WO2015064577A1 - Work vehicle - Google Patents

Work vehicle Download PDF

Info

Publication number
WO2015064577A1
WO2015064577A1 PCT/JP2014/078639 JP2014078639W WO2015064577A1 WO 2015064577 A1 WO2015064577 A1 WO 2015064577A1 JP 2014078639 W JP2014078639 W JP 2014078639W WO 2015064577 A1 WO2015064577 A1 WO 2015064577A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
engine
absorption torque
torque
characteristic
Prior art date
Application number
PCT/JP2014/078639
Other languages
French (fr)
Japanese (ja)
Inventor
田中 哲二
勇 青木
幸次 兵藤
賢太郎 大前
Original Assignee
日立建機株式会社
株式会社Kcm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社, 株式会社Kcm filed Critical 日立建機株式会社
Publication of WO2015064577A1 publication Critical patent/WO2015064577A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller

Definitions

  • the present invention relates to a work vehicle.
  • Patent Document 1 in normal work, when the actual rotational speed decreases with respect to the target rotational speed of the engine, the discharge flow rate of the variable displacement pump is limited to the decreasing side, and the load on the actuator increases rapidly.
  • a construction machine includes a control device that controls the discharge flow rate of a variable displacement pump based on the amount of change over time in the discharge pressure of the variable displacement pump when work is performed.
  • Patent Document 1 The technique described in Patent Document 1 described above is a construction machine such as a hydraulic excavator in which the engine rotation speed is set to a constant value, and the deviation between the target rotation speed and the actual rotation speed of the engine rotation speed or the discharge of the variable displacement pump.
  • the discharge flow rate of the variable displacement pump is controlled based on the amount of change in pressure over time to suppress a decrease in engine rotation speed.
  • variable displacement pump In the wheel loader, when the actual engine speed is low, the variable displacement pump is pushed away so that engine stall does not occur even when the front work device is operated at the same time as the accelerator pedal depression or immediately after the operation. The volume is reduced, and the displacement is increased after the actual engine speed has increased to some extent.
  • a work vehicle including a front working device is driven by an engine, and a variable displacement hydraulic pump that supplies pressure oil to an actuator that drives the front working device, and an operation of an accelerator pedal.
  • the maximum absorption torque of the hydraulic pump with respect to the actual rotation speed of the engine according to the operation amount detected by the operation amount detection section that detects the amount, the rotation speed detection section that detects the actual rotation speed of the engine, and the operation amount detection section And a control unit for changing.
  • the control unit is compared with when the operation amount is smaller than the predetermined value.
  • the work vehicle includes a storage device that stores at least two characteristics of the maximum absorption torque of the hydraulic pump that changes according to the actual rotational speed of the engine,
  • the maximum absorption torque of the hydraulic pump that is set according to the characteristics is determined by dividing the engine speed range into three speed ranges: low speed, medium speed, and high speed.
  • the maximum absorption torque of the hydraulic pump set by the first characteristic is smaller.
  • the control unit takes into account at least one of the hydraulic oil temperature and the atmospheric pressure, and the actual rotational speed of the engine. It is preferable to change the maximum absorption torque of the hydraulic pump.
  • the side view of the wheel loader which is an example of a working vehicle.
  • the torque diagram of the wheel loader which concerns on the 1st Embodiment of this invention.
  • the figure shown about V shape loading which is one of the methods of loading earth and sand etc. on a dump truck.
  • the torque diagram of the wheel loader which concerns on a comparative example.
  • the torque diagram of the wheel loader which concerns on the 2nd Embodiment of this invention The figure which shows schematic structure of the wheel loader which concerns on the 3rd Embodiment of this invention.
  • the torque diagram of the wheel loader which concerns on the 3rd Embodiment of this invention The torque diagram of the wheel loader which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a side view of a wheel loader that is an example of a work vehicle according to the first embodiment.
  • the wheel loader includes an arm 111, a bucket 112, a front vehicle body 110 having front wheels and the like, and a cab 121, a machine room 122, and a rear vehicle body 120 having rear wheels and the like.
  • the arm 111 rotates up and down (up and down) by driving the arm cylinder 117
  • the bucket 112 rotates up and down (cloud or dump) by driving the bucket cylinder 115.
  • the front vehicle body 110 and the rear vehicle body 120 are pivotally connected to each other by a center pin 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by expansion and contraction of the steering cylinder 116.
  • the engine 190 is provided in the machine room 122, and various operation members such as an accelerator pedal, an arm operation lever, and a bucket operation lever are provided in the operation room 121.
  • FIG. 2 is a diagram showing a schematic configuration of the wheel loader.
  • the wheel loader includes a travel drive device (travel system) that transmits the rotation of the engine 190 to the tire 113 via the torque converter 2, the transmission 3, the propeller shaft 4, the axle device 5, and the axle 6.
  • the input shaft of the torque converter 2 is connected to the output shaft of the engine 190, and the output shaft of the torque converter 2 is connected to the transmission 3.
  • the torque converter 2 is a fluid clutch including a known impeller, turbine, and stator, and the rotation of the engine 190 is transmitted to the transmission 3 via the torque converter 2.
  • the transmission 3 has a clutch that switches the speed stage from the first speed to the fourth speed, and the rotation of the output shaft of the torque converter 2 is changed by the transmission 3. The rotation after the shift is transmitted to the tire 113 via the propeller shaft 4, the axle device 5, and the axle 6, and the wheel loader travels.
  • the wheel loader includes a front working device (working system) including a hydraulic pump 11, control valves 21a and 21b, an arm cylinder 117, a bucket cylinder 115, an arm 111, and a bucket 112.
  • the working hydraulic pump 11 is driven by the engine 190 and discharges pressure oil.
  • the hydraulic pump 11 is a variable displacement hydraulic pump of a swash plate type or a swash shaft type whose displacement is changed.
  • the discharge flow rate of the hydraulic pump 11 is determined according to the displacement volume and the rotational speed of the hydraulic pump 11.
  • the regulator 11 a adjusts the displacement volume so that the absorption torque (input torque) of the hydraulic pump 11 does not exceed the maximum pump absorption torque set by the controller 100. As will be described later, the set value of the maximum pump absorption torque is changed according to the actual rotation speed and the target rotation speed of the engine 190.
  • Pressure oil discharged from the hydraulic pump 11 is supplied to the arm cylinder 117 and the bucket cylinder 115 which are working actuators via the control valves 21a and 21b, and each actuator is driven.
  • the control valve 21a and the control valve 21b are operated by the arm operation lever 31a and the bucket operation lever 31b, and control the flow of pressure oil from the hydraulic pump 11 to the arm cylinder 117 and the bucket cylinder 115.
  • the arm operation lever 31 a outputs an up / down command for the arm 111
  • the bucket operation lever 31 b outputs a tilt / dump command for the bucket 112.
  • the operation levers 31a and 31b for operating the control valves 21a and 21b may be electric levers or hydraulic pilot levers.
  • the torque converter 2 has a function of increasing the output torque with respect to the input torque, that is, a function of setting the torque ratio to 1 or more.
  • the torque converter speed ratio e decreases.
  • the transmission 3 is an automatic transmission having a solenoid valve corresponding to each speed stage from 1st to 4th. These solenoid valves are driven by a control signal output from the controller 100 to the transmission control unit 20, and the transmission 3 is shifted according to the control signal.
  • the speed stage of the transmission 3 is controlled by the torque converter speed ratio reference control that shifts when the torque converter speed ratio e reaches a predetermined value.
  • the wheel loader includes a controller 100 that controls each part of the wheel loader and an engine controller 19 that controls the engine 190.
  • the controller 100 and the engine controller 19 each include an arithmetic processing unit having a CPU, a ROM, a RAM, and other peripheral circuits as storage devices.
  • the controller 100 includes an input side rotational speed detector (not shown) that detects the rotational speed of the input shaft of the torque converter 2 and an output side rotational speed detector (not shown) that detects the rotational speed of the output shaft of the torque converter 2. ) And are connected.
  • the controller 100 is connected to a forward / reverse switching lever 17 for commanding forward / reverse travel of the vehicle, and the operation position of the forward / reverse switching lever 17 (forward (F) / neutral (N) / reverse (R )) Is detected by the controller 100.
  • forward (F) / neutral (N) / reverse (R ) the operation position of the forward / reverse switching lever 17
  • the controller 100 outputs a control signal for engaging the forward clutch (not shown) of the transmission 3 to the transmission control unit 20.
  • the controller 100 outputs a control signal for bringing the reverse clutch (not shown) of the transmission 3 into an engaged state to the transmission control unit 20.
  • a clutch control valve (not shown) provided in the transmission control unit 20 operates to move forward.
  • the reverse clutch (not shown) is engaged, and the traveling direction of the work vehicle is switched to the forward side or the reverse side.
  • the controller 100 When the forward / reverse switching lever 17 is switched to the neutral (N) position, the controller 100 outputs to the transmission control unit 20 a control signal for releasing the forward and reverse clutches (not shown). As a result, the forward and reverse clutches (not shown) are released, and the transmission 3 is in a neutral state.
  • the controller 100 is connected to a shift switch 18 for instructing an upper limit of the speed stage between the first speed to the fourth speed, and the transmission 3 is automatically shifted up to the speed stage selected by the shift switch 18. For example, when the second speed is selected by the shift switch 18, the speed stage is set to the first speed or the second speed, and when the first speed is selected, the speed stage is fixed to the first speed.
  • the controller 100 is connected with an operation amount sensor 152a for detecting the pedal operation amount (pedal stroke or pedal angle) of the accelerator pedal 152 and a rotation speed sensor 13 for detecting the actual engine rotation speed of the engine 190.
  • the controller 100 functionally includes a target speed setting unit 100a.
  • the target speed setting unit 100a sets a target engine rotation speed (command speed) Nt of the engine 190 according to the pedal operation amount (depression amount) of the accelerator pedal 152 detected by the operation amount sensor 152a.
  • FIG. 3 is a diagram showing the relationship between the operation amount L of the accelerator pedal 152 and the target engine rotation speed Nt.
  • the table of the target engine speed characteristic Tn shown in FIG. 3 is stored in the storage device of the controller 100, and the target speed setting unit 100a refers to the table of the characteristic Tn, and the operation amount detected by the operation amount sensor 152a.
  • a target engine speed Nt is set based on L.
  • the target engine speed Nt when the accelerator pedal 152 is not operated (0%) is set to the low idle speed Ns. As the pedal operation amount L of the accelerator pedal 152 increases, the target engine speed Nt increases. The target engine speed Nt when the pedal is fully depressed (100%) is the rated speed Nmax at the rated point.
  • the controller 100 outputs a control signal corresponding to the set target engine rotational speed Nt and a control signal corresponding to the actual engine rotational speed Na detected by the rotational speed sensor 13 to the engine controller 19.
  • the engine controller 19 compares the target engine speed Nt from the controller 100 with the actual engine speed Na, and controls the fuel injection device 190a to bring the actual engine speed Na closer to the target engine speed Nt.
  • the discharge pressure sensor 12 is connected to the controller 100.
  • the discharge pressure sensor 12 detects the discharge pressure (load pressure) of the hydraulic pump 11 and outputs a discharge pressure signal to the controller 100.
  • FIG. 4 is a torque diagram of the wheel loader according to the first embodiment, and shows an engine output torque characteristic E and pump absorption torque characteristics A1 and A2.
  • the storage device of the controller 100 stores an engine output torque characteristic E and a plurality of pump absorption torque characteristics A1 and A2 in a look-up table format.
  • characteristic A1 is used when the target engine speed is less than a predetermined value (accelerator pedal depression amount is small)
  • characteristic A2 is when the target engine rotation speed is equal to or greater than a predetermined value (accelerator pedal depression amount is large). Used.
  • the engine output torque characteristic E indicates the relationship between the actual engine speed and the maximum engine output torque.
  • the maximum engine output torque means the maximum torque that the engine 190 can output at each rotational speed.
  • the region defined by the engine output torque characteristic (maximum torque line) indicates the performance that the engine 190 can produce.
  • the engine mounted on the wheel loader has a droop characteristic in which the torque is drastically reduced in a rotational speed region exceeding the rated point (rated maximum torque) Pe.
  • the droop line is defined by a straight line connecting the rated point Pe and the maximum engine speed in the pump no-load state.
  • the torque increases as the actual engine rotational speed Na increases in the range where the actual engine rotational speed Na is in the range of the low idle rotational speed (minimum rotational speed) Ns to Nv.
  • the maximum torque Temax in the characteristic E is obtained (maximum torque point Tm).
  • the low idle rotation speed is an engine rotation speed when the accelerator pedal 152 is not operated.
  • the torque characteristic E when the actual engine rotation speed Na becomes higher than Nv, the torque decreases according to the increase in the actual engine rotation speed Na, and when the rated point Pe is reached, a rated output is obtained.
  • the actual engine rotation speed Na increases beyond the rated rotation speed at the rated point Pe, the torque decreases rapidly.
  • Pump absorption torque characteristics A1 and A2 indicate the relationship between the actual engine speed and the maximum pump absorption torque (maximum pump input torque), respectively.
  • the speed range in which the actual engine rotational speed Na changes is divided into three speed ranges, the low speed range, the medium speed range, and the high speed range, and the speed range in which the actual engine rotational speed Na changes is set to the low / medium speed range.
  • the characteristics of the maximum pump absorption torque in each speed range in the case where the speed is divided into two speed ranges, that is, the high speed range and the medium and high speed range will be described.
  • the medium speed range is a speed range including the engine rotation speed Nv corresponding to the maximum torque point Tm.
  • the low speed range is a speed range lower than the medium speed range, and is a speed range including the low idle rotation speed Ns.
  • a speed range of Nu1 or lower is referred to as a low speed range.
  • the high speed region is a speed region on the higher speed side than the medium speed region, and is a speed region including the engine rotational speed (rated rotational speed) at the rated point Pe.
  • the speed range on the low speed side with the engine speed Nv corresponding to the maximum torque point Tm as a boundary is called a low / medium speed range.
  • the speed range is called the medium-high speed range.
  • the minimum torque value Tpmin in the characteristic A1 is obtained regardless of the actual engine rotation speed Na.
  • the maximum torque value Tpmax in the characteristic A1 is obtained regardless of the actual engine rotation speed Na.
  • the torque increases as the actual engine rotation speed Na increases. That is, as shown in the figure, the maximum pump absorption torque set by the characteristic A1 increases as the actual engine speed Na increases from the minimum value Tpmin to the maximum value Tpmax in the low speed range, and reaches the medium speed range and the high speed range. Is set to the maximum value Tpmax.
  • the pump absorption torque characteristic A2 is the same as the characteristic A1 when the actual engine rotation speed Na is Nd1 or less and the actual engine rotation speed Na is Nu2 or more.
  • the minimum torque value Tpmin in the characteristic A2 is obtained regardless of the actual engine rotational speed Na.
  • Nd2 is a rotational speed larger than Nd1 (Nd1 ⁇ Nd2) and is included in the medium speed range.
  • the maximum torque value Tpmax in the characteristic A2 is obtained regardless of the actual engine speed Na.
  • Nu2 is a rotational speed larger than Nu1 (Nu1 ⁇ Nu2), and is included in the medium speed range.
  • the torque increases as the actual engine rotation speed Na increases.
  • the magnitude relationship between Nd2, Nv, and Nu2 is Nd2 ⁇ Nv ⁇ Nu2. That is, as shown in the figure, the maximum pump absorption torque set in the characteristic A2 is the minimum value Tpmin in the low speed range, and increases from the minimum value Tpmin to the maximum value Tpmax in the medium speed range as the actual engine speed Na increases. To increase.
  • the maximum pump absorption torque set by the characteristic A2 is the maximum value Tpmax in the high speed range.
  • the characteristic A2 and the actual pump absorption torque are determined with respect to the maximum pump absorption torque determined by the characteristic A1 and the actual engine rotational speed Na.
  • Each of the characteristics A1 and A2 is set so that the maximum pump absorption torque determined by the engine rotation speed Na becomes small.
  • the controller 100 functionally includes an operation amount determination unit 100b and a selection unit 100c.
  • the operation amount determination unit 100b determines whether the target engine speed Nt set by the target speed setting unit 100a is equal to or higher than a predetermined speed (threshold) or less than a predetermined speed (threshold). When the target engine speed Nt is equal to or greater than the threshold value Nt1, the operation amount determination unit 100b determines that the amount of depression of the accelerator pedal 152 is large. When the target engine speed Nt is less than the threshold value Nt1, the operation amount determination unit 100b determines that the amount of depression of the accelerator pedal 152 is small. Information on the threshold value Nt1 is stored in advance in the storage device of the controller 100. The threshold value Nt1 is set to a value higher than the target engine speed that is set when the driver depresses the accelerator pedal 152 by about half, for example, Nu2 (see FIG. 4). .
  • the selection unit 100c selects the pump absorption torque characteristic according to the result determined by the operation amount determination unit 100b.
  • the selection unit 100c selects the pump absorption torque characteristic A1.
  • the selection unit 100c selects the pump absorption torque characteristic A2.
  • FIG. 5 is a diagram showing V-shape loading, which is one of the methods for loading earth and sand into a dump truck.
  • FIG. 6 is a diagram illustrating excavation work by the wheel loader. In the V shape loading, as indicated by an arrow a, the wheel loader is advanced toward the natural ground 130 such as earth and sand.
  • the bucket 112 is plunged into the natural ground 130 and the arm 112 is raised after the bucket 112 is operated, or the arm 111 is finally raised only while the bucket 112 and the arm 111 are operated simultaneously. And perform excavation work.
  • the wheel loader When the excavation work is completed, the wheel loader is temporarily retracted as shown by the arrow b in FIG. As indicated by an arrow c, the wheel loader is advanced toward the dump truck and stopped in front of the dump truck. Thereafter, the scooped earth and sand are loaded on the dump truck, and the wheel loader is moved back to the original position as indicated by an arrow d.
  • the above is the basic operation of excavation and loading work by V-shape loading.
  • FIG. 7 is a flowchart showing the operation of the pump absorption torque characteristic selection control process by the controller 100.
  • step S100 the controller 100 acquires information on the operation amount L of the accelerator pedal 152 detected by the operation amount sensor 152a, and proceeds to step S110.
  • step S110 the controller 100 refers to the table of the target engine speed characteristics Tn (see FIG. 3), sets the target engine speed Nt based on the operation amount L acquired in step S100, and proceeds to step S120.
  • step S120 the controller 100 determines whether or not the target engine speed Nt set in step S110 is less than the threshold value Nt1. If an affirmative determination is made in step S120, the controller 100 determines that the amount of depression of the accelerator pedal 152 is small, and proceeds to step S130. If a negative determination is made in step S120, the controller 100 determines that the amount of depression of the accelerator pedal 152 is large, and proceeds to step S140.
  • step S130 the controller 100 selects a table (see FIG. 4) of the pump absorption torque characteristic A1 from the storage device, and returns to step S100.
  • step S140 the controller 100 selects a table (see FIG. 4) of the pump absorption torque characteristic A2 from the storage device, and returns to step S100.
  • the controller 100 refers to the characteristic table E, and based on the target engine rotational speed Nt by the accelerator pedal 152 and the actual engine rotational speed Na detected by the rotational speed sensor 13, the fuel injection amount of the engine 190. To control. Further, the controller 100 refers to the selected characteristic table (A1, A2), calculates the maximum pump absorption torque value based on the actual engine rotational speed Na detected by the rotational speed sensor 13, and discharge pressure sensor 12 The displacement of the hydraulic pump 11 through the regulator 11a so as not to exceed the maximum pump absorption torque based on the discharge pressure (load pressure) detected in step S3 and the actual engine rotational speed Na detected by the rotational speed sensor 13. That is, the tilt angle is controlled.
  • the maximum pump absorption torque is limited in the low speed range
  • the maximum pump absorption torque is limited in the low speed range and the medium speed range.
  • the rate of increase of the actual engine speed Na can be increased. That is, the racing performance of the engine 190 can be improved.
  • the effect of improvement of the racing performance of the present embodiment will be described as compared with the comparative example.
  • FIG. 8A and 8 (b) are views similar to FIG. 4, and are torque diagrams of a wheel loader according to a comparative example.
  • FIG. 8A shows the same engine output torque characteristic E as in this embodiment and the same pump absorption torque characteristic A1 as in this embodiment.
  • FIG. 8B shows the same engine output torque characteristic E as in this embodiment and the same pump absorption torque characteristic A2 as in this embodiment.
  • the displacement volume of the hydraulic pump 11 is controlled by the pump absorption torque characteristic A1 regardless of the depression amount of the accelerator pedal 152.
  • the displacement of the hydraulic pump 11 is controlled by the pump absorption torque characteristic A2 regardless of the depression amount of the accelerator pedal 152. That is, in Comparative Examples (1) and (2), the pump absorption torque characteristic does not change depending on the operation amount L of the accelerator pedal 152.
  • a work vehicle such as a wheel loader is controlled such that the engine output torque is kept low in order to satisfy exhaust gas regulations, such as when working at high altitudes.
  • exhaust gas regulations such as when working at high altitudes.
  • the maximum pump absorption torque is increased after the actual engine rotational speed has increased to a medium speed range where the engine output torque has increased to some extent.
  • the arm 111 is raised at the same time as or immediately after the accelerator pedal 152 is depressed.
  • the actual engine rotation speed Na can be quickly increased.
  • Comparative Example (2) since the engine 190 has higher performance compared to Comparative Example (1), the working efficiency at high altitudes can be improved compared to Comparative Example (1).
  • the wheel loader according to the comparative example (2) is operated on a flat ground and the operation is performed by the half accelerator operation, for example, the actual engine rotation speed Na is in the range of Nd2 to Nu2, that is, in the middle speed range.
  • the actual pump discharge flow rate cannot be obtained as compared with the comparative example (1), and there is a concern that the operation of the front working device is delayed.
  • the characteristic A2 is selected when the accelerator pedal 152 is fully depressed, and the displacement of the hydraulic pump 11 is controlled based on the characteristic A2. Is done. Further, when the accelerator pedal 152 is depressed by a step smaller than the threshold value Nt1, such as a half accelerator operation, the characteristic A1 is selected, and the displacement of the hydraulic pump 11 is controlled based on the characteristic A1. For this reason, it is possible to increase the rate of increase of the engine speed at high altitude without impairing workability on flat ground.
  • the maximum absorption torque of the hydraulic pump 11 with respect to the actual engine rotational speed Na is changed in accordance with the operation amount L of the accelerator pedal 152.
  • the target engine speed Nt set according to the operation amount L is larger than the threshold value Nt1
  • the lower engine speed range and the medium speed are set when the target engine speed Nt set according to the operation amount L is smaller than the threshold value Nt1.
  • the maximum pump absorption torque set according to the actual engine rotational speed Na in the speed range is made small. As a result, the rate of increase of the actual engine rotation speed at high altitude, that is, the racing performance of the engine 190 can be improved without impairing workability on flat ground.
  • FIG. 9 is a diagram similar to FIG. 2, and is a diagram showing a schematic configuration of a wheel loader according to the second embodiment of the present invention.
  • the wheel loader according to the second embodiment has the same configuration as the wheel loader according to the first embodiment.
  • FIG. 10 is a view similar to FIG. 4 and is a torque diagram of the wheel loader according to the second embodiment.
  • the storage device of the controller 200 stores three characteristics A1, A2, and A3 shown in FIG.
  • the characteristics A1 and A2 are the same as the characteristics A1 and A2 described in the first embodiment shown in FIG.
  • the pump absorption torque characteristic A3 is the same as the characteristic A1 when the actual engine rotation speed Na is Nd1 or less and the actual engine rotation speed Na is Nu3 or more.
  • the minimum torque value Tpmin in the characteristic A3 is obtained regardless of the actual engine rotational speed Na.
  • the maximum torque value Tpmax in the characteristic A3 is obtained regardless of the actual engine speed Na.
  • Nu3 is larger than Nu1 and smaller than Nu2 (Nu1 ⁇ Nu3 ⁇ Nu2).
  • the torque increases as the actual engine rotation speed Na increases.
  • the storage device of the controller 200 stores the threshold value Nt1 described in the first embodiment and the threshold value Nt2 smaller than the threshold value Nt1 (Nt2 ⁇ Nt1). As shown in FIG. 9, in the second embodiment, the operation amount determination unit 200b determines that the accelerator pedal 152 is in a large depressed position when the target engine speed Nt is equal to or greater than the threshold value Nt1. . When the target engine speed Nt is less than the threshold value Nt1 and greater than or equal to the threshold value Nt2, the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is in a medium state. When the target engine speed Nt is less than the threshold value Nt2, the operation amount determination unit 200b determines that the amount of depression of the accelerator pedal 152 is small.
  • the selection unit 200c selects the pump absorption torque characteristic A1.
  • the selection unit 200c selects the pump absorption torque characteristic A2.
  • the selection unit 200c selects the pump absorption torque characteristic A3 when the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is in a medium state.
  • the same effects as those of the first embodiment can be obtained. Since there are more characteristics depending on the depression amount of the accelerator pedal 152 than in the first embodiment, the engine rotation speed is adjusted while adjusting the depression amount according to the altitude, that is, the degree of decrease in engine output torque. Can be raised promptly.
  • FIG. 11 is a view similar to FIG. 9 and showing a schematic configuration of the wheel loader according to the third embodiment.
  • the wheel loader according to the third embodiment has the same configuration as the wheel loader according to the second embodiment.
  • a hydraulic oil temperature sensor 314 is connected to the controller 300. The hydraulic oil temperature sensor 314 detects the temperature of the hydraulic oil discharged from the hydraulic pump 11 and outputs an oil temperature signal to the controller 300.
  • FIG. 12 is a view similar to FIG. 10 and is a torque diagram of the wheel loader according to the third embodiment.
  • six characteristics AH1, AH2, AH3, AL1, AL2, and AL3 are stored in the storage device of the controller 300.
  • Characteristics AH1, AH2, and AH3 are the same characteristics as the characteristics A1, A2, and A3 (see FIG. 10) described in the second embodiment.
  • the characteristics AL1, AL2, and AL3 are characteristics in which the increase start point of the maximum pump absorption torque with respect to the increase in the actual engine speed Na is set slower than the characteristics AH1, AH2, and AH3, that is, the increase in the maximum pump absorption torque starts.
  • the actual engine rotation speed Na is set to be higher.
  • the increase start point of the maximum pump absorption torque of the characteristic AH1 is Nd1, whereas the increase start point of the maximum pump absorption torque of the characteristic AL1 is NdL1 higher than Nd1.
  • the increase start point of the maximum pump absorption torque of the characteristic AH3 is Nd1
  • the increase start point of the maximum pump absorption torque of the characteristic AL3 is NdL1 higher than Nd1.
  • the increase start point of the maximum pump absorption torque of the characteristic AH2 is Nd2
  • the increase start point of the maximum pump absorption torque of the characteristic AL2 is NdL2 higher than Nd2.
  • the controller 300 shown in FIG. 11 functionally includes an oil temperature determination unit 300d, and a threshold value T1 is stored in the storage device of the controller 300.
  • a threshold value T1 is stored in the storage device of the controller 300.
  • the oil temperature determination unit 300d determines that the hydraulic oil is in a high temperature state and has a low viscosity and a high engine load.
  • the oil temperature determination unit 300d determines that the hydraulic oil is in a low temperature state and has a high viscosity and is likely to increase the engine load.
  • the selection unit 300c selects the pump absorption torque characteristic according to the result determined by the oil temperature determination unit 300d and the result determined by the operation amount determination unit 200b.
  • the selection unit 300c absorbs the pump. Torque characteristic AH1 is selected.
  • the selection unit 300c has a pump absorption torque characteristic. Select AH2.
  • the pump absorption torque characteristic AH3 is selected.
  • the selection unit 300c When the oil temperature determination unit 300d determines that the hydraulic oil is in a low temperature state and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is small, the selection unit 300c absorbs the pump. Select torque characteristic AL1. When the oil temperature determination unit 300d determines that the hydraulic oil is in a low temperature state and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is large, the selection unit 300c absorbs the pump. Select torque characteristic AL2. When the selection unit 300c determines that the hydraulic oil is in a low temperature state by the oil temperature determination unit 300d and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is in a medium state, The pump absorption torque characteristic AL3 is selected.
  • the actual engine speed By setting the actual engine speed at which the maximum pump absorption torque starts to increase when the hydraulic oil temperature is low compared to when the hydraulic oil temperature is high, the actual engine speed can be increased even when the hydraulic oil temperature is low.
  • the rate of increase in engine rotation speed that is, the engine performance of the engine 190 can be increased.
  • Modification 1 In the embodiment described above, an example in which the operation amount determination units 100b and 200b determine the state of the depression amount of the accelerator pedal 152 according to the target engine rotation speed set by the target speed setting unit 100a will be described. However, the present invention is not limited to this. For example, it may be determined whether or not the amount of depression of the accelerator pedal 152 is greater than or equal to a predetermined value, and the state of the amount of depression of the accelerator pedal 152 may be determined.
  • Mode 2 In the first embodiment, it is determined whether the depression amount of the accelerator pedal 152 is large or small, and one of the characteristics A1 and A2 is selected according to the depression amount of the accelerator pedal 152. The characteristics were selected. In the second embodiment, the accelerator pedal 152 is judged to have a large depression amount, a small depression amount, or a medium depression state, and any one of the characteristics A1, A2, and A3 is determined according to the depression amount of the accelerator pedal 152. One characteristic was selected. However, the present invention is not limited to these. The state of the depression amount of the accelerator pedal 152 may be further subdivided, and four or more characteristics corresponding to the depression amount may be provided.
  • the wheel loader including the traveling drive device that transmits the driving force of the engine 190 to the tire 113 via the torque converter 2 has been described, but the present invention is not limited to this.
  • the present invention may be applied to a wheel loader including an HST traveling drive device in which a traveling hydraulic pump and a traveling hydraulic motor are connected in a closed circuit.
  • Modification 4 In the third embodiment, the example in which the maximum pump absorption torque with respect to the actual engine speed is changed in consideration of the hydraulic oil temperature has been described. However, the present invention is not limited to this. Instead of the hydraulic oil temperature, the maximum pump absorption torque with respect to the actual engine rotation speed may be changed in consideration of atmospheric pressure.
  • an atmospheric pressure sensor that detects the atmospheric pressure is provided, and when the atmospheric pressure detected by the atmospheric pressure sensor is equal to or higher than a predetermined pressure, the accelerator pedal 152 is depressed from the characteristics AH1, AH2, and AH3 shown in FIG. Depending on the quantity, one characteristic is selected.
  • the characteristic AH1 When the depression amount of the accelerator pedal 152 is large, the characteristic AH1 is selected, when the depression amount of the accelerator pedal 152 is small, the characteristic AH2 is selected, and when the depression amount of the accelerator pedal 152 is medium, the characteristic AH3 is selected.
  • the atmospheric pressure detected by the atmospheric pressure sensor is less than the predetermined pressure, one characteristic is selected from the characteristics AL1, AL2, and AL3 shown in FIG. 12B according to the depression amount of the accelerator pedal 152.
  • the characteristic AL1 is selected when the amount of depression of the accelerator pedal 152 is large, the characteristic AL2 is selected when the amount of depression of the accelerator pedal 152 is small, and the characteristic AL3 is selected when the amount of depression of the accelerator pedal 152 is medium. .
  • the maximum pump absorption torque with respect to the actual engine rotational speed Na is changed in consideration of the atmospheric pressure.
  • the increase rate of the engine 190 that is, the engine performance of the engine 190 can be increased. Note that the maximum pump absorption torque with respect to the actual engine rotational speed Na can be changed in consideration of both the hydraulic oil temperature and the atmospheric pressure.
  • the work vehicle may be, for example, another work vehicle such as a forklift that assumes a work form in which the front work device is operated at the same time as or after the accelerator pedal is depressed.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

This work vehicle is provided with a front work device, and is provided with: a variable capacity hydraulic pump that is driven by an engine and that supplies pressure oil to an actuator that drives the front work device; an operation quantity detection unit that detects the amount of operation of an accelerator pedal; a rotational velocity detection unit that detects the actual rotational velocity of an engine; and a control unit that alters the maximum absorption torque of a hydraulic pump with respect to the actual rotational velocity of the engine in accordance with the operation quantity detected by the operation quantity detection unit.

