WO2015064012A1 - Friction stir welding device and method for manufacturing metal structure - Google Patents

Friction stir welding device and method for manufacturing metal structure Download PDF

Info

Publication number
WO2015064012A1
WO2015064012A1 PCT/JP2014/005023 JP2014005023W WO2015064012A1 WO 2015064012 A1 WO2015064012 A1 WO 2015064012A1 JP 2014005023 W JP2014005023 W JP 2014005023W WO 2015064012 A1 WO2015064012 A1 WO 2015064012A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
friction stir
stir welding
shoulder
inner corner
Prior art date
Application number
PCT/JP2014/005023
Other languages
French (fr)
Japanese (ja)
Inventor
西田 英人
脩平 吉川
賢一 上向
豪生 岡田
大樹 織部
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US15/033,808 priority Critical patent/US20160263696A1/en
Priority to CA2926542A priority patent/CA2926542A1/en
Priority to EP14857107.8A priority patent/EP3064306B1/en
Priority to BR112016009172-8A priority patent/BR112016009172B1/en
Publication of WO2015064012A1 publication Critical patent/WO2015064012A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/128Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding making use of additional material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Definitions

  • the present invention relates to a friction stir welding apparatus that performs friction stir welding on an inner corner formed by two metal members that are abutted to each other, and a method for manufacturing a metal structure using the friction stir welding apparatus.
  • friction stir welding (FSW; Friction Stir Welding) is known as a method for joining metal members.
  • FSW Friction Stir Welding
  • the periphery of the welded portion is softened by frictional heat by pressing the stirring pin provided at the tip of the rotary tool against the welded portion of the two metal members while rotating, and the welded portion
  • This is a technique for joining two metal members by stirring and softening the peripheral softened part and cooling the joined part away from the rotating tool.
  • Patent Document 1 discloses an inner corner rotating tool for performing friction stir welding on inner corners of two metal members which are abutted.
  • the rotary tool includes a stirring pin that is press-fitted into an inner corner formed by two metal members abutted against each other, and a shoulder block that rotatably supports the stirring pin and contacts each of the two metal members.
  • the shoulder block has a main body part, a shoulder part detachably provided on the main body part, and a through hole penetrating the main body part and the shoulder part.
  • a wire is disposed along an inner corner formed by two metal members that are abutted together, and a base material and a wire at the inner corner are combined with an agitator pin to which a shoulder is attached. It describes that the inner corner is friction stir welded by stirring. A fillet is formed in the joined inner corner by the wire that is friction-stirred with the base material of the inner corner.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a friction stir welding apparatus that performs friction stir welding to an inner corner formed by two metal members that are abutted together, and the friction stir welding.
  • the wire is supplied to the bonded portion so that the base material of the bonded portion (inner corner) and the wire are frictionally stirred.
  • the friction stir welding apparatus is a friction stir welding apparatus that performs friction stir welding on an inner corner formed by two metal members that are faced to each other.
  • a rotating tool having a stirring pin at the tip;
  • a shoulder inserted through the rotary tool and abutting against the two metal members;
  • a rotation drive device for rotating the rotating tool around an axis;
  • a pressing device that presses the rotating tool and shoulder against the inner corner;
  • a moving device for moving the rotating tool and the shoulder in the traveling direction along the inner corner;
  • a wire heating device that heats the wire that is frictionally stirred together with the two metal members by the stirring pin.
  • the preheated wire is friction stir together with the base material of the joined portion. Therefore, it becomes possible to eliminate the insufficient softening of the base material and the wire of the joined part due to the insufficient heat input to the base material and the wire of the joined part. Moreover, since the base material and the wire of a to-be-joined part are fully softened, the base material and the wire of a to-be-joined part can be friction-stirred favorably. Furthermore, since the amount of heat input necessary for softening the wire is reduced by preheating the wire, the bonding speed can be improved.
  • the friction stir welding apparatus further includes a wire feeding device that feeds the wire to the joined portion of the two metal members, and the wire heating device feeds the joined portion by the wire feeding device.
  • the wire is configured to be heated. According to the said structure, the heated wire can be continuously supplied to a to-be-joined part.
  • a device configured to heat the wire by energizing the wire can be used.
  • a device configured to heat the wire by electromagnetic induction can be used as the wire heating device.
  • a device configured to heat the wire with a heating element can be used as the wire heating device.
  • the shoulder is An insertion hole through which the rotating tool is inserted; Two shoulder surfaces provided on both sides in a direction substantially perpendicular to the traveling direction with the opening of the insertion hole interposed therebetween, and forming an angle corresponding to the angle of the inner corner formed by the two metal members; , It has a guide groove for the wire that is provided at a front ridge line portion where the two shoulder surfaces intersect in front of the opening direction of the insertion hole and extends in parallel with the moving direction. Good.
  • the wire is guided by the guide groove and supplied to the joined portion. Therefore, the wire is stably supplied to the bonded portion without moving or buckling from the bonded portion.
  • the front ridge line part recedes from the inner corner part than the rear ridge line part where the two shoulder surfaces intersect at the rear in the traveling direction from the opening part of the insertion hole, It is preferable that the cross-sectional shape in the advancing direction of the rear ridge line portion has a shape corresponding to the cross-sectional shape in the advancing direction of the inner corner portion after joining.
  • a wire is supplied to a to-be-joined part, without being inhibited with a shoulder or a base material.
  • the surface shape of the base material after stirring is arranged because a back ridgeline part and the base material after stirring contact.
  • the front ridge line portion is inclined so as to be separated from the inner corner portion toward the front in the traveling direction.
  • the size of the guide groove in the depth direction from one end in the traveling direction of the front ridge line portion to the other end in the traveling direction is preferably larger than the depth of the guide groove. According to the above configuration, the wire can be prevented from being caught by the shoulder.
  • the shoulder may be detachably attached, and may further include a base having a hole continuous with the insertion hole of the shoulder. According to the said structure, the shoulder which is comparatively easy to deteriorate can be replaced
  • the method for producing a metal structure according to the present invention includes: Butting the first metal member and the second metal member into an L shape or a T shape, Heating the wire; Supplying the heated wire to an inner corner formed by the butted first metal member and the second metal member; Press-fitting a stirring pin that rotates into the inner corner, and friction stir welding the first metal member, the second metal member, and the wire.
  • the preheated wire is frictionally agitated together with the base material of the bonded portion. Therefore, it becomes possible to eliminate the insufficient softening of the base material and the wire of the joined part due to the insufficient heat input to the base material and the wire of the joined part. Moreover, since the base material and the wire of a to-be-joined part are fully softened, the base material and the wire of a to-be-joined part can be friction-stirred favorably. As a result, it is possible to prevent a defect from occurring on the surface of the friction stir welding portion in the metal structure. Furthermore, since the amount of heat input necessary for softening the wire is reduced by preheating the wire, the bonding speed can be improved.
  • the wire can be heated by energizing the wire, the wire can be heated by electromagnetic induction, or the wire can be heated by a heating element.
  • the first metal member is made of an A2000 series aluminum alloy
  • the second metal member is made of an A7000 series aluminum alloy
  • the wire is an A2000 series aluminum alloy or an A7000 series aluminum alloy. It may consist of:
  • the base material and the wire of the bonded portion can be appropriately softened by the heat input of the bonded portion by the stirring pin. As a result, the base material and the wire of the joined portion are frictionally stirred.
  • FIG. 1 is a diagram illustrating a state in which inner corners of two metal members that are abutted are being stirred by a rotating tool.
  • FIG. 2 is a diagram showing a schematic configuration of a friction stir welding apparatus according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the shoulder block in the traveling direction.
  • FIG. 4 is a view of the shoulder as seen from the direction orthogonal to the traveling direction.
  • FIG. 5 is a view taken in the direction of arrow V in FIG. 6 is a view taken along arrow VI in FIG. 7 is a view taken along arrow VII in FIG.
  • FIG. 8 is a view of the shoulder viewed from the traveling direction, showing a modified example of the guide groove of the shoulder.
  • FIG. 9 is a flowchart showing a method for manufacturing a metal structure using a friction stir welding apparatus.
  • FIG. 10 is a diagram illustrating a schematic configuration of a friction stir welding apparatus including a wire heating device according to a modification.
  • FIG. 1 is a view showing a state in which the inner corner portion 90 of the two metal members 91 and 92 that are abutted is being stirred by the rotary tool 2.
  • the friction stir welding apparatus 1 according to the present embodiment has an inner corner 90 formed by a first member 91 and a second member 92 that are abutted in an L shape or a T shape. It is a device that performs friction stir welding.
  • a metal structure including the first member 91 and the second member 92 that are friction stir welded can be manufactured.
  • the first member 91 and the second member 92 which are the members to be joined, may be made of the same metal material as long as it is a metal material (raw material) capable of friction stir welding. May be.
  • the first member 91 and the second member 92 are made of different metal materials, for example, the first member 91 may be made of an A2000 series aluminum alloy and the second member 92 may be made of an A7000 series aluminum alloy. it can. In this case, it is desirable that the wire 50 friction-stirred with the members to be joined 91 and 92 is made of an A2000 series aluminum alloy or an A7000 series aluminum alloy.
  • A2000 series aluminum alloy is an aluminum-copper type alloy containing 3.5% or more of copper.
  • the A7000 series aluminum alloy is an aluminum-zinc-magnesium-copper alloy.
  • the A7000 series aluminum alloy has extremely high tensile strength and hardness compared to the A2000 series aluminum alloy, but is inferior to the A2000 series aluminum alloy in terms of fatigue strength and fracture toughness. Therefore, in order to improve the fatigue strength and fracture toughness of the structure, an A2000 series aluminum alloy is disposed on the outer surface of the structure, and the A7000 series aluminum alloy is used in combination in a T shape as an internal reinforcing member. is there.
  • the friction stir welding of the A2000 series aluminum alloy member and the A7000 series aluminum alloy member is performed using the friction stir welding apparatus 1 according to the present embodiment, these members do not intervene with a connecting member such as a rivet. Since it is joined directly, fatigue strength and fracture toughness are improved, and cost reduction and weight reduction are possible.
  • FIG. 2 is a diagram showing a schematic configuration of the friction stir welding apparatus 1 according to the embodiment of the present invention.
  • the shoulder block 3 is shown as a cross-sectional view in a direction orthogonal to the traveling direction 100.
  • FIG. 3 is a cross-sectional view of the shoulder block 3 in the traveling direction.
  • the rotary tool 2 is indicated by a two-dot chain line.
  • the friction stir welding apparatus 1 includes a rotary tool 2 having a stirring pin 21 at the tip, a shoulder block 3 attached to the rotary tool 2, and a rotary tool 2.
  • a rotary drive device 41 that rotates the rotary tool 2
  • a pressing device 42 that presses the rotary tool 2 so that the stirring pin 21 is pressed into the base material of the joined portion with a predetermined pressing force
  • a moving device 43 of the rotary tool 2 and a moving device 43 of the rotary tool 2.
  • a wire feeding device 44, a wire heating device 45, and a control device 46 that controls the operation of the friction stir welding device 1.
  • the members to be joined 91 and 92 are held by a jig 95 as shown in FIG. 1, for example, so that the pressing force from the rotary tool 2 can be received.
  • the moving device 43 moves the rotary tool 2 and the shoulder block 3 relative to the first member 91 and the second member 92 along the abutting line of the inner corner 90 formed by the first member 91 and the second member 92. It is a means to move to.
  • the moving direction of the rotary tool 2 and the shoulder block 3 is referred to as “traveling direction 100”, and the traveling direction 100 is along the butt line of the inner corner 90.
  • the direction in which the rotary tool 2 and the shoulder block 3 move during machining is referred to as “front” (the direction indicated by the arrow 100 in FIG. 1). 2 and the shoulder block 3 are referred to as “rear”.
  • the rotating tool 2 and the shoulder block 3 move forward to the side where the rotating direction of the rotating tool 2 and the traveling direction 100 coincide with each other, and the rotating tool 2 and the shoulder block 3 move to the side where the rotating direction and the traveling direction 100 are opposite.
  • the shoulder block 3 moves backward.
  • the moving device 43 can be constituted by, for example, a linear motion guide mechanism and a drive unit of the linear motion guide mechanism controlled by the control device 46 (none of which is shown). However, the moving device 43 may be a robot.
  • the moving device 43 according to the present embodiment moves the rotary tool 2 with respect to the members to be bonded 91 and 92 held by the jig 95, but the moving device 43 holds the members to be bonded 91 and 92.
  • the jig 95 may be moved with respect to the rotary tool 2.
  • the wire feeding device 44 is a means for feeding the wire 50 to the joined portion in accordance with the joining speed.
