WO2015064517A1 - Formate dehydrogenase and use thereof - Google Patents

Formate dehydrogenase and use thereof Download PDF

Info

Publication number
WO2015064517A1
WO2015064517A1 PCT/JP2014/078442 JP2014078442W WO2015064517A1 WO 2015064517 A1 WO2015064517 A1 WO 2015064517A1 JP 2014078442 W JP2014078442 W JP 2014078442W WO 2015064517 A1 WO2015064517 A1 WO 2015064517A1
Authority
WO
WIPO (PCT)
Prior art keywords
formate dehydrogenase
protein
gene
seq
activity
Prior art date
Application number
PCT/JP2014/078442
Other languages
French (fr)
Japanese (ja)
Inventor
智行 中川
光裕 水口
達也 澤野
Original Assignee
国立大学法人岐阜大学
オリエンタル酵母工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岐阜大学, オリエンタル酵母工業株式会社 filed Critical 国立大学法人岐阜大学
Priority to JP2015544976A priority Critical patent/JPWO2015064517A1/en
Publication of WO2015064517A1 publication Critical patent/WO2015064517A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/36Dinucleotides, e.g. nicotineamide-adenine dinucleotide phosphate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to formate dehydrogenase, a gene encoding the enzyme, and production and use of the enzyme.
  • NADH reduced nicotinamide adenine dinucleotide
  • NADPH reduced nicotinamide adenine dinucleotide phosphate
  • formate dehydrogenase (EC.1.2.1.2) is oxidized nicotinamide adenine dinucleotide (NAD +), in the presence of formic acid and water, the NAD + reduced nicotinamide adenine dinucleotide ( NADH) and formic acid is oxidized to carbon dioxide. Therefore, an active pharmaceutical ingredient intermediate can be made without producing a by-product.
  • the present invention has been made in view of the above points, and provides a formate dehydrogenase having a high specific activity and an object of providing a method for efficiently producing formate dehydrogenase without using methanol.
  • the present inventors have extensively searched for microorganisms having formate dehydrogenase activity, and as a result, have found a Pichia methanolica strain that highly produces formate dehydrogenase having excellent properties. Then, formate dehydrogenase was isolated and purified from the Pichia methanolica strain, and the formate dehydrogenase gene was successfully isolated and expressed in the host microorganism. And, the formate dehydrogenase has a high specific activity, and the formate dehydrogenase can be produced inexpensively and efficiently without using methanol unlike the yeast expression system by expressing the enzyme in E. coli. I found. Furthermore, it has been found that this formate dehydrogenase is useful for coenzyme regeneration.
  • the present invention includes the following.
  • a gene comprising the following DNA (d), (e) or (f): (D) DNA consisting of the base sequence of SEQ ID NO: 2, (E) DNA encoding a protein having 70% or more identity with the base sequence of SEQ ID NO: 2 and having formate dehydrogenase activity, (F) DNA encoding a protein having a formate dehydrogenase activity, comprising a base sequence in which one or several bases are deleted, substituted, inserted or added in the base sequence of SEQ ID NO: 2.
  • a recombinant vector comprising the gene according to (2) or (3).
  • a method for producing formate dehydrogenase comprising culturing the transformant according to (5) or (6) and collecting a protein having formate dehydrogenase activity from the culture.
  • the formate dehydrogenase of the present invention is characterized by high specific activity.
  • an expensive coenzyme can be regenerated with a small amount of enzyme.
  • by expressing the formate dehydrogenase gene of the present invention in E. coli it is possible to produce formate dehydrogenase at low cost and efficiently without using methanol.
  • the formate dehydrogenase of the present invention can efficiently regenerate the coenzyme in the reduction reaction of alcohol, amine, aldehyde, etc., and can greatly reduce the amount of expensive coenzyme used.
  • the construction diagram of plasmid pTRP-pmfdh is shown. It is a graph which shows the result of having measured the pH stability of recombinant PmFDH. It is a graph which shows the result of having measured the optimum pH of recombinant PmFDH. It is a graph which shows the result of having measured the temperature stability of recombinant PmFDH. It is a graph which shows the result of having measured the optimal temperature of recombinant PmFDH. It is a graph which shows the result of having measured the temperature stability in 50 degreeC of recombinant PmFDH.
  • Formate dehydrogenase (enzyme number EC 1.2.1.2) is a reaction that produces carbon dioxide and reduced nicotinamide adenine dinucleotide (NADH) from formic acid and oxidized nicotinamide adenine dinucleotide (NAD + ). It is an enzyme that catalyzes. Formate dehydrogenase is a useful enzyme that has advantages such as the availability of inexpensive formic acid and the by-product of carbon dioxide that does not accumulate in the system when used for coenzyme regeneration in NADH-dependent enzyme reactions. .
  • the present invention relates to a protein having formate dehydrogenase activity, that is, formate dehydrogenase.
  • the protein having formate dehydrogenase activity of the present invention include a protein consisting of the amino acid sequence of SEQ ID NO: 1.
  • a protein having an amino acid sequence having an identity of 99% or more and having formate dehydrogenase activity is also included in the protein of the present invention.
  • the protein of the present invention includes a protein having an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence of SEQ ID NO: 1 and having formate dehydrogenase activity.
  • the term “several” refers to 2 to 5, preferably 2 to 3.
  • “Amino acid sequence in which one or several amino acids have been deleted, substituted, inserted or added” is an amino acid deleted, substituted, inserted or added by methods well known to those skilled in the art, such as partial-directed mutagenesis. Can be obtained.
  • Formate dehydrogenase activity is measured by measuring the increase in absorbance at 340 nm accompanying NADH production at 25 ° C. in 0.1 M phosphate buffer (pH 7.5) containing 20 mM sodium formate and 1 mM NAD +. Can be implemented.
  • the protein having formate dehydrogenase activity is 10% or more, preferably 40% or more, more preferably 60% or more when a protein comprising the amino acid sequence of SEQ ID NO: 1 is used under the activity measurement conditions as described above. More preferably, it refers to a protein exhibiting an activity of 80% or more.
  • the protein of the present invention can be obtained preferably from Pichia methanolica, for example, Pichia methanolica IAM 12901 strain. This strain has been preserved in the IAM Culture Collection, Institute for Molecular Cell Biology, University of Tokyo, and has now been transferred to the RIKEN BioResource Center Microbial Materials Development Department (JCM).
  • JCM RIKEN BioResource Center Microbial Materials Development Department
  • the protein having formate dehydrogenase activity of the present invention may be a natural enzyme obtained from a microorganism as described above, or may be a recombinant enzyme produced using a gene recombination technique. .
  • the present invention also relates to a gene encoding formate dehydrogenase (formate dehydrogenase gene).
  • formate dehydrogenase gene formate dehydrogenase gene
  • Examples of the gene encoding the formate dehydrogenase of the present invention include a gene consisting of the nucleotide sequence of SEQ ID NO: 2. Genes include nucleic acids and single-stranded, double-stranded or triple-stranded DNA or RNA.
  • a gene encoding a protein consisting of a base sequence having an identity of 99% or more and having formate dehydrogenase activity is also included in the gene of the present invention.
  • a gene encoding a protein consisting of a base sequence in which one or several bases are deleted, substituted, inserted or added in the base sequence of SEQ ID NO: 2 and having formate dehydrogenase activity is also a gene of the present invention. Is included. The term “several” refers to 2 to 5, preferably 2 to 3.
  • a gene functionally equivalent to the gene consisting of the base sequence of SEQ ID NO: 2 hybridizes under stringent conditions with a gene consisting of a base sequence complementary to the gene consisting of the base sequence of SEQ ID NO: 2, and formic acid
  • a gene encoding a protein having dehydrogenase activity is included.
  • the stringent condition means a condition in which a specific hybrid is formed and a non-specific hybrid is not formed, and a highly stringent condition is preferable.
  • Highly stringent conditions are conditions in which, for example, washing at 65 ° C., 0.1 ⁇ SSC and 0.1% SDS is performed after washing after hybridization.
  • a method for obtaining a desired gene by cloning is well known in the field of molecular biology.
  • a suitable genomic library can be prepared by restriction endonuclease digestion and screened using a probe complementary to the desired gene sequence. Once the sequence is isolated, the DNA can be amplified using standard amplification methods such as polymerase chain reaction (PCR) to obtain an amount of DNA suitable for transformation (gene transfer).
  • PCR polymerase chain reaction
  • the method for producing formate dehydrogenase of the present invention is characterized by culturing a transformant obtained by introducing the formate dehydrogenase gene into a host, and collecting a protein having formate dehydrogenase activity from the culture. To do.
  • a transformant obtained by introducing a formate dehydrogenase gene into a host can be produced by a method known in the art.
  • gene introduction includes all cases where a polynucleotide having a gene function is introduced into a host as a recombinant nucleic acid. Polynucleotides include nucleic acids and single, double or triple stranded DNA or RNA.
  • the introduction of a gene includes a case of introduction by a recombinant vector and a case of introduction by homologous recombination using a nucleic acid synthesized by PCR or the like.
  • the type of host into which the gene is to be introduced is not limited, and unicellular eukaryotes such as bacteria, fungi, various yeasts, or live cells of animals or plants can be arbitrarily selected. E. coli is preferred. As the host E. coli, an appropriate one is selected from E. coli K-12 strains usually used for genetic engineering. Representative examples include JM105 and JM109, but DH5 or BL21, N99cI + used in an inducible expression system may be used.
  • the gene is more preferably introduced by an expression vector that enhances the expression of the gene.
  • An expression vector is obtained by fusing a gene to be introduced with various DNA fragments or RNA fragments that enhance the expression.
  • the expression vector may contain a transcription promoter, transcription terminator, and selection marker for constitutively or inducibly expressing the gene.
  • a gene that controls a cis element such as an enhancer, an operator, or a promoter may be contained.
  • Examples of the vector include, but are not limited to, plasmids frequently used when E. coli is used as a host, pUC18, pUC19, pUC118, pUC119, pSC101, pBR322, pHSG298, pVC18, pVC19, pTrc99A, pMal-c2, pGEX2T, pTV118N, pTV119N, pTRP and the like can be preferably used.
  • plasmids pUB110, pC194, etc. often used when Bacillus subtilis is used as a host are also used. it can.
  • pBI122, pBI1101 and other various types can be used without limitation.
  • transcription promoters for expression in E. coli include tryptophan synthase (trp), lactose operon (lac), tac and trc promoters fused with these, ⁇ phage PL and PR promoters, T7 phage promoters, and the like. It is done. However, if the promoter is too strong, the target protein is excessively expressed in E. coli, and as a result, the target protein tends to form inclusion bodies, making subsequent separation and purification steps difficult. Therefore, it is necessary to select an optimal promoter so as to enable expression in the soluble fraction or secretion of the protein into the culture supernatant. In view of such points, tryptophan promoter (trp) is desirable. Examples of the expression vector having a tryptophan promoter (trp) include pTRP (Clinica Chimica Acta 237, 43-58 (1995)).
  • selectable markers include formaldehyde resistance markers, drug resistance markers such as kanamycin, ampicillin, tetracycline, chloramphenicol, and auxotrophic markers such as leucine, histidine, lysine, methionine, arginine, tryptophan, and uracil. It is not limited to this.
  • a method for constructing a recombinant vector for example, a method of incorporating a gene fragment prepared by PCR or the like into a recombinant vector using an appropriate restriction enzyme and ligase can be mentioned.
  • a recombinant vector can be obtained by performing a ligation reaction under defined conditions using a commercially available ligation kit such as Ligation High (Toyobo Co., Ltd.). If necessary, these vectors are purified by a boil method, an alkaline SDS method, a magnetic bead method and a commercially available kit using these principles, and further concentrated by an ethanol precipitation method, a polyethylene glycol precipitation method or the like. It can be concentrated by means.
  • the gene introduction method is not particularly limited, and examples thereof include an electric pulse method, a competent cell method, a calcium chloride method, a protoplast method, a particle gun method, and an electroporation method.
