WO2015063821A1 - Analysis system - Google Patents

Analysis system Download PDF

Info

Publication number
WO2015063821A1
WO2015063821A1 PCT/JP2013/079070 JP2013079070W WO2015063821A1 WO 2015063821 A1 WO2015063821 A1 WO 2015063821A1 JP 2013079070 W JP2013079070 W JP 2013079070W WO 2015063821 A1 WO2015063821 A1 WO 2015063821A1
Authority
WO
WIPO (PCT)
Prior art keywords
collection
signal
analysis system
unit
time
Prior art date
Application number
PCT/JP2013/079070
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 川口
永野 久志
真人 戸上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015544624A priority Critical patent/JP6121557B2/en
Priority to PCT/JP2013/079070 priority patent/WO2015063821A1/en
Publication of WO2015063821A1 publication Critical patent/WO2015063821A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an analysis system.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-015862 is one of the documents related to a technique for detecting the occurrence of an abnormal situation using a plurality of sensors.
  • the summary part of this patent document states that “input means 14 for receiving signal values from a plurality of sensors 1 to 6 for detecting an abnormal situation, and changing one or more of a plurality of signal values received by the input means 14.
  • the weighting means 15 for weighting the plurality of signal values is weighted so that the degree of change of the changed signal value is different from the degree of change of the other changed or not changed signal value.
  • the calculation means 16a for calculating a comprehensive abnormality index value and comparing the abnormality index value with a predetermined reference value to determine whether the abnormality index value indicates abnormality, And a determination means 17a that outputs a signal indicating that when it is determined that an abnormality detection device is indicated.
  • sensors such as mass spectrometer (MS), ion mobility spectrometer (IMS), gas chromatography (GC), liquid chromatography (LC), gas sensor, ion sensor, biosensor, microbial sensor, optical smoke detector are used.
  • MS mass spectrometer
  • IMS ion mobility spectrometer
  • GC gas chromatography
  • LC liquid chromatography
  • gas sensor ion sensor
  • biosensor microbial sensor
  • optical smoke detector There are a wide variety of systems that observe the state of substances, microorganisms, and fine particles contained in the target space and analyze the observed signals.
  • the substance or fine particles to be observed generally exist in the state of vapor, mist liquid, fine particles, or the like, but in this specification, these states are not distinguished and are also referred to as “samples”.
  • Patent Document 1 describes a method of determining whether or not an abnormal situation has occurred based on signals from a plurality of sensors. However, the analysis is performed when the number of measurement target positions is greater than the number of sensors. The method is not disclosed. In fact, in the analysis system shown in Patent Document 1, when the number of measurement target positions is larger than the number of sensors, it is impossible to determine whether or not an abnormal situation has occurred at a position where no sensor is installed.
  • the present invention has been made to solve such technical problems, and an analysis system that enables qualitative analysis and quantitative analysis at each measurement target position even when the number of measurement target positions is larger than the number of sensors. provide.
  • the present specification includes a plurality of means for solving the above problems.
  • a plurality of collection units a collection control unit that changes the amount of sample collected from each collection unit over time, and a plurality of units are provided.
  • a sensor that observes the sample collected simultaneously from the collection unit in a mixed state
  • a time-series signal output from the sensor and a collection amount signal that specifies the collection amount of the sample at each time point to each collection unit
  • a separation processing unit that estimates the concentration of the sample in the collection unit.
  • the concentration of the sample at each measurement target position (that is, the collection unit) is estimated, and qualitative analysis and / or quantitative analysis is performed. it can.
  • FIG. 1 is a diagram illustrating a hardware configuration of an analysis system according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a functional block configuration of an analysis system according to Embodiment 1.
  • FIG. 5 is a flowchart for explaining a processing operation in the analysis system according to the first embodiment. The flowchart explaining the starting process of an analysis system. The flowchart explaining the standby process of an analysis system. The flowchart explaining the collection control processing (the 1) of an analysis system. The figure explaining the relationship between the collection amount signal a (t) and the switching control voltage value of the multi-channel DA converter 111 when the processing method shown in FIG. 6 is adopted. The flowchart explaining the collection control processing (the 2) of an analysis system.
  • FIG. 1 is a diagram illustrating a hardware configuration of an analysis system according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a functional block configuration of an analysis system according to Embodiment 1.
  • FIG. 5 is a flowchart for explaining a processing operation in the
  • FIG. 9 is a diagram for explaining the relationship between the collection amount signal a (t) and the switching control voltage value of the multichannel DA converter 111 when the processing method shown in FIG. 8 is adopted.
  • the flowchart explaining the separation process of an analysis system The flowchart explaining the measurement stop process of an analysis system.
  • 10 is a flowchart for explaining separation processing in the analysis system according to the second embodiment.
  • FIG. 10 is a diagram illustrating a functional block configuration of an analysis system according to a third embodiment.
  • 9 is a flowchart for explaining separation processing (part 1) in the analysis system according to the third embodiment.
  • FIG. 10 is a diagram illustrating a functional block configuration of an analysis system according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a hardware configuration of an analysis system according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating a functional block configuration of an analysis system according to a fifth embodiment.
  • 10 is a flowchart for explaining separation processing in the analysis system according to the fifth embodiment.
  • FIG. 10 is a diagram illustrating a hardware configuration of an analysis system according to a sixth embodiment.
  • FIG. 9 is a flowchart for explaining separation processing (part 2) in the analysis system according to the third embodiment.
  • Example 1 [Hardware configuration of analysis system]
  • an analysis system capable of qualitative analysis and quantitative analysis at each measurement target position (collection unit) even when the number of measurement target positions (collection unit) is larger than the number of sensors will be described.
  • One application example of this embodiment is an atmospheric analysis system that uses, for example, a mass analyzer as a sensor.
  • FIG. 1 shows a hardware configuration of the analysis system 10 according to the embodiment.
  • the analysis system 10 includes a sensor 100, a pipe 101 that connects the sensor 100 and the mixing unit 116, a central processing unit 104 that controls the sensor 100 and processes the detection signal, a user interface unit 105, and a storage medium 109.
  • a volatile memory 110 a multi-channel DA (Digital-to-Analog) converter 111 that distributes collection control signals generated in the central processing unit 104 to the collection units 115_1 to 115_N, and collection units 115_1 to 115_N arranged at measurement target positions.
  • the mixing unit 116 mixes samples acquired from the storage units 115_1 to 115_N through a pipe (not shown).
  • the senor 100 uses a mass analyzer composed of an ionization unit 102, a high-frequency power source 103, a detector 106, an ion transport unit 107, an ion trap 108, and vacuum pumps 112 to 114.
  • the vacuum pumps 112 to 114 are used to maintain the pressure of each connected chamber at an appropriate value.
  • the collection units 115_1 to 115_N are provided with a steam inlet or a particulate collection mechanism.
  • each collecting unit opens and closes an electromagnetic valve based on a voltage value (control signal) given from the multi-channel DA converter 111, and the inhaled steam or mist droplets Control the flow rate.
  • control based on the voltage value is not limited to the two values of the “open” state and the “closed” state, and may be multi-value control that controls the tilt angle of the electromagnetic valve to an arbitrary angle.
  • each collecting unit determines the amount of fine particles to be collected depending on whether or not to cause a cyclone phenomenon based on the voltage value (control signal) given from the multi-channel DA converter 111.
  • Control the control based on the voltage value is not limited to the binary value of on / off of the cyclone phenomenon, but may be multi-value control for controlling the intensity of the cyclone phenomenon to an arbitrary intensity.
  • Vapor or mist droplets or fine particles collected by the collecting units 115_1 to 115_N are mixed through the mixing unit 116 and the pipe 101 and sent to the sensor 100.
  • the sensor 100 introduces the vapor or mist droplets or fine particles introduced from the pipe 101 into the ionization unit 102 having an ion source and ionizes them.
  • the ionization method for example, an electrospray ionization method, a sonic spray ionization method, or the like is used.
  • the generated ions are sent from the ionization unit 102 to the ion trap 108 via the ion transport unit 107.
  • the ion trap 108 for example, a quadrupole ion trap, a linear trap, or the like is used.
  • a method such as ion mobility may be used.
  • the high frequency power supply 103 supplies a high frequency voltage to the ion trap 108 and traps ions inside the ion trap 108.
  • the high frequency voltage applied to the ion trap 108 is temporally changed by the central processing unit 104. Due to the time change of the high-frequency voltage, the ions trapped in the ion trap 108 are sent to the detector 106 at different times according to the mass-to-charge ratio (m / z).
  • the detector 106 converts the amount of ions that have reached into an electrical signal that is expressed as a voltage value, and sends the electrical signal to the central processing unit 104.
  • the central processing unit 104 converts the time to the ion mass-to-charge ratio (m / z) with respect to the time-series voltage signal, thereby representing the intensity representing the amount of ions at each mass-to-charge ratio (m / z). And is stored in the volatile memory 110.
  • the central processing unit 104 stores the observation signal X, which is a time series signal of the mass spectrum x (t), in the volatile memory 110.
  • the central processing unit 104 executes separation processing based on the observation signal X stored in the volatile memory 110. This separation process is executed based on a program stored in the storage medium 109.
  • the user interface unit 105 presents the spectrum of each measurement target position output by the separation process.
  • the user interface unit 105 may be, for example, a monitor having a touch panel, or may be a monitor, a mouse, a keyboard, or the like connected via another PC connected via a network. An output device may be used.
  • the central processing unit 104 executes collection control processing based on a program stored in the storage medium 109.
  • the multi-channel DA converter 111 converts the voltage time series corresponding to each collection unit output by the collection control process into an actual voltage value and sends it to the collection units 115_1 to 115_N. Based on these voltage values, the flow rates of the vapor and the mist droplets by the collection units 115_1 to 115_N are controlled.
  • FIG. 2 the functional block diagram of the analysis system 10 of a present Example is shown. 2 corresponding to those in FIG. 1 are denoted by the same reference numerals.
  • the operation input unit 204 is used for receiving a start operation, a measurement start operation, a measurement stop operation, and the like by a user, and outputs an operation signal corresponding to each operation to the collection control unit 201 and the sensor 100.
  • the start operation, the measurement start operation, and the measurement stop operation are executed, for example, by pressing a button included in the user interface unit 105.
  • the operation input unit 204 is also used for receiving an input of a noise level by a user.
  • the noise level input to the operation input unit 204 is output to the separation processing unit 202.
  • each flow rate a (t) is referred to as a “collected amount signal”.
  • the collected amount signal is also output to the sensor 100.
  • the function of the collection control unit 201 is provided through a program executed on the central processing unit 104.
  • the sensor 100 performs mass analysis of the mixed sample introduced from the pipe 101 based on a prescribed measurement sequence.
  • the measurement sequence includes processes such as an accumulation process, an exhaust waiting process, a mass scanning process, and an exclusion process, and a time-series control signal for controlling voltage applied to a plurality of electrodes, opening / closing of an electromagnetic valve, and on / off of the detector 106. Executed through.
  • the sensor 100 outputs the time series of the mass spectrum x (t) to the separation processing unit 202 as the observation signal X.
  • the function of the separation processing unit 202 is provided through a program executed on the central processing unit 104.
  • the separation processing unit 202 receives the observation signal X, the collection amount signal, and the noise level as input, and performs separation processing of the observation signal X, and N separation signals (separation signals at each position) corresponding to the collection units 115_1 to 115_N, respectively. ) Is output.
  • the result output unit 203 presents the input separation signal to the user.
  • the separation signal presentation method includes, for example, presentation of image information by the user interface unit 105, presentation of information by a braille display, presentation of information by voice, printing of image information through a printer, and the like.
  • the function of the result output unit 203 is also provided through a program executed on the central processing unit 104.
  • FIG. 3 shows processing operations executed in the analysis system 10 according to the present embodiment.
  • the following processing operations are provided through programs executed on the central processing unit 104.
  • the central processing unit 104 that functions as a control device of the analysis system 10 starts a processing operation of the analysis system 10 when receiving an activation operation through the operation input unit 204.
  • the central processing unit 104 executes the activation process of the sensor 100 and shifts to a standby state for accepting a measurement start operation.
  • Step S302 the central processing unit 104 functioning as the operation input unit 204 controls the sensor 100 and the collection control unit 201 to a standby state.
  • the central processing unit 104 executes a monitoring process for a user operation input and a monitoring process for the apparatus state.
  • Step S303 the central processing unit 104 determines whether or not a measurement start operation has been performed by the user (whether or not the measurement start operation has been accepted). While the measurement start operation is not performed, the central processing unit 104 returns to step S302. On the other hand, when the measurement start operation is performed, the central processing unit 104 proceeds to step S304.
  • Step S304 the central processing unit 104 functioning as the collection control unit 201 (hereinafter referred to as “collection control unit 201”) stores “1” at the time number t.
  • Step S305 the collection control unit 201 determines whether or not the time number t is less than the threshold value (TH). If the time number t is less than the threshold value, the process proceeds to step S306.
  • Step S306 the collection control unit 201 determines whether a measurement stop operation has been performed. If the measurement stop operation has not been performed, the process proceeds to step S307. If the measurement stop operation has been performed, the process proceeds to step S312. .
  • Step S307 the collection control unit 201 determines a collection amount signal corresponding to the flow rate a (t) of each of the collection units 115_1 to 115_N.
  • the determined collection amount signal is provided from the collection control unit 201 to each of the collection units 115_1 to 115_N.
  • Step S308 the central processing unit 104 functioning as a control device for the sensor 100 controls the operation of the sensor 100 and executes mass spectrometry.
  • the sensor 100 obtains a mass spectrum x by mass-analyzing the mixed sample.
  • Step S309 the central processing unit 104 functioning as the signal separation unit 202 performs signal separation on the observation signal X based on the collection amount signal, and separates signals corresponding to each of the collection units 115_1 to 115_N, and results of qualitative analysis. The result of quantitative analysis is calculated.
  • Step S310 the central processing unit 104 functioning as the result output unit 203 performs a result output process.
  • the result output unit 203 presents the separation signal, the result of the qualitative analysis, and the result of the quantitative analysis to the user.
  • each scheduled information is accumulated in the storage medium 109.
  • Step S311 In this step, the collection control unit 201 adds “1” to the time number t and returns to step S305. Thereafter, the central processing unit 104 that controls the operation of the sensor 100 determines again whether or not the measurement stop operation has been performed in step S306. If the measurement stop operation has been performed, the measurement stop processing step S312 is performed. Proceed to
  • Step S312 the central processing unit 104 that functions as a control device for the sensor 100 executes measurement stop processing for the sensor 100.
  • the measurement stop process is a process for stopping the apparatus normally.
  • the analysis system 10 stops.
  • FIG. 4 shows the detailed operation of the activation process S301.
  • Step S401 the central processing unit 104 executes a vacuum degree initialization process.
  • the vacuum pumps 112 to 114 execute an evacuation operation, and the chambers connected to the pumps are reduced to appropriate pressures and maintained at those pressures.
  • Step S402 the central processing unit 104 executes a cleaning process.
  • the central processing unit 104 requests the user to introduce a sample such as ammonia into the sensor 100, and waits for the sample to be introduced into the sensor 100 before starting the measurement.
  • the substance (carryover substance) adsorbed inside the sensor 100 at the previous measurement is cleaned. Note that a sample introduction request to the user is presented through the user interface unit 105.
  • Step S403 the central processing unit 104 executes a mass-to-charge ratio calibration process.
  • the central processing unit 104 requests the user to introduce a standard material sample having a peak at a known mass-to-charge ratio (m / z) into the sensor 100, and introduces the sample. Wait and start measurement.
  • the central processing unit 104 creates a correspondence table b (m) between each element number on the mass spectrum array and the mass-to-charge ratio (m / z) based on the measured peak position of the spectrum.
  • Step S404 the central processing unit 104 executes normal / abnormal determination processing (blank check).
  • the central processing unit 104 requests the user to introduce a known sample that does not contain the measurement target component into the sensor 100, and waits for the introduction of the sample before starting the measurement.
  • the central processing unit 104 determines whether or not the measured spectrum satisfies a preset condition. If a positive result is obtained, the central processing unit 104 determines that the measured spectrum is normal, and ends the activation process. On the other hand, if a negative result is obtained, the central processing unit 104 determines that the measured spectrum is abnormal, and returns to the cleaning process (step S402).
  • One of the conditions for determining that the measured spectrum is normal is, for example, that a large peak does not exist in the measured spectrum.
  • One of the other conditions is that, when the measured spectrum is regarded as an M-dimensional vector, the cosine similarity with a reference spectrum measured in the past is higher than a threshold value.
  • a known appropriate method may be used to determine whether or not the measured spectrum is normal.
  • FIG. 5 shows the detailed operation of the standby process S302.
  • Step S501 the central processing unit 104 functioning as the operation input unit 204 (hereinafter referred to as “operation input unit 204”) determines whether or not an operation signal is input.
  • operation input unit 204 determines whether or not an operation signal is input.
  • the central processing unit 104 proceeds to step S502.
  • the central processing unit 104 ends the standby process as it is.
  • Step S502 the operation input unit 204 outputs a control signal corresponding to the operation input to the sensor 100 and the collection control unit 201.
  • FIG. 6 shows a detailed operation example of the collection control process S307.
  • the collection control unit 201 determines an N-dimensional vector collection amount signal a (t) that specifies the collection amount of each of the N collection units at each time number t.
  • the central processing unit 104 determines the individual collection amount signals a (t) so that the similarities between the collection amount signals a (t) at the respective time numbers t are reduced.
  • Step S602 the central processing unit 104 represents an N-dimensional vector in which the elements of the collection unit numbers included in the set S1 (t) are represented by “1” and the other elements are represented by “0 (zero)”.
  • a (t) each N-dimensional element of the collection amount signal a (t) represents the flow rate of each of the N collection units.
  • Step S603 the central processing unit 104 converts the collection amount signal a (t) into a multi-channel open / close control voltage value through the multi-channel DA converter 111 and outputs it to the corresponding collection unit.
  • FIG. 7 shows an example of the open / close control voltage value output from the multi-channel DA converter 111.
  • the collection unit to which the element of the collection signal a (t) is given with a dimension of “1” opens the electromagnetic valve or generates a cyclone and collects the sample.
  • the collection unit to which the element of the collection amount signal a (t) is given with a dimension of “0” closes the electromagnetic valve or does not generate a cyclone and does not collect the sample.
  • FIG. 8 shows another detailed operation example of the collection control process S307.
  • the central processing unit 104 functioning as the collection control unit 201 (hereinafter referred to as “collection control unit 201”) has N pieces of N given by real numbers “0” to “1” that follow an independent uniform distribution.
  • An N-dimensional vector whose elements are random numbers is stored in the collected signal a (t).
  • Step S802 the collection controller 201 converts the multichannel DA converter 111 into a multichannel open / close control voltage value, and outputs it to the corresponding collector.
  • the collection amount can be specified only in two ways, “0” or “1”
  • the collection amount is controlled by a binary signal as shown in FIG.
  • the continuous value random number is converted as it is into a multi-channel switching control voltage value as in the example shown in FIG.
  • the flow rate of the collected sample is proportional to the opening / closing time of the electromagnetic valve, and encodes each element of the collection amount signal a (t), which is a continuous value, with the opening / closing time of each collecting unit.
  • a device such as an electromagnetic valve cannot effectively control the instantaneous flow rate, and therefore coding based on opening and closing times is effective.
  • the collected amount signal a (t) may be used as it is as a multi-channel switching control voltage value.
  • FIG. 10 shows a detailed operation example of the separation process S309.
  • the observation signal X is a t ⁇ M matrix.
  • A (a (1), a (2),..., A (t)) is a t ⁇ N matrix representing the collection amount signal.
  • the N ⁇ M matrix P is an unknown mass spectrum that will be observed when collecting fine particles separately from each collection unit.
  • E is noise.
  • Step S1001 the central processing unit 104 functioning as the signal separation unit 202 (hereinafter referred to as “signal separation unit 202”) normalizes each element of the collection amount signal A for each row ⁇ based on Equation 1. .
  • This normalization process is simultaneously small when controlling the flow rate of vapor or mist droplets to be sucked by opening and closing the electromagnetic valve, or when controlling the amount of particulates collected depending on whether or not a cyclone phenomenon occurs.
  • the actual collection amount is less than the value of the collection signal a_n ⁇ (where n ⁇ is a subscript) at the time when a larger number of collection units collect the sample at the same time than when the number of collection units collects the sample. Executed to solve the problem.
  • a_n ⁇ (n ⁇ is a subscript) corresponding to each collection unit n at each time ⁇ and the actual collection amount.
  • Step S1002 the signal separation unit 202 multiplies the collection amount signal a_n ⁇ (n ⁇ is a subscript) corresponding to each time and each collection unit by p_n (n is a subscript) that is a separation result of each collection unit n.
  • the separation signal (signal of each collection unit) of each collection unit is estimated so that the degree of similarity with the corresponding observation signal y_ ⁇ increases.
  • the signal separation unit 202 calculates a separation signal p that minimizes the square of the error e
  • p is obtained by the following equation (4).
  • ( ⁇ _t ⁇ T + 1,..., ⁇ _t) is a noise level input by the user.
  • T is the time length of the observation signal used for estimation.
  • the shorter the time length T the better the follow-up to the temporal change in the amount of the substance to be detected and the amount of fine particles.
  • the signal separation unit 202 may calculate a separation signal p that minimizes the square of the error e
  • ⁇ 2 under the constraint that each element of p is 0 or more. Since the value of the mass spectrum is a value proportional to the number of ions having each mass-to-charge ratio, all values are in principle 0 or more. By utilizing this property, it can be expected that the accuracy of separation is improved. Such a p can be obtained by repeating the following Expression 6 until the number of ⁇ in which d_ ⁇ in Expression 5 below is less than a predetermined noise level ⁇ _ ⁇ is equal to or less than a certain number. . Note that ⁇ ( ⁇ _1,..., ⁇ _ ⁇ ) ( ⁇ is a subscript) is a noise level input by the user.
  • FIG. 11 shows a detailed operation example of the measurement stop process S312.
  • Step S1101 In this step, the central processing unit 104 executes the same process as the cleaning process S402.
  • Step 1102 In this step, the central processing unit 104 executes a high frequency power supply stop process and stops the high frequency power supply 103.
  • Step 1103 After completing the stop of the high-frequency power supply 103, the central processing unit 104 executes a vacuum pump stop process and stops all the vacuum pumps 112 to 114.
  • FIG. 12 shows an example of a screen used when receiving an input of the noise level ⁇ used by the separation processing unit 202 through the operation input unit 204 (user interface unit 105).
  • the noise level ⁇ is larger, a deviation from the model, that is, noise is allowed, and therefore, it is less likely to be affected by noise included in the input signal. In this case, however, it is difficult to estimate a small value derived from a low concentration substance.
  • noise level ⁇ is reduced, estimation with an emphasis on deviation from the model is performed, so that a slight value derived from a low-concentration substance can be estimated. However, in that case, it is easily affected by noise of the input signal.
  • the user can obtain a high-precision separation result by setting the noise level ⁇ high. Conversely, when there are few contaminants in the environment or when the accuracy of the sensor is high, the user can obtain a highly accurate separation result by setting the noise level ⁇ low. In this way, separation processing that meets the needs of the application area can be performed.
  • the noise level can be set for each time, the noise level at the old time is increased, and the noise level at the new time is decreased, thereby making an estimation that places more importance on the observation signal at the new time than at the old time. It can be carried out.
  • the detection target substance is set by changing the noise level at the old time and the noise level at the new time sharply as shown in FIG. And follow-up to changes in the amount of fine particles can be made faster.
  • the estimation accuracy deteriorates.
  • the estimation accuracy can be increased.
  • the follow-up to the change in the amount of the substance to be detected and the fine particles is delayed.
  • the noise level is set to change sharply as shown in FIG.
  • the tracking accuracy can be increased.
  • the noise level is set to change gently as shown in FIG.
  • the estimation accuracy can be increased.
  • FIG. 13 shows an example of a result screen output by the result output unit 203 (user interface unit 105).
  • mass spectra separated for each collection unit at different positions are associated with the individual collection units 115_1 to N. Displayed with status.
  • this display form is an example, and the qualitative analysis result and / or quantitative analysis result corresponding to the collection unit may be displayed on the screen together with the mass spectrum or independently.
  • qualitative analysis and quantitative analysis at each measurement target position are dynamically variably controlled from the measurement target position (collection unit) and are collected from each measurement target position (collection unit) at each time point. It is not limited to the method of mixing the fine particles to be introduced into the sensor 100. For example, you may use a method of switching the collection unit that sequentially collects particles one by one (sequential point collection method), or a method of collecting particles from all the collection units simultaneously (all point mixed collection method) May be.
  • the measurement time can be shortened, but the chemical noise tends to increase as the number of collection units increases, and the estimation accuracy of qualitative analysis and quantitative analysis tends to decrease. Furthermore, qualitative analysis and quantitative analysis for each measurement target position (collection unit) are impossible.
  • the fine particles are collected a plurality of times for each measurement target position (collection unit), the error or collection of the observation signal X of the sensor 100 for each time as compared with each point collection method sequentially. It is difficult to be affected by the error of the collection amount of each part at each time.
  • the number of collection units mixed at each time point is smaller than the total number of measurement target positions (collection units), chemical noise can be reduced compared to the case where all points are collected simultaneously. The estimation accuracy of quantitative analysis is increased.
  • qualitative analysis and quantitative analysis for each measurement target position (collection unit) which is impossible in the case of the all-point mixed collection method, can be performed.
  • Example 2 In this example, when the assumption that only a small number of positions where substances having the same mass-to-charge ratio (m / z) are generated at the same time is established, a high-speed qualitative analysis at each measurement target position (collection unit) An analysis system capable of high-speed quantitative analysis will be described.
  • the basic configuration of the analysis system according to the present embodiment is the same as that shown in FIG. 1, and the basic measurement procedure is the same as that shown in FIG. Below, only the processing procedure peculiar to a present Example is demonstrated.
  • this assumption is that there are a small number of emission sources (factories, facilities, etc.) where substances with the same mass-to-charge ratio (m / z) are simultaneously emitted. It corresponds to the property of being limited to. If this example is an explosive trace detection system or chemical agent detection system for security applications, this assumption is based on the origin of the same mass-to-charge ratio (m / z) explosive or chemical agent material. Corresponds to the property that only a small number of locations (such as suspects and luggage) are available.
  • the separation signal p is output so that the square of the error e
  • ⁇ 2 at y Ap + e is minimized.
  • the separated signal p is output so that there are fewer “non-zero” elements.
  • a separation method for calculating a separation signal with fewer “non-zero” elements a method based on compressed sensing will be described.
  • An example of a method based on compressed sensing is Orthogonal Matching Pursuit (OMP) shown below.
  • OMP Orthogonal Matching Pursuit
  • FIG. 14 shows a detailed operation example of the separation process S309 used in the analysis system according to the present embodiment.
  • the central processing unit 104 functioning as the signal separation unit 202 (hereinafter referred to as “signal separation unit 202”) sets the collection amount signal A to Equation 1 as in step S1001 (FIG. 10) of the first embodiment. Based on this, normalization is performed for each row ⁇ .
  • a_n ⁇ (n ⁇ is a subscript) is the flow rate of the collection unit n at time ⁇ .
  • the central processing unit 104 performs steps S1403 to S1405 described later at most N times until the number of ⁇ s in which each element d_ ⁇ ( ⁇ is a subscript) of the residual vector d is less than a predetermined noise level ⁇ _ ⁇ is equal to or less than a certain number. Iterate.
  • Step S1404 the signal separation unit 202 obtains ⁇ q_u ⁇ that minimizes the distance of the following equation (7), and further updates the residual signal d by the following equation (8) based on the q_u.
  • Step S1405) the signal separation unit 202 excludes the column vector a_j from A.
  • the observation signal y is decomposed into N values ⁇ q_u ⁇ corresponding to each collection unit.
  • q_u for as many u as possible is calculated to be “0”.
  • Least-Angle-Regression-Stagewise (LARS) algorithm In addition to the Orthogonal-Matching-Pursuit algorithm, there are Least-Angle-Regression-Stagewise (LARS) algorithm, Thresholding algorithm, Iterative-Reweighed-Least-Squares (IRLS) algorithm, etc. Also good.
  • Least-Angle-Regression-Stagewise (LARS) algorithm In addition to the Orthogonal-Matching-Pursuit algorithm, there are Least-Angle-Regression-Stagewise (LARS) algorithm, Thresholding algorithm, Iterative-Reweighed-Least-Squares (IRLS) algorithm, etc. Also good.
  • Least-Angle-Regression-Stagewise (LARS) algorithm Thresholding algorithm
  • IRLS Iterative-Reweighed-Least-Squares
  • setting the noise level has an effect of enhancing robustness against noise. Estimation with greater emphasis on the assumption that the higher the noise level ⁇ , the fewer non-zero elements included in p than the deviation from the model (the assumption that there are more zero elements included in p) Therefore, it is difficult to be affected by noise included in the input signal. In this case, however, it is difficult to estimate a small value derived from a low concentration substance.
  • the smaller the noise level ⁇ the greater the deviation from the model than the assumption that there are fewer non-zero elements in p (the assumption that there are more zero elements in p). Therefore, a slight value derived from a low-concentration substance can be estimated. However, in that case, it is easily affected by noise of the input signal.
  • the user can obtain a high-precision separation result by setting the noise level ⁇ high. Conversely, when there are few contaminants in the environment or when the accuracy of the sensor is high, the user can obtain a highly accurate separation result by setting the noise level ⁇ low. In this way, separation processing that meets the needs of the application area can be performed.
  • the analysis system enables high-speed qualitative analysis and high-speed analysis at each measurement target position (collection unit) when the number of positions where substances having the same mass-to-charge ratio (m / z) are generated simultaneously is limited to a small number. Quantitative analysis is possible.
  • a method of sequentially switching the collection unit for collecting particles one by one is used.
  • a method of collecting fine particles simultaneously from all the collecting units may be used.
  • the sequential point collection method cannot be overlooked when the location where the explosive or chemical agent material is generated (such as the suspect or baggage) moves at high speed or the amount of the substance changes at high speed. It is easy to occur, and in this application, high estimation accuracy cannot be expected for qualitative analysis and quantitative analysis.
  • the error at each time of the sensor observation signal X and the error at the time of the collection amount of the collection unit are large, the error may greatly affect the results of the qualitative analysis and the quantitative analysis. Accuracy is lowered.
  • the measurement time can be shortened, but the chemical noise tends to increase as the number of collection units increases, and the estimation accuracy of qualitative analysis and quantitative analysis tends to decrease.
  • the collection of particles from each measurement target position is mixed while dynamically controlling the collection of the particles from a plurality of measurement target positions (collection unit).
  • the fine particles are collected a plurality of times for each measurement target position (collection unit), the error or collection of the observation signal X of the sensor 100 at each time as compared with the respective point collection method. It is difficult to be affected by the error of the collection amount of each part at each time.
  • the number of collection units mixed at each time point is smaller than the total number of measurement target positions (collection units), chemical noise is smaller than when all points are collected simultaneously. The estimation accuracy of quantitative analysis is increased. Furthermore, it is possible to perform qualitative analysis and quantitative analysis for each measurement target position (collection unit), which is impossible in the case of the all-point mixed collection method.
  • the analysis system according to this embodiment is used in an atmospheric analysis system, a water quality analysis system, an explosive trace detection system for security use, or a chemical agent detection system, substances having the same mass-to-charge ratio (m / z) are simultaneously used.
  • m / z mass-to-charge ratio
  • Example 3 In this embodiment, even when the number of measurement target positions (collection units) is larger than the number of sensors and many substances having values at the same point on the spectrum can be generated at the same time, qualitative analysis and quantification can be performed with high accuracy. An analysis system capable of performing analysis will be described.
  • FIG. 15 illustrates a functional block configuration of the analysis system according to the third embodiment. In FIG. 15, parts corresponding to those in FIG. Hereinafter, a configuration unique to the present embodiment will be described.
  • the separation processing unit 1501 receives an observation signal X, which is a time-series signal of the mass spectrum x, a collected signal, a noise level, a spectrum template of the target substance database 1502, and a calibration curve, based on these information.
  • the observation signal X is separated, and the separation signal of each measurement target position (collection unit) and the result of qualitative analysis and the result of quantitative analysis at each measurement target position (collection unit) are output.
  • the result output unit 1503 presents the input separation signal, the result of qualitative analysis of each measurement target position (collection unit), and the result of quantitative analysis to the user.
  • the separation signal presentation method includes, for example, presentation of image information by the user interface unit 105, presentation of information by a braille display, presentation of information by voice, printing of image information through a printer, and the like.
  • the function of the result output unit 1503 is also provided through a program executed on the central processing unit 104.
  • the observation signal X is a T ⁇ M matrix.
  • A (a (t ⁇ T + 1), a (2),..., A (t)) is a T ⁇ N matrix representing the collection amount signal.
  • T is the time length of the observation signal used for estimation.
  • Q which is an N ⁇ J matrix, represents an index value corresponding to the concentration of the i-th substance in the collection unit n, with the element q_ni in the n-th row and i-th column (ni is a subscript).
  • the matrix R which is J ⁇ M is a mass spectrum whose row vector of the i-th row is measured when the i-th substance is present in a unit concentration. E represents noise.
  • Equation 7 Both sides of Equation 7 are a t ⁇ J matrix.
  • Each of J substances i may be handled independently.
  • y Aq + e.
  • y represents a vector in the i-th column of XR ⁇ +.
  • e represents the i-th column vector of ER ⁇ +.
  • q (q_1i, ..., q_Ni) ⁇ T. If the qs of all the substances are arranged after estimating the q of each substance i, the index value Q corresponding to the concentration of each substance in each collecting unit can be obtained.
  • this assumption corresponds to the property that the positions of emission sources (factories, facilities, etc.) from which substances of the same component are simultaneously discharged are limited to a small number.
  • this assumption is based on the location of the source of the same component explosive or chemical agent substance (suspected person, luggage, etc.) Corresponds to the property of being limited to a small number.
  • Example 2 For reference, the assumption used in Example 2 was that there were a small number of positions where substances having the same mass-to-charge ratio (m / z) were generated simultaneously, but the same mass-to-charge ratio (m / z). This assumption does not hold when multiple types of substances having the same) are likely to be generated at the same time. The assumption of this embodiment is valid even in such a case. Therefore, although there are many kinds of substances having the same mass-to-charge ratio (m / z), this embodiment is effective in a region where the same substance is not frequently generated at the same time.
  • FIG. 16 illustrates a detailed operation example of the separation process S309 used in the analysis system according to the present embodiment.
  • the central processing unit 104 (hereinafter referred to as “signal separation unit 1501”) functioning as the signal separation unit 1501 sets the collection amount signal A to Equation 1 as in step S1001 (FIG. 10) of the first embodiment. Based on this, normalization is performed for each row ⁇ .
  • Step S1602 the signal separation unit 1501 calculates XR ⁇ + by multiplying the observation signal X as an input signal by a pseudo inverse matrix R ⁇ + of R from the right. That is, the observation signal X is converted to XR ⁇ +.
  • Step S1603 to Step S1606 processing similar to that in steps S1402 to S1405 is executed.
  • the vector in the i-th column of XR ⁇ + is y, and q is estimated by the same algorithm as in the second embodiment.
  • Step S1607 the signal separation unit 1501 estimates the concentration for each substance at each measurement target position (collection unit).
  • concentration estimation a calibration curve c_i (w) is read from the target substance database 1502, and q is estimated using the calibration curve.
  • c_i (q_ni) is calculated by substituting the index q_ni corresponding to the concentration of substance i at the measurement target position (collection unit) n into the calibration curve, and the concentration of substance i at the measurement target position (collection unit) n is calculated. Estimate c_ni.
  • Step S1608 the signal separation unit 1501 estimates the presence or absence of the substance i based on whether or not the concentration c_ni exceeds a prescribed concentration.
  • FIG. 27 shows a detailed operation example of the separation process S309 used in the analysis system according to the present embodiment.
  • the central processing unit 104 performs steps S2701 to S2709, which will be described later, a maximum of W times until the number V of the collection units in which the target substance is estimated to be “present” in the previous loop does not change compared to that in the previous loop. Iterate. Where W is a specified positive constant.
  • Steps S2701 to S2708 In these steps, processing similar to that in steps S1601 to S1608 is executed.
  • Step S2709 the signal separation unit 1501 determines the time length T of the observation signal used for estimation based on the following Equation 10.
  • C is a predetermined positive constant
  • V is the number of collection parts in which the substance i is estimated to be “present”.
  • the longer the time length T of the observation signal used for estimation the lower the follow-up to the temporal change in the amount of the substance to be detected and the amount of fine particles, but the estimation accuracy improves.
  • the shorter the time length T the better the follow-up to the temporal change in the amount of the substance to be detected and the amount of fine particles.
  • the time length necessary to obtain sufficient estimation accuracy is set to T.
  • FIG. 17 shows an example of a result screen output by the result output unit 1503 (user interface unit 105).
  • the spatial distribution of the concentration c_ni corresponding to a certain target substance is displayed as a two-dimensional image so as to be superimposed on the arrangement map of the individual collection units 115_1 to N. Thereby, the user can know the concentration distribution of the measurement target substance at each measurement target position.
  • the analysis system according to the present embodiment requires a smaller number of collecting units to be mixed as compared with the all-point mixed collecting method, compared with the case of collecting particles from all measurement target positions (collecting units) at the same time. Chemical noise is small, and estimation accuracy of qualitative analysis and quantitative analysis is high. Furthermore, the analysis system according to the present embodiment can perform qualitative analysis and quantitative analysis for each measurement target position, which is impossible with the all-point mixed collection method.
  • the analysis system according to the present embodiment when used in an atmospheric analysis system, a water quality analysis system, an explosive trace detection system for security use, or a chemical agent detection system, various types having the same mass-to-charge ratio (m / z). Even if these substances are generated at the same time, there is a property that the same component is generated at a small number of positions simultaneously.
  • the analysis system according to the present embodiment uses this property and outputs by giving priority to a separation result in which there are a small number of measurement target positions where the same component is generated at the same time. Even when the number is small, a plurality of separation result candidates can be appropriately narrowed down. Therefore, even when many types of substances having the same mass-to-charge ratio (m / z) are generated at the same time, high-speed qualitative analysis and high-speed quantitative analysis at each measurement target position are possible.
  • Example 4 an analysis system capable of performing qualitative analysis and quantitative analysis with high accuracy even when the number of measurement target positions (collection units) is larger than the number of sensors and high-speed throughput is required will be described.
  • the difference between the analysis system according to the present embodiment and the analysis system according to the third embodiment described above is that the collection control process is performed based on the result of the qualitative analysis output from the separation processing unit 1501.
  • FIG. 18 shows a functional block configuration of the analysis system according to the fourth embodiment.
  • the collection control unit 1801 has a path for feeding back the qualitative analysis result output from the separation processing unit 1501.
  • FIG. 19 shows a detailed operation example of the collection control process S307 used in the analysis system according to the present embodiment.
  • a set of all numbers assigned to the collection unit is set as a total collection unit number set S, and sets generated by arbitrarily dividing the set S into two equal parts are S1 (t) and S2 (t ).
  • the collection unit number sets S1 (t) and S2 (t) are both held and used until the execution of the collection control process S307 after the next time measurement.
  • Step S1901 the central processing unit 104 functioning as the collection control unit 1801 (hereinafter referred to as “collection control unit 1801”) determines whether S1 (t ⁇ 1) is the total collection unit number set S or not. If S1 (t-1) is the total collection unit number set S, the collection control unit 1801 proceeds to step S1902, and otherwise proceeds to S1905.
  • Step S1902 the collection control unit 1801 obtains the t-1th element of the observation signal y for the target substance i that is the vector in the i-th column of XR ⁇ + (that is, the signal value y_ (t at the previous time t-1). -1)) It is determined whether or not it exceeds a certain threshold. In the case of “greater than or equal to the threshold value”, the collection control unit 1801 determines that the substance i is “present”. When it is determined that any target substance i is “present”, the collection control unit 1801 proceeds to step S1903, and otherwise proceeds to step S1904.
  • Step S1903 In this step, the collection control unit 1801 randomly divides the entire collection unit number set S into two equal parts, and stores the set elements after bisection into the collection unit number sets S1 (t) and S2 (t).
  • Step S1904 In this step, the collection control unit 1801 stores all the collection unit number sets S in the collection unit number set S1 (t).
  • Step S1905 the collection control unit 1801 obtains the t-1th element of the observation signal y for the target substance i that is the vector in the i-th column of XR ⁇ + (that is, the signal value y_ (t at the previous time t-1). -1)) Determine if it is above a certain threshold. In the case of “greater than or equal to the threshold value”, the collection control unit 1801 determines that the substance i is “present”. If it is determined that any target substance i is “present”, the collection control unit 1801 proceeds to step S1906, and otherwise proceeds to step S1907.
  • Step S1906 In this step, the collection control unit 1801 randomly divides the collection unit number set S1 (t-1) into two equal parts, and sets the set elements after the bisection into the collection unit number sets S1 (t) and S2 (t). Store.
  • Step S1907 In this step, the collection control unit 1801 randomly divides the collection unit number set S2 (t-1) into two equal parts, and sets the set elements after the bisection into the collection unit number sets S1 (t) and S2 (t). Store.
  • the collection operation can be controlled so that fine particles are preferentially collected for the collection unit corresponding to the collection unit number set S1 (t) in which the target substance may exist. .
  • the detection is completed at high speed as the analysis system.
  • FIG. 20 shows another detailed operation example of the collection control process S307.
  • steps corresponding to those in FIG. The difference between the processing operation shown in FIG. 20 and the processing operation shown in FIG. 19 is that step S2001 exists between step 1908 and (step S1903, step S1904, step S1906, step S1907).
  • the collection amount so as to preferentially collect fine particles for the collection unit that is an element of the collection unit number set S1 (t) that may contain the target substance. Can be controlled. For this reason, detection can be completed at high speed. Further, in the processing operation shown in FIG.
  • FIG. 28 shows a detailed operation example of the collection control process S307.
  • steps corresponding to those in FIG. The difference between the processing operation shown in FIG. 28 and the processing operation shown in FIG. 6 is that step 2801 exists between the start and (step S601, step S602, step S603).
  • Step S2801 the collection control unit 1801 determines G according to Equation 11. However, C is a predetermined positive constant, and V is the number of collection parts in which the substance i is estimated to be “present”. In this step, according to Equation 11, the collection control unit 1801 decreases G as V increases, and increases G as V decreases.
  • the present embodiment has a function of mixing and measuring substances or fine particles from a plurality of collection units, and an observation signal.
  • the combination of functions for estimating the presence or absence of substances or fine particles in each collection unit has the effect of reducing measurement time and speeding up qualitative analysis and high-speed quantitative analysis at each measurement target position.
  • the "all-point mixed collection method" that mixes all the collection units at the same time is optimal if chemical noise is ignored. . This is because in such a case, it is not estimated that the substance is present even if the substances or fine particles of all the collecting parts are mixed. It is because it understands that it does not do.
  • the effect of reducing the measurement time is small.
  • the collection is performed for each collection unit, that is, the sequential point collection method described above is optimal. This is because, in such a case, no matter what collection unit is combined and mixed, the substance or fine particles to be measured is “present”, so the amount of information obtained by mixing does not increase. If it is> T, it is an underdetermined condition, and conversely, the information amount is reduced.
  • G is controlled according to V, which is an estimate of the number of positions (collection units) where the measurement target substance or fine particles are present, so that the maximum amount of information can be obtained. It is possible to improve the accuracy of qualitative analysis and quantitative analysis as much as possible even with the same measurement time.
  • the collected amount signal is preferentially collected from the collection unit where the target substance may exist using the information of the result of the qualitative analysis. Therefore, qualitative analysis and quantitative analysis can be performed at high speed and with high accuracy.
  • Example 5 In the present embodiment, a case where the path length from each collecting unit to the sensor 100 is different for each collecting unit will be considered. When there is a difference in path length from each collecting unit to the sensor 100, the amount actually collected even if the same collecting amount signal is given to the collecting unit in which the same amount of fine particles or the like exists (ie, sensitivity) May differ from one collection unit to another.
  • FIG. 21 illustrates a hardware configuration of the analysis system 2101 according to the present embodiment.
  • FIG. 21 parts corresponding to those in FIG.
  • standard agents 2102_1 to 2102_N are installed in the vicinity of the collecting units 115_1 to 115_N.
  • Standard agents 2102_1 to 2102_N are substances having peaks at different mass points.
  • FIG. 22 shows a functional block configuration of the analysis system 2101 of this embodiment. Note that, in FIG. 22, the same reference numerals are given to portions corresponding to FIG. 15.
  • the characteristic parts of this embodiment are a separation processing unit 2202 and a standard agent database 2201.
  • the standard agent database 2201 stores a spectrum template and a calibration curve for each standard agent.
  • the separation processing unit 2202 reads the template and the calibration curve from the standard agent database 2201, and separates the wrinkle promotion sign X into separation signals corresponding to each measurement target position (collection unit).
  • FIG. 23 shows a detailed operation example of the separation processing S309 executed in the present embodiment.
  • the inner product value w of the mass spectrum x′_n and R_n obtained by weighted averaging of the flow rate a_tn of the collection unit n is calculated, and w is substituted into the calibration curve c_n (w), so that the collection unit n is opened.
  • the sensitivity c_n at the time of the state ie, “1” is estimated.
  • Step S2302 the separation processing unit 2202 determines whether or not the sensitivity c_n of each collection unit n is within a specified range.
  • the separation processing unit 2202 determines that the mixing is normal when each sensitivity c_n is within the specified range and proceeds to step S2304, and determines that the mixing is abnormal when each sensitivity c_n is outside the specified range. Then, the process proceeds to step S2303.
  • Step S2303 the separation processing unit 2202 presents information on the collection unit n determined that the sensitivity c_n is out of the specified range through the user interface unit 105.
  • Steps S2304 to S2309) These steps are executed when it is determined that the sensitivities c_n corresponding to the respective collection units n are all within the specified range. Since each step corresponds to the described step, detailed description is omitted.
  • step S2304 input signal conversion processing
  • step S2305 residual vector initialization processing
  • step S2306 nearest neighbor mixed pattern search process
  • step S2307 residual signal update process
  • step S2308 nearest neighbor mixed pattern removal process
  • step S2309 quantitative processing
  • step S1607 threshold processing
  • the separation process is executed only when the sensitivity is the same even when the sensitivity varies depending on the collection unit and time. For this reason, high detection accuracy can be guaranteed. Furthermore, since it is possible to easily know the collection unit in which an abnormality is found in sensitivity, the maintenance work of the collection unit can be made efficient.
  • Example 6 when the number of measurement target positions (collection units) is larger than the number of sensors 100, an example of an analysis system that can perform qualitative analysis and quantitative analysis with high accuracy even when the sensitivity differs for each collection unit. Will be explained.
  • FIG. 24 illustrates a hardware configuration of the analysis system 2401 according to the present embodiment.
  • the analysis system 2401 of this embodiment includes a plurality of collection units 2402_1 to 2402_N, a plurality of mixing units 2403_1 to 2403_K, a plurality of pipes 2404_1 to 2404_K, and a plurality of sensors 2405_1 to 2405_K.
  • N and K are natural numbers that satisfy N> K.
  • the flow rate of the steam or mist droplets to be sucked can be controlled by opening and closing the electromagnetic valve based on the voltage value input from the multi-channel DA converter 111.
  • Each of the collecting units 2402_1 to 2402_N has K electromagnetic valves arranged in parallel, and the opening and closing thereof can be controlled independently.
  • each of the collection units 2402_1 to 2402_N has K cyclone mechanisms arranged in parallel, and can start and stop them independently.
  • Vapor-young or mist-like droplets or fine particles collected by the collecting units 2402_1 to 2402_N are collected by K mixing units 2403_1 to 2403_N arranged in parallel.
  • K pipes 2404_1 to 2402_K are connected to the mixing units 2403_1 to 2403_K in a one-to-one relationship, and steam or mist-like droplets or fine particles collected from the collecting units 2402_1 to 2402_N in the pipes are connected. It is sent to the sensors 2405_1 to 2405_K.
  • mass analysis mass analysis is performed in each of the sensors 2405_1 to 2405_K, and a mass spectrum given by an M-dimensional vector is obtained.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • DESCRIPTION OF SYMBOLS 10 ... Analysis system, 100 ... Sensor, 101 ... Piping, 104 ... Central processing unit, 105 ... User interface part, 111 ... Multichannel DA converter, 115_1-115_N ... Collection part, 116 ... Mixing part, 201 ... Collection control part , 202 ... separation processing unit, 1501 ... separation processing unit, 1502 ... target substance database, 1503 ... result output unit, 1801 ... collection control unit, 2101 ... analysis system, 2102 ... standard agent, 2201 ... standard agent database, 2202 ... separation Processing unit, 2401 ... analysis system, 2401-2_1 to 2402_N ... collection unit, 2403_1 to 2403_K ... mixing unit, 2404_1 to 2404_K ... piping, 2405_1 to 2405_K ... sensor.

