
  • hydrolyzing enzyme and substrate such as alkaline phosphatase, ascorbic acid phosphate and potassium ferricyanide, but also oxidoreductase such as glucose oxidase and glucose and potassium ferricyanide.
  • oxidoreductase such as glucose oxidase and glucose and potassium ferricyanide.
  • a combination of redox substances may also be used.
  • the concentration of the mediator is preferably lower than the substrate concentration, and the measurement sensitivity can be adjusted by the concentration ratio of the substrate to the mediator.
  • an electrode capable of electrochemical measurement such as a noble metal such as gold or platinum, a carbon material such as graphite or carbon black, or a mixture of a carbon material and a noble metal.
  • a noble metal such as gold or platinum
  • a carbon material such as graphite or carbon black
  • a mixture of a carbon material and a noble metal such as gold or platinum
  • FIG. 14A shows the case where the antibody is immobilized only on the electrode
  • FIG. 14B shows the case where the antibody is immobilized in a wider range than the electrode including the electrode
  • FIG. 14C shows the flow path centered on the electrode without fixing the antibody to the electrode. Shows the case where the antibody is immobilized at a position sandwiched between the upstream and downstream directions.
  • Each graph shows the concentration of the reaction product when the substrate is added in the state where the immobilized antibody-antigen-enzyme labeled antibody complex is formed.
  • the added substrate is decomposed by the enzyme of the immobilized antibody-antigen-enzyme labeled antibody complex to produce a reaction product, which is spread by diffusion.
  • the distribution of the reaction product has a concentration difference on the electrode as shown in FIG. 14A.
  • the end of the electrode is about half the center of the electrode.
  • the concentration difference on the electrode is suppressed as shown in FIG.
  • FIG. 14A shows that when the antibody is immobilized in a wider range than the electrode including the electrode, the concentration difference on the electrode is suppressed as shown in FIG.
  • FIG. 14A the concentration difference on the electrode is suppressed as shown in FIG.
  • the antibody immobilization site 716 is wider than the electrode as shown in FIG. 14B or FIG. 14C so that the concentration of the reaction product is constant on the electrode. It is desirable to arrange the electrodes so as to surround the electrodes.
  • the antibody fixing site 716 may be disposed so as to surround the electrode from four sides as shown in FIGS. 14D and 14E, and the antibody may be fixed on the electrode. It is desirable that the antibody immobilization site 716 is adjacent to the electrode both when the electrode is sandwiched between the antibody immobilization sites and when the electrode is surrounded.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

To measure a glycoalbumin (GA)/albumin ratio easily and precisely, the total amount of albumin (103) and GA (104) trapped using anti-albumin antibodies (102) immobilized on a solid phase (101) is normalized and the amount of GA (104) among albumin (103) and GA (104) trapped using anti-GA antibodies (105) is measured.

Description

グリコアルブミンの測定キットおよび測定方法Glycoalbumin measurement kit and measurement method
 糖尿病はインスリン作用不足により血糖値が高くなる病気であり、脳卒中や心臓病の原因ともなるため早期の診断と治療が必要である。従来は糖尿病の診断には血糖値の測定が用いられてきたものの、血糖値は食事や飲酒により変動するという課題があった。これに対し、ヘモグロビンA1c(HbA1c)やグリコアルブミン(GA)などの糖化タンパク質の量はより長期(数週間~数ヶ月)の血糖値を反映した安定した指標であるため、糖尿病の診断および治療のために行う血糖コントロールの成否を判定するのに有用である。 Diabetes is a disease in which the blood sugar level increases due to insufficient insulin action, and it can cause stroke and heart disease, so early diagnosis and treatment are necessary. Conventionally, measurement of blood glucose level has been used for diagnosis of diabetes, but there has been a problem that blood glucose level fluctuates due to meals and drinking. On the other hand, the amount of glycated protein such as hemoglobin A1c (HbA1c) and glycoalbumin (GA) is a stable index reflecting blood glucose level over a longer period (several weeks to several months). Therefore, it is useful for determining the success or failure of blood glucose control.
 糖化タンパク質はヘモグロビンやアルブミンといった特定のタンパク質が血糖値に応じて糖化されたものであるため、特定のタンパク質あたりの糖化タンパク質の存在比は長期の血糖値を反映する。例えば、HbA1cの場合はヘモグロビンに対するHbA1cの存在比(HbA1c/ヘモグロビン比)が、GAの場合はアルブミンに対するGAの存在比(GA/アルブミン比)が長期の血糖値の指標となる。 Since the glycated protein is a glycated specific protein such as hemoglobin or albumin according to the blood glucose level, the abundance ratio of the glycated protein per specific protein reflects the long-term blood glucose level. For example, in the case of HbA1c, the abundance ratio of HbA1c to hemoglobin (HbA1c / hemoglobin ratio), and in the case of GA, the abundance ratio of GA to albumin (GA / albumin ratio) is an indicator of long-term blood glucose level.
 糖化タンパク質の存在比が反映する期間は糖化タンパク質の体内での半減期によって決まるため、HbA1cの場合は過去1~2ヶ月間、GAの場合は過去2週間の血糖値の推移を反映した値となる。そのため、GAはHbA1cよりも短期間の血糖コントロール状態が分かるマーカーとして注目されている。 Since the period in which the abundance ratio of glycated protein is reflected is determined by the half-life of the glycated protein in the body, it is a value that reflects the change in blood glucose level over the past 1 to 2 months for HbA1c and for the past 2 weeks for GA. Become. For this reason, GA is attracting attention as a marker that shows a glycemic control state in a shorter period of time than HbA1c.
 HbA1cは国際臨床化学連合(IFCC)により標準化され、ヘモグロビンのβ鎖N末端のバリン残基の糖化物と定義された。それに対し、GAは日本臨床化学会 糖尿病関連指標専門委員会「グリコアルブミン測定の標準法の確立」プロジェクトにより、グルコースが結合したリジン残基を有するアルブミンであり、GA値はグルコースが結合したリジン残基とアルブミンのモル比と定義された。すなわち、糖化を判断する部位がHbA1cでは1ヶ所であるのに対し、GAでは少なくとも主な糖化部位として知られている4ヶ所が対象になる。このように、HbA1cとGAは糖化タンパク質ではあっても定義に違いがある。 HbA1c was standardized by the International Clinical Chemistry Association (IFCC) and defined as a glycated product of the valine residue at the N-terminal of the β chain of hemoglobin. On the other hand, GA is albumin having a lysine residue to which glucose is bound according to the project of the Japanese Association of Clinical Chemistry, Diabetes Related Indicators Special Committee “Establishment of Standard Method for Glycoalbumin Measurement”. Defined as the molar ratio of groups to albumin. That is, the number of sites for judging saccharification is one in HbA1c, whereas in GA, at least four sites known as main saccharification sites are targeted. Thus, HbA1c and GA are different in definition even though they are glycated proteins.
 GAの測定法はまずHPLC法(Diabetologia, 31, pp.627-631, 1988)が開発され、その後、酵素法(特開平5-192193号公報)や免疫法(特開2010-261961号公報)が開発されたことで、それまでのHPLC法に比べ反応が容易かつ短時間で測定できるようになった。ただし、これらの方法はアルブミン量とGA量を別々に測定し、GA/アルブミン比へと換算する必要があることから、測定操作が煩雑になっていた。そこで、一定量のアルブミンを固相へ吸着させたり(特開2004-242522号公報)、抗アルブミン抗体を固定化した固相へ結合させたり(特開平5-87809号公報)することで、アルブミンの総量を別途に測定することなく規格化し、GA/アルブミン比を測定できる方法が開発された。 As a method for measuring GA, the HPLC method (Diabetologia, 31, pp.627-631, 1988) was first developed, and then the enzyme method (JP-A-5-192193) and the immunization method (JP-A-2010-261196). As a result of the development, the reaction can be measured easily and in a shorter time than the previous HPLC method. However, in these methods, the amount of albumin and the amount of GA need to be measured separately and converted into a GA / albumin ratio, which makes the measurement operation complicated. Therefore, albumin can be obtained by adsorbing a certain amount of albumin to a solid phase (Japanese Patent Laid-Open No. 2004-242522) or binding an anti-albumin antibody to a fixed solid phase (Japanese Patent Laid-Open No. 5-87809). A method has been developed that can be used to measure the GA / albumin ratio by standardizing the total amount of the protein without separately measuring it.
特開平5-192193号公報JP-A-5-192193 特開2010-261961号公報JP 2010-261196 A 特開2004-242522号公報JP 2004-242522 A 特開平5-87809号公報Japanese Patent Laid-Open No. 5-87809
 簡便かつ高精度にアルブミンに対するGA/アルブミン比を測定する方法を鋭意検討したところ、特開2004-242522号公報のようにアルブミンを固相吸着する方法では吸着量の制御が難しいため、アルブミン総量を再現性よく規格化することが困難であった。また、特開平5-87809号公報のようにフェニルボロン酸誘導体のような糖のみを認識して検出する分子を用いてGAを検出する方法では、GA以外にも反応系に存在する糖すべてに反応してしまうため、検体によってGA測定に誤差が生じる可能性があった。 As a result of intensive studies on a simple and highly accurate method for measuring the GA / albumin ratio to albumin, it is difficult to control the amount of adsorption by a method of solid-phase adsorption of albumin as disclosed in JP-A-2004-242522. It was difficult to standardize with good reproducibility. In addition, in the method of detecting GA using a molecule that recognizes and detects only a sugar such as a phenylboronic acid derivative as disclosed in JP-A-5-87809, all sugars existing in the reaction system other than GA are also detected. Since it reacts, there is a possibility that an error may occur in GA measurement depending on the specimen.
 したがって、本発明の課題は、アルブミンに対するGAの存在比を簡便かつ精度よく測定するために、1)アルブミンの総量を別途に測定することなく規格化する、2)アルブミン総量の規格化およびGAの検出において測定系の制御を容易にし、測定精度を下げる要因を減らすことにある。 Therefore, in order to measure the abundance ratio of GA to albumin simply and accurately, the object of the present invention is to 1) normalize the total amount of albumin without separately measuring 2) normalization of the total amount of albumin and GA The purpose is to facilitate control of the measurement system in detection and to reduce factors that lower measurement accuracy.
 上記の課題を解決するためには、抗アルブミン抗体を用いて捕捉されるアルブミン総量を規格化し、抗GA抗体を用いて捕捉されたアルブミンのうちのGA量を測定する。固相に固定化した抗アルブミン抗体に検体を反応させることで検体中のアルブミンのみを固相に捕捉する。このとき、検体中のアルブミン量よりも固相に固定化した抗アルブミン抗体の量が少なくなるようにする。捕捉されたアルブミンのうちGAのみを抗GA抗体により検出と定量をする。さらに、固相化したアルブミン抗体とは異なるエピトープを認識する抗アルブミン抗体を用いて捕捉されたアルブミン量を測定する。 In order to solve the above problems, the total amount of albumin captured using the anti-albumin antibody is normalized, and the GA amount of the albumin captured using the anti-GA antibody is measured. By reacting the specimen with the anti-albumin antibody immobilized on the solid phase, only albumin in the specimen is captured on the solid phase. At this time, the amount of the anti-albumin antibody immobilized on the solid phase is made smaller than the amount of albumin in the specimen. Of the captured albumin, only GA is detected and quantified with an anti-GA antibody. Furthermore, the amount of captured albumin is measured using an anti-albumin antibody that recognizes an epitope different from the immobilized albumin antibody.