  • the Hanahan method or the like can be used for gene introduction into E. coli
  • the lithium ion method or the like can be used for gene introduction into yeast.
  • the target gene is inserted into a sequence homologous to the sequence on the genome together with a promoter, and this DNA fragment is introduced into the cell by electroporation. Can be carried out by causing homologous recombination.
  • a strain in which homologous recombination has occurred can be easily selected by using a DNA fragment in which a target gene and a selection marker gene are linked.
  • a gene linked to a drug resistance gene and a gene that becomes lethal under specific conditions is inserted into the genome by homologous recombination by the above method, and then becomes lethal under specific conditions with the drug resistance gene.
  • the target gene can also be introduced using homologous recombination in the form of replacing the gene.
  • the selection of the transgene, the selection of the host to be introduced, the expression vector Factors such as selection of introduction means and construction method of DNA or RNA suitable for it, selection of medium or additive type and concentration, culture condition or growth condition of transformant, etc. are the production of formate dehydrogenase. May affect quantity.
  • the method of culturing the transformant in a medium is performed according to a normal method used for host culture.
  • a medium for culturing transformants obtained using microorganisms such as Escherichia coli and yeast as a host
  • the medium contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the microorganisms.
  • the medium can be used, either a natural medium or a synthetic medium may be used.
  • any carbon compound that can be assimilated may be used.
  • polyols such as glycerin, or organic acids such as pyruvic acid, succinic acid, or citric acid
  • the nitrogen source may be any available nitrogen compound.
  • peptone, meat extract, yeast extract, casein hydrolyzate, soybean meal alkaline extract, or ammonia or a salt thereof can be used.
  • salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese, zinc, a specific amino acid, a specific vitamin, an antifoaming agent, and the like may be used as necessary.
  • a protein expression inducer such as isopropyl- ⁇ -D-thiogalactopyranoside may be added to the medium as necessary.
  • the culture is usually carried out under aerobic conditions such as shaking culture or aeration and agitation culture, preferably at 0 to 40 ° C., more preferably at 10 to 37 ° C., particularly preferably at 15 to 37 ° C.
  • the pH of the medium can be changed as appropriate as long as the growth of the host is possible and the activity of the produced formate dehydrogenase is not impaired, but it is preferably in the range of about pH 4-8.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • an antibiotic such as ampicillin or tetracycline may be added to the medium as necessary.
  • the culture includes a culture solution, a culture supernatant, cultured cells, cultured cells, cells or disrupted cells.
  • the collection method is not only extraction from cells or disrupted cells or cells that are usually performed, but in some cases it can also be extracted directly from the culture solution using an appropriate extraction solvent.
  • at least part of the formate dehydrogenase may remain in the host cell or on the cell surface, but various known operations such as disruption of the cell membrane or cell wall and extraction with an appropriate extraction solvent may be performed. After that, it can be collected.
  • the formate dehydrogenase gene is expressed by setting to the above temperature range, and formate dehydrogenase exhibiting a very high specific activity in the host can be produced.
  • the target formate dehydrogenase is produced in the host, so the cells or cells are disrupted to prepare a crude enzyme suspension.
  • This crude enzyme suspension contains formate dehydrogenase having a very high specific activity. Therefore, the obtained crude enzyme suspension may be used as it is. Formate dehydrogenase can also be isolated and purified from the resulting crude enzyme suspension.
  • the isolated and purified formate dehydrogenase can be used in a state suspended in a buffer solution having a predetermined pH.
  • Coenzyme can be regenerated by coexisting the above protein, a transformant producing the protein, or a processed product thereof in the enzymatic reduction reaction system. That is, the coenzyme can be efficiently regenerated by allowing the formate dehydrogenase obtained in the present invention to coexist in the enzymatic reduction reaction system.
  • the treated product of the transformant means, for example, a crude extract, a crude enzyme suspension, a cultured cell freeze-dried organism, an acetone-dried organism, or a ground product of these cells. Furthermore, they may be used by immobilizing them with a known means in the form of enzymes or cells.
  • Immobilization can be carried out by methods well known to those skilled in the art (for example, crosslinking method, physical adsorption method, entrapment method, etc.).
  • the reaction is carried out at 10 ° C. to 70 ° C., preferably 20 ° C. to 60 ° C., pH 4 to 10, preferably pH 5.5 to 9.5.
  • the substrate concentration is 0.1% to 90% (w / v), but the substrate can also be added continuously.
  • the reaction can be carried out batchwise or continuously.
  • the reaction can also be performed using an immobilized enzyme, a membrane reactor, or the like.
  • the coenzyme in the reduction reaction for enzymatically producing alcohol, amine, aldehyde, etc., the coenzyme can be efficiently regenerated and the amount of expensive coenzyme used can be greatly reduced. Can do.
  • the protein according to the invention is called “recombinant PmFDH”.
  • Example 1 Construction of recombinant PmFDH expression system
  • FDH formate dehydrogenase
  • Candida voyinii accesion No. AJ245934
  • budding yeast Saccharomyces cerevisiae accesion No. Z75296.1
  • FDH-inf (5′-GGTAAGCACGCTGCTGGATGAA-3 ′) (SEQ ID NO: 3) and FDH-inr (5′-TAATATCTTGTGGTCTGTAATC-3 ′) (SEQ ID NO: 4) were prepared.
  • the genomic DNA of Pichia methanolica used as a template was prepared using Gen Torukun TM (for yeast) High Recovery (manufactured by Takara Bio Inc.).
  • Gen Torukun TM for yeast
  • Takara Bio Inc. Gen Torukun TM High Recovery
  • PCR reaction per 50 ⁇ L with 1U KOD plus polymerase (manufactured by Toyobo), 10 pg template DNA, 0.3 ⁇ M sense primer, 0.3 ⁇ M antisense primer, 0.2 mM dNTP Mix, 1 mM MgSO 4 , 10 ⁇ buffer 94 ° C./15 seconds (denaturation), 50 ° C./30 seconds (annealing), and 68 ° C./1 minute 30 seconds (extension) were repeated 30 cycles.
  • a full-length Pichia methanolica-derived FDH sequence was obtained from the internal sequence of the obtained FDH by using DNA Walking SpeedUP TM Premix Kit (manufactured by Seegene). Specifically, PCR primers, pmfdh-wkf1 (5′-GGAGAACCCATGAGAACA-3 ′: for 1st PCR) (SEQ ID NO: 5) and pmfdh-wkf2 (5′-ATGAGAAACAAATACGGTGCCC-3 ′: 2nd PCR for N-terminal sequence analysis (SEQ ID NO: 6) for pmfdh-wkr (5'-CCTTGAAATGTAACCTGGGTG-3 ': 1st PCR) (SEQ ID NO: 7) and pmfdh-wkr2 (5'-TAATGTCGCATCATGGATT-3': 2nd PCR (SEQ ID NO: 8) was used.
  • the base sequence of the FDH gene derived from Pichia methanolica thus obtained is shown in SEQ ID NO: 2, and the amino acid sequence is shown in SEQ ID NO: 1.
  • a plasmid pTRP-pmfdh into which the FDH gene was inserted was prepared according to the construction diagram shown in FIG. First, PCR was performed using Pichia methanolica chromosomal DNA as a template and the primers shown below to amplify the FDH gene, and an approximately 1.1 kb DNA fragment of the FDH gene was confirmed by agarose electrophoresis.
  • Sense primer (SacI-pmfdh): 5′-GAGCTCCATGAAGGTCGTTTTTAGTT-3 ′ (SEQ ID NO: 9)
  • Antisense primer (pmfdh-SalI): 5′-GTCGACTTAGACACTTCTTTGTCAGCA-3 ′ (SEQ ID NO: 10)
  • PCR reaction per 50 ⁇ L with 1U KOD plus polymerase (manufactured by Toyobo), 10 pg template DNA, 0.3 ⁇ M sense primer, 0.3 ⁇ M antisense primer, 0.2 mM dNTP Mix, 1 mM MgSO 4 , 10 ⁇ buffer 94 ° C./2 minutes (denaturation), 55 ° C./30 seconds (annealing), and 68 ° C./1 minute 30 seconds (elongation) were repeated 30 cycles.
  • the PCR products of the obtained FDH gene were respectively treated with restriction enzymes SacI and SalI (Takara Bio), and after agarose electrophoresis, GFX TM PCR DNA and Gel Band Purification Kit (GE Healthcare Japan) It was collected.
  • the recovered fragment was introduced into an expression vector pTRP (2.9 kb) previously treated with restriction enzymes SacI and SalI (manufactured by Takara Bio Inc.) using LigaFast TM Rapid DNA Ligation System (manufactured by Promega).
  • E. coli HB101 strain was transformed to obtain recombinant pTRP-pmfdh / HB101.
  • Example 2 Flask culture of recombinant PmFDH
  • Production of recombinant PmFDH derived from Pichia methanolica by batch culture of transformants was carried out by the following method.
  • Escherichia coli HB101 strain transformed with plasmid pTRP-pmfdh was subjected to batch culture for 9 hours at 37 ° C. and 160 rpm using 2 L of LB medium containing 50 ⁇ g / mL ampicillin. Cell growth was examined by measuring the absorbance of the culture at 600 nm. As a result, a batch culture of Escherichia coli HB101 strain transformed with the plasmid pTRP-pmfdh could be obtained.
  • this culture solution was centrifuged (8,000 rpm, 15 minutes, 4 ° C., Model HP-26XP Centrifuge manufactured by Beckman Coulter), and the wet cells were collected. Then, 5 g of the obtained wet cells were suspended in 3 mL of extraction buffer (10 mM phosphate buffer, pH 7.5), and after ultrasonic disruption (MISSONIX Astrason ULTRASONIC PROCESSOTR XL) and centrifuged (18,000 ⁇ g, 15 minutes, 4 ° C., Model HP-26XP (manufactured by Beckman Coulter, Inc.) and a crude extract were prepared.
  • extraction buffer 10 mM phosphate buffer, pH 7.5
  • the activity of recombinant PmFDH was measured by the following method. After adding recombinant PmFDH to a reaction solution composed of phosphate buffer (0.1 M, pH 7.5), NAD + (1 mM, manufactured by Oriental Yeast Co., Ltd.), sodium formate (20 mM, manufactured by Nacalai Tesque), The absorbance change at 340 nm was measured at 25 ° C., and the formate dehydrogenase activity of the recombinant PmFDH was calculated. The production amount of 1 ⁇ mol of NADH per minute under these reaction conditions was defined as 1 unit, which was defined as formate dehydrogenase activity. When the formate dehydrogenase activity of the obtained enzyme solution was measured, an activity of 0.24 U / mL per 1 mL of the medium was confirmed.
  • Example 3 Purification of recombinant PmFDH
  • the wet cells obtained from 6 L of the culture solution are suspended in 10 mM phosphate buffer (pH 7.5), and then the cells are disrupted by ultrasonic disruption.
  • Example 4 Evaluation of basic enzymatic performance of recombinant PmFDH
  • the basic enzymatic performance of the recombinant PmFDH obtained in Example 3 was evaluated. Formate dehydrogenase activity was measured in the same manner as in Example 2 except for the conditions specifically described.
  • pH stability Using the following buffers, the residual activity after 7 days at 30 ° C. was measured. pH 4.5 to 6.0: 0.1 M citrate-NaOH buffer pH 6.0 to 7.5: 0.1 M phosphate (K-Pi) buffer pH 6.0 to 7.5: 0.1 M PIPES-NaOH buffer pH 7.5 to 9.0: 0.1 M Tris-HCl buffer pH 9.0 to 9.5: 0.1 M glycine-NaOH buffer
  • Optimum pH Formate dehydrogenase activity was measured using the following buffers. pH 4.5 to 6.0: 0.1 M citrate-NaOH buffer pH 6.0 to 7.5: 0.1 M phosphate (K-Pi) buffer pH 6.0 to 7.5: 0.1 M PIPES-NaOH buffer pH 7.5 to 9.0: 0.1 M Tris-HCl buffer pH 9.0 to 9.5: 0.1 M glycine-NaOH buffer
  • Optimal temperature Formate dehydrogenase activity was measured at temperatures of 25, 30, 37, 40, 45, 50, 55, 60, and 70 ° C. The results are shown in FIG. The activity at 50 ° C. was defined as 100 and expressed as relative activity.
  • Temperature stability at 50 ° C Residual activity when reacted at 50 ° C. for 24 hours was measured. The results are shown in FIG. The activity at 0 hours was defined as 100 and expressed as relative activity.
  • Example 5 Ethanol production by recombinant PmFDH
  • ethanol could be produced from acetaldehyde when NAD + was used as a coenzyme.
  • acetaldehyde (2%, manufactured by Merck & Co.) and alcohol dehydrogenase (10 U / mL, manufactured by Oriental Yeast Co., Ltd.), NAD + (0.3 mM, manufactured by Oriental Yeast Co., Ltd.), sodium formate (100 mM) Recombinant PmFDH was added to a reaction solution composed of Nacalai Tesque, Inc.) and phosphate buffer (250 mM, pH 7.0) and reacted at 30 ° C. for 24 hours.
  • the produced ethanol is 99.5% ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) as a standard product, alcohol oxidase (0.2 U / mL, manufactured by Sigma) and horseradish peroxidase (5 U / mL, manufactured by Oriental Yeast Co., Ltd.) ), 4-aminoantipyrine (0.04%, manufactured by Wako Pure Chemical Industries, Ltd.), phenol (0.24%, manufactured by Wako Pure Chemical Industries, Ltd.) and a change in absorbance at 500 nm at 30 ° C. Calculated from
  • the present invention makes it possible to produce formate dehydrogenase efficiently. Further, the formate dehydrogenase prepared by the present invention is extremely useful as a coenzyme regeneration system enzyme.