Abstract

In order to allow qualitative or quantitative analysis even if the number of positions at which measurement is to be performed is more than the number of sensors, this analysis system is provided with the following: a plurality of collection units; a collection control unit that makes the amounts of samples collected from the respective collection units vary over time; a sensor that observes a mixture of samples collected simultaneously from the plurality of collection units; and a separation processing unit that estimates the sample concentration at each collection unit on the basis of a time-series signal outputted by the sensor and a collection-amount signal that specifies the sample collection amount for each collection unit at each point in time.

Description

分析システムAnalysis system
 本発明は、分析システムに関する。 The present invention relates to an analysis system.
 複数のセンサを用いて異常事態の発生を検知する技術に関する文献の1つに、特開2008-015862号公報(特許文献1)がある。この特許文献の要約部分には、「異常事態を検知する複数のセンサ1~6から信号値を受ける入力手段14と、入力手段14が受けた複数の信号値のうち1つ以上を変化させることで、変化させた信号値の変化度合いが、他の変化させた又は変化させない信号値の変化度合いと異なったものとなるように、複数の信号値に重み付けをする重み付け手段15と、重み付けされた複数の信号値に基づいて、総合的な異常指標値を算出する演算手段16aと、異常指標値を所定の基準値と比較することで前記異常指標値が異常を示しているかを判定し、異常を示していると判定した場合にはその旨を示す信号を出力する判定手段17aと、を備える」異常検知装置が開示されている。 Japanese Patent Laid-Open No. 2008-015862 (Patent Document 1) is one of the documents related to a technique for detecting the occurrence of an abnormal situation using a plurality of sensors. The summary part of this patent document states that “input means 14 for receiving signal values from a plurality of sensors 1 to 6 for detecting an abnormal situation, and changing one or more of a plurality of signal values received by the input means 14. The weighting means 15 for weighting the plurality of signal values is weighted so that the degree of change of the changed signal value is different from the degree of change of the other changed or not changed signal value. Based on a plurality of signal values, the calculation means 16a for calculating a comprehensive abnormality index value and comparing the abnormality index value with a predetermined reference value to determine whether the abnormality index value indicates abnormality, And a determination means 17a that outputs a signal indicating that when it is determined that an abnormality detection device is indicated. "
特開2008-015862号公報JP 2008-015862 A
 現在、質量分析計(MS)、イオンモビリティスペクトロメータ(IMS)、ガスクロマトグラフィ(GC)、液体クロマトグラフィ(LC)、ガスセンサ、イオンセンサ、バイオセンサ、微生物センサ、光学式煙検知器などのセンサを用いて対象空間に含まれる物質、微生物、微粒子の状態を観測し、観測された信号を分析するシステムが広く存在する。なお、観測対象とする物質又は微粒子は、一般に、蒸気、霧状液体又は微粒子等の状態で存在するが、本明細書では、それらの状態を区別せず「試料」ともいう。 Currently, sensors such as mass spectrometer (MS), ion mobility spectrometer (IMS), gas chromatography (GC), liquid chromatography (LC), gas sensor, ion sensor, biosensor, microbial sensor, optical smoke detector are used. There are a wide variety of systems that observe the state of substances, microorganisms, and fine particles contained in the target space and analyze the observed signals. The substance or fine particles to be observed generally exist in the state of vapor, mist liquid, fine particles, or the like, but in this specification, these states are not distinguished and are also referred to as “samples”.
 特許文献1には、前述の通り、複数のセンサからの信号に基づいて異常事態の発生の有無を判定する方法が記載されているが、計測対象位置の数がセンサの個数より多い場合の分析方法は開示されていない。実際、特許文献1に示す分析システムにおいては、計測対象位置の数がセンサの個数よりも多い場合、センサが設置されていない位置については、異常事態の発生の有無の判定することができない。 As described above, Patent Document 1 describes a method of determining whether or not an abnormal situation has occurred based on signals from a plurality of sensors. However, the analysis is performed when the number of measurement target positions is greater than the number of sensors. The method is not disclosed. In fact, in the analysis system shown in Patent Document 1, when the number of measurement target positions is larger than the number of sensors, it is impossible to determine whether or not an abnormal situation has occurred at a position where no sensor is installed.
 本発明は、かかる技術的課題を解決すべくなされたもので、計測対象位置の数がセンサの個数よりも多い場合にも、各計測対象位置における定性分析や定量分析を可能とする分析システムを提供する。 The present invention has been made to solve such technical problems, and an analysis system that enables qualitative analysis and quantitative analysis at each measurement target position even when the number of measurement target positions is larger than the number of sensors. provide.
 上記課題を解決するため、例えば特許請求の範囲に記載の構成を採用する。本明細書は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、複数の収集部と、各収集部から収集する試料の量を時間変化させる収集制御部と、複数の収集部から同時に収集された試料を混合状態のまま観測するセンサと、センサから出力される時系列信号と各時刻における試料の収集量を各収集部に指定する収集量信号とに基づいて個々の収集部における試料の濃度を推定する分離処理部とを有する分析システムである。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present specification includes a plurality of means for solving the above problems. To give an example, a plurality of collection units, a collection control unit that changes the amount of sample collected from each collection unit over time, and a plurality of units are provided. Based on a sensor that observes the sample collected simultaneously from the collection unit in a mixed state, a time-series signal output from the sensor, and a collection amount signal that specifies the collection amount of the sample at each time point to each collection unit And a separation processing unit that estimates the concentration of the sample in the collection unit.
 本発明によれば、計測対象位置(すなわち収集部)の数がセンサの個数よりも多い場合でも、各計測対象位置(すなわち収集部)における試料の濃度を推定し、定性分析及び/又は定量分析できる。前述した以外の課題、構成及び効果は、以下の実施の形態の説明において明らかにされる。 According to the present invention, even when the number of measurement target positions (that is, collection units) is larger than the number of sensors, the concentration of the sample at each measurement target position (that is, the collection unit) is estimated, and qualitative analysis and / or quantitative analysis is performed. it can. Problems, configurations, and effects other than those described above will be clarified in the following description of embodiments.
実施例1に係る分析システムのハードウェア構成を示す図。1 is a diagram illustrating a hardware configuration of an analysis system according to Embodiment 1. FIG. 実施例1に係る分析システムの機能ブロック構成を示す図。1 is a diagram illustrating a functional block configuration of an analysis system according to Embodiment 1. FIG. 実施例1に係る分析システムにおける処理動作を説明するフローチャート。5 is a flowchart for explaining a processing operation in the analysis system according to the first embodiment. 分析システムの起動処理を説明するフローチャート。The flowchart explaining the starting process of an analysis system. 分析システムの待機処理を説明するフローチャート。The flowchart explaining the standby process of an analysis system. 分析システムの収集制御処理(その1)を説明するフローチャート。The flowchart explaining the collection control processing (the 1) of an analysis system. 図6に示す処理方法を採用する場合における収集量信号a(t)とマルチチャンネルDA変換器111の開閉制御電圧値の関係を説明する図。The figure explaining the relationship between the collection amount signal a (t) and the switching control voltage value of the multi-channel DA converter 111 when the processing method shown in FIG. 6 is adopted. 分析システムの収集制御処理(その2)を説明するフローチャート。The flowchart explaining the collection control processing (the 2) of an analysis system. 図8に示す処理方法を採用する場合における収集量信号a(t)とマルチチャンネルDA変換器111の開閉制御電圧値の関係を説明する図。FIG. 9 is a diagram for explaining the relationship between the collection amount signal a (t) and the switching control voltage value of the multichannel DA converter 111 when the processing method shown in FIG. 8 is adopted. 分析システムの分離処理を説明するフローチャート。The flowchart explaining the separation process of an analysis system. 分析システムの測定停止処理を説明するフローチャート。The flowchart explaining the measurement stop process of an analysis system. ノイズレベルの受付画面例を示す図。The figure which shows the example of a reception screen of a noise level. 結果出力部が出力する結果画面例を示す図。The figure which shows the example of a result screen which a result output part outputs. 実施例2に係る分析システムにおける分離処理を説明するフローチャート。10 is a flowchart for explaining separation processing in the analysis system according to the second embodiment. 実施例3に係る分析システムの機能ブロック構成を示す図。FIG. 10 is a diagram illustrating a functional block configuration of an analysis system according to a third embodiment. 実施例3に係る分析システムにおける分離処理(その1)を説明するフローチャート。9 is a flowchart for explaining separation processing (part 1) in the analysis system according to the third embodiment. 結果出力部が出力する結果画面例を示す図。The figure which shows the example of a result screen which a result output part outputs. 実施例4に係る分析システムの機能ブロック構成を示す図。FIG. 10 is a diagram illustrating a functional block configuration of an analysis system according to a fourth embodiment. 分析システムの収集制御処理(その3)を説明するフローチャート。The flowchart explaining the collection control processing (the 3) of an analysis system. 分析システムの収集制御処理(その4)を説明するフローチャート。The flowchart explaining the collection control processing (the 4) of an analysis system. 実施例5に係る分析システムのハードウェア構成を示す図。FIG. 10 is a diagram illustrating a hardware configuration of an analysis system according to a fifth embodiment. 実施例5に係る分析システムの機能ブロック構成を示す図。FIG. 10 is a diagram illustrating a functional block configuration of an analysis system according to a fifth embodiment. 実施例5に係る分析システムにおける分離処理を説明するフローチャート。10 is a flowchart for explaining separation processing in the analysis system according to the fifth embodiment. 実施例6に係る分析システムのハードウェア構成を示す図。FIG. 10 is a diagram illustrating a hardware configuration of an analysis system according to a sixth embodiment. ノイズレベルを時間軸方向に急峻に変化させる設定例を示す図。The figure which shows the example of a setting which changes a noise level sharply in a time-axis direction. ノイズレベルを時間軸方向に緩やかに変化させる設定例を示す図。The figure which shows the example of a setting which changes a noise level gently in a time-axis direction. 実施例3に係る分析システムにおける分離処理(その2)を説明するフローチャート。9 is a flowchart for explaining separation processing (part 2) in the analysis system according to the third embodiment. 分析システムの収集制御処理(その5)を説明するフローチャート。The flowchart explaining the collection control processing (the 5) of an analysis system.
 以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施の形態は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention is not limited to the examples described later, and various modifications are possible within the scope of the technical idea.
[実施例1]
[分析システムのハードウェア構成]
 本実施例では、計測対象位置(収集部)の数がセンサの個数よりも多い場合にも、各計測対象位置(収集部)における定性分析や定量分析が可能な分析システムを説明する。本実施例の応用例の1つは、例えば質量分析器をセンサに使用する大気分析システムである。
[Example 1]
[Hardware configuration of analysis system]
In this embodiment, an analysis system capable of qualitative analysis and quantitative analysis at each measurement target position (collection unit) even when the number of measurement target positions (collection unit) is larger than the number of sensors will be described. One application example of this embodiment is an atmospheric analysis system that uses, for example, a mass analyzer as a sensor.
 図1に、実施例に係る分析システム10のハードウェア構成を示す。本実施例に係る分析システム10は、センサ100、センサ100と混合部116を接続する配管101、センサ100を制御すると共にその検出信号を処理する中央演算装置104、ユーザインタフェース部105、記憶媒体109、揮発性メモリ110、中央演算装置104において生成された収集制御信号を収集部115_1~115_Nに分配するマルチチャンネルDA(Digital to Analog)変換器111、計測対象位置に配置される収集部115_1~115_N、収容部115_1~115_Nから不図示の配管を通じて取得したサンプルを混合する混合部116から構成される。 FIG. 1 shows a hardware configuration of the analysis system 10 according to the embodiment. The analysis system 10 according to the present embodiment includes a sensor 100, a pipe 101 that connects the sensor 100 and the mixing unit 116, a central processing unit 104 that controls the sensor 100 and processes the detection signal, a user interface unit 105, and a storage medium 109. , A volatile memory 110, a multi-channel DA (Digital-to-Analog) converter 111 that distributes collection control signals generated in the central processing unit 104 to the collection units 115_1 to 115_N, and collection units 115_1 to 115_N arranged at measurement target positions. The mixing unit 116 mixes samples acquired from the storage units 115_1 to 115_N through a pipe (not shown).
 本実施例の場合、センサ100には、イオン化部102、高周波電源103、検出器106、イオン輸送部107、イオントラップ108、真空ポンプ112~114で構成される質量分析器を使用する。真空ポンプ112~114は、それぞれ接続された室の圧力を適正値に維持するために使用される。 In the case of the present embodiment, the sensor 100 uses a mass analyzer composed of an ionization unit 102, a high-frequency power source 103, a detector 106, an ion transport unit 107, an ion trap 108, and vacuum pumps 112 to 114. The vacuum pumps 112 to 114 are used to maintain the pressure of each connected chamber at an appropriate value.
 収集部115_1~115_Nには、蒸気吸気口、又は、微粒子収集機構が設けられる。収集部115_1~115_Nが蒸気吸気口の場合、各収集部は、マルチチャンネルDA変換器111から与えられる電圧値(制御信号)に基づいて電磁バルブを開閉し、吸入する蒸気や霧状液滴の流量を制御する。もっとも、電圧値による制御は、「開」状態と「閉」状態の2値に限らず、電磁バルブの傾き角を任意角に制御する多値制御であっても良い。 The collection units 115_1 to 115_N are provided with a steam inlet or a particulate collection mechanism. When the collecting units 115_1 to 115_N are steam inlets, each collecting unit opens and closes an electromagnetic valve based on a voltage value (control signal) given from the multi-channel DA converter 111, and the inhaled steam or mist droplets Control the flow rate. However, the control based on the voltage value is not limited to the two values of the “open” state and the “closed” state, and may be multi-value control that controls the tilt angle of the electromagnetic valve to an arbitrary angle.
 収集部115_1~115_Nが微粒子収集機構の場合、各収集部は、マルチチャンネルDA変換器111から与えられる電圧値(制御信号)に基づいてサイクロン現象を引き起こすか否かにより、収集する微粒子の量を制御する。もっとも、電圧値による制御は、サイクロン現象のオン/オフの2値に限らず、サイクロン現象の強度を任意強度に制御する多値制御であっても良い。 When the collecting units 115_1 to 115_N are fine particle collecting mechanisms, each collecting unit determines the amount of fine particles to be collected depending on whether or not to cause a cyclone phenomenon based on the voltage value (control signal) given from the multi-channel DA converter 111. Control. However, the control based on the voltage value is not limited to the binary value of on / off of the cyclone phenomenon, but may be multi-value control for controlling the intensity of the cyclone phenomenon to an arbitrary intensity.
 収集部115_1~115_Nで収集された蒸気又は霧状液滴又は微粒子は、混合部116及び配管101を通じて混合され、センサ100に送られる。センサ100は、配管101から導入された蒸気又は霧状液滴又は微粒子を、イオン源を有するイオン化部102に導入してイオン化する。イオン化方法には、例えばエレクトロスプレーイオン化法、ソニックスプレーイオン化法等を使用する。 Vapor or mist droplets or fine particles collected by the collecting units 115_1 to 115_N are mixed through the mixing unit 116 and the pipe 101 and sent to the sensor 100. The sensor 100 introduces the vapor or mist droplets or fine particles introduced from the pipe 101 into the ionization unit 102 having an ion source and ionizes them. As the ionization method, for example, an electrospray ionization method, a sonic spray ionization method, or the like is used.
 発生されたイオンは、イオン化部102からイオン輸送部107を介してイオントラップ108に送られる。イオントラップ108には、例えば四重極イオントラップ、リニアトラップ等を使用する。質量分析には、リニアイオントラップ質量分析計、四重極イオントラップ質量分析計、四重極フィルタ質量分析計、三連四重極質量分析計、飛行時間型質量分析計、磁場型質量分析計、イオンモビリティ等の方法を使用しても良い。 The generated ions are sent from the ionization unit 102 to the ion trap 108 via the ion transport unit 107. As the ion trap 108, for example, a quadrupole ion trap, a linear trap, or the like is used. For mass analysis, linear ion trap mass spectrometer, quadrupole ion trap mass spectrometer, quadrupole filter mass spectrometer, triple quadrupole mass spectrometer, time-of-flight mass spectrometer, magnetic field mass spectrometer Alternatively, a method such as ion mobility may be used.
 高周波電源103は、イオントラップ108に高周波電圧を供給し、イオントラップ108の内部にイオンをトラップする。イオントラップ108に印加する高周波電圧は、中央演算装置104によって時間的に変化される。この高周波電圧の時間変化により、イオントラップ108にトラップされているイオンは、質量対電荷比(m/z)に応じた異なる時刻に検出器106に送り出される。検出器106は、到達したイオンの量を電圧値で表す電気信号に変換し、中央演算装置104に送る。 The high frequency power supply 103 supplies a high frequency voltage to the ion trap 108 and traps ions inside the ion trap 108. The high frequency voltage applied to the ion trap 108 is temporally changed by the central processing unit 104. Due to the time change of the high-frequency voltage, the ions trapped in the ion trap 108 are sent to the detector 106 at different times according to the mass-to-charge ratio (m / z). The detector 106 converts the amount of ions that have reached into an electrical signal that is expressed as a voltage value, and sends the electrical signal to the central processing unit 104.
 中央演算装置104は、時系列の電圧信号に対し、時刻をイオンの質量対電荷比(m/z)に変換することにより、各質量対電荷比(m/z)におけるイオンの量を表わす強度の系列データ(以下「質量スペクトル」と呼ぶ。)に置き換え、揮発性メモリ110に格納する。時刻tの質量スペクトルは、要素数Mの配列形式で表したx(t)=(x_t1, ..., x_tM)として格納される。さらに、中央演算装置104は、質量スペクトルx(t)の時系列信号である観測信号Xを揮発性メモリ110に格納する。 The central processing unit 104 converts the time to the ion mass-to-charge ratio (m / z) with respect to the time-series voltage signal, thereby representing the intensity representing the amount of ions at each mass-to-charge ratio (m / z). And is stored in the volatile memory 110. The mass spectrum at time t is stored as x (t) = (x_t1,..., X_tM) expressed in an array format with M elements. Further, the central processing unit 104 stores the observation signal X, which is a time series signal of the mass spectrum x (t), in the volatile memory 110.
 中央演算装置104は、揮発性メモリ110に格納した観測信号Xに基づいて分離処理を実行する。この分離処理は、記憶媒体109に格納されたプログラムに基づいて実行される。分離処理が出力する各計測対象位置のスペクトルは、ユーザインタフェース部105が提示する。ユーザインタフェース部105は、例えばタッチパネルを有するモニタであっても良く、ネットワーク経由で接続された別のPC経由で接続されたモニタ、マウス、キーボードなどであっても良く、モニタの代替としてプリンタなどの出力装置を用いても良い。 The central processing unit 104 executes separation processing based on the observation signal X stored in the volatile memory 110. This separation process is executed based on a program stored in the storage medium 109. The user interface unit 105 presents the spectrum of each measurement target position output by the separation process. The user interface unit 105 may be, for example, a monitor having a touch panel, or may be a monitor, a mouse, a keyboard, or the like connected via another PC connected via a network. An output device may be used.
 中央演算装置104は、記憶媒体109に格納されたプログラムに基づいて収集制御処理を実行する。マルチチャンネルDA変換器111は、収集制御処理が出力する各収集部に対応する電圧時系列を実際の電圧値に変換して収集部115_1~115_Nに送る。これらの電圧値に基づいて収集部115_1~115_Nによる蒸気や霧状液滴の流量が制御される。 The central processing unit 104 executes collection control processing based on a program stored in the storage medium 109. The multi-channel DA converter 111 converts the voltage time series corresponding to each collection unit output by the collection control process into an actual voltage value and sends it to the collection units 115_1 to 115_N. Based on these voltage values, the flow rates of the vapor and the mist droplets by the collection units 115_1 to 115_N are controlled.
[分析システムの機能構成]
 図2に、本実施例の分析システム10の機能ブロック図を示す。なお、図2には図1との対応部分に同一符号を付して示す。操作入力部204は、ユーザによる起動操作、測定開始操作及び測定停止操作等の受け付けに用いられ、各操作に対応する操作信号を収集制御部201及びセンサ100に出力する。ここで、起動操作、測定開始操作及び測定停止操作は、例えばユーザインタフェース部105が備えるボタンの押し下げを通じて実行される。
[Functional structure of analysis system]
In FIG. 2, the functional block diagram of the analysis system 10 of a present Example is shown. 2 corresponding to those in FIG. 1 are denoted by the same reference numerals. The operation input unit 204 is used for receiving a start operation, a measurement start operation, a measurement stop operation, and the like by a user, and outputs an operation signal corresponding to each operation to the collection control unit 201 and the sensor 100. Here, the start operation, the measurement start operation, and the measurement stop operation are executed, for example, by pressing a button included in the user interface unit 105.
 また、操作入力部204は、ユーザによるノイズレベルの入力受け付けにも用いられる。操作入力部204に入力されたノイズレベルは、分離処理部202に出力される。収集制御部201は、後述する収集制御処理に従って収集部115_1~115_Nの各流量a(t)=(a_t1, ..., a_tN)を決定し、決定された各値を収集部115_1~115_Nに出力する。以下では、各流量a(t)を「収集量信号」と呼ぶ。収集量信号は、センサ100にも出力される。ここで、収集制御部201の機能は、中央演算装置104上で実行されるプログラムを通じて提供される。 The operation input unit 204 is also used for receiving an input of a noise level by a user. The noise level input to the operation input unit 204 is output to the separation processing unit 202. The collection control unit 201 determines each flow rate a (t) = (a_t1,..., A_tN) of the collection units 115_1 to 115_N according to the collection control process described later, and sends the determined values to the collection units 115_1 to 115_N. Output. Hereinafter, each flow rate a (t) is referred to as a “collected amount signal”. The collected amount signal is also output to the sensor 100. Here, the function of the collection control unit 201 is provided through a program executed on the central processing unit 104.
 センサ100は、規定の測定シーケンスに基づいて、配管101から導入された混合試料の質量分析を実行する。測定シーケンスは、蓄積工程、排気待ち工程、質量スキャン工程、排除工程といった工程でなり、複数の電極に印加する電圧、電磁バルブの開閉、検出器106のオン/オフを制御する時系列の制御信号を通じて実行される。本実施例の場合、センサ100は、質量スペクトルx(t)の時系列を観測信号Xとして分離処理部202に出力する。分離処理部202の機能は、中央演算装置104上で実行されるプログラムを通じて提供される。 The sensor 100 performs mass analysis of the mixed sample introduced from the pipe 101 based on a prescribed measurement sequence. The measurement sequence includes processes such as an accumulation process, an exhaust waiting process, a mass scanning process, and an exclusion process, and a time-series control signal for controlling voltage applied to a plurality of electrodes, opening / closing of an electromagnetic valve, and on / off of the detector 106. Executed through. In the case of the present embodiment, the sensor 100 outputs the time series of the mass spectrum x (t) to the separation processing unit 202 as the observation signal X. The function of the separation processing unit 202 is provided through a program executed on the central processing unit 104.
 分離処理部202は、観測信号X、収集量信号及びノイズレベルを入力として観測信号Xの分離処理を実行し、収集部115_1~115_Nのそれぞれに対応するN個の分離信号(各位置の分離信号)を出力する。 The separation processing unit 202 receives the observation signal X, the collection amount signal, and the noise level as input, and performs separation processing of the observation signal X, and N separation signals (separation signals at each position) corresponding to the collection units 115_1 to 115_N, respectively. ) Is output.
 結果出力部203は、入力された分離信号をユーザに提示する。分離信号の提示方法には、例えばユーザインタフェース部105による画像情報の提示、点字ディスプレイによる情報の提示、音声による情報の提示、プリンタを介した画像情報の印刷等がある。結果出力部203の機能も、中央演算装置104上で実行されるプログラムを通じて提供される。 The result output unit 203 presents the input separation signal to the user. The separation signal presentation method includes, for example, presentation of image information by the user interface unit 105, presentation of information by a braille display, presentation of information by voice, printing of image information through a printer, and the like. The function of the result output unit 203 is also provided through a program executed on the central processing unit 104.
[分析システムの処理動作]
 図3に、本実施例に係る分析システム10において実行される処理動作を示す。なお、以下の処理動作は、中央演算装置104上で実行されるプログラムを通じて提供される。
(ステップS301)
 分析システム10の制御装置として機能する中央演算装置104は、操作入力部204を通じて起動操作を受け付けると、分析システム10の処理動作を開始する。同時に、中央演算装置104は、センサ100の起動処理を実行し、測定開始操作を受け付ける待機状態に移行する。
[Processing of analysis system]
FIG. 3 shows processing operations executed in the analysis system 10 according to the present embodiment. The following processing operations are provided through programs executed on the central processing unit 104.
(Step S301)