 他の手段として、検体液中のアルブミンを固相に物理吸着させ、まず抗GA抗体を用いて捕捉されたアルブミンのうちのGA量を測定し、続いて抗アルブミン抗体を用いて捕捉されたアルブミン量を測定する。 As another means, albumin captured using an anti-albumin antibody is measured by physically adsorbing albumin in a sample solution to a solid phase, first measuring the GA amount of the albumin captured using an anti-GA antibody. Measure the amount.
 また、簡便に検体の希釈を行うには、流路上に検体導入のためのフィルタを設置し、フィルタ上に検体を滴下して流路中の溶液に拡散した検体を試料として用いる。本発明はアルブミンに対するGAの存在比を直接求める方法であるため、測定値が希釈倍率に大きく影響を受けず、このような簡便な希釈方法でも十分な精度で測定が可能である。 In order to easily dilute the specimen, a filter for introducing the specimen is installed on the flow path, and the specimen that has been dropped onto the filter and diffused into the solution in the flow path is used as the specimen. Since the present invention is a method for directly determining the abundance ratio of GA to albumin, the measurement value is not greatly affected by the dilution factor, and such a simple dilution method can be measured with sufficient accuracy.
 本発明のグリコアルブミン測定キットは、固定化抗アルブミン抗体と電極とが設けられた固相と、酵素標識された抗グリコアルブミン抗体とを含むことを特徴とする。電極は電位測定用であることが好ましい。固相は、検体導入口および検体保持部を有することができ、検体保持部はろ紙、不織布、多孔質繊維のいずれかを用いることができる。抗アルブミン抗体と電極は流路中に配置されており、抗アルブミン抗体は少なくとも電極の上流と下流に配置されていることが好ましい。また、固相は流路に接続された検体導入口を有することができる。 The glycoalbumin measurement kit of the present invention comprises a solid phase provided with an immobilized anti-albumin antibody and an electrode, and an enzyme-labeled anti-glycoalbumin antibody. The electrode is preferably used for potential measurement. The solid phase can have a sample introduction port and a sample holding unit, and the sample holding unit can use any of filter paper, non-woven fabric, and porous fiber. It is preferable that the anti-albumin antibody and the electrode are disposed in the flow path, and the anti-albumin antibody is disposed at least upstream and downstream of the electrode. The solid phase can have a sample inlet connected to the flow path.
 本発明のグリコアルブミン測定方法は、抗アルブミン抗体と、酵素標識抗グリコアルブミン抗体とを用いて、電位測定により検体中のアルブミンに対するグリコアルブミンの割合を定量化する。本測定方法において、抗アルブミン抗体が固相に固定化された固定化抗体であり、固相に検体を供給する工程と、固定化抗体に検体中のアルブミンとグリコアルブミンを結合させる工程と、固相に酵素標識抗グリコアルブミン抗体を供給する工程と、酵素標識抗体を固相に結合したグリコアルブミンに結合させて固定化抗アルブミン抗体-グリコアルブミン-酵素標識抗グリコアルブミン抗体の複合体を形成させる工程と、固相に基質を供給する工程と、基質を複合体の酵素と反応させて反応産物を生成させる工程と、反応産物濃度を電位測定により測定する工程と、反応産物の濃度を検体中のグリコアルブミン濃度に換算する工程と、を順に有することができる。ここで検体として、希釈液を用いて希釈した検体を用いることが好ましい。希釈の希釈倍率は10倍以上1000倍以下であることが好ましい。さらに、固相は検体保持部を有し、固相に検体を供給する工程の後に、固相に希釈液を供給する工程を有し、検体保持部に保持させた検体と希釈液を接触させることによって検体を希釈することができる。 The method for measuring glycoalbumin of the present invention uses an anti-albumin antibody and an enzyme-labeled anti-glycoalbumin antibody to quantify the ratio of glycoalbumin to albumin in a sample by potential measurement. In this measurement method, the anti-albumin antibody is an immobilized antibody immobilized on a solid phase, the step of supplying a specimen to the solid phase, the step of binding albumin and glycoalbumin in the specimen to the immobilized antibody, Supplying an enzyme-labeled anti-glycoalbumin antibody to the phase, and binding the enzyme-labeled antibody to glycoalbumin bound to the solid phase to form an immobilized anti-albumin antibody-glycoalbumin-enzyme-labeled anti-glycoalbumin antibody complex A step of supplying a substrate to the solid phase, a step of reacting the substrate with a complex enzyme to generate a reaction product, a step of measuring the concentration of the reaction product by potential measurement, and a concentration of the reaction product in the sample. And a step of converting to the glycoalbumin concentration. Here, it is preferable to use a sample diluted with a diluent as the sample. It is preferable that the dilution rate of dilution is 10 times or more and 1000 times or less. Furthermore, the solid phase has a sample holding unit, and has a step of supplying a diluent to the solid phase after the step of supplying the sample to the solid phase, and the sample held in the sample holding unit is brought into contact with the diluent. In this way, the specimen can be diluted.
 本発明の方法では、アルブミンを抗アルブミン抗体で捕捉した後に抗GA抗体を用いて捕捉されたアルブミンのうちのGA量を測定することで、アルブミンの総量を別途に測定することなく、簡便かつ高精度にアルブミンに対するGAの存在比を測定することができる。アルブミンの捕捉に抗アルブミン抗体を用いることで、捕捉されるアルブミン量のばらつきを抑えることができる。捕捉されるアルブミン量が予測できるため、抗GA抗体の使用量を必要最小限にすることができる。検体中のアルブミン量が固相に固定化した抗アルブミン抗体の量よりも多ければよいので、必要な希釈倍率が予測できる。固相化したアルブミン抗体とは異なるエピトープを認識する抗アルブミン抗体を用いて捕捉されたアルブミン量を測定することで、固相化抗体の活性が変動するなどしてもその影響を抑制してより安定に測定することができる。 In the method of the present invention, albumin is captured with an anti-albumin antibody, and then the amount of albumin captured using an anti-GA antibody is measured. The abundance ratio of GA to albumin can be accurately measured. By using an anti-albumin antibody for capturing albumin, variation in the amount of albumin captured can be suppressed. Since the amount of albumin to be captured can be predicted, the amount of anti-GA antibody used can be minimized. Since it is sufficient that the amount of albumin in the sample is larger than the amount of anti-albumin antibody immobilized on the solid phase, the necessary dilution rate can be predicted. By measuring the amount of albumin captured using an anti-albumin antibody that recognizes an epitope different from that of the immobilized albumin antibody, the influence of the immobilized antibody activity can be suppressed even if it fluctuates. It can be measured stably.
 検体中のアルブミンを固相に物理吸着させる場合は、まず抗GA抗体を用いて捕捉されたアルブミンのうちのGA量を測定し、続いて抗アルブミン抗体を用いて捕捉されたアルブミン量を測定することで、物理吸着量の変動の影響を抑制して、安定してアルブミンに対するGAの存在比を測定することができる。 When physically adsorbing albumin in a sample to a solid phase, first measure the GA amount of albumin captured using an anti-GA antibody, and then measure the amount of albumin captured using an anti-albumin antibody. Thereby, the influence of the fluctuation | variation of a physical adsorption amount can be suppressed and the abundance ratio of GA with respect to albumin can be measured stably.
GA/アルブミン比の測定の概略を示した図。The figure which showed the outline of the measurement of GA / albumin ratio. GA/アルブミン比を測定する手順の概略を示した図。The figure which showed the outline of the procedure which measures GA / albumin ratio. 抗ヒトアルブミン抗体固定固相で一定量のヒトアルブミンが捕捉できることを示した図。The figure which showed that a fixed amount of human albumin could be capture | acquired by the anti-human albumin antibody fixed solid phase. 総アルブミン濃度への依存を小さく抑えてGA/アルブミン比を検出できることを示した図。The figure which showed that the GA / albumin ratio could be detected with a small dependence on the total albumin concentration. GA/アルブミン比とGA・抗GA抗体複合体の濃度の関係を理論的に算出した図。The figure which calculated theoretically the relationship between GA / albumin ratio and the density | concentration of GA and an anti- GA antibody complex. 抗ヒトアルブミン抗体を検出用抗体として用いてヒトアルブミン量を補正する方法を示した図。The figure which showed the method of correct | amending the amount of human albumins using an anti-human albumin antibody as a detection antibody. GA/アルブミン比測定用のカートリッジの一例を示す図。The figure which shows an example of the cartridge for GA / albumin ratio measurement. 図7のカートリッジで測定を行うための装置の一例を示す図。The figure which shows an example of the apparatus for measuring with the cartridge of FIG. グリコアルブミン測定キットの概要を示す図。The figure which shows the outline | summary of a glycoalbumin measuring kit. 図7のカートリッジで測定を行うための装置の外観を示す図。The figure which shows the external appearance of the apparatus for measuring with the cartridge of FIG. 図7のカートリッジと図8の装置を用いた測定方法の一例を示す図。The figure which shows an example of the measuring method using the cartridge of FIG. 7, and the apparatus of FIG. カートリッジ流路への検体の導入方法を示す図。The figure which shows the introduction method of the sample to a cartridge flow path. 電気化学センサを用いた電位測定方法を示す図。The figure which shows the electric potential measurement method using an electrochemical sensor. 電位計測用電極と抗体固定部位の位置関係の例を示す図。The figure which shows the example of the positional relationship of the electrode for electric potential measurement, and an antibody fixed part.
 図1は、本発明を用いたGA/アルブミン比の測定法の概略を図示したものである。固相101に抗ヒトアルブミン抗体102が固定化されており、抗ヒトアルブミン抗体102には試料液中のヒトアルブミン103およびGA104が捕捉される。アルカリホスファターゼ(AP)標識された抗GA抗体(以下、酵素標識抗GA抗体)105は捕捉されたGA104の糖化部位(図1では○で模式的に表している)を認識して結合する。基質106を添加すると、酵素標識抗GA抗体105の標識酵素(この場合、アルカリホスファターゼ)により産物107に変換される。試料溶液中のGA/アルブミン比が高い場合と低い場合をそれぞれ図1A、図1Bに表した。GA/アルブミン比に応じて抗ヒトアルブミン抗体102に捕捉されるGA104の量が異なり、それに応じて結合する酵素標識抗GA抗体105の量が変わるため、産物107量を比較することでGA/アルブミン比を求めることができる。なお、抗ヒトアルブミン抗体102を固相に固定化できるものであれば、固相101の代わりにビーズなどを用いてもよい。 FIG. 1 schematically shows a method for measuring a GA / albumin ratio using the present invention. An anti-human albumin antibody 102 is immobilized on the solid phase 101, and the human albumin 103 and GA104 in the sample solution are captured by the anti-human albumin antibody 102. Alkaline phosphatase (AP) -labeled anti-GA antibody (hereinafter referred to as enzyme-labeled anti-GA antibody) 105 recognizes and binds to the saccharification site of GA104 (shown schematically in FIG. 1). When the substrate 106 is added, it is converted into the product 107 by the labeling enzyme of the enzyme-labeled anti-GA antibody 105 (in this case, alkaline phosphatase). The cases where the GA / albumin ratio in the sample solution is high and low are shown in FIGS. 1A and 1B, respectively. Since the amount of GA104 captured by the anti-human albumin antibody 102 differs depending on the GA / albumin ratio, and the amount of the enzyme-labeled anti-GA antibody 105 that binds changes accordingly, comparing the amount of the product 107 with the GA / albumin The ratio can be determined. Note that beads or the like may be used instead of the solid phase 101 as long as the anti-human albumin antibody 102 can be immobilized on the solid phase.