  • the wire feeding device 44 includes, for example, a servo motor controlled by the control device 46 and a feeding roller driven by the servo motor (both not shown).
  • the wire 50 fed to the bonded portion by the wire feeding device 44 is wound around the wire reel 47 in a coil shape, but the wire 50 is the length of the butting line of the inner corner portion 90. It may be cut according to the size.
  • the wire heating device 45 is means for heating the wire 50 that is frictionally stirred together with the members 91 and 92 to be joined.
  • the wire heating device 45 preheats the wire 50 supplied to the bonded portions of the bonded members 91 and 92.
  • the wire heating device 45 according to the present embodiment is configured to heat the wire 50 fed to the bonded portion by the wire feeding device 44.
  • the wire heating device 45 includes, for example, a contact chip 45a and a wire heating power supply 45b that supplies a current to the contact chip 45a and the base material.
  • the operation of the wire heating power supply 45b is controlled by the control device 46.
  • a current is supplied from the contact tip 45a to the wire 50 guided to the contact tip 45a. By energizing the wire 50 in this way, the wire 50 is heated by the resistance of the wire 50.
  • Contact tips 45 a of the wire feeding device 44 and the wire heating device 45 are attached to a stay 33 fixed to the shoulder block 3, and the traveling direction relative to the members 91 and 92 to be joined with the shoulder block 3. Move to 100.
  • the contact tip 45a of the wire feeding device 44 and the wire heating device 45 is always in a position close to the shoulder block 3 and the rotary tool 2. It is desirable to be present. However, at least one of the wire feeding device 44 and the wire heating device 45 may be provided independently of the shoulder block 3 and the rotary tool 2 at a position away from them.
  • the shoulder block 3 includes a shoulder 8 and a base 7 to which the shoulder 8 is detachably attached. As described above, the shoulder block 3 is divided into the base 7 and the shoulder 8, so that the shoulder 8 that is relatively easily deteriorated can be replaced independently of the base 7. Although not shown, the shoulder block 3 is formed with a cooling hole for cooling the rotary tool 2 and a refrigerant passage through which the refrigerant is conducted.
  • the base 7 is a hexagonal columnar body whose outer shape viewed from the traveling direction 100 is cut out from two corners adjacent to a rectangle.
  • the surfaces formed by notching two adjacent corners are guide surfaces 72 and 72.
  • shoulder surfaces 85 and 85 which will be described later, come into contact with the members 91 and 92, but the guide surfaces 72 and 72 are members to be joined. 91 and 92 are spaced slightly apart from each other.
  • the angle formed by the two guide surfaces 72 and 72 is determined corresponding to the angle of the inner corner portion 90 formed by the members to be joined 91 and 92. In the present embodiment, the angle formed by the two guide surfaces 72, 72 is about 90 °.
  • the surface sandwiched between the two guide surfaces 72 is a mounting surface 71 to which the shoulder 8 is mounted.
  • the mounting surface 71 is provided with a recess 73 in which the shoulder 8 is installed.
  • a through hole 74 and a plurality of attachment holes 75 are opened in the recess 73.
  • the attachment hole 75 is a hole into which a bolt for fixing the shoulder 8 to the recess 73 is inserted, and a screw is cut on the inner surface.
  • FIG. 4 is a view of the shoulder 8 as viewed from a direction orthogonal to the traveling direction 100
  • FIG. 5 is a view taken along the arrow V in FIG. 4
  • FIG. 6 is a view taken along the arrow VI in FIG. It is.
  • the shoulder 8 is integrally formed with a substrate portion 81 fitted into the recess 73 of the base 7 and a protruding portion 82 protruding from the substrate portion 81 toward the inner corner 90. ing.
  • the substrate portion 81 is provided with an attachment hole 83 corresponding to the attachment hole 75 of the base 7.
  • an attachment hole 83 corresponding to the attachment hole 75 of the base 7.
  • a through hole 84 is opened at the protruding end of the protruding portion 82.
  • the through hole 84 penetrates the substrate portion 81 and the protruding portion 82.
  • one continuous insertion hole 31 is formed by the through hole 74 of the base 7 and the through hole 84 of the shoulder 8.
  • shoulder surfaces 85 and 85 are respectively formed on both sides in a direction substantially orthogonal to the traveling direction 100 with the opening of the through hole 84 interposed therebetween.
  • the angle formed by the two shoulder surfaces 85 and 85 is determined corresponding to the angle of the inner corner portion 90 formed by the members to be joined 91 and 92.
  • the angle formed by the two shoulder surfaces 85, 85 is about 90 °.
  • ridge portions 86 and 88 are formed at portions where the two shoulder surfaces 85 and 85 intersect.
  • the direction in which the ridge lines 86 and 88 extend is parallel to the direction in which the inner corner 90 extends.
  • the ridge line portion penetrates into a front part in the traveling direction 100 (hereinafter referred to as a front ridge line part 86) from the through hole 84 and a rear part (hereinafter referred to as a rear ridge line part 88) in the traveling direction 100 from the through hole 84. It is divided into front and rear with the hole 84 in between.
  • a guide groove 87 for guiding the wire 50 is formed in the front ridge line portion 86.
  • the guide groove 87 extends substantially parallel to the traveling direction 100.
  • the cross-sectional shape in the traveling direction 100 of the guide groove 87 according to the present embodiment is a hemisphere.
  • the cross-sectional shape in the traveling direction 100 of the guide groove 87 is not limited to a hemisphere.
  • the cross-sectional shape in the traveling direction 100 of the guide groove 87 is a polygon. Also good.
  • the wire is frictionally stirred together with a base material at an inner corner, as described in Patent Document 2, the wire is arranged along the inner corner before stirring.
  • This wire is not supplied stably to the welded part because it receives force while the base metal at the inner corner is frictionally stirred or buckles against peripheral members such as a shoulder. was there.
  • the shoulder 8 has the guide groove 87 of the wire 50, so that even the wire 50 softened somewhat by heating is guided to the guide groove 87. It can be stably supplied to the bonded portion without shaking or buckling in the horizontal direction or the vertical direction.
  • the front ridge line portion 86 is inclined in a direction away from the inner corner portion 90 toward the front in the traveling direction 100.
  • the inclination of the front ridge line portion 86 is provided from the rear end in the traveling direction 100 of the front ridge line portion 86 to the front end in the traveling direction 100.
  • the inclination of the front ridge line portion 86 is gentle in the vicinity of the through hole 84 but gradually increases as the distance from the through hole 84 increases.
  • the front ridgeline part 86 may be formed with the slope, and may be formed with the curved surface. As described above, since the front ridge line portion 86 is inclined, the movement of the shoulder 8 in the traveling direction 100 is not easily inhibited by the inner corner portion 90.
  • the size D 1 in the depth direction of the guide groove 87 from the rear end to the front end in the traveling direction 100 of the front ridge line portion 86 is larger than the depth D 2 of the guide groove 87 (FIG. 4).
  • the position in the depth direction of the guide groove 87 at the rear end in the traveling direction 100 of the front ridge line portion 86 and the position in the depth direction of the front guide groove 87 in the direction of travel 100 of the front ridge line portion 86 are guided.
  • the distance is greater than the depth D 2 of the groove 87.
  • the rear ridge line part 88 has a function of forming a shape (for example, a curved surface shape) of the inner corner part 90 after joining by contacting with the base material after stirring. For this reason, the cross-sectional shape of the advancing direction 100 of the back ridgeline part 88 respond
  • the cross-sectional shape in the advancing direction 100 of the rear ridge line portion 88 is smooth so that a smooth curve connecting the first member 91 and the second member 92 is formed in the inner corner portion 90 after joining. It has become a mountain shape.
  • the front ridge line part 86 is set back from the inner corner part 90 rather than the rear ridge line part 88.
  • the front ridge line portion 86 and the inner corner portion 90 are separated so that the inner corner portion 90 and the front ridge line portion 86 are not in contact with each other and the wire 50 can be introduced between the inner corner portion 90 and the guide groove 87. Yes.
  • the rear ridge line part 88 has little or little separation distance between the inner corner part 90 and the rear ridge line part 88 so as to come into contact with the inner corner part 90 after stirring.
  • the wire 50 supplied to the bonded portion may come into contact with the front ridge line portion 86 in the process. Avoided.
  • the base 7 and the shoulder 8 configured as described above are configured such that the base plate portion 81 of the shoulder 8 is fitted into the recess 73 of the base 7, and bolts are screwed into the mounting holes 83 and 75 that are aligned in the axial direction. , An integrated shoulder block 3 is obtained.
  • the through hole 84 of the shoulder 8 and the through hole 74 of the base 7 communicate with each other to form one insertion hole 31.
  • the insertion hole 31 has a large-diameter portion 31a including an inlet on the base 7 side, a small-diameter portion 31c including an outlet on the shoulder 8, and a tapered portion 31b that smoothly connects the large-diameter portion 31a and the small-diameter portion 31c. is doing.
  • the diameter of the small diameter portion 31 c is slightly larger than the diameter of the tip of the stirring pin 21.
  • the inclination of the taper part 31b from the axial direction coincides with the inclination of the taper part formed on the stirring pin 21 of the rotary tool 2.
  • FIG. 9 is a flowchart showing a method for manufacturing a metal structure using a friction stir welding apparatus.
  • the first member 91 and the second member 92 are abutted in an L shape or a T shape as shown in FIG. 1, and a jig 95 that functions as a backing member is used. Hold (step S1).
  • the first member 91 and the second member 92 that are abutted with each other form an inner corner 90 that is a joined portion.
  • the shoulder block 3 is disposed in the inner corner 90 (step S2).
  • the shoulder block 3 is disposed at the inner corner 90 so that the shoulder surfaces 85, 85 of the shoulder block 3 come into contact with the first member 91 and the second member 92.
  • the front ridge line portion 86 and the rear ridge line portion 88 of the shoulder 8 are arranged along the butt line of the inner corner portion 90 and face the butt line. ing.
  • the stirring pin 21 of the rotary tool 2 is inserted into the insertion hole 31 of the shoulder block 3 (step S3).
  • the stirring pin 21 is inserted into the insertion hole 31 until the tip thereof abuts on the inner corner portion 90.
  • the tip of the stirring pin 21 is pushed into the base material of the joined portion while rotating the stirring pin 21 until the tapered portion of the stirring pin 21 contacts the tapered portion 31b of the shoulder block 3.
  • tip of the stirring pin 21 is press-fitted in the base material of a to-be-joined part.
  • a pilot hole can be provided in the inner corner portion 90.
  • Step S5 the stirring pin 21 and the shoulder block 3 are moved forward in the advancing direction 100 along the abutting line of the inner corner portion 90 to frictionally stir the welded portion and the wire 50 ( Step S5).
  • the wire feeding device 44 feeds the wire 50 to the joined portion in accordance with the moving speed (that is, the joining speed) of the stirring pin 21 and the shoulder block 3.
  • the wire 50 is heated by the wire heating device 45 in the process of being fed to the bonded portion. That is, the preheated wire 50 is supplied to the joined portion (step S4).
  • Friction heat is given to the base material (the first member 91 and the second member 92) of the joined portion and the wire 50 fed to the joined portion by the rotating stirring pin 21.
  • the base material of the bonded portion and the wire 50 softened by the frictional heat are agitated and plastically flow. Due to the relative movement of the stirring pin 21 in the traveling direction 100, plasticization occurs sequentially at the inner corner 90, and the inner corner 90 of the first member 91 and the second member 92 is solid-phase bonded.
  • the wire heating device 45 of the friction stir welding apparatus 1 is configured to heat the wire 50 by energizing the wire 50.
  • the heating method of the wire heating device 45 is not limited to this.
  • the wire heating device 45 may be configured to heat the wire 50 by electromagnetic induction or a heating element.
  • FIG. 10 is a diagram illustrating a schematic configuration of the friction stir welding apparatus 1 including the wire heating device 45 according to the first modification.
  • the wire heating device 45 includes, for example, a heater 61 including a coil, a temperature sensor 62 that detects the temperature of the wire 50 heated by the heater 61, and a temperature controller 63. ing.
  • the temperature controller 63 is configured to adjust the current flowing through the coil of the heater 61 based on the temperature of the wire 50 detected by the temperature sensor 62.
  • a current flows through the coil of the heater 61, magnetic lines of force that change in direction and strength are generated around the coil, and an eddy current flows in the wire 50 due to the influence of the lines of magnetic force.
  • the heater 61 may include a coil as a heating element. In this case, when a current flows through the coil of the heater 61, the heater 61 generates heat, and the wire 50 is heated by this heat.
  • the friction stir welding apparatus 1 includes the wire feeding device 44 and actively supplies the wire 50 to the joined portion.
  • the heated wire can be continuously supplied to the bonded portion.
  • the friction stir welding apparatus 1 may not include the wire feeding device 44. In this case, the wire 50 is supplied to the joined portion following the movement of the rotary tool 2 and the shoulder block 3 in the traveling direction 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

A friction stir welding device (1) equipped with: a rotary tool (2) having at its tip a stirring pin (21); a shoulder (8) into which the rotary tool (2) is inserted; a rotary driving device (41) that causes the rotary tool (2) to rotate around an axis; a pressing device (42) that presses the rotary tool (2) and the shoulder (8) against an inner corner part (90); a moving device (43) that moves the rotary tool (2) and the shoulder (8) along the inner corner part (90) in the direction of travel; and a wire heating device (45) that heats a wire to be friction-stirred with two metal members (members to be bonded (91, 92)) by means of the stirring pin (21).