The central processing unit 104 that functions as a control device of the analysis system 10 starts a processing operation of the analysis system 10 when receiving an activation operation through the operation input unit 204. At the same time, the central processing unit 104 executes the activation process of the sensor 100 and shifts to a standby state for accepting a measurement start operation.
(ステップS302)
 本ステップにおいて、操作入力部204として機能する中央演算装置104は、センサ100及び収集制御部201を待機状態に制御する。待機処理において、中央演算装置104は、ユーザの操作入力の監視処理及び装置状態の監視処理を実行する。
(Step S302)
In this step, the central processing unit 104 functioning as the operation input unit 204 controls the sensor 100 and the collection control unit 201 to a standby state. In the standby process, the central processing unit 104 executes a monitoring process for a user operation input and a monitoring process for the apparatus state.
(ステップS303)
 本ステップにおいて、中央演算装置104は、ユーザによる測定開始操作が行われたか否か(測定開始操作を受け付けたか否か)を判定する。測定開始操作が行われていない間、中央演算装置104は、ステップS302に戻る。一方、測定開始操作が行われた場合、中央演算装置104は、ステップS304に移行する。
(Step S303)
In this step, the central processing unit 104 determines whether or not a measurement start operation has been performed by the user (whether or not the measurement start operation has been accepted). While the measurement start operation is not performed, the central processing unit 104 returns to step S302. On the other hand, when the measurement start operation is performed, the central processing unit 104 proceeds to step S304.
(ステップS304)
 本ステップにおいて、収集制御部201として機能する中央演算装置104(以下、「収集制御部201」という。)は、時刻番号tに“1”を格納する。
(ステップS305)
 本ステップにおいて、収集制御部201は、時刻番号tが閾値(TH)未満か否かを判定し、閾値未満であればステップS306に進み、閾値以上であればステップS312に進む。
(Step S304)
In this step, the central processing unit 104 functioning as the collection control unit 201 (hereinafter referred to as “collection control unit 201”) stores “1” at the time number t.
(Step S305)
In this step, the collection control unit 201 determines whether or not the time number t is less than the threshold value (TH). If the time number t is less than the threshold value, the process proceeds to step S306.
(ステップS306)
 本ステップにおいて、収集制御部201は、測定停止操作が行われたか否かを判定し、測定停止操作が行われていなければステップS307に進み、測定停止操作が行われていればステップS312に進む。
(Step S306)
In this step, the collection control unit 201 determines whether a measurement stop operation has been performed. If the measurement stop operation has not been performed, the process proceeds to step S307. If the measurement stop operation has been performed, the process proceeds to step S312. .
(ステップS307)
 本ステップにおいて、収集制御部201は、各収集部115_1~115_Nの流量a(t)に対応する収集量信号を決定する。決定された収集量信号は、収集制御部201から各収集部115_1~115_Nに与えられる。
(Step S307)
In this step, the collection control unit 201 determines a collection amount signal corresponding to the flow rate a (t) of each of the collection units 115_1 to 115_N. The determined collection amount signal is provided from the collection control unit 201 to each of the collection units 115_1 to 115_N.
(ステップS308)
 本ステップにおいて、センサ100の制御装置として機能する中央演算装置104は、センサ100の動作を制御して質量分析処理を実行する。センサ100は、混合試料を質量分析して質量スペクトルxを得る。ここで、時刻番号t=1~Tに対応する各質量スペクトルxは時系列に結合された後、観測信号Xとしてセンサ100から出力される。
(Step S308)
In this step, the central processing unit 104 functioning as a control device for the sensor 100 controls the operation of the sensor 100 and executes mass spectrometry. The sensor 100 obtains a mass spectrum x by mass-analyzing the mixed sample. Here, the mass spectra x corresponding to the time numbers t = 1 to T are combined in time series and then output from the sensor 100 as the observation signal X.
(ステップS309)
 本ステップにおいて、信号分離部202として機能する中央演算装置104は、収集量信号に基づいて観測信号Xを信号分離し、収集部115_1~115_Nのそれぞれに対応する分離信号と、定性分析の結果と、定量分析の結果を算出する。
(Step S309)
In this step, the central processing unit 104 functioning as the signal separation unit 202 performs signal separation on the observation signal X based on the collection amount signal, and separates signals corresponding to each of the collection units 115_1 to 115_N, and results of qualitative analysis. The result of quantitative analysis is calculated.
(ステップS310)
 本ステップにおいて、結果出力部203として機能する中央演算装置104は、結果出力処理を行う。結果出力処理においては、結果出力部203が分離信号、定性分析の結果、定量分析の結果をユーザに提示する。また、定時された各情報が記憶媒体109に蓄積される。
(Step S310)
In this step, the central processing unit 104 functioning as the result output unit 203 performs a result output process. In the result output process, the result output unit 203 presents the separation signal, the result of the qualitative analysis, and the result of the quantitative analysis to the user. In addition, each scheduled information is accumulated in the storage medium 109.
(ステップS311)
 本ステップにおいて、収集制御部201は時刻番号tに“1”を加算し、ステップS305に戻る。この後、センサ100の動作を制御する中央演算装置104は、再びステップS306において、測定停止操作が行われたか否かを判定し、測定停止操作が行われた場合には、測定停止処理ステップS312に進む。
(Step S311)
In this step, the collection control unit 201 adds “1” to the time number t and returns to step S305. Thereafter, the central processing unit 104 that controls the operation of the sensor 100 determines again whether or not the measurement stop operation has been performed in step S306. If the measurement stop operation has been performed, the measurement stop processing step S312 is performed. Proceed to
(ステップS312)
 本ステップにおいて、センサ100の制御装置として機能する中央演算装置104は、センサ100の測定停止処理を実行する。測定停止処理は、装置を正常に停止させる処理である。測定停止処理が完了すると分析システム10は停止する。
(Step S312)
In this step, the central processing unit 104 that functions as a control device for the sensor 100 executes measurement stop processing for the sensor 100. The measurement stop process is a process for stopping the apparatus normally. When the measurement stop process is completed, the analysis system 10 stops.
[各処理の詳細動作]
[起動処理]
 図4に、起動処理S301の詳細動作を示す。
(ステップS401)
 本ステップにおいて、中央演算装置104は、真空度初期化処理を実行する。真空度初期化処理においては、真空ポンプ112~114が排気動作を実行し、各ポンプに接続された室を適切な圧力まで低減し、その圧力に保つ。
[Detailed operation of each process]
[Start process]
FIG. 4 shows the detailed operation of the activation process S301.
(Step S401)
In this step, the central processing unit 104 executes a vacuum degree initialization process. In the vacuum degree initialization process, the vacuum pumps 112 to 114 execute an evacuation operation, and the chambers connected to the pumps are reduced to appropriate pressures and maintained at those pressures.
(ステップS402)
 本ステップにおいて、中央演算装置104は、洗浄処理を実行する。洗浄処理において、中央演算装置104は、アンモニアなどの試料のセンサ100への導入をユーザに要求し、試料がセンサ100に導入されるのを待って測定を開始する。洗浄処理の実行により、前回測定時にセンサ100の内部に吸着された物質(キャリーオーバ物質)が洗浄される。なお、ユーザに対する試料の導入の要求は、ユーザインタフェース部105を通じて提示される。
(Step S402)
In this step, the central processing unit 104 executes a cleaning process. In the cleaning process, the central processing unit 104 requests the user to introduce a sample such as ammonia into the sensor 100, and waits for the sample to be introduced into the sensor 100 before starting the measurement. By executing the cleaning process, the substance (carryover substance) adsorbed inside the sensor 100 at the previous measurement is cleaned. Note that a sample introduction request to the user is presented through the user interface unit 105.
(ステップS403)
 本ステップにおいて、中央演算装置104は、質量対電荷比校正処理を実行する。質量対電荷比校正処理において、中央演算装置104は、ユーザに対して既知の質量対電荷比(m/z)にピークが現れる標準物質試料のセンサ100への導入を要求し、試料の導入を待って測定を開始する。中央演算装置104は、測定されたスペクトルのピークの位置に基づいて質量スペクトルの配列上の各要素番号と質量対電荷比(m/z)との対応表b(m)を作成する。
(Step S403)
In this step, the central processing unit 104 executes a mass-to-charge ratio calibration process. In the mass-to-charge ratio calibration process, the central processing unit 104 requests the user to introduce a standard material sample having a peak at a known mass-to-charge ratio (m / z) into the sensor 100, and introduces the sample. Wait and start measurement. The central processing unit 104 creates a correspondence table b (m) between each element number on the mass spectrum array and the mass-to-charge ratio (m / z) based on the measured peak position of the spectrum.
(ステップS404)
 本ステップにおいて、中央演算装置104は、正常異常判定処理(ブランクチェック)を実行する。正常異常判定処理(ブランクチェック)において、中央演算装置104は、測定対象成分を含有しない既知の試料のセンサ100への導入をユーザに要求し、試料の導入を待って測定を開始する。
(Step S404)
In this step, the central processing unit 104 executes normal / abnormal determination processing (blank check). In the normality / abnormality determination process (blank check), the central processing unit 104 requests the user to introduce a known sample that does not contain the measurement target component into the sensor 100, and waits for the introduction of the sample before starting the measurement.
 本ステップにおいて、中央演算装置104は、測定されたスペクトルが予め設定された条件を満たすか否かを判定する。もし、肯定結果が得られた場合、中央演算装置104は、測定されたスペクトルが正常であると判定し、起動処理を終了する。一方、否定結果が得られた場合、中央演算装置104は、測定されたスペクトルが異常であると判定し、洗浄処理(ステップS402)に戻る。 In this step, the central processing unit 104 determines whether or not the measured spectrum satisfies a preset condition. If a positive result is obtained, the central processing unit 104 determines that the measured spectrum is normal, and ends the activation process. On the other hand, if a negative result is obtained, the central processing unit 104 determines that the measured spectrum is abnormal, and returns to the cleaning process (step S402).
 測定されたスペクトルが正常であると判定されるための条件の一つは、例えば測定されたスペクトルに大きなピークが存在しないことである。他の条件の一つは、測定されたスペクトルをM次元のベクトルと見なす場合に、過去に測定された参照用のスペクトルとのコサイン類似度が閾値より高いことである。測定されたスペクトルが正常か否かの判定には、公知の適当な方法を使用すれば良い。 One of the conditions for determining that the measured spectrum is normal is, for example, that a large peak does not exist in the measured spectrum. One of the other conditions is that, when the measured spectrum is regarded as an M-dimensional vector, the cosine similarity with a reference spectrum measured in the past is higher than a threshold value. A known appropriate method may be used to determine whether or not the measured spectrum is normal.
[待機処理]
 図5に、待機処理S302の詳細動作を示す。
(ステップS501)
 本ステップにおいて、操作入力部204として機能する中央演算装置104(以下、「操作入力部204」という。)は、操作信号が入力されているか否かを判定する。操作信号が入力されている場合、中央演算装置104はステップS502に進み、操作信号が入力されていない場合、中央演算装置104はそのまま待機処理を終了する。
[Standby processing]
FIG. 5 shows the detailed operation of the standby process S302.
(Step S501)
In this step, the central processing unit 104 functioning as the operation input unit 204 (hereinafter referred to as “operation input unit 204”) determines whether or not an operation signal is input. When the operation signal is input, the central processing unit 104 proceeds to step S502. When the operation signal is not input, the central processing unit 104 ends the standby process as it is.
(ステップS502)
 本ステップにおいて、操作入力部204は、操作入力に対応する制御信号をセンサ100及び収集制御部201に出力する。
(Step S502)
In this step, the operation input unit 204 outputs a control signal corresponding to the operation input to the sensor 100 and the collection control unit 201.
[収集制御処理(その1)]
 図6に、収集制御処理S307の詳細動作例を示す。
(ステップS601)
 本ステップにおいて、収集制御部201は、各時刻番号tにおけるN個の各収集部の収集量を指定するN次元ベクトルの収集量信号a(t)を決定する。
[Collection control processing (part 1)]
FIG. 6 shows a detailed operation example of the collection control process S307.
(Step S601)
In this step, the collection control unit 201 determines an N-dimensional vector collection amount signal a (t) that specifies the collection amount of each of the N collection units at each time number t.
 この際、中央演算装置104は、各時刻番号tの収集量信号a(t)の時刻間における類似度が互いに小さくなるように個々の収集量信号a(t)を決定する。本実施例では、各時刻番号tにおけるN個の収集部の各要素にそれぞれ独立な乱数を格納する方法を採用する。例えば各収集部を表す番号の集合S={1, 2, ..., N}の要素からG個の収集部番号をランダムに選択する場合に、k番目に選択した要素番号をf(k)と表すとき、中央演算装置104は、G個のf(k)を格納した集合S1(t)={f(1), f(2), ..., f(k),..., f(G)}を用意する。 At this time, the central processing unit 104 determines the individual collection amount signals a (t) so that the similarities between the collection amount signals a (t) at the respective time numbers t are reduced. In this embodiment, a method of storing independent random numbers in each element of the N collection units at each time number t is adopted. For example, when G collection unit numbers are randomly selected from elements of a set of numbers S = {1, 2, ..., N} representing each collection unit, the kth selected element number is represented by f (k ), The central processing unit 104 stores a set S1 (t) = {f (1), f (2), ..., f (k),. , F (G)}.
(ステップS602)
 本ステップにおいて、中央演算装置104は、集合S1(t)に含まれる収集部番号の要素を“1”で表し、それ以外の要素を“0(ゼロ)”で表すN次元ベクトルを収集量信号a(t)に格納する。ここで、収集量信号a(t)のN次元の各要素は、N個の各収集部の流量を表している。
(Step S602)
In this step, the central processing unit 104 represents an N-dimensional vector in which the elements of the collection unit numbers included in the set S1 (t) are represented by “1” and the other elements are represented by “0 (zero)”. Store in a (t). Here, each N-dimensional element of the collection amount signal a (t) represents the flow rate of each of the N collection units.
(ステップS603)
 本ステップにおいて、中央演算装置104は、マルチチャンネルDA変換器111を通じ、収集量信号a(t)をマルチチャンネルの開閉制御電圧値に変換し、対応する収集部に出力する。図7に、マルチチャンネルDA変換器111から出力される開閉制御電圧値の例を示す。なお、図7は、N=4、かつ、G=3の場合である。
(Step S603)
In this step, the central processing unit 104 converts the collection amount signal a (t) into a multi-channel open / close control voltage value through the multi-channel DA converter 111 and outputs it to the corresponding collection unit. FIG. 7 shows an example of the open / close control voltage value output from the multi-channel DA converter 111. FIG. 7 shows a case where N = 4 and G = 3.
 時刻番号tにおいて、収集量信号a(t)の要素が“1”の次元で与えられる収集部は、電磁バルブを開ける、又は、サイクロンを発生させて試料を収集する。一方、収集量信号a(t)の要素が“0”の次元で与えられる収集部は、電磁バルブを閉める、又は、サイクロンを発生せず、試料の収集を行わない。 At time number t, the collection unit to which the element of the collection signal a (t) is given with a dimension of “1” opens the electromagnetic valve or generates a cyclone and collects the sample. On the other hand, the collection unit to which the element of the collection amount signal a (t) is given with a dimension of “0” closes the electromagnetic valve or does not generate a cyclone and does not collect the sample.
[収集制御処理(その2)]
 図8に、収集制御処理S307の他の詳細動作例を示す。
(ステップS801)
 本ステップにおいて、収集制御部201として機能する中央演算装置104(以下、「収集制御部201」という。)は、独立の一様分布に従う“0”~“1”の実数で与えられるN個の乱数を要素とするN次元ベクトルを収集量信号a(t)に格納する。
[Collection control processing (2)]
FIG. 8 shows another detailed operation example of the collection control process S307.
(Step S801)
In this step, the central processing unit 104 functioning as the collection control unit 201 (hereinafter referred to as “collection control unit 201”) has N pieces of N given by real numbers “0” to “1” that follow an independent uniform distribution. An N-dimensional vector whose elements are random numbers is stored in the collected signal a (t).
(ステップS802)
 本ステップにおいて、収集制御部201は、マルチチャンネルDA変換器111を通じ、をマルチチャンネルの開閉制御電圧値に変換し、対応する収集部に出力する。ここで、収集量を“0”か“1”の2通りでしか指定できない場合には、図7に示したように2値の信号で収集量を制御するが、より細かい値による収集量の指定が可能な本例の場合には図9に示す例のように、連続値乱数をそのままマルチチャンネルの開閉制御電圧値に変換する。図9もN=4の場合である。連続値乱数を用いる方が、各時刻番号tにおける収集量信号a(t)の類似度が互いに小さいa(t)を選ぶことができ、後段の分離処理の精度が高くなる。
(Step S802)
In this step, the collection controller 201 converts the multichannel DA converter 111 into a multichannel open / close control voltage value, and outputs it to the corresponding collector. Here, when the collection amount can be specified only in two ways, “0” or “1”, the collection amount is controlled by a binary signal as shown in FIG. In the case of this example that can be designated, the continuous value random number is converted as it is into a multi-channel switching control voltage value as in the example shown in FIG. FIG. 9 also shows a case where N = 4. When the continuous value random number is used, it is possible to select a (t) having a small similarity between the collection amount signals a (t) at each time number t, and the accuracy of the subsequent separation process is increased.
 因みに、図9は、収集される試料の流量が電磁バルブの開閉時間に比例すると仮定し、連続値である収集量信号a(t)の各要素を、各収集部の開閉時間でコード化している。特に、電磁バルブなどの装置は、瞬時的な流量を連続的に制御できないため、開閉時間によるコード化が有効である。瞬時的な流量を連続的に制御できる装置の場合は、前述のとおり、収集量信号a(t)をそのままマルチチャンネルの開閉制御電圧値として用いれば良い。 9 assumes that the flow rate of the collected sample is proportional to the opening / closing time of the electromagnetic valve, and encodes each element of the collection amount signal a (t), which is a continuous value, with the opening / closing time of each collecting unit. Yes. In particular, a device such as an electromagnetic valve cannot effectively control the instantaneous flow rate, and therefore coding based on opening and closing times is effective. In the case of an apparatus capable of continuously controlling the instantaneous flow rate, as described above, the collected amount signal a (t) may be used as it is as a multi-channel switching control voltage value.
[分離処理]
 図10に、分離処理S309の詳細動作例を示す。本実施例の場合、X=AP+Eというモデルを用いて分離処理を実行する。当該モデルにおいて、観測信号Xは、t×Mの行列である。また、A=(a(1), a(2), ..., a(t))は、収集量信号を表すt×Nの行列である。また、N×Mの行列Pは、各収集部から微粒子を別々に収集するときに観測されるであろう未知の質量スペクトルである。Eはノイズである。
[Separation process]
FIG. 10 shows a detailed operation example of the separation process S309. In the case of the present embodiment, the separation process is executed using a model of X = AP + E. In the model, the observation signal X is a t × M matrix. Further, A = (a (1), a (2),..., A (t)) is a t × N matrix representing the collection amount signal. The N × M matrix P is an unknown mass spectrum that will be observed when collecting fine particles separately from each collection unit. E is noise.
 なお、未知の質量スペクトルのM個の質量点mをそれぞれ独立に扱ってもよい。以下の説明では、質量点mのみを考慮し、y=Ap + eと表す。
ただし、y = (x_1m, ..., x_tm)^T、p = (p_1, ..., p_N)^Tとする。
ここで、各質量点mにおけるpを推定し、それらを全ての質量点mについて並べれば、各収集部における質量スペクトルPを求めることができる。この問題は、t個の方程式からN個(t<N)の未知数を求める問題である。
Note that the M mass points m of the unknown mass spectrum may be handled independently. In the following description, only the mass point m is considered and expressed as y = Ap + e.
However, y = (x_1m, ..., x_tm) ^ T and p = (p_1, ..., p_N) ^ T.
Here, by estimating p at each mass point m and arranging them for all the mass points m, the mass spectrum P at each collection unit can be obtained. This problem is to find N (t <N) unknowns from t equations.
 本実施例における分離処理S309は、Nに比べて十分小さくない時間番号tの間、爆発物や化学剤物質が発生する発生元の位置(被疑者や荷物など)及び物質の量が大きく変化しない場合を想定する。 In the separation process S309 in this embodiment, during the time number t that is not sufficiently smaller than N, the position (source of suspicion, luggage, etc.) where the explosive or chemical agent substance is generated and the amount of the substance do not change greatly. Assume a case.
(ステップS1001)
 本ステップにおいて、信号分離部202として機能する中央演算装置104(以下、「信号分離部202」という。)は、収集量信号Aの各要素を、数1に基づいて行τごとに正規化する。
Figure JPOXMLDOC01-appb-M000001
(Step S1001)
In this step, the central processing unit 104 functioning as the signal separation unit 202 (hereinafter referred to as “signal separation unit 202”) normalizes each element of the collection amount signal A for each row τ based on Equation 1. .
Figure JPOXMLDOC01-appb-M000001
 この正規化処理は、電磁バルブを開閉することで吸入する蒸気や霧状液滴の流量を制御する場合、又は、サイクロン現象を起こすか否かにより収集する微粒子の量を制御する場合、同時に少ない数の収集部が試料を収集する時刻よりも同時に多くの数の収集部が試料を収集する時刻の方が、収集量信号a_nτ(nτは添え字)の値よりも実際の収集量が少ないという問題を解決するために実行される。この収集量信号の正規化により、各時刻τの各収集部nに対応する収集量信号a_nτ(nτは添え字)と実際の収集量との間のズレを軽減することができる。 This normalization process is simultaneously small when controlling the flow rate of vapor or mist droplets to be sucked by opening and closing the electromagnetic valve, or when controlling the amount of particulates collected depending on whether or not a cyclone phenomenon occurs. The actual collection amount is less than the value of the collection signal a_nτ (where nτ is a subscript) at the time when a larger number of collection units collect the sample at the same time than when the number of collection units collects the sample. Executed to solve the problem. By normalizing the collection amount signal, it is possible to reduce a deviation between the collection amount signal a_nτ (nτ is a subscript) corresponding to each collection unit n at each time τ and the actual collection amount.
(ステップS1002)
 本ステップにおいて、信号分離部202は、各時刻及び各収集部に対応する収集量信号a_nτ(nτは添え字)に各収集部nの分離結果であるp_n(nは添え字)を乗算して求める乗算後信号(以下に示す数2)を全ての収集部n(n=1~N)にわたって加算した各時刻に対応する重み付き加算後信号(以下に示す数3)と、各時刻τに対応する観測信号y_τとの類似度が大きくなるように、各収集部の分離信号(各収集部の信号)を推定する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
(Step S1002)
In this step, the signal separation unit 202 multiplies the collection amount signal a_nτ (nτ is a subscript) corresponding to each time and each collection unit by p_n (n is a subscript) that is a separation result of each collection unit n. Weighted post-multiplication signals (Equation 3 shown below) corresponding to each time obtained by adding the obtained post-multiplication signals (Equation 2 shown below) over all collection units n (n = 1 to N), and The separation signal (signal of each collection unit) of each collection unit is estimated so that the degree of similarity with the corresponding observation signal y_τ increases.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 この際、信号分離部202は、誤差eの二乗|e|^2を最小化するような分離信号pを計算する。このようなpは、以下に示す数4により得られる。なお、ε=(ε_t-T+1, ...,ε_t)はユーザが入力するノイズレベルである。Tは推定に用いる観測信号の時間長である。
Figure JPOXMLDOC01-appb-M000004
At this time, the signal separation unit 202 calculates a separation signal p that minimizes the square of the error e | e | ^ 2. Such p is obtained by the following equation (4). Note that ε = (ε_t−T + 1,..., Ε_t) is a noise level input by the user. T is the time length of the observation signal used for estimation.
Figure JPOXMLDOC01-appb-M000004
 推定に用いる観測信号の時間長Tが長いほど、検知対象の物質や微粒子の量の時々刻々の時間変化への追従性が低下するが、推定精度は向上する。その一方で、時間長Tが短いほど、検知対象の物質や微粒子の量の時々刻々の時間変化への追従性が向上する。 The longer the time length T of the observation signal used for estimation, the lower the follow-up to the temporal change in the amount of the substance to be detected and the amount of fine particles, but the estimation accuracy improves. On the other hand, the shorter the time length T, the better the follow-up to the temporal change in the amount of the substance to be detected and the amount of fine particles.
 また、信号分離部202は、pの各要素が0以上であるという制約の下で、誤差eの二乗|e|^2を最小化するような分離信号pを計算してもよい。質量スペクトルの値は、各質量対電荷比を持つイオンの個数に比例した値であるため、全ての値が原理的に0以上である。この性質を利用することで、分離の精度が向上することが期待できる。このようなpは、以下に示す数5のd_τ(τは添え字)が規定のノイズレベルε_τ未満であるτの個数が一定数以下になるまで以下に示す数6を反復することにより得られる。なお、ε=(ε_1, ...,ε_τ)(τは添え字)はユーザが入力するノイズレベルである。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Further, the signal separation unit 202 may calculate a separation signal p that minimizes the square of the error e | e | ^ 2 under the constraint that each element of p is 0 or more. Since the value of the mass spectrum is a value proportional to the number of ions having each mass-to-charge ratio, all values are in principle 0 or more. By utilizing this property, it can be expected that the accuracy of separation is improved. Such a p can be obtained by repeating the following Expression 6 until the number of τ in which d_τ in Expression 5 below is less than a predetermined noise level ε_τ is equal to or less than a certain number. . Note that ε = (ε_1,..., Ε_τ) (τ is a subscript) is a noise level input by the user.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
[測定停止処理]
 図11に、測定停止処理S312の詳細動作例を示す。
(ステップS1101)
 本ステップにおいて、中央演算装置104は、洗浄処理S402と同じ処理を実行する。
(ステップ1102)
 本ステップにおいて、中央演算装置104は、高周波電源停止処理を実行し、高周波電源103を停止する。
(ステップ1103)