 図2は、GA/アルブミン比を測定する手順の概略を示したものである。 FIG. 2 shows an outline of the procedure for measuring the GA / albumin ratio.
 ステップ1:試料溶液を添加し、固相101に固定した抗ヒトアルブミン抗体102に試料溶液中のヒトアルブミン103とGA104を捕捉させる
 ステップ2:洗浄により、抗体と結合していない試料溶液中のヒトアルブミン103およびGA104を除く
 ステップ3:酵素標識抗GA抗体105を加え、抗ヒトアルブミン抗体102に捕捉されたGA104に結合させる
 ステップ4:洗浄により、結合していない過剰な酵素標識抗GA抗体105を除く
 ステップ5:アルカリホスファターゼ用の基質106を加え、産物107の量から酵素活性を測定する
 このとき、一般的な抗原抗体反応では試料溶液中のヒトアルブミンよりも過剰量の捕捉抗体である抗ヒトアルブミン抗体を用いるが、本発明では試料溶液中のヒトアルブミンよりも少ない抗ヒトアルブミン抗体を固相に固定することを特徴とする。抗ヒトアルブミン抗体の固定化密度が同じである条件下では、試料溶液中のヒトアルブミン濃度が、抗ヒトアルブミン抗体のすべてにヒトアルブミンが結合し得る濃度以上であれば、固相上に捕捉されるヒトアルブミン総量は抗ヒトアルブミン抗体と同等量で一定となり、測定毎に一定量のヒトアルブミンを分取することができる。抗原抗体反応における複合体の濃度は式(1)で表せる。
Step 1: Sample solution is added, and human albumin 103 and GA104 in the sample solution are captured by anti-human albumin antibody 102 immobilized on solid phase 101. Step 2: Human in sample solution not bound to antibody by washing Step 3: Add enzyme-labeled anti-GA antibody 105 and bind to GA104 captured by anti-human albumin antibody 102 Step 4: Wash away excess unlabeled enzyme-labeled anti-GA antibody 105 by washing Exclude Step 5: Add substrate 106 for alkaline phosphatase and measure enzyme activity from the amount of product 107. At this time, in a general antigen-antibody reaction, anti-human which is an excess amount of capture antibody than human albumin in the sample solution Albumin antibody is used, but in the present invention, human albumin in the sample solution is used. Characterized by fixing the small anti-human albumin antibody to the solid phase. Under the condition that the immobilization density of the anti-human albumin antibody is the same, if the human albumin concentration in the sample solution is higher than the concentration at which human albumin can bind to all of the anti-human albumin antibody, it is captured on the solid phase. The total amount of human albumin that is equal to the amount of anti-human albumin antibody is constant, and a certain amount of human albumin can be fractionated for each measurement. The concentration of the complex in the antigen-antibody reaction can be expressed by equation (1).
式1 Formula 1
Figure JPOXMLDOC01-appb-I000001
 例えば,Ab=10-8(M),kon=105(M-1-1),koff=10-4(s-1),tb=10(min),tw=1(min)とすると,Ag=10-6(M)の場合はXb=9.93×10-9(M),Ag=10-5(M)の場合はXb=9.94×10-9(M)となる。
Figure JPOXMLDOC01-appb-I000001
For example, Ab = 10 −8 (M), k on = 10 5 (M −1 s −1 ), k off = 10 −4 (s −1 ), t b = 10 (min), t w = 1 ( min), X b = 9.93 × 10 −9 (M) when Ag = 10 −6 (M), and X b = 9.94 × 10 when Ag = 10 −5 (M). 9 (M).
 ここで抗体濃度Abは、抗体の固定密度D、反応場の容量V、反応場における抗体固定面積Sを用いて式(2)で表せる。 Here, the antibody concentration Ab can be expressed by the equation (2) using the antibody fixing density D, the reaction field volume V, and the antibody fixing area S in the reaction field.
式2Formula 2
Figure JPOXMLDOC01-appb-I000002
 式(2)より、容量が100μl、抗体固定面積が154mm2の反応場において、抗ヒトアルブミン抗体を固定密度6.5×10-9mol/m2で固定した条件は抗体濃度10-8Mに相当する。血中のヒトアルブミン濃度は5.6~7.4×10-4M(37~49mg/ml)であるため、固定密度6.5×10-9mol/m2で抗ヒトアルブミン抗体を固定した反応場(反応場の容量100μl、抗体固定面積154mm2)にとって、血清試料は固相上の抗ヒトアルブミン抗体のすべてにヒトアルブミンが結合するのに十分なアルブミン濃度である。
Figure JPOXMLDOC01-appb-I000002
From the equation (2), the conditions under which the anti-human albumin antibody was fixed at a fixed density of 6.5 × 10 −9 mol / m 2 in a reaction field having a volume of 100 μl and an antibody fixing area of 154 mm 2 were as follows: antibody concentration 10 −8 M It corresponds to. Since the human albumin concentration in blood is 5.6 to 7.4 × 10 −4 M (37 to 49 mg / ml), the anti-human albumin antibody is immobilized at a fixed density of 6.5 × 10 −9 mol / m 2. For the reaction field (reaction field volume 100 μl, antibody immobilization area 154 mm 2 ), the serum sample has an albumin concentration sufficient for binding of human albumin to all of the anti-human albumin antibodies on the solid phase.
 抗ヒトアルブミン抗体の固定密度は1.7×10-14~3.6×10-4mol/m2であるとよい。1.7×10-14よりも抗ヒトアルブミン抗体の固定密度が低いと、測定値の有効数字3桁が確保できなくなってしまう。逆に、3.6×10-4mol/m2よりも高い固定密度で抗ヒトアルブミン抗体を固定した反応場は、抗体の性能にもよるが血清試料に含まれるヒトアルブミンがすべて抗ヒトアルブミン抗体に結合してしまうため、固相上に捕捉されるヒトアルブミンの総量は血清試料中のヒトアルブミン濃度によって変動してしまい、測定毎に一定量のヒトアルブミンを捕捉することはできない。 The immobilization density of the anti-human albumin antibody is preferably 1.7 × 10 −14 to 3.6 × 10 −4 mol / m 2 . If the immobilization density of the anti-human albumin antibody is lower than 1.7 × 10 −14 , three significant digits of the measured value cannot be secured. Conversely, in the reaction field in which the anti-human albumin antibody is immobilized at a fixed density higher than 3.6 × 10 −4 mol / m 2 , depending on the performance of the antibody, all human albumin contained in the serum sample is anti-human albumin. Since it binds to the antibody, the total amount of human albumin captured on the solid phase varies depending on the concentration of human albumin in the serum sample, and a certain amount of human albumin cannot be captured for each measurement.
 図3は、抗ヒトアルブミン抗体102を固定化した固相101を用いることで、試料液中のヒトアルブミン濃度が一定以上であれば一定量のヒトアルブミンを抗体で捕捉できることを示している。詳細な実験手順を以下に示す。 FIG. 3 shows that by using the solid phase 101 on which the anti-human albumin antibody 102 is immobilized, a certain amount of human albumin can be captured by the antibody if the concentration of human albumin in the sample solution is a certain level or more. Detailed experimental procedures are shown below.
 ビオチン化したモノクローナル抗ヒトアルブミン抗体(捕捉抗体)をストレプトアビジンコートされたマイクロプレートに加え、固定した。0.1%Tween20含有Tris Buffered Saline(以下、TBSTという)で洗浄後、2%ウシ血清アルブミン(BSA)含有TBSTを加えてブロッキングした。TBSTで洗浄し、抗ヒトアルブミン抗体固定プレートを作製した。 Biotinylated monoclonal anti-human albumin antibody (capture antibody) was added to a streptavidin-coated microplate and immobilized. After washing with 0.1% Tween20-containing Tris Buffered Saline (hereinafter referred to as TBST), 2% bovine serum albumin (BSA) -containing TBST was added for blocking. The plate was washed with TBST to prepare an anti-human albumin antibody fixed plate.
 ヒトアルブミン(GA含有)とTBSTを混合した希釈系列を用意し、試料溶液とした。抗ヒトアルブミン抗体固定プレートに試料溶液を導入し、試料溶液中のヒトアルブミンおよびGAを捕捉抗体と反応させ、TBSTで過剰なヒトアルブミンを洗浄した。アルカリホスファターゼ修飾したモノクローナル抗ヒトアルブミン抗体(検出用抗体)をプレートに加え反応させた後、TBSTで過剰な抗体を洗浄した。 A dilution series in which human albumin (containing GA) and TBST were mixed was prepared and used as a sample solution. The sample solution was introduced into the anti-human albumin antibody fixed plate, human albumin and GA in the sample solution were reacted with the capture antibody, and excess human albumin was washed with TBST. An alkaline phosphatase-modified monoclonal anti-human albumin antibody (detection antibody) was added to the plate and reacted, and then the excess antibody was washed with TBST.
 アルカリホスファターゼの発色性基質であるブロモクロロインドリルリン酸(BCIP)と発色剤ニトロブルーテトラゾリウム(NTB)を添加し、反応させた後、エチレンジアミン四酢酸(EDTA)を加えて反応を停止させ、595nmの吸光度を測定した。試料溶液中のヒトアルブミン濃度と吸光度の関係を図3に示す。ヒトアルブミン濃度0.05mg/ml以上でほぼ一定の吸光度となっており、捕捉抗体により一定量のヒトアルブミンが捕捉できたことが分かる。 Bromochloroindolyl phosphate (BCIP), which is a chromogenic substrate for alkaline phosphatase, and a color former, nitro blue tetrazolium (NTB), were added and reacted, and then the reaction was stopped by adding ethylenediaminetetraacetic acid (EDTA) to 595 nm. The absorbance was measured. FIG. 3 shows the relationship between the human albumin concentration in the sample solution and the absorbance. The absorbance was almost constant at a human albumin concentration of 0.05 mg / ml or more, indicating that a certain amount of human albumin could be captured by the capture antibody.
 図4は、抗ヒトアルブミン抗体で捕捉されたヒトアルブミンに含まれるGAを抗GA抗体で検出することにより、総ヒトアルブミン濃度への依存性を小さく抑えてGA/アルブミン比を測定できることを示す図である。詳細な実験手順を以下に示す。 FIG. 4 is a diagram showing that the GA / albumin ratio can be measured with a small dependence on the total human albumin concentration by detecting GA contained in human albumin captured by the anti-human albumin antibody with the anti-GA antibody. It is. Detailed experimental procedures are shown below.
