WO2015064257A1 - Reception device and reception method - Google Patents

Reception device and reception method Download PDF

Info

Publication number
WO2015064257A1
WO2015064257A1 PCT/JP2014/075635 JP2014075635W WO2015064257A1 WO 2015064257 A1 WO2015064257 A1 WO 2015064257A1 JP 2014075635 W JP2014075635 W JP 2014075635W WO 2015064257 A1 WO2015064257 A1 WO 2015064257A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble field
data
demodulation
data part
search
Prior art date
Application number
PCT/JP2014/075635
Other languages
French (fr)
Japanese (ja)
Inventor
信成 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015064257A1 publication Critical patent/WO2015064257A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/70735Code identification

Definitions

  • the present invention relates to a receiving apparatus and a receiving method for receiving a spread spectrum modulated signal.
  • -A packet signal transmitted and received by wireless communication usually includes a preamble field consisting of repetition of a known sequence at the head.
  • the receiving apparatus detects a packet by detecting a preamble field from the received signal.
  • the packet includes a data part following the preamble field.
  • the preamble field is detected, the data portion is then demodulated.
  • the part following the erroneously detected part is recognized as the data part.
  • demodulation processing is performed on a portion recognized as a data portion.
  • this portion is not an original data portion, normal demodulation processing is not performed and a demodulation error occurs. For this reason, the time spent for demodulating a portion that is not the original data portion is wasted.
  • An object of the present invention is to provide a receiving apparatus and a receiving method that can reduce useless processing time even when a preamble field is erroneously detected.
  • the demodulator Search the preamble field from the received signal input from the input port;
  • a plurality of the data portions are demodulated in order, If the data part cannot be demodulated, a receiving apparatus is provided that stops demodulating the data part after the data part that could not be demodulated and returns to the preamble field search.
  • the demodulation of the subsequent data part is stopped and the process returns to the preamble field search, so that the useless processing time for attempting to demodulate the data part can be shortened.
  • the preamble field may include a plurality of flags composed of mutually orthogonal flag patterns, and the flag pattern may be orthogonal to the plurality of spreading codes used when attempting to demodulate the data portion.
  • the number of the data parts included in the received signal is known, and after the demodulator detects the preamble field, when the demodulation of all the data parts is completed, it returns to the search for the preamble field. Good. This makes it possible to search for the next packet immediately after demodulating all data parts.
  • the step of searching for the preamble field when the preamble field is detected, the step of trying to demodulate the next data portion;
  • the method returns to the step of searching the preamble field, and when the demodulation of the data part is possible, the receiving method includes the step of trying to demodulate the data part.
  • the demodulation of the subsequent data part is stopped and the process returns to the preamble field search, so that the useless processing time for attempting to demodulate the data part can be shortened.
  • the preamble field may include a plurality of flags composed of mutually orthogonal flag patterns, and the flag pattern may be orthogonal to the plurality of spreading codes used when attempting to demodulate the data portion.
  • the step of searching for the preamble field may return to the step of searching for the preamble field when demodulation of a predetermined number of the data parts is completed after the preamble field is detected. This makes it possible to search for the next packet immediately after demodulating all data parts.
  • FIG. 1 is a block diagram of a receiving apparatus according to an embodiment.
  • FIG. 2A is a diagram illustrating an example of a frame format of one packet of a received signal converted into a digital signal by an AD converter
  • FIG. 2B is a diagram illustrating a preamble field search procedure.
  • FIG. 3A is a diagram showing input / output data of the spread spectrum modulation processing section
  • FIG. 3B is a diagram showing a bit string of the spread spectrum modulation signal.
  • FIG. 4 is a diagram for explaining the demodulation processing of the spread spectrum modulation signal.
  • FIG. 5 is a flowchart of a reception process executed by the demodulation unit of the reception apparatus according to the embodiment.
  • FIG. 6 is a schematic diagram of a data transmission / reception system according to an embodiment.
  • FIG. 7 is an example of a timing chart of transmission data transmitted from a plurality of transmission apparatuses.
  • FIG. 1 shows a block diagram of a receiving apparatus 10 according to the embodiment.
  • the receiving apparatus 10 includes an RF processing unit 11, an AD converter 12, a demodulation unit 13, and a receiving antenna 14.
  • the RF processing unit 11 includes a down converter, a band pass filter, a log amplifier, and the like.
  • the received signal is converted to a baseband analog signal by the RF processing unit 11, converted to a digital signal by the AD converter 12, and input to the input port 15 of the demodulation unit 13.
  • FIG. 2A shows an example of the frame format of one packet included in the received signal converted into a digital signal by the AD converter 12 (FIG. 1).
  • the packet includes a preamble field 20 and a data field 21 following the preamble field 20.
  • the preamble field 20 includes flags F1 and F2.
  • the flags F1 and F2 have, for example, a predetermined 1024-bit fixed code (code).
  • code 1024-bit fixed code
  • the field length of each of the flags F1 and F2 is not limited to 1024 bits.
  • another format that can detect and synchronize a packet may be adopted as the preamble field 20, another format that can detect and synchronize a packet may be adopted.
  • the data field 21 includes a plurality of data parts D1 to D4.
  • FIG. 2A shows an example in which the data field 21 includes four data parts D1 to D4, but the number of data parts included in one data field 21 is not limited to four.
  • the number of data parts included in one data field 21 is known, and the number of data parts is preset in the demodulator 13 of the receiving device 10.
  • the field length of the data parts D1 to D4 is, for example, 1024 bits. By making the field lengths of the flags F1 and F2 equal to the field lengths of the data portions D1 to D4, the demodulation process can be easily performed.
  • the data parts D1 to D4 are configured by spread spectrum modulated signals using spreading codes SC1 to SC4, respectively.
  • the codes of the flags F1 and F2 and the spread codes SC1 to SC4 are orthogonal to each other.
  • a flag search process is performed on the bit string of the received signal for each field length of the flags F1 and F2, that is, for each 2048 bit length.
  • a correlation operation between a bit string of a 2048-bit received signal and a flag pattern is performed.
  • a 2048-bit section to be subjected to correlation calculation is referred to as a flag search section 23. If a flag pattern identical to the flag F1 or F2 exists in the flag search section 23, a correlation peak appears at a position on the time axis where this flag pattern exists. When a peak exceeding the determination threshold appears, it is determined that the flag F1 or F2 is included in the position where the peak appears (position on the time axis) in the flag search section 23 of the received signal.
  • FIG. 2B shows the relationship between the received signal and the flag search section 23 in time series.
  • time t1 a part of the flag F1 is included in the flag search section 23.
  • the flag search process is performed at time t1, but no correlation peak exceeding the threshold value appears, and no flag is detected. Further, flag search processing is performed at time t2 when the received signal is shifted by 1024 bits. At this time, the flag F1 is detected in the flag search section 23.
  • the flag F2 is detected in the flag search section 23 at time t3 when the received signal is shifted by 1024 bits. If the position where the flag F1 is detected at the time t2 and the position where the flag F2 is detected at the time t3 are the same, it can be said that the preamble field 20 (FIG. 2A) has been detected. Increasing the field length of the preamble field 20 can also reduce the false detection probability.
  • Spread spectrum modulation is performed by a transmission device that transmits a radio signal received by the reception device 10 (FIG. 1).
  • FIG. 3A shows input / output data of the spread spectrum modulation processing unit 30.
  • the data 31 to be transmitted and the spread code SC are input to the spread spectrum modulation processing unit 30.
  • the data 31 to be transmitted has, for example, 10-bit information. That is, the data 31 to be transmitted takes values from 0 to 1023.
  • the spread code SC is composed of 1024 bits.
  • the spread spectrum modulation processing unit 30 performs spread spectrum modulation on the data 31 to be transmitted using the spread code SC.
  • the spread spectrum modulation processing unit 30 outputs a spread spectrum modulation signal 32 subjected to spread spectrum modulation.
  • FIG. 3B shows an example of a bit string of the spread spectrum modulation signal 32.
  • the spread spectrum modulation signal 32 has the same bit string as the spread code SC. That is, the values of the 0th bit to the 1023th bit of the spread code SC are equal to the values of the 0th bit to the 1023th bit of the spread spectrum modulation signal 32, respectively.
