WO2015060222A1 - Glass plate with thin film, and manufacturing method thereof - Google Patents

Glass plate with thin film, and manufacturing method thereof Download PDF

Info

Publication number
WO2015060222A1
WO2015060222A1 PCT/JP2014/077740 JP2014077740W WO2015060222A1 WO 2015060222 A1 WO2015060222 A1 WO 2015060222A1 JP 2014077740 W JP2014077740 W JP 2014077740W WO 2015060222 A1 WO2015060222 A1 WO 2015060222A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
barrier layer
thin film
film
glass plate
Prior art date
Application number
PCT/JP2014/077740
Other languages
French (fr)
Japanese (ja)
Inventor
啓明 岩岡
晃一 中川
淳志 関
宏佑 長南
玲大 臼井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015060222A1 publication Critical patent/WO2015060222A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes

Definitions

  • the present invention relates to a glass plate with a thin film having functionality used for applications such as architecture and a method for producing the same.
  • an antireflection film is formed on a glass substrate to improve visibility, or a low radiation film (so-called Low-E film) that suppresses heat radiation. ), Or a thin film having various functions such as IR cut and UV cut may be formed.
  • an antireflection film an antireflection film formed by alternately laminating a film made of a low refractive index material (low refractive index film) and a film made of a high refractive index material (high refractive index film), Conventionally known.
  • an antireflection film formed by alternately laminating a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film has a large refractive index difference and is optical. It is widely used because of its superiority in design and low material cost.
  • Patent Document 1 discloses that a glass-like protective coating is applied to the surface of an antireflection glass on the surface of a transparent glass body for the purpose of improving the weather resistance of the antireflection glass.
  • it may be required to impart acid resistance and alkali resistance to a thin film having functionality formed on a glass substrate.
  • the liquid eluted from concrete for construction is mainly alkaline, resistance to this may be required.
  • an acidic or alkaline cleaner may be used in cleaning the glass substrate surface, resistance to this may be required.
  • An object of the present invention is to provide a glass plate with a thin film, which is excellent in acid resistance and alkali resistance and has functionality, in order to solve the above-described problems in the prior art.
  • the inventors of the present application have earnestly studied to obtain the following knowledge.
  • those having the outermost layer as an SiO 2 film have good acid resistance but low alkali resistance.
  • those having the outermost layer as a TiO 2 film have good alkali resistance but low acid resistance.
  • those having the outermost layer as a TiO 2 film have good alkali resistance but low acid resistance.
  • the acid resistance and alkali resistance cannot be achieved at the same time, and a barrier layer imparting acid resistance and alkali resistance is provided.
  • the barrier layer must be one that does not impair the function of the antireflection film.
  • the refractive index of the barrier layer is required to be not more than the refractive index of the TiO 2 film as the high refractive index film.
  • the refractive index of the barrier layer may be lower than that of the SiO 2 film.
  • the present invention has been made based on the above-described findings, and is a glass plate with a thin film having a glass substrate, a functional thin film, and a barrier layer in this order,
  • the barrier layer is substantially composed of a mixed oxide of silicon (Si) and titanium (Ti);
  • the barrier layer is titanium (Atom%) of titanium (Ti) in the mixed oxide measured by X-ray photoelectron analysis (ESCA) higher than the atomic content (Atom%) of silicon (Si) ( Ti) with a rich layer,
  • the maximum value of the atomic content ratio of titanium (Ti) to the total atomic content ratio of silicon (Si) and titanium (Ti) in the titanium (Ti) rich layer (Ti / (Si + Ti) (%)) is 80%.
  • the glass plate with a thin film which is the above is provided.
  • the ratio of silicon (Si) atomic content (Si / (Ti + Si) (%)) measured by X-ray photoelectron analysis (ESCA) of the surface of the barrier layer is 35% or more. Preferably there is.
  • the proportion of silicon (Si) atomic content (Si / (Ti + Si) (%)) measured by X-ray photoelectron analysis (ESCA) of the surface of the barrier layer is 60%.
  • the above is preferable.
  • the thickness of the barrier layer is L (nm)
  • titanium (Ti) relative to the total atomic content of silicon (Si) and titanium (Ti) in the mixed oxide
  • the portion where the atomic content ratio (Ti / (Si + Ti) (%)) of () has the maximum value is in a position satisfying 0.05 L to 0.95 L in the thickness direction of the barrier layer.
  • the layer thickness of the barrier layer is L (nm)
  • the portion where the atomic content ratio (Ti / (Si + Ti) (%)) takes the maximum value is at a position satisfying 0.25 L to 0.75 L in the thickness direction of the barrier layer, and silicon (Si) and
  • the portion where the ratio of the atomic content of titanium (Ti) to the total of the atomic content of titanium (Ti) (Ti / (Si + Ti) (%)) takes the minimum value is at both ends in the layer thickness direction of the barrier layer. It is preferable that it exists in at least one site
  • the layer thickness of the barrier layer is preferably 25 nm or less.
  • the barrier layer is formed using a transfer type atmospheric pressure CVD apparatus.
  • the functional thin film alternately comprises a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film.
  • the antireflection film is formed by laminating a total of 2 to 16 layers of an SiO 2 film having a thickness of 15 nm to 100 nm and a TiO 2 film having a thickness of 5 nm to 120 nm alternately. It is preferable that
  • the antireflection film may be alternately laminated in the order of the SiO 2 film and the TiO 2 film from the glass substrate side.
  • the antireflection film may be alternately laminated in the order of the TiO 2 film and the SiO 2 film from the glass substrate side.
  • the functional thin film is preferably a low emission (Low-E) film.
  • the functional thin film is preferably a multilayer film having an IR cut function.
  • the functional thin film is preferably a multilayer film having a UV cut function.
  • the present invention is a method for producing a glass plate with a thin film having a glass substrate, a functional thin film, and a barrier layer in this order, wherein the barrier layer is formed using a transfer type atmospheric pressure CVD apparatus, Monosilane (SiH 4 ) and tetraisopropoxy titanium (TTIP) as main raw materials, oxygen (O 2 ) as a secondary raw material, a main raw material supply nozzle, an upstream side in the conveyance direction of the glass substrate with respect to the main raw material supply nozzle, and From the auxiliary material supply nozzle provided on the downstream side, comprising a step of supplying onto the glass substrate conveyed in the conveyance type atmospheric pressure CVD apparatus,
  • the barrier layer is substantially composed of a mixed oxide of silicon (Si) and titanium (Ti); Titanium in which the barrier layer has an atomic content (Atom%) of titanium (Ti) in the mixed oxide measured by X-ray photoelectron analysis (ESCA) higher than an atomic content (Atom%) of silicon
  • the glass plate with a thin film of the present invention by providing a barrier layer having a specific composition on a thin film having functionality, acid resistance and alkali resistance are improved without impairing optical properties such as antireflection properties. Yes.
  • FIG. 1 is a conceptual diagram for explaining a manufacturing method of a glass plate with a thin film according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing ESCA measurement results in the examples.
  • FIG. 3 is a diagram showing ESCA measurement results in a comparative example.
  • the present invention will be described by taking, as an example, a glass plate with an antireflection film on which an antireflection film is formed as an example of a thin film having the functionality of the present invention.
  • thin films having various functionalities can be applied to the present invention as long as the effects are not impaired.
  • a glass plate with a thin film which is one embodiment of the present invention includes a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film alternately on a glass substrate.
  • the antireflection film is formed by laminating the film, and the barrier layer having the specific composition described below is formed on the antireflection film.
  • each component of the glass plate with a thin film of this invention is demonstrated.
  • the glass substrate in the present invention is not necessarily flat and plate-like, and may be curved or atypical.
  • transparent glass plates made of colorless and transparent soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, non-alkali glass, and other various glasses can be used. From the viewpoint of price, soda lime silicate glass is preferable.
  • the plate thickness of the glass substrate is preferably 0.2 to 12 mm.
  • an antireflection (AR) film As a thin film having functionality in the present invention (hereinafter also referred to as a functional thin film), an antireflection (AR) film, a low emission (Low-E) film, an IR cut multilayer film, a UV cut multilayer film, or the like is applicable. .
  • a CVD method, a PVD method, a sol-gel method, or the like As a method for forming the functional thin film, a CVD method, a PVD method, a sol-gel method, or the like can be used.
  • the antireflection film is formed by alternately laminating a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film.
  • the SiO 2 film and the TiO 2 film may be alternately laminated in this order, or the TiO 2 film and the SiO 2 film may be alternately laminated in this order.
  • a TiO 2 film on a glass substrate i.e., TiO 2 film, when alternately stacking the order of SiO 2 film
  • SiO 2 This is preferable in that the number of layers can be reduced as compared with the case where the film is formed first (that is, when the SiO 2 film and the TiO 2 film are alternately stacked).
  • the thickness of the SiO 2 film is preferably 15 nm or more and 100 nm or less.
  • the thickness of the TiO 2 film is preferably 5 nm or more and 120 nm or less.
  • the SiO 2 film and the TiO 2 film are preferably laminated in a total of 2 to 16 layers.
  • the SiO 2 film and the TiO 2 film constituting the antireflection film may have different film thicknesses.
  • a 10 nm thick TiO 2 film, a 30 nm thick SiO 2 film, a 105 nm thick TiO 2 film, and a 92 nm thick SiO 2 film may be stacked in this order.
  • the uppermost SiO 2 film may have a thickness of about 1 ⁇ 2 of 92 nm.
  • the film thickness of the antireflection film that is, the total film thickness of the laminated film of the SiO 2 film and the TiO 2 film is preferably 150 to 300 nm, and more preferably 180 to 250 nm.
  • the film formation method of the SiO 2 film and the TiO 2 film is not particularly limited, but the use of the CVD method is easy to apply to a large area, the film formation rate can be easily changed, and the productivity is high and economically advantageous. It is preferable for the reason.
  • the pressure conditions at the time of implementation are not particularly limited, but the implementation at normal pressure is easy to control the atmosphere during film formation, and is highly compatible with existing production equipment, Economically advantageous and preferred.
  • the CVD method may be performed using monosilane (SiH 4 ) as the main material and oxygen (O 2 ) as the auxiliary material.
  • the O 2 / SiH 4 molar ratio is preferably 50 or more from the viewpoint of film formation rate.
  • the temperature of the glass substrate is preferably 530 to 600 ° C. from the viewpoint of film formation speed.
  • the CVD method may be performed using tetraisopropoxy titanium (TTIP) as a raw material. At this time, the temperature of the glass substrate is preferably 530 to 580 ° C. from the viewpoint of film formation speed.
  • TTIP tetraisopropoxy titanium
  • the barrier layer in the present invention consists essentially of a mixed oxide of silicon (Si) and titanium (Ti).
  • the barrier layer consists essentially of a mixed oxide of silicon (Si) and titanium (Ti)” means that silicon (Si), titanium (Ti) and oxygen (O ) Of the total atomic content is 85 Atom% or more.
  • the SiO 2 film has good acid resistance but low alkali resistance.
  • the TiO 2 film has good alkali resistance but low acid resistance.
  • the barrier layer is substantially composed only of a mixed oxide of silicon (Si) and titanium (Ti)
  • the presence of a certain amount of SiO 2 on the surface of the barrier layer improves the acid resistance and alkali resistance.
  • a specific amount of TiO 2 specified below needs to be present.
  • the amount of TiO 2 occupying the entire barrier layer, particularly the lower limit thereof, is determined by the specific amount, and the barrier layer Therefore, it is difficult to obtain a desired refractive index.
  • the present invention is a layer in which the abundance ratio of TiO 2 is higher than the abundance ratio of SiO 2 in the barrier layer, that is, the atomic content (Atom%) of titanium (Ti) is the atomic content (Atom) of silicon (Si). %)) (Hereinafter referred to as a titanium (Ti) rich layer), by combining silicon (Si) and titanium (Ti) having both good acid resistance and alkali resistance and having a desired refractive index. And a barrier layer made only of mixed oxides.
  • FIG. 1 is a conceptual diagram for explaining a manufacturing method of a glass plate with a thin film in one embodiment of the present invention, and schematically shows a configuration example of a transport type atmospheric pressure CVD apparatus.
  • the material supply means 10 of the transport type atmospheric pressure CVD apparatus shown in FIG. 1 is a means for supplying the material to the glass substrate Z transported in the direction of arrow y by the roller 12a of the conveyor belt 12.