 図3での測定と同様にして抗ヒトアルブミン抗体固定プレートを作製した。GA/アルブミン比既知の血清検体とTBSTを混合して血清検体を100倍希釈および1000倍希釈し、試料溶液とした。このとき、試料溶液中のヒトアルブミン濃度は固定した抗ヒトアルブミン抗体のすべてにヒトアルブミンが結合し得る濃度以上であることが望ましい。すなわち、容量が100μl、抗体固定面積が154mm2の反応場に抗ヒトアルブミン抗体を固定密度6.5×10-9mol/m2で固定した場合であれば、5000倍までなら希釈できる。 An anti-human albumin antibody fixed plate was prepared in the same manner as in the measurement in FIG. A serum specimen with a known GA / albumin ratio and TBST were mixed to dilute the serum specimen 100-fold and 1000-fold to obtain a sample solution. At this time, the human albumin concentration in the sample solution is desirably equal to or higher than the concentration at which human albumin can bind to all of the immobilized anti-human albumin antibodies. That is, when the anti-human albumin antibody is immobilized at a fixed density of 6.5 × 10 −9 mol / m 2 in a reaction field having a volume of 100 μl and an antibody immobilization area of 154 mm 2 , dilution can be performed up to 5000 times.
 抗ヒトアルブミン抗体固定プレートに試料溶液を導入し、試料溶液中のヒトアルブミンおよびGAを抗ヒトアルブミン抗体と反応させ、TBSTで過剰な検体を洗浄した。アルカリホスファターゼ修飾したモノクローナル抗GA抗体(検出用抗体)を加え、抗ヒトアルブミン抗体に捕捉されているGAに反応させた後、TBSTで洗浄した。一般的な抗原抗体反応では検出用抗体の濃度は捕捉抗体の10分の1程度だが、本発明では捕捉抗体である抗ヒトアルブミン抗体のすべてにヒトアルブミンが捕捉されているため、検出用抗体である抗GA抗体の濃度は抗体の性能にもよるが固定した抗ヒトアルブミン抗体の濃度より高いことが望ましい。例えば、抗ヒトアルブミン抗体の固定密度が2.1×10-8mol/m2、反応場の容量が100μl、固定面積が154mm2であれば、抗GA抗体の濃度は33nM以上であるとよい。また、抗GA抗体は複数種のモノクローナル抗体を混合したものでもよく、ポリクローナル抗体でもよい。ヒトアルブミンの糖化部位は複数個所存在するため、エピトープの異なるモノクローナル抗GA抗体を複数種混合することで、感度や再現性を向上させられる。 The sample solution was introduced into the anti-human albumin antibody fixed plate, human albumin and GA in the sample solution were reacted with the anti-human albumin antibody, and excess specimen was washed with TBST. Monoclonal anti-GA antibody (antibody for detection) modified with alkaline phosphatase was added, reacted with GA captured by the anti-human albumin antibody, and then washed with TBST. In a general antigen-antibody reaction, the concentration of the detection antibody is about one-tenth of that of the capture antibody. However, in the present invention, human albumin is captured by all of the anti-human albumin antibodies that are capture antibodies. The concentration of a certain anti-GA antibody is preferably higher than the concentration of the immobilized anti-human albumin antibody depending on the antibody performance. For example, when the immobilization density of the anti-human albumin antibody is 2.1 × 10 −8 mol / m 2 , the reaction field volume is 100 μl, and the immobilization area is 154 mm 2 , the concentration of the anti-GA antibody is preferably 33 nM or more. . The anti-GA antibody may be a mixture of a plurality of types of monoclonal antibodies or may be a polyclonal antibody. Since there are multiple glycation sites of human albumin, sensitivity and reproducibility can be improved by mixing multiple types of monoclonal anti-GA antibodies having different epitopes.
 なお、捕捉抗体の密度と検出抗体の濃度の関係は式(1)および式(2)を用いて一般化できる。前述したように試料溶液中のヒトアルブミン濃度が抗ヒトアルブミン抗体のすべてに結合し得る濃度以上であれば、固相上に捕捉されるヒトアルブミン総量は抗ヒトアルブミン抗体の分子数で近似できる。したがって、式(1)において抗体に捕捉されたヒトアルブミン濃度Agに式(2)の抗ヒトアルブミン抗体濃度Abを代入することで、捕捉抗体の密度と検出抗体の濃度の関係を1つの式(3)で表せる。 It should be noted that the relationship between the density of the capture antibody and the concentration of the detection antibody can be generalized using the equations (1) and (2). As described above, if the human albumin concentration in the sample solution is equal to or higher than the concentration capable of binding to all of the anti-human albumin antibodies, the total amount of human albumin captured on the solid phase can be approximated by the number of molecules of the anti-human albumin antibodies. Therefore, by substituting the anti-human albumin antibody concentration Ab of the formula (2) into the human albumin concentration Ag captured by the antibody in the formula (1), the relationship between the density of the captured antibody and the concentration of the detection antibody can be expressed by one formula ( It can be expressed by 3).
式3 Formula 3
Figure JPOXMLDOC01-appb-I000003
 BCIPおよびNTBを添加し、反応させた後、EDTAを加えて反応を停止させ、595nmの吸光度を測定した。試料溶液中のGA/アルブミン比と吸光度の関係をまとめたグラフを図4に示す。何らかのバックグラウンドシグナルが加わっているものの、GA/アルブミン比に応じた吸光度が得られた。式(3)によると、理論的にはGA/アルブミン比とGA・抗GA抗体複合体の濃度は図5に示すような線形の関係にある。図4においてもGA/アルブミン比と吸光度の関係は線形で表せており、理論に従ってGA/アルブミン比が測定できた。さらに、100倍希釈と1000倍希釈の吸光度で大きな差は見られず、10倍アルブミン濃度が違うにも関わらず、検量線から求めたGA/アルブミン比は1.1~1.4倍の変化に抑制できた。固定化した抗ヒトアルブミン抗体を用いてヒトアルブミンを捕捉したため、10倍のヒトアルブミン濃度の違いにも関わらず、ほぼ一定のヒトアルブミンが捕捉された効果である。したがって、検体を希釈する際に希釈倍率の変動があったとしても、その変動の影響を抑制してGA/アルブミン比を測定できる。
Figure JPOXMLDOC01-appb-I000003
After BCIP and NTB were added and reacted, EDTA was added to stop the reaction, and the absorbance at 595 nm was measured. FIG. 4 shows a graph summarizing the relationship between the GA / albumin ratio and the absorbance in the sample solution. Although some background signal was added, absorbance corresponding to the GA / albumin ratio was obtained. According to the equation (3), the GA / albumin ratio and the GA / anti-GA antibody complex concentration theoretically have a linear relationship as shown in FIG. Also in FIG. 4, the relationship between the GA / albumin ratio and the absorbance can be expressed linearly, and the GA / albumin ratio could be measured according to the theory. Furthermore, no significant difference was observed in the absorbance between the 100-fold dilution and the 1000-fold dilution, but the GA / albumin ratio obtained from the calibration curve varied by 1.1 to 1.4 times despite the 10-fold albumin concentration being different. I was able to suppress it. Since human albumin was captured using the immobilized anti-human albumin antibody, the effect was that almost constant human albumin was captured regardless of the 10-fold difference in human albumin concentration. Therefore, even if there is a change in the dilution factor when the specimen is diluted, the GA / albumin ratio can be measured while suppressing the influence of the change.
 試料を100倍および1000倍希釈した例を示したのに対し、無希釈および低希釈倍率でも同様にして試料溶液中のGA/アルブミン比を求めることができる。ただし、無希釈や低希釈倍率の場合、ヒトアルブミンの非特異吸着により測定値が変動しやすいため、ある程度の希釈を行うのが望ましい。 In the example shown, the sample was diluted 100 times and 1000 times, but the GA / albumin ratio in the sample solution can be obtained in the same manner even at undiluted and low dilution ratios. However, in the case of undiluted or low dilution ratio, the measured value is likely to fluctuate due to non-specific adsorption of human albumin.
 図6に示すように、図6Aのように抗GA抗体で検出した後に、捕捉抗体とは異なるエピトープを認識する酵素標識抗ヒトアルブミン抗体108を添加して、図6Bのように固定化した抗ヒトアルブミン抗体に捕捉されたヒトアルブミン量を測定することにより、固相化抗体の活性が変動するなどしても抗GA抗体での測定値を補正して変動をさらに抑制できる。 As shown in FIG. 6, after detection with an anti-GA antibody as shown in FIG. 6A, an enzyme-labeled anti-human albumin antibody 108 that recognizes an epitope different from the capture antibody is added, and the anti-antibody immobilized as shown in FIG. 6B is immobilized. By measuring the amount of human albumin captured by the human albumin antibody, even if the activity of the immobilized antibody varies, the measured value with the anti-GA antibody can be corrected to further suppress the variation.
 固相上に結合したヒトアルブミンを抗GA抗体でGA濃度を測定した後に、抗ヒトアルブミン抗体でヒトアルブミン総量の濃度を求めGA/アルブミン比を補正する方法は、静電相互作用や疎水性相互作用などの物理吸着により固相上にヒトアルブミンを一定量吸着させて規格化する場合にも応用できる。物理吸着によるヒトアルブミン総量の変動を補正するステップがあるため、特開2004-242522号公報のような固相への吸着によりヒトアルブミン総量の規格化を行っている従来法よりも精度よく測定できる。 After measuring the GA concentration of human albumin bound on a solid phase with an anti-GA antibody, and determining the total amount of human albumin with the anti-human albumin antibody and correcting the GA / albumin ratio, electrostatic interaction or hydrophobic interaction It can also be applied to normalization by adsorbing a certain amount of human albumin on a solid phase by physical adsorption such as action. Since there is a step of correcting the fluctuation of the total amount of human albumin due to physical adsorption, it can be measured with higher accuracy than the conventional method in which the total amount of human albumin is standardized by adsorption to a solid phase as in JP-A-2004-242522. .
 図7は、GA比測定用のカートリッジの一例を示す図である。図7Aは平面模式図,図7B~7Dは断面模式図である。カートリッジは、固相701、流路部702、液体保持部703から構成され、固相701は、溶液導入検知用電極713、714、電位測定用電極715、抗体固定部位716、端子724~726を有し、流路部702は、検体導入口712、試薬供給口717、718、727、728、廃液溜め接続口720を有し、液体保持部703は検体保持部711、廃液溜め719、空気穴721、境界部722、723を有する。試薬供給口717から流路をたどってそれぞれの位置関係を説明すると、溶液導入検知用電極713、抗体固定部位716、電位測定用電極715、抗体固定部位716、溶液導入検知用電極714の順に流路内側に設けられている。また、抗体固定部位716と検体導入検知用電極714の間の流路上部には、検体導入口712がある。カートリッジの概寸は20mm×10mmで、流路は幅1mm×長さ13mm×高さ0.25mmとした。 FIG. 7 is a view showing an example of a cartridge for GA ratio measurement. 7A is a schematic plan view, and FIGS. 7B to 7D are schematic cross-sectional views. The cartridge includes a solid phase 701, a flow path section 702, and a liquid holding section 703. The solid phase 701 includes solution introduction detection electrodes 713 and 714, a potential measurement electrode 715, an antibody fixing site 716, and terminals 724 to 726. The flow path unit 702 has a sample introduction port 712, reagent supply ports 717, 718, 727, 728, and a waste liquid reservoir connection port 720. The liquid holding unit 703 includes a sample holding unit 711, a waste liquid reservoir 719, and an air hole. 721 and boundary portions 722 and 723. Each positional relationship is explained by following the flow path from the reagent supply port 717. The solution introduction detection electrode 713, the antibody immobilization site 716, the potential measurement electrode 715, the antibody immobilization site 716, and the solution introduction detection electrode 714 flow in this order. It is provided inside the road. A sample introduction port 712 is provided in the upper part of the flow path between the antibody fixing site 716 and the sample introduction detection electrode 714. The approximate dimensions of the cartridge were 20 mm x 10 mm, and the flow path was 1 mm wide x 13 mm long x 0.25 mm high.