  • the spread spectrum modulation processing unit 30 When the value of the data 31 to be transmitted is “n”, the spread spectrum modulation processing unit 30 generates the spread spectrum modulation signal 32 by cyclically shifting the spread code SC by n bits. That is, the values from the 0th bit to the (1023-n) th bit of the spread code SC coincide with the values from the nth bit to the 1023th bit of the spread spectrum modulation signal 32, respectively.
  • the values from the (n + 1) th bit to the 1023rd bit match the values from the 0th bit to the (n ⁇ 1) th bit of the spread spectrum modulation signal 32, respectively.
  • FIG. 4 illustrates an example in which the data to be transmitted is “n”. Correlation between the spread spectrum modulation signal 32 and the spread code SC is performed.
  • FIG. 35 An example of the correlation calculation result is shown in a graph 35, and another example is shown in a graph 36.
  • the horizontal axes of the graphs 35 and 36 represent the number of bits for shifting the spread code SC when the spread spectrum modulation signal 32 is generated, and the vertical axis represents the correlation value.
  • the graph 35 a peak appears at the position of the number of shift bits n during modulation. When the height of this peak, that is, the correlation value exceeds the determination threshold Th, the spread spectrum modulation signal 32 is demodulated to the value “n”, and the demodulation process ends normally.
  • the other graph 36 when a peak exceeding the determination threshold Th does not appear, it is determined that demodulation is impossible.
  • FIG. 5 shows a flowchart of the reception process executed by the demodulator 13 (FIG. 1) of the receiving apparatus 10 according to the embodiment.
  • step ST1 the preamble field 20 (FIG. 2A) of the received signal is searched.
  • the method described with reference to FIG. 2B is applied to search for the preamble field 20.
  • step ST2 it is determined whether the preamble field 20 is detected. If the preamble field 20 is not detected, the process returns to step ST1, and the search for the preamble field 20 is continued.
  • the data parts D1 to D4 are demodulated in order in steps ST3 to ST6.
  • the first data portion D1 (FIG. 2A) is demodulated in step ST3.
  • the demodulation method of the spread spectrum modulation signal 32 described with reference to FIG. 4 is applied to the demodulation of the data parts D1 to D4.
  • step ST4 it is determined whether or not the demodulation is normally completed. As shown in the graph 35 of FIG. 4, if a peak exceeding the determination threshold Th appears, it is determined that the demodulation is normally completed. As shown in the graph 36, when a peak exceeding the determination threshold Th does not appear, it is determined that demodulation is impossible. If the demodulation is normally completed, it is determined in step ST5 whether or not the demodulation of all the data parts D1 to D4 is completed. If the demodulation is impossible, the demodulation of the data part is stopped, the process returns to step ST1, and the search process for the preamble field 20 is resumed.
  • step ST5 If it is determined in step ST5 that the demodulation of all the data parts D1 to D4 has been completed, the process returns to step ST1 and the search process for the preamble field 20 is resumed. If there is a data part that has not been demodulated, in step ST6, the demodulation target is moved to the next data part, and then the process returns to step ST3 to resume demodulation of the data part. For example, when the demodulation of the data part D1 is completed, the demodulation of the next data part D2 is executed.
  • step ST3 if demodulation of a data part is impossible in step ST3, the search for the preamble field 20 is resumed in step ST4 without performing demodulation of the subsequent data part. For this reason, useless demodulation processing of the data portion can be avoided.
  • FIG. 6 shows a schematic diagram of a data transmission / reception system according to the embodiment.
  • the data transmission / reception system according to the embodiment includes at least one receiving device 10 and a plurality of, for example, six transmitting devices 41 to 46.
  • the number of transmission devices 41 to 46 is not limited to six.
  • Each of the plurality of transmission devices 41 to 46 transmits a signal having the frame format shown in FIG. 2A, for example.
  • the frequencies of the carrier waves used in the plurality of transmission apparatuses 41 to 46 are the same, and the flag patterns of the flags F1 and F2 are also the same.
  • the codes of the spread codes SC1 to SC4 and the flags F1 and F2 for generating the data parts D1 to D4 of the packets transmitted from the transmission devices 41 to 46 are mutually Orthogonal.
  • Gold series codes are used as the codes of the flags F1 and F2 and the spreading codes SC1 to SC4.
  • the codes of the flags F1 and F2 and the spread codes SC1 to SC4 are the same among the plurality of transmission apparatuses 41 to 46.
  • the plurality of transmission devices 41 to 46 transmit data independently of each other in terms of time.
  • the receiving apparatus 10 demodulates the data parts D1 to D4 of the data field 21 after detecting the preamble field 20.
  • an identification number for identifying the transmission devices 41 to 46 is included. From this identification number, it is possible to recognize from which of the transmission devices 41 to 46 the demodulated packet is transmitted.
  • FIG. 7 shows an example of a timing chart of transmission data transmitted from the transmission devices 41 to 46.
  • the preamble field 20 of the packet PK1 transmitted from the transmission device 41 is detected (steps ST1 and ST2 in FIG. 5), and the demodulation of the data parts D1 to D4 ends normally (FIG. 7). 5 steps ST3 to ST5).
  • the flags F1 of the packets PK1 and PK2 transmitted from two different transmission apparatuses 41 and 42 are shown in FIG. 2B. In some cases, they are detected simultaneously in the flag search section 23. In this case, two peaks appear in the correlation calculation result. When two peaks appear, it is determined that the flag F1 exists at the position where the peak with a high degree of correlation appears (position on the time axis). Note that scheduling of packet transmission times may be performed so that packets transmitted from different transmission apparatuses 41 to 46 do not overlap on the time axis.
  • the data part D1 of the packet PK1 and the flag F1 of the packet PK3 transmitted from the transmission device 43 almost overlap on the time axis.
  • the spread code SC1 for the data part D1 is used. Since the spreading code SC1 and the flag F1 are orthogonal to each other, the flag F1 of the packet PK3 is recognized as simple noise when demodulating the data part D1 of the packet PK1.
  • signals other than the packet PK1 are recognized as noise. Therefore, the data part D1 of the packet PK1 can be demodulated. Similarly, the data parts D2 to D4 of the packet PK1 can be demodulated.
  • step ST5 of FIG. 5 shows an example in which noise 25 is erroneously detected as a preamble field.
  • demodulation of the data part D1 is attempted (step ST3 in FIG. 5).
  • step ST4 in FIG. 5 since it is determined in step ST4 in FIG. 5 that the demodulation is not normally completed, the process returns to step ST1 and the search for the preamble field 20 is resumed.
  • the preamble field 20 of the packet PK4 transmitted from the transmission device 44 is detected. Thereafter, the demodulation of the data parts D1 to D4 of the packet PK4 is normally completed. After the demodulation process of the packet PK4 is completed, the reception process of the packet PK5 transmitted from the transmission device 43 is executed.
  • reception processing according to a comparative example will be described.
  • the decoding process for all the data parts D1 to D4 is performed.
  • the search for the preamble field 20 is resumed.
  • the noise 25 shown in FIG. 7 is erroneously detected as the preamble field 20
  • all of the data parts D1 to D4 following the noise 25 are demodulated.
  • Preamble field 20 cannot be detected during the period when demodulation is attempted. For this reason, it is impossible to detect the preamble field 20 of the packet PK4 that has arrived at the receiving apparatus during the period when the demodulation of the data parts D1 to D4 following the noise 25 is attempted. After attempting to demodulate the data parts D1 to D4 following the noise 25, the preamble field 20 of the packet PK5 is detected. In the method according to the comparative example, the information of the packet PK4 cannot be received.
  • the preamble field 20 is searched without attempting to demodulate the data parts D2 to D4. For this reason, the preamble field 20 of the packet PK4 can be detected.
  • signals from the plurality of transmission devices 41 to 46 can be received efficiently.
  • the demodulation method according to the above embodiment can be easily executed by software radio using a microcomputer, a field programmable gate array (FPGA), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A reception signal, which includes a preamble field and a plurality of spectrum-spread-modulated data parts, is inputted to an input port. A demodulation unit demodulates the reception signal inputted thereto from the input port. The demodulation unit searches the reception signal, which has been inputted thereto from the input port, for the preamble field. When having detected the preamble field, the demodulation unit sequentially demodulates the plurality of data parts. When the demodulation of a data part is found impossible, the demodulation unit ceases the demodulation of the data parts following the data part for which the demodulation is found impossible, and the demodulation unit then reverts to the search for the preamble field. In this way, even when an erroneous detection of the preamble field occurs, the wasted processing time can be shortened.