  • the 1 includes a nozzle (main raw material supply nozzle) 14 for supplying a main raw material, and an upstream side and a downstream side in the transport direction (arrow y direction) of the glass substrate Z with respect to the main raw material supply nozzle 14.
  • the nozzles 16 and 16 for supplying auxiliary materials (sub-material supply nozzles) 16 and 16 and the exhaust nozzles 18 and 18 for sucking and removing the gas generated by the reaction and excess materials are configured.
  • the raw material supply means 10 shown in FIG. 1 is a post-mix type raw material supply means for mixing the main raw material from the main raw material supply nozzle 14 and the auxiliary raw material from the auxiliary raw material supply nozzles 16, 16 on the glass substrate Z. .
  • the functional thin film for example, in the case of forming an anti-reflective (AR) film, a total of seven using an injector, six injectors of TiO 2 and SiO 2 are seven of the antireflection film as an underlying barrier layer Is formed using. That is, the barrier layer is formed by using one injector.
  • AR anti-reflective
  • the main raw materials are monosilane (SiH 4 ) and tetraisopropoxy titanium (TTIP),
  • the raw material is supplied as oxygen (O 2 ) from the main raw material supply nozzle 14 and the auxiliary raw material supply nozzle 16 onto the glass substrate Z conveyed in the direction of arrow y by the conveyor belt 12. Since TTIP has a higher reactivity than SiH 4 , the reaction proceeds directly under the raw material supply nozzles (14, 16), and the reaction of SiH 4 proceeds at the peripheral edge thereof.
  • the formed barrier layer has a composition distribution in the layer thickness direction. Specifically, at the end side in the layer thickness direction, that is, at least on the front side and the back side of the barrier layer, the ratio of silicon (Si) atomic content (of silicon (Si) and titanium (Ti))) The ratio of the atomic content of silicon (Si) to the total atomic content (Si / (Si + Ti) (%))) is high, and the composition of the atomic content of titanium (Ti) is high inside the barrier layer. Distribution.
  • the front surface side of the barrier layer but also the back surface side (for example, the antireflection layer side) is a silicon (Si) atomic content ratio (silicon with respect to the total atomic content of silicon (Si) and titanium (Ti)).
  • Si atomic content ratio (Si / (Si + Ti) (%))) may be high.
  • the barrier layer in one embodiment of the present invention is a mixture in which the barrier layer is substantially composed of only a mixed oxide of silicon (Si) and titanium (Ti) and is measured by X-ray photoelectron analysis (ESCA).
  • a titanium (Ti) rich layer in which the atomic content (Atom%) of titanium (Ti) in the oxide is higher than the atomic content (Atom%) of silicon (Si) is provided.
  • the maximum value of the titanium (Ti) atom content ratio (Ti / (Ti + Si) (%)) with respect to the total atomic content ratio of silicon (Si) and titanium (Ti) is 80% or more.
  • the ratio of the atomic content of silicon (Si) on the surface of the barrier layer (the atomic content of silicon (Si) with respect to the total atomic content of silicon (Si) and titanium (Ti) ( Si / (Si + Ti) (%)) is preferably provided with a layer higher than other portions of the barrier layer. If the ratio of silicon (Si) atom content (Si / (Ti + Si) (%)) measured by X-ray photoelectron analysis (ESCA) on the surface of the barrier layer is 35% or more, good acid resistance is obtained. % Or more is preferable, and 50% or more is more preferable.
  • the barrier layer which is excellent also in abrasion resistance is obtained, it is further more preferable.
  • the proportion of silicon (Si) atomic content Si / (Si + Ti) (%)) is Alkali resistance may be impaired because a certain amount of titanium (Ti) is contained on the surface of the barrier layer that is high (that is, the proportion of SiO 2 is high) (that is, TiO 2 is present on the surface of the barrier layer). Absent.
  • the ratio of the atomic content of titanium (Ti) (Ti / (Si + Ti) (%)) is high on the surface side of the barrier layer and on the antireflection film side.
  • the composition ratio of the silicon (Si) atomic content ratio (Si / (Si + Ti) (%)) on the inner side of the barrier layer is high, the atomic content of titanium (Ti) on the surface side of the barrier layer The acid resistance is low because of the high ratio.
  • the ratio of silicon (Si) atomic content is high, and the inner side of the barrier layer is exposed to the surface, so that the alkali resistance of the barrier layer also decreases.
  • the barrier layer in one embodiment of the present invention has a composition distribution in the layer thickness direction.
  • the atomic ratio of silicon (Si) (Si / (Si + Ti) (%) on both end sides in the layer thickness direction, that is, on the surface side of the barrier layer and on the functional thin film side such as an antireflection film. ))) Is high, and it is more preferable that the ratio of the atomic content of titanium (Ti) (Ti / (Si + Ti) (%)) is high between the two, that is, inside the barrier layer.
  • this composition distribution it is preferable to satisfy the following.
  • the layer thickness of the barrier layer is L (nm)
  • the portion where the ratio of titanium (Ti) atom content (Ti / (Si + Ti) (%)) in the mixed oxide takes the maximum value is the layer thickness of the barrier layer.
  • it is preferably at a position satisfying 0.05L to 0.95L.
  • it is more preferable that it is 0.25 L to 0.75 L, that is, it is located in the range of 1/4 L from the center of the thickness of the barrier layer because the durability of the barrier layer is improved.
  • the portion where the ratio of titanium (Ti) atom content (Ti / (Si + Ti) (%)) takes the minimum value is at least one portion of both end portions in the layer thickness direction of the barrier layer, that is, the barrier layer. It is preferable to be in at least one of the surface side portion and the functional thin film side portion such as an antireflection film.
  • the total thickness of the barrier layer is preferably 11 nm or more. If the thickness of the barrier layer is less than 11 nm, the barrier layer may not sufficiently cover the functional thin film. If the functional thin film is, for example, an antireflection film, the alkali resistance of the SiO 2 layer in the antireflection film is insufficient. become.
  • the upper limit of the thickness of the barrier layer can be appropriately set depending on the type of the functional thin film to be coated. For example, when the functional thin film is an antireflection film, it is preferably 25 nm or less.
  • the refractive index of the barrier layer needs to be 2.25 or less (wavelength 638 nm) in order not to impair the function.
  • the refractive index of the barrier layer is required to be equal to or lower than the refractive index of the TiO 2 film as the high refractive index film.
  • the refractive index of the barrier layer and the TiO 2 film is based on the refractive index at a wavelength of 638 nm.
  • the reason is because the wavelength dispersion of the refractive index is relatively small in the visible light wavelength region.
  • the refractive index of the TiO 2 film at a wavelength of 638 nm is 2.45.
  • the barrier layer of one embodiment of the present invention can easily have a refractive index of 2.25 or less by having the composition distribution in the layer thickness direction described above. For this reason, the function of the antireflection film is not impaired by the formation of the barrier layer.
  • the barrier layer of one embodiment of the present invention has good acid resistance and alkali resistance.
  • acid resistance and alkali resistance tests were performed according to JIS R 3221: 2002. Further, a scratch resistance test was conducted by the method described later.
  • the barrier layer was formed on the glass substrate with a functional thin film in the slow cooling zone of the float forming line using the transfer type atmospheric pressure CVD apparatus shown in FIG.
  • Monosilane (SiH 4 ) and tetraisopropoxytitanium (TTIP) are used as the main raw materials for the barrier layer
  • oxygen (O 2 ) is used as the auxiliary raw materials, which are respectively conveyed from the main raw material supply nozzle 14 and the auxiliary raw material supply nozzle 16 to the conveyor belt.
  • 12 was supplied onto the glass substrate Z on which the functional thin film conveyed in the direction of the arrow y was formed to form a barrier layer.
  • These barrier layers were formed by a single injector.
  • the amount of tetraisopropoxy titanium (TTIP) supplied per 1 m of film forming width, the ratio of tetraisopropoxy titanium (TTIP) and monosilane (SiH 4 ) (TTIP / SiH 4 ), and the barrier layer A plurality of samples having different layer thicknesses were prepared, and acid resistance, alkali resistance, and scratch resistance were evaluated for the obtained barrier layer composed of a mixed oxide of Si and Ti. Moreover, the atomic content rate (Atom%) of the layer thickness direction was measured about Ti atom, Si atom, and O atom contained in a barrier layer using X-ray photoelectron analysis (ESCA).
  • X-ray photoelectron analysis X-ray photoelectron analysis
  • a scanning X-ray photoelectron spectrometer (PHI 5000 VersaProbe, manufactured by ULVAC-PHI) has a beam diameter of 100 ⁇ m, and while performing Ar sputtering from the surface of the barrier layer, the barrier layer and the underlying functional thin film The atomic content was analyzed along the layer thickness direction up to the interface with the layer.
  • argon (Ar) was used as the etching gas, the gas pressure was 1.5 ⁇ 10 ⁇ 2 Pa, the acceleration voltage was 1 kV, and the ion beam system was 2 ⁇ 2 mm.
  • the maximum value of the Ti atom content ratio (Ti / (Ti + Si) (%)) in the barrier layer and the titanium (Ti) atom content ratio take the maximum values.
  • the position (peak position) and the ratio of silicon (Si) atomic content in the surface layer (Si / (Ti + Si) (%)) were determined.
  • the layer thickness of the barrier layer at this time was defined from the surface of the barrier layer to the position where the titanium (Ti) atomic content was 1/10 of the titanium (Ti) atomic content at the peak position.
  • the position at which the ratio of the titanium (Ti) atom content rate takes the maximum value is a relative value ((the above peak position) where the total thickness of the barrier layer is 1 L and the surface of the barrier layer is the reference 0 L. / Total barrier layer thickness) ⁇ L).
  • the atomic content on the surface of the barrier layer was defined by the atomic content of the surface layer after removing the outermost surface layer for 1 minute (1 nm) by Ar sputtering. This is to prevent contamination of contaminant components such as carbon on the outermost surface.
  • the layer thickness of the entire barrier layer was defined as the layer thickness including the above-mentioned removed outermost layer.
  • the acid resistance and alkali resistance tests were carried out according to JIS R 3221: 2002, and pass (OK) or fail (NG) was determined.
  • the scratch resistance test was performed by dropping 1 ml of the adjustment liquid onto the surface of the barrier layer and applying a load of 1100 g / cm 2 to a polishing cloth (wool buff) having a contact surface of 30 ⁇ 11 mm.
  • As the adjustment liquid 1 L of tap water mixed with 1.0 g of JIS Z 8901: 2006 powder and 2 drops of a neutral detergent was used before and after sliding the polishing cloth linearly 420 times.
  • the barrier layer surface was evaluated.
  • Table 1 shows the formation conditions of the barrier layer and the evaluation results of acid resistance, alkali resistance and scratch resistance.
  • scratch resistance Rv (visible light reflectance) was measured and visually confirmed in accordance with JIS Z 8722: 2009 for the test specimen after the test, and the change ( ⁇ Rv) in Rv before and after the test was 2.0. % And when the sample was not visually damaged, it was determined to be acceptable (OK). In other cases, it was determined as NG.
  • Table 1 shows the maximum value of the titanium (Ti) atom content ratio (Ti / (Ti + Si) (%)) in the barrier layer, and the position at which the titanium (Ti) atom content ratio takes the maximum value (peak position).
  • the relative peak position expressed as a ratio to the total thickness (L) of the barrier layer and the ratio of the silicon (Si) atom content on the barrier layer surface (Si / (Ti + Si) (%)) Results are shown.
  • the maximum value of the titanium (Ti) atom content ratio was 80.0% or more, and both the alkali resistance test and the acid resistance test were good results.
  • Example 1 the ratio of the silicon (Si) atom content on the surface of the barrier layer was 60.0% or more, and all exhibited good scratch resistance.
  • Comparative Example 1 in which the position (peak position) at which the ratio of the titanium (Ti) atom content rate takes the maximum value was out of the range of 0.25 L to 0.75 L was also rejected in the scratch resistance test.
  • FIG. 2 shows the atomic content of Ti, Si, and O in the barrier layer of each sample of Example 1 and FIG. 3 of Comparative Example 1. In FIGS.
  • the etching time corresponds to the layer thickness of the barrier layer, and when compared with the standard sample of the SiO 2 thin film, the etching time 1 min corresponds to the layer thickness 1 nm from the surface of the barrier layer.
  • the position where the ratio of the titanium (Ti) atom content rate in Example 1 takes the maximum value is 0.36 L, and titanium (Ti) atom content is present in the middle portion of the barrier layer.
  • a titanium (Ti) rich layer having a maximum rate ratio of 80.0% or more is provided.
  • the atomic content rate of silicon (Si) is high on the surface side of the barrier layer and the functional thin film side. From the ESCA result of Comparative Example 1 shown in FIG. 3, it can be seen that the maximum value of the titanium (Ti) atom content ratio of the titanium (Ti) rich layer is less than 80.0%.