Abstract

The purpose of the present invention is to provide: a formate dehydrogenase having a high specific activity; and a method for producing a formate dehydrogenase with high efficiency without using methanol. The present invention relates to: a novel formate dehydrogenase; a gene encoding the formate dehydrogenase; a method for producing the formate dehydrogenase; and a method for regenerating a coenzyme using the formate dehydrogenase.

Description

ギ酸脱水素酵素とその利用Formate dehydrogenase and its utilization
 本発明はギ酸脱水素酵素、該酵素をコードする遺伝子、ならびに該酵素の製造と利用に関する。 The present invention relates to formate dehydrogenase, a gene encoding the enzyme, and production and use of the enzyme.
 医薬品原薬中間体を製造する際、補酵素として還元型ニコチンアミドアデニンジヌクレオチド(NADH)もしくは還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)を必要とする。しかし、これらの補酵素は高価であるため、医薬品原薬中間体を効率的に製造するためには、これら補酵素の再生が不可欠である。 When producing an active pharmaceutical ingredient intermediate, reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) is required as a coenzyme. However, since these coenzymes are expensive, regeneration of these coenzymes is indispensable for efficiently producing an active pharmaceutical ingredient intermediate.
 従来、補酵素を還元するために、特許文献1に記載されるようなグルコース脱水素酵素を使用した例や特許文献2に記載されるようなギ酸脱水素酵素を使用した例が報告されている。しかしながら、グルコース脱水素酵素はグルコースからグルコン酸への変換を行うため、目的とする医薬品原薬中間体と等量のグルコン酸が生じてしまう問題があった。 Conventionally, in order to reduce a coenzyme, examples using glucose dehydrogenase as described in Patent Document 1 and examples using formate dehydrogenase as described in Patent Document 2 have been reported. . However, since glucose dehydrogenase converts glucose to gluconic acid, there is a problem that the same amount of gluconic acid as that of the intended drug substance intermediate is produced.
 一方、ギ酸脱水素酵素(EC.1.2.1.2)は、酸化型ニコチンアミドアデニンジヌクレオチド(NAD+)、ギ酸および水の存在下で、NAD+を還元型ニコチンアミドアデニンジヌクレオチド(NADH)に還元するとともにギ酸を二酸化炭素に酸化する。よって、副生成物を生じることなく医薬品原薬中間体を作ることができる。 On the other hand, formate dehydrogenase (EC.1.2.1.2) is oxidized nicotinamide adenine dinucleotide (NAD +), in the presence of formic acid and water, the NAD + reduced nicotinamide adenine dinucleotide ( NADH) and formic acid is oxidized to carbon dioxide. Therefore, an active pharmaceutical ingredient intermediate can be made without producing a by-product.
 しかし、ギ酸脱水素酵素を使用することの欠点は、酵素の比活性が低いために、補酵素を再生する際の酵素の添加量が多くなることであった。例えば特許文献3に記載されるようなカンジダ・ボイジニイ(Candida boidinii)(ATCC32195)由来のギ酸脱水素酵素は、比活性が低いため、ギ酸脱水素酵素を用いた補酵素の再生には不十分である。 However, the disadvantage of using formate dehydrogenase is that the amount of the enzyme added when regenerating the coenzyme increases because of the low specific activity of the enzyme. For example, Candida bodinini (ATCC 32195) -derived formate dehydrogenase as described in Patent Document 3 has a low specific activity and is not sufficient for regeneration of coenzymes using formate dehydrogenase. is there.
 また、ピキア・メタノリカのようなメタノール資化酵母でギ酸脱水素酵素を発現させる場合は、メタノールで誘導する必要があり、大量製造する場合には防爆設備等が必要であり、製造コストがかかるというデメリットがあった。 In addition, when formate dehydrogenase is expressed in a methanol-utilizing yeast such as Pichia methanolica, it is necessary to induce it with methanol, and in the case of mass production, an explosion-proof facility is required, which is expensive to manufacture. There were disadvantages.
特開2000-236883号公報Japanese Patent Laid-Open No. 2000-236883 特開2002-233395号公報JP 2002-233395 A 特開2003-180383号公報JP 2003-180383 A
 本発明は、かかる点に鑑みてなされたものであり、比活性が高いギ酸脱水素酵素を提供し、またメタノールを使わずに効率的にギ酸脱水素酵素を製造する方法を提供することを目的とする。 The present invention has been made in view of the above points, and provides a formate dehydrogenase having a high specific activity and an object of providing a method for efficiently producing formate dehydrogenase without using methanol. And
 本発明者らは上記課題に鑑み、広くギ酸脱水素酵素活性を有する微生物を探索した結果、優れた性質を有するギ酸脱水素酵素を高生産するピキア・メタノリカ株を見出した。そして、該ピキア・メタノリカ株からギ酸脱水素酵素を単離、精製し、ギ酸脱水素酵素遺伝子の単離、ならびに宿主微生物での発現に成功した。そして、該ギ酸脱水素酵素が高い比活性を有すること、該酵素を大腸菌にて発現させることにより、酵母発現系とは異なりメタノールを使わずに安価にかつ効率的にギ酸脱水素酵素を製造できることを見出した。さらに、このギ酸脱水素酵素が補酵素の再生に有用であることを見出した。 In view of the above problems, the present inventors have extensively searched for microorganisms having formate dehydrogenase activity, and as a result, have found a Pichia methanolica strain that highly produces formate dehydrogenase having excellent properties. Then, formate dehydrogenase was isolated and purified from the Pichia methanolica strain, and the formate dehydrogenase gene was successfully isolated and expressed in the host microorganism. And, the formate dehydrogenase has a high specific activity, and the formate dehydrogenase can be produced inexpensively and efficiently without using methanol unlike the yeast expression system by expressing the enzyme in E. coli. I found. Furthermore, it has been found that this formate dehydrogenase is useful for coenzyme regeneration.
 すなわち、本発明は以下を包含する。 That is, the present invention includes the following.
(1)以下の(a)、(b)または(c)のタンパク質:
(a)配列番号1のアミノ酸配列からなるタンパク質、
(b)配列番号1のアミノ酸配列と70%以上の同一性を有し、ギ酸脱水素酵素活性を有するタンパク質、
(c)配列番号1のアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列からなり、ギ酸脱水素酵素活性を有するタンパク質。
(1) The following protein (a), (b) or (c):
(A) a protein comprising the amino acid sequence of SEQ ID NO: 1,
(B) a protein having at least 70% identity with the amino acid sequence of SEQ ID NO: 1 and having formate dehydrogenase activity;
(C) A protein having a formate dehydrogenase activity, comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence of SEQ ID NO: 1.
(2)(1)記載のタンパク質をコードする遺伝子。 (2) A gene encoding the protein according to (1).
(3)以下の(d)、(e)または(f)のDNAからなる遺伝子:
(d)配列番号2の塩基配列からなるDNA、
(e)配列番号2の塩基配列と70%以上の同一性を有し、ギ酸脱水素酵素活性を有するタンパク質をコードするDNA、
(f)配列番号2の塩基配列において、1または数個の塩基が欠失、置換、挿入または付加された塩基配列からなり、ギ酸脱水素酵素活性を有するタンパク質をコードするDNA。
(3) A gene comprising the following DNA (d), (e) or (f):
(D) DNA consisting of the base sequence of SEQ ID NO: 2,
(E) DNA encoding a protein having 70% or more identity with the base sequence of SEQ ID NO: 2 and having formate dehydrogenase activity,
(F) DNA encoding a protein having a formate dehydrogenase activity, comprising a base sequence in which one or several bases are deleted, substituted, inserted or added in the base sequence of SEQ ID NO: 2.
(4)(2)または(3)記載の遺伝子を含む組換えベクター。 (4) A recombinant vector comprising the gene according to (2) or (3).
(5)(2)または(3)記載の遺伝子を宿主に導入してなる形質転換体。 (5) A transformant obtained by introducing the gene according to (2) or (3) into a host.
(6)宿主が大腸菌である、(5)記載の形質転換体。 (6) The transformant according to (5), wherein the host is Escherichia coli.
(7)(5)または(6)記載の形質転換体を培養し、培養物からギ酸脱水素酵素活性を有するタンパク質を採取することを含む、ギ酸脱水素酵素の製造方法。 (7) A method for producing formate dehydrogenase, comprising culturing the transformant according to (5) or (6) and collecting a protein having formate dehydrogenase activity from the culture.
(8)酵素的還元反応系に、(1)記載のタンパク質、または(5)もしくは(6)記載の形質転換体もしくはその処理物を共存させて補酵素を再生する方法。 (8) A method for regenerating a coenzyme by allowing the protein according to (1), the transformant according to (5) or (6) or a processed product thereof to coexist in an enzymatic reduction reaction system.
 本明細書は本願の優先権の基礎である日本国特許出願2013-223317号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2013-223317 which is the basis of the priority of the present application.
 本発明のギ酸脱水素酵素は、比活性が高いという特徴を有している。本発明に係るギ酸脱水素酵素を利用することによって、高価な補酵素を少ない酵素量で再生することができる。また、本発明のギ酸脱水素酵素遺伝子を大腸菌にて発現させることで、メタノールを使わずに、安価にかつ効率的にギ酸脱水素酵素を製造することが可能になる。さらに、本発明のギ酸脱水素酵素は、アルコール、アミン、アルデヒド等の還元反応において、補酵素を効率よく再生させ、高価な補酵素の使用量を大幅に減少させることができる。 The formate dehydrogenase of the present invention is characterized by high specific activity. By using the formate dehydrogenase according to the present invention, an expensive coenzyme can be regenerated with a small amount of enzyme. In addition, by expressing the formate dehydrogenase gene of the present invention in E. coli, it is possible to produce formate dehydrogenase at low cost and efficiently without using methanol. Furthermore, the formate dehydrogenase of the present invention can efficiently regenerate the coenzyme in the reduction reaction of alcohol, amine, aldehyde, etc., and can greatly reduce the amount of expensive coenzyme used.
プラスミドpTRP-pmfdhの構築図を示す。The construction diagram of plasmid pTRP-pmfdh is shown. 組換えPmFDHのpH安定性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the pH stability of recombinant PmFDH. 組換えPmFDHの至適pHを測定した結果を示すグラフである。It is a graph which shows the result of having measured the optimum pH of recombinant PmFDH. 組換えPmFDHの温度安定性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the temperature stability of recombinant PmFDH. 組換えPmFDHの至適温度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the optimal temperature of recombinant PmFDH. 組換えPmFDHの50℃での温度安定性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the temperature stability in 50 degreeC of recombinant PmFDH.
 ギ酸脱水素酵素(酵素番号EC1.2.1.2)は、ギ酸と酸化型ニコチンアミドアデニンジヌクレオチド(NAD+)より、二酸化炭素と還元型ニコチンアミドアデニンジヌクレオチド(NADH)を生成する反応を触媒する酵素である。ギ酸脱水素酵素は、NADH依存型の酵素反応において補酵素再生に利用した場合、安価なギ酸を利用できること、副産物が二酸化炭素であり系内に蓄積しないこと等の利点をもつ有用な酵素である。 Formate dehydrogenase (enzyme number EC 1.2.1.2) is a reaction that produces carbon dioxide and reduced nicotinamide adenine dinucleotide (NADH) from formic acid and oxidized nicotinamide adenine dinucleotide (NAD + ). It is an enzyme that catalyzes. Formate dehydrogenase is a useful enzyme that has advantages such as the availability of inexpensive formic acid and the by-product of carbon dioxide that does not accumulate in the system when used for coenzyme regeneration in NADH-dependent enzyme reactions. .
 一実施形態において本発明は、ギ酸脱水素酵素活性を有するタンパク質、すなわちギ酸脱水素酵素に関する。本発明のギ酸脱水素酵素活性を有するタンパク質として、配列番号1のアミノ酸配列からなるタンパク質が挙げられる。配列番号1のアミノ酸配列からなるタンパク質と機能的に同等のタンパク質、例えば、配列番号1のアミノ酸配列と70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上の同一性を有するアミノ酸配列からなり、ギ酸脱水素酵素活性を有するタンパク質も、本発明のタンパク質に包含される。さらに、配列番号1のアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列からなり、ギ酸脱水素酵素活性を有するタンパク質も、本発明のタンパク質に包含される。数個とは、2~5個、好ましくは2~3個をさす。「1もしくは数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列」は、部分特異的突然変異誘発法等、当業者に周知の方法により、アミノ酸を欠失、置換、挿入または付加することにより取得可能である。 In one embodiment, the present invention relates to a protein having formate dehydrogenase activity, that is, formate dehydrogenase. Examples of the protein having formate dehydrogenase activity of the present invention include a protein consisting of the amino acid sequence of SEQ ID NO: 1. A protein functionally equivalent to the protein consisting of the amino acid sequence of SEQ ID NO: 1, for example, 70% or more, preferably 80% or more, more preferably 90% or more, more preferably 95% or more, of the amino acid sequence of SEQ ID NO: 1, A protein having an amino acid sequence having an identity of 99% or more and having formate dehydrogenase activity is also included in the protein of the present invention. Furthermore, the protein of the present invention includes a protein having an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence of SEQ ID NO: 1 and having formate dehydrogenase activity. . The term “several” refers to 2 to 5, preferably 2 to 3. “Amino acid sequence in which one or several amino acids have been deleted, substituted, inserted or added” is an amino acid deleted, substituted, inserted or added by methods well known to those skilled in the art, such as partial-directed mutagenesis. Can be obtained.
 ギ酸脱水素酵素活性の測定は、20mM ギ酸ナトリウム、1mM NAD+を含む0.1M リン酸バッファー(pH7.5)中で、25℃でのNADHの生成にともなう340nmの吸光度の増加を測定することにより実施できる。 Formate dehydrogenase activity is measured by measuring the increase in absorbance at 340 nm accompanying NADH production at 25 ° C. in 0.1 M phosphate buffer (pH 7.5) containing 20 mM sodium formate and 1 mM NAD +. Can be implemented.