 固相701には、シリコンなどの半導体基板や、ガラスエポキシなどの回路用基板や、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリイミド(PI)などのフィルム状基板を用いることができる。流路部702には、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリイミド(PI)などのフィルムを積層したものや、エチレン酢酸ビニルコポリマー(EVA)などの熱可塑性樹脂や、エポキシ樹脂や、ポリジメチルシロキサン(PDMS)などのシリコーン樹脂を用いることができる。液体保持部703には、アラミド繊維製、ガラス繊維製、セルロース繊維製、ナイロン繊維製、ビニロン繊維製、ポリエステル繊維製、ポリオレフィン繊維製、レーヨン繊維製のろ紙や不織布や多孔質繊維を用いることができる。検体保持部711は図7Bに示すように検体導入口712の外側にあってもよいし、図7Cに示すように検体導入口712と流路の間にあってもよく、図7Dに示すように流路中にあってもよい。なお、図7Bや図7Cでは検体保持部711が流路と外部を隔てているため、圧力損失が大きく検体導入口712を測定時に塞ぐ必要がない。境界部722、723には、低密度ポリエチレン(LDPE)樹脂や、エチレン酢酸ビニル(EVA)樹脂や、ポリアミド樹脂やポリエチレンテレフタレート(PET)樹脂を用いることができる。抗体固定部位716には抗ヒトアルブミン抗体などの抗体が固定化されており、固定化方法は物理吸着であっても、化学結合であってもよく、まずアビジンを固定化した後にビオチン化抗体をアビジン-ビオチン結合により固定化してもよく、ビオチン修飾した分子を固定化した後にアビジンを介して抗体を固定化してもよい。 For the solid phase 701, a semiconductor substrate such as silicon, a circuit substrate such as glass epoxy, or a film substrate such as polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), or polyimide (PI) is used. Can do. In the channel portion 702, a film in which polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), polyimide (PI) or the like is laminated, ethylene vinyl acetate copolymer (EVA), or the like is used. A thermoplastic resin, an epoxy resin, or a silicone resin such as polydimethylsiloxane (PDMS) can be used. For the liquid holding portion 703, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, rayon fiber filter paper, nonwoven fabric or porous fiber may be used. it can. The specimen holder 711 may be outside the specimen inlet 712 as shown in FIG. 7B, or may be between the specimen inlet 712 and the flow path as shown in FIG. 7C, and the flow as shown in FIG. 7D. May be on the road. In FIG. 7B and FIG. 7C, since the specimen holding part 711 separates the flow path from the outside, the pressure loss is large and it is not necessary to close the specimen inlet 712 during measurement. For the boundary portions 722 and 723, low density polyethylene (LDPE) resin, ethylene vinyl acetate (EVA) resin, polyamide resin, or polyethylene terephthalate (PET) resin can be used. An antibody such as an anti-human albumin antibody is immobilized on the antibody immobilization site 716. The immobilization method may be physical adsorption or chemical bonding. First, after avidin is immobilized, a biotinylated antibody is immobilized. It may be immobilized by an avidin-biotin bond, or an antibody may be immobilized via avidin after immobilizing a biotin-modified molecule.
 図8は、図7のカートリッジで測定を行うための装置の一例を示す図である。図8Aはカートリッジ810と装置802の位置関係を上から見た図を示し、図8Bはカートリッジ810と装置802の試薬供給口および電極・端子の接続関係を横から見た図を示している。装置802にカートリッジ801をセットすることで、カートリッジ801の試薬供給口717、718、727、728と装置802の試薬供給口811、812、816、817が流体的に接続され、カートリッジ801の端子724~726と装置802の端子813~815が電気的に接続される。試薬供給口811には、ポンプ825によって抗体試薬液826が供給され、試薬供給口812には、ポンプ823によって検体希釈液824が供給され、試薬供給口816には、ポンプ827によって洗浄液828が供給され、試薬供給口817には、ポンプ821によって基質液822が供給される。検体希釈液824と洗浄液828は同じ組成の溶液でもよい。また、試薬供給口は1から3箇所で、試薬供給口に接続している流路を分岐させることで複数の試薬が供給されるようにしてもよい。端子814と端子815には交流電源833と交流電流計834が接続されている。端子813には電圧計832が接続されており、電圧計832のもう一方の端子は試薬供給口817に接続された流路に配置されている参照電極831に接続されている。ポンプ821、823、825、827の制御は制御部803によって行われ、交流電源833、交流電流計834、電圧計832の制御と計測は計測部804によって行われる。装置802は測定結果やメッセージを表示するための表示部805、ユーザが操作を入力する入力部806を有する。ポンプ821、823、825、827は、ペリスタポンプであっても、シリンジポンプであっても、ダイアフラムポンプであってもよい。参照電極831は一定の電位を示すものであれば、内部液型の銀塩化銀参照電極や、むき出しの銀塩化銀電極や、もしくは、イオン選択電極であってもよい。 FIG. 8 is a diagram showing an example of an apparatus for performing measurement with the cartridge of FIG. FIG. 8A shows a top view of the positional relationship between the cartridge 810 and the apparatus 802, and FIG. 8B shows a side view of the connection relationship between the cartridge 810 and the reagent supply port and the electrodes / terminals of the apparatus 802. By setting the cartridge 801 in the apparatus 802, the reagent supply ports 717, 718, 727, and 728 of the cartridge 801 are fluidly connected to the reagent supply ports 811, 812, 816, and 817 of the apparatus 802, and the terminal 724 of the cartridge 801 is connected. To 726 and terminals 813 to 815 of the device 802 are electrically connected. Antibody reagent solution 826 is supplied to reagent supply port 811 by pump 825, sample diluent 824 is supplied to reagent supply port 812 by pump 823, and cleaning solution 828 is supplied to reagent supply port 816 by pump 827. Then, the substrate supply liquid 822 is supplied to the reagent supply port 817 by the pump 821. The sample diluent 824 and the cleaning solution 828 may be solutions having the same composition. The reagent supply ports may be provided at one to three locations, and a plurality of reagents may be supplied by branching a flow path connected to the reagent supply port. An AC power source 833 and an AC ammeter 834 are connected to the terminals 814 and 815. A voltmeter 832 is connected to the terminal 813, and the other terminal of the voltmeter 832 is connected to a reference electrode 831 disposed in a flow path connected to the reagent supply port 817. Control of the pumps 821, 823, 825, and 827 is performed by the control unit 803, and control and measurement of the AC power source 833, the AC ammeter 834, and the voltmeter 832 are performed by the measurement unit 804. The apparatus 802 includes a display unit 805 for displaying measurement results and messages, and an input unit 806 for a user to input an operation. The pumps 821, 823, 825, and 827 may be peristaltic pumps, syringe pumps, or diaphragm pumps. The reference electrode 831 may be an internal liquid-type silver-silver chloride reference electrode, a bare silver-silver chloride electrode, or an ion-selective electrode as long as it exhibits a constant potential.
 図9は、グリコアルブミン測定キットの一例を示す図である。グリコアルブミン測定キット901は、図7に示す抗アルブミン抗体が固定化された抗体固定化部位716および電位測定用電極715が設けられた固相701と、図8に示す抗体試薬液826を収容した容器からなる。 FIG. 9 is a diagram showing an example of a glycoalbumin measurement kit. The glycoalbumin measurement kit 901 accommodated the solid phase 701 provided with the antibody immobilization site 716 on which the anti-albumin antibody is immobilized and the potential measurement electrode 715 shown in FIG. 7, and the antibody reagent solution 826 shown in FIG. It consists of a container.
 図10は、測定装置にカートリッジを装着した状態の一例を示す模式図である。測定装置802にカートリッジ801をセットし、フタ1001を閉じる。 FIG. 10 is a schematic diagram showing an example of a state in which the cartridge is mounted on the measuring apparatus. The cartridge 801 is set in the measuring device 802 and the lid 1001 is closed.
 図11は、図7のカートリッジと図8の装置を用いた測定方法の一例を示す図である。流路上に設けられた検体導入口712に検体を添加する(S201)。検体としては、生体試料から採取した体液等そのものや、必要に応じて遠心分離やろ過、希釈等の前処理をしたものであってもかまわない。検体保持部711はろ紙のような吸収体でできており、さらに、検体保持部711の周囲は境界部722で囲まれているため、添加した検体は検体保持部711で保持される。カートリッジは装置にセットされ、ポンプ823を用いて装置の試薬供給口812からカートリッジの試薬供給口718に検体希釈液824を導入する(S202)。検体希釈液はTris Buffered Saline(以下、TBSという)やPhosphate Buffered Saline(以下、PBSという)などの緩衝液を用いる。検体導入口712まで検体希釈液824を導入するため、溶液導入検知用電極713と714を用いる。例えば、交流電源833を用いて溶液導入検知用電極713と714の間に交流電圧を印加しておくと、検体希釈液824導入前はほぼゼロであった電流が、検体希釈液824が溶液導入検知用電極714まで達すると溶液導入検知用電極713と714が電気的に接続されるために増大する。この電流の増大を計測部804で監視することで検体希釈液824が溶液導入検知用電極714に到達したことを検知できる。溶液導入検知用電極714で検体希釈液824の到達を検知したら(S203)、試薬供給口718からの検体希釈液824の導入を停止する(S204)。検体保持部711と検体希釈液824が接触した状態で一定時間保持する(S205)と、検体保持部711に保持された検体中の成分が検体希釈液824中に拡散する。検体希釈液824中に拡散する検体中の成分量は保持時間に依存するため、保持時間により検体の希釈倍率を制御できる。 FIG. 11 is a diagram showing an example of a measurement method using the cartridge of FIG. 7 and the apparatus of FIG. A sample is added to the sample introduction port 712 provided on the flow path (S201). The specimen may be a body fluid collected from a biological sample itself or a pretreatment such as centrifugation, filtration, or dilution as necessary. The sample holding unit 711 is made of an absorbent material such as filter paper. Further, since the periphery of the sample holding unit 711 is surrounded by a boundary portion 722, the added sample is held by the sample holding unit 711. The cartridge is set in the apparatus, and the sample diluent 824 is introduced from the reagent supply port 812 of the apparatus into the reagent supply port 718 of the cartridge using the pump 823 (S202). As the sample diluent, a buffer solution such as Tris (Buffered Saline (hereinafter referred to as TBS) or Phosphate Buffered Saline (hereinafter referred to as PBS) is used. In order to introduce the sample diluent 824 to the sample introduction port 712, solution introduction detection electrodes 713 and 714 are used. For example, when an AC voltage is applied between the solution introduction detection electrodes 713 and 714 using the AC power source 833, the current that was substantially zero before the sample diluent 824 was introduced, and the sample diluent 824 was introduced into the solution. When reaching the detection electrode 714, the solution introduction detection electrodes 713 and 714 are electrically connected to increase. By monitoring this increase in current by the measuring unit 804, it can be detected that the sample diluent 824 has reached the solution introduction detection electrode 714. When the solution introduction detection electrode 714 detects the arrival of the sample diluent 824 (S203), the introduction of the sample diluent 824 from the reagent supply port 718 is stopped (S204). When the sample holder 711 and the sample diluent 824 are kept in contact with each other for a certain time (S205), the components in the sample held in the sample holder 711 are diffused into the sample diluent 824. Since the amount of components in the specimen that diffuses into the specimen diluent 824 depends on the retention time, the dilution ratio of the specimen can be controlled by the retention time.