Description

摩擦攪拌接合装置及び金属製構造体の製造方法Friction stir welding apparatus and metal structure manufacturing method
 本発明は、突き合わされた2つの金属部材により形成された内隅部に対して摩擦攪拌接合を行う摩擦攪拌接合装置及びこの摩擦攪拌接合装置を用いた金属製構造体の製造方法に関する。 The present invention relates to a friction stir welding apparatus that performs friction stir welding on an inner corner formed by two metal members that are abutted to each other, and a method for manufacturing a metal structure using the friction stir welding apparatus.
 従来、金属部材を接合する方法として、摩擦攪拌接合(FSW;Friction Stir Welding)が知られている。この摩擦攪拌接合は、回転ツールの先端に設けられた攪拌ピンを、2つの金属部材の被接合部に回転させながら押し付けることによって、被接合部周辺を摩擦熱で軟化させることと、被接合部周辺の軟化した部分を攪拌して塑性流動させることと、被接合部を回転ツールから離して冷却させることとを行って、2つの金属部材を接合する技術である。 Conventionally, friction stir welding (FSW; Friction Stir Welding) is known as a method for joining metal members. In this friction stir welding, the periphery of the welded portion is softened by frictional heat by pressing the stirring pin provided at the tip of the rotary tool against the welded portion of the two metal members while rotating, and the welded portion This is a technique for joining two metal members by stirring and softening the peripheral softened part and cooling the joined part away from the rotating tool.
 特許文献1には、突き合わされた2つの金属部材の内隅部に対して摩擦攪拌接合を行うための内隅用回転ツールが示されている。この回転ツールは、突き合わされた2つの金属部材により形成された内隅部に圧入される攪拌ピンと、この攪拌ピンを回転可能に支持するとともに2つの金属部材の各々に接触するショルダブロックとを備えている。ショルダブロックは、本体部と、本体部に着脱可能に設けられたショルダ部と、本体部とショルダ部を貫通する貫通孔とを有している。上記内隅用回転ツールを用いて摩擦攪拌接合する際には、まず、突き合わされた2つの金属部材の内隅部にショルダブロックを設置し、次に、攪拌ピンをショルダブロックの貫通孔に挿通し、続いて、攪拌ピンを回転させつつショルダブロック及び攪拌ピンを内隅部に押し付けながら当該内隅部のラインに沿って移動させる。 Patent Document 1 discloses an inner corner rotating tool for performing friction stir welding on inner corners of two metal members which are abutted. The rotary tool includes a stirring pin that is press-fitted into an inner corner formed by two metal members abutted against each other, and a shoulder block that rotatably supports the stirring pin and contacts each of the two metal members. ing. The shoulder block has a main body part, a shoulder part detachably provided on the main body part, and a through hole penetrating the main body part and the shoulder part. When friction stir welding is performed using the inner corner rotating tool, a shoulder block is first installed at the inner corner of the two metal members that are abutted, and then a stirring pin is inserted into the through hole of the shoulder block. Subsequently, the shoulder block and the stirring pin are pressed against the inner corner portion while rotating the stirring pin and moved along the line of the inner corner portion.
 また、特許文献2には、突き合わされた2つの金属部材により形成された内隅部に沿ってワイヤを配置し、ショルダが装着された攪拌ピンで内隅部の母材とワイヤとを併せて攪拌することにより、内隅部を摩擦攪拌接合することが記載されている。内隅部の母材と合わせて摩擦攪拌されたワイヤにより、接合された内隅部に隅肉が形成される。 Further, in Patent Document 2, a wire is disposed along an inner corner formed by two metal members that are abutted together, and a base material and a wire at the inner corner are combined with an agitator pin to which a shoulder is attached. It describes that the inner corner is friction stir welded by stirring. A fillet is formed in the joined inner corner by the wire that is friction-stirred with the base material of the inner corner.
特開2011-79031号公報JP 2011-79031 A 特開2013-166159号公報JP 2013-166159 A
 上記特許文献1及び特許文献2に記載されているように、突き合わされた2つの金属部材により形成された内隅部を摩擦攪拌接合する際に、ショルダ(又はショルダブロック)が回転しない場合は、ショルダが攪拌ピンと共に回転する場合と比較して、被接合部への入熱量が小さくなる。このため、特に、被接合部の母材と共にワイヤを摩擦攪拌する場合には、入熱量不足により、内隅部の母材とワイヤの軟化が不十分となることがある。この場合、内隅部の母材とワイヤとが十分に攪拌されず、接合後の内隅部の表面に欠陥が生じるおそれがある。 As described in Patent Document 1 and Patent Document 2, when the shoulder (or shoulder block) does not rotate when friction stir welding is performed on the inner corner formed by the two metal members abutted, Compared with the case where the shoulder rotates together with the stirring pin, the amount of heat input to the bonded portion is reduced. For this reason, particularly when the wire is frictionally stirred together with the base material of the joined portion, the softening of the base material and the wire at the inner corner may be insufficient due to insufficient heat input. In this case, the base metal and the wire in the inner corner are not sufficiently stirred, and there is a possibility that a defect may occur on the surface of the inner corner after joining.
 本発明は以上の事情に鑑みてされたものであり、その目的は、突き合わされた2つの金属部材により形成された内隅部に対して摩擦攪拌接合を行う摩擦攪拌接合装置及びこの摩擦攪拌接合装置を用いた金属製構造体の製造方法において、被接合部(内隅部)の母材とワイヤとが良好に摩擦攪拌されるように、ワイヤを被接合部へ供給することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a friction stir welding apparatus that performs friction stir welding to an inner corner formed by two metal members that are abutted together, and the friction stir welding. In the method for manufacturing a metal structure using the apparatus, the wire is supplied to the bonded portion so that the base material of the bonded portion (inner corner) and the wire are frictionally stirred.
 本発明に係る摩擦攪拌接合装置は、突き合わされた2つの金属部材により形成された内隅部に対して摩擦攪拌接合を行う摩擦攪拌接合装置であって、
攪拌ピンを先端に有する回転ツールと、
前記回転ツールに挿通され、前記2つの金属部材と当接するショルダと、
前記回転ツールを軸周りに回転させる回転駆動装置と、
前記回転ツール及びショルダを前記内隅部に押圧する押圧装置と、
前記回転ツール及び前記ショルダを前記内隅部に沿って進行方向へ移動させる移動装置と、
前記攪拌ピンにより前記2つの金属部材と共に摩擦攪拌されるワイヤを加熱するワイヤ加熱装置とを備えているものである。
The friction stir welding apparatus according to the present invention is a friction stir welding apparatus that performs friction stir welding on an inner corner formed by two metal members that are faced to each other.
A rotating tool having a stirring pin at the tip;
A shoulder inserted through the rotary tool and abutting against the two metal members;
A rotation drive device for rotating the rotating tool around an axis;
A pressing device that presses the rotating tool and shoulder against the inner corner; and
A moving device for moving the rotating tool and the shoulder in the traveling direction along the inner corner;
And a wire heating device that heats the wire that is frictionally stirred together with the two metal members by the stirring pin.
 上記構成の摩擦攪拌接合装置によれば、予熱されたワイヤが被接合部の母材と共に摩擦攪拌される。よって、被接合部の母材及びワイヤへの入熱量不足による、被接合部の母材及びワイヤの軟化不足を解消することが可能となる。また、被接合部の母材及びワイヤが十分に軟化されるので、被接合部の母材及びワイヤを良好に摩擦攪拌することができる。更に、ワイヤが予熱されることで、ワイヤを軟化させるために必要な入熱量が小さくなるので、接合速度の向上を図ることができる。 According to the friction stir welding apparatus having the above configuration, the preheated wire is friction stir together with the base material of the joined portion. Therefore, it becomes possible to eliminate the insufficient softening of the base material and the wire of the joined part due to the insufficient heat input to the base material and the wire of the joined part. Moreover, since the base material and the wire of a to-be-joined part are fully softened, the base material and the wire of a to-be-joined part can be friction-stirred favorably. Furthermore, since the amount of heat input necessary for softening the wire is reduced by preheating the wire, the bonding speed can be improved.
 上記摩擦攪拌接合装置において、前記ワイヤを前記2つの金属部材の被接合部へ送給するワイヤ送給装置を更に備え、前記ワイヤ加熱装置が、前記ワイヤ送給装置により前記被接合部へ送給される前記ワイヤを加熱するように構成されていることが好ましい。上記構成によれば、加熱されたワイヤを連続的に被接合部へ供給することができる。 The friction stir welding apparatus further includes a wire feeding device that feeds the wire to the joined portion of the two metal members, and the wire heating device feeds the joined portion by the wire feeding device. Preferably, the wire is configured to be heated. According to the said structure, the heated wire can be continuously supplied to a to-be-joined part.
 なお、前記ワイヤ加熱装置として、前記ワイヤに通電することにより前記ワイヤを加熱するように構成されたものを用いることができる。或いは、前記ワイヤ加熱装置として、電磁誘導により前記ワイヤを加熱するように構成されたものを用いることができる。或いは、前記ワイヤ加熱装置として、発熱体により前記ワイヤを加熱するように構成されたものを用いることができる。 In addition, as the wire heating device, a device configured to heat the wire by energizing the wire can be used. Alternatively, a device configured to heat the wire by electromagnetic induction can be used as the wire heating device. Alternatively, a device configured to heat the wire with a heating element can be used as the wire heating device.
 上記摩擦攪拌接合装置において、前記ショルダが、
前記回転ツールが挿通される挿通孔と、
前記挿通孔の開口部を間に挟んで前記進行方向と略直交する方向の両側にそれぞれ設けられ、前記2つの金属部材が成す前記内隅部の角度に対応した角度を成す2つのショルダ面と、
前記挿通孔の開口部よりも前記進行方向前方において前記2つのショルダ面が交わる前稜線部に設けられ、前記進行方向と平行に延びる前記ワイヤ用の案内溝とを有しているものであってよい。
In the friction stir welding apparatus, the shoulder is
An insertion hole through which the rotating tool is inserted;
Two shoulder surfaces provided on both sides in a direction substantially perpendicular to the traveling direction with the opening of the insertion hole interposed therebetween, and forming an angle corresponding to the angle of the inner corner formed by the two metal members; ,
It has a guide groove for the wire that is provided at a front ridge line portion where the two shoulder surfaces intersect in front of the opening direction of the insertion hole and extends in parallel with the moving direction. Good.
 上記構成によれば、ワイヤが案内溝により案内されて被接合部へ供給される。よって、ワイヤが被接合部から移動したり座屈したりすることなく、安定して被接合部へ供給される。 According to the above configuration, the wire is guided by the guide groove and supplied to the joined portion. Therefore, the wire is stably supplied to the bonded portion without moving or buckling from the bonded portion.
 上記摩擦攪拌接合装置において、前記前稜線部が、前記挿通孔の開口部よりも前記進行方向後方において前記2つのショルダ面が交わる後稜線部よりも、前記内隅部から後退しており、前記後稜線部の前記進行方向の横断面形状が、接合後の前記内隅部の前記進行方向の横断面形状と対応する形状を有していることが好ましい。上記構成によれば、ワイヤが、ショルダや母材によって阻害されることなく、被接合部へ供給される。そして、後稜線部と攪拌後の母材とが接触することで、攪拌後の母材の表面形状が整えられる。 In the friction stir welding apparatus, the front ridge line part recedes from the inner corner part than the rear ridge line part where the two shoulder surfaces intersect at the rear in the traveling direction from the opening part of the insertion hole, It is preferable that the cross-sectional shape in the advancing direction of the rear ridge line portion has a shape corresponding to the cross-sectional shape in the advancing direction of the inner corner portion after joining. According to the said structure, a wire is supplied to a to-be-joined part, without being inhibited with a shoulder or a base material. And the surface shape of the base material after stirring is arranged because a back ridgeline part and the base material after stirring contact.
 上記摩擦攪拌接合装置において、前記前稜線部が、前記進行方向前方に向かって前記内隅部から離れるように傾いていることが望ましい。ここで、前記前稜線部の前記進行方向の一端から前記進行方向の他端までの前記案内溝の深さ方向の大きさが、前記案内溝の深さよりも大きいことがよい。上記構成によれば、ワイヤがショルダに引っ掛かることを防止することができる。 In the friction stir welding apparatus, it is preferable that the front ridge line portion is inclined so as to be separated from the inner corner portion toward the front in the traveling direction. Here, the size of the guide groove in the depth direction from one end in the traveling direction of the front ridge line portion to the other end in the traveling direction is preferably larger than the depth of the guide groove. According to the above configuration, the wire can be prevented from being caught by the shoulder.
 上記摩擦攪拌接合装置において、前記ショルダが着脱可能に取り付けられ、前記ショルダの前記挿通孔と連続する孔を有するベースを更に備えていてよい。上記構成によれば、比較的劣化しやすいショルダを、ベースから独立して交換することができる。 In the friction stir welding apparatus, the shoulder may be detachably attached, and may further include a base having a hole continuous with the insertion hole of the shoulder. According to the said structure, the shoulder which is comparatively easy to deteriorate can be replaced | exchanged independently from a base.
 本発明に係る金属製構造体の製造方法は、
第1金属部材と第2金属部材とをL字状又はT字状に突き合わせることと、
ワイヤを加熱することと、
突き合わされた前記第1金属部材と前記第2金属部材とにより形成された内隅部へ加熱された前記ワイヤを供給することと、
前記内隅部へ回転する攪拌ピンを圧入して、前記第1金属部材、前記第2金属部材及び前記ワイヤを摩擦攪拌接合することとを含むものである。
The method for producing a metal structure according to the present invention includes:
Butting the first metal member and the second metal member into an L shape or a T shape,
Heating the wire;
Supplying the heated wire to an inner corner formed by the butted first metal member and the second metal member;
Press-fitting a stirring pin that rotates into the inner corner, and friction stir welding the first metal member, the second metal member, and the wire.
 上記金属製構造体の製造方法によれば、予熱されたワイヤが被接合部の母材と共に摩擦攪拌される。よって、被接合部の母材及びワイヤへの入熱量不足による、被接合部の母材及びワイヤの軟化不足を解消することが可能となる。また、被接合部の母材及びワイヤが十分に軟化されるので、被接合部の母材及びワイヤを良好に摩擦攪拌することができる。この結果、金属製構造体における摩擦攪拌接合部の表面に欠陥が生じることを防止できる。更に、ワイヤが予熱されることで、ワイヤを軟化させるために必要な入熱量が小さくなるので、接合速度の向上を図ることができる。 According to the method for manufacturing a metal structure, the preheated wire is frictionally agitated together with the base material of the bonded portion. Therefore, it becomes possible to eliminate the insufficient softening of the base material and the wire of the joined part due to the insufficient heat input to the base material and the wire of the joined part. Moreover, since the base material and the wire of a to-be-joined part are fully softened, the base material and the wire of a to-be-joined part can be friction-stirred favorably. As a result, it is possible to prevent a defect from occurring on the surface of the friction stir welding portion in the metal structure. Furthermore, since the amount of heat input necessary for softening the wire is reduced by preheating the wire, the bonding speed can be improved.