 ギ酸脱水素酵素活性を有するタンパク質とは、上記のような活性測定条件において、配列番号1のアミノ酸配列からなるタンパク質を用いた場合の10%以上、好ましくは40%以上、より好ましくは60%以上、さらに好ましくは80%以上の活性を示すタンパク質のことをいう。 The protein having formate dehydrogenase activity is 10% or more, preferably 40% or more, more preferably 60% or more when a protein comprising the amino acid sequence of SEQ ID NO: 1 is used under the activity measurement conditions as described above. More preferably, it refers to a protein exhibiting an activity of 80% or more.
 本発明のタンパク質は、好ましくはピキア・メタノリカ、例えば、ピキア・メタノリカ(Pichia methanolica IAM 12901)株から取得できる。この株は、東京大学分子細胞生物学研究所 IAM カルチャーコレクションに保存され、現在は、理化学研究所バイオリソースセンター微生物材料開発室(JCM)に移管されている。 The protein of the present invention can be obtained preferably from Pichia methanolica, for example, Pichia methanolica IAM 12901 strain. This strain has been preserved in the IAM Culture Collection, Institute for Molecular Cell Biology, University of Tokyo, and has now been transferred to the RIKEN BioResource Center Microbial Materials Development Department (JCM).
 本発明のギ酸脱水素酵素活性を有するタンパク質は、上記のような微生物から取得される天然酵素であってもよいし、遺伝子組換え技術を利用して生産される組換え酵素であってもよい。 The protein having formate dehydrogenase activity of the present invention may be a natural enzyme obtained from a microorganism as described above, or may be a recombinant enzyme produced using a gene recombination technique. .
 本発明はまた、ギ酸脱水素酵素をコードする遺伝子(ギ酸脱水素酵素遺伝子)に関する。本発明のギ酸脱水素酵素をコードする遺伝子として、配列番号2の塩基配列からなる遺伝子が挙げられる。遺伝子には、核酸、および1本鎖、2本鎖または3本鎖のDNAまたはRNAが包含される。配列番号2の塩基配列からなる遺伝子と機能的に同等の遺伝子、例えば、配列番号2の塩基配列と70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上の同一性を有する塩基配列からなり、ギ酸脱水素酵素活性を有するタンパク質をコードする遺伝子も、本発明の遺伝子に包含される。さらに、配列番号2の塩基配列において、1または数個の塩基が欠失、置換、挿入または付加された塩基配列からなり、ギ酸脱水素酵素活性を有するタンパク質をコードする遺伝子も、本発明の遺伝子に包含される。数個とは、2~5個、好ましくは2~3個をさす。 The present invention also relates to a gene encoding formate dehydrogenase (formate dehydrogenase gene). Examples of the gene encoding the formate dehydrogenase of the present invention include a gene consisting of the nucleotide sequence of SEQ ID NO: 2. Genes include nucleic acids and single-stranded, double-stranded or triple-stranded DNA or RNA. A gene functionally equivalent to the gene consisting of the nucleotide sequence of SEQ ID NO: 2, for example, 70% or more, preferably 80% or more, more preferably 90% or more, more preferably 95% or more, of the nucleotide sequence of SEQ ID NO: 2, A gene encoding a protein consisting of a base sequence having an identity of 99% or more and having formate dehydrogenase activity is also included in the gene of the present invention. Furthermore, a gene encoding a protein consisting of a base sequence in which one or several bases are deleted, substituted, inserted or added in the base sequence of SEQ ID NO: 2 and having formate dehydrogenase activity is also a gene of the present invention. Is included. The term “several” refers to 2 to 5, preferably 2 to 3.
 配列番号2の塩基配列からなる遺伝子と機能的に同等の遺伝子には、配列番号2の塩基配列からなる遺伝子と相補的な塩基配列からなる遺伝子とストリンジェントな条件下でハイブリダイズし、かつギ酸脱水素酵素活性を有するタンパク質をコードする遺伝子が含まれる。ストリンジェントな条件とは、特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、高ストリンジェントな条件が好ましい。高ストリンジェントな条件とは、ハイブリダイゼーション後の洗浄において、例えば65℃、0.1×SSCおよび0.1% SDSで洗浄する条件である。 A gene functionally equivalent to the gene consisting of the base sequence of SEQ ID NO: 2 hybridizes under stringent conditions with a gene consisting of a base sequence complementary to the gene consisting of the base sequence of SEQ ID NO: 2, and formic acid A gene encoding a protein having dehydrogenase activity is included. The stringent condition means a condition in which a specific hybrid is formed and a non-specific hybrid is not formed, and a highly stringent condition is preferable. Highly stringent conditions are conditions in which, for example, washing at 65 ° C., 0.1 × SSC and 0.1% SDS is performed after washing after hybridization.
 所望の遺伝子をクローニングにより取得する方法は、分子生物学の分野において周知である。例えば、制限エンドヌクレアーゼ消化により適したゲノムライブラリを作り、所望の遺伝子配列に相補的なプローブを用いてスクリーニングすることができる。配列が単離されたら、ポリメラーゼ連鎖反応(PCR)のような標準的増幅法を用いてDNAを増幅し、形質転換(遺伝子導入)に適した量のDNAを得ることができる。 A method for obtaining a desired gene by cloning is well known in the field of molecular biology. For example, a suitable genomic library can be prepared by restriction endonuclease digestion and screened using a probe complementary to the desired gene sequence. Once the sequence is isolated, the DNA can be amplified using standard amplification methods such as polymerase chain reaction (PCR) to obtain an amount of DNA suitable for transformation (gene transfer).
 遺伝子のクローニングに用いるゲノムDNAライブラリーの作製、ハイブリダイゼーション、PCR、プラスミドの調製、DNAの切断および連結、形質転換等の方法は、例えば、Sambrook,J et al.,Molecular Cloning 2nd ed.,9.47-9.58,Cold Spring Harbor Lab.press(1989)に記載されている。 Methods for preparing a genomic DNA library used for gene cloning, hybridization, PCR, plasmid preparation, DNA cleavage and ligation, transformation, and the like are described in, for example, Sambrook, J et al. , Molecular Cloning 2nd ed. , 9.47-9.58, Cold Spring Harbor Lab. press (1989).
 本発明のギ酸脱水素酵素の製造方法は、宿主に上記ギ酸脱水素酵素遺伝子を導入してなる形質転換体を培養し、培養物からギ酸脱水素酵素活性を有するタンパク質を採取することを特徴とする。宿主にギ酸脱水素酵素遺伝子を導入してなる形質転換体は、当技術分野で公知の方法で製造できる。本発明において、遺伝子の導入は、遺伝子の機能を有するポリヌクレオチドを組換え核酸として宿主に導入する全ての場合を含む。ポリヌクレオチドは、核酸、および1本鎖、2本鎖または3本鎖のDNAまたはRNAを包含する。遺伝子の導入には、組換えベクターによって導入する場合や、PCR等で合成した核酸を用いて相同組換えによって導入する場合が含まれる。 The method for producing formate dehydrogenase of the present invention is characterized by culturing a transformant obtained by introducing the formate dehydrogenase gene into a host, and collecting a protein having formate dehydrogenase activity from the culture. To do. A transformant obtained by introducing a formate dehydrogenase gene into a host can be produced by a method known in the art. In the present invention, gene introduction includes all cases where a polynucleotide having a gene function is introduced into a host as a recombinant nucleic acid. Polynucleotides include nucleic acids and single, double or triple stranded DNA or RNA. The introduction of a gene includes a case of introduction by a recombinant vector and a case of introduction by homologous recombination using a nucleic acid synthesized by PCR or the like.
 遺伝子を導入する宿主の種類は限定されず、細菌、真菌、各種の酵母などの単細胞真核生物、または動物もしくは植物の生細胞を任意に選択できるが、本発明においては、微生物が好ましく、特に大腸菌が好ましい。宿主大腸菌は通常遺伝子工学に用いられる大腸菌K-12株の中から適切なものを選択する。代表的なものとしてJM105やJM109が挙げられるが、DH5あるいは誘導型の発現系に用いられるBL21、N99cI+などを使用してもよい。 The type of host into which the gene is to be introduced is not limited, and unicellular eukaryotes such as bacteria, fungi, various yeasts, or live cells of animals or plants can be arbitrarily selected. E. coli is preferred. As the host E. coli, an appropriate one is selected from E. coli K-12 strains usually used for genetic engineering. Representative examples include JM105 and JM109, but DH5 or BL21, N99cI + used in an inducible expression system may be used.
 遺伝子は、より好ましくは、遺伝子の発現を強化する発現ベクターによって導入される。発現ベクターは、導入しようとする遺伝子を、その発現を強化する種々のDNA断片またはRNA断片と融合させたものである。好ましくは、発現ベクターは、遺伝子を恒常的または誘導的に発現させるための転写プロモーター、転写ターミネーター、選択マーカーを含み得る。所望によりエンハンサーなどのシスエレメント、オペレーター、プロモーターを制御する遺伝子が含まれていてもよい。 The gene is more preferably introduced by an expression vector that enhances the expression of the gene. An expression vector is obtained by fusing a gene to be introduced with various DNA fragments or RNA fragments that enhance the expression. Preferably, the expression vector may contain a transcription promoter, transcription terminator, and selection marker for constitutively or inducibly expressing the gene. If desired, a gene that controls a cis element such as an enhancer, an operator, or a promoter may be contained.
 ベクターとしては、限定はされないが、大腸菌を宿主とする場合によく利用されるプラスミド、pUC18、pUC19、pUC118、pUC119、pSC101、pBR322、pHSG298、pVC18、pVC19、pTrc99A、pMal-c2、pGEX2T、pTV118N、pTV119N、pTRP等を好ましく使用でき、その他にもS.cerevisiaeを宿主とする場合によく利用されるYEp13、YEp24、YCp50、pRS414、pRS415、pRS404、pAUR101、pKG1等も利用でき、枯草菌を宿主とする場合によく利用されるプラスミドpUB110、pC194等も利用できる。更に、pBI122、pBI1101その他の各種のものも限定なく使用できる。 Examples of the vector include, but are not limited to, plasmids frequently used when E. coli is used as a host, pUC18, pUC19, pUC118, pUC119, pSC101, pBR322, pHSG298, pVC18, pVC19, pTrc99A, pMal-c2, pGEX2T, pTV118N, pTV119N, pTRP and the like can be preferably used. YEp13, YEp24, YCp50, pRS414, pRS415, pRS404, pAUR101, pKG1, etc. often used when cerevisiae is used as a host, and plasmids pUB110, pC194, etc. often used when Bacillus subtilis is used as a host are also used. it can. Further, pBI122, pBI1101 and other various types can be used without limitation.
 大腸菌での発現用の転写プロモーターとして、例えばトリプトファン合成酵素(trp)、ラクトースオペロン(lac)、あるいはこれらを融合したtacおよびtrcプロモーター、λファージPLおよびPRプロモーター、T7ファージのプロモーター等が例として挙げられる。しかし、プロモーターが強力すぎると目的タンパク質の大腸菌内における発現が過多となり、その結果、目的タンパク質が封入体を形成しやすくなり、その後の分離および精製工程が困難となる。ゆえに可溶性画分への発現あるいは培養上清中へのタンパク質の分泌を可能にすべく最適なプロモーターを選択する必要があり、このような点を考慮するとトリプトファンプロモーター(trp)が望ましい。トリプトファンプロモーター(trp)を有する発現ベクターとしては、pTRP(Clinica Chimica Acta 237,43-58(1995))等が挙げられる。 Examples of transcription promoters for expression in E. coli include tryptophan synthase (trp), lactose operon (lac), tac and trc promoters fused with these, λ phage PL and PR promoters, T7 phage promoters, and the like. It is done. However, if the promoter is too strong, the target protein is excessively expressed in E. coli, and as a result, the target protein tends to form inclusion bodies, making subsequent separation and purification steps difficult. Therefore, it is necessary to select an optimal promoter so as to enable expression in the soluble fraction or secretion of the protein into the culture supernatant. In view of such points, tryptophan promoter (trp) is desirable. Examples of the expression vector having a tryptophan promoter (trp) include pTRP (Clinica Chimica Acta 237, 43-58 (1995)).
 選択マーカーの例としては、ホルムアルデヒド耐性マーカー、カナマイシン、アンピシリン、テトラサイクリン、クロラムフェニコールなどの薬剤耐性マーカー、ロイシン、ヒスチジン、リジン、メチオニン、アルギニン、トリプトファン、ウラシルなどの栄養要求性マーカーが挙げられるがこれに限定されない。 Examples of selectable markers include formaldehyde resistance markers, drug resistance markers such as kanamycin, ampicillin, tetracycline, chloramphenicol, and auxotrophic markers such as leucine, histidine, lysine, methionine, arginine, tryptophan, and uracil. It is not limited to this.
 一般的な組換えベクターの構築方法としては、例えば、PCR法等で調製した遺伝子断片を、適当な制限酵素とリガーゼを用いて組換えベクターに組み込む方法が挙げられる。好ましくは市販のライゲーションキット、例えばLigation high(東洋紡社製)を用いて、規定の条件にてライゲーション反応を行うことにより組換えベクターを得ることができる。また、これらのベクターを、必要であればボイル法、アルカリSDS法、磁性ビーズ法およびそれらの原理を使用した市販されているキット等により精製し、さらにエタノール沈殿法、ポリエチレングリコール沈殿法などの濃縮手段により濃縮することができる。 As a general method for constructing a recombinant vector, for example, a method of incorporating a gene fragment prepared by PCR or the like into a recombinant vector using an appropriate restriction enzyme and ligase can be mentioned. Preferably, a recombinant vector can be obtained by performing a ligation reaction under defined conditions using a commercially available ligation kit such as Ligation High (Toyobo Co., Ltd.). If necessary, these vectors are purified by a boil method, an alkaline SDS method, a magnetic bead method and a commercially available kit using these principles, and further concentrated by an ethanol precipitation method, a polyethylene glycol precipitation method or the like. It can be concentrated by means.
 遺伝子の導入方法としては、特に制限されないが、例えば、電気パルス法、コンピテントセル法、塩化カルシウム法、プロトプラスト法、パーティクルガン法、エレクトロポレーション法等を挙げることができる。具体的には、大腸菌への遺伝子の導入には、ハナハンの方法等を利用でき、酵母への遺伝子の導入には、リチウムイオン法等を利用できる。 The gene introduction method is not particularly limited, and examples thereof include an electric pulse method, a competent cell method, a calcium chloride method, a protoplast method, a particle gun method, and an electroporation method. Specifically, the Hanahan method or the like can be used for gene introduction into E. coli, and the lithium ion method or the like can be used for gene introduction into yeast.