Description

受信装置、及び受信方法Receiving apparatus and receiving method
 本発明は、スペクトラム拡散変調された信号を受信する受信装置、及び受信方法に関する。 The present invention relates to a receiving apparatus and a receiving method for receiving a spread spectrum modulated signal.
 無線通信で送受されるパケット信号は、通常、先頭に既知シーケンスの繰り返しからなるプリアンブルフィールドを含む。受信装置は、受信信号からプリアンブルフィールドを検出することにより、パケットの検出を行う。パケットは、プリアンブルフィールドに続くデータ部を含む。プリアンブルフィールドが検出されると、次に、データ部の復調処理が行われる。 -A packet signal transmitted and received by wireless communication usually includes a preamble field consisting of repetition of a known sequence at the head. The receiving apparatus detects a packet by detecting a preamble field from the received signal. The packet includes a data part following the preamble field. When the preamble field is detected, the data portion is then demodulated.
特開2010-45597号公報JP 2010-45597 A
 受信信号のうち、本来のプリアンブルフィールドではない雑音等をプリアンブルフィールドであると誤検出した場合、誤検出された箇所に続く箇所がデータ部であると認識される。プリアンブルフィールドの検出後、データ部と認識された箇所の復調処理が行われるが、この箇所は本来のデータ部ではないため、正常な復調処理が行われず、復調エラーが発生する。このため、本来のデータ部ではない箇所の復調処理に費やされる時間が無駄になってしまう。 When a noise that is not the original preamble field in the received signal is erroneously detected as the preamble field, the part following the erroneously detected part is recognized as the data part. After detection of the preamble field, demodulation processing is performed on a portion recognized as a data portion. However, since this portion is not an original data portion, normal demodulation processing is not performed and a demodulation error occurs. For this reason, the time spent for demodulating a portion that is not the original data portion is wasted.
 本発明の目的は、プリアンブルフィールドの誤検出が生じた場合でも、無駄な処理時間を短縮することができる受信装置、及び受信方法を提供することである。 An object of the present invention is to provide a receiving apparatus and a receiving method that can reduce useless processing time even when a preamble field is erroneously detected.
 本発明の一観点によると、
 プリアンブルフィールド、及びスペクトラム拡散変調された複数のデータ部を含む受信信号が入力される入力ポートと、
 前記入力ポートから入力された受信信号を復調する復調部と
を有し、
 前記復調部は、
 前記入力ポートから入力された前記受信信号から前記プリアンブルフィールドを探索し、
 前記プリアンブルフィールドが検出されたら、複数の前記データ部を順番に復調し、
 前記データ部の復調が不能であった場合、復調が不能であった前記データ部より後の前記データ部の復調を中止し、前記プリアンブルフィールドの探索に戻る受信装置が提供される。
According to one aspect of the invention,
An input port to which a received signal including a preamble field and a plurality of data portions subjected to spread spectrum modulation is input;
A demodulator that demodulates the received signal input from the input port;
The demodulator
Search the preamble field from the received signal input from the input port;
When the preamble field is detected, a plurality of the data portions are demodulated in order,
If the data part cannot be demodulated, a receiving apparatus is provided that stops demodulating the data part after the data part that could not be demodulated and returns to the preamble field search.
 データ部の復調が不能であった場合、後続のデータ部の復調を中止し、プリアンブルフィールドの探索に戻るため、データ部の復調を試みる無駄な処理時間を短縮することができる。 If the data part cannot be demodulated, the demodulation of the subsequent data part is stopped and the process returns to the preamble field search, so that the useless processing time for attempting to demodulate the data part can be shortened.
 前記プリアンブルフィールドが、相互に直交するフラグパターンからなる複数のフラグを含み、前記フラグパターンが、前記データ部の復調を試みるときに用いられる複数の前記拡散符号と直交する構成としてもよい。 The preamble field may include a plurality of flags composed of mutually orthogonal flag patterns, and the flag pattern may be orthogonal to the plurality of spreading codes used when attempting to demodulate the data portion.
 前記受信信号に含まれる前記データ部の個数が既知であり、前記復調部が、前記プリアンブルフィールドを検出した後、すべての前記データ部の復調が終了すると、前記プリアンブルフィールドの探索に戻る構成としてもよい。これにより、全てのデータ部を復調した後、直ちに、次のパケットの探索を行うことが可能になる。 The number of the data parts included in the received signal is known, and after the demodulator detects the preamble field, when the demodulation of all the data parts is completed, it returns to the search for the preamble field. Good. This makes it possible to search for the next packet immediately after demodulating all data parts.
 本発明の他の観点によると、
 プリアンブルフィールド、及び前記プリアンブルフィールドに続くスペクトラム拡散変調された複数のデータ部を有する受信信号の前記プリアンブルフィールドの探索を行う工程と、
 前記プリアンブルフィールドを探索する工程において、前記プリアンブルフィールドが検出されたら、次の前記データ部の復調を試みる工程と、
 前記データ部の復調が不能であった場合、前記プリアンブルフィールドを探索する工程に戻り、前記データ部の復調が可能であった場合、次の前記データ部の復調を試みる工程と
を有する受信方法が提供される。
According to another aspect of the invention,
Searching the preamble field for a received signal having a preamble field and a plurality of spread spectrum modulated data portions following the preamble field;
In the step of searching for the preamble field, when the preamble field is detected, the step of trying to demodulate the next data portion;
When the demodulation of the data part is impossible, the method returns to the step of searching the preamble field, and when the demodulation of the data part is possible, the receiving method includes the step of trying to demodulate the data part. Provided.
 データ部の復調が不能であった場合、後続のデータ部の復調を中止し、プリアンブルフィールドの探索に戻るため、データ部の復調を試みる無駄な処理時間を短縮することができる。 If the data part cannot be demodulated, the demodulation of the subsequent data part is stopped and the process returns to the preamble field search, so that the useless processing time for attempting to demodulate the data part can be shortened.
 前記プリアンブルフィールドが、相互に直交するフラグパターンからなる複数のフラグを含み、前記フラグパターンが、前記データ部の復調を試みるときに用いられる複数の前記拡散符号と直交している構成としてもよい。 The preamble field may include a plurality of flags composed of mutually orthogonal flag patterns, and the flag pattern may be orthogonal to the plurality of spreading codes used when attempting to demodulate the data portion.
 前記プリアンブルフィールドを探索する工程において、前記プリアンブルフィールドが検出された後、事前に設定されている個数の前記データ部の復調が終了すると、前記プリアンブルフィールドを探索する工程に戻る構成としてもよい。これにより、全てのデータ部を復調した後、直ちに、次のパケットの探索を行うことが可能になる。 The step of searching for the preamble field may return to the step of searching for the preamble field when demodulation of a predetermined number of the data parts is completed after the preamble field is detected. This makes it possible to search for the next packet immediately after demodulating all data parts.
図1は、実施例による受信装置のブロック図である。FIG. 1 is a block diagram of a receiving apparatus according to an embodiment. 図2Aは、ADコンバータでディジタル信号に変換された受信信号の1つのパケットのフレームフォーマットの一例を示す図であり、図2Bは、プリアンブルフィールドの探索手順について説明する図である。FIG. 2A is a diagram illustrating an example of a frame format of one packet of a received signal converted into a digital signal by an AD converter, and FIG. 2B is a diagram illustrating a preamble field search procedure. 図3Aは、スペクトラム拡散変調処理部の入出力データを示す図であり、図3Bは、スペクトラム拡散変調信号のビット列を示す図である。FIG. 3A is a diagram showing input / output data of the spread spectrum modulation processing section, and FIG. 3B is a diagram showing a bit string of the spread spectrum modulation signal. 図4は、スペクトラム拡散変調信号の復調処理について説明する図である。FIG. 4 is a diagram for explaining the demodulation processing of the spread spectrum modulation signal. 図5は、実施例による受信装置の復調部が実行する受信処理のフローチャートである。FIG. 5 is a flowchart of a reception process executed by the demodulation unit of the reception apparatus according to the embodiment. 図6は、実施例によるデータ送受信システムの概略図である。FIG. 6 is a schematic diagram of a data transmission / reception system according to an embodiment. 図7は、複数の送信装置から送信された送信データのタイミングチャートの一例である。FIG. 7 is an example of a timing chart of transmission data transmitted from a plurality of transmission apparatuses.
 図1に、実施例による受信装置10のブロック図を示す。実施例による受信装置10は、RF処理部11、ADコンバータ12、復調部13、及び受信アンテナ14を含む。RF処理部11は、ダウンコンバータ、バンドパスフィルタ、ログアンプ等を含む。受信信号は、RF処理部11でベースバンドのアナログ信号に変換された後、ADコンバータ12でディジタル信号に変換され、復調部13の入力ポート15に入力される。 FIG. 1 shows a block diagram of a receiving apparatus 10 according to the embodiment. The receiving apparatus 10 according to the embodiment includes an RF processing unit 11, an AD converter 12, a demodulation unit 13, and a receiving antenna 14. The RF processing unit 11 includes a down converter, a band pass filter, a log amplifier, and the like. The received signal is converted to a baseband analog signal by the RF processing unit 11, converted to a digital signal by the AD converter 12, and input to the input port 15 of the demodulation unit 13.