Abstract

This glass plate with a thin film comprises, in order, a glass substrate, a functional thin film, and a barrier layer. The barrier layer consists essentially of mixed oxides of silicon (Si) and titanium (Ti), the barrier layer comprises a titanium (Ti) rich layer in which the atom content (Atom%) of titanium in the mixed oxides, measured by X-ray photoelectron analysis (ESCA), is higher than the atom content (Atom%) of silicon (Si), and the maximum value of the ratio (Ti/(Si+Ti)(%)) of the atom content of titanium (Ti) to the total atom content of silicon (Si) and titanium (Ti) in the titanium (Ti) rich layer is 80% or greater.

Description

薄膜付ガラス板およびその製造方法Glass plate with thin film and manufacturing method thereof
 本発明は、建築等の用途に用いられる機能性を備える薄膜付ガラス板およびその製造方法に関する。 The present invention relates to a glass plate with a thin film having functionality used for applications such as architecture and a method for producing the same.
 複層ガラス、ショーウィンドウガラスなどの建築用のガラス板では、視認性を向上させるために、ガラス基板上に反射防止膜を形成したり、熱の放射を抑える低放射膜(所謂Low-E膜)を形成したり、IRカット、UVカットなど様々な機能性を備える薄膜を形成する場合がある。
 例えば、反射防止膜としては、低屈折率材料からなる膜(低屈折率膜)と、高屈折率材料からなる膜(高屈折率膜)と、を交互に積層してなる反射防止膜が、従来より知られている。中でも、低屈折率膜としての酸化ケイ素(SiO2)膜と、高屈折率膜としての酸化チタン(TiO2)膜と、を交互に積層してなる反射防止膜が、屈折率差が大きく光学設計上優位であり、また、材料コストが安価であることから、広く用いられている。
In architectural glass plates such as multi-layer glass and show window glass, an antireflection film is formed on a glass substrate to improve visibility, or a low radiation film (so-called Low-E film) that suppresses heat radiation. ), Or a thin film having various functions such as IR cut and UV cut may be formed.
For example, as an antireflection film, an antireflection film formed by alternately laminating a film made of a low refractive index material (low refractive index film) and a film made of a high refractive index material (high refractive index film), Conventionally known. In particular, an antireflection film formed by alternately laminating a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film has a large refractive index difference and is optical. It is widely used because of its superiority in design and low material cost.
 また、上述した、建築用のガラス板では、長期使用に耐えうる耐候性を求められる場合がある。例えば、特許文献1には、反射防止ガラスの耐候性向上を目的として、透明ガラス体の表面上の反射防止ガラス表面にガラス様保護被膜を付与することが開示されている。
 また、より高い耐候性を付与するために、ガラス基板上に形成される機能性を備える薄膜に、耐酸性、および、耐アルカリ性を付与することが求められる場合がある。例えば、建設用のコンクリートなどから溶出する液は主にアルカリ性であるため、これに対する耐性が求められる場合がある。また、ガラス基板表面の洗浄において、酸性またはアルカリ性のクリーナーが用いられる場合があるため、これに対する耐性が求められる場合がある。
Moreover, in the glass plate for construction mentioned above, the weather resistance which can endure long-term use may be calculated | required. For example, Patent Document 1 discloses that a glass-like protective coating is applied to the surface of an antireflection glass on the surface of a transparent glass body for the purpose of improving the weather resistance of the antireflection glass.
Moreover, in order to provide higher weather resistance, it may be required to impart acid resistance and alkali resistance to a thin film having functionality formed on a glass substrate. For example, since the liquid eluted from concrete for construction is mainly alkaline, resistance to this may be required. In addition, since an acidic or alkaline cleaner may be used in cleaning the glass substrate surface, resistance to this may be required.
日本国特表2012-517396号公報Japanese Special Table 2012-517396
 これらの理由から、耐酸性、および、耐アルカリ性を両立する機能性薄膜が望まれている。しかし、従来の建築用ガラスの機能性薄膜においては耐酸性及び耐アルカリ性の両立が難しいとの問題があった。
 本発明は、上述した従来技術における問題点を解決するため、耐酸性および耐アルカリ性に優れた、機能性を備える薄膜付ガラス板を提供することを目的とする。
For these reasons, a functional thin film having both acid resistance and alkali resistance is desired. However, conventional functional thin films of architectural glass have a problem that it is difficult to achieve both acid resistance and alkali resistance.
An object of the present invention is to provide a glass plate with a thin film, which is excellent in acid resistance and alkali resistance and has functionality, in order to solve the above-described problems in the prior art.
 上記した目的を達成するため、本願発明者らは鋭意検討することで以下の知見を得た。
(1)SiO2膜と、TiO2膜と、を交互に積層してなる反射防止膜のうち、最表層をSiO2膜としたものは、耐酸性は良好であるが、耐アルカリ性が低い。
(2)SiO2膜と、TiO2膜と、を交互に積層してなる反射防止膜のうち、最表層をTiO2膜としたものは、耐アルカリ性は良好であるが、耐酸性が低い。
(3)このため、SiO2膜と、TiO2膜のうち、いずれかを最表層としたものでは、耐酸性と耐アルカリ性を両立することができず、耐酸性と耐アルカリ性を付与するバリア層を反射防止膜上に形成する必要がある。但し、この目的でバリア層を形成する場合、バリア層は、反射防止膜の機能を損なわないものである必要がある。たとえば、バリア層の屈折率が、高屈折率膜としてのTiO2膜の屈折率よりも高い場合は、反射防止膜の機能が損なわれる。このため、バリア層の屈折率は、高屈折率膜としてのTiO2膜の屈折率以下であることが求められる。
 なお、反射防止膜においては最外層の屈折率は低いほど優位であるため、バリア層の屈折率はSiO2膜よりも低くてもよい。しかし実際には、SiO2膜よりも屈折率が低く、かつバリア層としての機能を発揮できる膜は形成することが困難である。
In order to achieve the above-described object, the inventors of the present application have earnestly studied to obtain the following knowledge.
(1) Of the antireflection films formed by alternately laminating SiO 2 films and TiO 2 films, those having the outermost layer as an SiO 2 film have good acid resistance but low alkali resistance.
(2) Among the antireflection films formed by alternately laminating SiO 2 films and TiO 2 films, those having the outermost layer as a TiO 2 film have good alkali resistance but low acid resistance.
(3) For this reason, in the case where one of the SiO 2 film and the TiO 2 film is the outermost layer, the acid resistance and alkali resistance cannot be achieved at the same time, and a barrier layer imparting acid resistance and alkali resistance is provided. Must be formed on the antireflection film. However, when a barrier layer is formed for this purpose, the barrier layer must be one that does not impair the function of the antireflection film. For example, when the refractive index of the barrier layer is higher than the refractive index of the TiO 2 film as the high refractive index film, the function of the antireflection film is impaired. For this reason, the refractive index of the barrier layer is required to be not more than the refractive index of the TiO 2 film as the high refractive index film.
In the antireflection film, the lower the refractive index of the outermost layer, the more dominant. Therefore, the refractive index of the barrier layer may be lower than that of the SiO 2 film. However, in practice, it is difficult to form a film having a refractive index lower than that of the SiO 2 film and capable of exhibiting a function as a barrier layer.
 本発明は、上記した知見に基づいてなされたものであり、ガラス基板、機能性薄膜、及びバリア層をこの順で有する薄膜付ガラス板であって、
 前記バリア層が実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなり、
 前記バリア層は、X線光電子分析(ESCA)により測定した前記混合酸化物におけるチタン(Ti)の原子含有率(Atom%)がケイ素(Si)の原子含有率(Atom%)よりも高いチタン(Ti)リッチ層を備え、
 前記チタン(Ti)リッチ層におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))の最大値が80%以上である、薄膜付ガラス板を提供する。
The present invention has been made based on the above-described findings, and is a glass plate with a thin film having a glass substrate, a functional thin film, and a barrier layer in this order,
The barrier layer is substantially composed of a mixed oxide of silicon (Si) and titanium (Ti);
The barrier layer is titanium (Atom%) of titanium (Ti) in the mixed oxide measured by X-ray photoelectron analysis (ESCA) higher than the atomic content (Atom%) of silicon (Si) ( Ti) with a rich layer,
The maximum value of the atomic content ratio of titanium (Ti) to the total atomic content ratio of silicon (Si) and titanium (Ti) in the titanium (Ti) rich layer (Ti / (Si + Ti) (%)) is 80%. The glass plate with a thin film which is the above is provided.
 本発明の薄膜付ガラス板において、前記バリア層の表面のX線光電子分析(ESCA)により測定したケイ素(Si)の原子含有率の割合(Si/(Ti+Si)(%))が35%以上であることが好ましい。 In the glass plate with a thin film of the present invention, the ratio of silicon (Si) atomic content (Si / (Ti + Si) (%)) measured by X-ray photoelectron analysis (ESCA) of the surface of the barrier layer is 35% or more. Preferably there is.
 また、本発明の薄膜付ガラス板において、前記バリア層の表面のX線光電子分析(ESCA)により測定したケイ素(Si)の原子含有率の割合(Si/(Ti+Si)(%))が60%以上であることが好ましい。 Moreover, in the glass plate with a thin film of the present invention, the proportion of silicon (Si) atomic content (Si / (Ti + Si) (%)) measured by X-ray photoelectron analysis (ESCA) of the surface of the barrier layer is 60%. The above is preferable.
 また、本発明の薄膜付ガラス板において、前記バリア層の層厚をL(nm)とするとき、前記混合酸化物におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が最大値をとる部位が、前記バリア層の層厚方向において、0.05L~0.95Lを満たす位置にあることが好ましい。 In the glass plate with a thin film of the present invention, when the thickness of the barrier layer is L (nm), titanium (Ti) relative to the total atomic content of silicon (Si) and titanium (Ti) in the mixed oxide It is preferable that the portion where the atomic content ratio (Ti / (Si + Ti) (%)) of () has the maximum value is in a position satisfying 0.05 L to 0.95 L in the thickness direction of the barrier layer.
 本発明の薄膜付ガラス板において、前記バリア層の層厚をL(nm)とするとき、前記混合酸化物におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が最大値をとる部位が、前記バリア層の層厚方向において、0.25L~0.75Lを満たす位置にあり、ケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が最小値をとる部位が、前記バリア層の層厚方向における両端部のうち少なくとも一方の部位にあることが好ましい。 In the glass plate with a thin film of the present invention, when the layer thickness of the barrier layer is L (nm), titanium (Ti) with respect to the total atomic content of silicon (Si) and titanium (Ti) in the mixed oxide The portion where the atomic content ratio (Ti / (Si + Ti) (%)) takes the maximum value is at a position satisfying 0.25 L to 0.75 L in the thickness direction of the barrier layer, and silicon (Si) and The portion where the ratio of the atomic content of titanium (Ti) to the total of the atomic content of titanium (Ti) (Ti / (Si + Ti) (%)) takes the minimum value is at both ends in the layer thickness direction of the barrier layer. It is preferable that it exists in at least one site | part.
 本発明の薄膜付ガラス板において、前記バリア層の層厚が25nm以下であることが好ましい。 In the glass plate with a thin film of the present invention, the layer thickness of the barrier layer is preferably 25 nm or less.
 本発明の薄膜付ガラス板において、前記バリア層が搬送型常圧CVD装置を用いて形成されていることが好ましい。 In the glass plate with a thin film of the present invention, it is preferable that the barrier layer is formed using a transfer type atmospheric pressure CVD apparatus.
 また、本発明の薄膜付ガラス板において、前記機能性薄膜が、低屈折率膜としての酸化ケイ素(SiO2)膜と、高屈折率膜としての酸化チタン(TiO2)膜と、を交互に積層してなる反射防止膜であり、該反射防止膜は、膜厚15nm以上100nm以下のSiO2膜と、膜厚5nm以上120nm以下のTiO2膜と、が、交互に合計2~16層積層されていることが好ましい。 Further, in the glass plate with a thin film of the present invention, the functional thin film alternately comprises a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film. The antireflection film is formed by laminating a total of 2 to 16 layers of an SiO 2 film having a thickness of 15 nm to 100 nm and a TiO 2 film having a thickness of 5 nm to 120 nm alternately. It is preferable that
 本発明の薄膜付ガラス板において、前記反射防止膜は、ガラス基板側からSiO2膜、TiO2膜の順に交互に積層されていてもよい。 In the glass plate with a thin film of the present invention, the antireflection film may be alternately laminated in the order of the SiO 2 film and the TiO 2 film from the glass substrate side.
 本発明の薄膜付ガラス板において、前記反射防止膜は、ガラス基板側からTiO2膜、SiO2膜の順に交互に積層されていてもよい。 In the glass plate with a thin film of the present invention, the antireflection film may be alternately laminated in the order of the TiO 2 film and the SiO 2 film from the glass substrate side.
 また、本発明の薄膜付ガラス板において、前記機能性薄膜が、低放射(Low-E)膜であることが好ましい。 In the glass plate with a thin film of the present invention, the functional thin film is preferably a low emission (Low-E) film.
 また、本発明の薄膜付ガラス板において、前記機能性薄膜が、IRカット機能を備える多層膜であることが好ましい。 In the glass plate with a thin film of the present invention, the functional thin film is preferably a multilayer film having an IR cut function.
 また、本発明の薄膜付ガラス板において、前記機能性薄膜が、UVカット機能を備える多層膜であることが好ましい。 In the glass plate with a thin film of the present invention, the functional thin film is preferably a multilayer film having a UV cut function.
 また、本発明は、ガラス基板、機能性薄膜、及びバリア層をこの順で有する薄膜付ガラス板の製造方法であって、前記バリア層が搬送型常圧CVD装置を用いて形成され、