 前記ワイヤを加熱することにおいて、例えば、前記ワイヤに通電することにより前記ワイヤを加熱したり、電磁誘導により前記ワイヤを加熱したり、或いは、発熱体により前記ワイヤを加熱したりすることができる。 In heating the wire, for example, the wire can be heated by energizing the wire, the wire can be heated by electromagnetic induction, or the wire can be heated by a heating element.
 上記金属製構造体の製造方法において、例えば、前記第1金属部材がA2000系アルミ合金から成り、前記第2金属部材がA7000系アルミ合金から成り、前記ワイヤがA2000系アルミ合金又はA7000系アルミ合金から成るものであってよい。 In the metal structure manufacturing method, for example, the first metal member is made of an A2000 series aluminum alloy, the second metal member is made of an A7000 series aluminum alloy, and the wire is an A2000 series aluminum alloy or an A7000 series aluminum alloy. It may consist of:
 本発明によれば、予熱されたワイヤが被接合部へ供給されるので、攪拌ピンによる被接合部の入熱により被接合部の母材とワイヤとを適切に軟化することができる。この結果、被接合部の母材とワイヤとが良好に摩擦攪拌される。 According to the present invention, since the preheated wire is supplied to the bonded portion, the base material and the wire of the bonded portion can be appropriately softened by the heat input of the bonded portion by the stirring pin. As a result, the base material and the wire of the joined portion are frictionally stirred.
図1は、突き合わされた2つの金属部材の内隅部を回転ツールで攪拌している様子を示す図である。FIG. 1 is a diagram illustrating a state in which inner corners of two metal members that are abutted are being stirred by a rotating tool. 図2は、本発明の一実施形態に係る摩擦攪拌接合装置の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a friction stir welding apparatus according to an embodiment of the present invention. 図3は、ショルダブロックの進行方向の断面図である。FIG. 3 is a cross-sectional view of the shoulder block in the traveling direction. 図4は、ショルダを進行方向と直交する方向から見た図である。FIG. 4 is a view of the shoulder as seen from the direction orthogonal to the traveling direction. 図5は、図4におけるV矢視図である。FIG. 5 is a view taken in the direction of arrow V in FIG. 図6は、図4におけるVI矢視図である。6 is a view taken along arrow VI in FIG. 図7は、図4におけるVII矢視図である。7 is a view taken along arrow VII in FIG. 図8は、ショルダの案内溝の変形例を示す、ショルダを進行方向から見た図である。FIG. 8 is a view of the shoulder viewed from the traveling direction, showing a modified example of the guide groove of the shoulder. 図9は、摩擦攪拌接合装置を用いた金属製構造体の製造方法を示すフローチャートである。FIG. 9 is a flowchart showing a method for manufacturing a metal structure using a friction stir welding apparatus. 図10は、変形例に係るワイヤ加熱装置を備えた摩擦攪拌接合装置の概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of a friction stir welding apparatus including a wire heating device according to a modification.
 以下、本発明の一実施形態に係る摩擦攪拌接合装置1及び金属製構造体の製造方法について、図面を参照しながら説明する。図1は突き合わされた2つの金属部材91,92の内隅部90を回転ツール2で攪拌している様子を示す図である。図1に示されるように、本実施形態に係る摩擦攪拌接合装置1は、L字状又はT字状に突き合わされた第1部材91と第2部材92とにより形成される内隅部90に対して摩擦攪拌接合を行う装置である。この摩擦攪拌接合装置1を用いて、摩擦攪拌接合された第1部材91と第2部材92とを含む金属製構造体を製造することができる。 Hereinafter, a friction stir welding apparatus 1 and a metal structure manufacturing method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a state in which the inner corner portion 90 of the two metal members 91 and 92 that are abutted is being stirred by the rotary tool 2. As shown in FIG. 1, the friction stir welding apparatus 1 according to the present embodiment has an inner corner 90 formed by a first member 91 and a second member 92 that are abutted in an L shape or a T shape. It is a device that performs friction stir welding. Using the friction stir welding apparatus 1, a metal structure including the first member 91 and the second member 92 that are friction stir welded can be manufactured.
 被接合部材である第1部材91と第2部材92とは、摩擦攪拌接合が可能な金属材料(素材)であれば、同じ金属材料で構成されていてもよいし、互いに異なる金属材料で構成されていてもよい。第1部材91と第2部材92が互いに異なる金属材料で構成されている場合に、例えば、第1部材91をA2000系アルミ合金製とし、第2部材92をA7000系アルミ合金製とすることができる。この場合、被接合部材91,92と共に摩擦攪拌されるワイヤ50は、A2000系アルミ合金又はA7000系アルミ合金製とすることが望ましい。 The first member 91 and the second member 92, which are the members to be joined, may be made of the same metal material as long as it is a metal material (raw material) capable of friction stir welding. May be. When the first member 91 and the second member 92 are made of different metal materials, for example, the first member 91 may be made of an A2000 series aluminum alloy and the second member 92 may be made of an A7000 series aluminum alloy. it can. In this case, it is desirable that the wire 50 friction-stirred with the members to be joined 91 and 92 is made of an A2000 series aluminum alloy or an A7000 series aluminum alloy.
 A2000系アルミ合金は、銅を3.5%以上含有するアルミ-銅系合金である。また、A7000系アルミ合金は、アルミ-亜鉛-マグネシウム-銅系合金である。A7000系アルミ合金は、A2000系アルミ合金と比較して極めて高い引っ張り強さ及び硬さを有するが、疲労強度や破壊靭性の点でA2000系アルミ合金に劣っている。そこで、構造物の疲労強度や破壊靭性を向上させるために、構造物の外側面にA2000系アルミ合金を配置し、内部の補強用部材としてA7000系アルミ合金をT字状に組み合わせて用いることがある。本実施形態に係る摩擦攪拌接合装置1を用いてA2000系アルミ合金製部材とA7000系アルミ合金製部材とを摩擦攪拌接合すれば、これらの部材が間にリベット等の接続部材などを介さずに直接的に接合されるので、疲労強度や破壊靭性が向上するとともに、コスト削減及び軽量化も可能となる。 A2000 series aluminum alloy is an aluminum-copper type alloy containing 3.5% or more of copper. The A7000 series aluminum alloy is an aluminum-zinc-magnesium-copper alloy. The A7000 series aluminum alloy has extremely high tensile strength and hardness compared to the A2000 series aluminum alloy, but is inferior to the A2000 series aluminum alloy in terms of fatigue strength and fracture toughness. Therefore, in order to improve the fatigue strength and fracture toughness of the structure, an A2000 series aluminum alloy is disposed on the outer surface of the structure, and the A7000 series aluminum alloy is used in combination in a T shape as an internal reinforcing member. is there. If the friction stir welding of the A2000 series aluminum alloy member and the A7000 series aluminum alloy member is performed using the friction stir welding apparatus 1 according to the present embodiment, these members do not intervene with a connecting member such as a rivet. Since it is joined directly, fatigue strength and fracture toughness are improved, and cost reduction and weight reduction are possible.
 次に、摩擦攪拌接合装置1の構成について詳細に説明する。図2は本発明の実施形態に係る摩擦攪拌接合装置1の概略構成を示す図である。図2において、ショルダブロック3は進行方向100と直交する方向の断面図として示されている。図3はショルダブロック3の進行方向の断面図であり、この図において回転ツール2が二点鎖線で示されている。 Next, the configuration of the friction stir welding apparatus 1 will be described in detail. FIG. 2 is a diagram showing a schematic configuration of the friction stir welding apparatus 1 according to the embodiment of the present invention. In FIG. 2, the shoulder block 3 is shown as a cross-sectional view in a direction orthogonal to the traveling direction 100. FIG. 3 is a cross-sectional view of the shoulder block 3 in the traveling direction. In this figure, the rotary tool 2 is indicated by a two-dot chain line.
 図2及び図3に示されるように、本実施形態に係る摩擦攪拌接合装置1は、先端に攪拌ピン21を有する回転ツール2と、回転ツール2に装着されたショルダブロック3と、回転ツール2を回転駆動する回転駆動装置41と、攪拌ピン21が被接合部の母材に対して所定の押込力で押し込まれるように回転ツール2を押圧する押圧装置42と、回転ツール2の移動装置43と、ワイヤ送給装置44と、ワイヤ加熱装置45と、摩擦攪拌接合装置1の動作を制御する制御装置46とで概略構成されている。被接合部材91,92は、回転ツール2からの押圧力を受圧できるように、例えば図1に示されるような治具95に保持されている。 As shown in FIGS. 2 and 3, the friction stir welding apparatus 1 according to this embodiment includes a rotary tool 2 having a stirring pin 21 at the tip, a shoulder block 3 attached to the rotary tool 2, and a rotary tool 2. A rotary drive device 41 that rotates the rotary tool 2, a pressing device 42 that presses the rotary tool 2 so that the stirring pin 21 is pressed into the base material of the joined portion with a predetermined pressing force, and a moving device 43 of the rotary tool 2. And a wire feeding device 44, a wire heating device 45, and a control device 46 that controls the operation of the friction stir welding device 1. The members to be joined 91 and 92 are held by a jig 95 as shown in FIG. 1, for example, so that the pressing force from the rotary tool 2 can be received.
 移動装置43は、回転ツール2及びショルダブロック3を、第1部材91及び第2部材92により形成された内隅部90の突き合わせラインに沿って、第1部材91及び第2部材92と相対的に移動させる手段である。この明細書において、回転ツール2及びショルダブロック3の移動方向を「進行方向100」といい、進行方向100は内隅部90の突き合わせラインに沿っていることとする。また、進行方向100のうち、回転ツール2及びショルダブロック3から見てこれらが加工時に移動する向きを「前」(図1中、矢印100の指す向き)といい、進行方向100のうち回転ツール2及びショルダブロック3から見て前と逆を「後」ということとする。なお、回転ツール2の回転方向と進行方向100とが一致する側へ回転ツール2及びショルダブロック3が前進し、回転ツール2の回転方向と進行方向100とが逆になる側へ回転ツール2及びショルダブロック3が後退する。 The moving device 43 moves the rotary tool 2 and the shoulder block 3 relative to the first member 91 and the second member 92 along the abutting line of the inner corner 90 formed by the first member 91 and the second member 92. It is a means to move to. In this specification, the moving direction of the rotary tool 2 and the shoulder block 3 is referred to as “traveling direction 100”, and the traveling direction 100 is along the butt line of the inner corner 90. In addition, the direction in which the rotary tool 2 and the shoulder block 3 move during machining is referred to as “front” (the direction indicated by the arrow 100 in FIG. 1). 2 and the shoulder block 3 are referred to as “rear”. The rotating tool 2 and the shoulder block 3 move forward to the side where the rotating direction of the rotating tool 2 and the traveling direction 100 coincide with each other, and the rotating tool 2 and the shoulder block 3 move to the side where the rotating direction and the traveling direction 100 are opposite. The shoulder block 3 moves backward.
 移動装置43は、例えば、直動案内機構と、制御装置46により制御される直動案内機構の駆動手段とから構成することができる(いずれも図示せず)。但し、移動装置43は、ロボットであっても構わない。本実施形態に係る移動装置43は、回転ツール2を治具95に保持された被接合部材91,92に対して移動させるものであるが、移動装置43は被接合部材91,92を保持する治具95を回転ツール2に対して移動させるものであってもよい。 The moving device 43 can be constituted by, for example, a linear motion guide mechanism and a drive unit of the linear motion guide mechanism controlled by the control device 46 (none of which is shown). However, the moving device 43 may be a robot. The moving device 43 according to the present embodiment moves the rotary tool 2 with respect to the members to be bonded 91 and 92 held by the jig 95, but the moving device 43 holds the members to be bonded 91 and 92. The jig 95 may be moved with respect to the rotary tool 2.
 ワイヤ送給装置44は、ワイヤ50を被接合部へ接合速度に合わせて送給する手段である。ワイヤ送給装置44は、例えば、制御装置46により制御されるサーボモータと、サーボモータにより駆動される送給ローラとにより構成される(いずれも図示せず)。本実施形態において、ワイヤ送給装置44により被接合部へ送給されるワイヤ50は、ワイヤリール47にコイル状に巻かれたものであるが、ワイヤ50は内隅部90の突き合わせラインの長さに応じてカットされたものであってもよい。 The wire feeding device 44 is a means for feeding the wire 50 to the joined portion in accordance with the joining speed. The wire feeding device 44 includes, for example, a servo motor controlled by the control device 46 and a feeding roller driven by the servo motor (both not shown). In the present embodiment, the wire 50 fed to the bonded portion by the wire feeding device 44 is wound around the wire reel 47 in a coil shape, but the wire 50 is the length of the butting line of the inner corner portion 90. It may be cut according to the size.
 ワイヤ加熱装置45は、被接合部材91,92と共に摩擦攪拌されるワイヤ50を加熱する手段である。このワイヤ加熱装置45により、被接合部材91,92の被接合部に供給されるワイヤ50が予熱される。本実施形態に係るワイヤ加熱装置45は、ワイヤ送給装置44により被接合部へ送給されるワイヤ50を加熱するように構成されている。ワイヤ加熱装置45は、例えば、コンタクトチップ45aと、コンタクトチップ45aと母材に電流を供給するワイヤ加熱電源45bとにより構成される。ワイヤ加熱電源45bの動作は制御装置46により制御される。このワイヤ加熱装置45において、コンタクトチップ45aに案内されたワイヤ50には、コンタクトチップ45aから電流が供給される。このようにしてワイヤ50に通電させることにより、ワイヤ50の抵抗でワイヤ50が加熱される。 The wire heating device 45 is means for heating the wire 50 that is frictionally stirred together with the members 91 and 92 to be joined. The wire heating device 45 preheats the wire 50 supplied to the bonded portions of the bonded members 91 and 92. The wire heating device 45 according to the present embodiment is configured to heat the wire 50 fed to the bonded portion by the wire feeding device 44. The wire heating device 45 includes, for example, a contact chip 45a and a wire heating power supply 45b that supplies a current to the contact chip 45a and the base material. The operation of the wire heating power supply 45b is controlled by the control device 46. In the wire heating device 45, a current is supplied from the contact tip 45a to the wire 50 guided to the contact tip 45a. By energizing the wire 50 in this way, the wire 50 is heated by the resistance of the wire 50.