 相同組換えによってゲノム上の任意の位置に目的の遺伝子を挿入する方法は、ゲノム上の配列と相同な配列に目的遺伝子をプロモーターとともに挿入し、このDNA断片をエレクトロポレーションによって細胞内に導入して相同組換えを起こさせることにより実施できる。ゲノムへの導入の際には目的遺伝子と選択マーカー遺伝子を連結したDNA断片を用いると容易に相同組換えが起こった株を選抜することができる。また、薬剤耐性遺伝子と特定の条件下で致死的になる遺伝子を連結した遺伝子をゲノム上に上記の方法で相同組換えによって挿入し、その後、薬剤耐性遺伝子と特定の条件下で致死的になる遺伝子を置き換える形で目的遺伝子を相同組換えを利用して導入することもできる。 In the method of inserting a target gene at an arbitrary position on the genome by homologous recombination, the target gene is inserted into a sequence homologous to the sequence on the genome together with a promoter, and this DNA fragment is introduced into the cell by electroporation. Can be carried out by causing homologous recombination. At the time of introduction into the genome, a strain in which homologous recombination has occurred can be easily selected by using a DNA fragment in which a target gene and a selection marker gene are linked. In addition, a gene linked to a drug resistance gene and a gene that becomes lethal under specific conditions is inserted into the genome by homologous recombination by the above method, and then becomes lethal under specific conditions with the drug resistance gene. The target gene can also be introduced using homologous recombination in the form of replacing the gene.
 一般的に形質転換体を利用する目的物の生産方法において認められることであるが、本発明のギ酸脱水素酵素の製造方法においても、導入遺伝子の選択、導入すべき宿主の選択、発現ベクターの導入手段とそれに適したDNAまたはRNAの構築方法の選択、培地もしくはこれに対する添加物の種類や濃度の選択、形質転換体の培養条件または生育条件の選択等の要因が、ギ酸脱水素酵素の生産量に影響する場合がある。 Generally, it is recognized in the production method of the target product using the transformant. In the production method of formate dehydrogenase of the present invention, the selection of the transgene, the selection of the host to be introduced, the expression vector Factors such as selection of introduction means and construction method of DNA or RNA suitable for it, selection of medium or additive type and concentration, culture condition or growth condition of transformant, etc. are the production of formate dehydrogenase. May affect quantity.
 上記形質転換体を培地で培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。大腸菌や酵母菌等の微生物を宿主として得られた形質転換体を培養する培地としては、微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。 The method of culturing the transformant in a medium is performed according to a normal method used for host culture. As a medium for culturing transformants obtained using microorganisms such as Escherichia coli and yeast as a host, the medium contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the microorganisms. As long as the medium can be used, either a natural medium or a synthetic medium may be used.
 炭素源としては資化可能な炭素化合物であればよく、例えば、グリセリンなどのポリオール類、またはピルビン酸、コハク酸もしくはクエン酸等の有機酸類を使用することができる。また、窒素源としては利用可能な窒素化合物であればよく、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物、またはアンモニアもしくはその塩などを使用することができる。その他、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛などの塩類、特定のアミノ酸、特定のビタミン、消泡剤なども必要に応じて使用してもよい。また、イソプロピル-β-D-チオガラクトピラノシドなどのタンパク質発現誘導剤を必要に応じて培地に添加してもよい。 As the carbon source, any carbon compound that can be assimilated may be used. For example, polyols such as glycerin, or organic acids such as pyruvic acid, succinic acid, or citric acid can be used. The nitrogen source may be any available nitrogen compound. For example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean meal alkaline extract, or ammonia or a salt thereof can be used. In addition, salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese, zinc, a specific amino acid, a specific vitamin, an antifoaming agent, and the like may be used as necessary. In addition, a protein expression inducer such as isopropyl-β-D-thiogalactopyranoside may be added to the medium as necessary.
 培養は、通常、振盪培養または通気攪拌培養などの好気的条件下、好ましくは0~40℃、より好ましくは10~37℃、特に好ましくは15~37℃で培養を行う。培養期間中、培地のpHは宿主の発育が可能で、生産されたギ酸脱水素酵素の活性が損なわれない範囲で適宜変更することができるが、好ましくはpH4~8程度の範囲である。pHの調整は、無機または有機酸、アルカリ溶液等を用いて行う。培養中は必要に応じてアンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。 The culture is usually carried out under aerobic conditions such as shaking culture or aeration and agitation culture, preferably at 0 to 40 ° C., more preferably at 10 to 37 ° C., particularly preferably at 15 to 37 ° C. During the culturing period, the pH of the medium can be changed as appropriate as long as the growth of the host is possible and the activity of the produced formate dehydrogenase is not impaired, but it is preferably in the range of about pH 4-8. The pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like. During culture, an antibiotic such as ampicillin or tetracycline may be added to the medium as necessary.
 続いて、形質転換体の培養により可溶化発現したギ酸脱水素酵素を、培養物から採取する。培養物には、培養液、培養上清、培養細胞、培養菌体、細胞または菌体の破砕物が包含される。採取方法は、通常行われる細胞または菌体の破砕物からの抽出だけでなく、場合によっては、適当な抽出溶媒を用いて培養液からも直接抽出できる。利用する宿主の種類によっては、ギ酸脱水素酵素の少なくとも一部が宿主細胞内または細胞表面に止まる場合があるが、細胞膜または細胞壁の破壊や、適宜な抽出溶媒による抽出等の公知の各種操作を経て、採取することができる。 Subsequently, formate dehydrogenase expressed solubilized by culturing the transformant is collected from the culture. The culture includes a culture solution, a culture supernatant, cultured cells, cultured cells, cells or disrupted cells. The collection method is not only extraction from cells or disrupted cells or cells that are usually performed, but in some cases it can also be extracted directly from the culture solution using an appropriate extraction solvent. Depending on the type of host used, at least part of the formate dehydrogenase may remain in the host cell or on the cell surface, but various known operations such as disruption of the cell membrane or cell wall and extraction with an appropriate extraction solvent may be performed. After that, it can be collected.
 宿主の対数増殖期を過ぎたときに上記温度範囲に設定することでギ酸脱水素酵素遺伝子が発現し、宿主内に非常に高い比活性を示すギ酸脱水素酵素を製造することができる。培養後、目的のギ酸脱水素酵素が宿主内に生産されるため菌体または細胞を破砕し、粗酵素懸濁液を調製する。この粗酵素懸濁液には、非常に高い比活性を示すギ酸脱水素酵素が含まれる。したがって、得られた粗酵素懸濁液をそのまま利用してもよい。なお、得られた粗酵素懸濁液からギ酸脱水素酵素を単離精製することもできる。このとき、タンパク質の単離精製に用いられる一般的な生化学的方法、例えば、硫酸アンモニウム沈殿、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等を単独でまたは適宜組み合わせて用いることができる。単離精製されたギ酸脱水素酵素は、所定のpHの緩衝液等に懸濁された状態で利用することができる。 When the host's logarithmic growth phase has passed, the formate dehydrogenase gene is expressed by setting to the above temperature range, and formate dehydrogenase exhibiting a very high specific activity in the host can be produced. After culturing, the target formate dehydrogenase is produced in the host, so the cells or cells are disrupted to prepare a crude enzyme suspension. This crude enzyme suspension contains formate dehydrogenase having a very high specific activity. Therefore, the obtained crude enzyme suspension may be used as it is. Formate dehydrogenase can also be isolated and purified from the resulting crude enzyme suspension. At this time, general biochemical methods used for protein isolation and purification, such as ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography and the like, can be used alone or in appropriate combination. The isolated and purified formate dehydrogenase can be used in a state suspended in a buffer solution having a predetermined pH.
 酵素的還元反応系に、上記タンパク質、または該タンパク質を生産する形質転換体もしくはその処理物を共存させて補酵素を再生することができる。つまり、酵素的還元反応系に、本発明で得られたギ酸脱水素酵素を共存させて補酵素を効率良く再生することができる。形質転換体の処理物とは、例えば、粗抽出液、粗酵素懸濁液、培養菌体凍結乾燥生物体、アセトン乾燥生物体、またはそれらの菌体の磨砕物等を意味する。更にそれらは、酵素自体あるいは菌体のまま公知の手段で固定化して用いてもよい。固定化は当業者に周知の方法(例えば、架橋法、物理的吸着法、包括法等)で実施できる。反応は、10℃~70℃、好ましくは20℃~60℃、pH4~10、好ましくはpH5.5~9.5で行う。また、基質の仕込み濃度は0.1%~90%(w/v)であるが、基質を連続的に添加することもできる。反応は、バッチ法または連続方式で行い得る。反応は、固定化酵素、膜リアクター等を利用して行うことも可能である。以上のように、本発明によれば、アルコール、アミン、アルデヒド等を酵素的に製造するための還元反応において、補酵素を効率よく再生させ、高価な補酵素の使用量を大幅に減少させることができる。 Coenzyme can be regenerated by coexisting the above protein, a transformant producing the protein, or a processed product thereof in the enzymatic reduction reaction system. That is, the coenzyme can be efficiently regenerated by allowing the formate dehydrogenase obtained in the present invention to coexist in the enzymatic reduction reaction system. The treated product of the transformant means, for example, a crude extract, a crude enzyme suspension, a cultured cell freeze-dried organism, an acetone-dried organism, or a ground product of these cells. Furthermore, they may be used by immobilizing them with a known means in the form of enzymes or cells. Immobilization can be carried out by methods well known to those skilled in the art (for example, crosslinking method, physical adsorption method, entrapment method, etc.). The reaction is carried out at 10 ° C. to 70 ° C., preferably 20 ° C. to 60 ° C., pH 4 to 10, preferably pH 5.5 to 9.5. The substrate concentration is 0.1% to 90% (w / v), but the substrate can also be added continuously. The reaction can be carried out batchwise or continuously. The reaction can also be performed using an immobilized enzyme, a membrane reactor, or the like. As described above, according to the present invention, in the reduction reaction for enzymatically producing alcohol, amine, aldehyde, etc., the coenzyme can be efficiently regenerated and the amount of expensive coenzyme used can be greatly reduced. Can do.
 次に本発明を、実施例を参照することにより説明する。本発明の技術的範囲は、以下の実施例によって限定されない。実施例では、本発明に係るタンパク質を「組換えPmFDH」と呼ぶ。 Next, the present invention will be described with reference to examples. The technical scope of the present invention is not limited by the following examples. In the examples, the protein according to the invention is called “recombinant PmFDH”.
〔実施例1:組換えPmFDH発現系の構築〕
 ギ酸脱水素酵素(FDH)のアミノ酸配列がすでに報告されているメチロトローフ酵母カンジダ・ボイジニイ(Accesion No.AJ245934)と出芽酵母サッカロミセス・セレビシエ(Accesion No.Z75296.1)のFDH配列をアライメントし、相同性の高い配列としてTPFHPAYおよびDYPRQDIIの2ヶ所を見出した。両アミノ酸配列をもとに2種類のPCRプライマー、FDH-inf(5’-GGTAAGCACGCTGCTGATGAA-3’)(配列番号3)およびFDH-inr(5’―TAATATCTTGTGGTCTGTAATC-3’)(配列番号4)を作製した。鋳型となるピキア・メタノリカのゲノムDNAは、GenとるくんTM(酵母用)High Recovery(タカラバイオ社製)を用いて調製した。作製した両プライマーを用いてPCRを行った結果、約1,000bpの増幅断片を得ることができた。
[Example 1: Construction of recombinant PmFDH expression system]
The amino acid sequences of formate dehydrogenase (FDH) are aligned, and the FDH sequences of methylotrophic yeasts Candida voyinii (Accession No. AJ245934) and budding yeast Saccharomyces cerevisiae (Accession No. Z75296.1) are aligned and homologous. Two sites, TPFHPAY and DYPRQDII, were found as high sequences. Based on both amino acid sequences, two types of PCR primers, FDH-inf (5′-GGTAAGCACGCTGCTGGATGAA-3 ′) (SEQ ID NO: 3) and FDH-inr (5′-TAATATCTTGTGGTCTGTAATC-3 ′) (SEQ ID NO: 4) were prepared. did. The genomic DNA of Pichia methanolica used as a template was prepared using Gen Torukun (for yeast) High Recovery (manufactured by Takara Bio Inc.). As a result of PCR using both the prepared primers, an amplified fragment of about 1,000 bp could be obtained.
 PCR反応は、(50μLあたり)1U KOD plus polymerase(東洋紡社製)、10pg 鋳型DNA、0.3μM センスプライマー、0.3μM アンチセンスプライマー、0.2mM dNTP Mix、1mM MgSO、10×バッファーにて、94℃/15秒(変性)、50℃/30秒(アニーリング)、68℃/1分30秒(伸長)を30サイクル繰り返した。 PCR reaction (per 50 μL) with 1U KOD plus polymerase (manufactured by Toyobo), 10 pg template DNA, 0.3 μM sense primer, 0.3 μM antisense primer, 0.2 mM dNTP Mix, 1 mM MgSO 4 , 10 × buffer 94 ° C./15 seconds (denaturation), 50 ° C./30 seconds (annealing), and 68 ° C./1 minute 30 seconds (extension) were repeated 30 cycles.
 得られたFDHの内部配列から、DNA Walking SpeedUPTM Premix Kit(Seegene社製)を用いることで、全長ピキア・メタノリカ由来FDH配列を獲得した。具体的には、N末端配列解析用としてPCRプライマー,pmfdh-wkf1(5’-GGAGAACCATGAGAACA-3’:1st PCR用)(配列番号5)およびpmfdh-wkf2(5’-ATGAGAAACAAATACGGTGCC-3’:2nd PCR用)(配列番号6)を、C末端解析用としてpmfdh-wkr(5’-CCTTTGAAATGTAACCTGGGTG-3’:1st PCR用)(配列番号7)およびpmfdh-wkr2(5’-TAATGTCGGCATCTGGGATT-3’:2nd PCR用)(配列番号8)を用いた。 A full-length Pichia methanolica-derived FDH sequence was obtained from the internal sequence of the obtained FDH by using DNA Walking SpeedUP Premix Kit (manufactured by Seegene). Specifically, PCR primers, pmfdh-wkf1 (5′-GGAGAACCCATGAGAACA-3 ′: for 1st PCR) (SEQ ID NO: 5) and pmfdh-wkf2 (5′-ATGAGAAACAAATACGGTGCCC-3 ′: 2nd PCR for N-terminal sequence analysis (SEQ ID NO: 6) for pmfdh-wkr (5'-CCTTGAAATGTAACCTGGGTG-3 ': 1st PCR) (SEQ ID NO: 7) and pmfdh-wkr2 (5'-TAATGTCGCATCATGGATT-3': 2nd PCR (SEQ ID NO: 8) was used.
 こうして得られたピキア・メタノリカ由来のFDH遺伝子の塩基配列を配列番号2に、アミノ酸配列を配列番号1に示す。 The base sequence of the FDH gene derived from Pichia methanolica thus obtained is shown in SEQ ID NO: 2, and the amino acid sequence is shown in SEQ ID NO: 1.