 高周波電源103の停止完了後、中央演算装置104は、真空ポンプ停止処理を実行し、全ての真空ポンプ112~114を停止する。
[Measurement stop processing]
FIG. 11 shows a detailed operation example of the measurement stop process S312.
(Step S1101)
In this step, the central processing unit 104 executes the same process as the cleaning process S402.
(Step 1102)
In this step, the central processing unit 104 executes a high frequency power supply stop process and stops the high frequency power supply 103.
(Step 1103)
After completing the stop of the high-frequency power supply 103, the central processing unit 104 executes a vacuum pump stop process and stops all the vacuum pumps 112 to 114.
[ノイズレベルの受付画面例]
 図12に、操作入力部204(ユーザインタフェース部105)を通じて、分離処理部202が使用するノイズレベルεの入力を受け付ける際に使用する画面例を示す。ノイズレベルεが大きいほど、モデルからのずれ、すなわちノイズが許容されるため、入力信号に含まれるノイズの影響を受け難くなる。ただし、その場合、低濃度の物質由来のわずかな値を推定することは困難になる。
[Noise level reception screen example]
FIG. 12 shows an example of a screen used when receiving an input of the noise level ε used by the separation processing unit 202 through the operation input unit 204 (user interface unit 105). As the noise level ε is larger, a deviation from the model, that is, noise is allowed, and therefore, it is less likely to be affected by noise included in the input signal. In this case, however, it is difficult to estimate a small value derived from a low concentration substance.
 これに対し、ノイズレベルεを小さくするほど、モデルからのずれを重視した推定が行われるため、低濃度の物質由来のわずかな値を推定することができる。ただし、その場合、入力信号のノイズの影響を受け易い。 On the other hand, as the noise level ε is reduced, estimation with an emphasis on deviation from the model is performed, so that a slight value derived from a low-concentration substance can be estimated. However, in that case, it is easily affected by noise of the input signal.
 従って、環境中の夾雑物質が多い場合やセンサの精度が低い場合には、ユーザがノイズレベルεを高く設定することで、高精度な分離結果を得ることが可能となる。逆に、環境中の夾雑物質が少ない場合やセンサの精度が高い場合には、ユーザがノイズレベルεを低く設定することで、高精度な分離結果を得ることが可能である。このように適用領域のニーズに合致した分離処理を行うことができる。 Therefore, when there are a lot of contaminants in the environment or when the accuracy of the sensor is low, the user can obtain a high-precision separation result by setting the noise level ε high. Conversely, when there are few contaminants in the environment or when the accuracy of the sensor is high, the user can obtain a highly accurate separation result by setting the noise level ε low. In this way, separation processing that meets the needs of the application area can be performed.
 さらに、ノイズレベルは時刻ごとに設定できるため、古い時刻のノイズレベルを大きくし、新しい時刻のノイズレベルを小さくすることで、古い時刻の観測信号よりも新しい時刻の観測信号をより重視した推定を行うことができる。検知対象の物質や微粒子の量が時々刻々変化するような場合、古い時刻のノイズレベルと新しい時刻のノイズレベルを図25のように急峻に変化させるような設定にすることで、検知対象の物質や微粒子の量の変化への追従を速くすることができる。ただし、その場合、推定精度が悪くなる。 Furthermore, since the noise level can be set for each time, the noise level at the old time is increased, and the noise level at the new time is decreased, thereby making an estimation that places more importance on the observation signal at the new time than at the old time. It can be carried out. When the amount of the detection target substance or fine particles changes every moment, the detection target substance is set by changing the noise level at the old time and the noise level at the new time sharply as shown in FIG. And follow-up to changes in the amount of fine particles can be made faster. However, in that case, the estimation accuracy deteriorates.
 これに対し、古い時刻のノイズレベルと新しい時刻のノイズレベルを図26のように緩やかに変化させるような設定にすることで、推定精度を高くすることができる。ただし、その場合、検知対象の物質や微粒子の量の変化への追従が遅くなる。 On the other hand, by setting the noise level at the old time and the noise level at the new time to change gradually as shown in FIG. 26, the estimation accuracy can be increased. However, in this case, the follow-up to the change in the amount of the substance to be detected and the fine particles is delayed.
 検知対象の物質や微粒子の量の変化が速い場合や、検知までに要する計測時間を短くすることが求められる場合には、ノイズレベルを図25のように急峻に変化させるような設定にすることで追従精度を高めることが可能となる。逆に、検知対象の物質や微粒子の量の変化が遅い場合や、検知までに要する計測時間が長くても良い場合には、ノイズレベルを図26のように緩やかに変化させるような設定にすることで推定精度を高めることが可能となる。 When the change in the amount of the substance or fine particles to be detected is fast, or when it is required to shorten the measurement time required for detection, the noise level is set to change sharply as shown in FIG. The tracking accuracy can be increased. Conversely, when the change in the amount of the detection target substance or fine particles is slow, or when the measurement time required for detection may be long, the noise level is set to change gently as shown in FIG. Thus, the estimation accuracy can be increased.
[結果画面例]
 図13に、結果出力部203(ユーザインタフェース部105)が出力する結果画面例を示す。図13に示すように、位置が異なる収集部ごとに分離された質量スペクトル(横軸を質量対電荷比、縦軸を検出強度とする図)が、個々の収集部115_1~Nに対応付けた状態で表示される。もっとも、この表示形態は一例であり、収集部に対応する定性分析結果及び/又は定量分析結果を質量スペクトルと共に、又は、それぞれ単独に画面表示しても良い。
[Result screen example]
FIG. 13 shows an example of a result screen output by the result output unit 203 (user interface unit 105). As shown in FIG. 13, mass spectra separated for each collection unit at different positions (the horizontal axis represents the mass-to-charge ratio and the vertical axis represents the detection intensity) are associated with the individual collection units 115_1 to N. Displayed with status. However, this display form is an example, and the qualitative analysis result and / or quantitative analysis result corresponding to the collection unit may be displayed on the screen together with the mass spectrum or independently.
[まとめ]
 以上のように、本実施例に係る分析システムを用いれば、計測対象位置(収集部)の数がセンサ100の個数より多い場合でも、各計測対象位置における定性分析や定量分析を実現することができる。
[Summary]
As described above, if the analysis system according to the present embodiment is used, even when the number of measurement target positions (collection units) is larger than the number of sensors 100, qualitative analysis and quantitative analysis at each measurement target position can be realized. it can.
 なお、各計測対象位置における定性分析や定量分析は、各計測対象位置(収集部)からからの微粒子の導入を動的に可変制御し、各時点に各計測対象位置(収集部)から収集される微粒子を混合させてセンサ100に導入する方法に限らない。例えば逐次的に微粒子を収集する収集部を一つずつ切り替える方法(逐次各点収集方法)を用いても良いし、全ての収集部から同時に微粒子を収集する方法(全点混合収集方法)を用いても良い。 In addition, qualitative analysis and quantitative analysis at each measurement target position are dynamically variably controlled from the measurement target position (collection unit) and are collected from each measurement target position (collection unit) at each time point. It is not limited to the method of mixing the fine particles to be introduced into the sensor 100. For example, you may use a method of switching the collection unit that sequentially collects particles one by one (sequential point collection method), or a method of collecting particles from all the collection units simultaneously (all point mixed collection method) May be.
 ただし、逐次各点収集方法の場合には、全ての収集部から微粒子を計測するのに要する時間がどうしても長くなる。このため、逐次各点収集方法は、爆発物や化学剤物質が発生する発生元の位置(被疑者や荷物など)が高速に移動する場合や物質の量が高速に変化する場合には見逃しが起こり易く、当該用途では、定性分析及び定量分析に高い推定精度を期待できない。 However, in the case of the sequential point collection method, the time required to measure fine particles from all the collection units is inevitably long. For this reason, the sequential point collection method cannot be overlooked when the location where the explosive or chemical agent material is generated (such as the suspect or baggage) moves at high speed or the amount of the substance changes at high speed. It is easy to occur, and in this application, high estimation accuracy cannot be expected for qualitative analysis and quantitative analysis.
 また、逐次各点収集方法の場合、各計測対象位置(収集部)に対して1回ずつしか微粒子を収集することができない。このため、センサの観測信号Xの時刻毎の誤差や収集部の収集量の時刻毎の誤差が大きい場合には、その誤差が定性分析及び定量分析の結果に大きく影響する可能性があり、一般に推定精度が低くなる。 Further, in the case of the sequential point collection method, fine particles can be collected only once for each measurement target position (collection unit). For this reason, when the error at each time of the observation signal X of the sensor or the error at the time of the collection amount of the collection unit is large, the error may greatly affect the results of qualitative analysis and quantitative analysis. The estimation accuracy is lowered.
 一方、全点混合収集方法の場合には、計測時間が短く済む一方、収集部の数の増加に伴って化学雑音が増加し易く、定性分析及び定量分析の推定精度が低下し易くなる。まして、計測対象位置(収集部)毎の定性分析及び定量分析は不可能である。 On the other hand, in the case of the all-point mixed collection method, the measurement time can be shortened, but the chemical noise tends to increase as the number of collection units increases, and the estimation accuracy of qualitative analysis and quantitative analysis tends to decrease. Furthermore, qualitative analysis and quantitative analysis for each measurement target position (collection unit) are impossible.
 これらの方法に対し、本実施例の場合には、複数の計測対象位置(収集部)からの微粒子の収集を混合した状態でセンサ100に導入するため、全ての収集部115_1~115_Nを計測するまでに要する時間が短く済み、逐次各点収集方法に比べて見逃しが少なく済む。 In contrast to these methods, in the case of the present embodiment, since the collection of particulates from a plurality of measurement target positions (collecting units) is introduced into the sensor 100 in a mixed state, all the collecting units 115_1 to 115_N are measured. The time required to complete the process is short, and there are fewer oversights than the sequential point collection method.
 また、本実施例の場合には、各計測対象位置(収集部)についてそれぞれ複数回ずつ微粒子を収集するので、逐次各点収集方法に比べてセンサ100の観測信号Xの時刻毎の誤差や収集部の収集量の時刻毎の誤差の影響を受け難い。また、計測対象位置(収集部)の全体数に比べて各時点で混合される収集部の数が少ないので、全点を同時に収集する場合よりも化学雑音が小さく済み、その分、定性分析及び定量分析の推定精度は高くなる。さらに、本実施例の場合には、全点混合収集方法の場合には不可能な計測対象位置(収集部)毎の定性分析及び定量分析が可能となる。 In the case of the present embodiment, since the fine particles are collected a plurality of times for each measurement target position (collection unit), the error or collection of the observation signal X of the sensor 100 for each time as compared with each point collection method sequentially. It is difficult to be affected by the error of the collection amount of each part at each time. In addition, since the number of collection units mixed at each time point is smaller than the total number of measurement target positions (collection units), chemical noise can be reduced compared to the case where all points are collected simultaneously. The estimation accuracy of quantitative analysis is increased. Furthermore, in the case of the present embodiment, qualitative analysis and quantitative analysis for each measurement target position (collection unit), which is impossible in the case of the all-point mixed collection method, can be performed.
[実施例2]
 本実施例では、同じ質量対電荷比(m/z)の物質が同時に発生する位置が少数に限られるとの仮定が成立する場合に、各計測対象位置(収集部)における高速な定性分析や高速な定量分析が可能な分析システムについて説明する。なお、本実施例に係る分析システムの基本構成は図1と同様であり、基本的な計測手順は図3と同じである。以下では、本実施例に特有の処理手順についてのみ説明する。
[Example 2]
In this example, when the assumption that only a small number of positions where substances having the same mass-to-charge ratio (m / z) are generated at the same time is established, a high-speed qualitative analysis at each measurement target position (collection unit) An analysis system capable of high-speed quantitative analysis will be described. The basic configuration of the analysis system according to the present embodiment is the same as that shown in FIG. 1, and the basic measurement procedure is the same as that shown in FIG. Below, only the processing procedure peculiar to a present Example is demonstrated.
[分離処理の概要]
 方程式の数Tが未知数の数Nよりも大きいか等しい場合には、ノイズeが正規分布であるという仮定の下、最小自乗法によりpを推定することができる。しかし、方程式の数Tが未知数の数Nよりも小さい場合、未知数が相対的に多い「劣決定」(underdetermined)の状態であり、本来の解以外の誤った解を含む複数の解候補が存在し得る。そこで、解候補を絞り込むため、本実施例では、pに含まれる“非0(ゼロ)”の要素は少ないという仮定を導入する。
[Outline of separation processing]
When the number T of equations is greater than or equal to the number N of unknowns, p can be estimated by the least square method under the assumption that the noise e is normally distributed. However, if the number of equations T is smaller than the number of unknowns N, the number of unknowns is relatively “underdetermined” and there are multiple candidate solutions that contain incorrect solutions other than the original solution. Can do. Therefore, in order to narrow down solution candidates, the present embodiment introduces an assumption that there are few “non-zero (zero)” elements included in p.
 本実施例が、大気分析システムや水質分析システムである場合、この仮定は、同じ質量対電荷比(m/z)の物質が同時に排出される排出源(工場、施設、など)の位置は少数に限られるという性質に対応する。本実施例が、セキュリティ用途の爆発物トレース検知システムや化学剤検知システムである場合、この仮定は、同じ質量対電荷比(m/z)の爆発物や化学剤物質が同時に発生する発生元の位置(被疑者や荷物など)は少数に限られるという性質に対応する。 When this example is an atmospheric analysis system or a water quality analysis system, this assumption is that there are a small number of emission sources (factories, facilities, etc.) where substances with the same mass-to-charge ratio (m / z) are simultaneously emitted. It corresponds to the property of being limited to. If this example is an explosive trace detection system or chemical agent detection system for security applications, this assumption is based on the origin of the same mass-to-charge ratio (m / z) explosive or chemical agent material. Corresponds to the property that only a small number of locations (such as suspects and luggage) are available.
 実施例1は、y=Ap + eにおける誤差eの二乗|e|^2が最小となるような分離信号pを出力した。一方、本実施例では、|e|^2が同じでも、より“非0(ゼロ)”の要素が少ないような分離信号pを出力する。より“非0(ゼロ)”の要素が少ないような分離信号を計算する分離方法の例として、圧縮センシングに基づく方法を示す。圧縮センシングに基づく方法の一例は、以下に示すOrthogonal Matching Pursuit(OMP)である。 In Example 1, the separation signal p is output so that the square of the error e | y | ^ 2 at y = Ap + e is minimized. On the other hand, in the present embodiment, even if | e | ^ 2 is the same, the separated signal p is output so that there are fewer “non-zero” elements. As an example of a separation method for calculating a separation signal with fewer “non-zero” elements, a method based on compressed sensing will be described. An example of a method based on compressed sensing is Orthogonal Matching Pursuit (OMP) shown below.
[分離処理の詳細]
 図14に、本実施例に係る分析システムで使用する分離処理S309の詳細動作例を示す。
(ステップS1401)
 本ステップにおいて、信号分離部202として機能する中央演算装置104(以下、「信号分離部202」という。)は、実施例1のステップS1001(図10)と同様、収集量信号Aを数1に基づいて行τごとに正規化する。
[Details of separation processing]
FIG. 14 shows a detailed operation example of the separation process S309 used in the analysis system according to the present embodiment.
(Step S1401)
In this step, the central processing unit 104 functioning as the signal separation unit 202 (hereinafter referred to as “signal separation unit 202”) sets the collection amount signal A to Equation 1 as in step S1001 (FIG. 10) of the first embodiment. Based on this, normalization is performed for each row τ.
(ステップS1402)
 本ステップにおいて、信号分離部202は、残差ベクトルdにy = (x_(t-T+1)m, ..., x_tm)^Tを代入して初期化する。ただし、a_nτ(nτは添え字)は、時刻τにおける収集部nの流量である。中央演算装置104は、残差ベクトルdの各要素d_τ(τは添え字)が規定のノイズレベルε_τ未満であるτの個数が一定数以下になるまで、後述するステップS1403~S1405を最大N回反復する。
(Step S1402)
In this step, the signal separation unit 202 initializes the residual vector d by substituting y = (x_ (t−T + 1) m,..., X_tm) ^ T. However, a_nτ (nτ is a subscript) is the flow rate of the collection unit n at time τ. The central processing unit 104 performs steps S1403 to S1405 described later at most N times until the number of τs in which each element d_τ (τ is a subscript) of the residual vector d is less than a predetermined noise level ε_τ is equal to or less than a certain number. Iterate.
(ステップS1403)
 本ステップにおいて、信号分離部202は、残差ベクトルdに対して、射影長b = d^T a_nが最大となるa_j=(a_(t-T+1)j ... a_tj)^TをAの列ベクトルの中から求める。そして、求めたjを配列Bに格納する。
(Step S1403)
In this step, the signal separation unit 202 calculates a_j = (a_ (t−T + 1) j ... a_tj) ^ T having the maximum projection length b = d ^ T a_n with respect to the residual vector d. Find from the column vector of A. Then, the obtained j is stored in the array B.
(ステップS1404)
 本ステップにおいて、信号分離部202は、以下の数7の距離を最小とする{q_u}を求め、さらに、それらのq_uに基づいて、以下の数8により残差信号dを更新する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
(Step S1404)
In this step, the signal separation unit 202 obtains {q_u} that minimizes the distance of the following equation (7), and further updates the residual signal d by the following equation (8) based on the q_u.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
(ステップS1405)
 本ステップにおいて、信号分離部202は、列ベクトルa_jをAから除外する。以上の反復の結果、観測信号yは、各収集部に対応するN個の値{q_u}に分解されている。ただし、上記アルゴリズムでは、できるだけ多くのuに対するq_uが“0”となるように算出される。
(Step S1405)
In this step, the signal separation unit 202 excludes the column vector a_j from A. As a result of the above iteration, the observation signal y is decomposed into N values {q_u} corresponding to each collection unit. However, in the above algorithm, q_u for as many u as possible is calculated to be “0”.
 因みに、圧縮センシングに基づく方法には、Orthogonal Matching Pursuitアルゴリズム以外にも、Least Angle Regression Stagewise(LARS)アルゴリズム、Thresholdingアルゴリズム、Iterative-Reweighed-Least-Squares(IRLS)アルゴリズムなどが存在し、いずれを用いてもよい。 In addition to the Orthogonal-Matching-Pursuit algorithm, there are Least-Angle-Regression-Stagewise (LARS) algorithm, Thresholding algorithm, Iterative-Reweighed-Least-Squares (IRLS) algorithm, etc. Also good.
 本実施例においてもノイズレベルの設定にはノイズへの頑健性を高める効果がある。
 ノイズレベルεが大きいほど、モデルからのずれよりも、pに含まれる非0(ゼロ)の要素は少ないという仮定(pに含まれる0(ゼロ)の要素は多いという仮定)をより重視した推定が行われるため、入力信号に含まれるノイズの影響を受け難くなる。ただし、その場合、低濃度の物質由来のわずかな値を推定することは困難になる。
Also in the present embodiment, setting the noise level has an effect of enhancing robustness against noise.
Estimation with greater emphasis on the assumption that the higher the noise level ε, the fewer non-zero elements included in p than the deviation from the model (the assumption that there are more zero elements included in p) Therefore, it is difficult to be affected by noise included in the input signal. In this case, however, it is difficult to estimate a small value derived from a low concentration substance.
 これに対し、ノイズレベルεを小さくするほど、pに含まれる非0(ゼロ)の要素は少ないという仮定(pに含まれる0(ゼロ)の要素は多いという仮定)よりも、モデルからのずれをより重視した推定が行われるため、低濃度の物質由来のわずかな値を推定することができる。ただし、その場合、入力信号のノイズの影響を受け易い。 On the other hand, the smaller the noise level ε, the greater the deviation from the model than the assumption that there are fewer non-zero elements in p (the assumption that there are more zero elements in p). Therefore, a slight value derived from a low-concentration substance can be estimated. However, in that case, it is easily affected by noise of the input signal.
 従って、環境中の夾雑物質が多い場合やセンサの精度が低い場合には、ユーザがノイズレベルεを高く設定することで、高精度な分離結果を得ることが可能となる。逆に、環境中の夾雑物質が少ない場合やセンサの精度が高い場合には、ユーザがノイズレベルεを低く設定することで、高精度な分離結果を得ることが可能である。このように適用領域のニーズに合致した分離処理を行うことができる。 Therefore, when there are a lot of contaminants in the environment or when the accuracy of the sensor is low, the user can obtain a high-precision separation result by setting the noise level ε high. Conversely, when there are few contaminants in the environment or when the accuracy of the sensor is high, the user can obtain a highly accurate separation result by setting the noise level ε low. In this way, separation processing that meets the needs of the application area can be performed.
[まとめ]
 本実施例に係る分析システムは、同じ質量対電荷比(m/z)の物質が同時に発生する位置が少数に限られる場合に、各計測対象位置(収集部)における高速な定性分析や高速な定量分析が可能である。
[Summary]
The analysis system according to the present embodiment enables high-speed qualitative analysis and high-speed analysis at each measurement target position (collection unit) when the number of positions where substances having the same mass-to-charge ratio (m / z) are generated simultaneously is limited to a small number. Quantitative analysis is possible.
 一方、計測対象位置の数がセンサの個数よりも多い場合には、前述の方法以外にも、例えば逐次的に微粒子を収集する収集部を一つずつ切り替える方法(逐次各点収集方法)を用いても良いし、全ての収集部から同時に微粒子を収集する方法(全点混合収集方法)を用いても良い。 On the other hand, when the number of measurement target positions is larger than the number of sensors, in addition to the method described above, for example, a method of sequentially switching the collection unit for collecting particles one by one (sequential point collection method) is used. Alternatively, a method of collecting fine particles simultaneously from all the collecting units (all-point mixed collecting method) may be used.
 ただし、逐次各点収集方法の場合には、全ての収集部から微粒子を計測するのに要する時間がどうしても長くなる。このため、逐次各点収集方法は、爆発物や化学剤物質が発生する発生元の位置(被疑者や荷物など)が高速に移動する場合や物質の量が高速に変化する場合には見逃しが起こり易く、当該用途では、定性分析及び定量分析に高い推定精度を期待できない。また、センサの観測信号Xの時刻毎の誤差や収集部の収集量の時刻毎の誤差が大きい場合には、その誤差が定性分析及び定量分析の結果に大きく影響する可能性があり、一般に推定精度が低くなる。 However, in the case of the sequential point collection method, the time required to measure fine particles from all the collection units is inevitably long. For this reason, the sequential point collection method cannot be overlooked when the location where the explosive or chemical agent material is generated (such as the suspect or baggage) moves at high speed or the amount of the substance changes at high speed. It is easy to occur, and in this application, high estimation accuracy cannot be expected for qualitative analysis and quantitative analysis. In addition, when the error at each time of the sensor observation signal X and the error at the time of the collection amount of the collection unit are large, the error may greatly affect the results of the qualitative analysis and the quantitative analysis. Accuracy is lowered.
 一方、全点混合収集方法の場合には、計測時間が短く済む一方、収集部の数の増加に伴って化学雑音が増加し易く、定性分析及び定量分析の推定精度が低下し易くなる。 On the other hand, in the case of the all-point mixed collection method, the measurement time can be shortened, but the chemical noise tends to increase as the number of collection units increases, and the estimation accuracy of qualitative analysis and quantitative analysis tends to decrease.
 これらの方法に対し、本実施例の場合には、複数の計測対象位置(収集部)からの微粒子の収集を動的に可変制御しつつ、各計測対象位置(収集部)からの微粒子を混合した状態でセンサ100に導入することにより、他の方法に比べ、高速かつ高精度で定性分析及び定量分析することができる。 In contrast to these methods, in the case of the present embodiment, the collection of particles from each measurement target position (collection unit) is mixed while dynamically controlling the collection of the particles from a plurality of measurement target positions (collection unit). By introducing the sensor 100 into the sensor 100 in such a state, it is possible to perform qualitative analysis and quantitative analysis at a higher speed and higher accuracy than other methods.
 以上の通りであるので、本実施例に係る分析システムは、実施例1と同様、複数の計測対象位置(収集部)からの微粒子を混合した状態でセンサ100に導入するため、全ての収集部115_1~115_Nを計測するまでに要する時間が短く済み、逐次各点収集方法に比べて見逃しが少なく済む。 Since it is as above, since the analysis system concerning a present example is introduced into sensor 100 in the state where particles from a plurality of measurement object positions (collection part) were mixed like Example 1, all the collection parts The time required to measure 115_1 to 115_N is shortened, and overlooking is less than the sequential point collection method.
 また、本実施例の場合には、各計測対象位置(収集部)についてそれぞれ複数回ずつ微粒子を収集するので、逐次各点収集方法に比べてセンサ100の観測信号Xの時刻毎の誤差や収集部の収集量の時刻毎の誤差の影響を受け難い。また、計測対象位置(収集部)の全体数に比べて各時点で混合される収集部の数が少ないので、全点を同時に収集する場合よりも化学雑音が小さく済み、その分、定性分析、定量分析の推定精度が高くなる。さらに、全点混合収集方法の場合には不可能な計測対象位置(収集部)毎の定性分析及び定量分析が可能となる。 In the case of the present embodiment, since the fine particles are collected a plurality of times for each measurement target position (collection unit), the error or collection of the observation signal X of the sensor 100 at each time as compared with the respective point collection method. It is difficult to be affected by the error of the collection amount of each part at each time. In addition, since the number of collection units mixed at each time point is smaller than the total number of measurement target positions (collection units), chemical noise is smaller than when all points are collected simultaneously. The estimation accuracy of quantitative analysis is increased. Furthermore, it is possible to perform qualitative analysis and quantitative analysis for each measurement target position (collection unit), which is impossible in the case of the all-point mixed collection method.