 上記ワイヤ送給装置44及びワイヤ加熱装置45のコンタクトチップ45aは、ショルダブロック3に固定されたステー33に取り付けられており、ショルダブロック3に伴って被接合部材91,92と相対的に進行方向100へ移動する。このように、高温のワイヤ50を安定して被接合部へ送給するために、ワイヤ送給装置44及びワイヤ加熱装置45のコンタクトチップ45aが常にショルダブロック3及び回転ツール2と近接した位置に在ることが望ましい。但し、ワイヤ送給装置44及びワイヤ加熱装置45の少なくとも一方は、ショルダブロック3及び回転ツール2から離れた位置においてこれらから独立して設けられていてもよい。 Contact tips 45 a of the wire feeding device 44 and the wire heating device 45 are attached to a stay 33 fixed to the shoulder block 3, and the traveling direction relative to the members 91 and 92 to be joined with the shoulder block 3. Move to 100. As described above, in order to stably feed the high-temperature wire 50 to the bonded portion, the contact tip 45a of the wire feeding device 44 and the wire heating device 45 is always in a position close to the shoulder block 3 and the rotary tool 2. It is desirable to be present. However, at least one of the wire feeding device 44 and the wire heating device 45 may be provided independently of the shoulder block 3 and the rotary tool 2 at a position away from them.
 ここで、ショルダブロック3について詳細に説明する。図1~3に示されるように、ショルダブロック3は、ショルダ8と、ショルダ8が着脱可能に取り付けられたベース7とで構成されている。このように、ショルダブロック3がベース7とショルダ8とにより分割構成されているので、比較的劣化しやすいショルダ8を、ベース7から独立して交換することができる。図示されないが、ショルダブロック3には回転ツール2を冷却するための冷却孔や冷媒が導通される冷媒通路が形成されている。 Here, the shoulder block 3 will be described in detail. 1 to 3, the shoulder block 3 includes a shoulder 8 and a base 7 to which the shoulder 8 is detachably attached. As described above, the shoulder block 3 is divided into the base 7 and the shoulder 8, so that the shoulder 8 that is relatively easily deteriorated can be replaced independently of the base 7. Although not shown, the shoulder block 3 is formed with a cooling hole for cooling the rotary tool 2 and a refrigerant passage through which the refrigerant is conducted.
 ベース7は、進行方向100から見た外形が長方形から隣り合う2つの角が切り欠かれた六角形の柱状体である。隣り合う2つの角が切り欠かれて成る面が案内面72,72である。なお、押圧装置42によりショルダブロック3が内隅部90へ押し込まれたときに、後述するショルダ面85,85は被接合部材91,92とは当接するが、案内面72,72は被接合部材91,92と僅かに離間して対峙する。2つの案内面72,72が成す角度は、被接合部材91,92の成す内隅部90の角度に対応して定められている。本実施形態において、2つの案内面72,72が成す角度は約90°である。 The base 7 is a hexagonal columnar body whose outer shape viewed from the traveling direction 100 is cut out from two corners adjacent to a rectangle. The surfaces formed by notching two adjacent corners are guide surfaces 72 and 72. When the shoulder block 3 is pushed into the inner corner 90 by the pressing device 42, shoulder surfaces 85 and 85, which will be described later, come into contact with the members 91 and 92, but the guide surfaces 72 and 72 are members to be joined. 91 and 92 are spaced slightly apart from each other. The angle formed by the two guide surfaces 72 and 72 is determined corresponding to the angle of the inner corner portion 90 formed by the members to be joined 91 and 92. In the present embodiment, the angle formed by the two guide surfaces 72, 72 is about 90 °.
 2つの案内面72,72に挟まれた面が、ショルダ8が取り付けられる取付面71である。取付面71には、ショルダ8が設置される凹部73が設けられている。凹部73内には、貫通孔74と複数の取付孔75(図2)とが開口している。取付孔75は、凹部73にショルダ8を固定するためのボルトが挿入される孔であって、内面にネジが切られている。 The surface sandwiched between the two guide surfaces 72 is a mounting surface 71 to which the shoulder 8 is mounted. The mounting surface 71 is provided with a recess 73 in which the shoulder 8 is installed. A through hole 74 and a plurality of attachment holes 75 (FIG. 2) are opened in the recess 73. The attachment hole 75 is a hole into which a bolt for fixing the shoulder 8 to the recess 73 is inserted, and a screw is cut on the inner surface.
 図4はショルダ8を進行方向100と直交する方向から見た図、図5は図4におけるV矢視図、図6は図4におけるVI矢視図、図7は図4におけるVII矢視図である。図4~7に示されるように、ショルダ8には、ベース7の凹部73に嵌め込まれる基板部81と、基板部81から内隅部90側へ突出した突出部82とが一体的に形成されている。 4 is a view of the shoulder 8 as viewed from a direction orthogonal to the traveling direction 100, FIG. 5 is a view taken along the arrow V in FIG. 4, FIG. 6 is a view taken along the arrow VI in FIG. It is. As shown in FIGS. 4 to 7, the shoulder 8 is integrally formed with a substrate portion 81 fitted into the recess 73 of the base 7 and a protruding portion 82 protruding from the substrate portion 81 toward the inner corner 90. ing.
 基板部81には、ベース7の取付孔75と対応する取付孔83が設けられている。ショルダ8の基板部81がベース7の凹部73に嵌め込まれた状態において、ベース7の取付孔75とショルダ8の83とにより連続するボルト孔が形成される。そして、このボルト孔にボルトが挿通されることによって、ベース7にショルダ8が固定される。 The substrate portion 81 is provided with an attachment hole 83 corresponding to the attachment hole 75 of the base 7. In a state where the substrate portion 81 of the shoulder 8 is fitted in the recess 73 of the base 7, a continuous bolt hole is formed by the mounting hole 75 of the base 7 and 83 of the shoulder 8. The shoulder 8 is fixed to the base 7 by inserting a bolt into the bolt hole.
 突出部82の突端には、貫通孔84が開口している。貫通孔84は基板部81と突出部82とを貫いている。ショルダ8がベース7に取り付けられた状態において、ベース7の貫通孔74とショルダ8の貫通孔84とにより一つの連続する挿通孔31が形成される。 A through hole 84 is opened at the protruding end of the protruding portion 82. The through hole 84 penetrates the substrate portion 81 and the protruding portion 82. In a state where the shoulder 8 is attached to the base 7, one continuous insertion hole 31 is formed by the through hole 74 of the base 7 and the through hole 84 of the shoulder 8.
 突出部82において、貫通孔84の開口部を間に挟んで進行方向100と略直交する方向の両側には、それぞれショルダ面85,85が形成されている。2つのショルダ面85,85が成す角度は、被接合部材91,92の成す内隅部90の角度に対応して定められている。本実施形態において、2つのショルダ面85,85が成す角度は約90°である。ショルダブロック3が内隅部90に押し当てられたときに、ショルダ面85,85が内隅部90を形成している被接合部材91,92と当接する。 In the projecting portion 82, shoulder surfaces 85 and 85 are respectively formed on both sides in a direction substantially orthogonal to the traveling direction 100 with the opening of the through hole 84 interposed therebetween. The angle formed by the two shoulder surfaces 85 and 85 is determined corresponding to the angle of the inner corner portion 90 formed by the members to be joined 91 and 92. In the present embodiment, the angle formed by the two shoulder surfaces 85, 85 is about 90 °. When the shoulder block 3 is pressed against the inner corner portion 90, the shoulder surfaces 85 and 85 come into contact with the members to be joined 91 and 92 forming the inner corner portion 90.
 突出部82において、2つのショルダ面85,85が交わる部分に、稜線部86,88が形成されている。稜線部86,88の延びる方向は内隅部90の延びる方向と平行である。稜線部は、貫通孔84よりも進行方向100の前方部分(以下、前稜線部86という)と、貫通孔84よりも進行方向100の後方部分(以下、後稜線部88という)とに、貫通孔84を間に挟んで前後に分かれている。 In the projecting portion 82, ridge portions 86 and 88 are formed at portions where the two shoulder surfaces 85 and 85 intersect. The direction in which the ridge lines 86 and 88 extend is parallel to the direction in which the inner corner 90 extends. The ridge line portion penetrates into a front part in the traveling direction 100 (hereinafter referred to as a front ridge line part 86) from the through hole 84 and a rear part (hereinafter referred to as a rear ridge line part 88) in the traveling direction 100 from the through hole 84. It is divided into front and rear with the hole 84 in between.
 前稜線部86には、ワイヤ50を案内する案内溝87が形成されている。案内溝87は進行方向100と略平行に延びている。本実施形態に係る案内溝87の進行方向100の横断面形状は半球である。但し、案内溝87の進行方向100の横断面形状は半球に限定されるものではなく、例えば、図8に示されるように、案内溝87の進行方向100の横断面形状は多角形であってもよい。 In the front ridge line portion 86, a guide groove 87 for guiding the wire 50 is formed. The guide groove 87 extends substantially parallel to the traveling direction 100. The cross-sectional shape in the traveling direction 100 of the guide groove 87 according to the present embodiment is a hemisphere. However, the cross-sectional shape in the traveling direction 100 of the guide groove 87 is not limited to a hemisphere. For example, as illustrated in FIG. 8, the cross-sectional shape in the traveling direction 100 of the guide groove 87 is a polygon. Also good.
 従来、内隅部の母材と共にワイヤを摩擦攪拌する場合には、特許文献2に記載されているように、攪拌を行う前にワイヤが内隅部に沿って配置されていた。このワイヤは、内隅部の母材が摩擦攪拌される間に力を受けて移動したり、ショルダなどの周辺部材と当接して座屈したりして、被接合部へ安定して供給されないことがあった。これに対し、本実施形態に係る摩擦攪拌接合装置1では、ショルダ8がワイヤ50の案内溝87を有するので、加熱により幾分軟化したワイヤ50であっても案内溝87に案内されることで、水平方向や垂直方向に振れたり座屈したりすることなく、安定して被接合部へ供給される。 Conventionally, when a wire is frictionally stirred together with a base material at an inner corner, as described in Patent Document 2, the wire is arranged along the inner corner before stirring. This wire is not supplied stably to the welded part because it receives force while the base metal at the inner corner is frictionally stirred or buckles against peripheral members such as a shoulder. was there. On the other hand, in the friction stir welding apparatus 1 according to the present embodiment, the shoulder 8 has the guide groove 87 of the wire 50, so that even the wire 50 softened somewhat by heating is guided to the guide groove 87. It can be stably supplied to the bonded portion without shaking or buckling in the horizontal direction or the vertical direction.
 前稜線部86は、進行方向100前方に向かって、内隅部90から離れる向きに傾いている。前稜線部86の傾きは、前稜線部86の進行方向100の後端から進行方向100の前端までに亘って設けられている。前稜線部86の傾きは貫通孔84の近傍においては緩やかであるが、貫通孔84から離れるに従って徐々に大きくなる。なお、前稜線部86は、斜面で形成されていてもよいし、曲面で形成されていてもよい。このように、前稜線部86に傾きが設けられていることによって、ショルダ8の進行方向100への移動が内隅部90に阻害されにくい。 The front ridge line portion 86 is inclined in a direction away from the inner corner portion 90 toward the front in the traveling direction 100. The inclination of the front ridge line portion 86 is provided from the rear end in the traveling direction 100 of the front ridge line portion 86 to the front end in the traveling direction 100. The inclination of the front ridge line portion 86 is gentle in the vicinity of the through hole 84 but gradually increases as the distance from the through hole 84 increases. In addition, the front ridgeline part 86 may be formed with the slope, and may be formed with the curved surface. As described above, since the front ridge line portion 86 is inclined, the movement of the shoulder 8 in the traveling direction 100 is not easily inhibited by the inner corner portion 90.
 さらに、前稜線部86の進行方向100の後端から前端までの案内溝87の深さ方向の大きさD1は、案内溝87の深さD2よりも大きいことが望ましい(図4)。換言すれば、前稜線部86の進行方向100の後端の案内溝87の深さ方向の位置と前稜線部86の進行方向100の前端の案内溝87の深さ方向の位置とが、案内溝87の深さD2よりも大きく離れていることが望ましい。これにより、案内溝87の進行方向100の前端よりも前方に傾きが設けられた前稜線部86(特に、図5中に矢印86aで示される部分)が存在することとなる。よって、案内溝87よりも進行方向100前方を通過中のワイヤ50は、傾きが設けられた前稜線部86と接触するので、ワイヤ50がショルダ8に引っ掛かってワイヤ50の送給が阻害されることを防止できる。 Furthermore, it is desirable that the size D 1 in the depth direction of the guide groove 87 from the rear end to the front end in the traveling direction 100 of the front ridge line portion 86 is larger than the depth D 2 of the guide groove 87 (FIG. 4). In other words, the position in the depth direction of the guide groove 87 at the rear end in the traveling direction 100 of the front ridge line portion 86 and the position in the depth direction of the front guide groove 87 in the direction of travel 100 of the front ridge line portion 86 are guided. It is desirable that the distance is greater than the depth D 2 of the groove 87. As a result, there is a front ridge line portion 86 (particularly, a portion indicated by an arrow 86a in FIG. 5) that is inclined forward from the front end of the guide groove 87 in the traveling direction 100. Therefore, the wire 50 passing through the front of the traveling direction 100 with respect to the guide groove 87 comes into contact with the front ridge line portion 86 provided with an inclination, so that the wire 50 is caught by the shoulder 8 and the feeding of the wire 50 is hindered. Can be prevented.
 後稜線部88は、攪拌後の母材と接触して接合後の内隅部90の形状(例えば、曲面形状)を成形する機能を有する。このため、後稜線部88の進行方向100の横断面形状は、接合後の内隅部90の進行方向100の横断面形状と対応している。本実施形態においては、接合後の内隅部90に第1部材91と第2部材92とを繋ぐ滑らかな曲線が形成されるように、後稜線部88の進行方向100の横断面形状が滑らかな山状となっている。 The rear ridge line part 88 has a function of forming a shape (for example, a curved surface shape) of the inner corner part 90 after joining by contacting with the base material after stirring. For this reason, the cross-sectional shape of the advancing direction 100 of the back ridgeline part 88 respond | corresponds with the cross-sectional shape of the advancing direction 100 of the inner corner part 90 after joining. In the present embodiment, the cross-sectional shape in the advancing direction 100 of the rear ridge line portion 88 is smooth so that a smooth curve connecting the first member 91 and the second member 92 is formed in the inner corner portion 90 after joining. It has become a mountain shape.
 前稜線部86は、後稜線部88よりも内隅部90から後退している。前稜線部86と内隅部90とは、内隅部90と前稜線部86とが接触せず且つ内隅部90と案内溝87との間にワイヤ50が導入できるように、離間している。一方、後稜線部88は、攪拌後の内隅部90と接触するように、内隅部90と後稜線部88との離間距離が僅かであるか殆どない。このように、前稜線部86が、後稜線部88よりも内隅部90から後退していることにより、被接合部へ供給されるワイヤ50がその過程で前稜線部86と接触することが回避される。 The front ridge line part 86 is set back from the inner corner part 90 rather than the rear ridge line part 88. The front ridge line portion 86 and the inner corner portion 90 are separated so that the inner corner portion 90 and the front ridge line portion 86 are not in contact with each other and the wire 50 can be introduced between the inner corner portion 90 and the guide groove 87. Yes. On the other hand, the rear ridge line part 88 has little or little separation distance between the inner corner part 90 and the rear ridge line part 88 so as to come into contact with the inner corner part 90 after stirring. As described above, since the front ridge line portion 86 is retracted from the inner corner portion 90 rather than the rear ridge line portion 88, the wire 50 supplied to the bonded portion may come into contact with the front ridge line portion 86 in the process. Avoided.
