WO2015064309A1 - Light source and manufacturing method therefor - Google Patents

Light source and manufacturing method therefor Download PDF

Info

Publication number
WO2015064309A1
WO2015064309A1 PCT/JP2014/076695 JP2014076695W WO2015064309A1 WO 2015064309 A1 WO2015064309 A1 WO 2015064309A1 JP 2014076695 W JP2014076695 W JP 2014076695W WO 2015064309 A1 WO2015064309 A1 WO 2015064309A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light source
light
wavelength region
metal halide
Prior art date
Application number
PCT/JP2014/076695
Other languages
French (fr)
Japanese (ja)
Inventor
泰 笹井
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Priority to EP14857301.7A priority Critical patent/EP3065162A4/en
Publication of WO2015064309A1 publication Critical patent/WO2015064309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers

Definitions

  • the present invention relates to a light source and a manufacturing method thereof, and more particularly, to a super high saturation light source suitable for lighting fresh food and a manufacturing method thereof.
  • High-intensity discharge lamps are widely used because they are highly efficient and economical. HID lamps are roughly classified into three types, mercury lamps, metal halide lamps, and high-pressure sodium lamps, depending on the type of additive sealed in the arc tube. In general, high-pressure sodium lamps have a long life and high luminous efficiency, but high-saturation and color-rendering high-pressure sodium lamps are used as light sources for vivid colors such as meat vegetables, although their lifetime and luminous efficiency are inferior to ordinary high-pressure sodium lamps. Are known. In recent years, ceramic metal halide lamps using an arc tube made of ceramic (translucent alumina: PCA) instead of an arc tube made of quartz glass have been widely used. The lamp life and luminous efficiency are said to be superior to the lamp life and luminous efficiency of high chroma and color rendering high pressure sodium lamps.
  • PCA transparent alumina
  • the correlated color temperature is about 2500 K.
  • the correlated color temperature is relatively high, and it is difficult to achieve a relatively low correlated color temperature of about 2500 K. is there.
  • Japanese Unexamined Patent Publication No. 2004-288617 discloses a ceramic metal halide lamp having a correlated color temperature of 2000 to 4500 K, Japanese Unexamined Patent Publication No. 2003-187744 and Japanese Unexamined Patent Publication No. 2009-520323.
  • ceramic metal halide lamps of 2500 to 4500 K Japanese Patent Application Laid-Open Nos. 2007-53004 and 2011-154847, the color temperature is 2800 to 3700.
  • a ceramic metal halide lamp which becomes K is described.
  • these patent documents do not disclose a specific technique for lowering the correlated color temperature to about 2500K, but also disclose a specific technique for making an object to be irradiated such as meat vegetables colorful. It has not been.
  • JP 2009-87602 A and JP 2012-113883 A in order to perform efficient growth in a plant factory, in order to adjust the ratio of the energy intensity of the wavelength region of three colors to a predetermined value. It describes the setting of arc tube additives.
  • JP 2004-288617 A Patent No. 4279122
  • Japanese Patent Laid-Open No. 2003-1877444 Japanese Patent Laid-Open No. 2003-1877444
  • the conventional technique has not yet established a technique for making an object to be irradiated such as meat vegetables vivid like a high-saturation and color-rendering high-pressure sodium lamp.
  • An object of the present invention is to provide a light source suitable for lighting fresh foods and a method for producing the same, which can show colors such as meat vegetables more vividly than a high-chroma and high color-rendering high-pressure sodium lamp.
  • the light emitting unit in a light source including a light emitting unit that generates at least visible light, includes a wavelength region of 380 to 780 nm, a purple-blue first wavelength region of a wavelength of 380 to 490 nm, and a wavelength
  • the four wavelength regions are divided into a green second wavelength region of 490 to 570 nm, a yellow third wavelength region of wavelength 570 to 590 nm, and an orange-red fourth wavelength region of wavelength 590 to 780 nm.
  • the light source is a high-intensity discharge lamp having an arc tube enclosing a rare gas and a luminescent material, and the emission spectrum of the light-emitting unit adjusts the composition and addition amount of the luminescent material. May be set by
  • a method for manufacturing a light source including a light emitting unit that generates at least visible light, a wavelength region of 380 to 780 nm, a violet-blue first wavelength region of a wavelength of 380 to 490 nm, and a wavelength of 490 to 490
  • the ratio of the integrated values of the energy intensity of light from the arc tube calculated for each of the four wavelength regions is expressed as y1: y2: y3: y4.
  • the light source is a high-intensity discharge lamp having an arc tube enclosing a rare gas and a luminescent material, and in the emission spectrum setting step, the composition and addition amount of the luminescent material.
  • the emission spectrum from the arc tube may be set by adjusting.
  • a light source suitable for lighting fresh food and a method for producing the same, which can show colors such as meat vegetables more vividly than a high-saturation, high color-rendering high-pressure sodium lamp.
  • FIG. 1 is a diagram illustrating an example of an arc tube of a ceramic metal halide lamp according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of a ceramic metal halide lamp according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of a ceramic metal halide lamp according to the present embodiment.
  • FIG. 4 is a diagram showing examples of wavelength spectra of a high-pressure sodium lamp and a conventional ceramic metal halide lamp.
  • FIG. 5 is a diagram illustrating an example of a wavelength spectrum of the ceramic metal halide lamp according to the present embodiment.
  • the light source according to the embodiment of the present invention is not limited to a ceramic metal halide lamp, and other high-intensity discharge lamps. It may be a lighting device using other light sources such as LED lamps, LEDs, or electroluminescence (EL).
  • LED lamps LEDs
  • EL electroluminescence
  • the arc tube 2 includes a light emitting unit 3 and capillaries 4A and 4B extending at both ends thereof.
  • the light emitting section 3 and the capillaries 4A and 4B are formed by compressing and integrally forming a light transmitting ceramic powder such as alumina.
  • Electrode assemblies 6A and 6B are inserted through both ends of the capillaries 4A and 4B, respectively. Both ends of the capillaries 4A and 4B are hermetically sealed by frit glass having electrical insulation. Thereby, the electrode assemblies 6A and 6B are fixed in place in the capillaries 4A and 4B.
  • the electrodes 5A and 5B provided at the inner ends of the electrode assemblies 6A and 6B are arranged at fixed positions in the light emitting unit 3. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B.
  • Additives include luminescent materials such as alkali metal iodides, alkaline earth metal iodides, rare earth metal iodides, and the like.
  • the additive sealed in the light emitting unit 3 will be described in detail later.
  • the effective length L and the effective inner diameter D are defined as the inner dimensions of the arc tube 2.
  • the effective length L is the distance between both end faces in the case of a cylindrical arc tube, and in the arc tube in which the light emitting part and the capillary are continuously formed as shown in FIG. 1, light is emitted from the straight tubular capillaries 4A and 4B. It is defined by the distance between the outer ends of the transition curved surfaces L1, L1 between the tubes 3.
  • the effective inner diameter D is defined as the maximum inner diameter of the central portion between the electrodes 5A and 5B in a light emitting tube other than a cylindrical shape.
  • the effective length of the arc tube 2 is L, the effective inner diameter is D, and the ratio L / D between them is called the aspect ratio.
  • the temperature of each part of the light emitting unit 3 is determined by the wall load of the arc tube, the gas pressure in the translucent outer tube, the arc tube material, and the aspect ratio (L / D) of the arc tube, and particularly depends greatly on the wall load.
  • the wall surface load is defined by a value obtained by dividing the lamp power by the total inner area of the light emitting unit 3.
  • the light emitting unit 3 is designed so that the wall load is 20 to 30 W / cm 2 (rated output 35 to 400 W).
  • the chemical reaction rate between the material constituting the inner wall surface of the light emitting part and the rare earth metal iodide can be kept low, and the life of the lamp can be extended.
  • the ceramic metal halide lamp 1 of the present example includes a light emitting tube 2, a cylindrical translucent sleeve 18 disposed so as to surround the light emitting portion 3, and an outer sphere 13 provided with a base 12 at one end.
  • the structure of the arc tube 2 has been described with reference to FIG.
  • Two stems 15 and 16 are mounted on the stem 14 of the base 12.
  • Two support disks 17A and 17B are mounted on the support at predetermined intervals.
  • a cylindrical translucent sleeve 18 is fixed to the disks 17A and 17B.
  • a getter 20 is mounted on the disk 17B.
  • Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B. The tips of the power supply leads 7A and 7B are welded to the columns 15 and 16 directly or via nickel wires 19A and 19B, respectively.
  • the electrodes 5A and 5B of the arc tube 2 are electrically connected to the base 12 via the power supply leads 7A and 7B and the columns 15 and 16.
  • the ceramic metal halide lamp 1 of this example has an arc tube 2 and an outer bulb 13.
  • the structure of the arc tube 2 has been described with reference to FIG.
  • An outer sphere tip-off portion 13A is formed at one end of the outer sphere 13, and a pinch seal portion 13B is formed at the other end.
  • a base 12 is attached to the end of the pinch seal portion 13B.
  • External terminals 9 ⁇ / b> A and 9 ⁇ / b> B are attached to the base 12.
  • Two struts 15 and 16 are fixed to the pinch seal portion 13B.
  • Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B.
  • the tips of the power supply leads 7A and 7B are welded to the columns 15 and 16, respectively.
  • a getter 20 is mounted on the column 15.
  • the support columns 15 and 16 are electrically connected to the external terminals 9A and 9B via the metal foils 8A and 8B at the pinch seal portion 13B.
  • the electrodes 5A and 5B of the arc tube 2 are electrically connected to the external terminals 9A and 9B via the power supply leads 7A and 7B, the support columns 15 and 16, and the metal foils 8A and 8B.
  • the ceramic metal halide lamp according to this embodiment may be a reflective ceramic metal halide lamp provided with a concave reflecting mirror in addition to the examples shown in FIGS.
  • the inventor of the present application examined the reason why high-saturation and high-color-rendering high-pressure sodium lamps were favorably used for lighting fresh foods.
  • Various factors such as correlated color temperature CCT, color rendering index CRI, and wavelength spectrum distribution can be considered as the reason.
  • FIG. 4 shows an example of wavelength spectra of a high-saturation, high color rendering high-pressure sodium lamp (“high color rendering NH” in the figure) and a conventional ceramic metal halide lamp (“CMH (conventional example)” in the figure).
  • the vertical axis represents specific energy [%], and the horizontal axis represents wavelength [nm].
  • the solid curve indicates the wavelength spectrum of a high-chroma and high color rendering high-pressure sodium lamp (NH), and the broken curve indicates the wavelength spectrum of a conventional ceramic metal halide lamp (CMH).
  • the conventional ceramic metal halide lamp has a peak near the wavelength of 600 nm representing orange, but the energy value of the red wavelength component having a wavelength of 630 nm or more is not large. Such a wavelength spectrum may not be suitable for fresh food lighting.
  • the energy value of the red wavelength component having a wavelength of 610 nm or more is large, but has a peak near the wavelength of 570 nm representing yellow, and further, the wavelength near 590 nm representing orange is missing. To do. Therefore, it is unlikely that the high-chroma and high-rendering high-pressure sodium lamp is suitable for lighting fresh foods such as meat vegetables that want to show vivid colors.
  • high-saturation and color-rendering high-pressure sodium lamps are favorably used for lighting fresh food. The reason is not understood from the wavelength spectrum of the high-saturation, high color rendering high-pressure sodium lamp shown in FIG.
  • Table 1 shows the color rendering index of the high saturation high color rendering high pressure sodium lamp (NH), the conventional ceramic metal halide lamp (CMH), and the prototype and comparative example ultra high saturation ceramic metal halide lamp (CMH) prepared by the inventors of the present application. The measurement results are shown. Since the prototype ceramic metal halide lamp (CMH) is an example of this embodiment, Table 1 shows the ceramic metal halide lamp (CMH) of this embodiment. A super high saturation ceramic metal halide lamp (CMH) as a comparative example is disclosed in Japanese Patent Application No. 2012-173201, which is filed by the same applicant as the present applicant.
  • the first column in Table 1 is the symbol of the color rendering index
  • the second column is the name of the color rendering index
  • the third column is the measurement result of the color rendering index of the high saturation high color rendering high pressure sodium lamp (NH)
  • the fourth column is conventional.
  • the measurement results of the color rendering index of the ceramic metal halide lamp (CMH) of the present invention, the fifth column and the sixth column show the measurement result of the color rendering index of the ultra-high saturation ceramic metal halide lamp (CMH) according to the present embodiment and the comparative example.
  • the color rendering index represents the deviation from the color when viewed with the reference light defined by JIS. If the color rendering index is 100, this indicates a state where there is no deviation from the color when viewed with reference light. The closer the color rendering index is to 100, the smaller the color shift.
  • the average color rendering index (Ra), the red color rendering index (R9), and the green color rendering index (R11) are equivalent when compared with a high-saturation high color rendering high-pressure sodium lamp. Very low.
  • the yellow color rendering index (R10) and the blue color rendering index (R12) are considerably larger than those of the high-chroma and high-color-rendering high-pressure sodium lamp.
  • the color rendering index (Ra), (R9), (R10), (R11), and (R12) are relatively high compared to the high chroma and color rendering high pressure sodium lamp.
  • the yellow color rendering index (R10), the green color rendering index (R11), and the blue color rendering index (R12) are considerably larger than those of the high-saturation, high color rendering high-pressure sodium lamp.
  • the various color rendering index values and trends of the ceramic metal halide lamps according to the present embodiment and the comparative example are different from the various color rendering index values and trends of the high chroma and high color rendering high pressure sodium lamp.