 ピキア・メタノリカ由来のFDH遺伝子を大腸菌で発現させるために、FDH遺伝子を挿入したプラスミドpTRP-pmfdhを、図1に示す構築図にしたがって作製した。まず、ピキア・メタノリカの染色体DNAを鋳型にして、下記に示すプライマーを用いてPCRを行い、FDH遺伝子を増幅させ、アガロース電気泳動により約1.1kbのFDH遺伝子のDNA断片を確認した。
 センスプライマー(SacI-pmfdh):
5’-GAGCTCATGAAGGTCGTTTTAGTTT-3’(配列番号9)
 アンチセンスプライマー(pmfdh-SalI):
5’-GTCGACTTAGACCTTCTTGTCAGCA-3’(配列番号10)
In order to express the FDH gene derived from Pichia methanolica in E. coli, a plasmid pTRP-pmfdh into which the FDH gene was inserted was prepared according to the construction diagram shown in FIG. First, PCR was performed using Pichia methanolica chromosomal DNA as a template and the primers shown below to amplify the FDH gene, and an approximately 1.1 kb DNA fragment of the FDH gene was confirmed by agarose electrophoresis.
Sense primer (SacI-pmfdh):
5′-GAGCTCCATGAAGGTCGTTTTTAGTT-3 ′ (SEQ ID NO: 9)
Antisense primer (pmfdh-SalI):
5′-GTCGACTTAGACACTTCTTTGTCAGCA-3 ′ (SEQ ID NO: 10)
 PCR反応は、(50μLあたり)1U KOD plus polymerase(東洋紡社製)、10pg 鋳型DNA、0.3μM センスプライマー、0.3μM アンチセンスプライマー、0.2mM dNTP Mix、1mM MgSO、10×バッファーにて、94℃/2分(変性)、55℃/30秒(アニーリング)、68℃/1分30秒(伸長)を30サイクル繰り返した。 PCR reaction (per 50 μL) with 1U KOD plus polymerase (manufactured by Toyobo), 10 pg template DNA, 0.3 μM sense primer, 0.3 μM antisense primer, 0.2 mM dNTP Mix, 1 mM MgSO 4 , 10 × buffer 94 ° C./2 minutes (denaturation), 55 ° C./30 seconds (annealing), and 68 ° C./1 minute 30 seconds (elongation) were repeated 30 cycles.
 得られたFDH遺伝子のPCR産物をそれぞれ制限酵素SacIおよびSalI(タカラバイオ社製)で処理を行い、アガロース電気泳動後、GFXTM PCR DNA and Gel Band Purification Kit(GEヘルスケア・ジャパン社製)により回収した。回収した断片は、LigaFastTM Rapid DNA Ligation System(プロメガ社製)を用いて、予め制限酵素SacIおよびSalI(タカラバイオ社製)で処理した発現ベクターpTRP(2.9kb)に導入した。次いで、大腸菌HB101株を形質転換し、組換え体pTRP-pmfdh/HB101を得た。 The PCR products of the obtained FDH gene were respectively treated with restriction enzymes SacI and SalI (Takara Bio), and after agarose electrophoresis, GFX PCR DNA and Gel Band Purification Kit (GE Healthcare Japan) It was collected. The recovered fragment was introduced into an expression vector pTRP (2.9 kb) previously treated with restriction enzymes SacI and SalI (manufactured by Takara Bio Inc.) using LigaFast Rapid DNA Ligation System (manufactured by Promega). Next, E. coli HB101 strain was transformed to obtain recombinant pTRP-pmfdh / HB101.
〔実施例2:組換えPmFDHのフラスコ培養〕
 形質転換体のバッチ培養によるピキア・メタノリカ由来の組換えPmFDHの生産を以下の方法で実施した。
[Example 2: Flask culture of recombinant PmFDH]
Production of recombinant PmFDH derived from Pichia methanolica by batch culture of transformants was carried out by the following method.
 プラスミドpTRP-pmfdhを形質転換した大腸菌HB101株について、50μg/mLのアンピシリンを含むLB培地2Lを用いて37℃、160rpmで9時間バッチ培養を行った。菌体の増殖は、培養液の600nmでの吸光度を測定して調べた。その結果、プラスミドpTRP-pmfdhで形質転換した大腸菌HB101株のバッチ培養菌体を得ることができた。 Escherichia coli HB101 strain transformed with plasmid pTRP-pmfdh was subjected to batch culture for 9 hours at 37 ° C. and 160 rpm using 2 L of LB medium containing 50 μg / mL ampicillin. Cell growth was examined by measuring the absorbance of the culture at 600 nm. As a result, a batch culture of Escherichia coli HB101 strain transformed with the plasmid pTRP-pmfdh could be obtained.
 発現量を確認するため、この培養液を遠心分離し(8,000rpm、15分、4℃、ベックマン・コールター社製 Model HP-26XP Centrifuge)、湿菌体を回収した。そして、得られた湿菌体5gを3mLの抽出バッファー(10mM リン酸バッファー、pH7.5)で懸濁し、超音波破砕後(MISONIX社製 astrason ULTRASONIC PROCESSOTR XL)、遠心分離し(18,000×g、15分、4℃、ベックマン・コールター社製 Model HP-26XP Centrifuge)、粗抽出液を調製した。 In order to confirm the expression level, this culture solution was centrifuged (8,000 rpm, 15 minutes, 4 ° C., Model HP-26XP Centrifuge manufactured by Beckman Coulter), and the wet cells were collected. Then, 5 g of the obtained wet cells were suspended in 3 mL of extraction buffer (10 mM phosphate buffer, pH 7.5), and after ultrasonic disruption (MISSONIX Astrason ULTRASONIC PROCESSOTR XL) and centrifuged (18,000 × g, 15 minutes, 4 ° C., Model HP-26XP (manufactured by Beckman Coulter, Inc.) and a crude extract were prepared.
 組換えPmFDHの活性測定は次のような方法で行った。リン酸バッファー(0.1M、pH7.5)、NAD+(1mM、オリエンタル酵母工業社製)、ギ酸ナトリウム(20mM、ナカライテスク社製)から構成される反応液に組換えPmFDHを添加したのち、25℃で340nmの吸光度変化を測定し、組換えPmFDHのギ酸脱水素酵素活性を算出した。この反応条件における1分間あたりの1μmolのNADHの生成量を1単位とし、ギ酸脱水素酵素活性とした。得られた酵素液のギ酸脱水素酵素活性を測定したところ、培地1mLあたり0.24U/mLの活性が確認できた。 The activity of recombinant PmFDH was measured by the following method. After adding recombinant PmFDH to a reaction solution composed of phosphate buffer (0.1 M, pH 7.5), NAD + (1 mM, manufactured by Oriental Yeast Co., Ltd.), sodium formate (20 mM, manufactured by Nacalai Tesque), The absorbance change at 340 nm was measured at 25 ° C., and the formate dehydrogenase activity of the recombinant PmFDH was calculated. The production amount of 1 μmol of NADH per minute under these reaction conditions was defined as 1 unit, which was defined as formate dehydrogenase activity. When the formate dehydrogenase activity of the obtained enzyme solution was measured, an activity of 0.24 U / mL per 1 mL of the medium was confirmed.
〔実施例3:組換えPmFDHの精製〕
 大量精製を行うため、6Lの培養液から得られた湿菌体を10mM リン酸バッファー(pH7.5)に懸濁したのち、超音波破砕にて菌体破砕を行い、得られた破砕画分を遠心分離し(18,000×g、15分、4℃、ベックマン・コールター社製 Model HP-26XP Centrifuge)、粗抽出液を調製した。得られた粗抽出液を用いて以下の方法で精製を行った。
[Example 3: Purification of recombinant PmFDH]
For mass purification, the wet cells obtained from 6 L of the culture solution are suspended in 10 mM phosphate buffer (pH 7.5), and then the cells are disrupted by ultrasonic disruption. Was centrifuged (18,000 × g, 15 minutes, 4 ° C., Model HP-26XP Centrifuge manufactured by Beckman Coulter) to prepare a crude extract. Purification was performed by the following method using the obtained crude extract.
 バッファーA(10mM リン酸バッファー、pH7.5)で平衡化したDEAE-Cellulofine(チッソ社製)に通じ、バッファーAで洗浄後、0-0.5M NaClのリニア・グラジエントで目的タンパク質を溶出させた。得られた目的画分を、最終的に10mM リン酸バッファー(pH7.5)で透析し、比活性3.3U/mgタンパクである組換えPmFDHの精製標品を得た。 It was passed through DEAE-Cellulofine (manufactured by Chisso) equilibrated with buffer A (10 mM phosphate buffer, pH 7.5), washed with buffer A, and the target protein was eluted with a linear gradient of 0-0.5 M NaCl. . The obtained target fraction was finally dialyzed against 10 mM phosphate buffer (pH 7.5) to obtain a purified preparation of recombinant PmFDH having a specific activity of 3.3 U / mg protein.
〔実施例4:組換えPmFDHの酵素学的基礎性能評価〕
 実施例3で得られた組換えPmFDHの酵素学的基礎性能を評価した。ギ酸脱水素酵素活性は、特に記載した条件以外は、実施例2と同様の方法で測定した。
[Example 4: Evaluation of basic enzymatic performance of recombinant PmFDH]
The basic enzymatic performance of the recombinant PmFDH obtained in Example 3 was evaluated. Formate dehydrogenase activity was measured in the same manner as in Example 2 except for the conditions specifically described.
pH安定性:
 以下のバッファーを用い、30℃、7日後の残存活性を測定した。
 pH4.5~6.0:0.1M クエン酸-NaOHバッファー
 pH6.0~7.5:0.1M リン酸(K-Pi)バッファー
 pH6.0~7.5:0.1M PIPES-NaOHバッファー
 pH7.5~9.0:0.1M Tris-HClバッファー
 pH9.0~9.5:0.1M グリシン-NaOHバッファー
pH stability:
Using the following buffers, the residual activity after 7 days at 30 ° C. was measured.
pH 4.5 to 6.0: 0.1 M citrate-NaOH buffer pH 6.0 to 7.5: 0.1 M phosphate (K-Pi) buffer pH 6.0 to 7.5: 0.1 M PIPES-NaOH buffer pH 7.5 to 9.0: 0.1 M Tris-HCl buffer pH 9.0 to 9.5: 0.1 M glycine-NaOH buffer
 結果を図2に示す。各バッファーにおける0日の活性を100とし、相対活性として表した。 The results are shown in FIG. The activity on day 0 in each buffer was defined as 100 and expressed as relative activity.
至適pH:
 以下のバッファーを用い、ギ酸脱水素酵素活性を測定した。
 pH4.5~6.0:0.1M クエン酸-NaOHバッファー
 pH6.0~7.5:0.1M リン酸(K-Pi)バッファー
 pH6.0~7.5:0.1M PIPES-NaOHバッファー
 pH7.5~9.0:0.1M Tris-HClバッファー
 pH9.0~9.5:0.1M グリシン-NaOHバッファー
Optimum pH:
Formate dehydrogenase activity was measured using the following buffers.
pH 4.5 to 6.0: 0.1 M citrate-NaOH buffer pH 6.0 to 7.5: 0.1 M phosphate (K-Pi) buffer pH 6.0 to 7.5: 0.1 M PIPES-NaOH buffer pH 7.5 to 9.0: 0.1 M Tris-HCl buffer pH 9.0 to 9.5: 0.1 M glycine-NaOH buffer
 結果を図3に示す。0.1M PIPES-NaOHバッファー(pH7.5)での活性を100とし、相対活性として表した。 The results are shown in FIG. The activity in 0.1 M PIPES-NaOH buffer (pH 7.5) was defined as 100 and expressed as relative activity.
温度安定性:
 4、25、30、37、40、45、50、60、70℃の温度で20分間インキュベートしたのち、ギ酸脱水素酵素活性を測定した。結果を図4に示す。4℃での活性を100とし、相対活性として表した。
Temperature stability:
After incubation for 20 minutes at temperatures of 4, 25, 30, 37, 40, 45, 50, 60, and 70 ° C., formate dehydrogenase activity was measured. The results are shown in FIG. The activity at 4 ° C. was defined as 100 and expressed as relative activity.
至適温度:
 25、30、37、40、45、50、55、60、70℃の温度でギ酸脱水素酵素活性を測定した。結果を図5に示す。50℃での活性を100とし、相対活性として表した。
Optimal temperature:
Formate dehydrogenase activity was measured at temperatures of 25, 30, 37, 40, 45, 50, 55, 60, and 70 ° C. The results are shown in FIG. The activity at 50 ° C. was defined as 100 and expressed as relative activity.
50℃での温度安定性:
 50℃にて24時間反応させた際の残存活性を測定した。結果を図6に示す。0時間の活性を100として、相対活性として表した。
Temperature stability at 50 ° C:
Residual activity when reacted at 50 ° C. for 24 hours was measured. The results are shown in FIG. The activity at 0 hours was defined as 100 and expressed as relative activity.
 上記結果から得られた組換えPmFDHの酵素学的基礎性能を以下の表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
The basic enzymatic performance of the recombinant PmFDH obtained from the above results is summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
〔実施例5:組換えPmFDHによるエタノール生産〕
 実施例3で得られた組換えPmFDHを用いて、NAD+を補酵素とした場合にアセトアルデヒドからエタノールが生産できるかを確認した。具体的には、アセトアルデヒド(2%、メルク社製)及びアルコール脱水素酵素(10U/mL、オリエンタル酵母工業社製)、NAD+(0.3mM、オリエンタル酵母工業社製)、ギ酸ナトリウム(100   mM、ナカライテスク社製)、リン酸バッファー(250mM、pH7.0)から構成される反応溶液に組換えPmFDHを添加して、30℃で24時間反応させた。生成したエタノールは99.5%エタノール(和光純薬工業社製)を標準品として、アルコールオキシダーゼ(0.2U/mL、シグマ社製)及び西洋わさび由来ペルオキシダーゼ(5U/mL、オリエンタル酵母工業社製)、4-アミノアンチピリン(0.04%、和光純薬工業社製)、フェノール(0.24%、和光純薬工業社製)で構成される反応液を用いて30℃で500nmの吸光度変化から算出した。
[Example 5: Ethanol production by recombinant PmFDH]
Using the recombinant PmFDH obtained in Example 3, it was confirmed whether ethanol could be produced from acetaldehyde when NAD + was used as a coenzyme. Specifically, acetaldehyde (2%, manufactured by Merck & Co.) and alcohol dehydrogenase (10 U / mL, manufactured by Oriental Yeast Co., Ltd.), NAD + (0.3 mM, manufactured by Oriental Yeast Co., Ltd.), sodium formate (100 mM) Recombinant PmFDH was added to a reaction solution composed of Nacalai Tesque, Inc.) and phosphate buffer (250 mM, pH 7.0) and reacted at 30 ° C. for 24 hours. The produced ethanol is 99.5% ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) as a standard product, alcohol oxidase (0.2 U / mL, manufactured by Sigma) and horseradish peroxidase (5 U / mL, manufactured by Oriental Yeast Co., Ltd.) ), 4-aminoantipyrine (0.04%, manufactured by Wako Pure Chemical Industries, Ltd.), phenol (0.24%, manufactured by Wako Pure Chemical Industries, Ltd.) and a change in absorbance at 500 nm at 30 ° C. Calculated from
 結果として、組換えPmFDHを添加しない反応液ではエタノールは生成されなかったが、組換えPmFDHを添加した系では0.72%のエタノール(変換率:35%)を生成させることができた。また、NAD+及びギ酸ナトリウム、組換えPmFDHの代わりにNADH(0.3mM、オリエンタル酵母工業社製)を添加した場合では0.02%のエタノール生成であった。 As a result, ethanol was not produced in the reaction solution to which recombinant PmFDH was not added, but 0.72% ethanol (conversion rate: 35%) could be produced in the system to which recombinant PmFDH was added. In addition, when NADH (0.3 mM, manufactured by Oriental Yeast Co., Ltd.) was added instead of NAD + , sodium formate, and recombinant PmFDH, ethanol production was 0.02%.
 これらの結果により、本発明の組換えPmFDHが、アセトアルデヒドからエタノールへの酵素的還元反応において、補酵素NAD+を効率よく再生させることができることが確認された。 From these results, it was confirmed that the recombinant PmFDH of the present invention can efficiently regenerate the coenzyme NAD + in the enzymatic reduction reaction from acetaldehyde to ethanol.
 本発明により効率良くギ酸脱水素酵素を生産することが可能になる。また、本発明により作製されたギ酸脱水素酵素は補酵素再生系酵素として極めて有用である。 The present invention makes it possible to produce formate dehydrogenase efficiently. Further, the formate dehydrogenase prepared by the present invention is extremely useful as a coenzyme regeneration system enzyme.
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.