 上記構成のベース7とショルダ8とは、ベース7の凹部73にショルダ8の基板部81が嵌め入れられ、軸方向に一致した取付孔83と取付孔75とにボルトが螺入されることにより、一体化されたショルダブロック3となる。ショルダブロック3では、ショルダ8の貫通孔84とベース7の貫通孔74とが連通して1つの挿通孔31が形成されている。挿通孔31は、ベース7側の入口を含む大径部31aと、ショルダ8側の出口を含む小径部31cと、大径部31aと小径部31cとを滑らかに接続するテーパ部31bとを有している。小径部31cの径は、攪拌ピン21の先端の径よりもやや大きい。テーパ部31bの軸方向からの傾きは、回転ツール2の攪拌ピン21に形成されたテーパ部の傾きと一致している。ショルダブロック3の挿通孔31に回転ツール2が挿入されると、挿通孔31のテーパ部31bと攪拌ピンのテーパ部とが当接することにより、ショルダブロック3と回転ツール2とが相対的に位置決めされる。このように位置決めされた回転ツール2とショルダブロック3において、回転ツール2の先端部の攪拌ピン21がショルダブロック3から所定長さだけ突出した状態となっている。なお、ショルダブロック3の大径部31aと回転ツール2との間には、円筒状のカラー48が設けられている。カラー48は、ショルダブロック3に対して回転ツール2を安定して回転させるために設けられた部材である。 The base 7 and the shoulder 8 configured as described above are configured such that the base plate portion 81 of the shoulder 8 is fitted into the recess 73 of the base 7, and bolts are screwed into the mounting holes 83 and 75 that are aligned in the axial direction. , An integrated shoulder block 3 is obtained. In the shoulder block 3, the through hole 84 of the shoulder 8 and the through hole 74 of the base 7 communicate with each other to form one insertion hole 31. The insertion hole 31 has a large-diameter portion 31a including an inlet on the base 7 side, a small-diameter portion 31c including an outlet on the shoulder 8, and a tapered portion 31b that smoothly connects the large-diameter portion 31a and the small-diameter portion 31c. is doing. The diameter of the small diameter portion 31 c is slightly larger than the diameter of the tip of the stirring pin 21. The inclination of the taper part 31b from the axial direction coincides with the inclination of the taper part formed on the stirring pin 21 of the rotary tool 2. When the rotary tool 2 is inserted into the insertion hole 31 of the shoulder block 3, the taper part 31b of the insertion hole 31 and the taper part of the stirring pin are brought into contact with each other, so that the shoulder block 3 and the rotary tool 2 are relatively positioned. Is done. In the rotary tool 2 and the shoulder block 3 positioned as described above, the stirring pin 21 at the tip of the rotary tool 2 is in a state protruding from the shoulder block 3 by a predetermined length. A cylindrical collar 48 is provided between the large diameter portion 31 a of the shoulder block 3 and the rotary tool 2. The collar 48 is a member provided for stably rotating the rotary tool 2 with respect to the shoulder block 3.
 ここで、上記構成の摩擦攪拌接合装置1を用いた金属製構造体の製造方法について説明する。図9は摩擦攪拌接合装置を用いた金属製構造体の製造方法を示すフローチャートである。 Here, a method for manufacturing a metal structure using the friction stir welding apparatus 1 having the above configuration will be described. FIG. 9 is a flowchart showing a method for manufacturing a metal structure using a friction stir welding apparatus.
 図9に示されるように、まず、第1部材91と第2部材92とを、図1に示されるようにL字状又はT字状に突き合わせて、裏当て部材として機能する治具95で保持する(ステップS1)。突き合わされた第1部材91と第2部材92とにより、被接合部となる内隅部90が形成される。 As shown in FIG. 9, first, the first member 91 and the second member 92 are abutted in an L shape or a T shape as shown in FIG. 1, and a jig 95 that functions as a backing member is used. Hold (step S1). The first member 91 and the second member 92 that are abutted with each other form an inner corner 90 that is a joined portion.
 次に、内隅部90にショルダブロック3を配置する(ステップS2)。ここで、ショルダブロック3のショルダ面85,85が第1部材91及び第2部材92と当接するように、ショルダブロック3が内隅部90に配置される。このように内隅部90に配置されたショルダブロック3において、ショルダ8の前稜線部86及び後稜線部88は、内隅部90の突き合わせラインに沿って並んでおり、当該突き合わせラインと対向している。 Next, the shoulder block 3 is disposed in the inner corner 90 (step S2). Here, the shoulder block 3 is disposed at the inner corner 90 so that the shoulder surfaces 85, 85 of the shoulder block 3 come into contact with the first member 91 and the second member 92. In the shoulder block 3 arranged in the inner corner 90 in this way, the front ridge line portion 86 and the rear ridge line portion 88 of the shoulder 8 are arranged along the butt line of the inner corner portion 90 and face the butt line. ing.
 続いて、回転ツール2の攪拌ピン21をショルダブロック3の挿通孔31に挿入する(ステップS3)。ここで、攪拌ピン21は、その先端が内隅部90に当接するまで、挿通孔31に挿入される。そして、攪拌ピン21のテーパ部がショルダブロック3のテーパ部31bと当接するまで、攪拌ピン21を回転させつつ攪拌ピン21の先端を被接合部の母材へ押し込む。これにより、攪拌ピン21の先端が被接合部の母材へ圧入される。なお、攪拌ピン21が被接合部の母材へ圧入されるときの抵抗を小さくするために、内隅部90に下穴を設けておくことができる。 Subsequently, the stirring pin 21 of the rotary tool 2 is inserted into the insertion hole 31 of the shoulder block 3 (step S3). Here, the stirring pin 21 is inserted into the insertion hole 31 until the tip thereof abuts on the inner corner portion 90. Then, the tip of the stirring pin 21 is pushed into the base material of the joined portion while rotating the stirring pin 21 until the tapered portion of the stirring pin 21 contacts the tapered portion 31b of the shoulder block 3. Thereby, the front-end | tip of the stirring pin 21 is press-fitted in the base material of a to-be-joined part. In order to reduce the resistance when the stirring pin 21 is press-fitted into the base material of the joined portion, a pilot hole can be provided in the inner corner portion 90.
 続いて、攪拌ピン21を回転させつつ、攪拌ピン21とショルダブロック3とを内隅部90の突き合わせラインに沿って進行方向100前方へ移動させ、被接合部とワイヤ50とを摩擦攪拌する(ステップS5)。これと同時に又は先だって、ワイヤ送給装置44により、攪拌ピン21とショルダブロック3の移動速度(即ち、接合速度)に合わせてワイヤ50を被接合部へ送給する。ワイヤ50は、被接合部へ送給される過程で、ワイヤ加熱装置45によって加熱される。つまり、予熱されたワイヤ50が被接合部へ供給される(ステップS4)。 Subsequently, while the stirring pin 21 is rotated, the stirring pin 21 and the shoulder block 3 are moved forward in the advancing direction 100 along the abutting line of the inner corner portion 90 to frictionally stir the welded portion and the wire 50 ( Step S5). At the same time or earlier, the wire feeding device 44 feeds the wire 50 to the joined portion in accordance with the moving speed (that is, the joining speed) of the stirring pin 21 and the shoulder block 3. The wire 50 is heated by the wire heating device 45 in the process of being fed to the bonded portion. That is, the preheated wire 50 is supplied to the joined portion (step S4).
 回転する攪拌ピン21により、被接合部の母材(第1部材91及び第2部材92)並びに被接合部へ送給されてきたワイヤ50へ摩擦熱が与えられる。摩擦熱により軟化した被接合部の母材及びワイヤ50が攪拌されて、これらが塑性流動する。攪拌ピン21の進行方向100への相対的な移動によって、内隅部90で順次可塑化が起こり、第1部材91と第2部材92との内隅部90が固相接合される。 Friction heat is given to the base material (the first member 91 and the second member 92) of the joined portion and the wire 50 fed to the joined portion by the rotating stirring pin 21. The base material of the bonded portion and the wire 50 softened by the frictional heat are agitated and plastically flow. Due to the relative movement of the stirring pin 21 in the traveling direction 100, plasticization occurs sequentially at the inner corner 90, and the inner corner 90 of the first member 91 and the second member 92 is solid-phase bonded.
 以上説明した工程で、第1部材91と第2部材92とが摩擦攪拌接合されて成る金属製構造体が製造される。そして、上記製造方法においては、被接合部の母材と共に攪拌されるワイヤが予め加熱されている。よって、被接合部の母材及びワイヤ50への入熱量不足による、被接合部の母材及びワイヤ50の軟化不足を解消することが可能となる。このように、被接合部の母材とワイヤ50とが良好に攪拌されるようにワイヤ50が被接合部へ供給されるので、この摩擦攪拌接合により接合されて成る金属製構造体の接合部の表面に欠陥が生じることを防止できる。つまり、摩擦攪拌接合部の接合状態と接合強度を安定化することができる。更に、ワイヤ50が予熱されることで、ワイヤ50を軟化させるために必要な入熱量が小さくなるので、接合速度の向上を図ることができる。 In the process described above, a metal structure in which the first member 91 and the second member 92 are friction stir welded is manufactured. And in the said manufacturing method, the wire stirred with the base material of a to-be-joined part is heated previously. Therefore, it becomes possible to eliminate the insufficient softening of the base material and the wire 50 of the joined part due to the lack of heat input to the base material and the wire 50 of the joined part. Thus, since the wire 50 is supplied to the joined portion so that the base material of the joined portion and the wire 50 are well stirred, the joined portion of the metal structure joined by this friction stir welding It is possible to prevent defects from occurring on the surface. That is, the joining state and joining strength of the friction stir welding part can be stabilized. Furthermore, since the amount of heat input necessary for softening the wire 50 is reduced by preheating the wire 50, the bonding speed can be improved.
 以上に本発明の好適な実施の形態を説明したが、上記摩擦攪拌接合装置1の構成は例えば以下のように変更することができる。 Although the preferred embodiment of the present invention has been described above, the configuration of the friction stir welding apparatus 1 can be changed as follows, for example.
 例えば、前述の実施形態に係る摩擦攪拌接合装置1のワイヤ加熱装置45は、ワイヤ50に通電することによりワイヤ50を加熱するように構成されている。但し、ワイヤ加熱装置45の加熱方式はこれに限定されない。例えば、ワイヤ加熱装置45は電磁誘導や発熱体によりワイヤ50を加熱するように構成されたものであってもよい。 For example, the wire heating device 45 of the friction stir welding apparatus 1 according to the above-described embodiment is configured to heat the wire 50 by energizing the wire 50. However, the heating method of the wire heating device 45 is not limited to this. For example, the wire heating device 45 may be configured to heat the wire 50 by electromagnetic induction or a heating element.
 図10は、変形例1に係るワイヤ加熱装置45を備えた摩擦攪拌接合装置1の概略構成を示す図である。図10に示されるように、ワイヤ加熱装置45は、例えば、コイルを備えたヒータ61と、ヒータ61で加熱されたワイヤ50の温度を検出する温度センサ62と、温度制御器63とにより構成されている。温度制御器63は、温度センサ62で検出されたワイヤ50の温度に基づいてヒータ61のコイルへ流す電流を調整するように構成されている。ヒータ61のコイルへ電流が流れると、コイルの周りに向きと強度が変化する磁力線が発生し、この磁力線の影響を受けてワイヤ50の中に渦電流が流れる。ワイヤ50に電流が流れると、ワイヤ50の抵抗により熱が発生して、ワイヤ50が自己発熱する。このようにして、ワイヤ50が電磁誘導により加熱される。なお、上記ヒータ61が発熱体としてのコイルを備えていてもよい。この場合、ヒータ61のコイルへ電流が流れるとヒータ61が発熱し、この熱によりワイヤ50が加熱される。 FIG. 10 is a diagram illustrating a schematic configuration of the friction stir welding apparatus 1 including the wire heating device 45 according to the first modification. As shown in FIG. 10, the wire heating device 45 includes, for example, a heater 61 including a coil, a temperature sensor 62 that detects the temperature of the wire 50 heated by the heater 61, and a temperature controller 63. ing. The temperature controller 63 is configured to adjust the current flowing through the coil of the heater 61 based on the temperature of the wire 50 detected by the temperature sensor 62. When a current flows through the coil of the heater 61, magnetic lines of force that change in direction and strength are generated around the coil, and an eddy current flows in the wire 50 due to the influence of the lines of magnetic force. When a current flows through the wire 50, heat is generated by the resistance of the wire 50, and the wire 50 self-heats. In this way, the wire 50 is heated by electromagnetic induction. The heater 61 may include a coil as a heating element. In this case, when a current flows through the coil of the heater 61, the heater 61 generates heat, and the wire 50 is heated by this heat.
 また、例えば、上記実施形態に係る摩擦攪拌接合装置1はワイヤ送給装置44を備えて、ワイヤ50を被接合部へ積極的に供給している。この構成によれば、加熱されたワイヤを連続的に被接合部へ供給することが可能となる。但し、摩擦攪拌接合装置1はワイヤ送給装置44を備えていなくてもよい。この場合、回転ツール2及びショルダブロック3の進行方向100の移動に従動して、ワイヤ50が被接合部へ供給される。 Further, for example, the friction stir welding apparatus 1 according to the embodiment includes the wire feeding device 44 and actively supplies the wire 50 to the joined portion. According to this configuration, the heated wire can be continuously supplied to the bonded portion. However, the friction stir welding apparatus 1 may not include the wire feeding device 44. In this case, the wire 50 is supplied to the joined portion following the movement of the rotary tool 2 and the shoulder block 3 in the traveling direction 100.
 1 摩擦攪拌接合装置
 2 回転ツール
  21 攪拌ピン
 3 ショルダブロック
  31 挿通孔
 7 ベース
  71 取付面
  72 案内面
  73 凹部
  74 貫通孔
  75 取付孔
 8 ショルダ
  81 基板部
  82 突出部
  83 取付孔
  84 貫通孔
  85 ショルダ面
  86 前稜線部
  87 案内溝
  88 後稜線部
 41 回転駆動装置
 42 押圧装置
 43 移動装置
 44 ワイヤ送給装置
 45 ワイヤ加熱装置
 46 制御装置
 50 ワイヤ
 90 内隅部
 91 第1部材
 92 第2部材
DESCRIPTION OF SYMBOLS 1 Friction stir welding apparatus 2 Rotating tool 21 Stirring pin 3 Shoulder block 31 Insertion hole 7 Base 71 Mounting surface 72 Guide surface 73 Recess 74 Through hole 75 Mounting hole 8 Shoulder 81 Substrate part 82 Projection part 83 Mounting hole 84 Through hole 85 Shoulder surface 86 Front ridge line portion 87 Guide groove 88 Rear ridge line portion 41 Rotation drive device 42 Press device 43 Movement device 44 Wire feeding device 45 Wire heating device 46 Control device 50 Wire 90 Inner corner portion 91 First member 92 Second member