Description

作業車両Work vehicle
 本発明は、作業車両に関する。 The present invention relates to a work vehicle.
 油圧ショベル等の建設機械では、油圧アクチュエータを急操作してエンジンに急負荷が加えられたときに、エンジンの回転速度が一時的に落ち込むラグダウンという現象を抑制するために種々の提案がなされている。特許文献1には、通常的な作業においてはエンジンの目標回転速度に対して実回転速度が低下したときに可変容量ポンプの吐出流量を減少側に制限し、特にアクチュエータの負荷が急増するような作業が行われた場合には、可変容量ポンプの吐出圧の時間的変化量に基づき可変容量ポンプの吐出流量を制御する制御装置を備えた建設機械が記載されている。 In construction machines such as hydraulic excavators, various proposals have been made to suppress the phenomenon of lag down in which the rotational speed of the engine temporarily falls when a sudden load is applied to the engine by suddenly operating the hydraulic actuator. . In Patent Document 1, in normal work, when the actual rotational speed decreases with respect to the target rotational speed of the engine, the discharge flow rate of the variable displacement pump is limited to the decreasing side, and the load on the actuator increases rapidly. A construction machine is described that includes a control device that controls the discharge flow rate of a variable displacement pump based on the amount of change over time in the discharge pressure of the variable displacement pump when work is performed.
日本国特開平9-151859号公報Japanese Laid-Open Patent Publication No. 9-151859
 上述した特許文献1に記載の技術は、エンジン回転速度が一定値に設定される油圧ショベル等の建設機械において、エンジン回転速度の目標回転速度と実回転速度との偏差や、可変容量ポンプの吐出圧の時間的変化量に基づいて可変容量ポンプの吐出流量を制御して、エンジン回転速度の低下を抑制するものである。 The technique described in Patent Document 1 described above is a construction machine such as a hydraulic excavator in which the engine rotation speed is set to a constant value, and the deviation between the target rotation speed and the actual rotation speed of the engine rotation speed or the discharge of the variable displacement pump. The discharge flow rate of the variable displacement pump is controlled based on the amount of change in pressure over time to suppress a decrease in engine rotation speed.
 ところで、ホイールローダなどの作業車両では、掘削、荷役作業時に、アクセルペダルの踏み込み操作、戻し操作が頻繁に行われる。作業車両が停止状態(ローアイドルでエンジンが駆動している状態)にあるところから、アクセルペダルの踏み込み操作と同時、あるいは、操作直後にアーム、バケット等からなるフロント作業装置を操作することがある。特許文献1に記載の技術は、スロットルレバー等でエンジン回転速度を一定にして作業を行う油圧ショベル等の建設機械に対するものであるため、ホイールローダのようにアクセルペダルの踏み込み操作直後のエンジン回転速度の上昇過程でアクチュエータの負荷が急増する場合がある作業車両特有の以下のような問題を解決できるものではない。 By the way, in a work vehicle such as a wheel loader, an accelerator pedal is frequently depressed and returned during excavation and cargo handling operations. When the work vehicle is in a stopped state (a state where the engine is driven at low idle), a front work device including an arm, a bucket, or the like may be operated at the same time or immediately after the accelerator pedal is depressed. . Since the technique described in Patent Document 1 is for a construction machine such as a hydraulic excavator that performs work with a constant engine rotation speed using a throttle lever or the like, the engine rotation speed immediately after the accelerator pedal is depressed like a wheel loader. However, it is not possible to solve the following problems peculiar to work vehicles in which the load on the actuator may increase rapidly during the ascent process.
 ホイールローダでは、アクセルペダルの踏み込み操作と同時、あるいは、操作直後にフロント作業装置が操作された場合であってもエンジンストールが発生しないように、実エンジン回転速度が低いときには、可変容量ポンプの押しのけ容積を小さくしておき、ある程度実エンジン回転速度が上昇してから押しのけ容積を増加させるようにしている。 In the wheel loader, when the actual engine speed is low, the variable displacement pump is pushed away so that engine stall does not occur even when the front work device is operated at the same time as the accelerator pedal depression or immediately after the operation. The volume is reduced, and the displacement is increased after the actual engine speed has increased to some extent.
 しかしながら、高地での作業時など、排ガス規制を満足するためにエンジン出力トルクが制限されている場合において、アクセルペダルの踏み込み操作と同時、あるいは、操作直後にフロント作業装置が操作されると、ポンプ吐出圧の増加によるエンジン負荷の増加に対して、エンジン出力トルクの増加が十分でないため、エンジン回転速度の上昇率、すなわちエンジンの吹け上がりが悪くなるという問題があった。そこで、高地での作業を考慮して、たとえば実エンジン回転速度の上昇に対するポンプ押しのけ容積の増加開始点を遅くする、すなわち押しのけ容積の増加が開始される実エンジン回転速度を高めに設定することが考えられる。しかしながら、この場合、平地においてハーフアクセル操作による作業を行ったときに、十分なポンプ吐出流量を得ることができず、フロント作業装置の動作が遅くなることが懸念される。 However, when engine output torque is limited to satisfy exhaust gas regulations, such as when working at high altitudes, if the front work device is operated at the same time as or immediately after the accelerator pedal is depressed, the pump Since the engine output torque is not increased sufficiently with respect to the increase in engine load due to the increase in discharge pressure, there has been a problem that the rate of increase in engine rotation speed, that is, the engine blow-up becomes worse. Therefore, in consideration of work at high altitude, for example, the starting point of the increase in pump displacement with respect to the increase in the actual engine rotation speed is delayed, that is, the actual engine rotation speed at which the increase in displacement volume starts can be set higher. Conceivable. However, in this case, there is a concern that when the work by the half accelerator operation is performed on a flat ground, a sufficient pump discharge flow rate cannot be obtained, and the operation of the front working device becomes slow.
 本発明の第1の態様によると、フロント作業装置を備えた作業車両は、エンジンにより駆動され、フロント作業装置を駆動させるアクチュエータに圧油を供給する可変容量型の油圧ポンプと、アクセルペダルの操作量を検出する操作量検出部と、エンジンの実回転速度を検出する回転速度検出部と、操作量検出部で検出された操作量に応じて、エンジンの実回転速度に対する油圧ポンプの最大吸収トルクを変化させる制御部とを備えている。
 本発明の第2の態様によると、第1の態様の作業車両において、制御部は、操作量検出部で検出された操作量が所定値より大きいときには、操作量が所定値より小さいときに比べて、所定の速度域におけるエンジンの実回転速度に対する油圧ポンプの最大吸収トルクを小さくすることが好ましい。
 本発明の第3の態様によると、第2の態様の作業車両において、エンジンの実回転速度に応じて変化する油圧ポンプの最大吸収トルクの特性を少なくとも2つ記憶した記憶装置を備え、第2特性により設定される油圧ポンプの最大吸収トルクは、エンジンの実回転速度の速度域を低速度域、中速度域および高速度域の3つの速度域に分けた場合に、低速度域および中速度域において、第1特性により設定される油圧ポンプの最大吸収トルクよりも小さいことが好ましい。
 本発明の第4の態様によると、第1ないし3のいずれか1態様の作業車両において、制御部は、作動油温および大気圧の少なくともいずれか一方を加味して、エンジンの実回転速度に対する油圧ポンプの最大吸収トルクを変化させることが好ましい。
According to the first aspect of the present invention, a work vehicle including a front working device is driven by an engine, and a variable displacement hydraulic pump that supplies pressure oil to an actuator that drives the front working device, and an operation of an accelerator pedal. The maximum absorption torque of the hydraulic pump with respect to the actual rotation speed of the engine according to the operation amount detected by the operation amount detection section that detects the amount, the rotation speed detection section that detects the actual rotation speed of the engine, and the operation amount detection section And a control unit for changing.
According to the second aspect of the present invention, in the work vehicle according to the first aspect, when the operation amount detected by the operation amount detection unit is larger than the predetermined value, the control unit is compared with when the operation amount is smaller than the predetermined value. Thus, it is preferable to reduce the maximum absorption torque of the hydraulic pump with respect to the actual rotational speed of the engine in a predetermined speed range.
According to a third aspect of the present invention, the work vehicle according to the second aspect includes a storage device that stores at least two characteristics of the maximum absorption torque of the hydraulic pump that changes according to the actual rotational speed of the engine, The maximum absorption torque of the hydraulic pump that is set according to the characteristics is determined by dividing the engine speed range into three speed ranges: low speed, medium speed, and high speed. Preferably, in the region, the maximum absorption torque of the hydraulic pump set by the first characteristic is smaller.
According to the fourth aspect of the present invention, in the work vehicle according to any one of the first to third aspects, the control unit takes into account at least one of the hydraulic oil temperature and the atmospheric pressure, and the actual rotational speed of the engine. It is preferable to change the maximum absorption torque of the hydraulic pump.
 本発明によれば、平地での作業性を損なうことなく、高地でのエンジン回転速度の上昇率を高めることができる。 According to the present invention, it is possible to increase the rate of increase of the engine rotation speed on high ground without impairing workability on flat ground.
作業車両の一例であるホイールローダの側面図。The side view of the wheel loader which is an example of a working vehicle. ホイールローダの概略構成を示す図。The figure which shows schematic structure of a wheel loader. アクセルペダルの操作量と目標エンジン回転速度の関係を示す図。The figure which shows the relationship between the operation amount of an accelerator pedal, and a target engine rotational speed. 本発明の第1の実施の形態に係るホイールローダのトルク線図。The torque diagram of the wheel loader which concerns on the 1st Embodiment of this invention. 土砂等をダンプトラックへ積み込む方法の1つであるVシェープローディングについて示す図。The figure shown about V shape loading which is one of the methods of loading earth and sand etc. on a dump truck. ホイールローダによる掘削作業を示す図。The figure which shows the excavation work by a wheel loader. コントローラによるポンプ吸収トルク特性の選択制御処理の動作を示したフローチャート。The flowchart which showed the operation | movement of the selection control process of the pump absorption torque characteristic by a controller. 比較例に係るホイールローダのトルク線図。The torque diagram of the wheel loader which concerns on a comparative example. 本発明の第2の実施の形態に係るホイールローダの概略構成を示す図。The figure which shows schematic structure of the wheel loader which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係るホイールローダのトルク線図。The torque diagram of the wheel loader which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るホイールローダの概略構成を示す図。The figure which shows schematic structure of the wheel loader which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係るホイールローダのトルク線図。The torque diagram of the wheel loader which concerns on the 3rd Embodiment of this invention.
 以下、図面を参照して、本発明による作業車両の一実施の形態を説明する。
-第1の実施の形態-
 図1は、第1の実施の形態に係る作業車両の一例であるホイールローダの側面図である。ホイールローダは、アーム111、バケット112、および、前輪等を有する前部車体110と、運転室121、機械室122、および、後輪等を有する後部車体120とで構成される。
Hereinafter, an embodiment of a work vehicle according to the present invention will be described with reference to the drawings.
-First embodiment-
FIG. 1 is a side view of a wheel loader that is an example of a work vehicle according to the first embodiment. The wheel loader includes an arm 111, a bucket 112, a front vehicle body 110 having front wheels and the like, and a cab 121, a machine room 122, and a rear vehicle body 120 having rear wheels and the like.
 アーム111はアームシリンダ117の駆動により上下方向に回動(俯仰動)し、バケット112はバケットシリンダ115の駆動により上下方向に回動(クラウドまたはダンプ)する。前部車体110と後部車体120はセンタピン101により互いに回動自在に連結され、ステアリングシリンダ116の伸縮により後部車体120に対し前部車体110が左右に屈折する。 The arm 111 rotates up and down (up and down) by driving the arm cylinder 117, and the bucket 112 rotates up and down (cloud or dump) by driving the bucket cylinder 115. The front vehicle body 110 and the rear vehicle body 120 are pivotally connected to each other by a center pin 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by expansion and contraction of the steering cylinder 116.
 機械室122の内部にはエンジン190が設けられ、運転室121の内部にはアクセルペダルやアーム操作レバー、バケット操作レバーなどの各種操作部材が設けられている。 The engine 190 is provided in the machine room 122, and various operation members such as an accelerator pedal, an arm operation lever, and a bucket operation lever are provided in the operation room 121.
 図2は、ホイールローダの概略構成を示す図である。ホイールローダは、エンジン190の回転をトルクコンバータ2、トランスミッション3、プロペラシャフト4、アクスル装置5、アクスル6を介してタイヤ113に伝達する走行駆動装置(走行系)を備えている。エンジン190の出力軸にはトルクコンバータ2の入力軸が連結され、トルクコンバータ2の出力軸はトランスミッション3に連結されている。トルクコンバータ2は周知のインペラ、タービン、ステータからなる流体クラッチであり、エンジン190の回転はトルクコンバータ2を介してトランスミッション3に伝達される。トランスミッション3は、その速度段を1速~4速に切り換えるクラッチを有し、トルクコンバータ2の出力軸の回転はトランスミッション3で変速される。変速後の回転は、プロペラシャフト4、アクスル装置5、アクスル6を介してタイヤ113に伝達されて、ホイールローダが走行する。 FIG. 2 is a diagram showing a schematic configuration of the wheel loader. The wheel loader includes a travel drive device (travel system) that transmits the rotation of the engine 190 to the tire 113 via the torque converter 2, the transmission 3, the propeller shaft 4, the axle device 5, and the axle 6. The input shaft of the torque converter 2 is connected to the output shaft of the engine 190, and the output shaft of the torque converter 2 is connected to the transmission 3. The torque converter 2 is a fluid clutch including a known impeller, turbine, and stator, and the rotation of the engine 190 is transmitted to the transmission 3 via the torque converter 2. The transmission 3 has a clutch that switches the speed stage from the first speed to the fourth speed, and the rotation of the output shaft of the torque converter 2 is changed by the transmission 3. The rotation after the shift is transmitted to the tire 113 via the propeller shaft 4, the axle device 5, and the axle 6, and the wheel loader travels.
 ホイールローダは、油圧ポンプ11、コントロールバルブ21a,21b、アームシリンダ117、バケットシリンダ115、アーム111およびバケット112を含んで構成されるフロント作業装置(作業系)を備えている。作業用の油圧ポンプ11は、エンジン190により駆動され、圧油を吐出する。油圧ポンプ11は、押しのけ容積が変更される斜板式あるいは斜軸式の可変容量型の油圧ポンプである。油圧ポンプ11の吐出流量は、押しのけ容積と油圧ポンプ11の回転速度に応じて決定される。レギュレータ11aは、油圧ポンプ11の吸収トルク(入力トルク)が、コントローラ100によって設定された最大ポンプ吸収トルクを超えないように、押しのけ容積を調節する。後述するように、最大ポンプ吸収トルクの設定値は、エンジン190の実回転速度や目標回転速度に応じて変更される。 The wheel loader includes a front working device (working system) including a hydraulic pump 11, control valves 21a and 21b, an arm cylinder 117, a bucket cylinder 115, an arm 111, and a bucket 112. The working hydraulic pump 11 is driven by the engine 190 and discharges pressure oil. The hydraulic pump 11 is a variable displacement hydraulic pump of a swash plate type or a swash shaft type whose displacement is changed. The discharge flow rate of the hydraulic pump 11 is determined according to the displacement volume and the rotational speed of the hydraulic pump 11. The regulator 11 a adjusts the displacement volume so that the absorption torque (input torque) of the hydraulic pump 11 does not exceed the maximum pump absorption torque set by the controller 100. As will be described later, the set value of the maximum pump absorption torque is changed according to the actual rotation speed and the target rotation speed of the engine 190.
 油圧ポンプ11から吐出された圧油はコントロールバルブ21a,21bを介して作業用のアクチュエータであるアームシリンダ117、バケットシリンダ115に供給され、各アクチュエータが駆動される。コントロールバルブ21aおよびコントロールバルブ21bはアーム操作レバー31aおよびバケット操作レバー31bにより操作され、油圧ポンプ11からアームシリンダ117およびバケットシリンダ115への圧油の流れを制御する。アーム操作レバー31aは、アーム111の上昇/下降指令を出力し、バケット操作レバー31bは、バケット112のチルト/ダンプ指令を出力する。コントロールバルブ21a,21bを操作する操作レバー31a,31bは、電気式レバーであってもよいし、油圧パイロット式レバーであってもよい。 Pressure oil discharged from the hydraulic pump 11 is supplied to the arm cylinder 117 and the bucket cylinder 115 which are working actuators via the control valves 21a and 21b, and each actuator is driven. The control valve 21a and the control valve 21b are operated by the arm operation lever 31a and the bucket operation lever 31b, and control the flow of pressure oil from the hydraulic pump 11 to the arm cylinder 117 and the bucket cylinder 115. The arm operation lever 31 a outputs an up / down command for the arm 111, and the bucket operation lever 31 b outputs a tilt / dump command for the bucket 112. The operation levers 31a and 31b for operating the control valves 21a and 21b may be electric levers or hydraulic pilot levers.