 試薬供給口718から検体希釈液824を若干量吸引し、検体希釈液824中に拡散した検体の成分を抗体固定部位716まで搬送する(S206)と、検体中のヒトアルブミンが抗体固定部位716に固定された抗ヒトアルブミン抗体に捕捉される。一定時間保持した後に、試薬供給口718からさらに検体希釈液を導入するなどして、廃液溜め接続口720を通じて検体を含む検体希釈液824を廃液溜め719に廃棄する(S207)。試薬供給口727から導入した洗浄液828で流路を洗浄し(S208)、抗体固定部位716に固定された抗ヒトアルブミン抗体に捕捉されていないヒトアルブミンを除去する。洗浄に用いた洗浄液828も廃液溜め719に廃棄される。ポンプ825を用いて装置の試薬供給口811からカートリッジの試薬供給口717に抗体試薬液826を導入する(S209)。抗体試薬液826にはアルカリホスファターゼ標識抗GA抗体(標識抗GA抗体)などを含む液を用いる。すると、抗体試薬液826中の標識抗GA抗体は抗ヒトアルブミン抗体に捕捉されたGAに結合する。一定時間保持した後、試薬供給口727から洗浄液828を導入し、流路を洗浄する(S210)ことで、未結合の標識抗GA抗体を除去する。抗体試薬液826や洗浄液828は廃液溜め719に廃棄される。 When a slight amount of the sample diluent 824 is aspirated from the reagent supply port 718 and the sample components diffused in the sample diluent 824 are transported to the antibody fixing site 716 (S206), human albumin in the sample is transferred to the antibody fixing site 716. Captured by immobilized anti-human albumin antibody. After holding for a certain period of time, the sample diluent is further introduced from the reagent supply port 718, and the sample diluent 824 containing the sample is discarded in the waste solution reservoir 719 through the waste fluid reservoir connection port 720 (S207). The flow path is washed with the washing liquid 828 introduced from the reagent supply port 727 (S208), and human albumin not captured by the anti-human albumin antibody immobilized on the antibody immobilization site 716 is removed. The cleaning liquid 828 used for cleaning is also discarded in the waste liquid reservoir 719. The antibody reagent solution 826 is introduced from the reagent supply port 811 of the apparatus into the reagent supply port 717 of the cartridge using the pump 825 (S209). As the antibody reagent solution 826, a solution containing an alkaline phosphatase-labeled anti-GA antibody (labeled anti-GA antibody) or the like is used. Then, the labeled anti-GA antibody in the antibody reagent solution 826 binds to GA captured by the anti-human albumin antibody. After holding for a certain period of time, a washing liquid 828 is introduced from the reagent supply port 727, and the flow path is washed (S210), thereby removing unbound labeled anti-GA antibody. The antibody reagent solution 826 and the cleaning solution 828 are discarded in the waste solution reservoir 719.
 ポンプ821を用いて装置の試薬供給口817からカートリッジの試薬供給口728に基質液822を導入する(S211)。基質液には、アルカリホスファターゼの基質であるアスコルビン酸リン酸とメディエータであるフェリシアン化カリウムを含む液などを用いる。抗体固定部位716に存在する抗ヒトアルブミン抗体-GA-標識抗GA抗体の複合体のアルカリホスファターゼにより基質液822中のアスコルビン酸リン酸が加水分解され、生成したアスコルビン酸がフェリシアン化カリウムと反応してフェロシアン化カリウムを生成し、電位測定用電極715の電位が変化する。そのため、電圧計832で電位測定用電極715と参照電極831の間の電位差を測定する(S212)ことで、捕捉されたGA量すなわち検体中のGA/アルブミン比が求まる。より精度よくGA/アルブミン比を求めるために、別に用意したカートリッジにおいてGA/アルブミン比が既知の試料を用いてGA/アルブミン比と測定電位の関係を表す検量線を作成し、GA/アルブミン比が未知の試料の値を計算してもよい。 The substrate solution 822 is introduced from the reagent supply port 817 of the apparatus into the reagent supply port 728 of the cartridge using the pump 821 (S211). As the substrate solution, a solution containing ascorbic acid phosphate, which is a substrate of alkaline phosphatase, and potassium ferricyanide, which is a mediator, is used. The ascorbic acid phosphate in the substrate solution 822 is hydrolyzed by alkaline phosphatase of the anti-human albumin antibody-GA-labeled anti-GA antibody complex present at the antibody fixing site 716, and the generated ascorbic acid reacts with potassium ferricyanide. Potassium ferrocyanide is generated, and the potential of the potential measuring electrode 715 changes. Therefore, by measuring the potential difference between the potential measuring electrode 715 and the reference electrode 831 with the voltmeter 832 (S212), the amount of captured GA, that is, the GA / albumin ratio in the sample is obtained. In order to obtain the GA / albumin ratio with higher accuracy, a calibration curve representing the relationship between the GA / albumin ratio and the measurement potential is prepared using a sample with a known GA / albumin ratio in a separately prepared cartridge. An unknown sample value may be calculated.
 図12を用いて、S201~S206におけるカートリッジ流路への検体の導入方法について実施例の詳細を示す。図12はカートリッジ流路への検体の導入方法の詳細を示す説明図である。ステップ1として、流路の一部に設けたフィルタ等からなる検体保持部711に検体を滴下する。ステップ2として、流路に緩衝液を導入して検体保持部711に接触させ一定時間保持する。ステップ3として、検体保持部711に保持された検体の成分が緩衝液中に拡散する。この操作により緩衝液で検体を希釈した場合と同等の希釈検体液が得られる。希釈検体液の希釈倍率は緩衝液の保持時間で制御できる。最後にステップ4として、希釈検体液を抗体固定部位716に搬送し、抗原抗体反応を行う。緩衝液を導入する側を上流として、抗体固定部位716が検体保持部711よりも上流にあるため、その後のS207~S212における溶液の導入において、検体保持部711より溶液に拡散した検体成分が抗体固定部位716を通過することを抑制できる。 FIG. 12 shows the details of the embodiment of the method for introducing the sample into the cartridge flow path in S201 to S206. FIG. 12 is an explanatory diagram showing details of a method for introducing the sample into the cartridge flow path. In step 1, a sample is dropped onto a sample holding unit 711 made of a filter or the like provided in a part of the flow path. In step 2, a buffer solution is introduced into the flow path and is brought into contact with the specimen holding unit 711 and held for a certain period of time. In step 3, the sample components held in the sample holding unit 711 diffuse into the buffer solution. By this operation, a diluted specimen solution equivalent to the case where the specimen is diluted with a buffer solution is obtained. The dilution rate of the diluted specimen solution can be controlled by the buffer retention time. Finally, in step 4, the diluted specimen solution is transferred to the antibody fixing site 716, and an antigen-antibody reaction is performed. Since the antibody fixing site 716 is upstream of the sample holding unit 711 with the buffer introduction side being upstream, the sample components diffused into the solution from the sample holding unit 711 in the subsequent introduction of the solution in S207 to S212 are antibody Passing through the fixed portion 716 can be suppressed.
 図12において、緩衝液を導入する側を上流として、抗体固定部位716が検体保持部711よりも下流にあっても構わない。図12と同様の手順で抗体固定部位716に希釈検体液を搬送することができる。抗体固定部位716が検体保持部711よりも下流にあるため、希釈液を流し続けても検体保持部711から拡散した検体成分が抗体固定部位716に供給される。そのため、ステップ2~3のように希釈液を保持する代わりに、希釈液を送液し続けてもよく、その場合送液速度により供給される希釈検体液の希釈倍率を制御する。 In FIG. 12, the side where the buffer solution is introduced may be upstream, and the antibody immobilization site 716 may be downstream from the specimen holding unit 711. The diluted sample solution can be transported to the antibody fixing site 716 in the same procedure as in FIG. Since the antibody fixing part 716 is downstream of the specimen holding part 711, the specimen component diffused from the specimen holding part 711 is supplied to the antibody fixing part 716 even if the diluent is kept flowing. Therefore, instead of holding the diluent as in Steps 2 to 3, the diluent may be continuously fed. In this case, the dilution rate of the diluted specimen solution supplied is controlled by the feeding speed.
 検体の導入をフィルタなどからの拡散を利用するため、検体を流路中に導入する場合に懸念される流路のつまりや流路への非特異的な検体成分の吸着を抑制することができる。また、100倍程度の高い希釈倍率を実現するときの課題となり得る微量検体の計量が不要である。また、毛管力によって検体保持部711に検体が保持されるため、カートリッジを取り扱う際の検体の飛散を抑制できる。 Since the introduction of the sample uses diffusion from a filter or the like, it is possible to suppress adsorption of non-specific sample components in the flow channel, which is a concern when introducing the sample into the flow channel, or in the flow channel. . In addition, it is not necessary to measure a trace amount of sample that can be a problem when realizing a high dilution factor of about 100 times. In addition, since the sample is held in the sample holding unit 711 by capillary force, scattering of the sample when handling the cartridge can be suppressed.
 検体保持部711は、アラミド繊維製、ガラス繊維製、セルロース繊維製、ナイロン繊維製、ビニロン繊維製、ポリエステル繊維製、ポリオレフィン繊維製、レーヨン繊維製のろ紙や不織布や多孔質繊維を用いることができる。他には、一つや複数の細孔を代わりに用いることもできる。これらの材料を用いることで、検体保持部711でカートリッジ流路の詰まりの原因となり得る検体中の物質を除去もしくは低減することができる。また、これらの材料に活性炭や疎水性樹脂を混合することで、免疫反応系の阻害の要因と成り得る検体中の脂質などを除去もしくは低減することができる。このとき、これらの材料はヒトアルブミンおよびGAの存在量の極度な減少、GA/アルブミン比の変動を防ぐため、タンパク質や糖質に対する反応性の低い物質であることが望ましい。 The specimen holder 711 can be made of aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, rayon fiber filter paper, nonwoven fabric, or porous fiber. . Alternatively, one or more pores can be used instead. By using these materials, the sample holding portion 711 can remove or reduce substances in the sample that may cause clogging of the cartridge flow path. In addition, by mixing activated carbon or hydrophobic resin with these materials, lipids or the like in the specimen that can be a factor of inhibition of the immune reaction system can be removed or reduced. At this time, these materials are desirably substances with low reactivity to proteins and carbohydrates in order to prevent an extreme decrease in the abundance of human albumin and GA and fluctuations in the GA / albumin ratio.