 図2Aに、ADコンバータ12(図1)でディジタル信号に変換された受信信号に含まれる1つのパケットのフレームフォーマットの一例を示す。パケットは、プリアンブルフィールド20、及びプリアンブルフィールド20に続くデータフィールド21を含む。プリアンブルフィールド20は、フラグF1及びF2で構成される。フラグF1及びF2は、例えば、予め決められた1024ビットの固定された符号(コード)を有する。フラグF1及びF2の各々のフィールド長は、1024ビットに限定されない。さらに、プリアンブルフィールド20として、パケットの検出及び同期を行うことが可能な他のフォーマットを採用してもよい。 FIG. 2A shows an example of the frame format of one packet included in the received signal converted into a digital signal by the AD converter 12 (FIG. 1). The packet includes a preamble field 20 and a data field 21 following the preamble field 20. The preamble field 20 includes flags F1 and F2. The flags F1 and F2 have, for example, a predetermined 1024-bit fixed code (code). The field length of each of the flags F1 and F2 is not limited to 1024 bits. Further, as the preamble field 20, another format that can detect and synchronize a packet may be adopted.
 データフィールド21は、複数のデータ部D1~D4を含む。図2Aでは、データフィールド21が4個のデータ部D1~D4を含む例を示しているが、1つのデータフィールド21に含まれるデータ部の個数は4個に限定されない。1つのデータフィールド21に含まれるデータ部の個数は既知であり、データ部の個数は、受信装置10の復調部13に事前に設定されている。データ部D1~D4のフィールド長は、例えば1024ビットである。フラグF1、F2のフィールド長と、データ部D1~D4の各々のフィールド長を同一にすることにより、簡単に復調処理を行うことができる。データ部D1~D4は、それぞれ拡散符号SC1~SC4を用いてスペクトラム拡散変調された信号で構成される。フラグF1、F2のコード、及び拡散符号SC1~SC4は、相互に直交する。 The data field 21 includes a plurality of data parts D1 to D4. FIG. 2A shows an example in which the data field 21 includes four data parts D1 to D4, but the number of data parts included in one data field 21 is not limited to four. The number of data parts included in one data field 21 is known, and the number of data parts is preset in the demodulator 13 of the receiving device 10. The field length of the data parts D1 to D4 is, for example, 1024 bits. By making the field lengths of the flags F1 and F2 equal to the field lengths of the data portions D1 to D4, the demodulation process can be easily performed. The data parts D1 to D4 are configured by spread spectrum modulated signals using spreading codes SC1 to SC4, respectively. The codes of the flags F1 and F2 and the spread codes SC1 to SC4 are orthogonal to each other.
 図2Bを参照して、プリアンブルフィールド20(図2A)の探索手順について説明する。受信信号のビット列に対して、フラグF1及びF2の各々のフィールド長の2倍、すなわち2048ビット長ごとに、フラグ探索処理を行う。1回のフラグ探索処理において、2048ビットの受信信号のビット列と、フラグパターンとの相関演算を行う。受信信号のビット列のうち、相関演算を行う対象となる2048ビットの区間をフラグ探索区間23ということとする。フラグ探索区間23内に、フラグF1またはF2と同一のフラグパターンが存在する場合には、このフラグパターンが存在する時間軸上の位置に、相関のピークが現れる。判定閾値を超えるピークが現れると、受信信号のフラグ探索区間23内の、ピークが現れた位置(時間軸上の位置)に、フラグF1またはF2が含まれると判定される。 The search procedure for the preamble field 20 (FIG. 2A) will be described with reference to FIG. 2B. A flag search process is performed on the bit string of the received signal for each field length of the flags F1 and F2, that is, for each 2048 bit length. In one flag search process, a correlation operation between a bit string of a 2048-bit received signal and a flag pattern is performed. In the received signal bit string, a 2048-bit section to be subjected to correlation calculation is referred to as a flag search section 23. If a flag pattern identical to the flag F1 or F2 exists in the flag search section 23, a correlation peak appears at a position on the time axis where this flag pattern exists. When a peak exceeding the determination threshold appears, it is determined that the flag F1 or F2 is included in the position where the peak appears (position on the time axis) in the flag search section 23 of the received signal.
 図2Bは、受信信号とフラグ探索区間23との関係を時系列で示す。時刻t1において、フラグF1の一部が、フラグ探索区間23に含まれている。時刻t1の時点でフラグ探索処理が行われるが、閾値を超える相関のピークは現れず、フラグは検出されない。さらに、受信信号が1024ビットシフトした時刻t2の時点でフラグ探索処理が行われる。この時点では、フラグ探索区間23内にフラグF1が検出される。 FIG. 2B shows the relationship between the received signal and the flag search section 23 in time series. At time t1, a part of the flag F1 is included in the flag search section 23. The flag search process is performed at time t1, but no correlation peak exceeding the threshold value appears, and no flag is detected. Further, flag search processing is performed at time t2 when the received signal is shifted by 1024 bits. At this time, the flag F1 is detected in the flag search section 23.
 さらに、受信信号が1024ビットシフトした時刻t3において、フラグ探索区間23内にフラグF2が検出される。時刻t2でフラグF1が検出された位置と、時刻t3でフラグF2が検出された位置とが同一である場合、プリアンブルフィールド20(図2A)が検出されたといえる。プリアンブルフィールド20のフィールド長を長くすることにより、誤検出確率を減らすことも可能である。 Furthermore, the flag F2 is detected in the flag search section 23 at time t3 when the received signal is shifted by 1024 bits. If the position where the flag F1 is detected at the time t2 and the position where the flag F2 is detected at the time t3 are the same, it can be said that the preamble field 20 (FIG. 2A) has been detected. Increasing the field length of the preamble field 20 can also reduce the false detection probability.
 図3A及び図3Bを参照して、送信すべきデータをスペクトラム拡散変調する方法について説明する。ただし、スペクトラム拡散の方法は、以下に示す方法に限定されない。スペクトラム拡散変調は、受信装置10(図1)で受信される無線信号を送信する送信装置で行われる。 A method of performing spread spectrum modulation on data to be transmitted will be described with reference to FIGS. 3A and 3B. However, the spread spectrum method is not limited to the following method. Spread spectrum modulation is performed by a transmission device that transmits a radio signal received by the reception device 10 (FIG. 1).
 図3Aは、スペクトラム拡散変調処理部30の入出力データを示す。スペクトラム拡散変調処理部30に、送信すべきデータ31及び拡散符号SCが入力される。送信すべきデータ31は、例えば10ビットの情報を有する。すなわち、送信すべきデータ31は、0から1023までの値をとる。拡散符号SCは1024ビットで構成される。スペクトラム拡散変調処理部30は、拡散符号SCを用いて、送信すべきデータ31に対してスペクトル拡散変調を行う。スペクトラム拡散変調処理部30は、スペクトラム拡散変調されたスペクトラム拡散変調信号32を出力する。 FIG. 3A shows input / output data of the spread spectrum modulation processing unit 30. The data 31 to be transmitted and the spread code SC are input to the spread spectrum modulation processing unit 30. The data 31 to be transmitted has, for example, 10-bit information. That is, the data 31 to be transmitted takes values from 0 to 1023. The spread code SC is composed of 1024 bits. The spread spectrum modulation processing unit 30 performs spread spectrum modulation on the data 31 to be transmitted using the spread code SC. The spread spectrum modulation processing unit 30 outputs a spread spectrum modulation signal 32 subjected to spread spectrum modulation.
 図3Bに、スペクトラム拡散変調信号32のビット列の一例を示す。送信すべきデータ31の値が「0」のとき、スペクトラム拡散変調信号32は、拡散符号SCと同一のビット列を有する。すなわち、拡散符号SCの0ビット目~1023ビット目の値が、それぞれスペクトラム拡散変調信号32の0ビット目~1023ビット目の値と等しい。 FIG. 3B shows an example of a bit string of the spread spectrum modulation signal 32. When the value of the data 31 to be transmitted is “0”, the spread spectrum modulation signal 32 has the same bit string as the spread code SC. That is, the values of the 0th bit to the 1023th bit of the spread code SC are equal to the values of the 0th bit to the 1023th bit of the spread spectrum modulation signal 32, respectively.
 送信すべきデータ31の値が「n」のとき、スペクトラム拡散変調処理部30は、拡散符号SCをnビットだけ巡回シフトさせることにより、スペクトラム拡散変調信号32を生成する。すなわち、拡散符号SCの0ビット目から(1023-n)ビット目までの値が、それぞれスペクトラム拡散変調信号32のnビット目から1023ビット目までの値に一致し、拡散符号SCの(1023-n+1)ビット目から1023ビット目までの値が、それぞれスペクトラム拡散変調信号32の0ビット目から(n-1)ビット目までの値に一致する。 When the value of the data 31 to be transmitted is “n”, the spread spectrum modulation processing unit 30 generates the spread spectrum modulation signal 32 by cyclically shifting the spread code SC by n bits. That is, the values from the 0th bit to the (1023-n) th bit of the spread code SC coincide with the values from the nth bit to the 1023th bit of the spread spectrum modulation signal 32, respectively. The values from the (n + 1) th bit to the 1023rd bit match the values from the 0th bit to the (n−1) th bit of the spread spectrum modulation signal 32, respectively.