 トルクコンバータ2は入力トルクに対して出力トルクを増大させる機能、つまりトルク比を1以上とする機能を有する。トルク比は、トルクコンバータ2の入力軸の回転速度と出力軸の回転速度の比であるトルクコンバータ速度比e(=出力回転速度/入力回転速度)の増加に伴い小さくなる。たとえばエンジン回転速度が一定状態で走行中に走行負荷が大きくなると、トルクコンバータ2の出力軸の回転速度が低下、つまり車速が低下し、トルクコンバータ速度比eが小さくなる。このとき、トルク比は増加するため、より大きな走行駆動力(牽引力)で車両走行可能となる。 The torque converter 2 has a function of increasing the output torque with respect to the input torque, that is, a function of setting the torque ratio to 1 or more. The torque ratio decreases as the torque converter speed ratio e (= output rotational speed / input rotational speed), which is the ratio between the rotational speed of the input shaft and the rotational speed of the output shaft, of the torque converter 2 decreases. For example, when the traveling load increases during traveling while the engine rotational speed is constant, the rotational speed of the output shaft of the torque converter 2 decreases, that is, the vehicle speed decreases, and the torque converter speed ratio e decreases. At this time, since the torque ratio increases, the vehicle can travel with a larger travel driving force (traction force).
 トランスミッション3は、1速~4速の各速度段に対応したソレノイド弁を有する自動変速機である。これらソレノイド弁は、コントローラ100からトランスミッション制御部20へ出力される制御信号によって駆動され、トランスミッション3は制御信号に応じて変速される。本実施の形態では、トルクコンバータ速度比eが所定値に達すると変速するトルクコンバータ速度比基準制御により、トランスミッション3の速度段が制御される。 The transmission 3 is an automatic transmission having a solenoid valve corresponding to each speed stage from 1st to 4th. These solenoid valves are driven by a control signal output from the controller 100 to the transmission control unit 20, and the transmission 3 is shifted according to the control signal. In the present embodiment, the speed stage of the transmission 3 is controlled by the torque converter speed ratio reference control that shifts when the torque converter speed ratio e reaches a predetermined value.
 ホイールローダは、ホイールローダの各部を制御するコントローラ100と、エンジン190を制御するエンジンコントローラ19とを備えている。コントローラ100およびエンジンコントローラ19は、それぞれCPUや記憶装置であるROM,RAM,その他の周辺回路などを有する演算処理装置を含んで構成される。コントローラ100には、トルクコンバータ2の入力軸の回転速度を検出する入力側回転速度検出器(不図示)と、トルクコンバータ2の出力軸の回転速度を検出する出力側回転速度検出器(不図示)とが接続されている。 The wheel loader includes a controller 100 that controls each part of the wheel loader and an engine controller 19 that controls the engine 190. The controller 100 and the engine controller 19 each include an arithmetic processing unit having a CPU, a ROM, a RAM, and other peripheral circuits as storage devices. The controller 100 includes an input side rotational speed detector (not shown) that detects the rotational speed of the input shaft of the torque converter 2 and an output side rotational speed detector (not shown) that detects the rotational speed of the output shaft of the torque converter 2. ) And are connected.
 コントローラ100は、入力側回転速度検出器で検出したトルクコンバータ2の入力軸の回転速度と、出力側回転速度検出器で検出したトルクコンバータ2の出力軸の回転速度とに基づき、トルクコンバータ速度比e(=出力回転速度/入力回転速度)を算出する。 The controller 100 determines a torque converter speed ratio based on the rotational speed of the input shaft of the torque converter 2 detected by the input side rotational speed detector and the rotational speed of the output shaft of the torque converter 2 detected by the output side rotational speed detector. e (= output rotation speed / input rotation speed) is calculated.
 図2に示すように、コントローラ100には、車両の前後進を指令する前後進切換レバー17が接続され、前後進切換レバー17の操作位置(前進(F)/中立(N)/後進(R))がコントローラ100によって検出される。コントローラ100は、前後進切換レバー17が前進(F)位置に切り換えられると、トランスミッション3の前進クラッチ(不図示)を係合状態とするための制御信号をトランスミッション制御部20に出力する。コントローラ100は、前後進切換レバー17が後進(R)位置に切り換えられると、トランスミッション3の後進クラッチ(不図示)を係合状態とするための制御信号をトランスミッション制御部20に出力する。 As shown in FIG. 2, the controller 100 is connected to a forward / reverse switching lever 17 for commanding forward / reverse travel of the vehicle, and the operation position of the forward / reverse switching lever 17 (forward (F) / neutral (N) / reverse (R )) Is detected by the controller 100. When the forward / reverse switching lever 17 is switched to the forward (F) position, the controller 100 outputs a control signal for engaging the forward clutch (not shown) of the transmission 3 to the transmission control unit 20. When the forward / reverse switching lever 17 is switched to the reverse (R) position, the controller 100 outputs a control signal for bringing the reverse clutch (not shown) of the transmission 3 into an engaged state to the transmission control unit 20.
 トランスミッション制御部20では、前進または後進クラッチ(不図示)を係合状態とするための制御信号を受信すると、トランスミッション制御部20に設けられているクラッチ制御弁(不図示)が動作して、前進または後進クラッチ(不図示)は係合状態とされ、作業車両の進行方向が前進側または後進側に切り換えられる。 When the transmission control unit 20 receives a control signal for engaging a forward or reverse clutch (not shown), a clutch control valve (not shown) provided in the transmission control unit 20 operates to move forward. Alternatively, the reverse clutch (not shown) is engaged, and the traveling direction of the work vehicle is switched to the forward side or the reverse side.
 コントローラ100は、前後進切換レバー17が中立(N)位置に切り換えられると、前進および後進クラッチ(不図示)を解放状態とするための制御信号をトランスミッション制御部20に出力する。これにより、前進および後進クラッチ(不図示)は解放状態とされ、トランスミッション3は中立状態となる。 When the forward / reverse switching lever 17 is switched to the neutral (N) position, the controller 100 outputs to the transmission control unit 20 a control signal for releasing the forward and reverse clutches (not shown). As a result, the forward and reverse clutches (not shown) are released, and the transmission 3 is in a neutral state.
 コントローラ100には、1速~4速の間で速度段の上限を指令するシフトスイッチ18が接続されており、トランスミッション3はシフトスイッチ18により選択された速度段を上限として自動変速される。たとえばシフトスイッチ18により2速が選択されると速度段は1速または2速となり、1速が選択されると速度段は1速に固定される。 The controller 100 is connected to a shift switch 18 for instructing an upper limit of the speed stage between the first speed to the fourth speed, and the transmission 3 is automatically shifted up to the speed stage selected by the shift switch 18. For example, when the second speed is selected by the shift switch 18, the speed stage is set to the first speed or the second speed, and when the first speed is selected, the speed stage is fixed to the first speed.
 コントローラ100には、アクセルペダル152のペダル操作量(ペダルストロークまたはペダル角度)を検出する操作量センサ152aと、エンジン190の実エンジン回転速度を検出する回転速度センサ13とが接続されている。 The controller 100 is connected with an operation amount sensor 152a for detecting the pedal operation amount (pedal stroke or pedal angle) of the accelerator pedal 152 and a rotation speed sensor 13 for detecting the actual engine rotation speed of the engine 190.
 コントローラ100は、目標速度設定部100aを機能的に備えている。目標速度設定部100aは、操作量センサ152aで検出したアクセルペダル152のペダル操作量(踏込量)に応じてエンジン190の目標エンジン回転速度(指令速度)Ntを設定する。図3は、アクセルペダル152の操作量Lと目標エンジン回転速度Ntの関係を示す図である。コントローラ100の記憶装置には、図3に示す目標エンジン回転速度特性Tnのテーブルが記憶されており、目標速度設定部100aは特性Tnのテーブルを参照し、操作量センサ152aで検出された操作量Lに基づいて目標エンジン回転速度Ntを設定する。アクセルペダル152の非操作時(0%)の目標エンジン回転速度Ntはローアイドル回転速度Nsに設定される。アクセルペダル152のペダル操作量Lの増加に伴い目標エンジン回転速度Ntは増加する。ペダル最大踏み込み時(100%)の目標エンジン回転速度Ntは定格点における定格回転速度Nmaxとなる。 The controller 100 functionally includes a target speed setting unit 100a. The target speed setting unit 100a sets a target engine rotation speed (command speed) Nt of the engine 190 according to the pedal operation amount (depression amount) of the accelerator pedal 152 detected by the operation amount sensor 152a. FIG. 3 is a diagram showing the relationship between the operation amount L of the accelerator pedal 152 and the target engine rotation speed Nt. The table of the target engine speed characteristic Tn shown in FIG. 3 is stored in the storage device of the controller 100, and the target speed setting unit 100a refers to the table of the characteristic Tn, and the operation amount detected by the operation amount sensor 152a. A target engine speed Nt is set based on L. The target engine speed Nt when the accelerator pedal 152 is not operated (0%) is set to the low idle speed Ns. As the pedal operation amount L of the accelerator pedal 152 increases, the target engine speed Nt increases. The target engine speed Nt when the pedal is fully depressed (100%) is the rated speed Nmax at the rated point.
 図2に示すように、コントローラ100は、設定した目標エンジン回転速度Ntに対応した制御信号、ならびに、回転速度センサ13で検出された実エンジン回転速度Naに対応した制御信号をエンジンコントローラ19に出力する。エンジンコントローラ19は、コントローラ100からの目標エンジン回転速度Ntと実エンジン回転速度Naとを比較して、実エンジン回転速度Naを目標エンジン回転速度Ntに近づけるために燃料噴射装置190aを制御する。 As shown in FIG. 2, the controller 100 outputs a control signal corresponding to the set target engine rotational speed Nt and a control signal corresponding to the actual engine rotational speed Na detected by the rotational speed sensor 13 to the engine controller 19. To do. The engine controller 19 compares the target engine speed Nt from the controller 100 with the actual engine speed Na, and controls the fuel injection device 190a to bring the actual engine speed Na closer to the target engine speed Nt.
 コントローラ100には、吐出圧センサ12が接続されている。吐出圧センサ12は、油圧ポンプ11の吐出圧(負荷圧)を検出して、吐出圧信号をコントローラ100に出力する。 The discharge pressure sensor 12 is connected to the controller 100. The discharge pressure sensor 12 detects the discharge pressure (load pressure) of the hydraulic pump 11 and outputs a discharge pressure signal to the controller 100.
 図4は、第1の実施の形態に係るホイールローダのトルク線図であり、エンジン出力トルク特性E、ポンプ吸収トルク特性A1,A2を示している。コントローラ100の記憶装置には、エンジン出力トルク特性Eと、複数のポンプ吸収トルク特性A1,A2がルックアップテーブル形式で記憶されている。後述するように、特性A1は目標エンジン回転速度が所定値未満(アクセルペダル踏込量小)のときに用いられ、特性A2は目標エンジン回転速度が所定値以上(アクセルペダル踏込量大)のときに用いられる。 FIG. 4 is a torque diagram of the wheel loader according to the first embodiment, and shows an engine output torque characteristic E and pump absorption torque characteristics A1 and A2. The storage device of the controller 100 stores an engine output torque characteristic E and a plurality of pump absorption torque characteristics A1 and A2 in a look-up table format. As will be described later, characteristic A1 is used when the target engine speed is less than a predetermined value (accelerator pedal depression amount is small), and characteristic A2 is when the target engine rotation speed is equal to or greater than a predetermined value (accelerator pedal depression amount is large). Used.
 エンジン出力トルク特性Eは、実エンジン回転速度と最大エンジン出力トルクとの関係を示している。なお、最大エンジン出力トルクとは、各回転速度において、エンジン190が出力可能な最大のトルクを意味する。エンジン出力トルク特性(最大トルク線)で規定される領域が、エンジン190が出し得る性能を示している。ホイールローダに搭載されるエンジンは、定格点(定格最高トルク)Peを超える回転速度領域では、急激にトルクが低減するドループ特性を有している。図中、ドループ線は、定格点Peとポンプ無負荷状態におけるエンジン最高回転速度とを結ぶ直線により定義される。 The engine output torque characteristic E indicates the relationship between the actual engine speed and the maximum engine output torque. The maximum engine output torque means the maximum torque that the engine 190 can output at each rotational speed. The region defined by the engine output torque characteristic (maximum torque line) indicates the performance that the engine 190 can produce. The engine mounted on the wheel loader has a droop characteristic in which the torque is drastically reduced in a rotational speed region exceeding the rated point (rated maximum torque) Pe. In the figure, the droop line is defined by a straight line connecting the rated point Pe and the maximum engine speed in the pump no-load state.
 図4に示すように、エンジン出力トルク特性Eでは、実エンジン回転速度Naがローアイドル回転速度(最低回転速度)Ns以上Nv以下の範囲において実エンジン回転速度Naの上昇に応じてトルクが増加し、実エンジン回転速度NaがNvのときに、特性Eにおけるトルクの最大値Temaxとなる(最大トルク点Tm)。なお、ローアイドル回転速度とは、アクセルペダル152の非操作時のエンジン回転速度である。エンジン出力トルク特性Eでは、実エンジン回転速度NaがNvよりも大きくなると、実エンジン回転速度Naの上昇に応じてトルクが減少し、定格点Peに達すると、定格出力が得られる。実エンジン回転速度Naが定格点Peにおける定格回転速度を超えて上昇すると、急激にトルクが減少する。 As shown in FIG. 4, in the engine output torque characteristic E, the torque increases as the actual engine rotational speed Na increases in the range where the actual engine rotational speed Na is in the range of the low idle rotational speed (minimum rotational speed) Ns to Nv. When the actual engine rotation speed Na is Nv, the maximum torque Temax in the characteristic E is obtained (maximum torque point Tm). The low idle rotation speed is an engine rotation speed when the accelerator pedal 152 is not operated. In the engine output torque characteristic E, when the actual engine rotation speed Na becomes higher than Nv, the torque decreases according to the increase in the actual engine rotation speed Na, and when the rated point Pe is reached, a rated output is obtained. When the actual engine rotation speed Na increases beyond the rated rotation speed at the rated point Pe, the torque decreases rapidly.
 ポンプ吸収トルク特性A1,A2は、それぞれ実エンジン回転速度と最大ポンプ吸収トルク(最大ポンプ入力トルク)の関係を示している。以下、実エンジン回転速度Naが変化する速度域を低速度域、中速度域および高速度域の3つの速度域に分けた場合、ならびに、実エンジン回転速度Naが変化する速度域を低中速度域および中高速度域の2つの速度域に分けた場合において、各速度域における最大ポンプ吸収トルクの特性について説明する。中速度域とは、最大トルク点Tmに対応するエンジン回転速度Nvを含む速度域である。低速度域とは、中速度域よりも低速側の速度域であり、ローアイドル回転速度Nsを含む速度域である。本実施の形態では、図4に示すように、Nu1以下の速度域を低速度域と呼ぶ。高速度域とは、中速度域よりも高速側の速度域であり、定格点Peにおけるエンジン回転速度(定格回転速度)を含む速度域である。また、実エンジン回転速度Naが変化する速度域を2つに分ける場合には、最大トルク点Tmに対応するエンジン回転速度Nvを境界として低速側の速度域を低中速度域と呼び、その他の速度域を中高速度域と呼ぶ。 Pump absorption torque characteristics A1 and A2 indicate the relationship between the actual engine speed and the maximum pump absorption torque (maximum pump input torque), respectively. Hereinafter, when the speed range in which the actual engine rotational speed Na changes is divided into three speed ranges, the low speed range, the medium speed range, and the high speed range, and the speed range in which the actual engine rotational speed Na changes is set to the low / medium speed range. The characteristics of the maximum pump absorption torque in each speed range in the case where the speed is divided into two speed ranges, that is, the high speed range and the medium and high speed range will be described. The medium speed range is a speed range including the engine rotation speed Nv corresponding to the maximum torque point Tm. The low speed range is a speed range lower than the medium speed range, and is a speed range including the low idle rotation speed Ns. In the present embodiment, as shown in FIG. 4, a speed range of Nu1 or lower is referred to as a low speed range. The high speed region is a speed region on the higher speed side than the medium speed region, and is a speed region including the engine rotational speed (rated rotational speed) at the rated point Pe. In addition, when the speed range where the actual engine speed Na changes is divided into two, the speed range on the low speed side with the engine speed Nv corresponding to the maximum torque point Tm as a boundary is called a low / medium speed range. The speed range is called the medium-high speed range.