 さらに、本実施例に係る分析システムを、大気分析システム、水質分析システム、セキュリティ用途の爆発物トレース検知システムや化学剤検知システムで用いる場合、同じ質量対電荷比(m/z)の物質が同時に発生する位置が少数であるような分離結果を優先して出力することにより、計測時間が短い、すなわち、計測回数が少ない場合であっても、複数存在する分離結果の候補を適切に絞ることができる。従って、各計測対象位置における高速な定性分析や高速な定量分析が可能である。 Furthermore, when the analysis system according to this embodiment is used in an atmospheric analysis system, a water quality analysis system, an explosive trace detection system for security use, or a chemical agent detection system, substances having the same mass-to-charge ratio (m / z) are simultaneously used. By preferentially outputting separation results that occur in a small number of positions, even if the measurement time is short, that is, when the number of measurements is small, multiple candidate separation results can be appropriately narrowed down. it can. Therefore, high-speed qualitative analysis and high-speed quantitative analysis at each measurement target position are possible.
[実施例3]
 本実施例では、計測対象位置(収集部)の数がセンサの個数よりも多く、かつ、スペクトル上の同じ点に値を持つ多数の物質が同時に発生し得る場合でも高精度に定性分析や定量分析を行うことができる分析システムについて説明する。
[Example 3]
In this embodiment, even when the number of measurement target positions (collection units) is larger than the number of sensors and many substances having values at the same point on the spectrum can be generated at the same time, qualitative analysis and quantification can be performed with high accuracy. An analysis system capable of performing analysis will be described.
 本実施例と前述の実施例2との違いは、分離処理で分離されたスペクトルに対する対象物質データベースを用意し、当該データベースに基づいて定性処理及び定量処理を実行する点である。図15に、実施例3に係る分析システムの機能ブロック構成を示す。なお、図15には図2との対応部分に同一符号を付して示している。以下、本実施例に特有の構成について説明する。 The difference between the present embodiment and the above-described embodiment 2 is that a target substance database is prepared for the spectrum separated by the separation process, and the qualitative process and the quantitative process are executed based on the database. FIG. 15 illustrates a functional block configuration of the analysis system according to the third embodiment. In FIG. 15, parts corresponding to those in FIG. Hereinafter, a configuration unique to the present embodiment will be described.
 分離処理部1501は、質量スペクトルxの時系列信号である観測信号Xと、収集量信号と、ノイズレベルと、対象物質データベース1502のスペクトルテンプレートと、検量線とを入力とし、これらの情報に基づいて観測信号Xを分離し、各計測対象位置(収集部)の分離信号と各計測対象位置(収集部)における定性分析の結果及び定量分析の結果を出力する。 The separation processing unit 1501 receives an observation signal X, which is a time-series signal of the mass spectrum x, a collected signal, a noise level, a spectrum template of the target substance database 1502, and a calibration curve, based on these information. The observation signal X is separated, and the separation signal of each measurement target position (collection unit) and the result of qualitative analysis and the result of quantitative analysis at each measurement target position (collection unit) are output.
 結果出力部1503は、入力された分離信号、各計測対象位置(収集部)の定性分析の結果と定量分析の結果をユーザに提示する。分離信号の提示方法には、例えばユーザインタフェース部105による画像情報の提示、点字ディスプレイによる情報の提示、音声による情報の提示、プリンタを介した画像情報の印刷等がある。結果出力部1503の機能も、中央演算装置104上で実行されるプログラムを通じて提供される。 The result output unit 1503 presents the input separation signal, the result of qualitative analysis of each measurement target position (collection unit), and the result of quantitative analysis to the user. The separation signal presentation method includes, for example, presentation of image information by the user interface unit 105, presentation of information by a braille display, presentation of information by voice, printing of image information through a printer, and the like. The function of the result output unit 1503 is also provided through a program executed on the central processing unit 104.
[分離処理の概要]
 本実施例における分離処理部1501は、X=AQR + Eで表されるモデルに基づいて分離処理を実行する。ここで、観測信号Xは、T×Mの行列である。A=(a(t-T+1), a(2), ..., a(t))は、収集量信号を表すT×Nの行列である。Tは推定に用いる観測信号の時間長である。N×Jの行列であるQは、そのn行目i列目の要素q_ni(niは添え字)が、収集部nにおけるi番目の物質の濃度に対応する指標値を表す。J×Mである行列Rは、そのi行目の行ベクトルが、i番目の物質が単位濃度だけ存在する場合に計測される質量スペクトルである。Eはノイズを表す。Rは対象物質データベース1502に格納されているスペクトルのテンプレートR_i=(r_i1, ..., r_iM)を並べたものであり、既知である。
[Outline of separation processing]
The separation processing unit 1501 according to the present exemplary embodiment performs separation processing based on a model represented by X = AQR + E. Here, the observation signal X is a T × M matrix. A = (a (t−T + 1), a (2),..., A (t)) is a T × N matrix representing the collection amount signal. T is the time length of the observation signal used for estimation. Q, which is an N × J matrix, represents an index value corresponding to the concentration of the i-th substance in the collection unit n, with the element q_ni in the n-th row and i-th column (ni is a subscript). The matrix R which is J × M is a mass spectrum whose row vector of the i-th row is measured when the i-th substance is present in a unit concentration. E represents noise. R is a sequence of spectral templates R_i = (r_i1,..., R_iM) stored in the target substance database 1502, and is known.
 前記のモデルは、次の数9に示すモデルに変換することができる。
Figure JPOXMLDOC01-appb-M000009
数7の両辺はt×Jの行列である。J個の各物質iは独立に扱ってよい。以下では、i番目の物質に対応するi列目のベクトルだけを考慮して、y=Aq+eと表す。ここで、yは、XR^+のi列目のベクトルを表している。eは、ER^+ のi列目のベクトルを表している。q = (q_1i, ..., q_Ni)^Tである。各物質iのqを推定した後で全ての物質のqを並べれば、各収集部における各物質の濃度に対応する指標値Qを求めることができる。
The model can be converted into the model shown in the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Both sides of Equation 7 are a t × J matrix. Each of J substances i may be handled independently. Hereinafter, only the i-th column vector corresponding to the i-th substance is considered and expressed as y = Aq + e. Here, y represents a vector in the i-th column of XR ^ +. e represents the i-th column vector of ER ^ +. q = (q_1i, ..., q_Ni) ^ T. If the qs of all the substances are arranged after estimating the q of each substance i, the index value Q corresponding to the concentration of each substance in each collecting unit can be obtained.
 この問題は、T個の方程式からN個の未知数を求める問題である。実施例1の場合と同様に、TがNよりも大きいか等しい場合には、eが正規分布であるという仮定の下で、最小自乗法によりqを推定することができる。しかし、TがNよりも小さい場合、未知数が相対的に多い「劣決定」(underdetermined)の状態であり、本来の解以外の誤った解を含む複数の解候補が存在し得る。そこで、解候補を絞るため、qに含まれる“非0(ゼロ)”の要素は少ないという仮定を導入する。 This problem is to find N unknowns from T equations. As in the case of the first embodiment, when T is greater than or equal to N, q can be estimated by the method of least squares under the assumption that e is a normal distribution. However, when T is smaller than N, the number of unknowns is relatively “underdetermined” and there may be a plurality of solution candidates including erroneous solutions other than the original solution. Therefore, in order to narrow down the solution candidates, the assumption that there are few “non-zero” elements included in q is introduced.
 本実施例が、大気分析システムや水質分析システムである場合、この仮定は、同じ成分の物質が同時に排出される排出源(工場、施設など)の位置は少数に限られるという性質に対応する。本実施例が、セキュリティ用途の爆発物トレース検知システムや化学剤検知システムである場合、この仮定は、同じ成分の爆発物や化学剤物質が同時に発生する発生元の位置(被疑者や荷物など)は少数に限られるという性質に対応する。 When this embodiment is an atmospheric analysis system or a water quality analysis system, this assumption corresponds to the property that the positions of emission sources (factories, facilities, etc.) from which substances of the same component are simultaneously discharged are limited to a small number. When this embodiment is an explosive trace detection system or chemical agent detection system for security applications, this assumption is based on the location of the source of the same component explosive or chemical agent substance (suspected person, luggage, etc.) Corresponds to the property of being limited to a small number.
 参考までに、実施例2で用いた仮定は、同じ質量対電荷比(m/z)の物質が同時に発生する位置が少数であるという仮定であったが、同じ質量対電荷比(m/z)を持つ多種類の物質が同時に発生し易いような場合には、この仮定が成立しない。本実施例の仮定は、このような場合であっても成立する。従って、同じ質量対電荷比(m/z)を持つ多種類の物質が存在するが、同じ物質が同時に発生する頻度が少ない領域で本実施例は有効である。 For reference, the assumption used in Example 2 was that there were a small number of positions where substances having the same mass-to-charge ratio (m / z) were generated simultaneously, but the same mass-to-charge ratio (m / z). This assumption does not hold when multiple types of substances having the same) are likely to be generated at the same time. The assumption of this embodiment is valid even in such a case. Therefore, although there are many kinds of substances having the same mass-to-charge ratio (m / z), this embodiment is effective in a region where the same substance is not frequently generated at the same time.
[分離処理の詳細]
 図16に、本実施例に係る分析システムで使用する分離処理S309の詳細動作例を示す。
(ステップS1601)
 本ステップにおいて、信号分離部1501として機能する中央演算装置104(以下、「信号分離部1501」という。)は、実施例1のステップS1001(図10)と同様、収集量信号Aを数1に基づいて行τごとに正規化する。
[Details of separation processing]
FIG. 16 illustrates a detailed operation example of the separation process S309 used in the analysis system according to the present embodiment.
(Step S1601)
In this step, the central processing unit 104 (hereinafter referred to as “signal separation unit 1501”) functioning as the signal separation unit 1501 sets the collection amount signal A to Equation 1 as in step S1001 (FIG. 10) of the first embodiment. Based on this, normalization is performed for each row τ.
(ステップS1602)
 本ステップにおいて、信号分離部1501は、入力信号としての観察信号XにRの擬似逆行列R^+を右から乗算することによってXR^+を計算する。すなわち、観察信号XをXR^+に変換する。ここで、Rは、対象物質データベース1502から各物質iのスペクトルのテンプレートR_i=(r_i1, ..., r_iM)を読み出してR_iを並べることで構成する。
(Step S1602)
In this step, the signal separation unit 1501 calculates XR ^ + by multiplying the observation signal X as an input signal by a pseudo inverse matrix R ^ + of R from the right. That is, the observation signal X is converted to XR ^ +. Here, R is configured by reading the template R_i = (r_i1,..., R_iM) of the spectrum of each substance i from the target substance database 1502 and arranging R_i.
(ステップS1603~ステップS1606)
 これらのステップにおいて、ステップS1402~S1405と同様の処理を実行する。ただし、XR^+のi列目のベクトルをyとし、実施例2と同様のアルゴリズムでqを推定する。
(ステップS1607)
 本ステップにおいて、信号分離部1501は、各計測対象位置(収集部)の物質毎に濃度を推定する。濃度推定では、対象物質データベース1502から検量線c_i(w)を読み出し、当該検量線を用いてqを推定する。具体的には、計測対象位置(収集部)nの物質iの濃度に対応する指標q_niを検量線に代入したc_i(q_ni)を計算し、計測対象位置(収集部)nの物質iの濃度c_niを推定する。
(Step S1603 to Step S1606)
In these steps, processing similar to that in steps S1402 to S1405 is executed. However, the vector in the i-th column of XR ^ + is y, and q is estimated by the same algorithm as in the second embodiment.
(Step S1607)
In this step, the signal separation unit 1501 estimates the concentration for each substance at each measurement target position (collection unit). In the concentration estimation, a calibration curve c_i (w) is read from the target substance database 1502, and q is estimated using the calibration curve. Specifically, c_i (q_ni) is calculated by substituting the index q_ni corresponding to the concentration of substance i at the measurement target position (collection unit) n into the calibration curve, and the concentration of substance i at the measurement target position (collection unit) n is calculated. Estimate c_ni.
(ステップS1608)
 本ステップにおいて、信号分離部1501は、濃度c_niが規定の濃度を超過しているか否かにより物質iの有無を推定する。
(Step S1608)
In this step, the signal separation unit 1501 estimates the presence or absence of the substance i based on whether or not the concentration c_ni exceeds a prescribed concentration.
 図27に、本実施例に係る分析システムで使用する分離処理S309の詳細動作例を示す。中央演算装置104は、前回のループにおいて対象物質が「有り」と推定された収集部の個数Vが、前々回のループにおけるそれと比べて、変化しなくなるまで、後述するステップS2701~S2709を最大W回反復する。ただし、Wは規定の正の定数である。 FIG. 27 shows a detailed operation example of the separation process S309 used in the analysis system according to the present embodiment. The central processing unit 104 performs steps S2701 to S2709, which will be described later, a maximum of W times until the number V of the collection units in which the target substance is estimated to be “present” in the previous loop does not change compared to that in the previous loop. Iterate. Where W is a specified positive constant.
(ステップS2701~S2708)
これらのステップにおいて、ステップS1601~S1608と同様の処理を実行する。
(Steps S2701 to S2708)
In these steps, processing similar to that in steps S1601 to S1608 is executed.
(ステップS2709)
本ステップにおいて、信号分離部1501は、次の数10に基づいて、推定に用いる観測信号の時間長Tを決定する。ただし、Cは規定の正の定数であり、Vは物質iが「有り」と推定された収集部の個数である。
Figure JPOXMLDOC01-appb-M000010
(Step S2709)
In this step, the signal separation unit 1501 determines the time length T of the observation signal used for estimation based on the following Equation 10. However, C is a predetermined positive constant, and V is the number of collection parts in which the substance i is estimated to be “present”.
Figure JPOXMLDOC01-appb-M000010
 前述のとおり、推定に用いる観測信号の時間長Tが長いほど、検知対象の物質や微粒子の量の時々刻々の時間変化への追従性が低下するが、推定精度は向上する。その一方で、時間長Tが短いほど、検知対象の物質や微粒子の量の時々刻々の時間変化への追従性が向上する。数10は、Vが大きいほど、長時間の観測信号が必要であることを考慮して、Tを長くし、Vが小さいほど、短時間の観測信号で十分推定できることを考慮して、Tを短くすることで、十分な推定精度を得るために必要な時間長をTに設定している。これにより、本ステップでは推定精度と時間変化への追従性のバランスを自動的に調整することができる。 As described above, the longer the time length T of the observation signal used for estimation, the lower the follow-up to the temporal change in the amount of the substance to be detected and the amount of fine particles, but the estimation accuracy improves. On the other hand, the shorter the time length T, the better the follow-up to the temporal change in the amount of the substance to be detected and the amount of fine particles. In consideration of the fact that the larger V is, the longer the observation signal is required, the longer T is, and the smaller V is, the shorter the observation signal is, the better estimation is possible. By shortening, the time length necessary to obtain sufficient estimation accuracy is set to T. Thereby, in this step, the balance between the estimation accuracy and the followability to the time change can be automatically adjusted.
[結果画面例]
 図17に、結果出力部1503(ユーザインタフェース部105)が出力する結果画面例を示す。本実施例の場合、個々の収集部115_1~Nの配置マップに重ねるように、ある対象物質に対応する濃度c_niの空間分布が2次元画像として表示される。これにより、ユーザは、各計測対象位置での計測対象物質の濃度分布を知ることができる。
[Result screen example]
FIG. 17 shows an example of a result screen output by the result output unit 1503 (user interface unit 105). In the present embodiment, the spatial distribution of the concentration c_ni corresponding to a certain target substance is displayed as a two-dimensional image so as to be superimposed on the arrangement map of the individual collection units 115_1 to N. Thereby, the user can know the concentration distribution of the measurement target substance at each measurement target position.
[まとめ]
 本実施例に係る分析システムを用いれば、実施例2の場合と同様、各計測対象位置(収集部)からの微粒子を混合するので全ての収集部を計測するまでの時間が短く済むので、逐次各点収集方法に比べて見逃しが少ない。また、本実施例に係る分析システムは、各計測対象位置(収集部)から複数回ずつ微粒子を回収集するため、逐次各点収集方法に比べてセンサの観測信号の時刻ごとの誤差や収集部の収集量の時刻ごとの誤差の影響を受け難く済む。
[Summary]
If the analysis system according to the present embodiment is used, since the fine particles from each measurement target position (collection unit) are mixed as in the case of the second embodiment, the time until all the collection units are measured can be shortened. Less overlooked than each point collection method. In addition, since the analysis system according to the present embodiment collects the microparticles multiple times from each measurement target position (collection unit), the error and the collection unit of the observation signal of the sensor at each time are sequentially compared with each point collection method. It is hard to be influenced by the error of the collected amount for each time.
 また、本実施例に係る分析システムは、全点混合収集方法に比べて混合する収集部の数が少なく済むため、全ての計測対象位置(収集部)から微粒子を同時に収集する場合に比して化学雑音が小さく、定性分析及び定量分析の推定精度が高くなる。さらに、本実施例に係る分析システムは、全点混合収集方法では不可能な計測対象位置ごとの定性分析及び定量分析を実行できる。 In addition, since the analysis system according to the present embodiment requires a smaller number of collecting units to be mixed as compared with the all-point mixed collecting method, compared with the case of collecting particles from all measurement target positions (collecting units) at the same time. Chemical noise is small, and estimation accuracy of qualitative analysis and quantitative analysis is high. Furthermore, the analysis system according to the present embodiment can perform qualitative analysis and quantitative analysis for each measurement target position, which is impossible with the all-point mixed collection method.
 さらに、本実施例に係る分析システムを、大気分析システム、水質分析システム、セキュリティ用途の爆発物トレース検知システムや化学剤検知システムで用いる場合、同じ質量対電荷比(m/z)を持つ多種類の物質が同時に発生する場合でも、同じ成分が同時に発生する位置が少数であるという性質がある。本実施例に係る分析システムは、この性質を利用し、同じ成分が同時に発生する測定対象位置が少数であるような分離結果を優先して出力することにより、計測時間が短い、すなわち計測回数が少ない場合でも、複数存在する分離結果の候補を適切に絞ることができる。従って、同じ質量対電荷比(m/z)を持つ多種類の物質が同時に発生する場合でも、各計測対象位置における高速な定性分析や高速な定量分析が可能である。 Furthermore, when the analysis system according to the present embodiment is used in an atmospheric analysis system, a water quality analysis system, an explosive trace detection system for security use, or a chemical agent detection system, various types having the same mass-to-charge ratio (m / z). Even if these substances are generated at the same time, there is a property that the same component is generated at a small number of positions simultaneously. The analysis system according to the present embodiment uses this property and outputs by giving priority to a separation result in which there are a small number of measurement target positions where the same component is generated at the same time. Even when the number is small, a plurality of separation result candidates can be appropriately narrowed down. Therefore, even when many types of substances having the same mass-to-charge ratio (m / z) are generated at the same time, high-speed qualitative analysis and high-speed quantitative analysis at each measurement target position are possible.
[実施例4]
 本実施例では、計測対象位置(収集部)の数がセンサの個数よりも多く、かつ、高速スループットが要求される場合でも、高精度での定性分析や定量分析が可能な分析システムについて説明する。本実施例に係る分析システムが、前述した実施例3に係る分析システムと異なる点は、分離処理部1501が出力する定性分析の結果に基づいて収集制御処理を行う点である。
[Example 4]
In this embodiment, an analysis system capable of performing qualitative analysis and quantitative analysis with high accuracy even when the number of measurement target positions (collection units) is larger than the number of sensors and high-speed throughput is required will be described. . The difference between the analysis system according to the present embodiment and the analysis system according to the third embodiment described above is that the collection control process is performed based on the result of the qualitative analysis output from the separation processing unit 1501.
 図18に、実施例4に係る分析システムの機能ブロック構成を示す。なお、図18には図15との対応部分に同一符号を付して示している。以下、本実施例に特有の構成について説明する。図18に示すように、本実施例に係る収集制御部1801は、分離処理部1501から出力される定性分析の結果をフィードバックする経路を有している。収集制御部1801は、分離処理部1501が出力する各位置の定性分析の結果に基づいて収集部115_1~115_Nに割り当てる流量a(t)=(a_t1, ..., a_tN)を決定し、各値を収集部115_1~115_Nに出力する。 FIG. 18 shows a functional block configuration of the analysis system according to the fourth embodiment. In FIG. 18, the same reference numerals are assigned to the corresponding parts to those in FIG. Hereinafter, a configuration unique to the present embodiment will be described. As illustrated in FIG. 18, the collection control unit 1801 according to the present embodiment has a path for feeding back the qualitative analysis result output from the separation processing unit 1501. The collection control unit 1801 determines the flow rate a (t) = (a_t1,..., A_tN) to be assigned to the collection units 115_1 to 115_N based on the result of the qualitative analysis of each position output from the separation processing unit 1501, The value is output to the collection units 115_1 to 115_N.
[収集制御処理(その1)]
 図19に、本実施例に係る分析システムで使用する収集制御処理S307の詳細動作例を示す。以下の処理では、収集部に付されている全ての番号の集合を全収集部番号集合Sとし、当該集合Sを任意に2等分して生成される集合をS1(t)及びS2(t)とする。また、計測開始時(t=0)における収集部番号集合S1(-1)には、全収集部番号集合Sが格納されているものとする。すなわち、初期化されているものとする。収集部番号集合S1(t)とS2(t)は、いずれも次の時刻の計測後の収集制御処理S307の実行時まで保持し、使用するものとする。
[Collection control processing (part 1)]
FIG. 19 shows a detailed operation example of the collection control process S307 used in the analysis system according to the present embodiment. In the following processing, a set of all numbers assigned to the collection unit is set as a total collection unit number set S, and sets generated by arbitrarily dividing the set S into two equal parts are S1 (t) and S2 (t ). Further, it is assumed that the collection unit number set S1 (-1) at the start of measurement (t = 0) stores all collection unit number sets S. That is, it has been initialized. The collection unit number sets S1 (t) and S2 (t) are both held and used until the execution of the collection control process S307 after the next time measurement.
(ステップS1901)
 本ステップにおいて、収集制御部1801として機能する中央演算装置104(以下「収集制御部1801」という。)は、S1(t-1)が全収集部番号集合Sであるか否かを判定する。S1(t-1)が全収集部番号集合Sであれば、収集制御部1801はステップS1902に進み、そうでなければS1905に進む。
(Step S1901)
In this step, the central processing unit 104 functioning as the collection control unit 1801 (hereinafter referred to as “collection control unit 1801”) determines whether S1 (t−1) is the total collection unit number set S or not. If S1 (t-1) is the total collection unit number set S, the collection control unit 1801 proceeds to step S1902, and otherwise proceeds to S1905.
(ステップS1902)
 本ステップにおいて、収集制御部1801は、XR^+のi列目のベクトルである対象物質iに対する観測信号yのt-1番目の要素(すなわち、直前の時刻t-1の信号値y_(t-1))がある閾値以上か否か判定する。「閾値以上」の場合、収集制御部1801は、その物質iを「有り」と判定する。いずれかの対象物質iを「有り」と判定した場合、収集制御部1801は、ステップS1903に進み、そうでなければステップS1904に進む。
(Step S1902)
In this step, the collection control unit 1801 obtains the t-1th element of the observation signal y for the target substance i that is the vector in the i-th column of XR ^ + (that is, the signal value y_ (t at the previous time t-1). -1)) It is determined whether or not it exceeds a certain threshold. In the case of “greater than or equal to the threshold value”, the collection control unit 1801 determines that the substance i is “present”. When it is determined that any target substance i is “present”, the collection control unit 1801 proceeds to step S1903, and otherwise proceeds to step S1904.
(ステップS1903)
 本ステップにおいて、収集制御部1801は、全収集部番号集合Sをランダムに2等分し、2等分後の集合要素を収集部番号集合S1(t)とS2(t)に格納する。
(ステップS1904)
 本ステップにおいて、収集制御部1801は、全収集部番号集合Sを収集部番号集合S1(t)に格納する。
(Step S1903)
In this step, the collection control unit 1801 randomly divides the entire collection unit number set S into two equal parts, and stores the set elements after bisection into the collection unit number sets S1 (t) and S2 (t).
(Step S1904)
In this step, the collection control unit 1801 stores all the collection unit number sets S in the collection unit number set S1 (t).
(ステップS1905)
 本ステップにおいて、収集制御部1801は、XR^+のi列目のベクトルである対象物質iに対する観測信号yのt-1番目の要素(すなわち、直前の時刻t-1の信号値y_(t-1))がある閾値以上か否かを判定する。「閾値以上」の場合、収集制御部1801は、その物質iを「有り」と判定する。いずれかの対象物質iを「有り」と判定した場合、収集制御部1801は、ステップS1906に進み、そうでなければステップS1907に進む。