  • the ceramic metal halide lamp according to the present embodiment is suitable for lighting fresh food, and it has been found that the color of fresh food looks more vivid than the case of a high-chroma and high color rendering high-pressure sodium lamp. It is not clear even if various color rendering evaluation numbers are compared.
  • the ceramic metal halide lamp according to the comparative example has been found to be suitable for lighting fresh food, but the reason is not clear even when various color rendering indexes are compared.
  • the inventor of the present application was able to complete the present invention by considering the following regarding the ceramic metal halide lamp according to the present embodiment and the comparative example.
  • FIG. 5 shows an example of the wavelength spectrum of the ceramic metal halide lamp according to the present embodiment and the comparative example.
  • the vertical axis represents specific energy [%], and the horizontal axis represents wavelength [nm].
  • a solid curve indicates the wavelength spectrum of the ceramic metal halide lamp (CMH) according to the present embodiment, and a broken curve indicates the wavelength spectrum of the ceramic metal halide lamp (CMH) according to the comparative example.
  • the ceramic metal halide lamp according to the present embodiment has a wavelength peak around a wavelength of 610 nm representing orange and 680 nm representing red. Furthermore, in the case of the ceramic metal halide lamp according to the present embodiment, there is no loss of wavelength in the vicinity of the wavelength of 590 nm representing yellow as in the case of the high chroma and color rendering high-pressure sodium lamp, but low energy at a wavelength of 560 to 600 nm representing yellow to orange. It becomes.
  • the wavelength spectrum of the ceramic metal halide lamp according to the present embodiment is not similar to the wavelength spectrum of the high chroma and color rendering high-pressure sodium lamp shown in FIG.
  • the ceramic metal halide lamp according to the present embodiment is suitable for fresh food lighting, and it has been found that the color of fresh food can be shown more vividly than in the case of a high saturation high color rendering high pressure sodium lamp. The reason is not necessarily clear from the wavelength spectrum of FIG.
  • the ceramic metal halide lamp according to the comparative example there is no loss of the wavelength around 580 nm as in the case of the high chroma and color rendering high pressure sodium lamp.
  • the ceramic metal halide lamp according to the comparative example has been found to be suitable for illumination of fresh food, but the reason is not known from the wavelength spectrum shown in FIG. Therefore, the inventors of the present application further analyzed the wavelength spectrum.
  • the inventor of the present application divides the wavelength region 380 to 780 nm of visible light into six wavelength regions, and the high saturation high color rendering high pressure sodium lamp (NH), the conventional ceramic metal halide lamp (CMH), this embodiment, and the comparative example.
  • NH high saturation high color rendering high pressure sodium lamp
  • CH ceramic metal halide lamp
  • Table 3 The integrated value of the energy intensity corresponds to the area below the waveform.
  • the first column of Table 2 is six wavelength regions, the second column is the color of each wavelength region, the third column is the upper and lower limits of the wavelength of each wavelength region, the fourth column is a high saturation high color rendering high pressure sodium lamp (NH) ,
  • the fifth column is the integrated value of the energy intensity of each wavelength region in the case of the conventional ceramic metal halide lamp (CMH), the sixth column and the seventh column are the present embodiment and The integrated value of the energy intensity of each wavelength region in the case of a ceramic metal halide lamp (CMH) according to a comparative example is shown.
  • the integrated values in the fourth, fifth, sixth, and seventh columns are relative values.
  • the first wavelength region represents a violet system with a wavelength of 380 to 430 nm
  • the second wavelength region represents a blue system with a wavelength of 430 to 490 nm
  • the third wavelength region represents a green system with a wavelength of 490 to 570 nm
  • the fourth wavelength region It represents a yellow system with a wavelength of 570 to 590 nm
  • the fifth wavelength region represents an orange system with a wavelength of 590 to 620 nm
  • the sixth wavelength region represents a red system with a wavelength of 620 to 780 nm.
  • the ratio of the integrated value of energy intensity in the case of the conventional ceramic metal halide lamp is greatly different from the ratio of the integrated value of energy intensity in the case of the high saturation high color rendering high pressure sodium lamp.
  • the light emission ratio is small. That is, they do not match.
  • the red emission ratio is There are few, and the orange light emission ratio is large. That is, they do not match.
  • the ceramic metal halide lamp according to the present embodiment and the comparative example is suitable for illumination of fresh food that wants to show colors such as meat vegetables vividly cannot be explained.
  • the ceramic metal halide lamp according to the present embodiment is higher than the case of a high saturation high color rendering high pressure sodium lamp. I can't explain why the color of fresh food can be shown vividly.
  • the inventor of the present application divides the wavelength region of visible light 380 to 780 nm into four wavelength regions, a high pressure sodium lamp (NH), a conventional ceramic metal halide lamp (CMH), a ceramic metal halide lamp according to this embodiment and a comparative example ( For CMH), the integrated value (relative value) of the energy intensity in each wavelength region was determined. This is shown in Table 3.
  • the first column of Table 3 is the number of the four wavelength regions
  • the second column is the color of each wavelength region
  • the third column is the upper and lower limits of the wavelength of each wavelength region
  • the fourth column is the high saturation high color rendering high pressure sodium lamp ( NH)
  • the fifth column is the integrated value of the energy intensity of each wavelength region in the case of the conventional ceramic metal halide lamp (CMH)
  • the sixth and seventh columns are the present implementation.
  • strength of each wavelength range in the case of the ceramic metal halide lamp (CMH) by a form and a comparative example is shown.
  • the integrated values in the fourth, fifth, sixth, and seventh columns are relative values.
  • the first wavelength region represents a violet-blue system with a wavelength of 380 to 490 nm
  • the second wavelength region represents a green system with a wavelength of 490 to 570 nm
  • the third wavelength region represents a yellow system with a wavelength of 570 to 590 nm
  • the fourth wavelength region Represents an orange-red system having a wavelength of 590 to 780 nm.
  • the ratio of the integrated value of energy intensity in the case of the conventional ceramic metal halide lamp is greatly different from the ratio of the integrated value of energy intensity in the case of the high saturation high color rendering high pressure sodium lamp.
  • the emission ratio is large, and the yellow emission ratio is extremely small. Therefore, they are different.
  • the reason why the illumination by the conventional ceramic metal halide lamp gives an impression different from the illumination by the high saturation and high color rendering high pressure sodium lamp can be explained.
  • the reason why the ceramic metal halide lamp according to the comparative example is suitable for lighting fresh foods such as meat vegetables and the like that are vivid like the high saturation high color rendering high pressure sodium lamp can be explained.
  • the ceramic metal halide lamp according to the present embodiment has been found to be able to show the color of meat vegetables and the like more vividly than the high saturation high color rendering high pressure sodium lamp, and the reason is the difference in the light emission ratio described above. I can guess.
  • the ratio of the integrated values of the energy intensities in the four wavelength regions is expressed as y1: y2: y3: y4.
  • y1 + y2 + y3 + y4 100.
  • the ratio of the integrated values of the energy intensities in the four wavelength regions is 9: 19: 2: 70.
  • the inventor of the present application as a condition for vividly showing the color of fresh food, in particular, the color of meat vegetables, is higher than the case of a high chroma and color rendering high-pressure sodium lamp.
  • the tolerance range of the integrated value ratio was actually measured.
  • the ratio of the integrated values of the energy intensity in the four wavelength regions was changed and used for lighting fresh foods such as vegetables, bread and meat, respectively.
  • a high saturation and high color rendering high pressure sodium lamp was used as standard illumination.
  • the number of people who answered that the illumination by the ceramic metal halide lamp according to the present embodiment was “brighter” than the illumination by the high saturation high color rendering high pressure sodium lamp was counted.
  • the respondents are 50 men and women between the ages of 18 and 64. As a result, the following knowledge was obtained.
  • the visible light wavelength region 380 to 780 nm is divided into four wavelength regions, and the ratio of the integrated values of the energy intensities in each wavelength region is obtained.
  • the light source to be judged is a fresh one that wants to show the color of meat vegetables etc. vividly It is suitable for lighting of food, and it can be determined that the color of fresh food can be seen more vividly than in the case of a high chroma and color rendering high pressure sodium lamp.
  • the light source to be judged is fresh food that wants to show the color of meat vegetables etc. vividly It is suitable for lighting of food, and it can be accurately determined that the color of fresh food can be seen more vividly than in the case of a high-chroma and high-color-rendering high-pressure sodium lamp.
  • the light source to be determined is not limited to a ceramic metal halide lamp.
  • the light source to be determined may be another high-intensity discharge lamp, or an illumination device using another light source, for example, an LED lamp, an LED, or electroluminescence (EL).
  • the ratio of desired integrated values of the energy intensities in the four wavelength regions can be obtained by adjusting the type, composition, and addition amount of the luminescent material sealed in the arc tube.
  • LED light source with a single light emitting element A light emitting element emitting blue or ultraviolet light is molded with a resin mixed with a phosphor, or a relatively wide wavelength is mounted by mounting a cover mixed with a phosphor around the light emitting element. An area light source can be obtained. By adjusting the type, composition, and addition amount of the phosphor, it is possible to obtain a desired ratio of the integrated values of the energy intensities in the four wavelength regions.
  • LED lamps that combine multiple light emitting elements or LED direct-attached lighting fixtures By combining multiple light emitting elements (such as red and blue) with different emission wavelengths (such as LEDs and EL), a light source with a relatively wide wavelength range is obtained. be able to.
  • the wavelengths of the light emitting elements By selecting the wavelengths of the light emitting elements to be combined, it is possible to obtain a desired ratio of the integrated values of the energy intensities in the four wavelength regions. It is more preferable to provide a layer (such as a cover) that diffuses light outside the light-emitting portion, because color unevenness is less likely to be felt when the light source is viewed directly. In this case, the methods using the above-described phosphors may be combined.
  • Table 4 shows the composition of the arc tube additive of the ceramic metal halide lamp used in the experiment conducted by the inventors of the present application.
  • the inventor of the present application uses the ceramic metal halide lamp according to the present embodiment for illumination of fresh food such as vegetables, bread, meat, etc., and the color of the fresh food is more brilliant than when using a high chroma and color rendering high pressure sodium lamp. "I counted the number of people who answered. Of the five ceramic metal halide lamps shown in Table 4, 90% of the respondents answered that the color of the fresh food was "brighter" when the ceramic metal halide lamp according to the present embodiment was used than when the high saturation high color rendering high pressure sodium lamp was used. That's it.
  • M (DyI 3 ), M (TlI), M (NaI), M (CaI 2 ), and M (LiI) are dysprosium iodide DyI 3 , thallium iodide TlI, and calcium iodide, respectively. It represents the molar ratio (percentage) of CaI 2 and lithium iodide LiI.
  • the arc tube additive contains thallium iodide TlI, calcium iodide CaI 2 and lithium iodide LiI.
  • dysprosium iodide DyI 3 and sodium iodide NaI may be added as additives for the arc tube.
  • Sodium Na contributes to the orange system
  • calcium Ca contributes to the red system
  • lithium Li contributes to the crimson system.
  • Table 5 shows the results of measuring the correlated color temperature CCT, chromaticity deviation Duv, average color rendering index Ra, red color rendering index R7, and luminous efficiency ⁇ for these five ceramic metal halide lamps.
  • the correlated color temperature CCT was 2900 to 3100 K in all cases, and the chromaticity deviation Duv was 0 to -4 except for test number 5.
  • the average color rendering index Ra, the red color rendering index R7, and the luminous efficiency ⁇ are not necessarily good. However, it has been found that these ceramic metal halide lamps are suitable for lighting fresh foods that want to show colors such as meat vegetables vividly. That is, in the prior art, a light source having a relatively low color rendering index and light emission efficiency was unlikely to be actually used. It was found for the first time that it is suitable for lighting fresh foods that want to show colors such as meat vegetables vividly.
  • SYMBOLS 1 Ceramic metal halide lamp, 2 ... Arc tube, 4A, 4B ... Capillary, 5A, 5B ... Electrode, 6A, 6B ... Electrode assembly, 7A, 7B ... Power supply lead, 8A, 8B ... Metal foil, 9A, 9B ... External Terminal: 12 ... Base, 13 ... Outer sphere, 14 ... Stem, 15, 16 ... Post, 17A, 17B ... Support disk, 18 ... Translucent sleeve, 19A, 19B ... Nickel wire, 20 ... Getter, 13A ... Outer sphere Chip-off part, 13B ... Pinch seal part

Abstract

This invention provides a light source, and a manufacturing method therefor, that is highly suitable for illuminating fresh food, said light source being capable of making the colors of meats, vegetables, and the like appear more vibrant than a high-color-saturation, high-color-rendering-index high-pressure sodium lamp does. Said light source is provided with a light-emitting unit that produces visible light rays, at least. If the wavelength region from 380 to 780 nm is divided into a blue/violet first wavelength region from 380 to 490 nm, a green second wavelength region from 490 to 570 nm, a yellow third wavelength region from 570 to 590 nm, and a red/orange fourth wavelength region from 590 to 780 nm, the light-emitting unit has an emission spectrum, with the ratio between the energy intensities of the light from the light-emitting unit integrated over the respective wavelength regions expressed as y1:y2:y3:y4 (with y1+y2+y3+y4 = 100), that satisfies the relations 7 ≤ y1 ≤ 11, 15 ≤ y2 ≤ 21, and 0 ≤ y3 < 3, with y4 constituting the remainder.