 ポンプ吸収トルク特性A1では、実エンジン回転速度NaがNd1以下では、実エンジン回転速度Naにかかわらず特性A1におけるトルクの最小値Tpminとなる。実エンジン回転速度NaがNu1以上では、実エンジン回転速度Naにかかわらず特性A1におけるトルクの最大値Tpmaxとなる。特性A1では、実エンジン回転速度NaがNd1~Nu1の範囲では実エンジン回転速度Naの上昇に応じてトルクが増加する。すなわち、図示するように、特性A1で設定される最大ポンプ吸収トルクは、低速度域で最小値Tpminから最大値Tpmaxにかけて実エンジン回転速度Naの上昇にしたがって増加し、中速度域および高速度域で最大値Tpmaxとされる。 In the pump absorption torque characteristic A1, when the actual engine rotation speed Na is Nd1 or less, the minimum torque value Tpmin in the characteristic A1 is obtained regardless of the actual engine rotation speed Na. When the actual engine rotation speed Na is equal to or higher than Nu1, the maximum torque value Tpmax in the characteristic A1 is obtained regardless of the actual engine rotation speed Na. In the characteristic A1, when the actual engine rotation speed Na is in the range of Nd1 to Nu1, the torque increases as the actual engine rotation speed Na increases. That is, as shown in the figure, the maximum pump absorption torque set by the characteristic A1 increases as the actual engine speed Na increases from the minimum value Tpmin to the maximum value Tpmax in the low speed range, and reaches the medium speed range and the high speed range. Is set to the maximum value Tpmax.
 ポンプ吸収トルク特性A2は、実エンジン回転速度NaがNd1以下、ならびに、実エンジン回転速度NaがNu2以上では、特性A1と同一の特性である。ポンプ吸収トルク特性A2では、実エンジン回転速度NaがNd2以下では、実エンジン回転速度Naにかかわらず特性A2におけるトルクの最小値Tpminとなる。Nd2はNd1よりも大きい回転速度であり(Nd1<Nd2)、中速度域に含まれる。実エンジン回転速度NaがNu2以上では、実エンジン回転速度Naにかかわらず特性A2におけるトルクの最大値Tpmaxとなる。Nu2はNu1よりも大きい回転速度であり(Nu1<Nu2)、中速度域に含まれる。特性A2では、実エンジン回転速度NaがNd2~Nu2の範囲では実エンジン回転速度Naの上昇に応じてトルクが増加する。なお、Nd2,Nv,Nu2の大小関係は、Nd2<Nv<Nu2である。すなわち、図示するように、特性A2で設定される最大ポンプ吸収トルクは、低速度域では最小値Tpminとされ、中速度域で最小値Tpminから最大値Tpmaxにかけて実エンジン回転速度Naの上昇にしたがって増加する。特性A2で設定される最大ポンプ吸収トルクは、高速域では最大値Tpmaxとされる。 The pump absorption torque characteristic A2 is the same as the characteristic A1 when the actual engine rotation speed Na is Nd1 or less and the actual engine rotation speed Na is Nu2 or more. In the pump absorption torque characteristic A2, when the actual engine rotational speed Na is Nd2 or less, the minimum torque value Tpmin in the characteristic A2 is obtained regardless of the actual engine rotational speed Na. Nd2 is a rotational speed larger than Nd1 (Nd1 <Nd2) and is included in the medium speed range. When the actual engine speed Na is Nu2 or more, the maximum torque value Tpmax in the characteristic A2 is obtained regardless of the actual engine speed Na. Nu2 is a rotational speed larger than Nu1 (Nu1 <Nu2), and is included in the medium speed range. In the characteristic A2, when the actual engine rotation speed Na is in the range of Nd2 to Nu2, the torque increases as the actual engine rotation speed Na increases. The magnitude relationship between Nd2, Nv, and Nu2 is Nd2 <Nv <Nu2. That is, as shown in the figure, the maximum pump absorption torque set in the characteristic A2 is the minimum value Tpmin in the low speed range, and increases from the minimum value Tpmin to the maximum value Tpmax in the medium speed range as the actual engine speed Na increases. To increase. The maximum pump absorption torque set by the characteristic A2 is the maximum value Tpmax in the high speed range.
 このように、本実施の形態では、低速度域および中速度域において、特に低中速度域において、特性A1と実エンジン回転速度Naとで決定される最大ポンプ吸収トルクに対して特性A2と実エンジン回転速度Naとで決定される最大ポンプ吸収トルクが小さくなるように、特性A1,A2のそれぞれが設定されている。 Thus, in the present embodiment, in the low speed range and the medium speed range, particularly in the low and medium speed range, the characteristic A2 and the actual pump absorption torque are determined with respect to the maximum pump absorption torque determined by the characteristic A1 and the actual engine rotational speed Na. Each of the characteristics A1 and A2 is set so that the maximum pump absorption torque determined by the engine rotation speed Na becomes small.
 図2に示すように、コントローラ100は、操作量判定部100bと、選択部100cとを機能的に備えている。操作量判定部100bは、目標速度設定部100aで設定された目標エンジン回転速度Ntが所定速度(閾値)以上であるか所定速度(閾値)未満であるかを判定する。操作量判定部100bは、目標エンジン回転速度Ntが閾値Nt1以上である場合、アクセルペダル152の踏み込み量が大きい状態であると判定する。操作量判定部100bは、目標エンジン回転速度Ntが閾値Nt1未満である場合、アクセルペダル152の踏み込み量が小さい状態であると判定する。閾値Nt1の情報は、コントローラ100の記憶装置に予め記憶されている。閾値Nt1は、運転者がアクセルペダル152を半分程度踏み込む操作であるハーフアクセル操作時に設定される目標エンジン回転速度よりも高い値とされ、たとえばNu2(図4参照)よりも高い値とされている。 As shown in FIG. 2, the controller 100 functionally includes an operation amount determination unit 100b and a selection unit 100c. The operation amount determination unit 100b determines whether the target engine speed Nt set by the target speed setting unit 100a is equal to or higher than a predetermined speed (threshold) or less than a predetermined speed (threshold). When the target engine speed Nt is equal to or greater than the threshold value Nt1, the operation amount determination unit 100b determines that the amount of depression of the accelerator pedal 152 is large. When the target engine speed Nt is less than the threshold value Nt1, the operation amount determination unit 100b determines that the amount of depression of the accelerator pedal 152 is small. Information on the threshold value Nt1 is stored in advance in the storage device of the controller 100. The threshold value Nt1 is set to a value higher than the target engine speed that is set when the driver depresses the accelerator pedal 152 by about half, for example, Nu2 (see FIG. 4). .
 選択部100cは、操作量判定部100bで判定された結果に応じて、ポンプ吸収トルク特性を選択する。選択部100cは、操作量判定部100bでアクセルペダル152の踏み込み量が小さい状態であると判定されている場合、ポンプ吸収トルク特性A1を選択する。選択部100cは、操作量判定部100bでアクセルペダル152の踏み込み量が大きい状態であると判定されている場合、ポンプ吸収トルク特性A2を選択する。 The selection unit 100c selects the pump absorption torque characteristic according to the result determined by the operation amount determination unit 100b. When the operation amount determination unit 100b determines that the depression amount of the accelerator pedal 152 is small, the selection unit 100c selects the pump absorption torque characteristic A1. When the operation amount determination unit 100b determines that the depression amount of the accelerator pedal 152 is large, the selection unit 100c selects the pump absorption torque characteristic A2.
 図5は、土砂等をダンプトラックへ積み込む方法の1つであるVシェープローディングについて示す図である。図6は、ホイールローダによる掘削作業を示す図である。Vシェープローディングでは、矢印aで示すように、ホイールローダを土砂等の地山130に向かって前進させる。 FIG. 5 is a diagram showing V-shape loading, which is one of the methods for loading earth and sand into a dump truck. FIG. 6 is a diagram illustrating excavation work by the wheel loader. In the V shape loading, as indicated by an arrow a, the wheel loader is advanced toward the natural ground 130 such as earth and sand.
 図6に示すように、地山130にバケット112を突入し、バケット112を操作してからアーム111を上げ操作する、あるいはバケット112とアーム111を同時に操作しながら最後にアーム111のみを上げ操作して掘削作業を行う。 As shown in FIG. 6, the bucket 112 is plunged into the natural ground 130 and the arm 112 is raised after the bucket 112 is operated, or the arm 111 is finally raised only while the bucket 112 and the arm 111 are operated simultaneously. And perform excavation work.
 掘削作業が終了すると、図5の矢印bで示すように、ホイールローダを一旦後退させる。矢印cで示すように、ダンプトラックに向けてホイールローダを前進させて、ダンプトラックの手前で停止する。その後、すくい込んだ土砂等をダンプトラックに積み込み、矢印dで示すように、ホイールローダを元の位置に後退させる。以上が、Vシェープローディングによる掘削、積み込み作業の基本的な動作である。 When the excavation work is completed, the wheel loader is temporarily retracted as shown by the arrow b in FIG. As indicated by an arrow c, the wheel loader is advanced toward the dump truck and stopped in front of the dump truck. Thereafter, the scooped earth and sand are loaded on the dump truck, and the wheel loader is moved back to the original position as indicated by an arrow d. The above is the basic operation of excavation and loading work by V-shape loading.
 上記した掘削、積み込み作業中、たとえば、図5の矢印bで示すように、後進中のホイールローダを矢印cで示すように前進させる際に、運転者はアクセルペダル152を戻し操作し、前後進切換レバー17を後進から前進に切り換え操作して、アクセルペダル152を踏み込み操作する。さらに、ダンプトラックでの積み込み作業を考え、後進から前進への移行の際にアーム操作レバー31aを上げ側に操作してアーム111を上昇させることもある。後進から前進への移行の際には、後方への車体の慣性エネルギーが、トルクコンバータ2を介してエンジン190に負荷として作用する。このため、前後進切換レバー17を切り換え操作したときに、車体およびフロント作業装置を駆動させるために必要なエンジン出力トルクが不足してエンジンストールが起こりやすい。 During the excavation and loading operations described above, for example, as shown by the arrow b in FIG. 5, when the wheel loader that is moving backward is moved forward as shown by the arrow c, the driver returns the accelerator pedal 152 to move forward and backward. The switching lever 17 is switched from reverse to forward, and the accelerator pedal 152 is depressed. Furthermore, considering the loading work on the dump truck, the arm 111 may be raised by operating the arm operation lever 31a to the up side when shifting from reverse to forward. In the transition from reverse to forward, the inertia energy of the vehicle body to the rear acts as a load on the engine 190 via the torque converter 2. For this reason, when the forward / reverse switching lever 17 is switched, the engine output torque necessary for driving the vehicle body and the front working device is insufficient, and engine stall is likely to occur.
 本実施の形態では、上述したようなポンプ吸収トルク特性A1,A2が設定されるため、次に説明するように、後進から前進への移行の際におけるエンジンストールが防止される。すなわち、後進から前進への移行の際に、アクセルペダル152の戻し操作により実エンジン回転速度Naがローアイドル回転速度Ns近くまで低下するが、図4に示すように、実エンジン回転速度Naの低下に応じて最大ポンプ吸収トルクも減少する。このように、後進から前進への移行の際に後方への車体の慣性エネルギーがエンジン190に負荷として作用した場合であっても、最大ポンプ吸収トルクが制限されることでエンジンストールが防止される。 In the present embodiment, since the pump absorption torque characteristics A1 and A2 as described above are set, as will be described below, engine stall at the time of transition from reverse to forward is prevented. That is, during the transition from reverse to forward, the actual engine rotational speed Na decreases to near the low idle rotational speed Ns due to the return operation of the accelerator pedal 152. However, as shown in FIG. 4, the actual engine rotational speed Na decreases. Accordingly, the maximum pump absorption torque also decreases. In this way, even when the inertia energy of the rear vehicle body acts as a load on the engine 190 during the transition from reverse to forward, engine stall is prevented by limiting the maximum pump absorption torque. .
 以下、目標エンジン回転速度Ntの設定値、すなわちアクセルペダル152の操作量に応じて行われるポンプ吸収トルク特性の選択制御を、図7のフローチャートを用いて説明する。図7は、コントローラ100によるポンプ吸収トルク特性の選択制御処理の動作を示したフローチャートである。イグニッションスイッチ(不図示)がオンされると、図7に示す処理を行うプログラムが起動され、コントローラ100で繰り返し実行される。 Hereinafter, the selection control of the pump absorption torque characteristic performed according to the set value of the target engine speed Nt, that is, the operation amount of the accelerator pedal 152 will be described with reference to the flowchart of FIG. FIG. 7 is a flowchart showing the operation of the pump absorption torque characteristic selection control process by the controller 100. When an ignition switch (not shown) is turned on, a program for performing the process shown in FIG. 7 is started and repeatedly executed by the controller 100.
 ステップS100において、コントローラ100は、操作量センサ152aで検出されたアクセルペダル152の操作量Lの情報を取得して、ステップS110へ進む。 In step S100, the controller 100 acquires information on the operation amount L of the accelerator pedal 152 detected by the operation amount sensor 152a, and proceeds to step S110.
 ステップS110において、コントローラ100は、目標エンジン回転速度特性Tnのテーブル(図3参照)を参照し、ステップS100で取得した操作量Lに基づいて目標エンジン回転速度Ntを設定し、ステップS120へ進む。 In step S110, the controller 100 refers to the table of the target engine speed characteristics Tn (see FIG. 3), sets the target engine speed Nt based on the operation amount L acquired in step S100, and proceeds to step S120.
 ステップS120において、コントローラ100は、ステップS110で設定された目標エンジン回転速度Ntが閾値Nt1未満であるか否かを判定する。ステップS120で肯定判定されると、コントローラ100はアクセルペダル152の踏み込み量が小さい状態であると判定してステップS130へ進む。ステップS120で否定判定されると、コントローラ100はアクセルペダル152の踏み込み量が大きい状態であると判定して、ステップS140へ進む。 In step S120, the controller 100 determines whether or not the target engine speed Nt set in step S110 is less than the threshold value Nt1. If an affirmative determination is made in step S120, the controller 100 determines that the amount of depression of the accelerator pedal 152 is small, and proceeds to step S130. If a negative determination is made in step S120, the controller 100 determines that the amount of depression of the accelerator pedal 152 is large, and proceeds to step S140.
 ステップS130において、コントローラ100は、記憶装置からポンプ吸収トルク特性A1のテーブル(図4参照)を選択し、ステップS100へ戻る。ステップS140において、コントローラ100は、記憶装置からポンプ吸収トルク特性A2のテーブル(図4参照)を選択し、ステップS100へ戻る。 In step S130, the controller 100 selects a table (see FIG. 4) of the pump absorption torque characteristic A1 from the storage device, and returns to step S100. In step S140, the controller 100 selects a table (see FIG. 4) of the pump absorption torque characteristic A2 from the storage device, and returns to step S100.
 図示しないが、コントローラ100は、特性テーブルEを参照して、アクセルペダル152による目標エンジン回転速度Ntと回転速度センサ13で検出された実エンジン回転速度Naとに基づいて、エンジン190の燃料噴射量を制御する。さらに、コントローラ100は、選択された特性テーブル(A1,A2)を参照して、回転速度センサ13で検出された実エンジン回転速度Naに基づいて最大ポンプ吸収トルク値を演算し、吐出圧センサ12で検出された吐出圧(負荷圧)と回転速度センサ13で検出された実エンジン回転速度Naに基づいて、この最大ポンプ吸収トルクを超えないように、レギュレータ11aを介して油圧ポンプ11の押しのけ容積、すなわち傾転角を制御する。 Although not shown, the controller 100 refers to the characteristic table E, and based on the target engine rotational speed Nt by the accelerator pedal 152 and the actual engine rotational speed Na detected by the rotational speed sensor 13, the fuel injection amount of the engine 190. To control. Further, the controller 100 refers to the selected characteristic table (A1, A2), calculates the maximum pump absorption torque value based on the actual engine rotational speed Na detected by the rotational speed sensor 13, and discharge pressure sensor 12 The displacement of the hydraulic pump 11 through the regulator 11a so as not to exceed the maximum pump absorption torque based on the discharge pressure (load pressure) detected in step S3 and the actual engine rotational speed Na detected by the rotational speed sensor 13. That is, the tilt angle is controlled.
 このように、アクセルペダル152の踏み込み量が小さいときには低速度域において最大ポンプ吸収トルクを制限し、アクセルペダル152の踏み込み量が大きいときには低速度域および中速度域において最大ポンプ吸収トルクを制限することで、実エンジン回転速度Naの上昇率を高めることができる。すなわち、エンジン190の吹け上がり性能を向上することができる。以下、比較例と比較して、本実施の形態の吹け上がり性能の向上の効果について説明する。 Thus, when the depression amount of the accelerator pedal 152 is small, the maximum pump absorption torque is limited in the low speed range, and when the depression amount of the accelerator pedal 152 is large, the maximum pump absorption torque is limited in the low speed range and the medium speed range. Thus, the rate of increase of the actual engine speed Na can be increased. That is, the racing performance of the engine 190 can be improved. Hereinafter, the effect of improvement of the racing performance of the present embodiment will be described as compared with the comparative example.
 図8(a)および図8(b)は図4と同様の図であり、比較例に係るホイールローダのトルク線図である。図8(a)では、本実施の形態と同じエンジン出力トルク特性Eおよび本実施の形態と同じポンプ吸収トルク特性A1を示している。図8(b)では、本実施の形態と同じエンジン出力トルク特性Eおよび本実施の形態と同じポンプ吸収トルク特性A2を示している。 8 (a) and 8 (b) are views similar to FIG. 4, and are torque diagrams of a wheel loader according to a comparative example. FIG. 8A shows the same engine output torque characteristic E as in this embodiment and the same pump absorption torque characteristic A1 as in this embodiment. FIG. 8B shows the same engine output torque characteristic E as in this embodiment and the same pump absorption torque characteristic A2 as in this embodiment.