(Step S1905)
In this step, the collection control unit 1801 obtains the t-1th element of the observation signal y for the target substance i that is the vector in the i-th column of XR ^ + (that is, the signal value y_ (t at the previous time t-1). -1)) Determine if it is above a certain threshold. In the case of “greater than or equal to the threshold value”, the collection control unit 1801 determines that the substance i is “present”. If it is determined that any target substance i is “present”, the collection control unit 1801 proceeds to step S1906, and otherwise proceeds to step S1907.
(ステップS1906)
 本ステップにおいて、収集制御部1801は、収集部番号集合S1(t-1)をランダムに2等分し、2等分後の集合要素を収集部番号集合S1(t)とS2(t)に格納する。
(ステップS1907)
 本ステップにおいて、収集制御部1801は、収集部番号集合S2(t-1)をランダムに2等分し、2等分後の集合要素を収集部番号集合S1(t)とS2(t)に格納する。
(Step S1906)
In this step, the collection control unit 1801 randomly divides the collection unit number set S1 (t-1) into two equal parts, and sets the set elements after the bisection into the collection unit number sets S1 (t) and S2 (t). Store.
(Step S1907)
In this step, the collection control unit 1801 randomly divides the collection unit number set S2 (t-1) into two equal parts, and sets the set elements after the bisection into the collection unit number sets S1 (t) and S2 (t). Store.
(ステップS1908)
 本ステップにおいて、収集制御部1801は、収集部番号集合S1(t)に含まれる収集部番号の要素を“1”とし、それ以外の要素(すなわち、収集部番号集合S’(=S-S1(t))に含まれる収集部番号の要素)を“0”とするように生成したN次元ベクトルを収集量信号a(t)に格納する。a(t)のN次元の各要素は、N個の各収集部の流量を表している。
(ステップS603)
 本ステップにおいて、収集制御部1801は、収集量信号a(t)をマルチチャンネルの開閉制御電圧値に変換して出力する。
(Step S1908)
In this step, the collection control unit 1801 sets the element of the collection unit number included in the collection unit number set S1 (t) to “1” and other elements (that is, the collection unit number set S ′ (= S−S1). The N-dimensional vector generated so that the element of the collection unit number included in (t)) is set to “0” is stored in the collection amount signal a (t). Each N-dimensional element of a (t) represents the flow rate of each of the N collection units.
(Step S603)
In this step, the collection control unit 1801 converts the collection amount signal a (t) into a multi-channel switching control voltage value and outputs it.
 前述の図19に示す処理動作によれば、対象物質が存在する可能性がある収集部番号集合S1(t)に対応する収集部について優先的に微粒子が収集されるように収集動作を制御できる。この結果、分析システムとして高速に検知を完了する。 According to the processing operation shown in FIG. 19, the collection operation can be controlled so that fine particles are preferentially collected for the collection unit corresponding to the collection unit number set S1 (t) in which the target substance may exist. . As a result, the detection is completed at high speed as the analysis system.
[収集制御処理(その2)]
 図20に、収集制御処理S307の他の詳細動作例を示す。図20には、図19との対応部分に同一符号を付して示す。図20に示す処理動作と図19に示す処理動作の違いは、ステップ1908と(ステップS1903、ステップS1904、ステップS1906、ステップS1907)との間にステップS2001が存在する点である。
[Collection control processing (2)]
FIG. 20 shows another detailed operation example of the collection control process S307. In FIG. 20, parts corresponding to those in FIG. The difference between the processing operation shown in FIG. 20 and the processing operation shown in FIG. 19 is that step S2001 exists between step 1908 and (step S1903, step S1904, step S1906, step S1907).
(ステップS2001)
 本ステップにおいて、収集制御部1801は、収集に用いる収集部番号集合S1(t)以外の要素(すなわち、収集部番号集合S’(=S-S1(t))に含まれる収集部番号の要素)の中からr個をランダムに選択し、収集部番号集合S1(t)に追加する。この処理の場合も、図19に示す処理動作と同様、対象物質が存在する可能性がある収集部番号集合S1(t)の要素である収集部について優先的に微粒子を収集するように収集量を制御できる。このため、高速に検知を完了することができる。さらに、図20に示す処理動作では、一度は収集対象から除外した収集部(収集部番号集合S’(=S-S1(t))に含まれる収集部番号の要素)からも幾つかの収集部を選んで収集対象に追加するため、センサ100の観測信号Xの時刻ごとの誤差や収集部の収集量の時刻ごとの誤差の影響による検知漏れを受け難くできる。
(Step S2001)
In this step, the collection control unit 1801 collects the elements of the collection unit numbers included in the elements other than the collection unit number set S1 (t) used for collection (that is, the collection unit number set S ′ (= S−S1 (t)). ) Are randomly selected from the list and added to the collection unit number set S1 (t). In the case of this processing as well, as in the processing operation shown in FIG. 19, the collection amount so as to preferentially collect fine particles for the collection unit that is an element of the collection unit number set S1 (t) that may contain the target substance. Can be controlled. For this reason, detection can be completed at high speed. Further, in the processing operation shown in FIG. 20, several collections are also made from collection units (collection unit number elements included in the collection unit number set S ′ (= S−S1 (t)) once excluded from collection targets. Since a part is selected and added to the collection target, detection omission due to the influence of the error of the observation signal X of the sensor 100 for each time and the error of the collection amount of the collection part for each time can be made difficult.
[収集制御処理(その3)]
 図28に、収集制御処理S307の詳細動作例を示す。図28には、図6との対応部分に同一符号を付して示す。図28に示す処理動作と図6に示す処理動作の違いは、開始と(ステップS601、ステップS602、ステップS603)との間にステップ2801が存在する点である。
[Collection control processing (part 3)]
FIG. 28 shows a detailed operation example of the collection control process S307. In FIG. 28, parts corresponding to those in FIG. The difference between the processing operation shown in FIG. 28 and the processing operation shown in FIG. 6 is that step 2801 exists between the start and (step S601, step S602, step S603).
(ステップS2801)
 本ステップにおいて、収集制御部1801は、数11によりGを決定する。ただし、Cは規定の正の定数であり、Vは物質iが「有り」と推定された収集部の個数である。
Figure JPOXMLDOC01-appb-M000011
本ステップでは、収集制御部1801は、数11により、Vが大きいほどGを小さくし、Vが小さいほどGを大きくする。
(Step S2801)
In this step, the collection control unit 1801 determines G according to Equation 11. However, C is a predetermined positive constant, and V is the number of collection parts in which the substance i is estimated to be “present”.
Figure JPOXMLDOC01-appb-M000011
In this step, according to Equation 11, the collection control unit 1801 decreases G as V increases, and increases G as V decreases.
 計測対象の物質又は微粒子が存在する位置(収集部)の個数が少数に限られる場合、本実施例が持つ、複数の収集部から物質又は微粒子を混合して計測する機能、および、観測信号から各収集部の物質又は微粒子の存在有無を推定する機能の組み合わせは、計測時間を削減し、各計測対象位置における定性分析や高速な定量分析を高速化するという効果を有する。 When the number of positions (collection units) where the measurement target substance or fine particles exist is limited to a small number, the present embodiment has a function of mixing and measuring substances or fine particles from a plurality of collection units, and an observation signal. The combination of functions for estimating the presence or absence of substances or fine particles in each collection unit has the effect of reducing measurement time and speeding up qualitative analysis and high-speed quantitative analysis at each measurement target position.
 最も極端な例として、仮に、どの収集部においても計測対象の物質又は微粒子が存在しない場合には、化学雑音を無視すると、全収集部を同時に混合する「全点混合収集方法」が最適である。これは、このような場合には全ての収集部の物質又は微粒子を混合しても、物質が存在すると推定されないため、1回の収集で「どの収集部においても計測対象の物質又は微粒子が存在しない」ことが分かるからである。 As the most extreme example, if there are no substances or fine particles to be measured in any collection unit, the "all-point mixed collection method" that mixes all the collection units at the same time is optimal if chemical noise is ignored. . This is because in such a case, it is not estimated that the substance is present even if the substances or fine particles of all the collecting parts are mixed. It is because it understands that it does not do.
 他方、計測対象の物質又は微粒子が存在する位置(収集部)の個数が多い場合には、計測時間を削減する効果は小さい。特に、全ての収集部において計測対象の物質又は微粒子が存在する場合には、むしろ各収集部一つずつに対して収集を実施する、すなわち、前述の逐次各点収集方法が最適である。これは、このような場合には、どのような収集部を組み合わせて混合しても、計測対象の物質又は微粒子が「有り」であるため、混合により得られる情報量は増えず、さらに、N>Tならば劣決定条件であるため、逆に情報量が低減しているからである。 On the other hand, when there are a large number of positions (collecting units) where the substances or fine particles to be measured are present, the effect of reducing the measurement time is small. In particular, when substances or fine particles to be measured are present in all the collection units, the collection is performed for each collection unit, that is, the sequential point collection method described above is optimal. This is because, in such a case, no matter what collection unit is combined and mixed, the substance or fine particles to be measured is “present”, so the amount of information obtained by mixing does not increase. If it is> T, it is an underdetermined condition, and conversely, the information amount is reduced.
 本動作例は、計測対象の物質又は微粒子が存在する位置(収集部)の個数の推定値であるVに応じてGを制御することで、最も得られる情報量が多くなるように制御することが可能であり、同じ計測時間であってもできるだけ定性分析や定量分析の精度を高めることができる。 In this operation example, G is controlled according to V, which is an estimate of the number of positions (collection units) where the measurement target substance or fine particles are present, so that the maximum amount of information can be obtained. It is possible to improve the accuracy of qualitative analysis and quantitative analysis as much as possible even with the same measurement time.
[まとめ]
 以上のように、本実施例に係る分析システムを用いれば、定性分析の結果の情報を用いて対象物質が存在する可能性がある収集部から優先的に微粒子を収集するように収集量信号を生成するため、高速かつ高精度で定性分析や定量分析を実行することができる。
[Summary]
As described above, when the analysis system according to the present embodiment is used, the collected amount signal is preferentially collected from the collection unit where the target substance may exist using the information of the result of the qualitative analysis. Therefore, qualitative analysis and quantitative analysis can be performed at high speed and with high accuracy.
[実施例5]
 本実施例では、各収集部からセンサ100までの経路長が収集部毎に異なる場合について検討する。各収集部からセンサ100までの経路長に違いがある場合、たとえ同じ量の微粒子等が存在する収集部に対して同じ収集量信号を与えたとしても実際に収集される量(すなわち、感度)は、収集部毎に異なる場合がある。
[Example 5]
In the present embodiment, a case where the path length from each collecting unit to the sensor 100 is different for each collecting unit will be considered. When there is a difference in path length from each collecting unit to the sensor 100, the amount actually collected even if the same collecting amount signal is given to the collecting unit in which the same amount of fine particles or the like exists (ie, sensitivity) May differ from one collection unit to another.
 また、収集部115_1~115_Nから収集された微粒子や気体がセンサ100に到達するまでに時間を要する場合、高速制御を行うことができず、収集量信号の切り替え時刻と実際の観測信号Xの時刻との間に遅延が発生する。これにより、例えば収集量信号が開状態(すなわち“1”)の時刻でも実際に収集される量が想定よりも少ない時間や収集量信号が閉状態(すなわち“0”)の時刻でも実際に収集される量が想定以上である時間が発生する。そこで本実施例では、収集部や時刻に応じて感度が異なる場合や高速制御が困難な場合にも、高精度での定性分析や定量分析が可能な分析システムの例を説明する。 In addition, when it takes time for the fine particles or gas collected from the collection units 115_1 to 115_N to reach the sensor 100, high-speed control cannot be performed, and the collection time signal switching time and the actual observation signal X time A delay occurs between For example, even when the collected signal is open (ie, “1”), the amount actually collected is less than expected, or even when the collected signal is closed (ie, “0”). The amount of time that occurs is greater than expected. Therefore, in this embodiment, an example of an analysis system capable of performing qualitative analysis and quantitative analysis with high accuracy even when the sensitivity differs according to the collection unit and time or when high-speed control is difficult will be described.
[分析システムのハードウェア構成]
 本実施例に係る分析システムと実施例1に係る分析システムの違いは、各収集部の近傍に異なる標準剤を設置する点である。図21に、本実施例に係る分析システム2101のハードウェア構成を示す。図21には、図1との対応部分に同一符号を付して示す。図21に示すように、本実施例の場合、各収集部115_1~115_Nの近傍には標準剤2102_1~2102_Nが設置されている。標準剤2102_1~2102_Nは、それぞれ異なる質量点にピークを有する物質である。
[Hardware configuration of analysis system]
The difference between the analysis system according to the present embodiment and the analysis system according to Embodiment 1 is that a different standard agent is installed in the vicinity of each collection unit. FIG. 21 illustrates a hardware configuration of the analysis system 2101 according to the present embodiment. In FIG. 21, parts corresponding to those in FIG. As shown in FIG. 21, in the case of the present embodiment, standard agents 2102_1 to 2102_N are installed in the vicinity of the collecting units 115_1 to 115_N. Standard agents 2102_1 to 2102_N are substances having peaks at different mass points.
[分析システムの機能構成]
 図22に、本実施例の分析システム2101の機能ブロック構成を示す。なお、図22には、図15との対応部分に同一符号を付して示している。本実施例の特徴部分は、分離処理部2202と標準剤データベース2201である。標準剤データベース2201には、標準剤毎のスペクトルテンプレートと検量線とが格納されている。分離処理部2202は、標準剤データベース2201からテンプレートと検量線とを読み出し、紺促進号Xを各計測対象位置(収集部)に対応する分離信号に分離する。
[Functional structure of analysis system]
FIG. 22 shows a functional block configuration of the analysis system 2101 of this embodiment. Note that, in FIG. 22, the same reference numerals are given to portions corresponding to FIG. 15. The characteristic parts of this embodiment are a separation processing unit 2202 and a standard agent database 2201. The standard agent database 2201 stores a spectrum template and a calibration curve for each standard agent. The separation processing unit 2202 reads the template and the calibration curve from the standard agent database 2201, and separates the wrinkle promotion sign X into separation signals corresponding to each measurement target position (collection unit).
[分離処理の詳細]
 図23に、本実施例において実行される分離処理S309の詳細動作例を示す。
(ステップS2301)
 本ステップにおいて、分離処理部2202として機能する中央演算装置104(以下「分離処理部2202」という。)は、標準剤データベース2201から各標準剤n(各収集部nに対応)のスペクトルテンプレートR_n=(r_n1, ..., r_nM)と検量線c_n(w)とを読み出し、これらを用いて収集量信号を補正する。具体的には、収集部nの流量a_tnを重み付き平均した質量スペクトルx'_nとR_nとの内積値wを計算し、wを検量線c_n(w)に代入して、収集部nが開状態(すなわち“1”)の時点の感度c_nを推定する。そして、収集量信号の行列A=(a(1), a(2), ..., a(t))のn列目の要素に感度c_nを乗算し、感度を補正した後の収集量信号の行列Aを得る。
[Details of separation processing]
FIG. 23 shows a detailed operation example of the separation processing S309 executed in the present embodiment.
(Step S2301)
In this step, the central processing unit 104 (hereinafter referred to as “separation processing unit 2202”) functioning as the separation processing unit 2202 obtains a spectrum template R_n = from each standard agent n (corresponding to each collection unit n) from the standard agent database 2201. (r_n1,..., r_nM) and a calibration curve c_n (w) are read out, and the collected amount signal is corrected using these. Specifically, the inner product value w of the mass spectrum x′_n and R_n obtained by weighted averaging of the flow rate a_tn of the collection unit n is calculated, and w is substituted into the calibration curve c_n (w), so that the collection unit n is opened. The sensitivity c_n at the time of the state (ie, “1”) is estimated. The collection amount after the sensitivity c_n is multiplied by the element in the n-th column of the collection amount signal matrix A = (a (1), a (2), ..., a (t)) and the sensitivity is corrected Get the signal matrix A.
(ステップS2302)
 本ステップにおいて、分離処理部2202は、各収集部nの感度c_nが規定の範囲内か否か判定する。分離処理部2202は、各感度c_nが規定の範囲内の場合は混合が正常であると判定してステップS2304に進み、各感度c_nが規定の範囲外の場合は混合が異常であると判定してステップS2303に進む。
(ステップS2303)
 本ステップにおいて、分離処理部2202は、感度c_nが規定の範囲外であると判定された収集部nの情報を、ユーザインタフェース部105を通じて提示する。
(Step S2302)
In this step, the separation processing unit 2202 determines whether or not the sensitivity c_n of each collection unit n is within a specified range. The separation processing unit 2202 determines that the mixing is normal when each sensitivity c_n is within the specified range and proceeds to step S2304, and determines that the mixing is abnormal when each sensitivity c_n is outside the specified range. Then, the process proceeds to step S2303.
(Step S2303)
In this step, the separation processing unit 2202 presents information on the collection unit n determined that the sensitivity c_n is out of the specified range through the user interface unit 105.
(ステップS2304~S2309)
 これらのステップは、各収集部nに対応する感度c_nがいずれも規定の範囲内であると判定された場合に実行される。なお、各ステップは記述のステップに対応するので詳細な説明を省略する。例えばステップS2304(入力信号変換処理)はステップS1602に対応し、ステップS2305(残差ベクトル初期化処理)はステップS1402に対応する。ステップS2306(最近傍混合パターン検索処理)はステップS1403に対応し、ステップS2307(残差信号更新処理)はステップS1404に対応する。ステップS2308(最近傍混合パターン除去処理)はステップS1405に対応する。ステップS2309(定量処理)はステップS1607に対応し、ステップS2310(閾値処理)はステップS1608に対応する。
(Steps S2304 to S2309)
These steps are executed when it is determined that the sensitivities c_n corresponding to the respective collection units n are all within the specified range. Since each step corresponds to the described step, detailed description is omitted. For example, step S2304 (input signal conversion processing) corresponds to step S1602, and step S2305 (residual vector initialization processing) corresponds to step S1402. Step S2306 (nearest neighbor mixed pattern search process) corresponds to step S1403, and step S2307 (residual signal update process) corresponds to step S1404. Step S2308 (nearest neighbor mixed pattern removal process) corresponds to step S1405. Step S2309 (quantitative processing) corresponds to step S1607, and step S2310 (threshold processing) corresponds to step S1608.
[まとめ]
 本実施例に係る分析システムを用いれば、収集部間や時間に応じて感度が異なる場合にも、感度を揃っている場合にのみ分離処理を実行する。このため、高い検出精度を保証することができる。さらに、感度に異常が発見された収集部を容易に知ることができるため、収集部の保守作業を効率化することができる。
[Summary]
If the analysis system according to the present embodiment is used, the separation process is executed only when the sensitivity is the same even when the sensitivity varies depending on the collection unit and time. For this reason, high detection accuracy can be guaranteed. Furthermore, since it is possible to easily know the collection unit in which an abnormality is found in sensitivity, the maintenance work of the collection unit can be made efficient.
[実施例6]
 本実施例では、計測対象位置(収集部)の数がセンサ100の個数よりも多い場合に、収集部毎に感度が異なる場合でも、定性分析や定量分析を高精度に実行できる分析システムの例を説明する。
[Example 6]
In this embodiment, when the number of measurement target positions (collection units) is larger than the number of sensors 100, an example of an analysis system that can perform qualitative analysis and quantitative analysis with high accuracy even when the sensitivity differs for each collection unit. Will be explained.
[分析システムのハードウェア構成]
 本実施例に係る分析システムと実施例1に係る分析システムの違いは、複数のセンサを用いる点である。図24に、本実施例に係る分析システム2401のハードウェア構成を示す。本実施例の分析システム2401は、複数の収集部2402_1~2402_N、複数の混合部2403_1~2403_K、複数の配管2404_1~2404_K、複数のセンサ2405_1~2405_Kを含んでいる。ただし、N及びKは、N>Kを満たす自然数である。
[Hardware configuration of analysis system]
The difference between the analysis system according to the present embodiment and the analysis system according to the first embodiment is that a plurality of sensors are used. FIG. 24 illustrates a hardware configuration of the analysis system 2401 according to the present embodiment. The analysis system 2401 of this embodiment includes a plurality of collection units 2402_1 to 2402_N, a plurality of mixing units 2403_1 to 2403_K, a plurality of pipes 2404_1 to 2404_K, and a plurality of sensors 2405_1 to 2405_K. However, N and K are natural numbers that satisfy N> K.
 例えば収集部2402_1~2402_Nが蒸気吸気口の場合、マルチチャンネルDA変換器111から入力された電圧値に基づいた電磁バルブの開閉により吸入する蒸気や霧状液滴の流量を制御できる。各収集部2402_1~2402_Nは並列配置されたK個の電磁バルブを有しており、それらの開閉を独立に制御できる。 For example, when the collection units 2402_1 to 2402_N are steam inlets, the flow rate of the steam or mist droplets to be sucked can be controlled by opening and closing the electromagnetic valve based on the voltage value input from the multi-channel DA converter 111. Each of the collecting units 2402_1 to 2402_N has K electromagnetic valves arranged in parallel, and the opening and closing thereof can be controlled independently.
 また例えば収集部2402_1~2402_Nが微粒子収集機構の場合、マルチチャンネルDA変換器111から入力された電圧値に基づいてサイクロン現象を起こすか否かにより収集する微粒子の量を制御できる。この場合、各収集部2402_1~2402_Nは、並列配置されたK個のサイクロン機構を有しており、それらの起動と停止を独立に制御できる。 For example, when the collection units 2402_1 to 2402_N are fine particle collection mechanisms, the amount of fine particles to be collected can be controlled based on whether or not the cyclone phenomenon occurs based on the voltage value input from the multi-channel DA converter 111. In this case, each of the collection units 2402_1 to 2402_N has K cyclone mechanisms arranged in parallel, and can start and stop them independently.
 収集部2402_1~2402_Nで収集された蒸気若又は霧状液滴又は微粒子は、並列に配置されたK個の混合部2403_1~2403_Nに収集される。混合部2403_1~2403_Kには1対1の関係でK個の配管2404_1~2402_Kが接続されており、この配管内で各収集部2402_1~2402_Nから収集された蒸気若又は霧状液滴又は微粒子がセンサ2405_1~2405_Kに送られる。例えば質量分析処理の場合、センサ2405_1~2405_Kのそれぞれにおいて質量分析が実行され、M次元のベクトルで与えられる質量スペクトルが得られる。これらM次元のK個のベクトルを直列に接続したMK次元のベクトルx = (x_1 ... x_K)を観測信号Xとして、前述の実施例と同様の処理を実行する。 Vapor-young or mist-like droplets or fine particles collected by the collecting units 2402_1 to 2402_N are collected by K mixing units 2403_1 to 2403_N arranged in parallel. K pipes 2404_1 to 2402_K are connected to the mixing units 2403_1 to 2403_K in a one-to-one relationship, and steam or mist-like droplets or fine particles collected from the collecting units 2402_1 to 2402_N in the pipes are connected. It is sent to the sensors 2405_1 to 2405_K. For example, in the case of mass analysis processing, mass analysis is performed in each of the sensors 2405_1 to 2405_K, and a mass spectrum given by an M-dimensional vector is obtained. The MK-dimensional vector x = (x_1 ... x_K) obtained by connecting these M-dimensional K vectors in series is used as the observation signal X, and the same processing as in the above-described embodiment is executed.
[まとめ]
 本実施例に係る分析システムのように複数のセンサを用いれば、観測信号Xの情報量が増加し、定性分析や定量分析の精度を向上できる。特に、一台当たりのセンサの価格、メンテナンスコストが比較的低い場合には、本実施例のように、センサ数を増加させることで、より少ない時刻ポイント数であっても、信号分離の精度、定性分析や定量分析の精度を高めることができる。
[Summary]
If a plurality of sensors are used as in the analysis system according to the present embodiment, the amount of information of the observation signal X increases, and the accuracy of qualitative analysis and quantitative analysis can be improved. In particular, when the sensor price per unit and the maintenance cost are relatively low, by increasing the number of sensors as in this embodiment, the accuracy of signal separation, even with a smaller number of time points, The accuracy of qualitative analysis and quantitative analysis can be improved.
[他の実施例]
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[Other embodiments]
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
 10…分析システム、100…センサ、101…配管、104…中央演算装置、105…ユーザインタフェース部、111…マルチチャンネルDA変換器、115_1~115_N…収集部、116…混合部、201…収集制御部、202…分離処理部、1501…分離処理部、1502…対象物質データベース、1503…結果出力部、1801…収集制御部、2101…分析システム、2102…標準剤、2201…標準剤データベース、2202…分離処理部、2401…分析システム、2402_1~2402_N…収集部、2403_1~2403_K…混合部、2404_1~2404_K…配管、2405_1~2405_K…センサ。 DESCRIPTION OF SYMBOLS 10 ... Analysis system, 100 ... Sensor, 101 ... Piping, 104 ... Central processing unit, 105 ... User interface part, 111 ... Multichannel DA converter, 115_1-115_N ... Collection part, 116 ... Mixing part, 201 ... Collection control part , 202 ... separation processing unit, 1501 ... separation processing unit, 1502 ... target substance database, 1503 ... result output unit, 1801 ... collection control unit, 2101 ... analysis system, 2102 ... standard agent, 2201 ... standard agent database, 2202 ... separation Processing unit, 2401 ... analysis system, 2401-2_1 to 2402_N ... collection unit, 2403_1 to 2403_K ... mixing unit, 2404_1 to 2404_K ... piping, 2405_1 to 2405_K ... sensor.