 図13を用いて、以下にS212における電気化学センサを用いた電位測定方法について実施例の詳細を示す。抗原抗体反応の検出ステップにおいて、検出抗体の修飾酵素アルカリホスファターゼの基質であるアスコルビン酸リン酸と、メディエータであるフェリシアン化カリウムを添加することで、抗原抗体反応を電気化学的な信号として検出できる。アルカリホスファターゼによりアスコルビン酸リン酸は加水分解されてアスコルビン酸となる。その後、アスコルビン酸からデヒドロアスコルビン酸が生成するとともに、フェリシアン化カリウムが還元されフェロシアン化カリウムが生成する。その結果、反応溶液中の酸化物質と還元物質の濃度比が変わり反応液の電位が変動する。図13Aは流路内に存在するアルカリホスファターゼの作用によって時間経過に伴い変動した電位の測定結果を示す。ただし、アルカリホスファターゼの代わりにネガティブコントロールであるBSAが存在しても電位は変動しない。また図13Bは、電位をネルンストの式(4)を用いて生成したフェロシアン化カリウムの濃度に換算したグラフである。 FIG. 13 shows the details of the embodiment of the potential measurement method using the electrochemical sensor in S212 below. In the detection step of the antigen-antibody reaction, the antigen-antibody reaction can be detected as an electrochemical signal by adding ascorbic acid phosphate, which is a substrate of the detection antibody-modifying enzyme alkaline phosphatase, and mediator, potassium ferricyanide. Ascorbic acid phosphate is hydrolyzed by alkaline phosphatase into ascorbic acid. Thereafter, dehydroascorbic acid is produced from ascorbic acid, and potassium ferricyanide is reduced to produce potassium ferrocyanide. As a result, the concentration ratio of the oxidizing substance and the reducing substance in the reaction solution changes and the potential of the reaction solution varies. FIG. 13A shows the measurement result of the potential that fluctuated with time due to the action of alkaline phosphatase present in the flow path. However, the potential does not fluctuate even if BSA which is a negative control is present instead of alkaline phosphatase. FIG. 13B is a graph in which the potential is converted to the concentration of potassium ferrocyanide generated using Nernst equation (4).
式4Formula 4
Figure JPOXMLDOC01-appb-I000004
 あらかじめ決まったGA/アルブミン存在比のアルブミン・GA混合試料を用いて行った測定結果をキャリブレーションに利用し、検体の測定結果から検体中のGA/アルブミン存在比を求める。用いる測定結果としては、一定時間後の生成フェロシアン化カリウム濃度、単位時間当たりのフェロシアン化カリウム生成量の他に、図13Aに示すような変曲点を用いることもできる。この変曲点は式(4)によればフェリシアン化カリウムとフェロシアン化カリウムが等量ある点である。任意の時刻における電位からフェロシアン化カリウム濃度を求めるのには標準電極電位が必要なのに対し、変曲点では必ず標準電極電位となる。そのため、変曲点を用いた測定では、測定ごとに生じる標準電極電位の変動の影響を受けない。
Figure JPOXMLDOC01-appb-I000004
A measurement result obtained by using an albumin / GA mixed sample having a predetermined GA / albumin abundance ratio is used for calibration, and a GA / albumin abundance ratio in the specimen is obtained from the measurement result of the specimen. As a measurement result to be used, an inflection point as shown in FIG. 13A can be used in addition to the produced potassium ferrocyanide concentration after a certain time and the amount of produced potassium ferrocyanide per unit time. This inflection point is an equivalent amount of potassium ferricyanide and potassium ferrocyanide according to equation (4). While the standard electrode potential is required to obtain the potassium ferrocyanide concentration from the potential at an arbitrary time, it is always the standard electrode potential at the inflection point. Therefore, the measurement using the inflection point is not affected by the fluctuation of the standard electrode potential that occurs every measurement.
 電位計測法は測定感度が測定体積に依存しないため、酸化還元電流法や吸光光度法と比べて測定感度に影響せず測定試料を微量化できる。また、電位計測法は酵素標識抗体の濃度の対数に比例した信号が得られるため、酵素標識抗体の濃度に比例した信号が得られる酸化還元電流法や吸光光度法と比べて広いダイナミックレンジが得られる。 Since the measurement sensitivity of the potential measurement method does not depend on the measurement volume, the measurement sample can be made in a small amount without affecting the measurement sensitivity as compared with the oxidation-reduction current method or the absorptiometry. In addition, since the potential measurement method obtains a signal proportional to the logarithm of the concentration of the enzyme-labeled antibody, a wider dynamic range is obtained compared to the oxidation-reduction current method and the spectrophotometric method, which can obtain a signal proportional to the concentration of the enzyme-labeled antibody. It is done.
 検出のための抗体の修飾酵素、その基質およびメディエータの組み合わせはアルカリホスファターゼとアスコルビン酸リン酸、フェリシアン化カリウムといった加水分解酵素と基質の組み合わせに限らず、グルコースオキシダーゼとグルコース、フェリシアン化カリウムといった酸化還元酵素と酸化還元物質の組み合わせでもよい。メディエータの濃度は基質濃度よりも低いことが望ましく、基質とメディエータの濃度比により測定感度を調節できる。 The combination of antibody modifying enzyme for detection, its substrate and mediator is not limited to the combination of hydrolyzing enzyme and substrate such as alkaline phosphatase, ascorbic acid phosphate and potassium ferricyanide, but also oxidoreductase such as glucose oxidase and glucose and potassium ferricyanide. A combination of redox substances may also be used. The concentration of the mediator is preferably lower than the substrate concentration, and the measurement sensitivity can be adjusted by the concentration ratio of the substrate to the mediator.
 電位測定用電極715としては電気化学計測が可能なものとして、金、白金などの貴金属、グラファイト、カーボンブラックなどのカーボン素材のもの、カーボン素材と貴金属を混合したものを用いる。電極面積が測定電流に影響を与える電流計測と違い、電位計測では電極の大きさを厳密に調整する必要はない。 As the electrode 715 for potential measurement, an electrode capable of electrochemical measurement is used, such as a noble metal such as gold or platinum, a carbon material such as graphite or carbon black, or a mixture of a carbon material and a noble metal. Unlike current measurement, where the electrode area affects the measurement current, it is not necessary to precisely adjust the size of the electrode in potential measurement.
 図14を用いて、電位計測用電極715と抗体固定部位716の関係を説明する。図14Aは電極上にのみ抗体を固定化した場合、図14Bは電極を含む電極よりも広い範囲に抗体を固定化した場合、図14Cは電極には抗体を固定せず電極を中心として流路の上流と下流方向から挟む位置に抗体を固定化した場合を示す。それぞれのグラフは、固定化抗体-抗原-酵素標識抗体の複合体が形成された状態で基質を添加したときの反応生成物の濃度を示している。添加された基質は固定化抗体-抗原-酵素標識抗体の複合体の酵素によって分解され反応生成物が生じ、拡散によって広がる。電極上にのみ抗体を固定した場合、反応生成物の分布は図14Aのように電極上で濃度差が生じる。この図の例では、電極の端では電極の中央の半分程度である。これに対し、電極を含む電極よりも広い範囲に抗体を固定化した場合、図14Bのように電極上での濃度差は抑制され、ほぼ一定濃度となる。また、図14Cのように、電極には抗体を固定せず電極を中心として流路の上流と下流方向から挟む位置に抗体を固定化した場合、電極上で若干の濃度差は生じるものの、その差はこの例では7%と図14Aのように電極上にのみ抗体を固定した場合よりも小さい。電位計測において、電位は反応生成物の濃度に応じて変動するため、電極上で反応生成物の濃度が一定になるように、抗体固定部位716は図14Bもしくは図14Cのように電極よりも広い領域で電極を囲むように配置するのが望ましい。他にも、抗体固定部位716は図14Dや図14Eのように電極を四方から囲むように配置してもよく、電極上にも抗体が固定されていても構わない。抗体固定部位で電極を挟み込む場合においても、電極を囲む場合においても、抗体固定部位716は電極に隣接していることが望ましい。 The relationship between the potential measurement electrode 715 and the antibody fixing site 716 will be described with reference to FIG. 14A shows the case where the antibody is immobilized only on the electrode, FIG. 14B shows the case where the antibody is immobilized in a wider range than the electrode including the electrode, and FIG. 14C shows the flow path centered on the electrode without fixing the antibody to the electrode. Shows the case where the antibody is immobilized at a position sandwiched between the upstream and downstream directions. Each graph shows the concentration of the reaction product when the substrate is added in the state where the immobilized antibody-antigen-enzyme labeled antibody complex is formed. The added substrate is decomposed by the enzyme of the immobilized antibody-antigen-enzyme labeled antibody complex to produce a reaction product, which is spread by diffusion. When the antibody is immobilized only on the electrode, the distribution of the reaction product has a concentration difference on the electrode as shown in FIG. 14A. In the example of this figure, the end of the electrode is about half the center of the electrode. On the other hand, when the antibody is immobilized in a wider range than the electrode including the electrode, the concentration difference on the electrode is suppressed as shown in FIG. In addition, as shown in FIG. 14C, when the antibody is not fixed to the electrode and the antibody is fixed at a position sandwiched from the upstream and downstream directions of the flow path centering on the electrode, a slight concentration difference occurs on the electrode. In this example, the difference is 7%, which is smaller than when the antibody is immobilized only on the electrode as shown in FIG. 14A. In the potential measurement, since the potential fluctuates according to the concentration of the reaction product, the antibody immobilization site 716 is wider than the electrode as shown in FIG. 14B or FIG. 14C so that the concentration of the reaction product is constant on the electrode. It is desirable to arrange the electrodes so as to surround the electrodes. In addition, the antibody fixing site 716 may be disposed so as to surround the electrode from four sides as shown in FIGS. 14D and 14E, and the antibody may be fixed on the electrode. It is desirable that the antibody immobilization site 716 is adjacent to the electrode both when the electrode is sandwiched between the antibody immobilization sites and when the electrode is surrounded.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
101 固相
102 抗ヒトアルブミン抗体
103 ヒトアルブミン
104 GA
105 酵素修飾抗GA抗体
106 基質
107 産物
108 酵素修飾抗アルブミン抗体
701 固相
702 流路部
703 液体保持部
711 検体保持部
712 検体導入口
713、714 溶液導入検知用電極
715 電位測定用電極
716 抗体固定部位
717、718、727、728 試薬供給口
719 廃液溜め
720 廃液溜め接続口
721 空気穴
722、723 境界部
724~726 端子
801 カートリッジ
802 装置
803 制御部
804 計測部
805 表示部
806 入力部
811、812、816、817 試薬供給口
813~815 端子
821、823 ポンプ
822 基質液
824 検体希釈液
825、827 ポンプ
826 抗体試薬液
828 洗浄液
831 参照電極
832 電圧計
833 交流電源
834 交流電流計
901 グリコアルブミン測定キット
1001 フタ
1201 検体
101 Solid phase 102 Anti-human albumin antibody 103 Human albumin 104 GA
105 Enzyme-modified anti-GA antibody 106 Substrate 107 Product 108 Enzyme-modified anti-albumin antibody 701 Solid phase 702 Channel portion 703 Liquid holding portion 711 Sample holding portion 712 Sample introduction port 713, 714 Solution introduction detection electrode 715 Potential measurement electrode 716 Antibody Fixed portion 717, 718, 727, 728 Reagent supply port 719 Waste liquid reservoir 720 Waste liquid reservoir connection port 721 Air holes 722, 723 Boundary portion 724 to 726 Terminal 801 Cartridge 802 Device 803 Control unit 804 Measurement unit 805 Display unit 806 Input unit 811 812, 816, 817 Reagent supply ports 813 to 815 Terminals 821, 823 Pump 822 Substrate liquid 824 Specimen diluent 825, 827 Pump 826 Antibody reagent liquid 828 Washing solution 831 Reference electrode 832 Voltmeter 833 AC power supply 834 AC ammeter 901 Min measurement kit 1001 Cover 1201 Sample

Claims (11)

  1.  固定化抗アルブミン抗体と、電極とが設けられた固相と、
     酵素標識された抗グリコアルブミン抗体と
    を含むグリコアルブミン測定キット。
    A solid phase provided with an immobilized anti-albumin antibody and an electrode;
    A glycoalbumin measurement kit comprising an enzyme-labeled anti-glycoalbumin antibody.