 主原料としてモノシラン(SiH4)およびテトライソプロポキシチタン(TTIP)を、副原料として酸素(O2)を、主原料供給ノズルと、該主原料供給ノズルに対しガラス基板の搬送方向における上流側および下流側に備えられた副原料供給ノズルから、前記搬送型常圧CVD装置内で搬送されるガラス基板上に供給する工程を備え、
 前記バリア層が実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなり、
 前記バリア層が、X線光電子分析(ESCA)により測定した前記混合酸化物におけるチタン(Ti)の原子含有率(Atom%)がケイ素(Si)の原子含有率(Atom%)よりも高いチタン(Ti)リッチ層を備え、
 前記チタン(Ti)リッチ層におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Ti+Si)(%))の最大値が80%以上である、薄膜付ガラス板の製造方法を提供する。
Further, the present invention is a method for producing a glass plate with a thin film having a glass substrate, a functional thin film, and a barrier layer in this order, wherein the barrier layer is formed using a transfer type atmospheric pressure CVD apparatus,
Monosilane (SiH 4 ) and tetraisopropoxy titanium (TTIP) as main raw materials, oxygen (O 2 ) as a secondary raw material, a main raw material supply nozzle, an upstream side in the conveyance direction of the glass substrate with respect to the main raw material supply nozzle, and From the auxiliary material supply nozzle provided on the downstream side, comprising a step of supplying onto the glass substrate conveyed in the conveyance type atmospheric pressure CVD apparatus,
The barrier layer is substantially composed of a mixed oxide of silicon (Si) and titanium (Ti);
Titanium in which the barrier layer has an atomic content (Atom%) of titanium (Ti) in the mixed oxide measured by X-ray photoelectron analysis (ESCA) higher than an atomic content (Atom%) of silicon (Si) ( Ti) with a rich layer,
The maximum ratio of the atomic content of titanium (Ti) to the total atomic content of silicon (Si) and titanium (Ti) in the titanium (Ti) rich layer (Ti / (Ti + Si) (%)) is 80% The manufacturing method of the glass plate with a thin film which is the above is provided.
 本発明の薄膜付ガラス板においては、機能性を備える薄膜上に、特定の組成のバリア層を設けることで、反射防止性等の光学特性を損なうことなく、耐酸性および耐アルカリ性が向上している。 In the glass plate with a thin film of the present invention, by providing a barrier layer having a specific composition on a thin film having functionality, acid resistance and alkali resistance are improved without impairing optical properties such as antireflection properties. Yes.
図1は、本発明の一態様における薄膜付きガラス板の製造方法を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a manufacturing method of a glass plate with a thin film according to one embodiment of the present invention. 図2は、実施例におけるESCAの測定結果を示した図である。FIG. 2 is a diagram showing ESCA measurement results in the examples. 図3は、比較例におけるESCAの測定結果を示した図である。FIG. 3 is a diagram showing ESCA measurement results in a comparative example.
 以下、本発明を、本発明の機能性を有する薄膜の例として反射防止膜を形成した反射防止膜付ガラス板を例に説明するが、本発明の機能性を有する薄膜は反射防止膜に限定されず、本発明には、その効果を損しない範囲で種々の機能性を備える薄膜を適用することができる。 Hereinafter, the present invention will be described by taking, as an example, a glass plate with an antireflection film on which an antireflection film is formed as an example of a thin film having the functionality of the present invention. However, thin films having various functionalities can be applied to the present invention as long as the effects are not impaired.
 本発明の一態様である薄膜付ガラス板は、ガラス基板上に、低屈折率膜としての酸化ケイ素(SiO2)膜と、高屈折率膜としての酸化チタン(TiO2)膜と、を交互に積層してなる反射防止膜が形成され、該反射防止膜上に以下に述べる特定の組成のバリア層が形成されたものである。
 以下、本発明の薄膜付ガラス板の個々の構成要素について説明する。
A glass plate with a thin film which is one embodiment of the present invention includes a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film alternately on a glass substrate. The antireflection film is formed by laminating the film, and the barrier layer having the specific composition described below is formed on the antireflection film.
Hereafter, each component of the glass plate with a thin film of this invention is demonstrated.
 <ガラス基板>
 本発明におけるガラス基板は、必ずしも平面で板状である必要はなく、曲面でも異型状でもよい。ガラス基板としては、無色透明なソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウ珪酸ガラス、無アルカリガラス、その他の各種ガラスからなる透明ガラス板を用いることができ、値段の観点から、ソーダライムシリケートガラスが好ましい。また、ガラス基板の板厚は0.2~12mmであることが好ましい。
<Glass substrate>
The glass substrate in the present invention is not necessarily flat and plate-like, and may be curved or atypical. As the glass substrate, transparent glass plates made of colorless and transparent soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, non-alkali glass, and other various glasses can be used. From the viewpoint of price, soda lime silicate glass is preferable. The plate thickness of the glass substrate is preferably 0.2 to 12 mm.
<機能性を有する薄膜>
 本発明における機能性を有する薄膜(以下、機能性薄膜ともいう)として、反射防止(AR)膜、低放射(Low-E)膜、IRカット多層膜、UVカット多層膜などが適用可能である。機能性薄膜の形成方法としては、CVD法、PVD法、ゾルゲル法などが使用できる。
 例えば、反射防止膜は、低屈折率膜としての酸化ケイ素(SiO2)膜と、高屈折率膜としての酸化チタン(TiO2)膜と、を交互に積層したものである。ガラス基板側から、SiO2膜、TiO2膜の順に交互に積層してもよく、TiO2膜、SiO2膜の順に交互に積層してもよい。ガラス基板の上に最初にTiO2膜を形成する場合(すなわち、TiO2膜、SiO2膜の順に交互に積層する場合)のほうが、ガラス基板との屈折率の差が大きくなるため、SiO2膜を最初に形成する場合(すなわち、SiO2膜、TiO2膜の順に交互に積層する場合)より層数を少なくできる点で好ましい。
 ここで、SiO2膜の膜厚は、15nm以上100nm以下であることが好ましい。一方、TiO2膜の膜厚は5nm以上120nm以下であることが好ましい。SiO2膜およびTiO2膜は、合計で2~16層を積層することが好ましい。
 なお、反射防止膜を構成するSiO2膜、および、TiO2膜は、それぞれ膜厚が異なっていてもよい。例えば、膜厚10nmのTiO2膜、膜厚30nmのSiO2膜、膜厚105nmのTiO2膜、膜厚92nmのSiO2膜の順に積層してもよい。最上層のSiO2膜は、膜厚を前記92nmの1/2程度にしてもよい。
 また、反射防止膜の膜厚、すなわち、SiO2膜とTiO2膜の積層膜の合計膜厚は、150~300nmであることが好ましく、180~250nmであることがより好ましい。
<Functional thin film>
As a thin film having functionality in the present invention (hereinafter also referred to as a functional thin film), an antireflection (AR) film, a low emission (Low-E) film, an IR cut multilayer film, a UV cut multilayer film, or the like is applicable. . As a method for forming the functional thin film, a CVD method, a PVD method, a sol-gel method, or the like can be used.
For example, the antireflection film is formed by alternately laminating a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film. From the glass substrate side, the SiO 2 film and the TiO 2 film may be alternately laminated in this order, or the TiO 2 film and the SiO 2 film may be alternately laminated in this order. When first formed a TiO 2 film on a glass substrate (i.e., TiO 2 film, when alternately stacking the order of SiO 2 film) is more of a difference in refractive index between the glass substrate increases, SiO 2 This is preferable in that the number of layers can be reduced as compared with the case where the film is formed first (that is, when the SiO 2 film and the TiO 2 film are alternately stacked).
Here, the thickness of the SiO 2 film is preferably 15 nm or more and 100 nm or less. On the other hand, the thickness of the TiO 2 film is preferably 5 nm or more and 120 nm or less. The SiO 2 film and the TiO 2 film are preferably laminated in a total of 2 to 16 layers.
Note that the SiO 2 film and the TiO 2 film constituting the antireflection film may have different film thicknesses. For example, a 10 nm thick TiO 2 film, a 30 nm thick SiO 2 film, a 105 nm thick TiO 2 film, and a 92 nm thick SiO 2 film may be stacked in this order. The uppermost SiO 2 film may have a thickness of about ½ of 92 nm.
The film thickness of the antireflection film, that is, the total film thickness of the laminated film of the SiO 2 film and the TiO 2 film is preferably 150 to 300 nm, and more preferably 180 to 250 nm.
 SiO2膜、TiO2膜の成膜方法は特に限定されないが、CVD法の使用が、大面積への適用が容易であること、成膜レート変更が容易で生産性が高く経済的に有利なことなどの理由から好ましい。
 CVD法を使用する場合、実施時の圧力条件は特に限定されないが、常圧での実施が、成膜時の雰囲気制御が容易なこと、及び既存の生産設備との整合性が高いことから、経済的に有利であり好ましい。
The film formation method of the SiO 2 film and the TiO 2 film is not particularly limited, but the use of the CVD method is easy to apply to a large area, the film formation rate can be easily changed, and the productivity is high and economically advantageous. It is preferable for the reason.
When using the CVD method, the pressure conditions at the time of implementation are not particularly limited, but the implementation at normal pressure is easy to control the atmosphere during film formation, and is highly compatible with existing production equipment, Economically advantageous and preferred.
 SiO2膜の成膜にCVD法を使用する場合、主原料をモノシラン(SiH4)とし、副原料を酸素(O2)としてCVD法を実施すればよい。このとき、O2/SiH4モル比が50以上であることが成膜速度の観点から好ましい。また、ガラス基板の温度は530~600℃であることが、成膜速度の観点から好ましい。
 一方、TiO2膜の成膜にCVD法を使用する場合、テトライソプロポキシチタン(TTIP)を原料としてCVD法を実施すればよい。このとき、ガラス基板の温度は530~580℃であることが、成膜速度の観点から好ましい。
When the CVD method is used to form the SiO 2 film, the CVD method may be performed using monosilane (SiH 4 ) as the main material and oxygen (O 2 ) as the auxiliary material. At this time, the O 2 / SiH 4 molar ratio is preferably 50 or more from the viewpoint of film formation rate. In addition, the temperature of the glass substrate is preferably 530 to 600 ° C. from the viewpoint of film formation speed.
On the other hand, when the CVD method is used to form the TiO 2 film, the CVD method may be performed using tetraisopropoxy titanium (TTIP) as a raw material. At this time, the temperature of the glass substrate is preferably 530 to 580 ° C. from the viewpoint of film formation speed.
<バリア層>
 本発明におけるバリア層は、実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなる。なお、本発明において、「バリア層が実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなる」とは、バリア層におけるケイ素(Si)、チタン(Ti)および酸素(O)の原子含有率の合計が85Atom%以上であることを意味する。
 上述したように、SiO2膜は、耐酸性は良好であるが、耐アルカリ性が低い。TiO2膜は、耐アルカリ性は良好であるが、耐酸性が低い。ケイ素(Si)とチタン(Ti)との混合酸化物でバリア層を構成することで、耐酸性と耐アルカリ性を両立できる。
 ただし、耐酸性と耐アルカリ性を両立し、かつ、所望の屈折率のバリア層を得るためには、単にケイ素とチタンとの混合酸化物でバリア層を構成するだけでは不十分であり、以下に述べる点を満たす必要がある。
<Barrier layer>
The barrier layer in the present invention consists essentially of a mixed oxide of silicon (Si) and titanium (Ti). In the present invention, “the barrier layer consists essentially of a mixed oxide of silicon (Si) and titanium (Ti)” means that silicon (Si), titanium (Ti) and oxygen (O ) Of the total atomic content is 85 Atom% or more.
As described above, the SiO 2 film has good acid resistance but low alkali resistance. The TiO 2 film has good alkali resistance but low acid resistance. By configuring the barrier layer with a mixed oxide of silicon (Si) and titanium (Ti), both acid resistance and alkali resistance can be achieved.
However, in order to achieve both acid resistance and alkali resistance and to obtain a barrier layer having a desired refractive index, it is not sufficient to simply form the barrier layer with a mixed oxide of silicon and titanium. It is necessary to satisfy the points to be stated.
 バリア層が実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなる場合、バリア層の表面に一定量のSiO2が存在することにより耐酸性と耐アルカリ性が向上する。一方で、本発明におけるバリア層に要求される耐アルカリ性を確保するためには、以下に規定する特定量のTiO2が存在する必要がある。
 しかし、層厚方向でTiO2とSiO2との組成比が均一なバリア層を形成した場合、バリア層全体に占めるTiO2量、特にその下限量が、上記特定量により決まってしまい、バリア層の屈折率を下げることができず、所望の屈折率を得ることが難しい。
 本発明は、バリア層中に、TiO2の存在比率がSiO2の存在比率よりも高い層、すなわち、チタン(Ti)の原子含有率(Atom%)がケイ素(Si)の原子含有率(Atom%)よりも高い層(以下チタン(Ti)リッチ層という)を内在させることにより、良好な耐酸性、耐アルカリ性を兼ね備え、かつ所望の屈折率を備える実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなるバリア層を実現した。
When the barrier layer is substantially composed only of a mixed oxide of silicon (Si) and titanium (Ti), the presence of a certain amount of SiO 2 on the surface of the barrier layer improves the acid resistance and alkali resistance. On the other hand, in order to ensure the alkali resistance required for the barrier layer in the present invention, a specific amount of TiO 2 specified below needs to be present.
However, when a barrier layer having a uniform composition ratio of TiO 2 and SiO 2 in the layer thickness direction is formed, the amount of TiO 2 occupying the entire barrier layer, particularly the lower limit thereof, is determined by the specific amount, and the barrier layer Therefore, it is difficult to obtain a desired refractive index.
The present invention is a layer in which the abundance ratio of TiO 2 is higher than the abundance ratio of SiO 2 in the barrier layer, that is, the atomic content (Atom%) of titanium (Ti) is the atomic content (Atom) of silicon (Si). %)) (Hereinafter referred to as a titanium (Ti) rich layer), by combining silicon (Si) and titanium (Ti) having both good acid resistance and alkali resistance and having a desired refractive index. And a barrier layer made only of mixed oxides.
 本発明の一態様におけるバリア層は、搬送型常圧CVD装置を用いて形成される。
 図1は、本発明の一態様における薄膜付ガラス板の製造方法を説明するための概念図であり、搬送型常圧CVD装置の一構成例を模式的に示している。
 図1に示す搬送型常圧CVD装置の原料供給手段10は、コンベアベルト12のローラ12aにより、矢印y方向に搬送されるガラス基板Zに原料を供給する手段である。
 図1に示す原料供給手段10は、主原料を供給するノズル(主原料供給ノズル)14、該主原料供給ノズル14に対しガラス基板Zの搬送方向(矢印y方向)における上流側および下流側に備えられた副原料を供給するノズル(副原料供給ノズル)16,16、および、反応によって生成したガスや余剰な原料を吸引除去するための排気ノズル18,18で構成される。図1に示す原料供給手段10は、主原料供給ノズル14からの主原料、および、副原料供給ノズル16,16からの副原料をガラス基板Z上で混合させるポストミックス方式の原料供給手段である。
 また機能性薄膜、例えば反射防止(AR)膜を形成する場合、合計7本のインジェクターを使用し、バリア層の下地としての反射防止膜のTiO2とSiO2は7本のうち6本のインジェクターを使用して形成している。すなわち当バリア層は1本のインジェクターを用いて形成している。
In one embodiment of the present invention, the barrier layer is formed using a transfer-type atmospheric pressure CVD apparatus.
FIG. 1 is a conceptual diagram for explaining a manufacturing method of a glass plate with a thin film in one embodiment of the present invention, and schematically shows a configuration example of a transport type atmospheric pressure CVD apparatus.
The material supply means 10 of the transport type atmospheric pressure CVD apparatus shown in FIG. 1 is a means for supplying the material to the glass substrate Z transported in the direction of arrow y by the roller 12a of the conveyor belt 12.
A raw material supply means 10 shown in FIG. 1 includes a nozzle (main raw material supply nozzle) 14 for supplying a main raw material, and an upstream side and a downstream side in the transport direction (arrow y direction) of the glass substrate Z with respect to the main raw material supply nozzle 14. The nozzles 16 and 16 for supplying auxiliary materials (sub-material supply nozzles) 16 and 16 and the exhaust nozzles 18 and 18 for sucking and removing the gas generated by the reaction and excess materials are configured. The raw material supply means 10 shown in FIG. 1 is a post-mix type raw material supply means for mixing the main raw material from the main raw material supply nozzle 14 and the auxiliary raw material from the auxiliary raw material supply nozzles 16, 16 on the glass substrate Z. .
The functional thin film, for example, in the case of forming an anti-reflective (AR) film, a total of seven using an injector, six injectors of TiO 2 and SiO 2 are seven of the antireflection film as an underlying barrier layer Is formed using. That is, the barrier layer is formed by using one injector.
 搬送型常圧CVD装置を用いて、本発明の一態様におけるバリア層を形成する際、図1に示したように、主原料をモノシラン(SiH4)およびテトライソプロポキシチタン(TTIP)とし、副原料を酸素(O2)として、それぞれ主原料供給ノズル14および副原料供給ノズル16から、コンベアベルト12により矢印y方向に搬送されるガラス基板Z上に供給する。SiH4に比べてTTIPは反応性が高いため、原料供給ノズル(14,16)直下で反応が進行し、SiH4の反応はその周縁部で反応が進行する。
 ここで、バリア層を形成するガラス基板Zは、一定方向(矢印y方向)に搬送されているため、形成されるバリア層は、層厚方向に組成分布を有するものとなる。具体的には、層厚方向における端側、すなわち、バリア層の表面側および裏面側のうち少なくとも表面側では、ケイ素(Si)の原子含有率の割合(ケイ素(Si)とチタン(Ti)の原子含有率の合計に対するケイ素(Si)の原子含有率の割合(Si/(Si+Ti)(%)))が高く、バリア層の内部側では、チタン(Ti)の原子含有率の割合が高い組成分布となる。バリア層がこのようなケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))の高いチタン(Ti)リッチ層を内在することで、耐酸性と耐アルカリ性を両立できる。このとき、バリア層の表面側だけでなく、裏面側(例えば反射防止層側)もケイ素(Si)の原子含有率の割合(ケイ素(Si)とチタン(Ti)の原子含有率の合計に対するケイ素(Si)の原子含有率の割合(Si/(Si+Ti)(%)))が高くなってもよい。
When forming a barrier layer in one embodiment of the present invention using a transport-type atmospheric pressure CVD apparatus, as shown in FIG. 1, the main raw materials are monosilane (SiH 4 ) and tetraisopropoxy titanium (TTIP), The raw material is supplied as oxygen (O 2 ) from the main raw material supply nozzle 14 and the auxiliary raw material supply nozzle 16 onto the glass substrate Z conveyed in the direction of arrow y by the conveyor belt 12. Since TTIP has a higher reactivity than SiH 4 , the reaction proceeds directly under the raw material supply nozzles (14, 16), and the reaction of SiH 4 proceeds at the peripheral edge thereof.
Here, since the glass substrate Z which forms a barrier layer is conveyed in a fixed direction (arrow y direction), the formed barrier layer has a composition distribution in the layer thickness direction. Specifically, at the end side in the layer thickness direction, that is, at least on the front side and the back side of the barrier layer, the ratio of silicon (Si) atomic content (of silicon (Si) and titanium (Ti)) The ratio of the atomic content of silicon (Si) to the total atomic content (Si / (Si + Ti) (%))) is high, and the composition of the atomic content of titanium (Ti) is high inside the barrier layer. Distribution. Titanium (Ti) rich layer having a high ratio (Ti / (Si + Ti) (%)) of the atomic content of titanium (Ti) to the total atomic content of silicon (Si) and titanium (Ti) in the barrier layer Incorporating the acid can achieve both acid resistance and alkali resistance. At this time, not only the front surface side of the barrier layer but also the back surface side (for example, the antireflection layer side) is a silicon (Si) atomic content ratio (silicon with respect to the total atomic content of silicon (Si) and titanium (Ti)). (Si) atomic content ratio (Si / (Si + Ti) (%))) may be high.
 本発明の一態様におけるバリア層は、前述のように、バリア層が実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなり、X線光電子分析(ESCA)により測定した混合酸化物におけるチタン(Ti)の原子含有率(Atom%)がケイ素(Si)の原子含有率(Atom%)よりも高いチタン(Ti)リッチ層を備えており、該チタン(Ti)リッチ層におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)原子含有率の割合(Ti/(Ti+Si)(%))の最大値が80%以上である。 As described above, the barrier layer in one embodiment of the present invention is a mixture in which the barrier layer is substantially composed of only a mixed oxide of silicon (Si) and titanium (Ti) and is measured by X-ray photoelectron analysis (ESCA). A titanium (Ti) rich layer in which the atomic content (Atom%) of titanium (Ti) in the oxide is higher than the atomic content (Atom%) of silicon (Si) is provided. The maximum value of the titanium (Ti) atom content ratio (Ti / (Ti + Si) (%)) with respect to the total atomic content ratio of silicon (Si) and titanium (Ti) is 80% or more.
 一方で、本発明の一態様においてバリア層の表面にケイ素(Si)の原子含有率の割合(ケイ素(Si)とチタン(Ti)の原子含有率の合計に対するケイ素(Si)の原子含有率(Si/(Si+Ti)(%)))が該バリア層の他の部位よりも高い層を備えることが好ましい。バリア層の表面のX線光電子分析(ESCA)により測定したケイ素(Si)原子含有率の割合(Si/(Ti+Si)(%))が35%以上であれば良好な耐酸性が得られ、39%以上が好ましく、50%以上がさらに好ましい。また、60%以上であればさらに、耐擦傷性にも優れるバリア層が得られるためさらに好ましい。一方、耐アルカリ性についてみた場合、単独のSiO2膜は耐アルカリ性が低いが、本発明の一態様においては、ケイ素(Si)の原子含有率の割合(Si/(Si+Ti)(%)))が高い(すなわちSiO2の存在比率の高い)バリア層の表面に一定量のチタン(Ti)を含有している(すなわちバリア層の表面にTiO2が存在する)ため、耐アルカリ性が損なわれることがない。 On the other hand, in one embodiment of the present invention, the ratio of the atomic content of silicon (Si) on the surface of the barrier layer (the atomic content of silicon (Si) with respect to the total atomic content of silicon (Si) and titanium (Ti) ( Si / (Si + Ti) (%))) is preferably provided with a layer higher than other portions of the barrier layer. If the ratio of silicon (Si) atom content (Si / (Ti + Si) (%)) measured by X-ray photoelectron analysis (ESCA) on the surface of the barrier layer is 35% or more, good acid resistance is obtained. % Or more is preferable, and 50% or more is more preferable. Moreover, if it is 60% or more, since the barrier layer which is excellent also in abrasion resistance is obtained, it is further more preferable. On the other hand, when considering alkali resistance, a single SiO 2 film has low alkali resistance, but in one embodiment of the present invention, the proportion of silicon (Si) atomic content (Si / (Si + Ti) (%))) is Alkali resistance may be impaired because a certain amount of titanium (Ti) is contained on the surface of the barrier layer that is high (that is, the proportion of SiO 2 is high) (that is, TiO 2 is present on the surface of the barrier layer). Absent.
 バリア層における組成分布が上記とは逆の場合、すなわち、バリア層の表面側と、反射防止膜側において、チタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が高く、バリア層の内部側において、ケイ素(Si)の原子含有率の割合(Si/(Si+Ti)(%)))が高い組成分布だと、バリア層の表面側においてチタン(Ti)の原子含有率の割合が高いため耐酸性が低い。酸によりバリア層の表面側が侵食されると、ケイ素(Si)の原子含有率の割合が高い、バリア層の内部側が表面に露出することになるため、バリア層の耐アルカリ性も低下する。 When the composition distribution in the barrier layer is opposite to the above, that is, the ratio of the atomic content of titanium (Ti) (Ti / (Si + Ti) (%)) is high on the surface side of the barrier layer and on the antireflection film side. When the composition ratio of the silicon (Si) atomic content ratio (Si / (Si + Ti) (%)) on the inner side of the barrier layer is high, the atomic content of titanium (Ti) on the surface side of the barrier layer The acid resistance is low because of the high ratio. When the surface side of the barrier layer is eroded by the acid, the ratio of silicon (Si) atomic content is high, and the inner side of the barrier layer is exposed to the surface, so that the alkali resistance of the barrier layer also decreases.
 上述したように、本発明の一態様におけるバリア層は、層厚方向に組成分布を有するものとなる。具体的には、層厚方向における両端側、すなわち、バリア層の表面側と、反射防止膜などの機能性薄膜側では、ケイ素(Si)の原子含有率の割合(Si/(Si+Ti)(%)))が高く、両者の中間、すなわち、バリア層の内部側では、チタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が高い組成分布となることがさらに好ましい。
 この組成分布に関して、下記を満たすことが好ましい。
 バリア層の層厚をL(nm)とするとき、混合酸化物におけるチタン(Ti)原子含有率の割合(Ti/(Si+Ti)(%))が最大値をとる部位が、バリア層の層厚方向において、0.05L~0.95Lを満たす位置にあることが好ましい。さらに、0.25L~0.75Lであること、つまり、バリア層層厚の中央から1/4Lの範囲に位置することが、バリア層の耐久性が向上するためさらに好ましい。
 一方、チタン(Ti)原子含有率の割合(Ti/(Si+Ti)(%))が最小値をとる部位が、バリア層の層厚方向における両端部のうち少なくとも一方の部位、すなわち、バリア層の表面側の部位、および、反射防止膜などの機能性薄膜側の部位のうち少なくとも一方の位置にあることが好ましい。
As described above, the barrier layer in one embodiment of the present invention has a composition distribution in the layer thickness direction. Specifically, the atomic ratio of silicon (Si) (Si / (Si + Ti) (%) on both end sides in the layer thickness direction, that is, on the surface side of the barrier layer and on the functional thin film side such as an antireflection film. ))) Is high, and it is more preferable that the ratio of the atomic content of titanium (Ti) (Ti / (Si + Ti) (%)) is high between the two, that is, inside the barrier layer.
Regarding this composition distribution, it is preferable to satisfy the following.
When the layer thickness of the barrier layer is L (nm), the portion where the ratio of titanium (Ti) atom content (Ti / (Si + Ti) (%)) in the mixed oxide takes the maximum value is the layer thickness of the barrier layer. In the direction, it is preferably at a position satisfying 0.05L to 0.95L. Furthermore, it is more preferable that it is 0.25 L to 0.75 L, that is, it is located in the range of 1/4 L from the center of the thickness of the barrier layer because the durability of the barrier layer is improved.
On the other hand, the portion where the ratio of titanium (Ti) atom content (Ti / (Si + Ti) (%)) takes the minimum value is at least one portion of both end portions in the layer thickness direction of the barrier layer, that is, the barrier layer. It is preferable to be in at least one of the surface side portion and the functional thin film side portion such as an antireflection film.
 本発明の一態様におけるバリア層において、バリア層全体の層厚は、11nm以上が好ましい。バリア層の層厚が11nm未満だとバリア層が機能性薄膜を十分被覆できない可能性があり、機能性薄膜が例えば反射防止膜の場合、該反射防止膜におけるSiO2層の耐アルカリ性が不十分になる。
 バリア層の層厚の上限は、被覆する機能性薄膜の種類によって適宜設定可能であるが、例えば、機能性薄膜が反射防止膜の場合、25nm以下であることが好ましい。
In the barrier layer according to one embodiment of the present invention, the total thickness of the barrier layer is preferably 11 nm or more. If the thickness of the barrier layer is less than 11 nm, the barrier layer may not sufficiently cover the functional thin film. If the functional thin film is, for example, an antireflection film, the alkali resistance of the SiO 2 layer in the antireflection film is insufficient. become.
The upper limit of the thickness of the barrier layer can be appropriately set depending on the type of the functional thin film to be coated. For example, when the functional thin film is an antireflection film, it is preferably 25 nm or less.
 本発明の一態様において、バリア層が保護する機能性薄膜の機能を損なわないためには所望の屈折率のバリア層を得ることが望ましい。
 例えば機能性薄膜が反射防止膜の場合、その機能を損なわないためには、バリア層の屈折率は2.25以下(波長638nm)であることが必要となる。
 また、上述したように、反射防止膜の機能を損なわないために、バリア層の屈折率は、高屈折率膜としてのTiO2膜の屈折率以下であることが求められる。