Claims (15)

  1.  突き合わされた2つの金属部材により形成された内隅部に対して摩擦攪拌接合を行う摩擦攪拌接合装置であって、
     攪拌ピンを先端に有する回転ツールと、
     前記回転ツールに挿通され、前記2つの金属部材と当接するショルダと、
     前記回転ツールを軸周りに回転させる回転駆動装置と、
     前記回転ツール及びショルダを前記内隅部に押圧する押圧装置と、
     前記回転ツール及び前記ショルダを前記内隅部に沿って進行方向へ移動させる移動装置と、
     前記攪拌ピンにより前記2つの金属部材と共に摩擦攪拌されるワイヤを加熱するワイヤ加熱装置とを備えている摩擦攪拌接合装置。
    A friction stir welding apparatus that performs friction stir welding with respect to an inner corner formed by two metal members abutted against each other,
    A rotating tool having a stirring pin at the tip;
    A shoulder inserted through the rotary tool and abutting against the two metal members;
    A rotation drive device for rotating the rotating tool around an axis;
    A pressing device that presses the rotating tool and shoulder against the inner corner; and
    A moving device for moving the rotating tool and the shoulder in the traveling direction along the inner corner;
    A friction stir welding apparatus comprising: a wire heating device that heats a wire that is frictionally stirred together with the two metal members by the stirring pin.
  2.  前記ワイヤを前記2つの金属部材の被接合部へ送給するワイヤ送給装置を更に備え、
     前記ワイヤ加熱装置が、前記ワイヤ送給装置により前記被接合部へ送給される前記ワイヤを加熱するように構成されている、請求項1に記載の摩擦攪拌接合装置。
    A wire feeding device for feeding the wire to the bonded portion of the two metal members;
    The friction stir welding apparatus according to claim 1, wherein the wire heating apparatus is configured to heat the wire fed to the joined portion by the wire feeding apparatus.
  3.  前記ワイヤ加熱装置が、前記ワイヤに通電することにより前記ワイヤを加熱するように構成されている、請求項1又は2に記載の摩擦攪拌接合装置。 The friction stir welding apparatus according to claim 1 or 2, wherein the wire heating device is configured to heat the wire by energizing the wire.
  4.  前記ワイヤ加熱装置が、電磁誘導により前記ワイヤを加熱するように構成されている、請求項1又は2に記載の摩擦攪拌接合装置。 The friction stir welding apparatus according to claim 1 or 2, wherein the wire heating device is configured to heat the wire by electromagnetic induction.
  5.  前記ワイヤ加熱装置が、発熱体により前記ワイヤを加熱するように構成されている、請求項1又は2に記載の摩擦攪拌接合装置。 The friction stir welding apparatus according to claim 1 or 2, wherein the wire heating device is configured to heat the wire by a heating element.
  6.  前記ショルダが、
     前記回転ツールが挿通される挿通孔と、
     前記挿通孔の開口部を間に挟んで前記進行方向と略直交する方向の両側にそれぞれ設けられ、前記2つの金属部材が成す前記内隅部の角度に対応した角度を成す2つのショルダ面と、
     前記挿通孔の開口部よりも前記進行方向前方において前記2つのショルダ面が交わる前稜線部に設けられ、前記進行方向と平行に延びる前記ワイヤ用の案内溝とを有している、請求項1~5のいずれか一項に記載の摩擦攪拌接合装置。
    The shoulder is
    An insertion hole through which the rotating tool is inserted;
    Two shoulder surfaces provided on both sides in a direction substantially perpendicular to the traveling direction with the opening of the insertion hole interposed therebetween, and forming an angle corresponding to the angle of the inner corner formed by the two metal members; ,
    2. A guide groove for the wire, which is provided in a front ridge line portion where the two shoulder surfaces intersect with each other in front of the opening direction of the insertion hole and extends in parallel with the traveling direction. The friction stir welding apparatus according to any one of claims 1 to 5.
  7.  前記前稜線部が、前記挿通孔の開口部よりも前記進行方向後方において前記2つのショルダ面が交わる後稜線部よりも、前記内隅部から後退しており、
    前記後稜線部の前記進行方向の横断面形状が、接合後の前記内隅部の前記進行方向の横断面形状と対応する形状を有している、請求項6に記載の摩擦攪拌接合装置。
    The front ridge line part is retreated from the inner corner part than the rear ridge line part where the two shoulder surfaces intersect at the rear in the traveling direction from the opening part of the insertion hole,
    The friction stir welding apparatus according to claim 6, wherein the cross-sectional shape in the traveling direction of the rear ridge line portion has a shape corresponding to the cross-sectional shape in the traveling direction of the inner corner portion after joining.
  8.  前記前稜線部が、前記進行方向前方に向かって前記内隅部から離れるように傾いている、請求項6又は7に記載の摩擦攪拌接合装置。 The friction stir welding apparatus according to claim 6 or 7, wherein the front ridge line part is inclined so as to be separated from the inner corner part toward the front in the traveling direction.
  9.  前記前稜線部の前記進行方向の一端から前記進行方向の他端までの前記案内溝の深さ方向の大きさが、前記案内溝の深さよりも大きい、請求項8に記載の摩擦攪拌接合装置。 The friction stir welding apparatus according to claim 8, wherein a size of the guide groove in a depth direction from one end of the front ridge line portion to the other end of the travel direction is larger than a depth of the guide groove. .
  10.  前記ショルダが着脱可能に取り付けられ、前記ショルダの前記挿通孔と連続する孔を有するベースを更に備えている、請求項6~9のいずれか一項に記載の摩擦攪拌接合装置。 The friction stir welding apparatus according to any one of claims 6 to 9, further comprising a base to which the shoulder is detachably attached and has a hole continuous with the insertion hole of the shoulder.
  11.  第1金属部材と第2金属部材とをL字状又はT字状に突き合わせることと、
     ワイヤを加熱することと、
     突き合わされた前記第1金属部材と前記第2金属部材とにより形成された内隅部へ加熱された前記ワイヤを供給することと、
     前記内隅部へ回転する攪拌ピンを圧入して、前記第1金属部材、前記第2金属部材及び前記ワイヤを摩擦攪拌接合することと、を含む金属製構造体の製造方法。
    Butting the first metal member and the second metal member into an L shape or a T shape,
    Heating the wire;
    Supplying the heated wire to an inner corner formed by the butted first metal member and the second metal member;
    A method of manufacturing a metal structure, comprising: press-fitting a stirring pin that rotates into the inner corner portion, and friction stir welding the first metal member, the second metal member, and the wire.
  12.  前記ワイヤを加熱することが、前記ワイヤに通電することにより当該ワイヤを加熱することを含む、請求項11に記載の金属製構造体の製造方法。 The method for manufacturing a metal structure according to claim 11, wherein heating the wire includes heating the wire by energizing the wire.
  13.  前記ワイヤを加熱することが、電磁誘導により前記ワイヤを加熱することを含む、請求項11に記載の金属製構造体の製造方法。 The method for manufacturing a metal structure according to claim 11, wherein heating the wire includes heating the wire by electromagnetic induction.
  14.  前記ワイヤを加熱することが、発熱体により前記ワイヤを加熱することを含む、請求項11に記載の金属製構造体の製造方法。 The method for manufacturing a metal structure according to claim 11, wherein heating the wire includes heating the wire by a heating element.
  15.  前記第1金属部材がA2000系アルミ合金から成り、
     前記第2金属部材がA7000系アルミ合金から成り、
     前記ワイヤがA2000系アルミ合金又はA7000系アルミ合金から成る、請求項11~14のいずれか一項に記載の金属製構造体の製造方法。
    The first metal member is made of an A2000 series aluminum alloy,
    The second metal member is made of an A7000 series aluminum alloy,
    The method for manufacturing a metal structure according to any one of claims 11 to 14, wherein the wire is made of an A2000 series aluminum alloy or an A7000 series aluminum alloy.
PCT/JP2014/005023 2013-11-01 2014-10-01 Friction stir welding device and method for manufacturing metal structure WO2015064012A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/033,808 US20160263696A1 (en) 2013-11-01 2014-10-01 Friction stir welding apparatus and method of manufacturing metal structure
CA2926542A CA2926542A1 (en) 2013-11-01 2014-10-01 Friction stir welding apparatus and method of manufacturing metal structure
EP14857107.8A EP3064306B1 (en) 2013-11-01 2014-10-01 Friction stir welding device and method for manufacturing metal structure
BR112016009172-8A BR112016009172B1 (en) 2013-11-01 2014-10-01 rotary and friction welding apparatus and metal structure fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-228635 2013-11-01
JP2013228635A JP6224993B2 (en) 2013-11-01 2013-11-01 Friction stir welding equipment

Publications (1)

Publication Number Publication Date
WO2015064012A1 true WO2015064012A1 (en) 2015-05-07

Family

ID=53003647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005023 WO2015064012A1 (en) 2013-11-01 2014-10-01 Friction stir welding device and method for manufacturing metal structure

Country Status (6)

Country Link
US (1) US20160263696A1 (en)
EP (1) EP3064306B1 (en)
JP (1) JP6224993B2 (en)
BR (1) BR112016009172B1 (en)
CA (1) CA2926542A1 (en)
WO (1) WO2015064012A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186134A1 (en) * 2015-05-18 2016-11-24 株式会社Ihi Friction stir welding device and friction stir welding method
US10279422B2 (en) * 2014-10-24 2019-05-07 Universitaet Stuttgart Friction stir welding tool and friction stir welding method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511446B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation In-situ interlocking of metals using additive friction stir processing
US9511445B2 (en) * 2014-12-17 2016-12-06 Aeroprobe Corporation Solid state joining using additive friction stir processing
US9266191B2 (en) 2013-12-18 2016-02-23 Aeroprobe Corporation Fabrication of monolithic stiffening ribs on metallic sheets
JP6451940B2 (en) * 2014-12-26 2019-01-16 株式会社Ihi Friction stir tool and friction stir welding method using friction stir tool
JP2016128178A (en) * 2015-01-09 2016-07-14 株式会社Ihi Friction agitation joining device
JP2016128177A (en) * 2015-01-09 2016-07-14 株式会社Ihi Friction agitation joining device
DE102016003580B3 (en) * 2016-03-23 2017-08-10 Grenzebach Maschinenbau Gmbh Device and method for residue-free friction stir welding of workpieces caused by manufacturing tolerances height differences of the joining partners, as well as computer program for performing the method
CN106112254B (en) * 2016-08-16 2018-08-10 东晓 A kind of 3D printing device and method
CN106825906B (en) * 2017-02-23 2023-02-28 广东省焊接技术研究所(广东省中乌研究院) Wire-filling backfill type friction stir spot welding method and tool
CN107414283B (en) * 2017-08-31 2019-11-12 重庆理工大学 A kind of friction stir welding method of the automatic feeding for different metal materials docking
EP3680051B1 (en) * 2017-09-04 2023-08-16 Kawasaki Jukogyo Kabushiki Kaisha Method for operating double-action friction stir welding device, and double-action friction stir welding device
EP3703888A4 (en) 2017-10-31 2021-08-18 Meld Manufacturing Corporation Solid-state additive manufacturing system and material compositions and structures
CN108127246A (en) * 2018-02-13 2018-06-08 艾美特焊接自动化技术(北京)有限公司 A kind of cold silk filling agitating friction welding mechanism and welding method
DE102018113680A1 (en) * 2018-06-08 2019-12-12 Kuka Deutschland Gmbh Headpiece, welding tool and welding process
CN108971741A (en) * 2018-08-29 2018-12-11 哈尔滨工业大学(威海) A kind of static shaft shoulder agitation soldering method of T junction fillet weld
JP7122271B2 (en) * 2019-02-22 2022-08-19 川崎重工業株式会社 Friction stir welding apparatus and friction stir welding method
JP7140036B2 (en) * 2019-04-12 2022-09-21 日本軽金属株式会社 Joining method
EP4090489A1 (en) * 2020-01-14 2022-11-23 BAE SYSTEMS plc Friction stir welding process
CN111331246A (en) * 2020-04-17 2020-06-26 哈尔滨万洲焊接技术有限公司 Method and device for friction stir welding of dissimilar metals
DE102021126767A1 (en) 2021-10-15 2023-04-20 Universität Kassel, Körperschaft des öffentlichen Rechts friction stir welding device
TWI832566B (en) * 2022-11-17 2024-02-11 財團法人金屬工業研究發展中心 Friction stir welding device and welding method thereof
CN116275463B (en) * 2023-05-25 2023-08-11 合肥工业大学 Shoulder angle adjustable friction stir welding stirring head applicable to angle joint
CN116748663B (en) * 2023-08-21 2023-10-13 内蒙古工业大学 Aluminum copper dissimilar metal friction stir welding device with preset welding wire and welding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042095A (en) * 2002-07-12 2004-02-12 Hitachi Industries Co Ltd Apparatus and method for frictional stir welding
JP2007044755A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Friction stir welding method and hollow body manufacturing method
JP2007111716A (en) * 2005-10-19 2007-05-10 Showa Denko Kk Clamping device, welding equipment and welding method
JP2011079031A (en) 2009-10-09 2011-04-21 Nippon Light Metal Co Ltd Rotating tool for welding inner corner and inner corner welding method using same
JP2013166159A (en) 2012-02-14 2013-08-29 Mitsubishi Heavy Ind Ltd Friction stir welding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042095A (en) * 2002-07-12 2004-02-12 Hitachi Industries Co Ltd Apparatus and method for frictional stir welding
JP2007044755A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Friction stir welding method and hollow body manufacturing method
JP2007111716A (en) * 2005-10-19 2007-05-10 Showa Denko Kk Clamping device, welding equipment and welding method
JP2011079031A (en) 2009-10-09 2011-04-21 Nippon Light Metal Co Ltd Rotating tool for welding inner corner and inner corner welding method using same
JP2013166159A (en) 2012-02-14 2013-08-29 Mitsubishi Heavy Ind Ltd Friction stir welding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10279422B2 (en) * 2014-10-24 2019-05-07 Universitaet Stuttgart Friction stir welding tool and friction stir welding method
WO2016186134A1 (en) * 2015-05-18 2016-11-24 株式会社Ihi Friction stir welding device and friction stir welding method
JPWO2016186134A1 (en) * 2015-05-18 2018-01-18 株式会社Ihi Friction stir welding apparatus and friction stir welding method
US11229972B2 (en) 2015-05-18 2022-01-25 Ihi Corporation Friction stir welding device and friction stir welding method

Also Published As

Publication number Publication date
JP2015085382A (en) 2015-05-07
EP3064306A1 (en) 2016-09-07
JP6224993B2 (en) 2017-11-01
CA2926542A1 (en) 2015-05-07
EP3064306B1 (en) 2018-07-25
EP3064306A4 (en) 2017-05-10
BR112016009172B1 (en) 2021-02-09
US20160263696A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6224993B2 (en) Friction stir welding equipment
JP5183917B2 (en) Deposition friction stir welding method and assembly
US20060175381A1 (en) Friction stir nut and method of joining therewith
KR102285103B1 (en) Metal heating and working systems and method with heating and/or cooling using an induction heating head
US9033205B2 (en) Friction stir welding with temperature control
TWI532555B (en) Dynamic adjustment of friction stir welding process parameters based on weld temperature
US11045898B2 (en) Friction stir spot welding method and friction stir spot welding apparatus
US7793816B2 (en) Friction stir welding apparatus
EP1844890B1 (en) Friction stirring welding method of joining a plated metal member to another metal member with preheating the plating before stir welding
US20070152015A1 (en) Methods and apparatus for retractable pin friction stir welding and spot welding
US20070101787A1 (en) Thread forming method, thread forming device, and thread forming tool
WO2012133411A1 (en) Friction stir processing device and friction stir processing method
JP2008506534A (en) Process for friction welding components
US20190039168A1 (en) Joining method
JP2004025296A (en) Friction welding device and method
US20020190101A1 (en) Apparatus and method for performing non-linear friction stir welds on either planar or non-planar surfaces
Potluri et al. Comparison of electrically-assisted and conventional friction stir welding processes by feed force and torque
CN110958926A (en) Laminated molding method and laminated molding apparatus
JP5915144B2 (en) Friction stir welding tool and friction stir welding method
JP2003181654A (en) Friction stir welding device
US20140034711A1 (en) Pressing a weld using the friction agitation welding process for better surface adjustment
US20120298727A1 (en) Self-guiding friction stir welding apparatus and method
WO2020075813A1 (en) Friction stir welding device, method for operating same, and joint structure
De Backer Robotic friction stir welding for flexible production
JP2005111551A (en) Hot wire tig welding method, part to be welded by the method, and hot wire tig welding equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2926542

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014857107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857107

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15033808

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016009172

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016009172

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160425