  2.  請求項1のグリコアルブミン測定キットにおいて、
     前記電極が電位測定用であることを特徴とするグリコアルブミン測定キット。
    In the glycoalbumin measurement kit of claim 1,
    A glycoalbumin measurement kit, wherein the electrode is for potential measurement.
  3.  請求項1のグリコアルブミン測定キットにおいて、
     前記固相は、検体保持部を有することを特徴とするグリコアルブミン測定キット。
    In the glycoalbumin measurement kit of claim 1,
    The glycoalbumin measurement kit, wherein the solid phase has a specimen holding part.
  4.  請求項3のグリコアルブミン測定キットにおいて、
     前記検体保持部は、ろ紙、不織布、多孔質繊維のいずれかを用いることを特徴とするグリコアルブミン測定キット。
    In the glycoalbumin measurement kit according to claim 3,
    The specimen holding unit uses a filter albumin, a non-woven fabric, or a porous fiber.
  5.  請求項1のグリコアルブミン測定キットにおいて、
     前記抗アルブミン抗体と前記電極は流路中に配置されており、
     前記抗アルブミン抗体は、少なくとも前記電極の上流と下流に配置されていることを特徴とするグリコアルブミン測定キット。
    In the glycoalbumin measurement kit of claim 1,
    The anti-albumin antibody and the electrode are arranged in a flow path;
    The glycoalbumin measurement kit, wherein the anti-albumin antibody is disposed at least upstream and downstream of the electrode.
  6.  請求項5のグリコアルブミン測定キットにおいて、前記固相は、前記流路に接続された検体導入口を有することを特徴とするグリコアルブミン測定キット。 6. The glycoalbumin measurement kit according to claim 5, wherein the solid phase has a sample introduction port connected to the flow path.
  7.  抗アルブミン抗体と、酵素標識抗グリコアルブミン抗体とを用いて、電位測定により検体中のアルブミンに対するグリコアルブミンの割合を定量化することを特徴とするグリコアルブミンの測定方法。 A method for measuring glycoalbumin, characterized by quantifying the ratio of glycoalbumin to albumin in a specimen by potential measurement using an anti-albumin antibody and an enzyme-labeled anti-glycoalbumin antibody.
  8.  請求項7に記載の測定方法において、前記抗アルブミン抗体が固相に固定化された固定化抗体であり、
     前記固相に検体を供給する工程と、
     前記固定化抗体に前記検体中のアルブミンとグリコアルブミンを結合させる工程と、
     前記固相に酵素標識抗グリコアルブミン抗体を供給する工程と、
     前記酵素標識抗体を前記固相に結合したグリコアルブミンに結合させて固定化抗アルブミン抗体-グリコアルブミン-酵素標識抗グリコアルブミン抗体の複合体を形成させる工程と、
     前記固相に基質を供給する工程と、
     前記基質を前記複合体の酵素と反応させて反応産物を生成させる工程と、
     前記反応産物濃度を電位測定により測定する工程と、
     前記反応産物の濃度を検体中のグリコアルブミン濃度に換算する工程と、
    を順に有することを特徴とするグリコアルブミン測定方法。
    The measurement method according to claim 7, wherein the anti-albumin antibody is an immobilized antibody immobilized on a solid phase,
    Supplying a specimen to the solid phase;
    Binding the albumin and glycoalbumin in the specimen to the immobilized antibody;
    Supplying an enzyme-labeled anti-glycoalbumin antibody to the solid phase;
    Binding the enzyme-labeled antibody to glycoalbumin bound to the solid phase to form an immobilized anti-albumin antibody-glycoalbumin-enzyme-labeled anti-glycoalbumin antibody complex;
    Supplying a substrate to the solid phase;
    Reacting the substrate with an enzyme of the complex to produce a reaction product;
    Measuring the reaction product concentration by potential measurement;
    Converting the concentration of the reaction product into a concentration of glycoalbumin in the sample;
    In order.
  9.  請求項8記載のグリコアルブミン測定方法において、
     希釈液を用いて希釈した検体を用いることを特徴とするグリコアルブミン測定方法。
    The method for measuring glycoalbumin according to claim 8,
    A method for measuring glycoalbumin, comprising using a specimen diluted with a diluent.
  10.  請求項9記載のグリコアルブミン測定方法において、
     前記希釈の希釈倍率は10倍以上1000倍以下であることを特徴とするグリコアルブミン測定方法。
    The method for measuring glycoalbumin according to claim 9,
    The method for measuring glycoalbumin, wherein the dilution ratio of the dilution is 10 times or more and 1000 times or less.
  11.  請求項8記載のグリコアルブミン測定方法において、前記固相は検体保持部を有し、
     前記固相に検体を供給する工程の後に、前記固相に希釈液を供給する工程を有し、
     前記検体保持部に保持させた前記検体と前記希釈液を接触させることによって検体を希釈することを特徴とするグリコアルブミン測定方法。
    The glycoalbumin measurement method according to claim 8, wherein the solid phase has a specimen holding part,
    After the step of supplying the specimen to the solid phase, the step of supplying a diluent to the solid phase,
    A method for measuring glycoalbumin, comprising diluting a specimen by bringing the specimen held in the specimen holding part into contact with the diluent.
PCT/JP2014/078925 2013-10-31 2014-10-30 Glycoalbumin measurement kit and measurement method WO2015064701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013226564A JP2015087293A (en) 2013-10-31 2013-10-31 Measuring kit and measuring method of glyco-albumin
JP2013-226564 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064701A1 true WO2015064701A1 (en) 2015-05-07

Family

ID=53004298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078925 WO2015064701A1 (en) 2013-10-31 2014-10-30 Glycoalbumin measurement kit and measurement method

Country Status (2)

Country Link
JP (1) JP2015087293A (en)
WO (1) WO2015064701A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556964A (en) * 2018-01-23 2020-08-18 京瓷株式会社 Measurement method and measurement device
CN115950868A (en) * 2022-12-26 2023-04-11 深圳市雷诺华科技实业有限公司 Testing device and testing method for determining glycated albumin by antibody-spot method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822639A4 (en) * 2018-07-11 2022-04-27 Provigate Inc. Healthcare management method
CN113728223A (en) 2019-01-25 2021-11-30 株式会社普欧威盖特 Method and apparatus for measuring antigen
CN117677839A (en) * 2021-07-18 2024-03-08 国立大学法人东京大学 Method and device for detecting biological molecules

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416964A (en) * 1987-07-11 1989-01-20 Yamasa Shoyu Kk Method for immunoassay of specific saccharogenic protein
JPH0783922A (en) * 1993-09-20 1995-03-31 Sekisui Chem Co Ltd Method for measuring saccharification protein
JP2002340890A (en) * 2001-05-17 2002-11-27 Internatl Reagents Corp Protein measurement method
JP2002365290A (en) * 2001-06-06 2002-12-18 Internatl Reagents Corp Glycosylated hemoglobin measuring method
JP2005519304A (en) * 2002-03-05 2005-06-30 アイ−スタット コーポレイション Apparatus and method for analyte measurement and immunoassay
WO2006080186A1 (en) * 2005-01-07 2006-08-03 Sekisui Chemical Co., Ltd. Detection device using cartridge
JP2007506946A (en) * 2003-09-23 2007-03-22 エピネックス・ダイアグノスティクス・インコーポレーテッド Rapid examination of glycoalbumin
WO2014069551A1 (en) * 2012-10-31 2014-05-08 日立化成株式会社 Sensor chip, and measurement device and measurement method using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416964A (en) * 1987-07-11 1989-01-20 Yamasa Shoyu Kk Method for immunoassay of specific saccharogenic protein
JPH0783922A (en) * 1993-09-20 1995-03-31 Sekisui Chem Co Ltd Method for measuring saccharification protein
JP2002340890A (en) * 2001-05-17 2002-11-27 Internatl Reagents Corp Protein measurement method
JP2002365290A (en) * 2001-06-06 2002-12-18 Internatl Reagents Corp Glycosylated hemoglobin measuring method
JP2005519304A (en) * 2002-03-05 2005-06-30 アイ−スタット コーポレイション Apparatus and method for analyte measurement and immunoassay
JP2007506946A (en) * 2003-09-23 2007-03-22 エピネックス・ダイアグノスティクス・インコーポレーテッド Rapid examination of glycoalbumin
WO2006080186A1 (en) * 2005-01-07 2006-08-03 Sekisui Chemical Co., Ltd. Detection device using cartridge
WO2014069551A1 (en) * 2012-10-31 2014-05-08 日立化成株式会社 Sensor chip, and measurement device and measurement method using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556964A (en) * 2018-01-23 2020-08-18 京瓷株式会社 Measurement method and measurement device
CN115950868A (en) * 2022-12-26 2023-04-11 深圳市雷诺华科技实业有限公司 Testing device and testing method for determining glycated albumin by antibody-spot method
CN115950868B (en) * 2022-12-26 2024-02-13 深圳市雷诺华科技实业有限公司 Testing device and testing method for measuring glycosylated albumin by antibody-spot method

Also Published As

Publication number Publication date
JP2015087293A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6090330B2 (en) Sensor chip and measurement system
Koncki Recent developments in potentiometric biosensors for biomedical analysis
Pundir et al. Determination of glycated hemoglobin with special emphasis on biosensing methods
US8343427B2 (en) Biosensor
WO2015064701A1 (en) Glycoalbumin measurement kit and measurement method
Mao et al. Multiplex electrochemical immunoassay using gold nanoparticle probes and immunochromatographic strips
EP0859230A1 (en) Detection of analytes using electrochemistry
Sharma et al. Analytical techniques for the detection of glycated haemoglobin underlining the sensors
JP4184356B2 (en) Sensor, measuring apparatus and measuring method
US20120237950A1 (en) Analysis chip, analysis system, and analysis method
JP4972295B2 (en) Immunoassay method and biochip
KR20110057416A (en) Microfluidic structure for detecting biomolecule and microfluidic device comprising same
Horak et al. Sensitive, rapid and quantitative detection of substance P in serum samples using an integrated microfluidic immunochip
Kumar et al. Recent progress in the sensing techniques for the detection of human thyroid stimulating hormone
Molinero-Fernández et al. An on-chip microfluidic-based electrochemical magneto-immunoassay for the determination of procalcitonin in plasma obtained from sepsis diagnosed preterm neonates
WO2016035197A1 (en) Cartridge for electrochemical immunity sensor and measurement device using same
Dasgupta et al. Development of biosensor for detection of serum creatinine
Boonprasert et al. Validation of an electrochemical sensor based on gold nanoparticles as a point-of-care test for quantitative determination of glycated hemoglobin
KR20140110795A (en) Biosensor strips using redox cycling
JPH0875748A (en) Method and apparatus for analyzing specific bond
EP3950132A1 (en) Method for detecting and quantifying analytes in a microfluidic device
JP3895307B2 (en) Quantitative method and quantitative chip for target substance
JP3074361B2 (en) Quantitative analyzer
CN215985714U (en) Sensor capable of measuring viscosity and concentration of glucose solution based on photoelectric response and biosensing technology
JP6977705B2 (en) Biomolecule measuring device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856977

Country of ref document: EP

Kind code of ref document: A1