 図4を参照して、スペクトラム拡散変調信号32の復調処理について説明する。図4では、送信すべきデータが「n」である例について説明する。スペクトラム拡散変調信号32と拡散符号SCとの相関演算を行う。 With reference to FIG. 4, the demodulation process of the spread spectrum modulation signal 32 will be described. FIG. 4 illustrates an example in which the data to be transmitted is “n”. Correlation between the spread spectrum modulation signal 32 and the spread code SC is performed.
 相関演算結果の一例をグラフ35に示し、他の例をグラフ36に示す。グラフ35、36の横軸は、スペクトラム拡散変調信号32を生成するときに拡散符号SCをシフトさせるビット数を表し、縦軸は相関値を表す。一方のグラフ35において、変調時におけるシフトのビット数nの位置にピークが現れている。このピークの高さ、すなわち相関値が判定閾値Thを超えている場合、スペクトラム拡散変調信号32は値「n」に復調され、復調処理が正常に終了する。他方のグラフ36に示すように、判定閾値Thを超えるピークが出現しない場合、復調不能と判定される。 An example of the correlation calculation result is shown in a graph 35, and another example is shown in a graph 36. The horizontal axes of the graphs 35 and 36 represent the number of bits for shifting the spread code SC when the spread spectrum modulation signal 32 is generated, and the vertical axis represents the correlation value. On the other hand, in the graph 35, a peak appears at the position of the number of shift bits n during modulation. When the height of this peak, that is, the correlation value exceeds the determination threshold Th, the spread spectrum modulation signal 32 is demodulated to the value “n”, and the demodulation process ends normally. As shown in the other graph 36, when a peak exceeding the determination threshold Th does not appear, it is determined that demodulation is impossible.
 図5に、実施例による受信装置10の復調部13(図1)が実行する受信処理のフローチャートを示す。ステップST1において、受信信号のプリアンブルフィールド20(図2A)の探索を行う。プリアンブルフィールド20の探索には、図2Bを参照して説明した方法が適用される。 FIG. 5 shows a flowchart of the reception process executed by the demodulator 13 (FIG. 1) of the receiving apparatus 10 according to the embodiment. In step ST1, the preamble field 20 (FIG. 2A) of the received signal is searched. The method described with reference to FIG. 2B is applied to search for the preamble field 20.
 ステップST2において、プリアンブルフィールド20が検出されたか否かを判定する。プリアンブルフィールド20が検出されない場合は、ステップST1に戻って、引き続きプリアンブルフィールド20の探索を実行する。プリアンブルフィールド20が検出された場合には、ステップST3~ST6において、データ部D1~D4を順番に復調する。プリアンブルフィールド20が検出された直後は、ステップST3において、最初のデータ部D1(図2A)の復調を行う。データ部D1~D4の復調には、図4を参照して説明したスペクトラム拡散変調信号32の復調方法が適用される。 In step ST2, it is determined whether the preamble field 20 is detected. If the preamble field 20 is not detected, the process returns to step ST1, and the search for the preamble field 20 is continued. When the preamble field 20 is detected, the data parts D1 to D4 are demodulated in order in steps ST3 to ST6. Immediately after the preamble field 20 is detected, the first data portion D1 (FIG. 2A) is demodulated in step ST3. The demodulation method of the spread spectrum modulation signal 32 described with reference to FIG. 4 is applied to the demodulation of the data parts D1 to D4.
 ステップST4において、復調が正常に終了したか否かを判定する。図4のグラフ35に示したように、判定閾値Thを超えるピークが現れれば、復調が正常に終了したと判定される。グラフ36に示したように、判定閾値Thを超えるピークが現れない場合は、復調が不能であったと判定される。復調が正常に終了した場合には、ステップST5において、全てのデータ部D1~D4の復調が完了したか否かを判定する。復調が不能であった場合には、データ部の復調を中止し、ステップST1に戻って、プリアンブルフィールド20の探索処理を再開する。 In step ST4, it is determined whether or not the demodulation is normally completed. As shown in the graph 35 of FIG. 4, if a peak exceeding the determination threshold Th appears, it is determined that the demodulation is normally completed. As shown in the graph 36, when a peak exceeding the determination threshold Th does not appear, it is determined that demodulation is impossible. If the demodulation is normally completed, it is determined in step ST5 whether or not the demodulation of all the data parts D1 to D4 is completed. If the demodulation is impossible, the demodulation of the data part is stopped, the process returns to step ST1, and the search process for the preamble field 20 is resumed.
 ステップST5において、全てのデータ部D1~D4の復調が完了したと判定された場合には、ステップST1に戻って、プリアンブルフィールド20の探索処理を再開する。復調されていないデータ部が存在する場合には、ステップST6において、復調対象を次のデータ部に移動した後、ステップST3に戻ってデータ部の復調を再開する。例えば、データ部D1の復調が完了した場合には、次のデータ部D2の復調を実行する。 If it is determined in step ST5 that the demodulation of all the data parts D1 to D4 has been completed, the process returns to step ST1 and the search process for the preamble field 20 is resumed. If there is a data part that has not been demodulated, in step ST6, the demodulation target is moved to the next data part, and then the process returns to step ST3 to resume demodulation of the data part. For example, when the demodulation of the data part D1 is completed, the demodulation of the next data part D2 is executed.
 実施例においては、ステップST3において、あるデータ部の復調が不能であった場合、ステップST4において、その後に続くデータ部の復調を実行することなく、プリアンブルフィールド20の探索を再開する。このため、データ部の無駄な復調処理を回避することができる。 In the embodiment, if demodulation of a data part is impossible in step ST3, the search for the preamble field 20 is resumed in step ST4 without performing demodulation of the subsequent data part. For this reason, useless demodulation processing of the data portion can be avoided.
 図6に、実施例によるデータ送受信システムの概略図を示す。実施例によるデータ送受信システムは、少なくとも1つの受信装置10、及び複数、例えば6台の送信装置41~46を有する。送信装置41~46の台数は6台に限定されない。複数の送信装置41~46の各々は、例えば図2Aに示したフレームフォーマットの信号を送信する。複数の送信装置41~46で用いられる搬送波の周波数は同一であり、フラグF1及びF2のフラグパターンも同一である。 FIG. 6 shows a schematic diagram of a data transmission / reception system according to the embodiment. The data transmission / reception system according to the embodiment includes at least one receiving device 10 and a plurality of, for example, six transmitting devices 41 to 46. The number of transmission devices 41 to 46 is not limited to six. Each of the plurality of transmission devices 41 to 46 transmits a signal having the frame format shown in FIG. 2A, for example. The frequencies of the carrier waves used in the plurality of transmission apparatuses 41 to 46 are the same, and the flag patterns of the flags F1 and F2 are also the same.
 図2Aを参照して説明したように、各送信装置41~46から送信されるパケットのデータ部D1~D4を生成するための拡散符号SC1~SC4、及びフラグF1、F2のコードは、相互に直交する。例えば、フラグF1、F2のコード、及び拡散符号SC1~SC4としてゴールド系列の符号が用いられる。また、フラグF1、F2のコード、及び拡散符号SC1~SC4の各々は、複数の送信装置41~46の間で同一である。通信方式として片方向通信が採用される場合、複数の送信装置41~46は、時間的に相互に独立してデータを送信する。 As described with reference to FIG. 2A, the codes of the spread codes SC1 to SC4 and the flags F1 and F2 for generating the data parts D1 to D4 of the packets transmitted from the transmission devices 41 to 46 are mutually Orthogonal. For example, Gold series codes are used as the codes of the flags F1 and F2 and the spreading codes SC1 to SC4. Further, the codes of the flags F1 and F2 and the spread codes SC1 to SC4 are the same among the plurality of transmission apparatuses 41 to 46. When unidirectional communication is adopted as the communication method, the plurality of transmission devices 41 to 46 transmit data independently of each other in terms of time.
 受信装置10は、プリアンブルフィールド20を検出した後、データフィールド21のデータ部D1~D4を復調する。データフィールド21内に、送信装置41~46を識別するための識別番号が含まれている。この識別番号によって、復調されたパケットが送信装置41~46のうちどの装置から送信されたものかを認識することができる。 The receiving apparatus 10 demodulates the data parts D1 to D4 of the data field 21 after detecting the preamble field 20. In the data field 21, an identification number for identifying the transmission devices 41 to 46 is included. From this identification number, it is possible to recognize from which of the transmission devices 41 to 46 the demodulated packet is transmitted.
 図7に、送信装置41~46から送信された送信データのタイミングチャートの一例を示す。図7に示した例では、まず、送信装置41から送信されたパケットPK1のプリアンブルフィールド20が検出され(図5のステップST1、ST2)、データ部D1~D4の復調が正常に終了する(図5のステップST3~ST5)。 FIG. 7 shows an example of a timing chart of transmission data transmitted from the transmission devices 41 to 46. In the example shown in FIG. 7, first, the preamble field 20 of the packet PK1 transmitted from the transmission device 41 is detected (steps ST1 and ST2 in FIG. 5), and the demodulation of the data parts D1 to D4 ends normally (FIG. 7). 5 steps ST3 to ST5).