Description

光源及びその製造方法Light source and manufacturing method thereof
 本発明は、光源及びその製造方法に関し、特に、生鮮食品の照明に好適なスーパー高彩度の光源及びその製造方法に関する。 The present invention relates to a light source and a manufacturing method thereof, and more particularly, to a super high saturation light source suitable for lighting fresh food and a manufacturing method thereof.
 高輝度放電ランプ(以下、HIDランプという。)は、高効率であり経済性に優れているため広く用いられている。HIDランプは、発光管に封入する添加物の種類に応じて、水銀ランプ、メタルハライドランプ、及び、高圧ナトリウムランプの3種類に大きく分けられる。一般に高圧ナトリウムランプは長寿命且つ高発光効率であるが、高彩度高演色形高圧ナトリウムランプは、寿命及び発光効率が一般の高圧ナトリウムランプより劣るものの肉野菜などの色を鮮やかに見せるための光源として知られている。近年、石英ガラス製の発光管の代わりにセラミック(透光性アルミナ:PCA)製の発光管を用いるセラミックメタルハライドランプが広く使用されている。のランプ寿命及び発光効率は、高彩度高演色形高圧ナトリウムランプのランプ寿命及び発光効率よりも優れていると言われている。 High-intensity discharge lamps (hereinafter referred to as HID lamps) are widely used because they are highly efficient and economical. HID lamps are roughly classified into three types, mercury lamps, metal halide lamps, and high-pressure sodium lamps, depending on the type of additive sealed in the arc tube. In general, high-pressure sodium lamps have a long life and high luminous efficiency, but high-saturation and color-rendering high-pressure sodium lamps are used as light sources for vivid colors such as meat vegetables, although their lifetime and luminous efficiency are inferior to ordinary high-pressure sodium lamps. Are known. In recent years, ceramic metal halide lamps using an arc tube made of ceramic (translucent alumina: PCA) instead of an arc tube made of quartz glass have been widely used. The lamp life and luminous efficiency are said to be superior to the lamp life and luminous efficiency of high chroma and color rendering high pressure sodium lamps.
 しかしながら、生鮮食品の照明には、通常、高彩度高演色形高圧ナトリウムランプが用いられている。高彩度高演色形高圧ナトリウムランプの場合、相関色温度は2500K程度であるが、セラミックメタルハライドランプの場合、相関色温度は比較的高く、2500K程度の比較的低い相関色温度を達成することは困難である。 However, high-saturation and color-rendering high-pressure sodium lamps are usually used for lighting fresh foods. In the case of a high saturation high color rendering high-pressure sodium lamp, the correlated color temperature is about 2500 K. However, in the case of a ceramic metal halide lamp, the correlated color temperature is relatively high, and it is difficult to achieve a relatively low correlated color temperature of about 2500 K. is there.
 特開2004-288617号公報(特許4279122号公報)には、相関色温度が2000~4500Kとなるセラミックメタルハライドランプ、特開2003-187744号公報及び特開2009-520323号公報には、色温度が2500~4500Kとなるセラミックメタルハライドランプ、特開2007-53004号公報、及び、特開2011-154847号公報には、色温度が2800~3700
Kとなるセラミックメタルハライドランプが、それぞれ記載されている。しかしながら、これらの特許文献には、相関色温度を2500K程度まで下げるための具体的な技術が開示されていないが、肉野菜などの被照射物を色鮮やかに見せるための具体的な技術も開示されていない。
Japanese Unexamined Patent Publication No. 2004-288617 (Japanese Patent No. 4279122) discloses a ceramic metal halide lamp having a correlated color temperature of 2000 to 4500 K, Japanese Unexamined Patent Publication No. 2003-187744 and Japanese Unexamined Patent Publication No. 2009-520323. In ceramic metal halide lamps of 2500 to 4500 K, Japanese Patent Application Laid-Open Nos. 2007-53004 and 2011-154847, the color temperature is 2800 to 3700.
A ceramic metal halide lamp which becomes K is described. However, these patent documents do not disclose a specific technique for lowering the correlated color temperature to about 2500K, but also disclose a specific technique for making an object to be irradiated such as meat vegetables colorful. It has not been.
 照明の条件として波長スペクトル分布も重要である。特開2009-87602号公報及び特開2012-113883号公報には、植物工場において、効率的な生育を行うために、3色の波長領域のエネルギー強度の割合を所定の値に調整するために発光管の添加物を設定することが記載されている。
特開2004-288617号公報(特許4279122号公報) 特開2003-1877444号公報(特許4262968号公報) 特開2009-520329号公報 特開2007-53004号公報 特開2011-154847号公報 特開2010-3488号公報 特開2009-87602号公報 特開2012-113883号公報
The wavelength spectrum distribution is also important as an illumination condition. In JP 2009-87602 A and JP 2012-113883 A, in order to perform efficient growth in a plant factory, in order to adjust the ratio of the energy intensity of the wavelength region of three colors to a predetermined value. It describes the setting of arc tube additives.
JP 2004-288617 A (Patent No. 4279122) Japanese Patent Laid-Open No. 2003-1877444 (Japanese Patent No. 4262968) JP 2009-520329 A JP 2007-53004 A JP 2011-154847 JP 2010-3488 JP 2009-87602 JP JP 2012-113883 A
 上述のように、従来の技術では、高彩度高演色形高圧ナトリウムランプのように、肉野菜などの被照射物を色鮮やかに見せるための手法が確立していない。 As described above, the conventional technique has not yet established a technique for making an object to be irradiated such as meat vegetables vivid like a high-saturation and color-rendering high-pressure sodium lamp.
 本発明の目的は、高彩度高演色形高圧ナトリウムランプよりも、肉野菜などの色を鮮やかに見せることができる生鮮食品の照明に好適な光源及びその製造方法を提供することにある。 An object of the present invention is to provide a light source suitable for lighting fresh foods and a method for producing the same, which can show colors such as meat vegetables more vividly than a high-chroma and high color-rendering high-pressure sodium lamp.
 本発明の実施形態によると、少なくとも可視光線を発生する発光部を備えた光源において、前記発光部は、波長領域380~780nmを、波長380~490nmの紫青色系の第1波長領域と、波長490~570nmの緑色系の第2波長領域と、波長570~590nmの黄色系の第3波長領域と、波長590~780nmの橙赤色系の第4波長領域とに分割し、前記4つの波長領域毎に計算した前記発光部からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但し、y1+y2+y3+y4=100)とするとき、7≦y1≦11、15≦y2≦21、0≦y3<3、y4=残部となる発光スペクトルを有する。 According to an embodiment of the present invention, in a light source including a light emitting unit that generates at least visible light, the light emitting unit includes a wavelength region of 380 to 780 nm, a purple-blue first wavelength region of a wavelength of 380 to 490 nm, and a wavelength The four wavelength regions are divided into a green second wavelength region of 490 to 570 nm, a yellow third wavelength region of wavelength 570 to 590 nm, and an orange-red fourth wavelength region of wavelength 590 to 780 nm. When the ratio of the integrated values of the energy intensities of the light from the light emitting part calculated every time is y1: y2: y3: y4 (where y1 + y2 + y3 + y4 = 100), 7 ≦ y1 ≦ 11, 15 ≦ y2 ≦ 21, 0 ≦ y3 <3, y4 = the remaining emission spectrum.
 本実施形態によると前記光源において、前記発光部は、前記4つの波長領域毎に計算した前記発光管からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但しy1+y2+y3+y4=100)とするとき、8≦y1≦9、17≦y2≦19、0≦y3≦2、y4=残部となる発光スペクトルを有してよい。 According to the present embodiment, in the light source, the light emitting unit calculates a ratio of integrated values of energy intensity of light from the arc tube calculated for each of the four wavelength regions as y1: y2: y3: y4 (where y1 + y2 + y3 + y4 = 100). ) 8 ≦ y1 ≦ 9, 17 ≦ y2 ≦ 19, 0 ≦ y3 ≦ 2, and y4 = remaining emission spectrum.
 本実施形態によると前記光源において、前記光源は、希ガスと発光物質を封入した発光管を有する高輝度放電ランプであり、前記発光部の発光スペクトルは、前記発光物質の組成と添加量を調整することによって設定されてよい。 According to this embodiment, in the light source, the light source is a high-intensity discharge lamp having an arc tube enclosing a rare gas and a luminescent material, and the emission spectrum of the light-emitting unit adjusts the composition and addition amount of the luminescent material. May be set by
 本発明の実施形態によると、少なくとも可視光線を発生する発光部を備えた光源の製造方法において、波長領域380~780nmを、波長380~490nmの紫青色系の第1波長領域と、波長490~570nmの緑色系の第2波長領域と、波長570~590nmの黄色系の第3波長領域と、波長590~780nmの橙赤色系の第4波長領域とに分割する波長領域分割ステップと、前記4つの波長領域毎に計算した前記発光部からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但し、y1+y2+y3+y4=100)とするとき、7≦y1≦11、15≦y2≦21、0≦y3<3、y4=残部となるように前記発光部からの発光スペクトルを設定する発光スペクトル設定ステップと、を含む。 According to an embodiment of the present invention, in a method for manufacturing a light source including a light emitting unit that generates at least visible light, a wavelength region of 380 to 780 nm, a violet-blue first wavelength region of a wavelength of 380 to 490 nm, and a wavelength of 490 to 490 A wavelength region dividing step of dividing into a second wavelength region of 570 nm green wavelength, a third wavelength region of yellow color having wavelengths of 570 to 590 nm, and a fourth wavelength region of orange red color having wavelengths of 590 to 780 nm; When the ratio of the integrated values of the light energy intensities calculated for each wavelength region is y1: y2: y3: y4 (where y1 + y2 + y3 + y4 = 100), 7 ≦ y1 ≦ 11, 15 ≦ y2 ≦ 21 and an emission spectrum setting step of setting an emission spectrum from the light emitting unit so that 0 ≦ y3 <3 and y4 = remainder.
 本実施形態によると前記光源の製造方法において、前記発光スペクトル設定ステップにおいて、前記4つの波長領域毎に計算した前記発光管からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但しy1+y2+y3+y4=100)とするとき、8≦y1≦9、17≦y2≦19、0≦y3≦2、y4=残部となるように前記発光部からの発光スペクトルを設定してよい。 According to this embodiment, in the light source manufacturing method, in the emission spectrum setting step, the ratio of the integrated values of the energy intensity of light from the arc tube calculated for each of the four wavelength regions is expressed as y1: y2: y3: y4. When (y1 + y2 + y3 + y4 = 100), the emission spectrum from the light emitting part may be set so that 8 ≦ y1 ≦ 9, 17 ≦ y2 ≦ 19, 0 ≦ y3 ≦ 2, and y4 = remainder.
 本実施形態によると前記光源の製造方法において、前記光源は、希ガスと発光物質を封入した発光管を有する高輝度放電ランプであり、前記発光スペクトル設定ステップでは、前記発光物質の組成と添加量を調整することによって前記発光管からの発光スペクトルを設定してよい。 According to the present embodiment, in the light source manufacturing method, the light source is a high-intensity discharge lamp having an arc tube enclosing a rare gas and a luminescent material, and in the emission spectrum setting step, the composition and addition amount of the luminescent material. The emission spectrum from the arc tube may be set by adjusting.
 本発明によれば、高彩度高演色形高圧ナトリウムランプよりも、肉野菜などの色を鮮やかに見せることができる生鮮食品の照明に好適な光源及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a light source suitable for lighting fresh food and a method for producing the same, which can show colors such as meat vegetables more vividly than a high-saturation, high color-rendering high-pressure sodium lamp.
図1は、本実施形態に係るセラミックメタルハライドランプの発光管の例を説明する図である。FIG. 1 is a diagram illustrating an example of an arc tube of a ceramic metal halide lamp according to the present embodiment. 図2は、本実施形態に係るセラミックメタルハライドランプの例を説明する図である。FIG. 2 is a diagram illustrating an example of a ceramic metal halide lamp according to the present embodiment. 図3は、本実施形態に係るセラミックメタルハライドランプの例を説明する図である。FIG. 3 is a diagram illustrating an example of a ceramic metal halide lamp according to the present embodiment. 図4は、高圧ナトリウムランプと従来のセラミックメタルハライドランプの波長スペクトルの例を示す図である。FIG. 4 is a diagram showing examples of wavelength spectra of a high-pressure sodium lamp and a conventional ceramic metal halide lamp. 図5は、本実施形態によるセラミックメタルハライドランプの波長スペクトルの例を示す図である。FIG. 5 is a diagram illustrating an example of a wavelength spectrum of the ceramic metal halide lamp according to the present embodiment.
 以下、本発明に係る光源及びその製造方法の実施形態に関して、添付の図面を参照しながら詳細に説明する。なお、図中、同一の要素に対しては同一の参照符号を付して、重複した説明を省略する。 Hereinafter, embodiments of a light source and a method for manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 以下に、本発明の実施形態に係る光源の例として、セラミックメタルハライドランプを説明するが、本発明の実施形態に係る光源は、セラミックメタルハライドランプに限定されるものではなく、他の高輝度放電ランプであってもよいし、それ以外の光源、例えば、LEDランプ、LED又はエレクトロルミネッセンス(EL)を用いた照明装置であってもよい。 Hereinafter, a ceramic metal halide lamp will be described as an example of a light source according to an embodiment of the present invention. However, the light source according to the embodiment of the present invention is not limited to a ceramic metal halide lamp, and other high-intensity discharge lamps. It may be a lighting device using other light sources such as LED lamps, LEDs, or electroluminescence (EL).
 図1を参照して本発明に係るセラミックメタルハライドランプの発光管の例を説明する。発光管2は、発光部3と、その両端に延びるキャピラリ4A、4Bを有する。発光部3とキャピラリ4A、4Bは、アルミナなど透光性セラミックの粉末を圧縮して一体成形することにより形成される。キャピラリ4A、4Bの両端には、電極アセンブリ6A、6Bが、それぞれ挿通されている。キャピラリ4A、4Bの両端は、電気絶縁性を有するフリットガラスによって気密にシールされる。それによって、電極アセンブリ6A、6Bは、キャピラリ4A、4B内の定位置に固定される。電極アセンブリ6A、6Bの内端に設けられた電極5A、5Bは、発光部3内の定位置に配置される。キャピラリ4A、4Bの両端から、電力供給リード7A、7Bが突出している。 An example of an arc tube of a ceramic metal halide lamp according to the present invention will be described with reference to FIG. The arc tube 2 includes a light emitting unit 3 and capillaries 4A and 4B extending at both ends thereof. The light emitting section 3 and the capillaries 4A and 4B are formed by compressing and integrally forming a light transmitting ceramic powder such as alumina. Electrode assemblies 6A and 6B are inserted through both ends of the capillaries 4A and 4B, respectively. Both ends of the capillaries 4A and 4B are hermetically sealed by frit glass having electrical insulation. Thereby, the electrode assemblies 6A and 6B are fixed in place in the capillaries 4A and 4B. The electrodes 5A and 5B provided at the inner ends of the electrode assemblies 6A and 6B are arranged at fixed positions in the light emitting unit 3. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B.
 発光部3の内部には、アルゴン及び水銀に加えて、添加物が封入されている。添加物には、アルカリ金属のヨウ化物、アルカリ土類金属のヨウ化物、希土類金属のヨウ化物、等の発光物質が含まれる。発光部3に封入される添加物については後に詳細に説明する。 The inside of the light emitting unit 3 is filled with additives in addition to argon and mercury. Additives include luminescent materials such as alkali metal iodides, alkaline earth metal iodides, rare earth metal iodides, and the like. The additive sealed in the light emitting unit 3 will be described in detail later.