 本明細書において、バリア層、および、TiO2膜の屈折率は、波長638nmでの屈折率を指標とする。理由は、可視光波長域で、屈折率の波長分散が比較的小さい領域のためである。
 なお、波長638nmでのTiO2膜の屈折率は2.45である。
 これに対し、本発明の一態様のバリア層は、上記した層厚方向における組成分布を有することにより、容易に屈折率を2.25以下にできる。このため、バリア層の形成により反射防止膜の機能が損なわれない。
In one embodiment of the present invention, it is desirable to obtain a barrier layer having a desired refractive index so as not to impair the function of the functional thin film protected by the barrier layer.
For example, when the functional thin film is an antireflection film, the refractive index of the barrier layer needs to be 2.25 or less (wavelength 638 nm) in order not to impair the function.
Further, as described above, in order not to impair the function of the antireflection film, the refractive index of the barrier layer is required to be equal to or lower than the refractive index of the TiO 2 film as the high refractive index film.
In this specification, the refractive index of the barrier layer and the TiO 2 film is based on the refractive index at a wavelength of 638 nm. The reason is because the wavelength dispersion of the refractive index is relatively small in the visible light wavelength region.
The refractive index of the TiO 2 film at a wavelength of 638 nm is 2.45.
On the other hand, the barrier layer of one embodiment of the present invention can easily have a refractive index of 2.25 or less by having the composition distribution in the layer thickness direction described above. For this reason, the function of the antireflection film is not impaired by the formation of the barrier layer.
 上述したように、本発明の一態様のバリア層は、耐酸性および耐アルカリ性が良好である。なお、後述する実施例では、JIS R 3221:2002にしたがって、耐酸性、耐アルカリ性の試験を実施した。また、後述する方法で耐擦傷性試験を行った。 As described above, the barrier layer of one embodiment of the present invention has good acid resistance and alkali resistance. In the examples described later, acid resistance and alkali resistance tests were performed according to JIS R 3221: 2002. Further, a scratch resistance test was conducted by the method described later.
 以下に、実施例を用いて本発明を詳細に説明する。ただし、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to this.
 本実施例では、図1に示した搬送型常圧CVD装置を用いて、フロート成形ラインの徐冷ゾーンにて機能性薄膜付ガラス基板上にバリア層の成膜を行った。
 バリア層の主原料にはモノシラン(SiH4)およびテトライソプロポキシチタン(TTIP)、副原料には酸素(O2)を用い、それぞれを主原料供給ノズル14および副原料供給ノズル16から、コンベアベルト12により矢印y方向に搬送される機能性薄膜が形成されたガラス基板Z上に供給しバリア層を形成した。これらのバリア層は1本のインジェクターにて形成した。
In this example, the barrier layer was formed on the glass substrate with a functional thin film in the slow cooling zone of the float forming line using the transfer type atmospheric pressure CVD apparatus shown in FIG.
Monosilane (SiH 4 ) and tetraisopropoxytitanium (TTIP) are used as the main raw materials for the barrier layer, and oxygen (O 2 ) is used as the auxiliary raw materials, which are respectively conveyed from the main raw material supply nozzle 14 and the auxiliary raw material supply nozzle 16 to the conveyor belt. 12 was supplied onto the glass substrate Z on which the functional thin film conveyed in the direction of the arrow y was formed to form a barrier layer. These barrier layers were formed by a single injector.
 本実施例では、バリア層について、成膜幅1mあたりのテトライソプロポキシチタン(TTIP)供給量、テトライソプロポキシチタン(TTIP)とモノシラン(SiH4)の混合比(TTIP/SiH4)及びバリア層の層厚の異なる複数のサンプルを作成し、得られたSiとTiとの混合酸化物で構成されるバリア層について耐酸性および耐アルカリ性並びに耐擦傷性を評価した。また、X線光電子分析(ESCA)を用いてバリア層に含まれるTi原子,Si原子,O原子について、層厚方向の原子含有率(Atom%)を測定した。測定には、走査型X線光電子分光装置(PHI 5000 VersaProbe、アルバック・ファイ株式会社製)を用いてビーム径100μmとし、バリア層の表面からArスパッタリングを行いながら、バリア層と下地の機能性薄膜層との界面まで層厚方向に沿って原子含有率の分析を行った。このとき、エッチングガスにはアルゴン(Ar)を用い、そのガス圧を1.5×10-2Pa、加速電圧を1kV、イオンビーム系を2×2mmとした。 In this example, for the barrier layer, the amount of tetraisopropoxy titanium (TTIP) supplied per 1 m of film forming width, the ratio of tetraisopropoxy titanium (TTIP) and monosilane (SiH 4 ) (TTIP / SiH 4 ), and the barrier layer A plurality of samples having different layer thicknesses were prepared, and acid resistance, alkali resistance, and scratch resistance were evaluated for the obtained barrier layer composed of a mixed oxide of Si and Ti. Moreover, the atomic content rate (Atom%) of the layer thickness direction was measured about Ti atom, Si atom, and O atom contained in a barrier layer using X-ray photoelectron analysis (ESCA). For the measurement, a scanning X-ray photoelectron spectrometer (PHI 5000 VersaProbe, manufactured by ULVAC-PHI) has a beam diameter of 100 μm, and while performing Ar sputtering from the surface of the barrier layer, the barrier layer and the underlying functional thin film The atomic content was analyzed along the layer thickness direction up to the interface with the layer. At this time, argon (Ar) was used as the etching gas, the gas pressure was 1.5 × 10 −2 Pa, the acceleration voltage was 1 kV, and the ion beam system was 2 × 2 mm.
 測定結果から、表1に示したように、バリア層内のTi原子含有率の割合(Ti/(Ti+Si)(%))の最大値、チタン(Ti)原子含有率の割合が最大値をとる位置(ピーク位置)、表面層のケイ素(Si)の原子含有率の割合(Si/(Ti+Si)(%))を求めた。
 このときのバリア層の層厚は、バリア層表面から、チタン(Ti)の原子含有率が、上記ピーク位置でのチタン(Ti)原子含有率の1/10となった位置までと規定した。また、チタン(Ti)原子含有率の割合が最大値をとる位置(上記ピーク位置)は、バリア層の全層厚を1Lとし、バリア層の表面を基準0Lとした相対値((上記ピーク位置/バリア層の全層厚)×L)でも表した。このとき、バリア層の表面での原子含有率は、Arスパッタリングにより1分間(1nm)最表面層を除去した後の表面層の原子含有率で規定した。これは、最表面における炭素などのコンタミ成分の混入を防ぐためである。また、バリア層全体の層厚は前述の除去した最表面層を含んだ層厚として規定した。
From the measurement results, as shown in Table 1, the maximum value of the Ti atom content ratio (Ti / (Ti + Si) (%)) in the barrier layer and the titanium (Ti) atom content ratio take the maximum values. The position (peak position) and the ratio of silicon (Si) atomic content in the surface layer (Si / (Ti + Si) (%)) were determined.
The layer thickness of the barrier layer at this time was defined from the surface of the barrier layer to the position where the titanium (Ti) atomic content was 1/10 of the titanium (Ti) atomic content at the peak position. Further, the position at which the ratio of the titanium (Ti) atom content rate takes the maximum value (the above peak position) is a relative value ((the above peak position) where the total thickness of the barrier layer is 1 L and the surface of the barrier layer is the reference 0 L. / Total barrier layer thickness) × L). At this time, the atomic content on the surface of the barrier layer was defined by the atomic content of the surface layer after removing the outermost surface layer for 1 minute (1 nm) by Ar sputtering. This is to prevent contamination of contaminant components such as carbon on the outermost surface. Further, the layer thickness of the entire barrier layer was defined as the layer thickness including the above-mentioned removed outermost layer.
 耐酸性、耐アルカリ性の試験は、JIS R 3221:2002に従って実施し、合格(OK)または不合格(NG)を判定した。 The acid resistance and alkali resistance tests were carried out according to JIS R 3221: 2002, and pass (OK) or fail (NG) was determined.
 耐擦傷性試験は、バリア層表面に調整液1mlを滴下し、30×11mmの接触面を持つ研磨布(羊毛バフ)に1100g/cm2の加重を加えて行った。調整液としては、1Lの水道水にJIS Z 8901:2006の粉体1.0gと中性洗剤を2滴とを混合したものを用い、研磨布を420回直線状に摺動させた前後のバリア層表面を評価した。 The scratch resistance test was performed by dropping 1 ml of the adjustment liquid onto the surface of the barrier layer and applying a load of 1100 g / cm 2 to a polishing cloth (wool buff) having a contact surface of 30 × 11 mm. As the adjustment liquid, 1 L of tap water mixed with 1.0 g of JIS Z 8901: 2006 powder and 2 drops of a neutral detergent was used before and after sliding the polishing cloth linearly 420 times. The barrier layer surface was evaluated.
 表1にバリア層の形成条件並びに耐酸性および耐アルカリ性並びに耐擦傷性の評価結果を示す。耐擦傷性の評価は、試験後の試験体についてJIS Z 8722:2009に準じRv(可視光反射率)の測定と目視による確認を行い、試験前後のRvの変化(△Rv)が2.0%以下で、かつ、目視により傷がない場合に合格(OK)とした。それ以外の場合に不合格(NG)とした。 Table 1 shows the formation conditions of the barrier layer and the evaluation results of acid resistance, alkali resistance and scratch resistance. For the evaluation of scratch resistance, Rv (visible light reflectance) was measured and visually confirmed in accordance with JIS Z 8722: 2009 for the test specimen after the test, and the change (ΔRv) in Rv before and after the test was 2.0. % And when the sample was not visually damaged, it was determined to be acceptable (OK). In other cases, it was determined as NG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に、バリア層中のチタン(Ti)原子含有率の割合(Ti/(Ti+Si)(%))の最大値、チタン(Ti)原子含有率の割合が最大値をとる位置(ピーク位置)、バリア層の全層厚(L)との比で表した相対的な上記ピーク位置、及び、バリア層表面のケイ素(Si)原子含有率の割合(Si/(Ti+Si)(%))の測定結果を示した。
 実施例1~7は、チタン(Ti)原子含有率の割合の最大値が80.0%以上であり、耐アルカリ性試験及び耐酸性試験のいずれにおいても良好な結果であった。また、実施例1~5はいずれもバリア層表面のケイ素(Si)原子含有率の割合が60.0%以上でありいずれも良好な耐擦傷性を示した。これに対して、チタン(Ti)原子含有率の割合の最大値が80.0%未満の比較例1、2は、耐アルカリ性試験において不合格であった。また、チタン(Ti)原子含有率の割合が最大値をとる位置(ピーク位置)が、0.25L~0.75Lの範囲外の比較例1は耐擦傷性試験においても不合格であった。
 図2に実施例1、図3に比較例1のそれぞれのサンプルのバリア層におけるTi、Si、Oの原子含有率を示した。図2,3において、エッチング時間は、バリア層の層厚に対応し、SiO2薄膜の標準サンプルと比較した場合、エッチング時間1minはバリア層の表面からの層厚1nmに相当する。
 図2のESCAの結果から明らかなように、実施例1のチタン(Ti)原子含有率の割合が最大値をとる位置は0.36Lであり、バリア層の中間部にチタン(Ti)原子含有率の割合の最大値が80.0%以上のチタン(Ti)リッチ層を備える。また、バリア層の表面側と機能性薄膜側でケイ素(Si)の原子含有率が高くなっている。図3に示した比較例1のESCAの結果から、チタン(Ti)リッチ層のチタン(Ti)原子含有率の割合の最大値が80.0%未満であることがわかる。
Table 1 shows the maximum value of the titanium (Ti) atom content ratio (Ti / (Ti + Si) (%)) in the barrier layer, and the position at which the titanium (Ti) atom content ratio takes the maximum value (peak position). The relative peak position expressed as a ratio to the total thickness (L) of the barrier layer and the ratio of the silicon (Si) atom content on the barrier layer surface (Si / (Ti + Si) (%)) Results are shown.
In Examples 1 to 7, the maximum value of the titanium (Ti) atom content ratio was 80.0% or more, and both the alkali resistance test and the acid resistance test were good results. In Examples 1 to 5, the ratio of the silicon (Si) atom content on the surface of the barrier layer was 60.0% or more, and all exhibited good scratch resistance. On the other hand, Comparative Examples 1 and 2 in which the maximum value of the proportion of titanium (Ti) atom content was less than 80.0% failed in the alkali resistance test. Further, Comparative Example 1 in which the position (peak position) at which the ratio of the titanium (Ti) atom content rate takes the maximum value was out of the range of 0.25 L to 0.75 L was also rejected in the scratch resistance test.
FIG. 2 shows the atomic content of Ti, Si, and O in the barrier layer of each sample of Example 1 and FIG. 3 of Comparative Example 1. In FIGS. 2 and 3, the etching time corresponds to the layer thickness of the barrier layer, and when compared with the standard sample of the SiO 2 thin film, the etching time 1 min corresponds to the layer thickness 1 nm from the surface of the barrier layer.
As is clear from the results of ESCA in FIG. 2, the position where the ratio of the titanium (Ti) atom content rate in Example 1 takes the maximum value is 0.36 L, and titanium (Ti) atom content is present in the middle portion of the barrier layer. A titanium (Ti) rich layer having a maximum rate ratio of 80.0% or more is provided. Moreover, the atomic content rate of silicon (Si) is high on the surface side of the barrier layer and the functional thin film side. From the ESCA result of Comparative Example 1 shown in FIG. 3, it can be seen that the maximum value of the titanium (Ti) atom content ratio of the titanium (Ti) rich layer is less than 80.0%.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年10月24日出願の日本特許出願2013-220812に基づくものであり、その内容はここに参照として取り込まれる。
 また、JIS R 3221:2002、JIS Z 8901:2006およびJIS Z 8722:2009の内容は、参照としてここに取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-220812 filed on Oct. 24, 2013, the contents of which are incorporated herein by reference.
The contents of JIS R 3221: 2002, JIS Z 8901: 2006 and JIS Z 8722: 2009 are incorporated herein by reference.
10 原料供給手段
12 コンベアベルト
12a ローラ
14 主原料供給ノズル
16 副原料供給ノズル
18 排気ノズル
Z ガラス基板
DESCRIPTION OF SYMBOLS 10 Raw material supply means 12 Conveyor belt 12a Roller 14 Main raw material supply nozzle 16 Sub raw material supply nozzle 18 Exhaust nozzle Z Glass substrate

Claims (14)

  1.  ガラス基板、機能性薄膜、及びバリア層をこの順で有する薄膜付ガラス板であって、
     前記バリア層が実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなり、
     前記バリア層は、X線光電子分析(ESCA)により測定した前記混合酸化物におけるチタン(Ti)の原子含有率(Atom%)がケイ素(Si)の原子含有率(Atom%)よりも高いチタン(Ti)リッチ層を備え、
     前記チタン(Ti)リッチ層におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))の最大値が80%以上である、薄膜付ガラス板。
    A glass plate with a thin film having a glass substrate, a functional thin film, and a barrier layer in this order,
    The barrier layer is substantially composed of a mixed oxide of silicon (Si) and titanium (Ti);
    The barrier layer is titanium (Atom%) of titanium (Ti) in the mixed oxide measured by X-ray photoelectron analysis (ESCA) higher than the atomic content (Atom%) of silicon (Si) ( Ti) with a rich layer,
    The maximum value of the atomic content ratio of titanium (Ti) to the total atomic content ratio of silicon (Si) and titanium (Ti) in the titanium (Ti) rich layer (Ti / (Si + Ti) (%)) is 80%. This is the glass plate with a thin film.
  2.  前記バリア層の表面のX線光電子分析(ESCA)により測定したケイ素(Si)の原子含有率の割合(Si/(Ti+Si)(%))が35%以上である、請求項1に記載の薄膜付ガラス板。 2. The thin film according to claim 1, wherein the silicon (Si) atomic content ratio (Si / (Ti + Si) (%)) measured by X-ray photoelectron analysis (ESCA) of the surface of the barrier layer is 35% or more. Glass plate with.
  3.  前記バリア層の表面のX線光電子分析(ESCA)により測定したケイ素(Si)の原子含有率の割合(Si/(Ti+Si)(%))が60%以上である、請求項1に記載の薄膜付ガラス板。 The thin film according to claim 1, wherein a ratio (Si / (Ti + Si) (%)) of silicon (Si) atomic content measured by X-ray photoelectron analysis (ESCA) of the surface of the barrier layer is 60% or more. Glass plate with.
  4.  前記バリア層の層厚をL(nm)とするとき、前記混合酸化物におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が最大値をとる部位が、前記バリア層の層厚方向において、0.05L~0.95Lを満たす位置にある、請求項1~3のいずれか一項に記載の薄膜付ガラス板。 When the thickness of the barrier layer is L (nm), the ratio of the atomic content of titanium (Ti) to the total atomic content of silicon (Si) and titanium (Ti) in the mixed oxide (Ti / ( The thin film according to any one of claims 1 to 3, wherein a portion where (Si + Ti) (%)) takes a maximum value is at a position satisfying 0.05 L to 0.95 L in the layer thickness direction of the barrier layer. Glass plate with.
  5.  前記バリア層の層厚をL(nm)とするとき、前記混合酸化物におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が最大値をとる部位が、前記バリア層の層厚方向において、0.25L~0.75Lを満たす位置にあり、ケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Si+Ti)(%))が最小値をとる部位が、前記バリア層の層厚方向における両端部のうち少なくとも一方の部位にある、請求項1~3のいずれか一項に記載の薄膜付ガラス板。 When the thickness of the barrier layer is L (nm), the ratio of the atomic content of titanium (Ti) to the total atomic content of silicon (Si) and titanium (Ti) in the mixed oxide (Ti / ( The portion where Si + Ti) (%)) takes the maximum value is at a position satisfying 0.25L to 0.75L in the thickness direction of the barrier layer, and the atomic content of silicon (Si) and titanium (Ti) The portion where the ratio of the atomic content of titanium (Ti) to the total (Ti / (Si + Ti) (%)) takes the minimum value is at least one of the both ends in the layer thickness direction of the barrier layer. Item 4. The glass plate with a thin film according to any one of Items 1 to 3.
  6.  前記バリア層の層厚が25nm以下である、請求項1~5のいずれか一項に記載の薄膜付ガラス板。 The glass plate with a thin film according to any one of claims 1 to 5, wherein the barrier layer has a thickness of 25 nm or less.
  7.  前記バリア層が搬送型常圧CVD装置を用いて形成された、請求項1~6のいずれか一項に記載の薄膜付ガラス板。 The glass plate with a thin film according to any one of claims 1 to 6, wherein the barrier layer is formed by using a transfer type atmospheric pressure CVD apparatus.
  8.  前記機能性薄膜が、低屈折率膜としての酸化ケイ素(SiO2)膜と、高屈折率膜としての酸化チタン(TiO2)膜と、を交互に積層してなる反射防止膜であり、該反射防止膜は、膜厚15nm以上100nm以下のSiO2膜と、膜厚5nm以上120nm以下のTiO2膜と、が、交互に合計2~16層積層されている、請求項1~7のいずれか一項に記載の薄膜付ガラス板。 The functional thin film is an antireflection film obtained by alternately laminating a silicon oxide (SiO 2 ) film as a low refractive index film and a titanium oxide (TiO 2 ) film as a high refractive index film, 8. The antireflection film according to claim 1, wherein a total of 2 to 16 layers of SiO 2 films having a thickness of 15 nm to 100 nm and TiO 2 films having a thickness of 5 nm to 120 nm are alternately laminated. A glass plate with a thin film according to claim 1.
  9.  前記反射防止膜は、ガラス基板側からSiO2膜、TiO2膜の順に交互に積層されている、請求項8に記載の薄膜付ガラス板。 The glass plate with a thin film according to claim 8, wherein the antireflection film is alternately laminated in the order of a SiO 2 film and a TiO 2 film from the glass substrate side.
  10.  前記反射防止膜は、ガラス基板側からTiO2膜、SiO2膜の順に交互に積層されている、請求項8に記載の薄膜付ガラス板。 The glass plate with a thin film according to claim 8, wherein the antireflection film is alternately laminated in the order of a TiO 2 film and an SiO 2 film from the glass substrate side.
  11.  前記機能性薄膜が、低放射(Low-E)膜である、請求項1~7のいずれか一項に記載の薄膜付ガラス板。 The glass plate with a thin film according to any one of claims 1 to 7, wherein the functional thin film is a low emission (Low-E) film.
  12.  前記機能性薄膜が、IRカット機能を備える多層膜である、請求項1~7のいずれか一項に記載の薄膜付ガラス板。 The glass plate with a thin film according to any one of claims 1 to 7, wherein the functional thin film is a multilayer film having an IR cut function.
  13.  前記機能性薄膜が、UVカット機能を備える多層膜である、請求項1~7のいずれか一項に記載の薄膜付ガラス板。 The thin film-attached glass plate according to any one of claims 1 to 7, wherein the functional thin film is a multilayer film having a UV cut function.
  14.  ガラス基板、機能性薄膜、及びバリア層をこの順で有する薄膜付ガラス板の製造方法であって、前記バリア層が搬送型常圧CVD装置を用いて形成され、
     主原料としてモノシラン(SiH4)およびテトライソプロポキシチタン(TTIP)を、副原料として酸素(O2)を、主原料供給ノズルと、該主原料供給ノズルに対しガラス基板の搬送方向における上流側および下流側に備えられた副原料供給ノズルから、前記搬送型常圧CVD装置内で搬送されるガラス基板上に供給する工程を備え、
     前記バリア層が実質的にケイ素(Si)とチタン(Ti)との混合酸化物のみからなり、
     前記バリア層が、X線光電子分析(ESCA)により測定した前記混合酸化物におけるチタン(Ti)の原子含有率(Atom%)がケイ素(Si)の原子含有率(Atom%)よりも高いチタン(Ti)リッチ層を備え、
     前記チタン(Ti)リッチ層におけるケイ素(Si)とチタン(Ti)の原子含有率の合計に対するチタン(Ti)の原子含有率の割合(Ti/(Ti+Si)(%))の最大値が80%以上である、薄膜付ガラス板の製造方法。
    A glass substrate, a functional thin film, and a manufacturing method of a glass plate with a thin film having a barrier layer in this order, wherein the barrier layer is formed using a transport type atmospheric pressure CVD apparatus,
    Monosilane (SiH 4 ) and tetraisopropoxy titanium (TTIP) as main raw materials, oxygen (O 2 ) as a secondary raw material, a main raw material supply nozzle, an upstream side in the conveyance direction of the glass substrate with respect to the main raw material supply nozzle, and From the auxiliary material supply nozzle provided on the downstream side, comprising a step of supplying onto the glass substrate conveyed in the conveyance type atmospheric pressure CVD apparatus,
    The barrier layer is substantially composed of a mixed oxide of silicon (Si) and titanium (Ti);
    Titanium in which the barrier layer has an atomic content (Atom%) of titanium (Ti) in the mixed oxide measured by X-ray photoelectron analysis (ESCA) higher than an atomic content (Atom%) of silicon (Si) ( Ti) with a rich layer,
    The maximum ratio of the atomic content of titanium (Ti) to the total atomic content of silicon (Si) and titanium (Ti) in the titanium (Ti) rich layer (Ti / (Ti + Si) (%)) is 80% The manufacturing method of the glass plate with a thin film which is the above.
PCT/JP2014/077740 2013-10-24 2014-10-17 Glass plate with thin film, and manufacturing method thereof WO2015060222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013220812A JP2016216266A (en) 2013-10-24 2013-10-24 Glass plate with thin film
JP2013-220812 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015060222A1 true WO2015060222A1 (en) 2015-04-30

Family

ID=52992819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077740 WO2015060222A1 (en) 2013-10-24 2014-10-17 Glass plate with thin film, and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2016216266A (en)
WO (1) WO2015060222A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119920A (en) * 2003-10-17 2005-05-12 Asahi Glass Co Ltd Method for producing substrate fitted with hydrophilic film and substrate fitted with hydrophilic film
WO2013008894A1 (en) * 2011-07-12 2013-01-17 旭硝子株式会社 Method for manufacturing layered-film-bearing glass substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119920A (en) * 2003-10-17 2005-05-12 Asahi Glass Co Ltd Method for producing substrate fitted with hydrophilic film and substrate fitted with hydrophilic film
WO2013008894A1 (en) * 2011-07-12 2013-01-17 旭硝子株式会社 Method for manufacturing layered-film-bearing glass substrate

Also Published As

Publication number Publication date
JP2016216266A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
US6503557B1 (en) Process for depositing at least one thin layer based on silicon nitride or oxynitride on a transparent substrate
US8153265B2 (en) Coated substrate and process for the production of a coated substrate
TW201331142A (en) Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate
US9012024B2 (en) Barrier layer to SiOC alkali metals
WO2014200097A1 (en) Method for reducing warpage of glass substrate by chemical strengthening treatment, and chemically strengthened glass and method for producing same
CN105517968B (en) Heat treatable coated glass pane
US9023480B2 (en) Glass substrate for chemical strengthening, and method for producing same
US6265076B1 (en) Anti-reflective films
JP2008201633A (en) Glass sheet with antireflection film and laminated glass for window
US20180170800A1 (en) Laminated body
JP2020502031A (en) Glass based articles having single and multilayer films to mitigate cracks to maintain strength and abrasion resistance of the article
WO2016208444A1 (en) Heat-insulating glass
WO2014081030A1 (en) Method for forming thin film
US20140338749A1 (en) Photocatalytic material and glazing or photovoltaic cell comprising said material
WO2015060222A1 (en) Glass plate with thin film, and manufacturing method thereof
GB2355273A (en) Coating glass
JP6508055B2 (en) Thin film forming method, thin film and glass plate with thin film
EP3365295B1 (en) Ultraviolet light-resistant articles and methods for making the same
WO2017030046A1 (en) Laminate
JP2004142998A (en) Glass article having thin film and method for producing the same
WO2018074049A1 (en) Coated substrate and method for manufacturing coated substrate
JP2002348145A (en) Near-infrared-ray shielding glass
JPWO2020171091A1 (en) Manufacturing method of glass substrate with antifouling layer and glass substrate with antifouling layer
JPWO2019181421A1 (en) Glass substrate with laminated film and window glass

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14855024

Country of ref document: EP

Kind code of ref document: A1