 複数の送信装置41~46が、時間的に独立してデータを送信しているため、異なる2つの送信装置41、42から送信されたパケットPK1とパケットPK2とのフラグF1が、図2Bに示したフラグ探索区間23内に、同時に検出される場合がある。この場合には、相関演算結果に2つのピークが現れる。2つのピークが現れた場合には、相関度の高いピークが現れた位置(時間軸上の位置)に、フラグF1が存在すると判定される。なお、異なる送信装置41~46から送信されたパケットが時間軸上で重ならないように、パケットの送信時刻のスケジューリングを行ってもよい。 Since the plurality of transmission apparatuses 41 to 46 transmit data independently in time, the flags F1 of the packets PK1 and PK2 transmitted from two different transmission apparatuses 41 and 42 are shown in FIG. 2B. In some cases, they are detected simultaneously in the flag search section 23. In this case, two peaks appear in the correlation calculation result. When two peaks appear, it is determined that the flag F1 exists at the position where the peak with a high degree of correlation appears (position on the time axis). Note that scheduling of packet transmission times may be performed so that packets transmitted from different transmission apparatuses 41 to 46 do not overlap on the time axis.
 図7に示した例では、パケットPK1のデータ部D1と、送信装置43から送信されたパケットPK3のフラグF1とが、時間軸上にほぼ重なっている。パケットPK1のデータ部D1の復調を行うときには、データ部D1用の拡散符号SC1が用いられる。拡散符号SC1とフラグF1とは、相互に直交するため、パケットPK1のデータ部D1の復調時に、パケットPK3のフラグF1は、単なる雑音として認識される。同様に、パケットPK1のデータ部D1と、他のパケットのデータ部D1以外のデータ部D2~D4が時間軸上で重なっても、パケットPK1以外の信号は、雑音として認識される。このため、パケットPK1のデータ部D1を復調することができる。同様に、パケットPK1のデータ部D2~D4を復調することができる。 In the example shown in FIG. 7, the data part D1 of the packet PK1 and the flag F1 of the packet PK3 transmitted from the transmission device 43 almost overlap on the time axis. When demodulating the data part D1 of the packet PK1, the spread code SC1 for the data part D1 is used. Since the spreading code SC1 and the flag F1 are orthogonal to each other, the flag F1 of the packet PK3 is recognized as simple noise when demodulating the data part D1 of the packet PK1. Similarly, even if the data part D1 of the packet PK1 and the data parts D2 to D4 other than the data part D1 of other packets overlap on the time axis, signals other than the packet PK1 are recognized as noise. Therefore, the data part D1 of the packet PK1 can be demodulated. Similarly, the data parts D2 to D4 of the packet PK1 can be demodulated.
 データ部D4の復調が完了すると、図5のステップST5において、「復調完了」と判定され、ステップST1に戻ってプリアンブルフィールドの探索が再開される。図7では、雑音25がプリアンブルフィールドとして誤検出された例を示す。プリアンブルフィールドが検出されると、データ部D1の復調が試みられる(図5のステップST3)。 When the demodulation of the data part D4 is completed, it is determined that “demodulation is completed” in step ST5 of FIG. 5, and the process returns to step ST1 to resume the search for the preamble field. FIG. 7 shows an example in which noise 25 is erroneously detected as a preamble field. When the preamble field is detected, demodulation of the data part D1 is attempted (step ST3 in FIG. 5).
 ところが、雑音25に続くデータ部D1は、スペクトラム拡散変調された正規の信号ではないため、データ部D1の復調は不能である。図5のステップST4において、復調が正常に完了しないと判定されるため、ステップST1に戻って、プリアンブルフィールド20の探索が再開される。 However, since the data part D1 following the noise 25 is not a regular signal subjected to spread spectrum modulation, the data part D1 cannot be demodulated. Since it is determined in step ST4 in FIG. 5 that the demodulation is not normally completed, the process returns to step ST1 and the search for the preamble field 20 is resumed.
 図7に示した例では、送信装置44から送信されたパケットPK4のプリアンブルフィールド20が検出される。その後、パケットPK4のデータ部D1~D4の復調が正常に完了する。パケットPK4の復調処理が完了した後、送信装置43から送信されたパケットPK5の受信処理が実行される。 In the example shown in FIG. 7, the preamble field 20 of the packet PK4 transmitted from the transmission device 44 is detected. Thereafter, the demodulation of the data parts D1 to D4 of the packet PK4 is normally completed. After the demodulation process of the packet PK4 is completed, the reception process of the packet PK5 transmitted from the transmission device 43 is executed.
 次に、比較例による受信処理について説明する。比較例においては、プリアンブルフィールド20が検出された後、全てのデータ部D1~D4の復号処理が行われる。データ部D1~D4の復号処理が終了した後、プリアンブルフィールド20の探索を再開する。この比較例によると、図7に示した雑音25をプリアンブルフィールド20と誤検出した場合、雑音25に続くデータ部D1~D4の全ての復調が試みられる。 Next, reception processing according to a comparative example will be described. In the comparative example, after the preamble field 20 is detected, the decoding process for all the data parts D1 to D4 is performed. After the decoding process of the data parts D1 to D4 is completed, the search for the preamble field 20 is resumed. According to this comparative example, when the noise 25 shown in FIG. 7 is erroneously detected as the preamble field 20, all of the data parts D1 to D4 following the noise 25 are demodulated.
 復調を試みている期間は、プリアンブルフィールド20を検出することができない。このため、雑音25に続くデータ部D1~D4の復調を試みている期間に受信装置に到達したパケットPK4のプリアンブルフィールド20を検出することができない。雑音25に続くデータ部D1~D4の復調が試みられたのち、パケットPK5のプリアンブルフィールド20が検出される。比較例による方法では、パケットPK4の情報を受信することができない。 Preamble field 20 cannot be detected during the period when demodulation is attempted. For this reason, it is impossible to detect the preamble field 20 of the packet PK4 that has arrived at the receiving apparatus during the period when the demodulation of the data parts D1 to D4 following the noise 25 is attempted. After attempting to demodulate the data parts D1 to D4 following the noise 25, the preamble field 20 of the packet PK5 is detected. In the method according to the comparative example, the information of the packet PK4 cannot be received.
 実施例においては、雑音25に続くデータ部D1の復調を試みた後、データ部D2~D4の復調を試みることなく、プリアンブルフィールド20の探索が行われる。このため、パケットPK4のプリアンブルフィールド20を検出することができる。このように、実施例による送受信システムにおいては、複数の送信装置41~46からの信号を効率よく受信することができる。 In the embodiment, after attempting to demodulate the data part D1 following the noise 25, the preamble field 20 is searched without attempting to demodulate the data parts D2 to D4. For this reason, the preamble field 20 of the packet PK4 can be detected. Thus, in the transmission / reception system according to the embodiment, signals from the plurality of transmission devices 41 to 46 can be received efficiently.
 特に、免許を必要としない微弱無線装置を用いる場合、電波の出力が弱いためプリアンブルフィールド20の誤検出が発生しやすい。さらに、十分な通信可能距離を確保するために、帯域を制限しなければならない。帯域を制限すると、変調速度が遅くなり、データ部D1~D4(図2A)の通信時間が長くなる。その結果、プリアンブルフィールド20の誤検出が発生すると、データ部D1~D4を復調するための無駄な時間が長くなってしまう。このように、上記実施例は、微弱無線装置を用いる場合に、特に有効である。また、上記実施例による復調方法は、マイクロコンピュータや、フィールドプログラマブルゲートアレイ(FPGA)等を用いたソフトウェア無線で簡易に実行可能である。 In particular, when a weak wireless device that does not require a license is used, erroneous detection of the preamble field 20 is likely to occur because the radio wave output is weak. Furthermore, in order to ensure a sufficient communicable distance, the bandwidth must be limited. When the band is limited, the modulation speed is reduced, and the communication time of the data parts D1 to D4 (FIG. 2A) is increased. As a result, when erroneous detection of the preamble field 20 occurs, useless time for demodulating the data parts D1 to D4 becomes long. Thus, the above embodiment is particularly effective when a weak wireless device is used. The demodulation method according to the above embodiment can be easily executed by software radio using a microcomputer, a field programmable gate array (FPGA), or the like.
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
10 受信装置
11 RF処理部
12 ADコンバータ
13 復調部
14 受信アンテナ
15 入力ポート
20 プリアンブルフィールド
21 データフィールド
23 フラグ探索区間
25 雑音
30 スペクトラム拡散変調処理部
31 送信すべきデータ
32 スペクトラム拡散変調信号
35、36 グラフ
41~46 送信装置
D1~D4 データ部
F1、F2 フラグ
PK1~PK5 パケット
SC、SC1~SC4 拡散符号
Th 判定閾値
DESCRIPTION OF SYMBOLS 10 Receiver 11 RF processor 12 AD converter 13 Demodulator 14 Receiving antenna 15 Input port 20 Preamble field 21 Data field 23 Flag search section 25 Noise 30 Spread spectrum modulation processor 31 Data to be transmitted 32 Spread spectrum modulated signals 35 and 36 Graphs 41 to 46 Transmitters D1 to D4 Data part F1, F2 Flags PK1 to PK5 Packet SC, SC1 to SC4 Spread code Th Determination threshold