 発光管2の内側寸法として、有効長さLと有効内径Dを定義する。有効長さLは、円筒形発光管においては両端面間の距離であり、図1のように発光部とキャピラリが連続的に成形されている発光管においては直管状のキャピラリ4A、4Bと発光管3の間の遷移曲面L1、L1の外端間の距離で定義される。有効内径Dは、円筒形以外の発光管にあっては、電極5A、5B間中央部の最大内径で定義される。発光管2の有効長さをL、有効内径をDとし、両者の比L/Dをアスペクト比と称することとする。 The effective length L and the effective inner diameter D are defined as the inner dimensions of the arc tube 2. The effective length L is the distance between both end faces in the case of a cylindrical arc tube, and in the arc tube in which the light emitting part and the capillary are continuously formed as shown in FIG. 1, light is emitted from the straight tubular capillaries 4A and 4B. It is defined by the distance between the outer ends of the transition curved surfaces L1, L1 between the tubes 3. The effective inner diameter D is defined as the maximum inner diameter of the central portion between the electrodes 5A and 5B in a light emitting tube other than a cylindrical shape. The effective length of the arc tube 2 is L, the effective inner diameter is D, and the ratio L / D between them is called the aspect ratio.
 発光部3の各部の温度は、発光管の壁面負荷、透光性外管内のガス圧力、発光管材質及び発光管のアスペクト比(L/D)によって決まり、特に壁面負荷に大きく依存する。壁面負荷は、ランプ電力を発光部3の全内面積で除した値で定義される。本実施形態では、発光部3は、壁面負荷が20~30W/cm2(定格出力35~400W)となるように設計されている。こうして本実施形態では、発光部の内壁面を構成する材料と希土類金属ヨウ化物の化学反応速度を低く抑えることができ、ランプを長寿命化することができる。 The temperature of each part of the light emitting unit 3 is determined by the wall load of the arc tube, the gas pressure in the translucent outer tube, the arc tube material, and the aspect ratio (L / D) of the arc tube, and particularly depends greatly on the wall load. The wall surface load is defined by a value obtained by dividing the lamp power by the total inner area of the light emitting unit 3. In the present embodiment, the light emitting unit 3 is designed so that the wall load is 20 to 30 W / cm 2 (rated output 35 to 400 W). Thus, in this embodiment, the chemical reaction rate between the material constituting the inner wall surface of the light emitting part and the rare earth metal iodide can be kept low, and the life of the lamp can be extended.
 図2を参照して本発明に係るセラミックメタルハライドランプの例を説明する。本例のセラミックメタルハライドランプ1は、発光管2と、発光部3を囲むように配置された円筒状の透光性スリーブ18と、片端に口金12が設けられた外球13とを有する。発光管2の構造は図1を参照して説明した。 An example of a ceramic metal halide lamp according to the present invention will be described with reference to FIG. The ceramic metal halide lamp 1 of the present example includes a light emitting tube 2, a cylindrical translucent sleeve 18 disposed so as to surround the light emitting portion 3, and an outer sphere 13 provided with a base 12 at one end. The structure of the arc tube 2 has been described with reference to FIG.
 口金12のステム14に、2本の支柱15、16が装着されている。支柱には、2つのサポートディスク17A、17Bが所定間隔にて装着されている。また、ディスク17A、17Bに円筒状の透光性スリーブ18が固定されている。ディスク17Bにゲッタ20が装着されている。キャピラリ4A、4Bの両端から、電力供給リード7A、7Bが突出している。電力供給リード7A、7Bの先端は、直接、又は、ニッケル線19A、19Bを介して、それぞれ、支柱15、16に溶接される。こうして、発光管2の電極5A、5Bは、電力供給リード7A、7B及び支柱15、16を介して、口金12に電気的に接続される。 Two stems 15 and 16 are mounted on the stem 14 of the base 12. Two support disks 17A and 17B are mounted on the support at predetermined intervals. A cylindrical translucent sleeve 18 is fixed to the disks 17A and 17B. A getter 20 is mounted on the disk 17B. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B. The tips of the power supply leads 7A and 7B are welded to the columns 15 and 16 directly or via nickel wires 19A and 19B, respectively. Thus, the electrodes 5A and 5B of the arc tube 2 are electrically connected to the base 12 via the power supply leads 7A and 7B and the columns 15 and 16.
 図3を参照して本発明に係るセラミックメタルハライドランプの例を説明する。本例のセラミックメタルハライドランプ1は、発光管2と外球13を有する。発光管2の構造は図1を参照して説明した。外球13の一端に、外球チップオフ部13Aが形成され、他端に、ピンチシール部13Bが形成されている。ピンチシール部13Bの端部には口金12が装着されている。口金12には外部端子9A、9Bが装着されている。 An example of a ceramic metal halide lamp according to the present invention will be described with reference to FIG. The ceramic metal halide lamp 1 of this example has an arc tube 2 and an outer bulb 13. The structure of the arc tube 2 has been described with reference to FIG. An outer sphere tip-off portion 13A is formed at one end of the outer sphere 13, and a pinch seal portion 13B is formed at the other end. A base 12 is attached to the end of the pinch seal portion 13B. External terminals 9 </ b> A and 9 </ b> B are attached to the base 12.
 ピンチシール部13Bには、2本の支柱15、16が固定されている。キャピラリ4A、4Bの両端から、電力供給リード7A、7Bが突出している。電力供給リード7A、7Bの先端は、それぞれ、支柱15、16に溶接される。支柱15にゲッタ20が装着されている。支柱15、16は、ピンチシール部13Bにて、金属箔8A、8Bを介して外部端子9A、9Bに電気的に接続されている。 Two struts 15 and 16 are fixed to the pinch seal portion 13B. Power supply leads 7A and 7B protrude from both ends of the capillaries 4A and 4B. The tips of the power supply leads 7A and 7B are welded to the columns 15 and 16, respectively. A getter 20 is mounted on the column 15. The support columns 15 and 16 are electrically connected to the external terminals 9A and 9B via the metal foils 8A and 8B at the pinch seal portion 13B.
 こうして、発光管2の電極5A、5Bは、電力供給リード7A、7B、及び、支柱15、16、及び、金属箔8A、8Bを介して、外部端子9A、9Bに電気的に接続される。 Thus, the electrodes 5A and 5B of the arc tube 2 are electrically connected to the external terminals 9A and 9B via the power supply leads 7A and 7B, the support columns 15 and 16, and the metal foils 8A and 8B.
 本実施形態に係るセラミックメタルハライドランプは、図2及び図3に示す例のほか、凹面状の反射鏡を備えた反射型セラミックメタルハライドランプであってもよい。 The ceramic metal halide lamp according to this embodiment may be a reflective ceramic metal halide lamp provided with a concave reflecting mirror in addition to the examples shown in FIGS.
 本願の発明者は、生鮮食品の照明に、高彩度高演色形高圧ナトリウムランプが好んで用いられている理由を検討した。その理由として、相関色温度CCT、演色指数CRI、および波長スペクトル分布など、様々な要因が考えられるが、波長スペクトル分布に着目した。 The inventor of the present application examined the reason why high-saturation and high-color-rendering high-pressure sodium lamps were favorably used for lighting fresh foods. Various factors such as correlated color temperature CCT, color rendering index CRI, and wavelength spectrum distribution can be considered as the reason.
 図4は、高彩度高演色形高圧ナトリウムランプ(図中の「高演色形NH」)と従来のセラミックメタルハライドランプ(図中の「CMH(従来例)」)の波長スペクトルの例を示す。縦軸は比エネルギー[%]、横軸は波長[nm]である。実線の曲線は高彩度高演色形高圧ナトリウムランプ(NH)の波長スペクトル、破線の曲線は従来のセラミックメタルハライドランプ(CMH)の波長スペクトルを示す。 FIG. 4 shows an example of wavelength spectra of a high-saturation, high color rendering high-pressure sodium lamp (“high color rendering NH” in the figure) and a conventional ceramic metal halide lamp (“CMH (conventional example)” in the figure). The vertical axis represents specific energy [%], and the horizontal axis represents wavelength [nm]. The solid curve indicates the wavelength spectrum of a high-chroma and high color rendering high-pressure sodium lamp (NH), and the broken curve indicates the wavelength spectrum of a conventional ceramic metal halide lamp (CMH).
 図示のように、従来のセラミックメタルハライドランプの場合、橙色を表す波長600nm付近でピークを有するが、波長630nm以上の赤色系の波長成分のエネルギー値は大きくない。このような波長スペクトルは、生鮮食品の照明に好適ではないと思われる。一方、高彩度高演色形高圧ナトリウムランプの場合、波長610nm以上の赤色系の波長成分のエネルギー値が大きいが、黄色を表す波長570nm付近でピークを有し、更に、橙色を表す波長590nm付近が欠損する。従って、高彩度高演色形高圧ナトリウムランプは、肉野菜などの色を鮮やかに見せたい生鮮食品の照明に好適であるとは思われない。しかしながら、上述のように、実際には、高彩度高演色形高圧ナトリウムランプは生鮮食品の照明に好んで使用されている。その理由は、図4に示す高彩度高演色形高圧ナトリウムランプの波長スペクトルでは判らない。 As shown in the figure, the conventional ceramic metal halide lamp has a peak near the wavelength of 600 nm representing orange, but the energy value of the red wavelength component having a wavelength of 630 nm or more is not large. Such a wavelength spectrum may not be suitable for fresh food lighting. On the other hand, in the case of a high saturation and high color rendering high-pressure sodium lamp, the energy value of the red wavelength component having a wavelength of 610 nm or more is large, but has a peak near the wavelength of 570 nm representing yellow, and further, the wavelength near 590 nm representing orange is missing. To do. Therefore, it is unlikely that the high-chroma and high-rendering high-pressure sodium lamp is suitable for lighting fresh foods such as meat vegetables that want to show vivid colors. However, as described above, in practice, high-saturation and color-rendering high-pressure sodium lamps are favorably used for lighting fresh food. The reason is not understood from the wavelength spectrum of the high-saturation, high color rendering high-pressure sodium lamp shown in FIG.
 本願の発明者らは高彩度高演色形高圧ナトリウムランプの波長スペクトルを参考に試行錯誤を重ねた結果、高彩度高演色形高圧ナトリウムランプよりも肉野菜などの色を鮮やかに見せることができるセラミックメタルハライドランプを試作することができた。 As a result of repeated trial and error, the inventors of the present application have made trial and error by referring to the wavelength spectrum of a high-saturation, high-color-rendering high-pressure sodium lamp. Was able to make a prototype.
 表1は、高彩度高演色形高圧ナトリウムランプ(NH)、従来のセラミックメタルハライドランプ(CMH)、本願の発明者が作成した試作例及び比較例の超高彩度セラミックメタルハライドランプ(CMH)の演色評価数の測定結果を示す。尚、試作例のセラミックメタルハライドランプ(CMH)は本実施形態の1例であるため、表1では本実施形態のセラミックメタルハライドランプ(CMH)としている。比較例の超高彩度セラミックメタルハライドランプ(CMH)は、本願の出願人と同一の出願人の出願に係る特願2012-173201に開示されている。 Table 1 shows the color rendering index of the high saturation high color rendering high pressure sodium lamp (NH), the conventional ceramic metal halide lamp (CMH), and the prototype and comparative example ultra high saturation ceramic metal halide lamp (CMH) prepared by the inventors of the present application. The measurement results are shown. Since the prototype ceramic metal halide lamp (CMH) is an example of this embodiment, Table 1 shows the ceramic metal halide lamp (CMH) of this embodiment. A super high saturation ceramic metal halide lamp (CMH) as a comparative example is disclosed in Japanese Patent Application No. 2012-173201, which is filed by the same applicant as the present applicant.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の第1列は演色評価数の記号、第2列は演色評価数の名称、第3列は高彩度高演色形高圧ナトリウムランプ(NH)の演色評価数の測定結果、第4列は従来のセラミックメタルハライドランプ(CMH)の演色評価数の測定結果、第5列及び第6列は本実施形態及び比較例による超高彩度セラミックメタルハライドランプ(CMH)の演色評価数の測定結果、を示す。 The first column in Table 1 is the symbol of the color rendering index, the second column is the name of the color rendering index, the third column is the measurement result of the color rendering index of the high saturation high color rendering high pressure sodium lamp (NH), and the fourth column is conventional. The measurement results of the color rendering index of the ceramic metal halide lamp (CMH) of the present invention, the fifth column and the sixth column show the measurement result of the color rendering index of the ultra-high saturation ceramic metal halide lamp (CMH) according to the present embodiment and the comparative example.
 演色評価数は、JISで定める基準光で見たときの色とのずれを表す。演色評価数が100であれば、基準光で見たときの色とのずれが無い状態を示す。演色評価数が100に近いほど、色ずれが小さいことを示す。 The color rendering index represents the deviation from the color when viewed with the reference light defined by JIS. If the color rendering index is 100, this indicates a state where there is no deviation from the color when viewed with reference light. The closer the color rendering index is to 100, the smaller the color shift.
 先ず、従来のセラミックメタルハライドランプと高彩度高演色形高圧ナトリウムランプの各種の演色評価数を比較する。従来のセラミックメタルハライドランプの場合、赤の演色評価数(R9)については、高彩度高演色形高圧ナトリウムランプと略同等であるが、他の演色評価数については、高彩度高演色形高圧ナトリウムランプと比較すると十分に大きい。 First, we compare the various color rendering indices of a conventional ceramic metal halide lamp and a high chroma and color rendering high pressure sodium lamp. In the case of a conventional ceramic metal halide lamp, the red color rendering index (R9) is almost the same as the high saturation high color rendering high pressure sodium lamp, but the other color rendering index is compared with the high saturation high color rendering high pressure sodium lamp. Then it is big enough.
 次に、本実施形態及び比較例によるセラミックメタルハライドランプと高彩度高演色形高圧ナトリウムランプの各種の演色評価数を比較する。本実施形態によるセラミックメタルハライドランプの場合、平均演色評価数(Ra)、赤の演色評価数(R9)及び緑の演色評価数(R11)については、高彩度高演色形高圧ナトリウムランプと比較すると、相当に低い。一方、黄の演色評価数(R10)と青の演色評価数(R12)については、高彩度高演色形高圧ナトリウムランプと比較すると、相当に大きい。 Next, various color rendering indexes of the ceramic metal halide lamp according to the present embodiment and the comparative example and the high saturation high color rendering high pressure sodium lamp are compared. In the case of the ceramic metal halide lamp according to the present embodiment, the average color rendering index (Ra), the red color rendering index (R9), and the green color rendering index (R11) are equivalent when compared with a high-saturation high color rendering high-pressure sodium lamp. Very low. On the other hand, the yellow color rendering index (R10) and the blue color rendering index (R12) are considerably larger than those of the high-chroma and high-color-rendering high-pressure sodium lamp.
 比較例のセラミックメタルハライドランプの場合、各演色評価数(Ra)、(R9)、(R10)、(R11)、(R12)について、高彩度高演色形高圧ナトリウムランプと比較すると、比較的高い。特に、黄の演色評価数(R10)、緑の演色評価数(R11)及び青の演色評価数(R12)については、高彩度高演色形高圧ナトリウムランプと比較すると、相当に大きい。 In the case of the ceramic metal halide lamp of the comparative example, the color rendering index (Ra), (R9), (R10), (R11), and (R12) are relatively high compared to the high chroma and color rendering high pressure sodium lamp. In particular, the yellow color rendering index (R10), the green color rendering index (R11), and the blue color rendering index (R12) are considerably larger than those of the high-saturation, high color rendering high-pressure sodium lamp.
 以上より、本実施形態及び比較例によるセラミックメタルハライドランプの各種の演色評価数の値及び傾向は、高彩度高演色形高圧ナトリウムランプの各種の演色評価数の値及び傾向とは異なる。本実施形態によるセラミックメタルハライドランプは、生鮮食品の照明に好適であり、高彩度高演色形高圧ナトリウムランプの場合よりも、生鮮食品の色が鮮やかに見えることが判明しているが、その理由は、各種の演色評価数を比較しても明らかにはならない。比較例によるセラミックメタルハライドランプは、生鮮食品の照明に好適であることが判明しているが、その理由は、各種の演色評価数を比較しても明らかにはならない。 From the above, the various color rendering index values and trends of the ceramic metal halide lamps according to the present embodiment and the comparative example are different from the various color rendering index values and trends of the high chroma and high color rendering high pressure sodium lamp. The ceramic metal halide lamp according to the present embodiment is suitable for lighting fresh food, and it has been found that the color of fresh food looks more vivid than the case of a high-chroma and high color rendering high-pressure sodium lamp. It is not clear even if various color rendering evaluation numbers are compared. The ceramic metal halide lamp according to the comparative example has been found to be suitable for lighting fresh food, but the reason is not clear even when various color rendering indexes are compared.
 本願の発明者は、本実施形態及び比較例によるセラミックメタルハライドランプについて以下の考察を行なうことにより本発明を完成することができた。 The inventor of the present application was able to complete the present invention by considering the following regarding the ceramic metal halide lamp according to the present embodiment and the comparative example.
 図5は、本実施形態及び比較例によるセラミックメタルハライドランプの波長スペクトルの例を示す。縦軸は比エネルギー[%]、横軸は波長[nm]である。実線の曲線は本実施形態によるセラミックメタルハライドランプ(CMH)の波長スペクトル、破線の曲線は比較例によるセラミックメタルハライドランプ(CMH)の波長スペクトルを示す。 FIG. 5 shows an example of the wavelength spectrum of the ceramic metal halide lamp according to the present embodiment and the comparative example. The vertical axis represents specific energy [%], and the horizontal axis represents wavelength [nm]. A solid curve indicates the wavelength spectrum of the ceramic metal halide lamp (CMH) according to the present embodiment, and a broken curve indicates the wavelength spectrum of the ceramic metal halide lamp (CMH) according to the comparative example.
 図示のように、本実施形態によるセラミックメタルハライドランプの場合、橙色を表す波長610nm及び赤色を表す680nm付近で波長ピークを有する。更に、本実施形態によるセラミックメタルハライドランプの場合、高彩度高演色形高圧ナトリウムランプの場合のような黄色を表す波長590nm付近の波長の欠落は無いが、黄色から橙色を表す波長560~600nmにおいて低エネルギーとなる。 As shown in the drawing, the ceramic metal halide lamp according to the present embodiment has a wavelength peak around a wavelength of 610 nm representing orange and 680 nm representing red. Furthermore, in the case of the ceramic metal halide lamp according to the present embodiment, there is no loss of wavelength in the vicinity of the wavelength of 590 nm representing yellow as in the case of the high chroma and color rendering high-pressure sodium lamp, but low energy at a wavelength of 560 to 600 nm representing yellow to orange. It becomes.
 従って、本実施形態によるセラミックメタルハライドランプの波長スペクトルは、図4に示した高彩度高演色形高圧ナトリウムランプの波長スペクトルとは類似していない。上述のように、本実施形態によるセラミックメタルハライドランプは、生鮮食品の照明に好適であり、高彩度高演色形高圧ナトリウムランプの場合よりも、生鮮食品の色を鮮やかに見せることができることが判明しているが、その理由は図5の波長スペクトルからは必ずしも明確ではない。 Therefore, the wavelength spectrum of the ceramic metal halide lamp according to the present embodiment is not similar to the wavelength spectrum of the high chroma and color rendering high-pressure sodium lamp shown in FIG. As described above, the ceramic metal halide lamp according to the present embodiment is suitable for fresh food lighting, and it has been found that the color of fresh food can be shown more vividly than in the case of a high saturation high color rendering high pressure sodium lamp. The reason is not necessarily clear from the wavelength spectrum of FIG.
 比較例によるセラミックメタルハライドランプの場合、高彩度高演色形高圧ナトリウムランプの場合のように、波長580nm付近の波長の欠落は無い。比較例によるセラミックメタルハライドランプは、生鮮食品の照明に好適であることが判明しているが、その理由は、図5に示す波長スペクトルでは判らない。そこで、本願の発明者は更に波長スペクトルの分析を行った。 In the case of the ceramic metal halide lamp according to the comparative example, there is no loss of the wavelength around 580 nm as in the case of the high chroma and color rendering high pressure sodium lamp. The ceramic metal halide lamp according to the comparative example has been found to be suitable for illumination of fresh food, but the reason is not known from the wavelength spectrum shown in FIG. Therefore, the inventors of the present application further analyzed the wavelength spectrum.
 本願の発明者は、可視光の波長領域380~780nmを6つの波長領域に分割し、高彩度高演色形高圧ナトリウムランプ(NH)、従来のセラミックメタルハライドランプ(CMH)、本実施形態及び比較例によるセラミックメタルハライドランプ(CMH)について、各波長領域のエネルギー強度の積算値(相対値)を求めた。これを表3に表す。尚、エネルギー強度の積算値は波形の下側の面積に対応する。 The inventor of the present application divides the wavelength region 380 to 780 nm of visible light into six wavelength regions, and the high saturation high color rendering high pressure sodium lamp (NH), the conventional ceramic metal halide lamp (CMH), this embodiment, and the comparative example. For a ceramic metal halide lamp (CMH), an integrated value (relative value) of energy intensity in each wavelength region was obtained. This is shown in Table 3. The integrated value of the energy intensity corresponds to the area below the waveform.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の第1列は6つの波長領域、第2列は各波長領域の色、第3列は各波長領域の波長の上限と下限、第4列は高彩度高演色形高圧ナトリウムランプ(NH)の場合の各波長領域のエネルギー強度の積算値、第5列は従来のセラミックメタルハライドランプ(CMH)の場合の各波長領域のエネルギー強度の積算値、第6列及び第7列は本実施形態及び比較例によるセラミックメタルハライドランプ(CMH)の場合の各波長領域のエネルギー強度の積算値を示す。尚、第4、第5、第6及び第7列の積算値は相対値である。 The first column of Table 2 is six wavelength regions, the second column is the color of each wavelength region, the third column is the upper and lower limits of the wavelength of each wavelength region, the fourth column is a high saturation high color rendering high pressure sodium lamp (NH) , The fifth column is the integrated value of the energy intensity of each wavelength region in the case of the conventional ceramic metal halide lamp (CMH), the sixth column and the seventh column are the present embodiment and The integrated value of the energy intensity of each wavelength region in the case of a ceramic metal halide lamp (CMH) according to a comparative example is shown. The integrated values in the fourth, fifth, sixth, and seventh columns are relative values.
 第1波長領域は波長380~430nmの紫色系を表し、第2波長領域は波長430~490nmの青色系を表し、第3波長領域は波長490~570nmの緑色系を表し、第4波長領域は波長570~590nmの黄色系を表し、第5波長領域は波長590~620nmの橙色系を表し、第6波長領域は波長620~780nmの赤色系を表す。 The first wavelength region represents a violet system with a wavelength of 380 to 430 nm, the second wavelength region represents a blue system with a wavelength of 430 to 490 nm, the third wavelength region represents a green system with a wavelength of 490 to 570 nm, and the fourth wavelength region It represents a yellow system with a wavelength of 570 to 590 nm, the fifth wavelength region represents an orange system with a wavelength of 590 to 620 nm, and the sixth wavelength region represents a red system with a wavelength of 620 to 780 nm.
 表2では、従来のセラミックメタルハライドランプの場合のエネルギー強度の積算値の比は、高彩度高演色形高圧ナトリウムランプの場合のエネルギー強度の積算値の比とは大きく異なる。一方、本実施形態によるセラミックメタルハライドランプの場合のエネルギー強度の積算値の比と、高彩度高演色形高圧ナトリウムランプの場合のエネルギー強度の積算値の比を比較すると、本実施形態の場合、赤色系の発光比率が少ない。即ち、両者は一致しない。 In Table 2, the ratio of the integrated value of energy intensity in the case of the conventional ceramic metal halide lamp is greatly different from the ratio of the integrated value of energy intensity in the case of the high saturation high color rendering high pressure sodium lamp. On the other hand, when the ratio of the integrated value of the energy intensity in the case of the ceramic metal halide lamp according to the present embodiment and the ratio of the integrated value of the energy intensity in the case of the high saturation high color rendering high-pressure sodium lamp are compared, The light emission ratio is small. That is, they do not match.
 比較例によるセラミックメタルハライドランプの場合のエネルギー強度の積算値の比と、高彩度高演色形高圧ナトリウムランプの場合のエネルギー強度の積算値の比を比較すると、比較例の場合、赤色系の発光比率が少なく、橙色系の発光比率が多い。即ち、両者は一致しない。 Comparing the ratio of the integrated value of the energy intensity in the case of the ceramic metal halide lamp according to the comparative example and the ratio of the integrated value of the energy intensity in the case of the high saturation and high color rendering high-pressure sodium lamp, in the case of the comparative example, the red emission ratio is There are few, and the orange light emission ratio is large. That is, they do not match.
 従って、表2から、従来のセラミックメタルハライドランプによる照明が、高彩度高演色高圧ナトリウムランプによる照明とは異なる印象を与える理由を説明できる。一方、本実施形態及び比較例によるセラミックメタルハライドランプが、肉野菜などの色を鮮やかに見せたい生鮮食品の照明に好適である理由を説明できない。特に、本実施形態によるセラミックメタルハライドランプは、高彩度高演色形高圧ナトリウムランプの場合よりも、
生鮮食品の色を鮮やかに見せることができる理由を説明できない。
Therefore, it can be explained from Table 2 why the illumination by the conventional ceramic metal halide lamp gives an impression different from the illumination by the high saturation high color rendering high pressure sodium lamp. On the other hand, the reason why the ceramic metal halide lamp according to the present embodiment and the comparative example is suitable for illumination of fresh food that wants to show colors such as meat vegetables vividly cannot be explained. In particular, the ceramic metal halide lamp according to the present embodiment is higher than the case of a high saturation high color rendering high pressure sodium lamp.
I can't explain why the color of fresh food can be shown vividly.
 本願の発明者は、可視光の波長領域380~780nmを4つの波長領域に分割し、高圧ナトリウムランプ(NH)、従来のセラミックメタルハライドランプ(CMH)、本実施形態及び比較例によるセラミックメタルハライドランプ(CMH)について、各波長領域のエネルギー強度の積算値(相対値)を求めた。これを表3に表す。 The inventor of the present application divides the wavelength region of visible light 380 to 780 nm into four wavelength regions, a high pressure sodium lamp (NH), a conventional ceramic metal halide lamp (CMH), a ceramic metal halide lamp according to this embodiment and a comparative example ( For CMH), the integrated value (relative value) of the energy intensity in each wavelength region was determined. This is shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の第1列は4つの波長領域の番号、第2列は各波長領域の色、第3列は各波長領域の波長の上限と下限、第4列は高彩度高演色形高圧ナトリウムランプ(NH)の場合の各波長領域のエネルギー強度の積算値、第5列は従来のセラミックメタルハライドランプ(CMH)の場合の各波長領域のエネルギー強度の積算値、第6列及び第7列は本実施形態及び比較例によるセラミックメタルハライドランプ(CMH)の場合の各波長領域のエネルギー強度の積算値を示す。尚、第4、第5、第6及び第7列の積算値は相対値である。 The first column of Table 3 is the number of the four wavelength regions, the second column is the color of each wavelength region, the third column is the upper and lower limits of the wavelength of each wavelength region, the fourth column is the high saturation high color rendering high pressure sodium lamp ( NH), the integrated value of the energy intensity in each wavelength region, the fifth column is the integrated value of the energy intensity of each wavelength region in the case of the conventional ceramic metal halide lamp (CMH), and the sixth and seventh columns are the present implementation. The integrated value of the energy intensity | strength of each wavelength range in the case of the ceramic metal halide lamp (CMH) by a form and a comparative example is shown. The integrated values in the fourth, fifth, sixth, and seventh columns are relative values.
 第1波長領域は波長380~490nmの紫青色系を表し、第2波長領域は波長490~570nmの緑色系を表し、第3波長領域は波長570~590nmの黄色系を表し、第4波長領域は波長590~780nmの橙赤色系を表す。 The first wavelength region represents a violet-blue system with a wavelength of 380 to 490 nm, the second wavelength region represents a green system with a wavelength of 490 to 570 nm, the third wavelength region represents a yellow system with a wavelength of 570 to 590 nm, and the fourth wavelength region Represents an orange-red system having a wavelength of 590 to 780 nm.
 表3では、従来のセラミックメタルハライドランプの場合のエネルギー強度の積算値の比は、高彩度高演色形高圧ナトリウムランプの場合のエネルギー強度の積算値の比とは大きく異なる。本実施形態によるセラミックメタルハライドランプの場合のエネルギー強度の積算値の比と、高彩度高演色形高圧ナトリウムランプの場合のエネルギー強度の積算値の比を比較すると、本実施形態の場合、紫青色系の発光比率が大きく、黄色系の発光比率が極端に小さい。従って、両者は異なる。比較例によるセラミックメタルハライドランプの場合のエネルギー強度の積算値の比と、高彩度高演色形高圧ナトリウムランプの場合のエネルギー強度の積算値の比を比較すると、比較例の場合では橙赤色系の発光比率が少ないが、それ以外の発光比率は略同一である。 In Table 3, the ratio of the integrated value of energy intensity in the case of the conventional ceramic metal halide lamp is greatly different from the ratio of the integrated value of energy intensity in the case of the high saturation high color rendering high pressure sodium lamp. When the ratio of the integrated value of the energy intensity in the case of the ceramic metal halide lamp according to the present embodiment and the ratio of the integrated value of the energy intensity in the case of the high saturation high color rendering high pressure sodium lamp are compared, The emission ratio is large, and the yellow emission ratio is extremely small. Therefore, they are different. Comparing the ratio of the integrated value of the energy intensity in the case of the ceramic metal halide lamp according to the comparative example and the ratio of the integrated value of the energy intensity in the case of the high saturation high color rendering high-pressure sodium lamp, in the case of the comparative example, the orange-red emission ratio However, the other light emission ratios are substantially the same.
 従って、表3から、従来のセラミックメタルハライドランプによる照明が、高彩度高演色高圧ナトリウムランプによる照明とは異なる印象を与える理由を説明できる。また、比較例によるセラミックメタルハライドランプが、高彩度高演色高圧ナトリウムランプと同様に肉野菜などの色を鮮やかに見せたい生鮮食品の照明に好適である理由を説明できる。一方、本実施形態によるセラミックメタルハライドランプは、高彩度高演色高圧ナトリウムランプよりも、肉野菜などの色を鮮やかに見せることができると判明しているが、その理由が上記の発光比率の差にあることが推測できる。 Therefore, from Table 3, the reason why the illumination by the conventional ceramic metal halide lamp gives an impression different from the illumination by the high saturation and high color rendering high pressure sodium lamp can be explained. In addition, the reason why the ceramic metal halide lamp according to the comparative example is suitable for lighting fresh foods such as meat vegetables and the like that are vivid like the high saturation high color rendering high pressure sodium lamp can be explained. On the other hand, the ceramic metal halide lamp according to the present embodiment has been found to be able to show the color of meat vegetables and the like more vividly than the high saturation high color rendering high pressure sodium lamp, and the reason is the difference in the light emission ratio described above. I can guess.
 ここで、4つの波長領域におけるエネルギー強度の積算値の比をy1:y2:y3:y4と表すこととする。但し、y1+y2+y3+y4=100である。表3に示すように、本実施形態によるセラミックメタルハライドランプでは、4つの波長領域におけるエネルギー強度の積算値の比は、9:19:2:70である。 Here, the ratio of the integrated values of the energy intensities in the four wavelength regions is expressed as y1: y2: y3: y4. However, y1 + y2 + y3 + y4 = 100. As shown in Table 3, in the ceramic metal halide lamp according to the present embodiment, the ratio of the integrated values of the energy intensities in the four wavelength regions is 9: 19: 2: 70.
 そこで本願の発明者は、高彩度高演色形高圧ナトリウムランプの場合よりも、生鮮食品の色、特に肉野菜などの色を鮮やかに見せることができるための条件として、4つの波長領域におけるエネルギー強度の積算値の比の許容範囲を実際に測定した。本実施形態によるセラミックメタルハライドランプにおいて、4つの波長領域におけるエネルギー強度の積算値の比を変化させて、それぞれ、野菜、パン、肉等の生鮮食品の照明に使用した。同時に高彩度高演色形高圧ナトリウムランプを標準照明として使用した。高彩度高演色形高圧ナトリウムランプによる照明よりも、本実施形態によるセラミックメタルハライドランプによる照明のほうが「鮮やか」と答えた人の人数を計数した。回答者は、18~64歳までの男女50人である。その結果、次のような知見を得た。 Therefore, the inventor of the present application, as a condition for vividly showing the color of fresh food, in particular, the color of meat vegetables, is higher than the case of a high chroma and color rendering high-pressure sodium lamp. The tolerance range of the integrated value ratio was actually measured. In the ceramic metal halide lamp according to the present embodiment, the ratio of the integrated values of the energy intensity in the four wavelength regions was changed and used for lighting fresh foods such as vegetables, bread and meat, respectively. At the same time, a high saturation and high color rendering high pressure sodium lamp was used as standard illumination. The number of people who answered that the illumination by the ceramic metal halide lamp according to the present embodiment was “brighter” than the illumination by the high saturation high color rendering high pressure sodium lamp was counted. The respondents are 50 men and women between the ages of 18 and 64. As a result, the following knowledge was obtained.
 4つの波長領域におけるエネルギー強度の積算値の比が、y1=7~11、y2=15~21、y3=0~3、y4=残部のとき、90%以上の人が、生鮮食品の色が「鮮やか」と答えた。4つの波長領域におけるエネルギー強度の積算値の比が、y1=8~9、y2=17~19、y3=0~2、y4=残部のとき、96%以上の人が、生鮮食品の色が「鮮やか」と答えた。この結果より、高彩度高演色形高圧ナトリウムランプの場合と比較して、紫青色系の波長領域の発光比率y1を比較的大きくし、黄色系の波長領域の発光比率y3を比較的小さくするとよいことが判った。尚、実験に使用したセラミックメタルハライドランプでは黄色系の波長領域の発光比率をゼロ(y3=0)にすることはできない。従って、上述の実験では、分光透過フィルタを使用することによって、黄色系の波長領域の発光比率ゼロ(y3=0)を実現した。 When the ratio of the integrated values of energy intensity in the four wavelength regions is y1 = 7 to 11, y2 = 15 to 21, y3 = 0 to 3, and y4 = remainder, more than 90% of people have fresh food color I answered “brilliant”. When the ratio of the integrated values of energy intensity in the four wavelength regions is y1 = 8-9, y2 = 17-19, y3 = 0-2, y4 = remainder, 96% or more of people have fresh food color I answered “brilliant”. From this result, it is preferable that the emission ratio y1 in the violet-blue wavelength region is relatively large and the emission ratio y3 in the yellow wavelength region is relatively small as compared with the case of the high-saturation and color-rendering high-pressure sodium lamp. I understood. In the ceramic metal halide lamp used in the experiment, the emission ratio in the yellow wavelength region cannot be zero (y3 = 0). Accordingly, in the above-described experiment, the emission ratio of zero (y3 = 0) in the yellow wavelength region was realized by using the spectral transmission filter.
 以上の波長スペクトルの解析から、次の知見が得られる。判定対象の光源について、可視光の波長領域380~780nmを4つの波長領域に分割し各波長領域のエネルギー強度の積算値の比を求める。積算値の比が、y1=7~11、y2=15~21、y3=0~3、y4=残部である場合には、判定対象の光源は、肉野菜などの色を鮮やかに見せたい生鮮食品の照明として好適であり、高彩度高演色形高圧ナトリウムランプの場合よりも、生鮮食品の色を鮮やかに見せることができると判定することができる。積算値の比が、y1=8~9、y2=17~19、y3=0~2、y4=残部である場合には、判定対象の光源は、肉野菜などの色を鮮やかに見せたい生鮮食品の照明として好適であり、高彩度高演色形高圧ナトリウムランプの場合よりも、生鮮食品の色を鮮やかに見せることができると正確に判定することができる。 The following knowledge can be obtained from the analysis of the above wavelength spectrum. For the light source to be determined, the visible light wavelength region 380 to 780 nm is divided into four wavelength regions, and the ratio of the integrated values of the energy intensities in each wavelength region is obtained. When the ratio of the integrated values is y1 = 7 to 11, y2 = 15 to 21, y3 = 0 to 3, and y4 = remainder, the light source to be judged is a fresh one that wants to show the color of meat vegetables etc. vividly It is suitable for lighting of food, and it can be determined that the color of fresh food can be seen more vividly than in the case of a high chroma and color rendering high pressure sodium lamp. When the ratio of the integrated values is y1 = 8-9, y2 = 17-19, y3 = 0-2, y4 = remainder, the light source to be judged is fresh food that wants to show the color of meat vegetables etc. vividly It is suitable for lighting of food, and it can be accurately determined that the color of fresh food can be seen more vividly than in the case of a high-chroma and high-color-rendering high-pressure sodium lamp.
 ここに、判定対象の光源は、セラミックメタルハライドランプに限定されない。判定対象の光源は、他の高輝度放電ランプであってもよいし、それ以外の光源、例えば、LEDランプ、LED又はエレクトロルミネッセンス(EL)を用いた照明装置であってもよい。 Here, the light source to be determined is not limited to a ceramic metal halide lamp. The light source to be determined may be another high-intensity discharge lamp, or an illumination device using another light source, for example, an LED lamp, an LED, or electroluminescence (EL).
 次に、肉野菜などの色を鮮やかに見せたい生鮮食品の照明として好適な光源を実際に実現する手法を説明する。一般に、高輝度放電ランプでは、発光管に封入する発光物質の種類、組成、添加量を調整することによって、4つの波長領域のエネルギー強度の所望の積算値の比を得ることができる。 Next, a method for actually realizing a light source suitable for lighting fresh food that wants to show colors such as meat vegetables vividly will be described. In general, in a high-intensity discharge lamp, the ratio of desired integrated values of the energy intensities in the four wavelength regions can be obtained by adjusting the type, composition, and addition amount of the luminescent material sealed in the arc tube.
 LED又はエレクトロルミネッセンス(EL)を用いた光源では、次のような手法を用いる。 In the light source using LED or electroluminescence (EL), the following method is used.
 (1)単一発光素子のLED光源
 青色または紫外線を発光する発光素子を蛍光体を混入した樹脂でモールドするか、発光素子の周囲に蛍光体を混入したカバーを装着することにより比較的広い波長領域の光源を得ることができる。蛍光体の種類、組成、添加量を調整することによって、4つの波長領域のエネルギー強度の所望の積算値の比を得ることができる。
(2)複数発光素子を組み合わせたLEDランプまたはLED直付け照明器具
 発光波長の異なる(赤色や青色の)複数の発光素子(LEDやELなど)を組み合わせることによって比較的広い波長領域の光源を得ることができる。組み合わせる発光素子の波長を選択することによって、4つの波長領域のエネルギー強度の所望の積算値の比を得ることができる。発光部の外側に、光を拡散する層(カバーなど)を設けると、光源を直視したときに色むらを感じにくくなるのでより好ましい。尚、この場合、上述の蛍光体を使用する方法を組み合わせてもよい。
(1) LED light source with a single light emitting element A light emitting element emitting blue or ultraviolet light is molded with a resin mixed with a phosphor, or a relatively wide wavelength is mounted by mounting a cover mixed with a phosphor around the light emitting element. An area light source can be obtained. By adjusting the type, composition, and addition amount of the phosphor, it is possible to obtain a desired ratio of the integrated values of the energy intensities in the four wavelength regions.
(2) LED lamps that combine multiple light emitting elements or LED direct-attached lighting fixtures By combining multiple light emitting elements (such as red and blue) with different emission wavelengths (such as LEDs and EL), a light source with a relatively wide wavelength range is obtained. be able to. By selecting the wavelengths of the light emitting elements to be combined, it is possible to obtain a desired ratio of the integrated values of the energy intensities in the four wavelength regions. It is more preferable to provide a layer (such as a cover) that diffuses light outside the light-emitting portion, because color unevenness is less likely to be felt when the light source is viewed directly. In this case, the methods using the above-described phosphors may be combined.
 表4は、本願の発明者が行った実験に使用したセラミックメタルハライドランプの発光管の添加物の組成を示す。本願の発明者は、本実施形態によるセラミックメタルハライドランプを野菜、パン、肉等の生鮮食品の照明に使用し、高彩度高演色形高圧ナトリウムランプを使用した場合よりも、生鮮食品の色が「鮮やか」と答えた人の数を計数した。表4に示す5種のセラミックメタルハライドランプは、高彩度高演色形高圧ナトリウムランプを使用した場合より本実施形態によるセラミックメタルハライドランプを使用したほうが生鮮食品の色が「鮮やか」と答えた人が90%以上となったものである。 Table 4 shows the composition of the arc tube additive of the ceramic metal halide lamp used in the experiment conducted by the inventors of the present application. The inventor of the present application uses the ceramic metal halide lamp according to the present embodiment for illumination of fresh food such as vegetables, bread, meat, etc., and the color of the fresh food is more brilliant than when using a high chroma and color rendering high pressure sodium lamp. "I counted the number of people who answered. Of the five ceramic metal halide lamps shown in Table 4, 90% of the respondents answered that the color of the fresh food was "brighter" when the ceramic metal halide lamp according to the present embodiment was used than when the high saturation high color rendering high pressure sodium lamp was used. That's it.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4において、M(DyI3)、M(TlI)、M(NaI)、M(CaI2)、及び、M(LiI)は、それぞれ、ヨウ化ジスプロシウムDyI3、ヨウ化タリウムTlI、ヨウ化カルシウムCaI2及びヨウ化リチウムLiIのモル比率(百分率)を表す。本願の発明者が行った実験では、発光管の添加物は、ヨウ化タリウムTlI、ヨウ化カルシウムCaI2及びヨウ化リチウムLiIを含む。更に、発光管の添加物として、ヨウ化ジスプロシウムDyI3、及び、ヨウ化ナトリウムNaIを添加してよい
In Table 4, M (DyI 3 ), M (TlI), M (NaI), M (CaI 2 ), and M (LiI) are dysprosium iodide DyI 3 , thallium iodide TlI, and calcium iodide, respectively. It represents the molar ratio (percentage) of CaI 2 and lithium iodide LiI. In experiments conducted by the inventors of the present application, the arc tube additive contains thallium iodide TlI, calcium iodide CaI 2 and lithium iodide LiI. Furthermore, dysprosium iodide DyI 3 and sodium iodide NaI may be added as additives for the arc tube.
 ナトリウムNaは橙色系、カルシウムCaは赤色系、リチウムLiは真紅色系に寄与する。ヨウ化ナトリウムNaI、ヨウ化カルシウムCaI2及びヨウ化リチウムLiIをそれぞれ所定のモル比率にて添加することにより、所望の相関色温度が得られる。 Sodium Na contributes to the orange system, calcium Ca contributes to the red system, and lithium Li contributes to the crimson system. By adding sodium iodide NaI, calcium iodide CaI 2 and lithium iodide LiI in a predetermined molar ratio, a desired correlated color temperature can be obtained.
 ヨウ化ジスプロシウムDyI3、及び、ヨウ化タリウムTlIを添加することにより、発光効率が上がるが、色度偏差Duvが大きくなる方向にずれる。しかしながら、本実施形態では、ヨウ化カルシウムCaI2を添加することにより、色度偏差Duvの増加を抑えている。 By adding dysprosium iodide DyI 3 and thallium iodide TlI, the luminous efficiency increases, but the chromaticity deviation Duv increases. However, in this embodiment, by adding calcium iodide CaI 2, to suppress the increase of the chromaticity deviation Duv.
 表5はこれらの5種のセラミックメタルハライドランプについて、相関色温度CCT、色度偏差Duv、平均演色評価数Ra、赤の演色評価数R7、及び、発光効率ηを測定した結果を示す。相関色温度CCTはいずれも2900~3100Kであり、色度偏差Duvは試験番号5を除いて、0~-4であった。平均演色評価数Ra、赤の演色評価数R7、及び、発光効率ηは、いずれも必ずしも良好ではない。しかしながら、これらのセラミックメタルハライドランプは、肉野菜などの色を鮮やかに見せたい生鮮食品の照明として好適であることが判っている。即ち、従来の技術では、演色評価数及び発光効率が比較的低い光源は、実際に使用される可能性が低かったが、本願発明者は、演色評価数及び発光効率が比較的低い光源でも、肉野菜などの色を鮮やかに見せたい生鮮食品の照明として好適であることを初めて見出した。 Table 5 shows the results of measuring the correlated color temperature CCT, chromaticity deviation Duv, average color rendering index Ra, red color rendering index R7, and luminous efficiency η for these five ceramic metal halide lamps. The correlated color temperature CCT was 2900 to 3100 K in all cases, and the chromaticity deviation Duv was 0 to -4 except for test number 5. The average color rendering index Ra, the red color rendering index R7, and the luminous efficiency η are not necessarily good. However, it has been found that these ceramic metal halide lamps are suitable for lighting fresh foods that want to show colors such as meat vegetables vividly. That is, in the prior art, a light source having a relatively low color rendering index and light emission efficiency was unlikely to be actually used. It was found for the first time that it is suitable for lighting fresh foods that want to show colors such as meat vegetables vividly.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上、本発明に係る光源及びその製造方法について説明したが、これらは例示であって、本発明の範囲を制限するものではない。当業者が、本実施形態に対して容易になしえる追加・削除・変更・改良等は、本発明の範囲内である。本発明の技術的範囲は、添付の請求の記載によって定められる。 The light source and the manufacturing method thereof according to the present invention have been described above, but these are examples and do not limit the scope of the present invention. Additions, deletions, changes, improvements, and the like that can be easily made by those skilled in the art with respect to the present embodiment are within the scope of the present invention. The technical scope of the present invention is defined by the appended claims.
1…セラミックメタルハライドランプ、 2…発光管、 4A、4B…キャピラリ、 5A、5B…電極、 6A、6B…電極アセンブリ、 7A、7B…電力供給リード、 8A、8B…金属箔、 9A、9B…外部端子、 12…口金、 13…外球、 14…ステム、 15、16…支柱、 17A、17B…サポートディスク、 18…透光性スリーブ、 19A、19B…ニッケル線、 20…ゲッタ、 13A…外球チップオフ部、
 13B…ピンチシール部
DESCRIPTION OF SYMBOLS 1 ... Ceramic metal halide lamp, 2 ... Arc tube, 4A, 4B ... Capillary, 5A, 5B ... Electrode, 6A, 6B ... Electrode assembly, 7A, 7B ... Power supply lead, 8A, 8B ... Metal foil, 9A, 9B ... External Terminal: 12 ... Base, 13 ... Outer sphere, 14 ... Stem, 15, 16 ... Post, 17A, 17B ... Support disk, 18 ... Translucent sleeve, 19A, 19B ... Nickel wire, 20 ... Getter, 13A ... Outer sphere Chip-off part,
13B ... Pinch seal part

Claims (6)

  1.  少なくとも可視光線を発生する発光部を備えた光源において、
     前記発光部は、波長領域380~780nmを、波長380~490nmの紫青色系の第1波長領域と、波長490~570nmの緑色系の第2波長領域と、波長570~590nmの黄色系の第3波長領域と、波長590~780nmの橙赤色系の第4波長領域とに分割し、前記4つの波長領域毎に計算した前記発光部からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但し、y1+y2+y3+y4=100)とするとき、7≦y1≦11、15≦y2≦21、0≦y3<3、y4=残部となる発光スペクトルを有する光源。
    In a light source equipped with a light emitting unit that generates at least visible light,
    The light emitting unit has a wavelength region of 380 to 780 nm, a purple-blue first wavelength region with a wavelength of 380 to 490 nm, a green second wavelength region with a wavelength of 490 to 570 nm, and a yellowish first wavelength region of a wavelength of 570 to 590 nm. The ratio of the integrated value of the energy intensity of the light from the light emitting part calculated for each of the four wavelength regions is divided into three wavelength regions and an orange-red fourth wavelength region having a wavelength of 590 to 780 nm. : Y3: y4 (provided that y1 + y2 + y3 + y4 = 100), 7 ≦ y1 ≦ 11, 15 ≦ y2 ≦ 21, 0 ≦ y3 <3, y4 = light source having an emission spectrum that becomes the remainder.
  2.  請求項1記載の光源において、
     前記発光部は、前記4つの波長領域毎に計算した前記発光管からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但しy1+y2+y3+y4=100)とするとき、8≦y1≦9、17≦y2≦19、0≦y3≦2、y4=残部となる発光スペクトルを有することを特徴とする光源。
    The light source according to claim 1.
    When the ratio of the integrated value of the energy intensity of the light from the arc tube calculated for each of the four wavelength regions is y1: y2: y3: y4 (where y1 + y2 + y3 + y4 = 100), the light emitting unit 8 ≦ y1 ≦ 9, 17 ≦ y2 ≦ 19, 0 ≦ y3 ≦ 2, y4 = light source having an emission spectrum which is the remainder.
  3.  請求項1又は2記載の光源において、
     前記光源は、希ガスと発光物質を封入した発光管を有する高輝度放電光源であり、
     前記発光部の発光スペクトルは、前記発光物質の組成と添加量を調整することによって設定されることを特徴とする光源。
    The light source according to claim 1 or 2,
    The light source is a high-intensity discharge light source having an arc tube enclosing a rare gas and a luminescent material,
    An emission spectrum of the light emitting unit is set by adjusting a composition and an addition amount of the light emitting substance.
  4.  少なくとも可視光線を発生する発光部を備えた光源の製造方法において、
     波長領域380~780nmを、波長380~490nmの紫青色系の第1波長領域と、波長490~570nmの緑色系の第2波長領域と、波長570~590nmの黄色系の第3波長領域と、波長590~780nmの橙赤色系の第4波長領域とに分割する波長領域分割ステップと、
     前記4つの波長領域毎に計算した前記発光部からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但し、y1+y2+y3+y4=100)とするとき、7≦y1≦11、15≦y2≦21、0≦y3<3、y4=残部となるように前記発光部からの発光スペクトルを設定する発光スペクトル設定ステップと、
     を含む光源の製造方法。
    In a method of manufacturing a light source including a light emitting unit that generates at least visible light,
    A wavelength region of 380 to 780 nm, a purple-blue first wavelength region of a wavelength of 380 to 490 nm, a green second wavelength region of a wavelength of 490 to 570 nm, and a yellow third wavelength region of a wavelength of 570 to 590 nm; A wavelength region dividing step of dividing into an orange-red fourth wavelength region having a wavelength of 590 to 780 nm;
    When the ratio of the integrated values of the energy intensities of light from the light emitting part calculated for each of the four wavelength regions is y1: y2: y3: y4 (where y1 + y2 + y3 + y4 = 100), 7 ≦ y1 ≦ 11, 15 ≦ an emission spectrum setting step for setting an emission spectrum from the light emitting unit such that y2 ≦ 21, 0 ≦ y3 <3, y4 = remainder,
    A method of manufacturing a light source including:
  5.  請求項4記載の光源の製造方法において、
     前記発光スペクトル設定ステップにおいて、
     前記4つの波長領域毎に計算した前記発光管からの光のエネルギー強度の積算値の比をy1:y2:y3:y4(但しy1+y2+y3+y4=100)とするとき、8≦y1≦9、17≦y2≦19、0≦y3≦2、y4=残部となるように前記発光部からの発光スペクトルを設定することを特徴とする光源の製造方法。
    In the manufacturing method of the light source of Claim 4,
    In the emission spectrum setting step,
    When the ratio of the integrated value of the energy intensity of light from the arc tube calculated for each of the four wavelength regions is y1: y2: y3: y4 (where y1 + y2 + y3 + y4 = 100), 8 ≦ y1 ≦ 9, 17 ≦ y2 A method of manufacturing a light source, wherein an emission spectrum from the light emitting unit is set so that ≦ 19, 0 ≦ y3 ≦ 2, and y4 = remainder.
  6.  請求項4又は5記載の光源の製造方法において、
     前記光源は、希ガスと発光物質を封入した発光管を有する高輝度放電ランプであり、
     前記発光スペクトル設定ステップでは、前記発光物質の組成と添加量を調整することによって前記発光管からの発光スペクトルを設定することを特徴とする光源の製造方法。
    In the manufacturing method of the light source of Claim 4 or 5,
    The light source is a high-intensity discharge lamp having an arc tube enclosing a rare gas and a luminescent material,
    In the emission spectrum setting step, an emission spectrum from the arc tube is set by adjusting a composition and an addition amount of the luminescent material.
PCT/JP2014/076695 2013-10-28 2014-10-06 Light source and manufacturing method therefor WO2015064309A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14857301.7A EP3065162A4 (en) 2013-10-28 2014-10-06 Light source and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013223725A JP2015088254A (en) 2013-10-28 2013-10-28 Light source and method of manufacturing the same
JP2013-223725 2013-10-28