Claims (8)

  1.  以下の(a)、(b)または(c)のタンパク質:
    (a)配列番号1のアミノ酸配列からなるタンパク質、
    (b)配列番号1のアミノ酸配列と70%以上の同一性を有し、ギ酸脱水素酵素活性を有するタンパク質、
    (c)配列番号1のアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列からなり、ギ酸脱水素酵素活性を有するタンパク質。
    The following protein (a), (b) or (c):
    (A) a protein comprising the amino acid sequence of SEQ ID NO: 1,
    (B) a protein having at least 70% identity with the amino acid sequence of SEQ ID NO: 1 and having formate dehydrogenase activity;
    (C) A protein having a formate dehydrogenase activity, comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence of SEQ ID NO: 1.
  2.  請求項1記載のタンパク質をコードする遺伝子。 A gene encoding the protein according to claim 1.
  3.  以下の(d)、(e)または(f)のDNAからなる遺伝子:
    (d)配列番号2の塩基配列からなるDNA、
    (e)配列番号2の塩基配列と70%以上の同一性を有し、ギ酸脱水素酵素活性を有するタンパク質をコードするDNA、
    (f)配列番号2の塩基配列において、1または数個の塩基が欠失、置換、挿入または付加された塩基配列からなり、ギ酸脱水素酵素活性を有するタンパク質をコードするDNA。
    A gene comprising the following DNA (d), (e) or (f):
    (D) DNA consisting of the base sequence of SEQ ID NO: 2,
    (E) DNA encoding a protein having 70% or more identity with the base sequence of SEQ ID NO: 2 and having formate dehydrogenase activity,
    (F) DNA encoding a protein having a formate dehydrogenase activity, comprising a base sequence in which one or several bases are deleted, substituted, inserted or added in the base sequence of SEQ ID NO: 2.
  4.  請求項2または3記載の遺伝子を含む組換えベクター。 A recombinant vector comprising the gene according to claim 2 or 3.
  5.  請求項2または3記載の遺伝子を宿主に導入してなる形質転換体。 A transformant obtained by introducing the gene according to claim 2 or 3 into a host.
  6.  宿主が大腸菌である、請求項5記載の形質転換体。 The transformant according to claim 5, wherein the host is Escherichia coli.
  7.  請求項5または6記載の形質転換体を培養し、培養物からギ酸脱水素酵素活性を有するタンパク質を採取することを含む、ギ酸脱水素酵素の製造方法。 A method for producing formate dehydrogenase, comprising culturing the transformant according to claim 5 or 6 and collecting a protein having formate dehydrogenase activity from the culture.
  8.  酵素的還元反応系に、請求項1記載のタンパク質、または請求項5もしくは6記載の形質転換体もしくはその処理物を共存させて補酵素を再生する方法。 A method for regenerating a coenzyme by allowing the protein of claim 1 or the transformant of claim 5 or 6 or a processed product thereof to coexist in an enzymatic reduction reaction system.
PCT/JP2014/078442 2013-10-28 2014-10-27 Formate dehydrogenase and use thereof WO2015064517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015544976A JPWO2015064517A1 (en) 2013-10-28 2014-10-27 Formate dehydrogenase and its utilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-223317 2013-10-28
JP2013223317 2013-10-28

Publications (1)

Publication Number Publication Date
WO2015064517A1 true WO2015064517A1 (en) 2015-05-07

Family

ID=53004121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078442 WO2015064517A1 (en) 2013-10-28 2014-10-27 Formate dehydrogenase and use thereof

Country Status (2)

Country Link
JP (1) JPWO2015064517A1 (en)
WO (1) WO2015064517A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098671A3 (en) * 2017-11-15 2019-07-11 울산과학기술원 Recombinant microorganism and method for production of formic acid by using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124093A (en) * 1987-07-17 1990-05-11 Rhein Biotech Dna molecule
JP2000500014A (en) * 1995-11-09 2000-01-11 ザイモジェネティクス,インコーポレイティド Compositions and methods for producing heterologous polypeptides in Pichia methanolica
JP2010161983A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Variant formate dehydrogenase, gene encoding the same and method for producing nadh

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124093A (en) * 1987-07-17 1990-05-11 Rhein Biotech Dna molecule
JP2000500014A (en) * 1995-11-09 2000-01-11 ザイモジェネティクス,インコーポレイティド Compositions and methods for producing heterologous polypeptides in Pichia methanolica
JP2010161983A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Variant formate dehydrogenase, gene encoding the same and method for producing nadh

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098671A3 (en) * 2017-11-15 2019-07-11 울산과학기술원 Recombinant microorganism and method for production of formic acid by using same
US11230703B2 (en) 2017-11-15 2022-01-25 Unist(Ulsan National Institute Of Science And Technology) Recombinant microorganism and method for production of formic acid by using same

Also Published As

Publication number Publication date
JPWO2015064517A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP2007502114A (en) Improved glucose dehydrogenase polypeptides and related polynucleotides
US9957497B2 (en) Hydrocarbon synthase gene and use thereof
US20150218600A1 (en) Biotechnological preparation of 3-hydroxyisobutyric acid
CN112210524B (en) Genetic engineering bacterium for co-production of 3-hydroxypropionic acid and 1, 3-propanediol and construction method and application thereof
CN111057686B (en) Alcohol dehydrogenase mutant and application thereof
Nanba et al. Purification and characterization of formate dehydrogenase from Ancylobacter aquaticus strain KNK607M, and cloning of the gene
WO2015064517A1 (en) Formate dehydrogenase and use thereof
JP4372408B2 (en) Rhodococcus genus bacterial recombinant and method for producing optically active substance using the same
US7060477B2 (en) Epoxide hydrolases of aspergillus origin
JP2020501525A (en) Glutathione reductase
WO2007099764A1 (en) Novel carbonyl reductase, gene for the reductase, and method for production of optically active alcohol using the reductase or the gene
JP5993229B2 (en) Method for solubilizing cholesterol esterase
JP2024509290A (en) Corynebacterium glutamicum mutant strain with improved L-lysine production ability and method for producing L-lysine using the same
JPWO2013002277A1 (en) Enzyme function modification method and variant thereof
WO2005123921A1 (en) Novel glycerol dehydrogenase, gene therefor, and method of utilizing the same
Yamada et al. A new aldehyde oxidase catalyzing the conversion of glycolaldehyde to glycolate from Burkholderia sp. AIU 129
JP4729919B2 (en) Microbial culture method and optically active carboxylic acid production method
JP7386616B2 (en) Method for producing L-cyclic amino acid
WO2014126186A1 (en) 5-oxoprolinase, 5-oxoprolinase gene, and method for producing 5-oxoprolinase
JP2006246701A (en) Acetic acid bacterium having enhanced enzyme activity of central metabolic system and method for producing vinegar using the acetic acid bacterium
WO2024010785A1 (en) Ketoreductase enzymes for the synthesis of 1,3-diol substituted indanes
Luo et al. Rapid gene cloning, overexpression and characterization of a thermophilic catalase in E. coli
JP2011205921A (en) Recombinant rhodococcus bacterium and method for producing optically active (r)-3-quinuclidinol by using the same
US20220290110A1 (en) Peroxidase activity towards 10-acetyl-3,7-dihydroxyphenoxazine
CN115698310A (en) Reductase and methods of making and using reductase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857209

Country of ref document: EP

Kind code of ref document: A1