 図8(a)に示す比較例(1)では、アクセルペダル152の踏み込み量にかかわらず、ポンプ吸収トルク特性A1で油圧ポンプ11の押しのけ容積が制御される。図8(b)に示す比較例(2)では、アクセルペダル152の踏み込み量にかかわらず、ポンプ吸収トルク特性A2で油圧ポンプ11の押しのけ容積が制御される。つまり、比較例(1)(2)では、ポンプ吸収トルク特性がアクセルペダル152の操作量Lによって変化することがない。 In the comparative example (1) shown in FIG. 8A, the displacement volume of the hydraulic pump 11 is controlled by the pump absorption torque characteristic A1 regardless of the depression amount of the accelerator pedal 152. In the comparative example (2) shown in FIG. 8B, the displacement of the hydraulic pump 11 is controlled by the pump absorption torque characteristic A2 regardless of the depression amount of the accelerator pedal 152. That is, in Comparative Examples (1) and (2), the pump absorption torque characteristic does not change depending on the operation amount L of the accelerator pedal 152.
 図示しないが、ホイールローダのような作業車両は、高地での作業時など、排ガス規制を満足するためにエンジン出力トルクが低く抑えられる制御が行われる。この場合に、図5の矢印cで示すように、アクセルペダル152の踏み込み操作と同時、あるいは、操作直後にアーム111の上げ操作が行われると、ポンプ吐出圧の増加によるエンジン負荷の増加に対して、エンジン出力トルクを十分に高めることができない。 Although not shown, a work vehicle such as a wheel loader is controlled such that the engine output torque is kept low in order to satisfy exhaust gas regulations, such as when working at high altitudes. In this case, as shown by an arrow c in FIG. 5, if the raising operation of the arm 111 is performed simultaneously with the depression of the accelerator pedal 152 or immediately after the operation, the increase of the engine load due to the increase of the pump discharge pressure is prevented. Thus, the engine output torque cannot be increased sufficiently.
 図8(a)に示すポンプ吸収トルク特性A1のみで油圧ポンプ11の押しのけ容積を制御する比較例(1)では、低速度域で実エンジン回転速度Naの上昇に伴って最大ポンプ吸収トルクが上昇し、中速度域で最大ポンプ吸収トルクが特性A1における最大値Tpmaxに制御される。このため、エンジン出力トルクを低く抑える制御が行われている状態で、アクセルペダル152の踏み込み操作と同時または操作直後にアーム111の上げ操作が行われると、油圧ポンプ11の吐出流量の増加によるエンジン負荷の増加のために、実エンジン回転速度の上昇率、すなわち吹け上がりが悪くなる。その結果、アクセルペダル152を最大に踏み込んでいても、車速やアーム111の上昇速度がなかなか上がらず、作業効率が低下するおそれがある。 In Comparative Example (1) in which the displacement of the hydraulic pump 11 is controlled only by the pump absorption torque characteristic A1 shown in FIG. 8A, the maximum pump absorption torque increases as the actual engine rotational speed Na increases in the low speed range. In the middle speed range, the maximum pump absorption torque is controlled to the maximum value Tpmax in the characteristic A1. For this reason, if the raising operation of the arm 111 is performed simultaneously with or immediately after the depression of the accelerator pedal 152 in the state where the control for suppressing the engine output torque is performed low, the engine due to the increase in the discharge flow rate of the hydraulic pump 11 is performed. Due to the increase in load, the rate of increase of the actual engine speed, that is, the engine speed increases. As a result, even if the accelerator pedal 152 is fully depressed, the vehicle speed and the ascending speed of the arm 111 are not easily increased, and the working efficiency may be reduced.
 一方、図8(b)に示すポンプ吸収トルク特性A2のみで油圧ポンプ11の押しのけ容積を制御する比較例(2)では、低速度域で最大ポンプ吸収トルクが特性A2における最小値Tpminに制御され、中速度域で実エンジン回転速度Naの上昇に伴って最大ポンプ吸収トルクが上昇し、高速度域で最大ポンプ吸収トルクが特性A2における最大値Tpmaxに制御される。このように、比較例(2)では、低速度域および中速度域において、油圧ポンプ11の吐出流量の増加が抑制され、エンジン負荷を低減できる。また、比較例(2)では、エンジン出力トルクがある程度増加した中速度域まで実エンジン回転速度が上昇してから、最大ポンプ吸収トルクを増加させている。その結果、高地での作業時のようにエンジン出力トルクを低く抑える制御が行われている状態において、アクセルペダル152の踏み込み操作と同時または操作直後にアーム111の上げ操作が行われた場合であっても、実エンジン回転速度Naを速やかに上昇させることができる。 On the other hand, in Comparative Example (2) in which the displacement of the hydraulic pump 11 is controlled only by the pump absorption torque characteristic A2 shown in FIG. 8B, the maximum pump absorption torque is controlled to the minimum value Tpmin in the characteristic A2 in the low speed range. The maximum pump absorption torque increases as the actual engine rotational speed Na increases in the medium speed range, and the maximum pump absorption torque is controlled to the maximum value Tpmax in the characteristic A2 in the high speed range. Thus, in the comparative example (2), an increase in the discharge flow rate of the hydraulic pump 11 is suppressed in the low speed range and the medium speed range, and the engine load can be reduced. Further, in the comparative example (2), the maximum pump absorption torque is increased after the actual engine rotational speed has increased to a medium speed range where the engine output torque has increased to some extent. As a result, in a state where the engine output torque is controlled to be low as in work at high altitudes, the arm 111 is raised at the same time as or immediately after the accelerator pedal 152 is depressed. However, the actual engine rotation speed Na can be quickly increased.
 つまり、比較例(2)では、比較例(1)に比べてエンジン190の吹け上がり性能が高いため、高地での作業効率を比較例(1)に比べて向上できる。しかしながら、比較例(2)に係るホイールローダを平地で作業させる場合であって、ハーフアクセル操作による作業が行われたとき、たとえば実エンジン回転速度NaがNd2~Nu2の範囲、すなわち中速度域で制御されるような作業が行われたときに、比較例(1)に比べて十分なポンプ吐出流量を得ることができず、フロント作業装置の動作が遅くなることが懸念される。 That is, in Comparative Example (2), since the engine 190 has higher performance compared to Comparative Example (1), the working efficiency at high altitudes can be improved compared to Comparative Example (1). However, in the case where the wheel loader according to the comparative example (2) is operated on a flat ground and the operation is performed by the half accelerator operation, for example, the actual engine rotation speed Na is in the range of Nd2 to Nu2, that is, in the middle speed range. When work that is controlled is performed, a sufficient pump discharge flow rate cannot be obtained as compared with the comparative example (1), and there is a concern that the operation of the front working device is delayed.
 これに対して、本実施の形態では、図4および図7に示すように、アクセルペダル152が最大に踏み込まれたときには特性A2が選択され、特性A2に基づいて油圧ポンプ11の押しのけ容積が制御される。また、アクセルペダル152がハーフアクセル操作など、閾値Nt1よりも小さい踏み込み操作がなされたときには、特性A1が選択され、特性A1に基づいて油圧ポンプ11の押しのけ容積が制御される。このため、平地での作業性を損なうことなく、高地でのエンジン回転速度の上昇率を高めることができる。 On the other hand, in the present embodiment, as shown in FIGS. 4 and 7, the characteristic A2 is selected when the accelerator pedal 152 is fully depressed, and the displacement of the hydraulic pump 11 is controlled based on the characteristic A2. Is done. Further, when the accelerator pedal 152 is depressed by a step smaller than the threshold value Nt1, such as a half accelerator operation, the characteristic A1 is selected, and the displacement of the hydraulic pump 11 is controlled based on the characteristic A1. For this reason, it is possible to increase the rate of increase of the engine speed at high altitude without impairing workability on flat ground.
 以上説明した第1の実施の形態によれば、次の作用効果が得られる。
 アクセルペダル152の操作量Lに応じて、実エンジン回転速度Naに対する油圧ポンプ11の最大吸収トルクを変化させるように構成した。操作量Lに応じて設定される目標エンジン回転速度Ntが閾値Nt1より大きいときには、操作量Lに応じて設定される目標エンジン回転速度Ntが閾値Nt1より小さいときに比べて、低速度域および中速度域における実エンジン回転速度Naに応じて設定される最大ポンプ吸収トルクを小さくするようにした。これにより、平地での作業性を損なうことなく、高地での実エンジン回転速度の上昇率、すなわちエンジン190の吹け上がり性能を高めることができる。
According to the first embodiment described above, the following operational effects can be obtained.
The maximum absorption torque of the hydraulic pump 11 with respect to the actual engine rotational speed Na is changed in accordance with the operation amount L of the accelerator pedal 152. When the target engine speed Nt set according to the operation amount L is larger than the threshold value Nt1, the lower engine speed range and the medium speed are set when the target engine speed Nt set according to the operation amount L is smaller than the threshold value Nt1. The maximum pump absorption torque set according to the actual engine rotational speed Na in the speed range is made small. As a result, the rate of increase of the actual engine rotation speed at high altitude, that is, the racing performance of the engine 190 can be improved without impairing workability on flat ground.
-第2の実施の形態-
 図9および図10を参照して本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同一もしくは相当部分には同一符号を付し、第1の実施の形態との相違点について主に説明する。図9は、図2と同様の図であり、本発明の第2の実施の形態に係るホイールローダの概略構成を示す図である。第2の実施の形態に係るホイールローダは、第1の実施の形態に係るホイールローダと同様の構成を有している。
-Second Embodiment-
A second embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the part which is the same as that of 1st Embodiment, or an equivalent, and difference with 1st Embodiment is mainly demonstrated. FIG. 9 is a diagram similar to FIG. 2, and is a diagram showing a schematic configuration of a wheel loader according to the second embodiment of the present invention. The wheel loader according to the second embodiment has the same configuration as the wheel loader according to the first embodiment.
 図10は、図4と同様の図であり、第2の実施の形態に係るホイールローダのトルク線図である。第2の実施の形態では、コントローラ200の記憶装置に、図10に示す3つの特性A1,A2,A3が記憶されている。特性A1,A2は、図4に示す第1の実施の形態で説明した特性A1,A2と同じ特性である。 FIG. 10 is a view similar to FIG. 4 and is a torque diagram of the wheel loader according to the second embodiment. In the second embodiment, the storage device of the controller 200 stores three characteristics A1, A2, and A3 shown in FIG. The characteristics A1 and A2 are the same as the characteristics A1 and A2 described in the first embodiment shown in FIG.
 ポンプ吸収トルク特性A3は、実エンジン回転速度NaがNd1以下、ならびに、実エンジン回転速度NaがNu3以上では、特性A1と同一の特性である。ポンプ吸収トルク特性A3では、実エンジン回転速度NaがNd1以下では、実エンジン回転速度Naにかかわらず特性A3におけるトルクの最小値Tpminとなる。実エンジン回転速度NaがNu3以上では、実エンジン回転速度Naにかかわらず特性A3におけるトルクの最大値Tpmaxとなる。Nu3はNu1よりも大きく、Nu2よりも小さい(Nu1<Nu3<Nu2)。特性A3では、実エンジン回転速度NaがNd1~Nu3の範囲では実エンジン回転速度Naの上昇に応じてトルクが増加する。 The pump absorption torque characteristic A3 is the same as the characteristic A1 when the actual engine rotation speed Na is Nd1 or less and the actual engine rotation speed Na is Nu3 or more. In the pump absorption torque characteristic A3, when the actual engine rotational speed Na is Nd1 or less, the minimum torque value Tpmin in the characteristic A3 is obtained regardless of the actual engine rotational speed Na. When the actual engine speed Na is Nu3 or more, the maximum torque value Tpmax in the characteristic A3 is obtained regardless of the actual engine speed Na. Nu3 is larger than Nu1 and smaller than Nu2 (Nu1 <Nu3 <Nu2). In the characteristic A3, when the actual engine rotation speed Na is in the range of Nd1 to Nu3, the torque increases as the actual engine rotation speed Na increases.
 コントローラ200の記憶装置には、第1の実施の形態で説明した閾値Nt1と、閾値Nt1よりも小さい閾値Nt2が記憶されている(Nt2<Nt1)。図9に示すように、第2の実施の形態では、操作量判定部200bは、目標エンジン回転速度Ntが閾値Nt1以上である場合、アクセルペダル152が大きく踏み込まれている状態であると判定する。操作量判定部200bは、目標エンジン回転速度Ntが閾値Nt1未満であり、かつ、閾値Nt2以上である場合、アクセルペダル152の踏み込み量が中程度の状態であると判定する。操作量判定部200bは、目標エンジン回転速度Ntが閾値Nt2未満である場合、アクセルペダル152の踏み込み量が小さい状態であると判定する。 The storage device of the controller 200 stores the threshold value Nt1 described in the first embodiment and the threshold value Nt2 smaller than the threshold value Nt1 (Nt2 <Nt1). As shown in FIG. 9, in the second embodiment, the operation amount determination unit 200b determines that the accelerator pedal 152 is in a large depressed position when the target engine speed Nt is equal to or greater than the threshold value Nt1. . When the target engine speed Nt is less than the threshold value Nt1 and greater than or equal to the threshold value Nt2, the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is in a medium state. When the target engine speed Nt is less than the threshold value Nt2, the operation amount determination unit 200b determines that the amount of depression of the accelerator pedal 152 is small.
 選択部200cは、操作量判定部200bでアクセルペダル152の踏み込み量が小さい状態であると判定されている場合、ポンプ吸収トルク特性A1を選択する。選択部200cは、操作量判定部200bでアクセルペダル152の踏み込み量が大きい状態であると判定されている場合、ポンプ吸収トルク特性A2を選択する。選択部200cは、操作量判定部200bでアクセルペダル152の踏み込み量が中程度の状態であると判定されている場合、ポンプ吸収トルク特性A3を選択する。 When the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is small, the selection unit 200c selects the pump absorption torque characteristic A1. When the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is large, the selection unit 200c selects the pump absorption torque characteristic A2. The selection unit 200c selects the pump absorption torque characteristic A3 when the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is in a medium state.
 このような第2の実施の形態によれば、第1の実施の形態と同様の作用効果を奏する。アクセルペダル152の踏み込み量の状態に応じた特性が第1の実施の形態よりも多いため、標高の程度、すなわちエンジン出力トルクの低下の程度に応じて、踏み込み量を調整しつつ、エンジン回転速度を速やかに上昇させることができる。 According to the second embodiment as described above, the same effects as those of the first embodiment can be obtained. Since there are more characteristics depending on the depression amount of the accelerator pedal 152 than in the first embodiment, the engine rotation speed is adjusted while adjusting the depression amount according to the altitude, that is, the degree of decrease in engine output torque. Can be raised promptly.
-第3の実施の形態-
 図11および図12を参照して本発明の第3の実施の形態について説明する。なお、第2の実施の形態と同一もしくは相当部分には同一符号を付し、第2の実施の形態との相違点について主に説明する。図11は、図9と同様の図であり、第3の実施の形態に係るホイールローダの概略構成を示す図である。第3の実施の形態に係るホイールローダは、第2の実施の形態に係るホイールローダと同様の構成を有している。コントローラ300には、作動油温センサ314が接続されている。作動油温センサ314は、油圧ポンプ11から吐出される作動油の温度を検出して、油温信号をコントローラ300に出力する。
-Third embodiment-
A third embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the part which is the same as that of 2nd Embodiment, or an equivalent, and difference with 2nd Embodiment is mainly demonstrated. FIG. 11 is a view similar to FIG. 9 and showing a schematic configuration of the wheel loader according to the third embodiment. The wheel loader according to the third embodiment has the same configuration as the wheel loader according to the second embodiment. A hydraulic oil temperature sensor 314 is connected to the controller 300. The hydraulic oil temperature sensor 314 detects the temperature of the hydraulic oil discharged from the hydraulic pump 11 and outputs an oil temperature signal to the controller 300.
 図12は、図10と同様の図であり、第3の実施の形態に係るホイールローダのトルク線図である。図12(a)および図12(b)に示すように、第3の実施の形態では、コントローラ300の記憶装置に6つの特性AH1,AH2,AH3,AL1,AL2,AL3が記憶されている。特性AH1,AH2,AH3は、第2の実施の形態で説明した特性A1,A2,A3(図10参照)と同じ特性である。特性AL1,AL2,AL3は、それぞれ特性AH1,AH2,AH3に比べて実エンジン回転速度Naの上昇に対する最大ポンプ吸収トルクの増加開始点が遅く設定された特性、すなわち最大ポンプ吸収トルクの増加が開始される実エンジン回転速度Naが高めに設定された特性である。 FIG. 12 is a view similar to FIG. 10 and is a torque diagram of the wheel loader according to the third embodiment. As shown in FIGS. 12A and 12B, in the third embodiment, six characteristics AH1, AH2, AH3, AL1, AL2, and AL3 are stored in the storage device of the controller 300. Characteristics AH1, AH2, and AH3 are the same characteristics as the characteristics A1, A2, and A3 (see FIG. 10) described in the second embodiment. The characteristics AL1, AL2, and AL3 are characteristics in which the increase start point of the maximum pump absorption torque with respect to the increase in the actual engine speed Na is set slower than the characteristics AH1, AH2, and AH3, that is, the increase in the maximum pump absorption torque starts. The actual engine rotation speed Na is set to be higher.