Publications (1)

Publication Number Publication Date
WO2015064309A1 true WO2015064309A1 (en) 2015-05-07

Family

ID=53003920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076695 WO2015064309A1 (en) 2013-10-28 2014-10-06 Light source and manufacturing method therefor

Country Status (3)

Country Link
EP (1) EP3065162A4 (en)
JP (1) JP2015088254A (en)
WO (1) WO2015064309A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187744A (en) 2001-12-03 2003-07-04 General Electric Co <Ge> Ceramic metal halide lamp
JP2003217507A (en) * 2002-01-25 2003-07-31 Matsushita Electric Works Ltd Metal halide lamp
JP2004288617A (en) 2003-03-03 2004-10-14 Osram Melco Toshiba Lighting Kk High-pressure discharge lamp and lighting device
JP2007053004A (en) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Metal-halide lamp and lighting system using it
JP2009087602A (en) 2007-09-28 2009-04-23 Iwasaki Electric Co Ltd Metal halide lamp
JP2009520329A (en) 2005-12-19 2009-05-21 スリーエム イノベイティブ プロパティズ カンパニー Board mount header for cable connector assembly
JP2009520323A (en) 2005-12-16 2009-05-21 ゼネラル・エレクトリック・カンパニイ Ceramic metal halide lamp
JP2010003488A (en) 2008-06-19 2010-01-07 Osram Melco Toshiba Lighting Kk Metal halide lamp and lighting fixture
JP2011154847A (en) 2010-01-27 2011-08-11 Iwasaki Electric Co Ltd Metal halide lamp and lighting fixture
JP2012113883A (en) 2010-11-22 2012-06-14 Iwasaki Electric Co Ltd Metal halide lamp
JP2012173201A (en) 2011-02-23 2012-09-10 Fujitsu Semiconductor Ltd Method and device of failure diagnosis, test system and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361180A (en) * 1976-11-12 1978-06-01 Mitsubishi Electric Corp Fluorescent lamp
WO2011108053A1 (en) * 2010-03-01 2011-09-09 パナソニック株式会社 Led lamp and led illumination device
JP5370878B1 (en) * 2012-08-03 2013-12-18 岩崎電気株式会社 Ceramic metal halide lamp

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187744A (en) 2001-12-03 2003-07-04 General Electric Co <Ge> Ceramic metal halide lamp
JP2003217507A (en) * 2002-01-25 2003-07-31 Matsushita Electric Works Ltd Metal halide lamp
JP2004288617A (en) 2003-03-03 2004-10-14 Osram Melco Toshiba Lighting Kk High-pressure discharge lamp and lighting device
JP2007053004A (en) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Metal-halide lamp and lighting system using it
JP2009520323A (en) 2005-12-16 2009-05-21 ゼネラル・エレクトリック・カンパニイ Ceramic metal halide lamp
JP2009520329A (en) 2005-12-19 2009-05-21 スリーエム イノベイティブ プロパティズ カンパニー Board mount header for cable connector assembly
JP2009087602A (en) 2007-09-28 2009-04-23 Iwasaki Electric Co Ltd Metal halide lamp
JP2010003488A (en) 2008-06-19 2010-01-07 Osram Melco Toshiba Lighting Kk Metal halide lamp and lighting fixture
JP2011154847A (en) 2010-01-27 2011-08-11 Iwasaki Electric Co Ltd Metal halide lamp and lighting fixture
JP2012113883A (en) 2010-11-22 2012-06-14 Iwasaki Electric Co Ltd Metal halide lamp
JP2012173201A (en) 2011-02-23 2012-09-10 Fujitsu Semiconductor Ltd Method and device of failure diagnosis, test system and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3065162A4 *

Also Published As

Publication number Publication date
JP2015088254A (en) 2015-05-07
EP3065162A1 (en) 2016-09-07
EP3065162A4 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
EP2672532B1 (en) Led module and illumination device
US7714512B2 (en) High red color rendition metal halide lamp
JP5325788B2 (en) Discharge lamp with high color temperature
US6472812B2 (en) Fluorescent colortone lamp with reduced mercury
JP3209752B2 (en) High pressure discharge lamp
US7138766B2 (en) Dimmable metal halide lamp and lighting method
JP2004335464A (en) METAL HALIDE LAMP FILLED WITH MINUTE AMOUNT OF TlI FOR IMPROVING LIGHT CONTROL CHARACTERISTICS
US20090267516A1 (en) Ceramic metal halide daylight lamp
JP5370878B1 (en) Ceramic metal halide lamp
JP2004349242A (en) High-pressure discharge lamp and lighting system
WO2015064309A1 (en) Light source and manufacturing method therefor
US9275845B2 (en) Ceramic metal halide lamp having dysprosium iodide
CN1319113C (en) Plasma lamp system and bulb therefor
JP5397514B1 (en) Ceramic metal halide lamp
US7893619B2 (en) High intensity discharge lamp
JP5825130B2 (en) Ceramic metal halide lamp
JP2004537824A (en) Color tone fluorescent lamp with reduced mercury
JP2003100258A (en) Fluorescent lamp and bulb type fluorescent lamp
JP3723567B2 (en) Ceramic metal halide lamp
JPH04218252A (en) High-pressure sodium lamp
JP2002352769A (en) High-pressure discharge lamp and lighting device
JPH02227956A (en) Low color temperature metal halide lamp
JP2012195229A (en) Electrodeless discharge lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014857301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857301

Country of ref document: EP