Claims (8)

  1.  プリアンブルフィールド、及びスペクトラム拡散変調された複数のデータ部を含む受信信号が入力される入力ポートと、
     前記入力ポートから入力された受信信号を復調する復調部と
    を有し、
     前記復調部は、
     前記入力ポートから入力された前記受信信号から前記プリアンブルフィールドを探索し、
     前記プリアンブルフィールドが検出されたら、複数の前記データ部を順番に復調し、
     前記データ部の復調が不能であった場合、復調が不能であった前記データ部より後の前記データ部の復調を中止し、前記プリアンブルフィールドの探索に戻る受信装置。
    An input port to which a received signal including a preamble field and a plurality of data portions subjected to spread spectrum modulation is input;
    A demodulator that demodulates the received signal input from the input port;
    The demodulator
    Search the preamble field from the received signal input from the input port;
    When the preamble field is detected, a plurality of the data portions are demodulated in order,
    A receiving apparatus that, when demodulation of the data part is impossible, stops demodulation of the data part after the data part that was not demodulated and returns to the search for the preamble field.
  2.  前記復調部は、相互に直交する複数の拡散符号を用いて前記データ部の復調を試みる請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein the demodulating unit attempts to demodulate the data unit using a plurality of spreading codes orthogonal to each other.
  3.  前記プリアンブルフィールドは、相互に直交するフラグパターンからなる複数のフラグを含み、前記フラグパターンは、前記データ部の復調を試みるときに用いられる複数の前記拡散符号と直交する請求項2に記載の受信装置。 3. The reception according to claim 2, wherein the preamble field includes a plurality of flags composed of mutually orthogonal flag patterns, and the flag patterns are orthogonal to the plurality of spreading codes used when attempting to demodulate the data part. apparatus.
  4.  前記受信信号に含まれる前記データ部の個数が既知であり、
     前記復調部は、
     前記プリアンブルフィールドを検出した後、すべての前記データ部の復調が終了すると、前記プリアンブルフィールドの探索に戻る請求項1乃至3のいずれか1項に記載の受信装置。
    The number of the data parts included in the received signal is known;
    The demodulator
    The receiving apparatus according to any one of claims 1 to 3, wherein after the preamble field is detected, the demodulation of all the data parts is completed, and the search returns to the preamble field search.
  5.  プリアンブルフィールド、及び前記プリアンブルフィールドに続くスペクトラム拡散変調された複数のデータ部を有する受信信号の前記プリアンブルフィールドの探索を行う工程と、
     前記プリアンブルフィールドを探索する工程において、前記プリアンブルフィールドが検出されたら、次の前記データ部の復調を試みる工程と、
     前記データ部の復調が不能であった場合、前記プリアンブルフィールドを探索する工程に戻り、前記データ部の復調が可能であった場合、次の前記データ部の復調を試みる工程と
    を有する受信方法。
    Searching the preamble field for a received signal having a preamble field and a plurality of spread spectrum modulated data portions following the preamble field;
    In the step of searching for the preamble field, when the preamble field is detected, the step of trying to demodulate the next data portion;
    A step of returning to the step of searching for the preamble field when the demodulation of the data part is impossible, and a step of attempting to demodulate the data part when the demodulation of the data part is possible.
  6.  前記データ部の復調を試みる工程において、相互に直交する複数の拡散符号を用いて前記データ部の復調を試みる請求項5に記載の受信方法。 6. The receiving method according to claim 5, wherein in the step of trying to demodulate the data part, the data part is demodulated using a plurality of mutually orthogonal spreading codes.
  7.  前記プリアンブルフィールドは、相互に直交するフラグパターンからなる複数のフラグを含み、前記フラグパターンは、前記データ部の復調を試みるときに用いられる複数の前記拡散符号と直交している請求項6に記載の受信方法。 The preamble field includes a plurality of flags composed of mutually orthogonal flag patterns, and the flag patterns are orthogonal to the plurality of spreading codes used when attempting to demodulate the data part. Receiving method.
  8.  前記プリアンブルフィールドを探索する工程において、前記プリアンブルフィールドが検出された後、事前に設定されている個数の前記データ部の復調が終了すると、前記プリアンブルフィールドを探索する工程に戻る請求項5乃至7のいずれか1項に記載の受信方法。 8. The step of searching for the preamble field returns to the step of searching for the preamble field when demodulation of a predetermined number of the data parts is completed after the preamble field is detected in the step of searching for the preamble field. The receiving method according to any one of the above.
PCT/JP2014/075635 2013-10-30 2014-09-26 Reception device and reception method WO2015064257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013225117 2013-10-30
JP2013-225117 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015064257A1 true WO2015064257A1 (en) 2015-05-07