 特性AH1の最大ポンプ吸収トルクの増加開始点はNd1であるのに対し、特性AL1の最大ポンプ吸収トルクの増加開始点はNd1よりも高いNdL1である。同様に、特性AH3の最大ポンプ吸収トルクの増加開始点はNd1であるのに対し、特性AL3の最大ポンプ吸収トルクの増加開始点はNd1よりも高いNdL1である。特性AH2の最大ポンプ吸収トルクの増加開始点はNd2であるのに対し、特性AL2の最大ポンプ吸収トルクの増加開始点はNd2よりも高いNdL2である。 The increase start point of the maximum pump absorption torque of the characteristic AH1 is Nd1, whereas the increase start point of the maximum pump absorption torque of the characteristic AL1 is NdL1 higher than Nd1. Similarly, the increase start point of the maximum pump absorption torque of the characteristic AH3 is Nd1, whereas the increase start point of the maximum pump absorption torque of the characteristic AL3 is NdL1 higher than Nd1. The increase start point of the maximum pump absorption torque of the characteristic AH2 is Nd2, whereas the increase start point of the maximum pump absorption torque of the characteristic AL2 is NdL2 higher than Nd2.
 図11に示すコントローラ300は油温判定部300dを機能的に備え、コントローラ300の記憶装置には閾値T1が記憶されている。油温判定部300dは、作動油温Toが閾値T1以上である場合、作動油が高温状態で粘度が低く、エンジン負荷が高くなり難い状態であると判定する。油温判定部300dは、作動油温Toが閾値T1未満である場合、作動油が低温状態で粘度が高く、エンジン負荷が高くなりやすい状態であると判定する。 The controller 300 shown in FIG. 11 functionally includes an oil temperature determination unit 300d, and a threshold value T1 is stored in the storage device of the controller 300. When the hydraulic oil temperature To is equal to or higher than the threshold value T1, the oil temperature determination unit 300d determines that the hydraulic oil is in a high temperature state and has a low viscosity and a high engine load. When the hydraulic oil temperature To is less than the threshold value T1, the oil temperature determination unit 300d determines that the hydraulic oil is in a low temperature state and has a high viscosity and is likely to increase the engine load.
 選択部300cは、油温判定部300dで判定された結果、ならびに、操作量判定部200bで判定された結果に応じて、ポンプ吸収トルク特性を選択する。選択部300cは、油温判定部300dで作動油が高温状態であると判定され、かつ、操作量判定部200bでアクセルペダル152の踏み込み量が小さい状態であると判定されている場合、ポンプ吸収トルク特性AH1を選択する。選択部300cは、油温判定部300dで作動油が高温状態であると判定され、操作量判定部200bでアクセルペダル152の踏み込み量が大きい状態であると判定されている場合、ポンプ吸収トルク特性AH2を選択する。選択部300cは、油温判定部300dで作動油が高温状態であると判定され、かつ、操作量判定部200bでアクセルペダル152の踏み込み量が中程度の状態であると判定されている場合、ポンプ吸収トルク特性AH3を選択する。 The selection unit 300c selects the pump absorption torque characteristic according to the result determined by the oil temperature determination unit 300d and the result determined by the operation amount determination unit 200b. When the oil temperature determination unit 300d determines that the hydraulic oil is in a high temperature state and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is small, the selection unit 300c absorbs the pump. Torque characteristic AH1 is selected. When the oil temperature determination unit 300d determines that the hydraulic oil is in a high temperature state, and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is large, the selection unit 300c has a pump absorption torque characteristic. Select AH2. When the selection unit 300c determines that the hydraulic oil is in a high temperature state by the oil temperature determination unit 300d and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is in a medium state, The pump absorption torque characteristic AH3 is selected.
 選択部300cは、油温判定部300dで作動油が低温状態であると判定され、かつ、操作量判定部200bでアクセルペダル152の踏み込み量が小さい状態であると判定されている場合、ポンプ吸収トルク特性AL1を選択する。選択部300cは、油温判定部300dで作動油が低温状態であると判定され、かつ、操作量判定部200bでアクセルペダル152の踏み込み量が大きい状態であると判定されている場合、ポンプ吸収トルク特性AL2を選択する。選択部300cは、油温判定部300dで作動油が低温状態であると判定され、かつ、操作量判定部200bでアクセルペダル152の踏み込み量が中程度の状態であると判定されている場合、ポンプ吸収トルク特性AL3を選択する。 When the oil temperature determination unit 300d determines that the hydraulic oil is in a low temperature state and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is small, the selection unit 300c absorbs the pump. Select torque characteristic AL1. When the oil temperature determination unit 300d determines that the hydraulic oil is in a low temperature state and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is large, the selection unit 300c absorbs the pump. Select torque characteristic AL2. When the selection unit 300c determines that the hydraulic oil is in a low temperature state by the oil temperature determination unit 300d and the operation amount determination unit 200b determines that the depression amount of the accelerator pedal 152 is in a medium state, The pump absorption torque characteristic AL3 is selected.
 このような第3の実施の形態によれば、第2の実施の形態と同様の作用効果に加え、次の作用効果を奏する。
 作動油温が低いと作動油の粘度が高くなるため、油圧ポンプ11や管路の流動抵抗が増加して、作動油温が高い場合に比べて、エンジン負荷が上昇しやすい。つまり、作動油温が低いと、作動油温が高い場合に比べて実エンジン回転速度Naの上昇率が悪くなる。第3の実施の形態では、作動油温を加味して、実エンジン回転速度Naに対する最大ポンプ吸収トルクを変化させるようにした。作動油温が低い場合に、最大ポンプ吸収トルクの増加が開始される実エンジン回転速度を作動油温が高い場合に比べて高めに設定することで、作動油温が低い場合であっても実エンジン回転速度の上昇率、すなわちエンジン190の吹け上がり性能を高めることができる。
According to such 3rd Embodiment, in addition to the effect similar to 2nd Embodiment, there exists the following effect.
When the hydraulic oil temperature is low, the viscosity of the hydraulic oil increases, so that the flow resistance of the hydraulic pump 11 and the pipe increases, and the engine load is likely to increase as compared with the case where the hydraulic oil temperature is high. That is, when the hydraulic oil temperature is low, the rate of increase in the actual engine rotational speed Na is worse than when the hydraulic oil temperature is high. In the third embodiment, the maximum pump absorption torque with respect to the actual engine rotational speed Na is changed in consideration of the hydraulic oil temperature. By setting the actual engine speed at which the maximum pump absorption torque starts to increase when the hydraulic oil temperature is low compared to when the hydraulic oil temperature is high, the actual engine speed can be increased even when the hydraulic oil temperature is low. The rate of increase in engine rotation speed, that is, the engine performance of the engine 190 can be increased.
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)上述した実施の形態では、操作量判定部100b,200bが目標速度設定部100aで設定した目標エンジン回転速度に応じて、アクセルペダル152の踏み込み量の状態を判定する例について説明したが、本発明はこれに限定されない。たとえば、アクセルペダル152の踏み込み量が所定値以上か否かを判定して、アクセルペダル152の踏み込み量の状態を判定してもよい。
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(Modification 1) In the embodiment described above, an example in which the operation amount determination units 100b and 200b determine the state of the depression amount of the accelerator pedal 152 according to the target engine rotation speed set by the target speed setting unit 100a will be described. However, the present invention is not limited to this. For example, it may be determined whether or not the amount of depression of the accelerator pedal 152 is greater than or equal to a predetermined value, and the state of the amount of depression of the accelerator pedal 152 may be determined.
(変形例2)第1の実施の形態では、アクセルペダル152の踏み込み量が大きい状態と小さい状態とを判定し、アクセルペダル152の踏み込み量に応じて特性A1,A2のうちのいずれか一の特性を選択するようにした。また、第2の実施の形態では、アクセルペダル152の踏み込み量が大きい状態、小さい状態、中程度の状態を判定し、アクセルペダル152の踏み込み量に応じて特性A1,A2,A3のうちのいずれか一の特性を選択するようにした。ただし、本発明はこれらに限定されない。アクセルペダル152の踏み込み量の状態をさらに細分化するとともに、踏み込み量に応じた特性を4つ以上設けるようにしてもよい。 (Modification 2) In the first embodiment, it is determined whether the depression amount of the accelerator pedal 152 is large or small, and one of the characteristics A1 and A2 is selected according to the depression amount of the accelerator pedal 152. The characteristics were selected. In the second embodiment, the accelerator pedal 152 is judged to have a large depression amount, a small depression amount, or a medium depression state, and any one of the characteristics A1, A2, and A3 is determined according to the depression amount of the accelerator pedal 152. One characteristic was selected. However, the present invention is not limited to these. The state of the depression amount of the accelerator pedal 152 may be further subdivided, and four or more characteristics corresponding to the depression amount may be provided.
(変形例3)上述した実施の形態では、エンジン190の駆動力をトルクコンバータ2を介してタイヤ113に伝達する走行駆動装置を備えたホイールローダについて説明したが、本発明はこれに限定されない。走行用の油圧ポンプと走行用の油圧モータとが閉回路接続されたHST走行駆動装置を備えたホイールローダに本発明を適用してもよい。 (Modification 3) In the above-described embodiment, the wheel loader including the traveling drive device that transmits the driving force of the engine 190 to the tire 113 via the torque converter 2 has been described, but the present invention is not limited to this. The present invention may be applied to a wheel loader including an HST traveling drive device in which a traveling hydraulic pump and a traveling hydraulic motor are connected in a closed circuit.
(変形例4)第3の実施の形態では、作動油温を加味して、実エンジン回転速度に対する最大ポンプ吸収トルクを変化させる例について説明したが、本発明はこれに限定されない。作動油温に代えて、大気圧を加味して、実エンジン回転速度に対する最大ポンプ吸収トルクを変化させてもよい。この場合、大気圧を検出する気圧センサを設け、気圧センサで検出された気圧が所定圧以上の場合には、図12(a)に示す特性AH1,AH2,AH3の中からアクセルペダル152の踏み込み量に応じて、一の特性が選択される。アクセルペダル152の踏み込み量が大きいときは特性AH1が選択され、アクセルペダル152の踏み込み量が小さいときは特性AH2が選択され、アクセルペダル152の踏み込み量が中程度のときは特性AH3が選択される。気圧センサで検出された気圧が所定圧未満の場合には、図12(b)に示す特性AL1,AL2,AL3の中からアクセルペダル152の踏み込み量に応じて、一の特性が選択される。アクセルペダル152の踏み込み量が大きいときは特性AL1が選択され、アクセルペダル152の踏み込み量が小さいときは特性AL2が選択され、アクセルペダル152の踏み込み量が中程度のときは特性AL3が選択される。 (Modification 4) In the third embodiment, the example in which the maximum pump absorption torque with respect to the actual engine speed is changed in consideration of the hydraulic oil temperature has been described. However, the present invention is not limited to this. Instead of the hydraulic oil temperature, the maximum pump absorption torque with respect to the actual engine rotation speed may be changed in consideration of atmospheric pressure. In this case, an atmospheric pressure sensor that detects the atmospheric pressure is provided, and when the atmospheric pressure detected by the atmospheric pressure sensor is equal to or higher than a predetermined pressure, the accelerator pedal 152 is depressed from the characteristics AH1, AH2, and AH3 shown in FIG. Depending on the quantity, one characteristic is selected. When the depression amount of the accelerator pedal 152 is large, the characteristic AH1 is selected, when the depression amount of the accelerator pedal 152 is small, the characteristic AH2 is selected, and when the depression amount of the accelerator pedal 152 is medium, the characteristic AH3 is selected. . When the atmospheric pressure detected by the atmospheric pressure sensor is less than the predetermined pressure, one characteristic is selected from the characteristics AL1, AL2, and AL3 shown in FIG. 12B according to the depression amount of the accelerator pedal 152. The characteristic AL1 is selected when the amount of depression of the accelerator pedal 152 is large, the characteristic AL2 is selected when the amount of depression of the accelerator pedal 152 is small, and the characteristic AL3 is selected when the amount of depression of the accelerator pedal 152 is medium. .
 大気圧が低い、すなわち空気の密度が小さいほどエンジン出力が大きく制限されることになるため、大気圧が高い場合に比べて実エンジン回転速度Naの上昇率が悪くなる。本変形例では、大気圧を加味して、実エンジン回転速度Naに対する最大ポンプ吸収トルクを変化させるようにした。大気圧が低い場合に、最大ポンプ吸収トルクの増加が開始される実エンジン回転速度を大気圧が高い場合に比べて高めに設定することで、大気圧が低い場合であっても実エンジン回転速度の上昇率、すなわちエンジン190の吹け上がり性能を高めることができる。なお、作動油温および大気圧の両者を加味して、実エンジン回転速度Naに対する最大ポンプ吸収トルクを変化させることもできる。 The lower the atmospheric pressure, that is, the lower the air density, the more the engine output is limited. Therefore, the rate of increase in the actual engine speed Na is worse than when the atmospheric pressure is high. In this modification, the maximum pump absorption torque with respect to the actual engine rotational speed Na is changed in consideration of the atmospheric pressure. By setting the actual engine speed at which the maximum pump absorption torque starts to increase when the atmospheric pressure is low compared to when the atmospheric pressure is high, the actual engine speed is reduced even when the atmospheric pressure is low. The increase rate of the engine 190, that is, the engine performance of the engine 190 can be increased. Note that the maximum pump absorption torque with respect to the actual engine rotational speed Na can be changed in consideration of both the hydraulic oil temperature and the atmospheric pressure.
(変形例5)上述した実施の形態では、エンジン出力トルク特性およびポンプ吸収トルク特性がルックアップテーブル形式でコントローラ100,200,300の記憶装置に記憶されている例について説明したが、本発明はこれに限定されない。たとえば、エンジン回転速度に応じた関数形式で各特性をコントローラ100,200,300の記憶装置に記憶させるようにしてもよい。 (Modification 5) In the above-described embodiment, the example in which the engine output torque characteristic and the pump absorption torque characteristic are stored in the storage device of the controllers 100, 200, and 300 in the look-up table format has been described. It is not limited to this. For example, each characteristic may be stored in the storage device of the controllers 100, 200, and 300 in a function format corresponding to the engine rotation speed.
(変形例6)上述した実施の形態では、作業車両の一例としてホイールローダを例に説明したが、本発明はこれに限定されない。作業車両はたとえば、フォークリフト等、アクセルペダルの踏み込み操作と同時、または、踏込操作直後にフロント作業装置が操作される作業形態が想定される他の作業車両であってもよい。 (Modification 6) Although the wheel loader has been described as an example of the work vehicle in the above-described embodiment, the present invention is not limited to this. The work vehicle may be, for example, another work vehicle such as a forklift that assumes a work form in which the front work device is operated at the same time as or after the accelerator pedal is depressed.
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the characteristics of the present invention are not impaired, the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2013年第225370号(2013年10月30日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 2013-225370 (filed on October 30, 2013)
2 トルクコンバータ、3 トランスミッション、4 プロペラシャフト、5 アクスル装置、6 アクスル、11 油圧ポンプ、11a レギュレータ、12 吐出圧センサ、13 回転速度センサ、17 前後進切換レバー、18 シフトスイッチ、19 エンジンコントローラ、20 トランスミッション制御部、21a,21b コントロールバルブ、31a アーム操作レバー、31b バケット操作レバー、100 コントローラ、100a 目標速度設定部、100b 操作量判定部、100c 選択部、101 センタピン、110 前部車体、111 アーム、112 バケット、113 タイヤ、115 バケットシリンダ、116 ステアリングシリンダ、117 アームシリンダ、120 後部車体、121 運転室、122 機械室、130 地山、152 アクセルペダル、152a 操作量センサ、190 エンジン、190a 燃料噴射装置、200 コントローラ、200b 操作量判定部、200c 選択部、300 コントローラ、300c 選択部、300d 油温判定部、314 作動油温センサ 2 Torque converter, 3 transmission, 4 propeller shaft, 5 axle device, 6 axle, 11 hydraulic pump, 11a regulator, 12 discharge pressure sensor, 13 rotation speed sensor, 17 forward / reverse switching lever, 18 shift switch, 19 engine controller, 20 Transmission control unit, 21a, 21b control valve, 31a arm operation lever, 31b bucket operation lever, 100 controller, 100a target speed setting unit, 100b operation amount determination unit, 100c selection unit, 101 center pin, 110 front body, 111 arm, 112 bucket, 113 tire, 115 bucket cylinder, 116 steering cylinder, 117 arm cylinder, 120 rear body, 121 operation , 122 machine room, 130 ground, 152 accelerator pedal, 152a operation amount sensor, 190 engine, 190a fuel injection device, 200 controller, 200b operation amount determination unit, 200c selection unit, 300 controller, 300c selection unit, 300d oil temperature determination 314 Hydraulic oil temperature sensor

Claims (4)

  1.  フロント作業装置を備えた作業車両であって、
     エンジンにより駆動され、前記フロント作業装置を駆動させるアクチュエータ(115,117)に圧油を供給する可変容量型の油圧ポンプ(11)と、
     アクセルペダルの操作量を検出する操作量検出部(152a)と、
     前記エンジンの実回転速度を検出する回転速度検出部(13)と、
     前記操作量検出部(152a)で検出された操作量に応じて、前記エンジンの実回転速度に対する前記油圧ポンプの最大吸収トルクを変化させる制御部(100,200,300)とを備えている作業車両。
    A work vehicle equipped with a front work device,
    A variable displacement hydraulic pump (11) that is driven by an engine and supplies pressure oil to an actuator (115, 117) that drives the front working device;
    An operation amount detector (152a) for detecting the operation amount of the accelerator pedal;
    A rotational speed detector (13) for detecting an actual rotational speed of the engine;
    A work comprising a control unit (100, 200, 300) that changes the maximum absorption torque of the hydraulic pump with respect to the actual rotational speed of the engine according to the operation amount detected by the operation amount detection unit (152a). vehicle.
  2.  請求項1に記載の作業車両において、
     前記制御部(100,200,300)は、前記操作量検出部(152a)で検出された操作量が所定値より大きいときには、前記操作量が前記所定値より小さいときに比べて、所定の速度域における前記エンジンの実回転速度に対する前記油圧ポンプの最大吸収トルクを小さくする作業車両。
    The work vehicle according to claim 1,
    The control unit (100, 200, 300) has a predetermined speed when the operation amount detected by the operation amount detection unit (152a) is larger than a predetermined value compared to when the operation amount is smaller than the predetermined value. A work vehicle that reduces the maximum absorption torque of the hydraulic pump with respect to the actual rotational speed of the engine in a region.
  3.  請求項2に記載の作業車両において、
     前記エンジンの実回転速度に応じて変化する前記油圧ポンプの最大吸収トルクの特性を少なくとも2つ記憶した記憶装置(100,200,300)を備え、
     第2特性により設定される前記油圧ポンプの最大吸収トルクは、前記エンジンの実回転速度の速度域を低速度域、中速度域および高速度域の3つの速度域に分けた場合に、前記低速度域および前記中速度域において、第1特性により設定される前記油圧ポンプの最大吸収トルクよりも小さい作業車両。
    The work vehicle according to claim 2,
    A storage device (100, 200, 300) that stores at least two characteristics of the maximum absorption torque of the hydraulic pump that changes according to the actual rotational speed of the engine;
    The maximum absorption torque of the hydraulic pump set by the second characteristic is low when the speed range of the actual rotational speed of the engine is divided into three speed ranges, a low speed range, a medium speed range, and a high speed range. A work vehicle that is smaller than a maximum absorption torque of the hydraulic pump set by a first characteristic in a speed range and the medium speed range.
  4.  請求項1に記載の作業車両において、
     前記制御部(100,200,300)は、作動油温および大気圧の少なくともいずれか一方を加味して、前記エンジンの実回転速度に対する前記油圧ポンプの最大吸収トルクを変化させる作業車両。
    The work vehicle according to claim 1,
    The control unit (100, 200, 300) is a work vehicle that changes the maximum absorption torque of the hydraulic pump with respect to the actual rotational speed of the engine in consideration of at least one of hydraulic oil temperature and atmospheric pressure.
PCT/JP2014/078639 2013-10-30 2014-10-28 Work vehicle WO2015064577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-225370 2013-10-30
JP2013225370A JP2015086575A (en) 2013-10-30 2013-10-30 Work vehicle

Publications (1)

Publication Number Publication Date
WO2015064577A1 true WO2015064577A1 (en) 2015-05-07

Family

ID=53004179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078639 WO2015064577A1 (en) 2013-10-30 2014-10-28 Work vehicle

Country Status (2)

Country Link
JP (1) JP2015086575A (en)
WO (1) WO2015064577A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028516A (en) * 2017-03-31 2019-03-18 히다치 겡키 가부시키 가이샤 Hydraulic working machine
WO2020100615A1 (en) * 2018-11-16 2020-05-22 株式会社小松製作所 Work vehicle, and control method of work vehicle
EP3825475A4 (en) * 2019-03-25 2021-12-22 Hitachi Construction Machinery Co., Ltd. Wheel loader

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569181B2 (en) * 2016-03-16 2019-09-04 日立建機株式会社 Work vehicle
US10683632B2 (en) 2016-09-28 2020-06-16 Hitachi Construction Machinery Co., Ltd. Work vehicle
JP6814440B2 (en) * 2017-06-21 2021-01-20 コベルコ建機株式会社 Work machine
JP7038515B2 (en) 2017-09-29 2022-03-18 日立建機株式会社 Wheel loader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101183A (en) * 1997-09-29 1999-04-13 Hitachi Constr Mach Co Ltd Torque control device for hydraulic pump for hydraulic construction machine
JP2006052673A (en) * 2004-08-11 2006-02-23 Komatsu Ltd Load control device for engine of working vehicle
JP2006070877A (en) * 2004-09-06 2006-03-16 Komatsu Ltd Load control device of engine of work vehicle
JP2008196165A (en) * 2007-02-09 2008-08-28 Hitachi Constr Mach Co Ltd Pump torque control device of hydraulic construction machinery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101183A (en) * 1997-09-29 1999-04-13 Hitachi Constr Mach Co Ltd Torque control device for hydraulic pump for hydraulic construction machine
JP2006052673A (en) * 2004-08-11 2006-02-23 Komatsu Ltd Load control device for engine of working vehicle
JP2006070877A (en) * 2004-09-06 2006-03-16 Komatsu Ltd Load control device of engine of work vehicle
JP2008196165A (en) * 2007-02-09 2008-08-28 Hitachi Constr Mach Co Ltd Pump torque control device of hydraulic construction machinery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028516A (en) * 2017-03-31 2019-03-18 히다치 겡키 가부시키 가이샤 Hydraulic working machine
EP3495644A4 (en) * 2017-03-31 2020-04-08 Hitachi Construction Machinery Co., Ltd. Hydraulic work machine
KR102120379B1 (en) 2017-03-31 2020-06-08 히다치 겡키 가부시키 가이샤 Hydraulic working machine
US11105070B2 (en) 2017-03-31 2021-08-31 Hitachi Construction Machinery Co., Ltd. Hydraulic work machine
WO2020100615A1 (en) * 2018-11-16 2020-05-22 株式会社小松製作所 Work vehicle, and control method of work vehicle
JP2020085034A (en) * 2018-11-16 2020-06-04 株式会社小松製作所 Work vehicle and method for controlling work vehicle
JP7245582B2 (en) 2018-11-16 2023-03-24 株式会社小松製作所 WORK VEHICLE AND CONTROL METHOD FOR WORK VEHICLE
US11952748B2 (en) 2018-11-16 2024-04-09 Komatsu Ltd. Work vehicle and control method for work vehicle
EP3825475A4 (en) * 2019-03-25 2021-12-22 Hitachi Construction Machinery Co., Ltd. Wheel loader

Also Published As

Publication number Publication date
JP2015086575A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
WO2015064577A1 (en) Work vehicle
JP5161380B1 (en) Work vehicle and control method of work vehicle
JP5164933B2 (en) Control device for work vehicle
JP4712811B2 (en) Control device and method for engine and hydraulic pump of work vehicle
JP5059969B2 (en) Construction vehicle
JP5036824B2 (en) Motor vehicle control device for work vehicle
JP5503954B2 (en) Clutch control device for work vehicle
KR101740745B1 (en) Apparatus for controlling number of revolutions of engine for industrial vehicle
JP5092060B1 (en) Work vehicle and control method of work vehicle
JP5808686B2 (en) Engine control device for work vehicle
JP5192601B1 (en) Work vehicle and control method of work vehicle
JP5113946B1 (en) Work vehicle and control method of work vehicle
JP5192605B1 (en) Wheel loader
JP6126963B2 (en) Work vehicle
JP6569181B2 (en) Work vehicle
WO2010109972A1 (en) Construction vehicle
US9511759B2 (en) Clutch control device for work vehicle
JP6153441B2 (en) Work vehicle
JP6200792B2 (en) Engine control device for work vehicle
JP2011122706A (en) Clutch control device for working vehicle
WO2010147150A1 (en) Clutch control device for industrial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857616

Country of ref document: EP

Kind code of ref document: A1