Claims (13)

  1.  外部から試料を収集するN(2以上の自然数)個の収集部と、
     前記N個の収集部から個別に収集された前記試料を混合し、混合試料を出力する混合部と、
     前記混合試料に含まれる物質の種別又は量を観測して観測信号を出力するK個(1以上N未満の自然数)のセンサと、
     前記N個の収集部と1対1に対応するN個の収集量信号を出力する収集制御部であって、各時点に個々の前記収集部から収集する前記試料の量を制御する前記N個の収集量信号の時刻間の類似度が低くなるように、前記N個の収集量信号を時刻毎に切り替える収集制御部と、
     各時刻に観測された前記観測信号と、各時刻における前記N個の収集量信号との関係に基づいて、前記N個の収集部のうちの1個の収集部のみから前記試料を収集して計測する場合における観測信号に当たる分離信号を、前記N個の収集部の全てについて推定する分離処理部と
     を有する分析システム。
    N (a natural number greater than or equal to 2) collection units collecting samples from the outside,
    Mixing the samples individually collected from the N collecting units, and outputting a mixed sample; and
    K sensors (a natural number less than or equal to 1 and less than N) that observe the type or amount of substances contained in the mixed sample and output an observation signal;
    A collection control unit that outputs N collection amount signals corresponding to the N collection units on a one-to-one basis, and controls the amount of the sample collected from each of the collection units at each time point. A collection control unit that switches the N collected amount signals at each time so that the similarity between the collected amount signals is low,
    Based on the relationship between the observed signal observed at each time and the N collected signal at each time, the sample is collected from only one of the N collecting units. An analysis system comprising: a separation processing unit that estimates a separation signal corresponding to an observation signal in the case of measurement for all of the N collection units.
  2.  請求項1に記載の分析システムにおいて、
     前記分離処理部が、
      個々の前記収集部に対応する前記分離信号p_n(nは1~N)に、各時刻τと個々の前記収集部に対応する前記収集量信号a_nτ(nは1~N)を乗算した乗算後信号を全ての前記収集部について加算して各時刻に対応する重み付き加算後信号を生成する処理と、
      生成された前記重み付き加算後信号と、各時刻τに対応する前記観測信号y_τとの類似度が大きくなるように、前記各収集部に対応する前記分離信号を推定する処理と
     を実行する
     ことを特徴とする分析システム。
    In the analysis system according to claim 1,
    The separation processing unit is
    After multiplication by multiplying the separated signal p_n (n is 1 to N) corresponding to each of the collection units by the collection amount signal a_nτ (n is 1 to N) corresponding to each time τ and each of the collection units A process of adding a signal for all the collecting units to generate a weighted added signal corresponding to each time;
    Performing the process of estimating the separated signals corresponding to the respective collection units so that the similarity between the generated post-weighted addition signal and the observed signal y_τ corresponding to each time τ is increased. An analysis system characterized by
  3.  請求項2に記載の分析システムにおいて、
     前記収集制御部は、前記試料の収集量が大きい時刻及び収集部ほど、前記各時刻τと前記個々の収集部に対応する前記収集量信号a_nτ(nは1~N)を大きな正の値に制御し、前記試料の収集量が小さい時刻及び収集部ほど、前記各時刻τと前記個々の収集部に対応する前記収集量信号a_nτ(nは1~N)を0(ゼロ)に近い値に制御する
     ことを特徴とする分析システム。
    The analysis system according to claim 2,
    The collection control unit sets the collection amount signal a_nτ (n is 1 to N) corresponding to each time τ and the individual collection unit to a large positive value as the collection amount of the sample is larger and the collection unit. The collection amount signal a_nτ (n is 1 to N) corresponding to each time τ and the individual collection units is set to a value close to 0 (zero) as the time and the collection unit with a small collection amount of the sample are controlled. An analysis system characterized by control.
  4.  請求項1に記載の分析システムにおいて、
     前記分離処理部は、N個の前記分離信号に含まれる非0(ゼロ)要素の数がより少なくなるように、個々の前記収集部に対応する前記分離信号を推定する
     ことを特徴とする分析システム。
    The analysis system according to claim 1,
    The separation processing unit estimates the separation signal corresponding to each of the collection units so that the number of non-zero (zero) elements included in the N separation signals is smaller. system.
  5.  請求項1に記載の分析システムにおいて
     複数の物質のスペクトルテンプレート及び検量線を格納する対象物質データベースを更に有し、
     前記分離処理部は、前記対象物質データベースから読み出した前記スペクトルテンプレート及び検量線に基づいて、個々の前記収集部から収集された前記試料に含まれる検知対象物質又は検知対象微粒子の量に対する指標を推定する
     ことを特徴とする分析システム。
    The analysis system according to claim 1, further comprising a target substance database that stores spectrum templates and calibration curves of a plurality of substances,
    The separation processing unit estimates an index for the amount of the detection target substance or the detection target fine particles contained in the sample collected from each of the collection units based on the spectrum template and the calibration curve read from the target substance database. An analysis system characterized by
  6.  請求項5に記載の分析システムにおいて、
     前記収集制御部は、前記指標に基づいて検知対象物質又は検知対象微粒子が存在する可能性が高い前記収集部から優先的に前記試料を収集するように、前記N個の収集量信号を時間変化させる
     ことを特徴とする分析システム。
    The analysis system according to claim 5,
    The collection control unit changes the N collection amount signals over time so as to preferentially collect the sample from the collection unit that is highly likely to contain a detection target substance or detection target fine particles based on the index. An analysis system characterized by
  7.  請求項4に記載の分析システムにおいて、
     雑音許容度の入力を受け付ける操作入力部を更に有し、
     前記分離処理部は、入力された前記雑音許容度が大きいほど前記重み付き加算後信号と前記観測信号との類似度の大きさに比べて、非0(ゼロ)要素の数の少なさを重視して分離信号を推定する
     ことを特徴とする分析システム。
    The analysis system according to claim 4,
    It further has an operation input unit that receives an input of noise tolerance,
    The separation processing unit places more importance on the smaller number of non-zero elements compared to the degree of similarity between the weighted added signal and the observed signal as the input noise tolerance is larger An analysis system characterized in that the separated signal is estimated.
  8.  請求項1に記載の分析システムにおいて、
     前記N個の収集部の近傍に配置され、それぞれが異なる質量点にピークを有するN個の標準剤と、
     前記N個の標準剤のスペクトルテンプレート及び検量線を格納する標準剤データベースを更に有し、
     前記分離処理部は、前記標準剤データベースから読み出した前記スペクトルテンプレート及び検量線に基づいて、前記推定時に使用する前記収集量信号を補正する
     ことを特徴とする分析システム。
    The analysis system according to claim 1,
    N standard agents arranged in the vicinity of the N collection units, each having a peak at a different mass point;
    A standard database storing spectral templates and calibration curves of the N standard drugs;
    The separation processing unit corrects the collected amount signal used at the time of the estimation based on the spectrum template and the calibration curve read from the standard agent database.
  9.  請求項8に記載の分析システムであって、
     前記分離処理部は、補正後の収集量信号に応じて各収集部の異常を検知する
     ことを特徴とする分析システム。
    The analysis system according to claim 8,
    The separation processing unit detects an abnormality of each collection unit according to the corrected collection amount signal.
  10.  請求項2に記載の分析システムにおいて、
     時刻ごとに雑音許容度の入力を受け付ける操作入力部を更に有し、
     前記分離処理部は、入力された前記雑音許容度が大きい時刻における前記重み付き加算後信号と前記観測信号との類似度の大きさに比べて、前記雑音許容度が小さい時刻における前記重み付き加算後信号と前記観測信号との類似度の大きさを重視して分離信号を推定する
     ことを特徴とする分析システム。
    The analysis system according to claim 2,
    It further has an operation input unit that accepts an input of noise tolerance at each time,
    The separation processing unit is configured to perform the weighted addition at a time when the noise tolerance is small as compared to a degree of similarity between the input signal after the weighted addition at the time when the noise tolerance is large and the observation signal. An analysis system characterized in that a separated signal is estimated with an emphasis on the degree of similarity between a post signal and the observed signal.
  11.  請求項2に記載の分析システムにおいて、
     前記分離処理部は、前記分離信号p_n(nは1~N)の値が0以上であるという制約の下で前記各収集部に対応する前記分離信号を推定する処理を更に実行する
     ことを特徴とする分析システム。
    The analysis system according to claim 2,
    The separation processing unit further executes a process of estimating the separation signal corresponding to each collection unit under a constraint that the value of the separation signal p_n (n is 1 to N) is 0 or more. Analysis system.
  12.  請求項5に記載の分析システムにおいて、
     前記収集制御部は、前記指標に基づいて検知対象物質又は検知対象微粒子が存在する可能性が高い前記収集部の個数が多いと推定されるほど、収集量信号を正の値に制御する収集部の個数を少なくし、
     前記指標に基づいて検知対象物質又は検知対象微粒子が存在する可能性が高い前記収集部の個数が少ないと推定されるほど、収集量信号を正の値に制御する収集部の個数を多くする
     ことを特徴とする分析システム。
    The analysis system according to claim 5,
    The collection control unit is configured to control the collection amount signal to a positive value as the number of the collection units that are highly likely to contain the detection target substance or the detection target fine particles is estimated based on the index. Reduce the number of
    The number of collection units that control the collection amount signal to a positive value is increased as the number of the collection units that are highly likely to contain a detection target substance or detection target fine particles is estimated based on the index. An analysis system characterized by
  13.  請求項5に記載の分析システムにおいて、
     前記分離処理部は、各時刻tにおいて、前記指標に基づいて検知対象物質又は検知対象微粒子が存在する可能性が高い前記収集部の個数が多いと推定されるほど、分離処理に用いる前記収集量信号a_nτ (nは1~N、τはt-T-1~t)と前記観測信号y_τ(nは1~N、τはt-T-1~t)の時間長Tを長くし、
     前記指標に基づいて検知対象物質又は検知対象微粒子が存在する可能性が高い前記収集部の個数が少ないと推定されるほど、分離処理に用いる前記収集量信号a_nτ (nは1~N、τはt-T-1~t)と前記観測信号y_τ(nは1~N、τはt-T-1~t)の時間長Tを短くする
     ことを特徴とする分析システム。
    The analysis system according to claim 5,
    The amount of collection used for the separation process increases as the number of the collection units that are likely to contain the detection target substance or the detection target fine particles is high based on the index at each time t. Increase the time length T of the signal a_nτ (n is 1 to N, τ is tT-1 to t) and the observed signal y_τ (n is 1 to N, τ is tT-1 to t),
    The collection amount signal a_nτ (n is 1 to N, τ is used for the separation process) as the number of the collection units having a high possibility that the detection target substance or the detection target fine particles are present based on the index is estimated to be small. tT-1 to t) and the observation signal y_τ (where n is 1 to N and τ is tT-1 to t) are shortened.
PCT/JP2013/079070 2013-10-28 2013-10-28 Analysis system WO2015063821A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015544624A JP6121557B2 (en) 2013-10-28 2013-10-28 Analysis system
PCT/JP2013/079070 WO2015063821A1 (en) 2013-10-28 2013-10-28 Analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079070 WO2015063821A1 (en) 2013-10-28 2013-10-28 Analysis system

Publications (1)

Publication Number Publication Date
WO2015063821A1 true WO2015063821A1 (en) 2015-05-07

Family

ID=53003473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079070 WO2015063821A1 (en) 2013-10-28 2013-10-28 Analysis system

Country Status (2)

Country Link
JP (1) JP6121557B2 (en)
WO (1) WO2015063821A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079397B2 (en) * 1987-12-11 1995-02-01 株式会社堀場製作所 Fluid analysis method
WO2013035306A1 (en) * 2011-09-06 2013-03-14 アトナープ株式会社 Gas-sampling device and inspection device
JP2013130488A (en) * 2011-12-22 2013-07-04 Horiba Ltd Sample gas analyzer and program for sample gas analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953175B2 (en) * 2007-03-20 2012-06-13 財団法人北九州産業学術推進機構 Method for improving quantitative accuracy in chromatograph / mass spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079397B2 (en) * 1987-12-11 1995-02-01 株式会社堀場製作所 Fluid analysis method
WO2013035306A1 (en) * 2011-09-06 2013-03-14 アトナープ株式会社 Gas-sampling device and inspection device
JP2013130488A (en) * 2011-12-22 2013-07-04 Horiba Ltd Sample gas analyzer and program for sample gas analyzer

Also Published As

Publication number Publication date
JPWO2015063821A1 (en) 2017-03-09
JP6121557B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
RU2633797C2 (en) Way of specimen classification on basis of spectrum data, way of data base creation, way of these data application and relevant software application, data storage and system
EP1766394B1 (en) System and method for grouping precursor and fragment ions using selected ion chromatograms
US8658973B2 (en) Auger elemental identification algorithm
US11423331B2 (en) Analytical data analysis method and analytical data analyzer
Slavov Driving single cell proteomics forward with innovation
CN103959426B (en) For the method by mass spectrometry identification microorganism
Sperk et al. Utility of proteomics in emerging and re-emerging infectious diseases caused by RNA viruses
JP2022525427A (en) Automatic boundary detection in mass spectrometry data
WO2008053530A1 (en) Sample quantification method
CN109564199A (en) Analyze data processing method and analysis data processing equipment
CN108982729A (en) System and method for extracting mass traces
Leitner et al. SnapShot: mass spectrometry for protein and proteome analyses
JP6695086B2 (en) System and method for accurately quantifying the composition of a sample to be measured
JP2021523385A (en) Chemical analyzers and methods
CN115380212A (en) Method, medium, and system for comparing intra-group and inter-group data
JP6121557B2 (en) Analysis system
KR20190054994A (en) Apparatus and method for distinguishing antibiotics resistance by maldi-tof ms analysis
CN108780073B (en) Chromatograph device
Jin et al. Chemometric analysis of gas chromatographic peaks measured with a microsensor array: methodology and performance assessment
EP3002696B1 (en) Methods for generating, searching and statistically validating a peptide fragment ion library
Ipsen et al. Prospects for a statistical theory of LC/TOFMS data
Ipsen et al. Construction of confidence regions for isotopic abundance patterns in LC/MS data sets for rigorous determination of molecular formulas
US20190139747A1 (en) Integrated disease diagnostic system using matrix-assisted laser desorption/ionization time-of-flight mass spectrometer
You et al. Unsupervised Reconstruction of Analyte-Specific Mass Spectra Based on Time-Domain Morphology with a Modified Cross-Correlation Approach
Peirano et al. Approaches for establishing methodologies in metabolomic studies for clinical diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896784

Country of ref document: EP

Kind code of ref document: A1