Family

ID=53003870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075635 WO2015064257A1 (en) 2013-10-30 2014-09-26 Reception device and reception method

Country Status (1)

Country Link
WO (1) WO2015064257A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228525A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Electronic tag system
JP2007267085A (en) * 2006-03-29 2007-10-11 Yokosuka Telecom Research Park:Kk Communication system, receiving device, and synchronous detection program
JP2009273044A (en) * 2008-05-09 2009-11-19 Nippon Dempa Kogyo Co Ltd Bidirectional radio system
JP2010045597A (en) * 2008-08-12 2010-02-25 Sony Corp Synchronizing circuit, and synchronization method, radio communication equipment, and radio communication method, and computer program
JP2011066530A (en) * 2009-09-15 2011-03-31 Panasonic Electric Works Co Ltd Radio communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228525A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Electronic tag system
JP2007267085A (en) * 2006-03-29 2007-10-11 Yokosuka Telecom Research Park:Kk Communication system, receiving device, and synchronous detection program
JP2009273044A (en) * 2008-05-09 2009-11-19 Nippon Dempa Kogyo Co Ltd Bidirectional radio system
JP2010045597A (en) * 2008-08-12 2010-02-25 Sony Corp Synchronizing circuit, and synchronization method, radio communication equipment, and radio communication method, and computer program
JP2011066530A (en) * 2009-09-15 2011-03-31 Panasonic Electric Works Co Ltd Radio communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUSTAW MAZUREK: "Collision-Resistant Transmission Scheme for Active RFID Systems", EUROCON, 2007. THE INTERNATIONAL CONFERENCE ON "COMPUTER AS A TOOL", 9 September 2007 (2007-09-09), pages 2517 - 2520 *
GUSTAW MAZUREK: "Experimental RFID System with Active Tags, Signals and Electronic Systems, 2008.ICSES '08.", INTERNATIONAL CONFERENCE ON, 14 September 2008 (2008-09-14), pages 507 - 510 *

Similar Documents

Publication Publication Date Title
US11070247B2 (en) Optimized hopping patterns for different sensor nodes and variable data lengths on the basis of the telegram splitting transmission method
RU2525085C2 (en) Retransmission techniques in wireless networks
JP5062030B2 (en) Wireless communication system, receiver and transmitter
KR102315254B1 (en) Transmitter and Receiver and Corresponding Methods
CN101527596A (en) Wireless system of novel front synchronization code using emergency frames
KR20190089967A (en) Wake-up radio
US8837640B2 (en) Multiple protocol receiver
US6781446B2 (en) Method and apparatus for the detection and classification of signals utilizing known repeated training sequences
US20180324829A1 (en) Concurrent multi-radio receiver
CN107852380B (en) Multi-channel snoopable receiver and method of operation thereof
US8094596B2 (en) Wireless personal area network Zigbee receiver and receiving method thereof
US20170279485A1 (en) Signal processing method and transmitter and receiver
US9532379B2 (en) Transmitter, transmission method used by the same, receiver for receiving a radio signal from transmitter and wireless communication system including the same
KR101148969B1 (en) Method and system for coded null packet-aided synchronizatioin
WO2015064257A1 (en) Reception device and reception method
US8811454B2 (en) Synchronization acquisition method of real time locating system
US10939468B2 (en) Clear channel assessment
US9287926B2 (en) Digital receiver performance in the presence of image frequencies
CN111901890A (en) Reference signal processing method and device, first communication node and second communication node
EP2584709A1 (en) Multiple protocol receiver
JP6382130B2 (en) Radio receiving apparatus and radio receiving method
JP5183799B2 (en) Tag reader device and data demodulation method
US20050202795A1 (en) Method for synchronizing or decoding a baseband signal
WO2015159627A1 (en) Wireless communication system and data transmission device used in wireless communication system
EP2823564B1 (en) Receiving stage and method for receiving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP