WO2015062176A1 - 多点触控的多媒体球幕演示仪及其多点触控方法 - Google Patents
多点触控的多媒体球幕演示仪及其多点触控方法 Download PDFInfo
- Publication number
- WO2015062176A1 WO2015062176A1 PCT/CN2014/071465 CN2014071465W WO2015062176A1 WO 2015062176 A1 WO2015062176 A1 WO 2015062176A1 CN 2014071465 W CN2014071465 W CN 2014071465W WO 2015062176 A1 WO2015062176 A1 WO 2015062176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dome
- demonstrator
- coordinate system
- touch
- dimensional
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000009471 action Effects 0.000 claims abstract description 45
- 238000004364 calculation method Methods 0.000 claims description 21
- 235000012771 pancakes Nutrition 0.000 claims 5
- 238000002955 isolation Methods 0.000 claims 1
- 230000000875 corresponding effect Effects 0.000 description 44
- 238000010586 diagram Methods 0.000 description 17
- 230000001276 controlling effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical group Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000014510 cooky Nutrition 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
Definitions
- Multi-touch multimedia dome demonstrator and multi-touch method thereof Multi-touch multimedia dome demonstrator and multi-touch method thereof
- the invention belongs to the field of sphere display technology, and in particular relates to a multi-touch multimedia dome screen demonstrator and a multi-touch method thereof. Background technique
- the multimedia ball screen demonstrator projects a round cake image onto a rear projection screen through a projector and a fisheye lens to obtain a complete graphic display of the entire spherical surface.
- the multimedia dome demonstrator There are many people who apply the flat multi-touch technology to the product, and the multi-touch multimedia dome display instrument can realize the screen surface by clicking and appearing on the screen surface, and zooming in and out, moving rotation and other touch controls.
- the existing multi-touch technology of the multimedia ball screen demonstrator is basically based on the two-dimensional coordinate system, and the touch action and the corresponding action in the two-dimensional wafer coordinate system are captured by capturing the touch action on the ball screen. The picture is processed on the line, and finally displayed on the ball screen.
- the user's sliding motion is captured and processed in the two-dimensional pie coordinate system.
- the sliding motion can be recognized along the weft direction of the ball, and can perform the horizontal rotation of the overall display image of the ball screen display
- the movement along the warp direction is considered invalid, and the screen display text cannot be rotated along the warp direction.
- a globe graphic when the touch slide controls its rotation, it can only achieve horizontal rotation, and can not achieve any direction in any direction. Rotate.
- the existing multimedia dome exhibitor has fewer functions to interact with the user, and needs to expand its functions, but the way of two-dimensional coordinate display greatly limits the expansion of the function of the multimedia dome demonstrator.
- the object of the present invention is to provide a multi-touch multimedia ball screen demonstrator and a multi-touch method thereof, aiming at solving the technical problem that the ball screen demonstrator in the prior art cannot rotate in any direction and has fewer functions. .
- the embodiment of the present invention provides the following technical solutions:
- a multi-touch method for a multimedia ball screen demonstrator which includes the following steps:
- the three-dimensional space model includes a virtual ball of the three-dimensional coordinate system of the ball screen demonstrator and a correspondence relationship of a two-dimensional dome coordinate system, wherein the three-dimensional coordinate system is virtual a spherical coordinate point (X, y, z) - a coordinate point (X, y) corresponding to the two-dimensional wafer coordinate system, and a three-dimensional coordinate of the virtual sphere of the three-dimensional coordinate system and the two-dimensional circular cake
- the two-dimensional coordinates of the coordinate system are dynamically converted by the constant-angle coordinate system, thereby forming a three-dimensional coordinate system, a two-dimensional wafer coordinate system, and a rectangular coordinate system-corresponding relationship; in the wafer coordinate, the spherical image has many Curved arc of curvature;
- Data corresponding to the touch shape is displayed on a surface of the dome demonstrator.
- the touch shape includes a line between two points formed by the touch of the surface of the sphere, the line includes a straight line or a curve; and the data corresponding to the line includes between two points Distance, and the difference between the data between the two points.
- the touch shape includes a closed curve formed by a touch on the surface of the sphere; and data corresponding to the closed curve is an area of the closed curve.
- the step of generating an area of the closed curve includes: generating a first area corresponding to the closed curve;
- the spherical area of the sphere is subtracted from the first area to obtain an area of the closed curve
- the first area is less than half the spherical area of the entire sphere, the first area is taken as the area of the closed curve.
- the step of pre-storing the three-dimensional space model corresponding to the ball screen demonstrator includes:
- the step of calculating the touch shape according to a preset calculation rule includes: calculating coordinates of each of the curved piece vertices in the wafer coordinate system;
- the vertex of the curved piece passing through the touch shape is calculated as the coordinates of the touch shape.
- the method when the curved piece is displayed as the display unit of the sphere, the method includes:
- the curved piece is shielded.
- the curved piece includes a rectangular map and a strip map
- the step of calculating the vertex of the curved piece includes:
- the embodiment of the present invention further provides the following technical solutions:
- a multi-touch method for a multimedia ball screen demonstrator includes the following steps:
- the three-dimensional space model includes a virtual ball of the three-dimensional coordinate system of the ball screen demonstrator and a correspondence relationship of a two-dimensional dome coordinate system, wherein the three-dimensional coordinate system is virtual a spherical coordinate point (X, y, z) - a coordinate point (X, y) corresponding to the two-dimensional wafer coordinate system, and a three-dimensional coordinate of the virtual sphere of the three-dimensional coordinate system and the two-dimensional circular cake
- the two-dimensional coordinates of the coordinate system are dynamically converted by the constant-angle coordinate system, thereby forming a corresponding relationship of the three-dimensional coordinate system, the two-dimensional wafer coordinate system, and the Cartesian coordinate system;
- the type of the touch action includes: forming a touch shape on a surface of the dome;
- the step of controlling the action of the dome demonstrator by the three-dimensional model of the dome demonstrator and the type of the touch action comprises: Calculating the touch shape according to a preset calculation rule to generate data corresponding to the touch shape, on the basis of the three-dimensional model of the ball screen demonstrator;
- Data corresponding to the touch shape is displayed on a surface of the dome demonstrator.
- the touch shape includes a line between two points formed by the touch of the surface of the sphere, the line includes a straight line or a curve; and the data corresponding to the line includes a distance between two points , and the difference between the two points of data.
- the type of the touch action includes: a sliding motion formed in an arbitrary direction formed on a surface of the dome;
- the overall graphic image displayed by the ball screen on the ball screen demonstrator is rotated and displayed along the sliding direction by the three-dimensional space model.
- the touch shape includes a closed curve formed by a touch on the surface of the sphere; and data corresponding to the closed curve is an area of the closed curve.
- the step of generating an area of the closed curve includes: generating a first area corresponding to the closed curve;
- the spherical area of the sphere is subtracted from the first area to obtain an area of the closed curve
- the first area is less than half the spherical area of the entire sphere, the first area is taken as the area of the closed curve.
- the step of pre-storing the three-dimensional space model corresponding to the dome demonstrator includes:
- the vertex of the curved piece passing through the touch shape is calculated as the coordinates of the touch shape.
- the method when the curved piece is displayed as a display unit of the sphere, the method includes:
- the curved piece is shielded.
- the curved piece includes a rectangular map and a strip map
- the step of calculating the vertex of the curved piece includes:
- the vertices of the slice, the coordinates of the curved vertices on the dome demonstrator are generated by the following steps;
- the embodiment of the invention further provides a multi-touch multimedia dome demonstrator, comprising a multi-touch device of a multimedia dome demonstrator, wherein the device is configured to execute multiple points of the multimedia dome demonstrator Touch method.
- a three-dimensional space model is established for the ball screen demonstrator, wherein the three-dimensional space model includes a virtual ball of the three-dimensional coordinate system of the ball screen demonstrator and a corresponding coordinate of the two-dimensional wafer coordinate system.
- the coordinate point and the two-dimensional wafer coordinate system are dynamically converted by a constant-angle coordinate system, thereby forming a corresponding relationship of a three-dimensional coordinate system, a two-dimensional wafer coordinate system, and a rectangular coordinate system, wherein after the three-dimensional space model is established, can be realised:
- FIG. 1 is a schematic flow chart of a multi-touch method of a multimedia ball screen demonstrator according to an embodiment of the present invention
- 2A is a schematic diagram of a latitude and longitude coordinate system according to an embodiment of the present invention.
- 2B is a schematic diagram of a Cartesian coordinate system in an embodiment of the present invention.
- 2C is a perspective view of a wafer coordinate system in an embodiment of the present invention.
- 2D is a plan view of a wafer coordinate system in an embodiment of the present invention.
- FIG. 3 is a schematic diagram showing conversion between latitude and longitude coordinates, rectangular coordinates, and wafer coordinates of a dome display device according to an embodiment of the present invention
- Figure 4A is a schematic diagram of latitude and longitude coordinates of any point on the ball screen
- Figure 4B is a schematic diagram of latitude and longitude coordinates of any two points on the ball screen
- FIG. 4C is a schematic diagram of the overall graphic rotation after the touch slide of FIG. 4B;
- Figure 4D is a schematic diagram of a round cake model for any two points on the ball screen;
- 4E is a schematic diagram of the overall graphic rotation after the touch slide of FIG. 4D;
- Figure 5A is a schematic view of a touch line drawn on a ball screen
- Figure 5B is a schematic diagram of a closed curve of a touch screen on a spherical screen
- Figure 5C is a schematic view of the touch screen before sliding on the screen
- FIG. 5D is a schematic diagram of the overall graphic rotation after the touch on the ball screen. Detailed ways
- FIG. 1 is a schematic flowchart of a multi-touch method of a multimedia ball screen demonstrator according to an embodiment of the present invention.
- step S101 a three-dimensional space model corresponding to the dome demonstrator is stored in advance.
- the three-dimensional space model includes a virtual ball of a three-dimensional coordinate system of the ball screen demonstrator and a correspondence relationship of a two-dimensional dome coordinate system, and the virtual spherical coordinate points (X, y, z) of the three-dimensional coordinate system correspond to a coordinate point (X, y) of the two-dimensional wafer coordinate system, and the virtual spherical coordinate point of the three-dimensional coordinate system and the two-dimensional circular cookie coordinate system are dynamically converted by a right-angle coordinate system to form a three-dimensional Correspondence between the coordinate system, the two-dimensional wafer coordinate system, and the Cartesian coordinate system.
- step S102 an image corresponding to the two-dimensional wafer coordinate system is projected onto the dome of the dome demonstrator by a projector and a fisheye lens inside the dome demonstrator.
- step S103 a touch action is detected on the surface of the ball screen of the dome demonstrator, and the type of the touch action is determined.
- step S104 the motion of the dome demonstrator is controlled by the three-dimensional model of the dome demonstrator and the type of the touch action.
- FIG. 2A is a schematic diagram of a latitude and longitude coordinate system according to an embodiment of the present invention
- FIG. 2B is a schematic view of the present invention
- 2 is a schematic view of a rectangular coordinate system in an embodiment of the present invention
- FIG. 2D is a plan view of a wafer coordinate system in an embodiment of the present invention.
- FIG. 3 is a schematic diagram of transition between latitude and longitude coordinates, Cartesian coordinates, and wafer coordinates of a dome display device in a three-dimensional model according to an embodiment of the present invention.
- 4A is a schematic diagram of latitude and longitude coordinates of any point on the spherical screen
- FIG. 4B is a schematic diagram of latitude and longitude coordinates of any two points on the spherical screen
- FIG. 4C is a schematic diagram of a round cake model of any two points on the spherical screen.
- the latitude and longitude coordinate system of the ball screen demonstrator is acquired (FIG. 2A), and the latitude and longitude coordinate system of the ball screen demonstrator is converted into the Cartesian coordinate system (FIG. 2B), and then The Cartesian coordinate system is converted to the wafer coordinates (Fig. 2C and Fig. 2D).
- a curved piece having a plurality of arcs is included, and Fig. 3 shows one of the curved pieces, and the curved piece is displayed on the ball screen demonstrator.
- the three-dimensional space model of the embodiment of the present invention includes a three-dimensional coordinate system, a two-dimensional circular cookie coordinate system, and a right-angle coordinate system-corresponding relationship.
- latitude latitude
- longitude longitude
- (x, y, z) is a coordinate point in a Cartesian coordinate system
- r xz represents the distance from the projection point of the (x, y, z) point on the xz plane to the origin;
- Cartesian coordinate system is converted to a wafer coordinate system by the following formula:
- Xrect represents the coordinates of the first dimension of the Cartesian coordinate point
- Z ⁇ t represents the coordinates of the third dimension of the Cartesian coordinate point
- r xz represents the distance from the projection point of the (x, y, z) point on the xz plane to the origin.
- Xround represents the coordinates of the first dimension of the wafer coordinates
- y round represents the second dimension of the wafer coordinates.
- R represents the distance from the coordinate point of the wafer to the origin
- the curved piece in the wafer coordinate system includes a rectangular map and a strip map
- the step of calculating the vertex of the curved piece includes: setting a center point of the curved piece and indicating a reference point of the direction; setting two rotation axes of the curved piece; multiplying the center point by the reference point to calculate a longitudinal rotation axis; and the longitudinal rotation axis and the center point Multiplying the calculation to generate a lateral rotation axis; and for each vertex of the curved piece, generating coordinates of the curved piece vertex on the ball screen demonstrator by the following steps;
- the longitudinal rotation axis rotates An angle K1, wherein the angle K1 is proportional to the vertices of the curved piece at the ordinate of the dome demonstrator; and the center point is further rotated about the lateral rotation axis by an angle K2, the angle K2 being proportional to the arc
- the abscissa of the vertex ball screen demonstrator maps each arc piece according to the
- a rectangular map including: a center point P1 of the specified rectangular map and a reference point P2 indicating the direction; determining two rotation axes of the rectangular map coordinate system; P1 is multiplied by P2, and normalized to obtain a longitudinal rotation axis pivot_vl; Pivot_vl is multiplied by PI and normalized to obtain the horizontal rotation axis pivot_hl; for each vertex on the curved piece, the coordinates on the spherical surface are calculated; P1 is rotated by an angle around pivot_vl, which is proportional to the ordinate of the vertex; Rotate an angle around pivot_hl, which is proportional to the abscissa of the vertex; map each arc according to the vertical and horizontal coordinates of the vertex
- For strip maps include: Specify the center point Q1 of the strip map and the reference point Q2 indicating the center of the strip; Determine the two rotation axes of the strip map coordinate system; Q1 cross the Q2, and normalize to obtain the longitudinal rotation
- the axis pivot_v2; pivot_h2 is directly equal to Q2; for each vertex on the curved piece, calculate its coordinates on the spherical surface; Q1 rotates an angle around pivot_v2, which is proportional to the ordinate of the vertex; then rotates an angle around pivot_h2, This angle is proportional to the abscissa of the vertex; each small patch map is mapped according to the vertical and horizontal coordinates of the vertex.
- R is a 3x3 matrix, which means the rotation matrix of the earth model relative to the dome;
- P represents a point on the surface of the earth, represented by three-dimensional coordinates
- P' represents the coordinates of the corresponding point on the spherical screen, also expressed in three-dimensional coordinates;
- PI ⁇ P2 angle plp2 is the angle of rotation between PI and P2;
- Pivot is the rotation axis of PI to P2;
- the step of calculating the touch shape according to a preset calculation rule includes: calculating coordinates of each of the curved piece vertices in the wafer coordinate system; and calculating the touch shape At the time of the data, the vertex of the curved piece passing through the touch shape is calculated as the coordinates of the touch shape.
- the type of the touch action includes: forming a touch shape on a surface of the ball screen; and controlling a three-dimensional space model of the ball screen demonstrator and the type of the touch action
- the step of the action of the ball screen demonstrator includes: calculating, according to a three-dimensional model of the ball screen demonstrator, the touch shape according to a preset calculation rule to generate data corresponding to the touch shape; Data corresponding to the touch shape is displayed on a surface of the dome demonstrator.
- the pre-set calculation rule referred to herein is a calculation method based on the three-dimensional space model provided by the embodiment of the present invention, such as conversion between coordinate systems, and calculating the distance between two points of the spherical surface. From the formula and so on.
- the touch shape includes a line between two points formed by the touch of the surface of the sphere, the line includes a straight line or a curve; and the data corresponding to the line includes The distance between two points, the time difference, ⁇ the distance in Figure 5A, ⁇
- the method when the curved piece is displayed as the display unit of the sphere, the method includes: determining, by the curved piece close to the pole (0, -1, 0), whether the side length corresponding to the curved piece is greater than a judgment a threshold; shielding the curved piece if a side length corresponding to the curved piece is greater than the determination threshold.
- a distance threshold for example, 0.5 cm
- a determination threshold for example, 0.2 cm
- FIG. 5C is a schematic diagram of the touch sliding on the spherical screen
- FIG. 5D is a schematic diagram of the rotation after the touch sliding of FIG. 5C.
- the type of the touch action includes: a sliding motion formed on a surface of the dome; and after detecting a sliding motion corresponding to a north-north direction of the dome demonstrator, controlling the dome through the three-dimensional model The south or north pole of the demonstrator is rotated around any angle.
- the curve is divided into enough segments so that each segment can be approximated by a straight line, and the corners of the adjacent two segments are calculated, and the area of the closed curve is
- ⁇ is the number of segments
- an g 1e n is the angle of the nth vertex
- R is the radius of the sphere.
- the area calculated by this formula and the direction of the curve are related to clockwise or counterclockwise. In order to eliminate this relationship, it is necessary to judge whether the result is greater than half of the entire spherical area after calculating the area. If it is larger than the normal, the spherical area is required to be reduced. Go to Area to get the real area.
- the step of generating the area of the closed curve includes: generating a first area corresponding to the closed curve; determining whether the first area is greater than or equal to half of a spherical area of the entire sphere; if the first area is greater than or equal to the entire sphere Half of the spherical area, the spherical area of the sphere is subtracted from the first area to obtain the area of the closed curve; if the first area is less than half of the spherical area of the entire sphere, the first The area is taken as the area of the closed curve.
- the dome display device of the embodiment of the present invention further includes a function of clicking test, and acquiring an object clicked by the user (a base map, a window, a button, etc. on the spherical surface), and objects on the spherical surface are drawn on the object.
- an object clicked by the user a base map, a window, a button, etc. on the spherical surface
- objects on the spherical surface are drawn on the object.
- On the "circle” in the center of the screen different objects overlap each other and occlude each other. In fact, different objects are drawn on different "layers".
- the embodiment of the present invention further provides a multi-touch multimedia dome demonstrator, including a multi-touch device of a multimedia dome demonstrator, wherein the device is used to execute the multimedia dome demonstrator of the embodiment of the present invention.
- Multi-touch method since the method has been described in detail above, it will not be described here.
- a three-dimensional space model is established for a ball screen demonstrator, wherein the three-dimensional space model includes a virtual ball of a three-dimensional coordinate system of the ball screen demonstrator and a correspondence relationship of a two-dimensional wafer coordinate system, wherein a virtual spherical coordinate point (X, y, z) of the three-dimensional coordinate system - a coordinate point (X, y) corresponding to the two-dimensional wafer coordinate system, and a virtual spherical coordinate point of the three-dimensional coordinate system and the
- the two-dimensional circular cone coordinate system is dynamically transformed by the straight-angle coordinate system, and then the corresponding relationship of the three-dimensional coordinate system, the two-dimensional circular cake coordinate system and the Cartesian coordinate system is formed, wherein after the above three-dimensional space model is established, it can be realized:
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Processing Or Creating Images (AREA)
- Position Input By Displaying (AREA)
Abstract
本发明预先存储三维空间模型,其包括球幕演示仪的三维坐标系的虚拟球以及二维圆饼坐标系对应关系,且两者通过一直角坐标系进行动态转换;将对应二维圆饼坐标系的图像投影至球幕演示仪的球幕上;于球幕演示仪的球幕表面检测触摸动作;根据三维空间模型、触摸动作的类型控制球幕演示仪的动作。
Description
说 明 书
多点触控的多媒体球幕演示仪及其多点触控方法 技术领域
本发明属于球体显示技术领域, 尤其涉及一种多点触控的多媒体球幕演示 仪及其多点触控方法。 背景技术
随着多媒体球幕演示仪的不断普及, 用户对多媒体球幕演示仪显示功能的 要求越来越高。
多媒体球幕演示仪是通过投影仪和鱼眼镜头将一个圆饼图像投射射到一个 背投球幕上, 获得一个整个球体面的完整的图文显示, 近年来在此多媒体球幕 演示仪的上有很多人将平面的多点触摸技术加载到该产品上, 出现多点触摸多 媒体球幕演示仪, 能实现球幕表面通过点击出现图文, 并对图文有放大缩小, 移动旋转等触摸控制, 现有的多媒体球幕演示仪多点触摸技术, 基本上都是基 于二维的坐标系进行转换, 通过捕捉球幕上的触摸动作, 在二维的圆饼坐标系 中对触摸动作与对应图文就行处理, 最后再显示在球幕上, 譬如对于一个在球 幕上整个覆盖显示的整体图文就行触摸滑动旋转控制时, 用户的滑动动作被捕 捉后在二维的饼坐标系进行处理, 滑动动作在沿着球的纬线方向可以被识别, 并能做出球幕显示整体显示图文的水平方向的旋转, 而沿着经线的方向动作视 为无效, 球幕显示图文不能沿着经线方向旋转, 比如一个地球仪图文, 触摸滑 动控制其旋转时, 只能实现水平转, 不能实现任意角度任意方向的旋转。
而且,现有的多媒体球幕演示仪与用户互动的功能较少, 需要拓展其功能, 但是二维坐标显示的方式极大的限制了多媒体球幕演示仪的功能的拓展。
因此, 需解决现有技术中由于球幕演示仪不能准确的将影像投影到球幕、 功能较少的技术问题。
发明内容
本发明的目的在于提供一种多点触控的多媒体球幕演示仪及其多点触控方 法, 旨在解决现有技术中的球幕演示仪不能任意方向旋转、 且功能较少的技术 问题。
为解决上述技术问题, 本发明实施例提供以下技术方案:
一种多媒体球幕演示仪的多点触控方法, 其中包括以下步骤:
预先存储对应球幕演示仪的三维空间模型, 其中所述三维空间模型包括所 述球幕演示仪的三维坐标系的虚拟球以及二维圓饼坐标系对应关系, 其中所述 三维坐标系的虚拟球坐标点 (X , y , z)——对应于所述二维圓饼坐标系的坐标 点(X , y) , 且所述三维坐标系的虚拟球的三维坐标和所述二维圓饼坐标系的二 维坐标通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圓饼坐标 系以及直角坐标系的——对应关系; 在所述圓饼坐标下, 球幕图像具有多个弧 度的弧形片;
通过所述球幕演示仪内部的投影仪及鱼眼镜头将对应所述二维圓饼坐标系 的图像投影至所述球幕演示仪的球幕上;
于所述球幕演示仪的球幕表面检测触摸动作,并判断所述触摸动作的类型, 所述触摸动作的类型包括于所述球幕的表面形成的触摸形状;
在所述球幕演示仪的三维空间模型的基础上, 根据预先设置的计算规则对 所述触摸形状进行计算, 生成对应所述触摸形状的数据; 以及
于所述球幕演示仪的表面显示对应所述触摸形状的数据。
作为本发明一优选实施例, 其中所述触摸形状包括于所述球体表面触摸形 成的两点之间的线条, 所述线条包括直线或者曲线; 而对应所述线条的数据包 括两点之间的距离, 以及两点之间的数据的差值。
作为本发明一优选实施例, 其中, 所述触摸形状包括于所述球体表面触摸 形成的封闭曲线; 而对应所述封闭曲线的数据为所述封闭曲线的面积。
作为本发明一优选实施例, 其中, 生成所述封闭曲线的面积的步骤包括: 生成对应所述封闭曲线的第一面积;
判断所述第一面积是否大于等于整个球体的球面面积的一半;
若所述第一面积大于等于整个球体的球面面积的一半, 则使用所述球体的 球面面积减去所述第一面积, 得到所述封闭曲线的面积; 以及
若所述第一面积小于整个球体的球面面积的一半, 则将所述第一面积作为 所述封闭曲线的面积。
作为本发明一优选实施例, 其中, 预先存储对应球幕演示仪的三维空间模 型的步骤包括:
获取球幕演示仪的经纬度坐标系;
将所述球幕演示仪的所述经纬度坐标系转换为所述直角坐标系;
将所述直角坐标系转换为所述圓饼坐标, 并将所述弧形片作为显示单元显 示于所述球幕演示仪;
而根据预先设置的计算规则对所述触摸形状进行计算的步骤包括: 计算每一所述弧形片顶点在所述圓饼坐标系下的坐标;
而在计算所述触摸形状的数据时, 以所述触摸形状经过的弧形片的顶点作 为所述触摸形状的坐标进行计算。
作为本发明一优选实施例, 其中, 将所述弧形片作为所述球体的显示单元 进行显示时, 包括:
对靠近极点 (0, -1 , 0 ) 的弧形片, 判断对应所述弧形片的边长是否大于 判断阈值;
若对应所述弧形片的边长大于所述判断阈值, 则屏蔽所述弧形片。
作为本发明一优选实施例, 其中, 所述弧形片包括矩形贴图和带状贴图, 计算所述弧形片顶点的步骤包括:
设定所述弧形片的中心点以及表示方向的参考点;
设定所述弧形片的两个旋转轴;
将所述中心点与所述参考点进行叉乘计算, 进而生成纵向旋转轴; 将所述纵向旋转轴与所述中心点叉乘计算, 进而生成横向旋转轴; 而对于每个所述弧形片的顶点, 通过下述步骤生成所述弧形片顶点在所述 球幕演示仪上的坐标;
将所述中心点绕所述纵向旋转轴旋转一角度 K1 , 其中角度 K1正比于所述 弧形片顶点在球幕演示仪的纵坐标;
将所述中心点再绕所述横向旋转轴旋转一角度 K2, 此角度 K2正比于所述 弧形片顶点球幕演示仪的横坐标;
按照顶点的纵、 横坐标给每一个弧形片进行贴图。
为解决上述技术问题, 本发明实施例还提供以下技术方案:
一种多媒体球幕演示仪的多点触控方法, 包括以下步骤:
预先存储对应球幕演示仪的三维空间模型, 其中所述三维空间模型包括所 述球幕演示仪的三维坐标系的虚拟球以及二维圓饼坐标系对应关系, 其中所述 三维坐标系的虚拟球坐标点 (X , y , z)——对应于所述二维圓饼坐标系的坐标 点(X , y) , 且所述三维坐标系的虚拟球的三维坐标和所述二维圓饼坐标系的二 维坐标通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圓饼坐标 系以及直角坐标系的——对应关系;
通过所述球幕演示仪内部的投影仪及鱼眼镜头将对应所述二维圓饼坐标系 的图像投影至所述球幕演示仪的球幕上;
于所述球幕演示仪的球幕表面检测触摸动作,并判断所述触摸动作的类型; 根据所述球幕演示仪的三维空间模型以及所述触摸动作的类型, 控制所述 球幕演示仪的动作。
作为本发明一优选实施例, 所述触摸动作的类型包括: 于所述球幕的表面 形成一触摸形状;
而通过所述球幕演示仪的三维空间模型以及所述触摸动作的类型, 控制所 述球幕演示仪的动作的步骤包括:
在所述球幕演示仪的三维空间模型的基础上, 根据预先设置的计算规则对 所述触摸形状进行计算, 生成对应所述触摸形状的数据; 以及
于所述球幕演示仪的表面显示对应所述触摸形状的数据。
作为本发明一优选实施例, 所述触摸形状包括于所述球体表面触摸形成的 两点之间的线条, 所述线条包括直线或者曲线; 而对应所述线条的数据包括两 点之间的距离, 以及两点之间的数据的差值。
作为本发明一优选实施例, 所述触摸动作的类型包括: 于所述球幕的表面 形成的沿着任意方向上的滑动动作;
而在检测到对应所述球幕演示仪球幕上滑动动作后, 通过所述三维空间模 型控制所述球幕演示仪上的球幕显示的整体图文沿着滑动的方向旋转显示。
作为本发明一优选实施例, 所述触摸形状包括于所述球体表面触摸形成的 封闭曲线; 而对应所述封闭曲线的数据为所述封闭曲线的面积。
作为本发明一优选实施例, 生成所述封闭曲线的面积的步骤包括: 生成对应所述封闭曲线的第一面积;
判断所述第一面积是否大于等于整个球体的球面面积的一半;
若所述第一面积大于等于整个球体的球面面积的一半, 则使用所述球体的 球面面积减去所述第一面积, 得到所述封闭曲线的面积; 以及
若所述第一面积小于整个球体的球面面积的一半, 则将所述第一面积作为 所述封闭曲线的面积。
作为本发明一优选实施例, 预先存储对应球幕演示仪的三维空间模型的步 骤包括:
获取球幕演示仪的经纬度坐标系;
将所述球幕演示仪的所述经纬度坐标系转换为所述直角坐标系; 将所述直角坐标系转换为所述圓饼坐标, 在所述圓饼坐标下, 球幕图像具 有多个弧度的弧形片, 并将所述弧形片作为显示单元显示于所述球幕演示仪; 而根据预先设置的计算规则对所述触摸形状进行计算的步骤包括:
计算每一所述弧形片顶点在所述圓饼坐标系下的坐标;
而在计算所述触摸形状的数据时, 以所述触摸形状经过的弧形片的顶点作 为所述触摸形状的坐标进行计算。
作为本发明一优选实施例, 将所述弧形片作为所述球体的显示单元进行显 示时, 包括:
对靠近极点 (0, -1 , 0 ) 的弧形片, 判断对应所述弧形片的边长是否大于 判断阈值;
若对应所述弧形片的边长大于所述判断阈值, 则屏蔽所述弧形片。
作为本发明一优选实施例, 所述弧形片包括矩形贴图和带状贴图, 计算所 述弧形片顶点的步骤包括:
设定所述弧形片的中心点以及表示方向的参考点;
设定所述弧形片的两个旋转轴;
将所述中心点与所述参考点进行叉乘计算, 进而生成纵向旋转轴; 将所述纵向旋转轴与所述中心点叉乘计算, 进而生成横向旋转轴; 而对于每个所述弧形片的顶点, 通过下述步骤生成所述弧形片顶点在所述 球幕演示仪上的坐标;
将所述中心点绕所述纵向旋转轴旋转一角度 K1 , 其中角度 K1正比于所述 弧形片顶点在球幕演示仪的纵坐标;
将所述中心点再绕所述横向旋转轴旋转一角度 K2, 此角度 K2正比于所述 弧形片顶点球幕演示仪的横坐标;
按照顶点的纵、 横坐标给每一个弧形片进行贴图。
本发明实施例还提供一种多点触控的多媒体球幕演示仪, 其中包括一多媒 体球幕演示仪的多点触控装置, 所述装置用于执行所述多媒体球幕演示仪的多 点触控方法。
本发明实施例中, 通过为球幕演示仪建立三维空间模型, 其中所述三维空 间模型包括所述球幕演示仪的三维坐标系的虚拟球以及二维圓饼坐标系对应关
系, 其中所述三维坐标系的虚拟球坐标点 (X , y , z)——对应于所述二维圓饼 坐标系的坐标点(X , y) , 且所述三维坐标系的虚拟球坐标点和所述二维圓饼坐 标系通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圓饼坐标系 以及直角坐标系的——对应关系, 其中上述三维空间模型建立后, 可以实现:
1、 触摸滑动旋转实物球幕表面, 通过摄像头捕捉动作后, 转化为三维空间 模型上的图文, 并通过直角坐标系始终动态转换成圓饼坐标, 通过投影仪鱼眼 组件将圓饼坐标的图片投射在实物三维球幕上, 实现任意方向的旋转;
2、 单点和多点触摸实物球表面, 通过摄像头捕捉动作后, 转化为点击虚拟 的三维球上某一点、 多点, 通过建立三维空间模型上这些点之间的数学计算关 系, 并显示计算过程和结果, 并始终动态转换成圓饼坐标, 通过投影仪鱼眼组 件将圓饼坐标的图片投射在实物球幕上, 实现直线距离, 曲线距离, 封闭图形 面积的显示。 附图说明
图 1是本发明实施例提供的多媒体球幕演示仪的多点触控方法的流程示意 图;
图 2 A为本发明实施例中经纬度坐标系的示意图;
图 2 B为本发明实施例中直角坐标系的示意图;
图 2 C为本发明实施例中圓饼坐标系的斜视图;
图 2 D为本发明实施例中圓饼坐标系的俯视图;
图 3为本发明实施例中球幕显示仪的经纬度坐标、 直角坐标、 圓饼坐标之 间的转换示意图;
图 4A是为球幕上任意一点的经纬度坐标示意图;
图 4B是为球幕上任意两点的经纬度坐标示意图;
图 4C为图 4B触摸滑动后的整体图文旋转示意图;
图 4D是为球幕上任意两点的圓饼模型示意图;
图 4E是为图 4D触摸滑动后的整体图文旋转示意图;
图 5A是球幕上触摸画线的示意图;
图 5B是球幕上触摸画封闭曲线的示意图;
图 5C是球幕上触摸滑动前的示意图;
图 5D是球幕上触摸滑动后的整体图文旋转示意图。 具体实施方式
请参照图式, 其中相同的组件符号代表相同的组件, 本发明的原理是以实 施在一适当的运算环境中来举例说明。 以下的说明 于所例示的本发明具体 请参阅图 1 , 图 1为本发明实施例提供的多媒体球幕演示仪的多点触控方 法的流程示意图。
在步骤 S101中, 预先存储对应球幕演示仪的三维空间模型。
其中所述三维空间模型包括所述球幕演示仪的三维坐标系的虚拟球以及二 维圓饼坐标系对应关系, 所述三维坐标系的虚拟球坐标点 (X , y , z)——对应 于所述二维圓饼坐标系的坐标点(X , y) , 且所述三维坐标系的虚拟球坐标点和 所述二维圓饼坐标系通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圓饼坐标系以及直角坐标系的——对应关系。
在步骤 S102中,通过所述球幕演示仪内部的投影仪及鱼眼镜头将对应所述 二维圓饼坐标系的图像投影至所述球幕演示仪的球幕上。
在步骤 S103中,于所述球幕演示仪的球幕表面检测触摸动作,并判断所述 触摸动作的类型。
在步骤 S 104中,通过所述球幕演示仪的三维空间模型以及所述触摸动作的 类型, 控制所述球幕演示仪的动作。
针对图 1 中的步骤 S101中的三维空间模型, 请参阅图 2A-2D、 图 3以及 图 4A-4C, 图 2 A为本发明实施例中经纬度坐标系的示意图; 图 2 B为本发明
实施例中直角坐标系的示意图;图 2 C为本发明实施例中圓饼坐标系的斜视图; 图 2 D为本发明实施例中圓饼坐标系的俯视图。 图 3为本发明实施例中球幕显 示仪在三维模型下的经纬度坐标、 直角坐标、 圓饼坐标之间的转换示意图。 图 4A是为球幕上任意一点的经纬度坐标示意图, 图 4B是为球幕上任意两点的经 纬度坐标示意图; 图 4C是为球幕上任意两点的圓饼模型示意图。
其中在建立三维空间模型时, 获取球幕演示仪的经纬度坐标系 (图 2A ) , 并将所述球幕演示仪的所述经纬度坐标系转换为所述直角坐标系 (图 2B ) , 之 后将所述直角坐标系转换为所述圓饼坐标(图 2C和图 2D ) 。 其中在所述圓饼 坐标下, 包括有多个弧度的弧形片, 图 3示出其中一弧形片, 并将所述弧形片 显示于所述球幕演示仪。 显然, 本发明实施例的所述三维空间模型包括三维坐 标系、 二维圓饼坐标系以及直角坐标系的——对应关系。
譬如, 将经纬度坐标系转换为直角坐标系使用以下公式进行:
X = cos(longitude) cos(latitude)
y = sin(latitude)
z = - sin(longitude) cos(latitude)
其中 latitude代表纬度, longitude代表经度, ( x,y,z )为直角坐标系中的坐 标点
将直角坐标转换为经纬度坐标通过以下公式进行:
latitude = sin_1 ( ) rxz x2 + z2
longitude = cos"1 (x I rxz )
其中 rxz表示 (x,y,z )点在 xz平面上的投影点到原点的距离;
直角坐标系转换为圓饼坐标系通过以下公式进行:
latitude = sin_1( recf )
其中 yrcct表示直角坐标点的第二维度的坐标;
π 1 2 - latitude
K =
Xrect表示直角坐标点的第一维度的坐标, Z^t表示直角坐标点的第三维度 的坐标, rxz表示 (x,y,z ) 点在 xz平面上的投影点到原点的距离。
Rx , -Rz
round ' round
r r
Xround表示圓饼坐标的第一维度的坐标, yround表示圓饼坐标的第二维度的坐 将所述圓饼坐标系转换为直角坐标系通过以下公式进行:
Ώ ― γ2 + 2
\ round J round
R表示圓饼坐标点到原点的距离;
- _ Ground, - _ round
ij — iy—
R R
( ix, iy )表示圓饼坐标点所对应的向量经过长度归一化之后的单位向量。 latitude = π 1 2 - πΚ
yrect = sin(latitude) xrect = ix . cos(latitude) zrect = iz · cos atitude)
在具体实施过程中, 所述圓饼坐标系下的所述弧形片包括矩形贴图和带状 贴图, 计算所述弧形片顶点的步骤包括: 设定所述弧形片的中心点以及表示方 向的参考点; 设定所述弧形片的两个旋转轴; 将所述中心点与所述参考点进行 相乘计算, 进而生成纵向旋转轴; 将所述纵向旋转轴与所述中心点相乘计算, 进而生成横向旋转轴; 而对于每个所述弧形片的顶点, 通过下述步骤生成所述 弧形片顶点在所述球幕演示仪上的坐标; 将所述中心点绕所述纵向旋转轴旋转
一角度 Kl , 其中角度 Kl正比于所述弧形片顶点在球幕演示仪的纵坐标; 将所 述中心点再绕所述横向旋转轴旋转一角度 K2, 此角度 K2正比于所述弧形片顶 点球幕演示仪的横坐标; 按照顶点的纵、 横坐标给每一个弧形片进行贴图。
譬如, 对于矩形贴图, 包括: 指定矩形贴图的中心点 P1以及表示方向的参 考点 P2; 确定矩形贴图坐标系的两个旋转轴; P1叉乘 P2, 并归一化, 得到纵 向旋转轴 pivot_vl ; pivot_vl叉乘 PI , 并归一化, 得到横向旋转轴 pivot_hl ; 对于每个弧形片上的顶点, 计算其在球面上的坐标; P1绕 pivot_vl旋转一个角 度, 此角度正比于该顶点的纵坐标; 再绕 pivot_hl旋转一个角度, 此角度正比 于该顶点的横坐标; 按照顶点的纵、 横坐标给每一个弧形片贴图
对于带状贴图, 包括: 指定带状贴图的中心点 Q1 以及表示条带中心的参 考点 Q2; 确定带状贴图坐标系的两个旋转轴; Q1叉乘 Q2, 并归一化, 得到纵 向旋转轴 pivot_v2; pivot_h2则直接等于 Q2; 对于每个弧形片上的顶点, 计算 其在球面上的坐标; Q1绕 pivot_v2旋转一个角度,此角度正比于该顶点的纵坐 标; 再绕 pivot_h2旋转一个角度, 此角度正比于该顶点的横坐标; 按照顶点的 纵、 横坐标给每一个小面片贴图。
而对于直角坐标的旋转, 通过以下公式进行:
R为 3x3的矩阵, 其含义是地球模型相对于球幕的旋转矩阵;
P表示地球表面的一点, 用三维坐标表示 ; P'表示球幕上对应的点坐标, 同样用三维坐标表示;
P, = RP
P = R→P
对于球面上两点间的旋转角度, 通过以下公式进行:
PI P2
angle P1P2 COS
PI · P2 angleplp2即是 PI和 P2间的旋转角度;
对于球面上两点间的旋转轴, 通过以下公式进行:
Pl x P2
pivot
Pivot即是 PI到 P2的旋转轴;
本发明实施例中, 根据预先设置的计算规则对所述触摸形状进行计算的步 骤包括: 计算每一所述弧形片顶点在所述圓饼坐标系下的坐标; 而在计算所述 触摸形状的数据时, 以所述触摸形状经过的弧形片的顶点作为所述触摸形状的 坐标进行计算。
作为本发明一优选实施例, 所述触摸动作的类型包括: 于所述球幕的表面 形成一触摸形状; 而通过所述球幕演示仪的三维空间模型以及所述触摸动作的 类型, 控制所述球幕演示仪的动作的步骤包括: 在所述球幕演示仪的三维空间 模型的基础上, 根据预先设置的计算规则对所述触摸形状进行计算, 生成对应 所述触摸形状的数据; 以及于所述球幕演示仪的表面显示对应所述触摸形状的 数据。 其中此处所指的预先设置的计算规则为基于本发明实施例提供的三维空 间模型的计算方式, 譬如在各坐标系之间的转换, 以及计算球面两点之间的距
离公式等。
作为本发明一优选实施例, 譬如请参阅图 5A,所述触摸形状包括于所述球 体表面触摸形成的两点之间的线条, 所述线条包括直线或者曲线; 而对应所述 线条的数据包括两点之间的距离, 时差, 譬如图 5A中的距离八 二 ^
本发明实施例将曲线划分成足够多的段,使每一段可以近似的用直线表示, 计算每一段的长度, 并求和球面上两点间的距离为 distance = angleplp2 · R
所以曲线的长度为 distance = ^ angle n · R
n
其中, 将所述弧形片作为所述球体的显示单元进行显示时, 包括: 对靠近极点 (0, -1 , 0 ) 的弧形片, 判断对应所述弧形片的边长是否大于 判断阈值; 若对应所述弧形片的边长大于所述判断阈值, 则屏蔽所述弧形片。 譬如判断所述弧形片与极点( 0, -1 , 0 )的距离是否小于一距离阈值(譬如 0.5cm ), 若所述弧形片与极点 (0, -1 , 0 ) 的距离小于所述距离阈值, 则在所述圓饼坐 标系下, 判断所述弧形片的边长是否大于判断阈值(譬如 0.2cm ) , 若对应所 述方形片的弧形片的边长大于所述判断阈值, 则屏蔽所述弧形片。
作为本发明一优选实施例, 譬如请参阅图 5C和图 5D, 图 5C是球幕上触 摸滑动的示意图, 图 5D是图 5C触摸滑动后的旋转示意图。 所述触摸动作的类 型包括: 于所述球幕的表面形成的滑动动作; 而在检测到对应所述球幕演示仪 南北极方向的滑动动作后, 通过所述三维空间模型控制所述球幕演示仪的南极 或北极绕任意角度旋转显示。
本发明实施例将曲线划分成足够多的段,使每一段可以近似的用直线表示, 计算相邻两段的转角, 则封闭曲线的面积为
Area = angle η - {Ν - 2)π) · R2
Ν
其中 Ν为划分线段的个数, ang1en为第 η个顶点的角度, R为球的半径。
但此公式计算的面积和曲线的方向是顺时针还是逆时针有关, 为了消除这 种关系, 在计算面积后还需要判断结果是否大于整个球面面积的一半, 若大于 一般, 则需要使用球面面积减去 Area得到真实的面积。
譬如请参阅图 5B, 所述触摸形状包括于所述球体表面触摸形成的封闭曲 线, 封闭图形面积 =X2; 而对应所述封闭曲线的数据为所述封闭曲线的面积。 生成所述封闭曲线的面积的步骤包括: 生成对应所述封闭曲线的第一面积; 判 断所述第一面积是否大于等于整个球体的球面面积的一半; 若所述第一面积大 于等于整个球体的球面面积的一半, 则使用所述球体的球面面积减去所述第一 面积, 得到所述封闭曲线的面积; 若所述第一面积小于整个球体的球面面积的 一半, 则将所述第一面积作为所述封闭曲线的面积。
在具体实施过程中,本发明实施例的球幕显示仪还包括有点击测试的功能, 获取用户点击到的物体(球面上的底图、 窗口、 按钮等) , 球面上的物体都被 画在屏幕中心的 "圓饼" 上, 不同的物体互相重叠, 互相遮挡, 实际上, 不同 的物体是画在不同的 "层" 上的, 程序中有一个管理 "层" 的状态机记录每一 个物体的层编号, 当用户触发一个点击信号, 程序就会根据点击的坐标找出该 坐标下最上层的编号, 进而查找到对应的物体。
本发明实施例还提供一种多点触控的多媒体球幕演示仪, 包括一多媒体球 幕演示仪的多点触控装置, 所述装置用于执行本发明实施例的多媒体球幕演示 仪的多点触控方法, 鉴于该方法在上文已有详细的描述, 此处不再赘述。
本发明实施例中, 通过为球幕演示仪建立三维空间模型, 其中所述三维空 间模型包括所述球幕演示仪的三维坐标系的虚拟球以及二维圓饼坐标系对应关 系, 其中所述三维坐标系的虚拟球坐标点 (X , y , z)——对应于所述二维圓饼 坐标系的坐标点(X , y) , 且所述三维坐标系的虚拟球坐标点和所述二维圓饼坐 标系通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圓饼坐标系 以及直角坐标系的——对应关系, 其中上述三维空间模型建立后, 可以实现:
1、 触摸滑动旋转实物球幕表面, 通过摄像头捕捉动作后, 转化为三维空间
模型上的图文, 并通过直角坐标系始终动态转换成圓饼坐标, 通过投影仪鱼眼 组件将圓饼坐标的图片投射在实物三维球幕上, 实现任意方向的旋转;
2、 单点和多点触摸实物球表面, 通过摄像头捕捉动作后, 转化为点击虚拟 的三维球上某一点、 多点, 通过建立三维空间模型上这些点之间的数学计算关 系, 并显示计算过程和结果, 并始终动态转换成圓饼坐标, 通过投影仪鱼眼组 件将圓饼坐标的图片投射在实物球幕上, 实现直线距离, 曲线距离, 封闭图形 面积的显示。
综上所述, 虽然本发明已以优选实施例揭露如上, 但上述优选实施例并非 用以限制本发明, 本领域的普通技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与润饰, 因此本发明的保护范围以权利要求界定的范围为准。
Claims
1、 一种多媒体球幕演示仪的多点触控方法, 其中, 包括以下步骤: 预先存储对应球幕演示仪的三维空间模型, 其中所述三维空间模型包括所 述球幕演示仪的三维坐标系的虚拟球以及二维圓饼坐标系对应关系, 其中所述 三维坐标系的虛拟球坐标点 (x, y, z)—一对应于所述二维圆饼坐标系的坐标 点(X, y) , 且所述三维坐标系的虛拟球的三维坐标和所述二维圓饼坐标系的二 维坐标通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圆饼坐标 系以及直角坐标系的一一对应关系; 在所述圆饼坐标下, 球幕图像具有多个弧 度的弧形片;
通过所述球幕演示仪内部的投影仪及鱼眼镜头将对应所述二维圆饼坐标系 的图像投影至所述球幕演示仪的球幕上;
于所述球幕演示仪的球幕表面检测触摸动作,并判断所述触摸动作的类型, 所述触摸动作的类型包括于所述球幕的表面形成的触摸形状;
在所述球幕演示仪的三维空间模型的基础上, 根据预先设置的计算规则对 所述触摸形状进行计算, 生成对应所述触摸形状的数据; 以及
于所述球幕演示仪的表面显示对应所述触摸形状的数据。
2、根据权利要求 1所述的多媒体球幕演示仪的多点触控方法, 其中, 所述 触摸形状包括于所述球体表面触摸形成的两点之间的线条, 所述线条包括直线 或者曲线; 而对应所述线条的数据包括两点之间的距离, 以及两点之间的数据 的差值。
3、根据权利要求 1所述的多媒体球幕演示仪的多点触控方法, 其中, 所述 触摸形状包括于所述球体表面触摸形成的封闭曲线; 而对应所述封闭曲线的数 据为所述封闭曲线的面积。
4、 根据权利要求 3所述的多媒体球幕演示仪的多点触控方法, 其中, 生成 所述封闭曲线的面积的步骤包括:
16 更正页 (细则第 91条)
生成对应所述封闭曲线的第一面积;
判断所述第一面积是否大于等于整个球体的球面面积的一半;
若所述第一面积大于等于整个球体的球面面积的一半, 则使用所述球体的 球面面积减去所述第一面积, 得到所述封闭曲线的面积; 以及
若所述第一面积小于整个球体的球面面积的一半, 则将所述第一面积作为 所述封闭曲线的面积。
5、根据权利要求 1所述的多媒体球幕演示仪的多点触控方法, 其中, 预先 存储对应球幕演示仪的三维空间模型的步骤包括:
获取球幕演示仪的经纬度坐标系;
将所述球幕演示仪的所述经纬度坐标系转换为所述直角坐标系; 将所述直角坐标系转换为所迷圓饼坐标, 并将所述弧形片作为显示单元显 示于所述球幕演示仪;
而根据预先设置的计算规则对所述触摸形状进行计算的步骤包括: 计算每一所述弧形片顶点在所述圓饼坐标系下的坐标;
而在计算所述触摸形状的数据时, 以所述触摸形状经过的弧形片的顶点作 为所述触摸形状的坐标进行计算。
6、根据权利要求 5所述的多媒体球幕演示仪的多点触控方法, 其中, 将所 述弧形片作为所述球体的显示单元进行显示时, 包括:
对靠近极点 (0, -1 , 0 ) 的弧形片, 判断对应所述弧形片的边长是否大于 判断阔值;
若对应所述弧形片的边长大于所述判断阈值, 则屏蔽所述弧形片。
7、根据权利要求 5所述的多媒体球幕演示仪的多点触控方法, 其中, 所述 弧形片包括矩形贴图和带状贴图, 计算所述弧形片顶点的步骤包括:
设定所述弧形片的中心点以及表示方向的参考点;
设定所述弧形片的两个旋转轴;
将所述中心点与所述参考点进行叉乘计算, 进而生成纵向旋转轴;
17
更正页 (细则第 91条)
将所述纵向旋转轴与所述中心点叉乘计算, 进而生成横向旋转轴; 而对于每个所述弧形片的顶点, 通过下述步骤生成所述弧形片顶点在所述 球幕演示仪上的坐标;
将所迷中心点绕所述纵向旋转轴旋转一角度 Kl, 其中角度 K1正比于所述 弧形片顶点在球幕演示仪的纵坐标;
将所述中心点再绕所述横向旋转轴旋转一角度 Κ2, 此角度 Κ2正比于所述 弧形片顶点球幕演示仪的横坐标;
按照顶点的纵、 横坐标^ 一个弧形片进行贴图。
8、 一种多媒体球幕演示仪的多点触控方法, 其中, 包括以下步骤: 预先存储对应球幕演示仪的三维空间模型, 其中所述三维空间模型包括所 述球幕演示仪的三维坐标系的虚拟球以及二维圓饼坐标系对应关系, 其中所述 三维坐标系的虚拟球坐标点 (X, y, z) 对应于所述二维圓饼坐标系的坐标 点(X, y), 且所述三维坐标系的虛拟球的三维坐标和所述二维圆饼坐标系的二 维坐标通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圓饼坐标 系以及直角坐标系的——对应关系;
通过所述球幕演示仪内部的投影仪及鱼眼镜头将对应所述二维圓饼坐标系 的图像投影至所述球幕演示仪的球幕上;
于所述球幕演示仪的球幕表面检测触摸动作,并判断所述触摸动作的类型; 根据所述球幕演示仪的三维空间模型以及所述触摸动作的类型, 控制所述 球幕演示仪的动作。
9、根据权利要求 8所述的多媒体球幕演示仪的多点触控方法, 其中, 所述 触摸动作的类型包括: 于所述球幕的表面形成一触摸形状;
而通过所述球幕演示仪的三维空间模型以及所述触摸动作的类型, 控制所 述球幕演示仪的动作的步骤包括:
在所述球幕演示仪的三维空间模型的基础上, 根据预先设置的计算规则对 所述触摸形状进行计算, 生成对应所述触摸形状的数据; 以及
18
更正页 (细则第 91条)
于所述球幕演示仪的表面显示对应所述触摸形状的数据。
10、 根据权利要求 9所述的多媒体球幕演示仪的多点触控方法, 其中, 所 述触摸形状包括于所述球体表面触摸形成的两点之间的线条, 所述线条包括直 线或者曲线; 而对应所述线条的数据包括两点之间的距离, 以及两点之间的数 据的差值。
11、 根据权利要求 9所述的多媒体球幕演示仪的多点触控方法, 其中, 所 述触摸动作的类型包括:于所述球幕的表面形成的沿着任意方向上的滑动动作; 而在检测到对应所述球幕演示仪球幕上滑动动作后, 通过所述三维空间模 型控制所述球幕演示仪上的球幕显示的整体图文沿着滑动的方向旋转显示。
12、 根据权利要求 9所述的多媒体球幕演示仪的多点触控方法, 其中, 所 述触摸形状包括于所述球体表面触摸形成的封闭曲线; 而对应所述封闭曲线的 数据为所述封闭曲线的面积。
13、 根据权利要求 12所述的多媒体球幕演示仪的多点触控方法, 其中, 生 成所述封闭曲线的面积的步骤包括:
生成对应所述封闭曲线的第一面积;
判断所述第一面积是否大于等于整个球体的球面面积的一半;
若所述第一面积大于等于整个球体的球面面积的一半, 则使用所述球体的 球面面积减去所述第一面积, 得到所述封闭曲线的面积; 以及
若所述第一面积小于整个球体的球面面积的一半, 则将所述第一面积作为 所述封闭曲线的面积。
14、 根据权利要求 9所迷的多媒体球幕演示仪的多点触控方法, 其中, 预 先存储对应球幕演示仪的三维空间模型的步骤包括:
获取球幕演示仪的经 度坐标系;
将所述球幕演示仪的所述经纬度坐标系转换为所述直角坐标系;
将所述直角坐标系转换为所述圓饼坐标, 在所述圓饼坐标下, 球幕图像具 有多个孤度的弧形片, 并将所述弧形片作为显示单元显示于所述球幕演示仪;
19
更正页 (细则第 91条)
而根据预先设置的计算规则对所述触摸形状进行计算的步骤包括: 计算每一所述弧形片顶点在所述圆饼坐标系下的坐标;
而在计算所述触摸形状的数据时, 以所述触摸形状经过的弧形片的顶点作 为所述触摸形状的坐标进行计算。
15、根据权利要求 14所述的多媒体球幕演示仪的多点触控方法, 其中, 将 所述弧形片作为所迷球体的显示单元进行显示时, 包括:
对靠近极点 (0, -1 , 0 ) 的弧形片, 判断对应所述弧形片的边长是否大于 判断阈值;
若对应所述弧形片的边长大于所述判断阈值, 则屏蔽所述弧形片。
16、根据权利要求 14所述的多媒体球幕演示仪的多点触控方法, 其中, 所 述弧形片包括矩形贴图和带状贴图, 计算所述弧形片顶点的步骤包括:
设定所述弧形片的中心点以及表示方向的参考点;
设定所述孤形片的两个旋转轴;
将所述中心点与所述参考点进行叉乘计算, 进而生成纵向旋转轴; 将所述纵向旋转轴与所述中心点叉乘计算, 进而生成横向旋转轴; 而对于每个所述弧形片的顶点, 通过下述步骤生成所述弧形片顶点在所述 球幕演示仪上的坐标;
将所述中心点绕所述纵向旋转轴旋转一角度 K1 , 其中角度 K1正比于所述 弧形片顶点在球幕演示仪的纵坐标;
将所述中心点再绕所述横向旋转轴旋转一角度 K2, 此角度 K2正比于所述 弧形片顶点球幕演示仪的横坐标;
按照顶点的纵、 横坐标给每一个弧形片进行贴图。
17、 一种多点触控的多媒体球幕演示仪, 其中, 包括一存储介质, 其内存 储有处理器可执行指令, 其中所述处理器可执行指令用于让处理器完成以下操 作:
预先存储对应球幕演示仪的三维空间模型, 其中所述三维空间模型包括所
更正页 (细则第 91条)
述球幕演示仪的三维坐标系的虛拟球以及二维圆饼坐标系对应关系, 其中所述 三维坐标系的虛拟球坐标点 (x, y , z)——对应于所述二维圆饼坐标系的坐标 点(X, y), 且所述三维坐标系的虛拟球的三维坐标和所述二维圓饼坐标系的二 维坐标通过一直角坐标系进行动态转换, 进而形成三维坐标系、 二维圆饼坐标 系以及直角坐标系的——对应关系;
通过所述球幕演示仪内部的投影仪及鱼眼镜头将对应所述二维圓饼坐标系 的图像投影至所述球幕演示仪的球幕上;
于所述球幕演示仪的球幕表面检测触摸动作,并判断所述触摸动作的类型; 根据所述球幕演示仪的三维空间模型以及所述触摸动作的类型, 控制所述 球幕演示仪的动作。
18、 根据权利要求 17所述的多点触控的多媒体球幕演示仪, 其中, 所述触 摸动作的类型包括: 于所述球幕的表面形成的触摸形状;
所述处理器可执行指令进一步的用于执行以下操作: 在所述球幕演示仪的 三维空间模型的基础上, 根据预先设置的计算规则对所述触摸形状进行计算, 生成对应所述触摸形状的数据; 以及于所述球幕演示仪的表面显示对应所述触 摸形状的数据。
19、 根据权利要求 18所述的多点触控的多媒体球幕演示仪, 其中, 所述触 摸形状包括于所述球体表面触摸形成的两点之间的线条, 所述线条包括直线或 者曲线; 而对应所述线条的数据包括两点之间的距离, 以及两点之间的数据的 差值。
21
更正页 (细则第 91条)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310534698.0A CN103543885B (zh) | 2013-11-01 | 2013-11-01 | 多点触控的多媒体球幕演示仪及其多点触控方法 |
CN201310534698.0 | 2013-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015062176A1 true WO2015062176A1 (zh) | 2015-05-07 |
Family
ID=49967400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/071465 WO2015062176A1 (zh) | 2013-11-01 | 2014-01-26 | 多点触控的多媒体球幕演示仪及其多点触控方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103543885B (zh) |
WO (1) | WO2015062176A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108803394B (zh) * | 2017-04-27 | 2021-02-02 | 上海优爱宝智能机器人科技股份有限公司 | 球幕屏控制方法 |
CN108646922B (zh) * | 2018-05-24 | 2021-10-08 | 国家基础地理信息中心 | 一种交互式数字地球仪及交互方法 |
CN111309243B (zh) * | 2020-03-05 | 2022-06-07 | Oppo广东移动通信有限公司 | 一种信息显示方法、装置及存储介质 |
CN116055708B (zh) * | 2023-04-03 | 2023-10-24 | 深圳市百诺数字科技有限公司 | 一种感知可视交互式球幕三维立体成像方法及系统 |
CN118397686A (zh) * | 2024-04-26 | 2024-07-26 | 南京航空航天大学 | 一种面向全景图像的人眼扫视轨迹预测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101770324A (zh) * | 2008-12-31 | 2010-07-07 | 商泰软件(上海)有限公司 | 一种实现三维图形界面互动式操作的方法 |
CN202486745U (zh) * | 2011-11-10 | 2012-10-10 | 深圳市赛野展览展示有限公司 | 一种触控互动球幕及可成像触控互动装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8836698B2 (en) * | 2011-12-26 | 2014-09-16 | TrackThings LLC | Method and apparatus for identifying a 3-D object from a 2-D display of a portable unit |
-
2013
- 2013-11-01 CN CN201310534698.0A patent/CN103543885B/zh active Active
-
2014
- 2014-01-26 WO PCT/CN2014/071465 patent/WO2015062176A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101770324A (zh) * | 2008-12-31 | 2010-07-07 | 商泰软件(上海)有限公司 | 一种实现三维图形界面互动式操作的方法 |
CN202486745U (zh) * | 2011-11-10 | 2012-10-10 | 深圳市赛野展览展示有限公司 | 一种触控互动球幕及可成像触控互动装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103543885B (zh) | 2016-08-17 |
CN103543885A (zh) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10650487B2 (en) | Equatorial stitching of hemispherical images in a spherical image capture system | |
WO2022057579A1 (zh) | 定位追踪方法和平台、头戴显示系统和计算机可读存储介质 | |
US10600150B2 (en) | Utilizing an inertial measurement device to adjust orientation of panorama digital images | |
US9437045B2 (en) | Real-time mobile capture and application of photographic images as textures in three-dimensional models | |
Schmitz et al. | Ad-Hoc Multi-Displays for Mobile Interactive Applications. | |
US20130229396A1 (en) | Surface aware, object aware, and image aware handheld projector | |
WO2015062176A1 (zh) | 多点触控的多媒体球幕演示仪及其多点触控方法 | |
US20160334884A1 (en) | Remote Sensitivity Adjustment in an Interactive Display System | |
US20150346825A1 (en) | Systems and methods for enabling fine-grained user interactions for projector-camera or display-camera systems | |
WO2015139653A1 (en) | Image zooming method and apparatus | |
CN112912936A (zh) | 混合现实系统、程序、移动终端装置和方法 | |
US9881419B1 (en) | Technique for providing an initial pose for a 3-D model | |
EP2667615A1 (en) | Method and apparatus for removing distortions when projecting images on real surfaces | |
CN109146775B (zh) | 二维图片转换方法、装置、设备及存储介质 | |
WO2019051785A1 (zh) | 一种用于智能终端的图标显示方法及图标显示装置 | |
US10175780B2 (en) | Behind-display user interface | |
Choi et al. | Interactive display robot: projector robot with natural user interface | |
US9082223B2 (en) | Smooth manipulation of three-dimensional objects | |
JP2016139199A (ja) | 画像処理装置、画像処理方法、およびプログラム | |
JP2014513371A (ja) | スクリーン上のオブジェクトの回転 | |
JP2022142488A (ja) | ポインティング位置を推定する装置および方法、機器を制御する装置および方法、ならびにプログラム | |
TWI476678B (zh) | 互動式模擬球體顯示系統 | |
CN112473138A (zh) | 游戏的显示控制方法及装置、可读存储介质、电子设备 | |
CN112308767A (zh) | 一种数据展示方法、装置、存储介质以及电子设备 | |
Zabulis et al. | Augmented multitouch interaction upon a 2-DOF rotating disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14856954 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 14856954 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14856954 Country of ref document: EP Kind code of ref document: A1 |